
Faculty of Electrical Engineering,
Mathematics and Computer Science

Anomaly detection for
Linux System log

Student: Rongjun Ma
M.Sc. Thesis

Date: August 2020

Supervisor
dr.ing. Gwenn Englebienne

Advisor
M.Sc. (Tech.) Ossi Koivistoinen

Master Interaction Technology

University of Twente

Enschede, The Netherlands

Preface

This paper is a report on my six-month master thesis research on Syslog anomaly
detection. It originated from the idea by Nokia, ended up as a successful proof of
concept to share with people who are interested in this topic. I am happy to see my
proposals are valuable. Moreover, I have learned a lot.

I would very much like to thank my thesis supervisor Gwenn Englebienne who
inspired me with e↵ective methodologies, advisor Ossi Koivistoinen who guided me
through every technical detail in this project, line manager Tommi Lundell who
supported me with powerful machine and resources. I also want to thank my friends
and family for all their support and help.

I wish this thesis work will also inspire you, who are reading my paper and en-
joy reading.

August 12, 2020

Rongjun Ma

1

Abstract

The goal of this study is to develop e↵ective methods for detecting anomalies in
Linux Syslog collected during CI/CD deployment. The automatic detection will
help improve developers’ e�ciency of debugging by saving much time that is spent
on manually searching for errors in the sea of logs. For this purpose, two di↵erent
types of anomaly detection methods are evaluated, namely workflow-based method
and PCA-based method. During the experiment, di↵erent Natural language process-
ing (NLP) methods such as word2vec and TF-IDF are tested for preprocessing and
encoding the log message body. Long short-term memory (LSTM) and Principal
component analysis (PCA) models are implemented separately as the representa-
tives for the two types of methods mentioned above.

The experiment results of both methods turn out to surpass the performance of
the baseline method stupid backo↵, which is the current solution used by the thesis
sponsor company. LSTM and PCA both reach a relatively balanced performance of
recall and precision. As a harmonic indicator, the F1 score for PCA reaches 0.9043
and, for LSTM it is 0.9124, while the baseline is 0.6411.

In the conclusion section, di↵erent suitable use cases of di↵erent methods are dis-
cussed. These two methods proposed in this thesis contributes towards detecting
syslog anomalies in an unsupervised manner when no label is provided.

2

Abbreviation

ML machine learning

PCA principal component analysis

SVD singular value decomposition

LSTM long-short term memory

CI continuous integration

CD continuous delivery

NLP natural language processing

TF-IDF term frequency–inverse document frequency

GPU graphics processing unit

SPE squared prediction error

3

Contents

1 Introduction 6

1.1 Background . 6
1.2 Thesis scope and objectives . 7

1.2.1 Data source and detection flow with real-case scenario 7
1.2.2 Types of anomalies to aim at 8
1.2.3 Thesis structure . 8

2 Literature Review 9

2.1 Log parsing . 9
2.1.1 Iterative partitioning . 10
2.1.2 Frequent pattern mining . 11
2.1.3 Longest common subsequence 12
2.1.4 Parsing tree with fixed depth 13
2.1.5 Summary . 14

2.2 Log extraction . 15
2.3 Modeling and detection . 17

2.3.1 PCA-based methods . 17
2.3.2 Workflow-based methods . 21
2.3.3 Invariant mining based methods 22

2.4 Baseline . 23

3 Research design 25

3.1 Data analysis . 25
3.1.1 An overview of Log data . 25
3.1.2 Data selection . 27

3.2 PCA experiment design . 28
3.2.1 Data pre-processing . 28
3.2.2 Modeling . 31
3.2.3 Model tuning and evaluation 31

3.3 LSTM experiment design . 33
3.3.1 Data pre-processing . 33
3.3.2 Modeling . 34
3.3.3 Model tuning and evaluation 35

3.4 Common practical challenges . 36
3.4.1 Out of memory due to large data set 36
3.4.2 Running speed . 37
3.4.3 Incremental learning . 37

4

4 Experiment results 39

4.1 LSTM . 39
4.2 PCA . 42
4.3 Baseline and comparison . 45

5 Discussion and Conclusion 48

6 Future work 50

6.1 User research and experience evaluation 50
6.2 Adding features . 50
6.3 Algorithm improvement . 51

5

Chapter 1

Introduction

1.1 Background

Syslog records run-time information of system processes and it stores valuable data
to help debug when a process fails or just to keep a record of issues. Anomaly de-
tection, which aims at abnormal system behaviors by looking at Syslog data, allows
developers to pinpoint and resolve issues in a timely manner. It plays a very im-
portant role in incident management, especially for large-scale distributed systems.
Traditionally, developers inspect those logs manually with the use of keyword search
(e.g., “fail”, “exception”) or regular expression match, which depends a lot on their
domain knowledge and experience. However, such a manual process becomes inade-
quate when it comes to large-scale systems due to the following issues. There can be
di↵erent practical challenges from system to system but three common challenges
are the quantity of data, complex architecture, and tolerant mechanisms issues[12].
First, large-scale systems generate tons of logs. For example, in this study, the
Linux system can generate 224,000 lines of log messages during the first two hours
of testing one build. Second, under the modern development environment, a single
developer is often responsible for sub-components and thus the whole system be-
havior can be too complex for one developer to interpret. Third, large-scale systems
are built with di↵erent tolerant mechanisms and these may lead to a judgment of
false positives. In practice, sometimes developers use regular expression to detect
abnormal behaviors but it turns out to be log messages that are actually unrelated
to the real failures[21]. To assist manual debugging, lots of work has been done such
as developing the knowledge-sharing platform for developers to communicate and
share similar issues. Furthermore, the development of Natural Language Processing
and Machine Learning techniques also speed up the research on solving the problem
via automatic anomaly detection.

Previous research on log anomaly detection works in three main directions, Principal
Component Analysis(PCA) based methods, workflow-based methods, and invariant
mining-based methods. As a brief introduction, PCA based methods try to create a
normal space through learning the core features of normal encoded log entries and
then calculate the distance from the to be tested logs to the normal space. Anoma-
lies are identified by comparing the distance with a threshold. This method was
first applied in this context by Wei et al. [33]. Second, workflow-based methods
pay more attention to the flow of the process. The idea is to predict the possible

6

following logs based on previous ones and then comparing the actual log entry with
prediction. The study by Du et al. [7] shares the same idea to detect anomaly by
sequential predicting. The third one, invariant mining-based methods, proposes that
logs are happening in pairs. For example, whenever there is an “open” in the log
message, there will be a corresponding “close”. Therefore, anomalies can be found
based on pair-wise rules. Such rules are explained in the study by Lou et al. [23]
Based on these studies, this thesis is aimed to develop a suitable model for detecting
anomalies in Linux system logs provided by Nokia.

1.2 Thesis scope and objectives

The research topic for this thesis study is to find a suitable model to detect anomaly
in the Linux system log. This section explains data source with a real-case scenario
and also limits the scope of anomalies that will be targeted at in this study.

1.2.1 Data source and detection flow with real-case scenario

The real-case scenario of this anomaly detection tool will be to assist programmers
in debugging during continuous integration (CI) and continuous delivery(CD) cy-
cle. CI/CD is a practice that happens when new changes need to be merged to the
main branch, the aim of it is to avoid conflicts and make sure the application is not
broken by the commits. Graph 1.1 shows the pipeline of the CI/CD procedure at
a high level. Whenever a developer merges some new changes, these changes are
first validated by creating a build and running automated tests against that build.
These tests include unit tests and integration tests. Then the commit will be contin-
uously deployed to the quality assurance (QA) server to do the QA test. By running
all the tests, it allows developers to merge changes continuously instead of waiting
for release day and merge all the changes together, which often causes chaos. The
intersection of CI and CD procedure is exactly where the anomaly detection tool
helps, where commits are passed from CI and deployed to CD for the QA server
test. Imagine when a developer submits a commit and it fails, which means some
errors or conflicts happen with the commit, the QA server will return a system log
recording execution process to the developer for debugging. Then the developer
needs to go through the whole log file to find the issue, where anomaly detection
results help by narrowing down the scope the developer needs to check.

Figure 1.1: CI CD pipeline

7

During the QA server testing, all logs during deployment are continuously collected
by the server and those which succeed going through testing will be the training sets
for this study. The intuition behind is that even though new changes are committed
continuously, the core structure remains the same for the same product. Thus, by
learning the pattern of these successful logs, we can learn the workflow and distin-
guish those abnormal situations when the log violates the normal pattern. However,
since it is still an updating procedure, how to choose data sets also influences the
result of detecting anomalies for incoming new logs. For example, if all history logs
are considered, the pattern learned might include noise from the antiquated model.
Thus, how to balance between collecting enough data for training and keeping model
up-to-date with the changing data is a factor to be considered in this experiment.
In this study, the latest 19 log files are chosen to be the training set for the incoming
new log considering the computational power and feedback from the end-user.

1.2.2 Types of anomalies to aim at

As logs are updated continuously during anomaly detection, the meaning of anomaly
is not only to detect when it violates the normal pattern but also to help developers
catch up with the latest changes. Therefore, anomalies aimed at in this study are
divided into two categories.

One direction is to find anomalies that conflict with normal procedures. For ex-
ample, suppose log A indicates the preparations for setting up an IP address and
log B indicates operation with this IP address. Log A should always come before
log B because only when the IP address is set up can the next operation being
executed. If the order is reversed, the execution fails. In this situation, sequence
{B,A} violates the normal pattern so it is categorized as an anomaly.

The second direction is to detect a new pattern that is never seen with the learned
model. For example, a new change is committed successfully which generates log
C and it is never seen before. The new procedure will be {A,B,C}, and in this
procedure, the updated C should also be detected as an anomaly.

1.2.3 Thesis structure

The remainder of the thesis proceeds as follows. In chapter 2 literature review is
elaborated following the process of classical anomaly detection, from processing raw
data to the detection stage. Chapter 3 describes the experiment designing, param-
eter settings, and also practical challenges. In chapter 4, experiment results are
presented. Chapter 5 draws the conclusions and key insights from the experiment
results. Lastly, chapter 6 discusses the limitations of this study and also future work.

8

Chapter 2

Literature Review

The procedure to detect anomalies usually consists of four phases: log parsing, log
feature extracting, modeling, and anomaly detection. The first step, log parsing,
is to transform raw log messages into a structured format so it can be modeled
e↵ectively by the machine. Then data mining techniques are applied to extract useful
information from these logs for training, which is also part of data pre-processing
work. In the third phase, the model will be developed and trained to learn patterns
of normal workflows. Lastly, detect anomaly based on the learned knowledge.

2.1 Log parsing

A typical log message includes timestamp, hostname, and program name attributes
that are followed by a free-form text, while only the text string is mandatory[22].
In this thesis, a normal log entry contains more information. As an example,

{"CURSOR" : "s=fd2a2a1c383d48d6b43a1bcda2be0248; i=5;

b=7a568868e3854af698f75fca22e7a9e2; m=9c7508;

t=59ecb36d2ebc3; x=71b6b5247db66e68",

"REALTIME_TIMESTAMP" : "1581970518895555",

"MONOTONIC_TIMESTAMP" : "10253576",

"BOOT_ID" : "7a568868e3854af698f75fca22e7a9e2",

"SOURCE_MONOTONIC_TIMESTAMP" : "0",

"TRANSPORT" : "kernel",

"SYSLOG_FACILITY" : "0",

"SYSLOG_IDENTIFIER" : "kernel",

"MACHINE_ID" : "4c926bd9584046d8a6564bbe44f74e3c",

"HOSTNAME" : "localhost",

"PRIORITY" : "6",

"MESSAGE" : "x86/fpu: Supporting XSAVE feature 0x004: ‘AVX registers’ "}

is a complete log entry for this thesis in JSON format. As can be seen from categories
(variables in capital letter), the log entry contains main body “MESSAGE”(free-
from text) and other basic information[22], as well as some additional information
customized by the program.

The purpose of log parsing is to extract the event template of each log message. For
example, the logline mentioned above “x86/fpu: Supporting XSAVE feature 0x004:
‘AVX registers’ ”will be parsed into the template with parameters represented by *

9

, like “ x86/fpu: Supporting XSAVE feature * : * ”.

To automate log parsing, many state-of-the-art algorithms have been proposed in
recent years, such as iterative partitioning (IPLoM [24]), frequent pattern mining
(SLCT [31], and its extension LogCluster [32]), longest common subsequence(LCS)
(Spell[6]), parsing tree with fixed depth (Drain [11]). These methods share the same
goal of parsing raw logs into templates but the intuitions behind them are quite
di↵erent.

2.1.1 Iterative partitioning

As a representative of iterative partitioning method, IPLoM by Makanju et al. [24]
works in the way that it partitions a set of log messages iteratively so that at each
step the resulting partitions come closer to containing the same type of log entry. At
the end of the process, it attempts to discover the line format in each partition and
eventually the output of this algorithm is these discovered partitions and formats.

To be more detailed, IPLoM goes through four steps as follows:

1. Partition by token count. It is based on the assumption that log messages
with the same format are also likely to have the same length so the algorithm
first groups log messages with the same number of tokens together.

2. Partition by token position. This step is based on the assumption that the
column with the least number of unique words is more likely to contain the
constant words produced by the line format. For example, “Connection from
255.255.255.255”, ”Connection from 0.0.0.0” are in the same group after first
step. In the first column, there is only one unique word “Connection”, the
same for “from”. However, there are two unique values for the third position,
“255.255.255.255” and “0.0.0.0”. In this example, the positions of “Connec-
tion” and “from” have only one unique value, which means these two words
are constant in this type of log entry. So, after the second step, the line format
for these two entries will be “Connection from * ”.

3. Partition by a search for bijection. This step aims to find a one to one re-
lationship between two token positions, a summary of the heuristic would be
to select the first two token positions with the most frequently occurring to-
ken count value greater than 1[24]. For example, 2.1 shows three types of log
entries in one group after the second step. In this situation, “failed” has a
1-1 relationship with “on” and thus the connection of these two words is a
bijection. However, there are also special cases of 1-M, M-1, and M-M re-
lationships. For example, in figure 2.1 “has” shows a 1-M relationship with
tokens “completed” and “been”. Thus, a heuristic method is implemented
to deal with those “M” relationships. With a ratio between the number of
unique values in the set and the number of lines that have these values in the
corresponding token position, a decision is made on whether to treat the “M”
side as constant or variable values. In this example, “M” side refers to “com-
pleted” and “been”, and a decision will be made whether “completed”/“been”
is constant or not.

10

Figure 2.1: IPLoM step3: illustration about bijection[24]

4. Discover cluster descriptions (line formats) from each partition group. This
step is just to summarize based on previous steps and eventually output the
format of each partition.

2.1.2 Frequent pattern mining

The frequent pattern mining method aims to detect clusters that are observed in
subspaces of the original data space by making a few passes over the whole dataset.
It consists of three steps: First, make a pass over the whole dataset to get a summary
of the data; second, make another pass to build cluster candidates; third, choose
proper clusters from the candidates[31].

1. During the first step, the algorithm tries to summarize all frequent words. A
word is considered to be frequent if it occurs (the position of the word in the
line is also taken into account) at least N times in the dataset where N is
a threshold defined by the user. After this step, dense 1-regions are created
which is a collection of all the frequent words found.

2. This step generates cluster candidates by making another pass over the dataset.
During the pass over, it finds all words that belong to dense 1-regions in each
line. When one or more frequent words in dense 1 -regions are found in a line,
a cluster candidate is formed. Then it will be added to a cluster candidate
table through an if-else statement: add if it is new, ignore if it already exists.
Take the log message “Connection from 192.168.1.1” as an example, suppose
in this line, (1, ‘Connection’) and (2, ‘from’) are two words found. Then a
region with the set of attributes (1, ‘Connection’),(2, ‘from’) becomes a cluster
candidate.

11

3. The last step is to inspect the candidate table and find all guaranteed cluster
candidates to generate line formats. These guaranteed cluster candidates are
selected based on a threshold value set by the user. Then line format will
be generated for each of the selected candidates. For example, (1, ‘Connec-
tion’),(2, ‘from’) corresponds to the line format “Connection from *”.

2.1.3 Longest common subsequence

As can be learned from the name, Longest common subsequence(LCS) method works
by finding the longest common subsequence of log entries. For example, log entry
”Connection from 192.168.1.1” and ”Connection from 0.0.0.0” share the words
”connection” and ”from”, and the longest sequence between them is ”Connection
from“. Graph 2.2 shows an basic workflow of Spell[6], which is a representative of
LCS method. It parses log entries by the following steps. Before the journey of
LCS, there are three variables to be identified .

LCSMap: a map that stores all status during the parsing procedure including new
log entry and parsed line ID.
LCSSeq: a sequence that represents a line format of one type of log entry.
LCSObject: an object storing two parts of information, an LCSseq and all line Ids
that match the LCSSeq.

1. There are two types of operations about LCSSeq, one is to update and the
other one is to add new. Adding new LCSSeq is quite simple, if none of the
existing LCSseq shares a common sequence that is at least half of the length
of the given new log entry, then we create a new LCSObject for this new log
entry and the sequence is the original log entry itself (e.g.“Temperature (41C)
exceeds warning threshold”). Then it comes to update when the next similar
log entry comes (e.g. “Temperature (43C) exceeds warning threshold”). It will
search all the LCSObjects until it finds a common sequence longer than half
of it. In this example, it finds “Temperature (41C) exceeds warning threshold”
but it disagrees with the “(41C)” part. Then it checks the length of both and
updates “(41C)” with *. This example can be found in figure 2.2, the second
box.

Figure 2.2: Basic workflow of Spell

2. The whole procedure of processing the raw logs works in this way. When a
new log entry arrives, it is first parsed into a sequence of tokens. After that, it
will be compared with all LCSObjects in the current LCSMap which stores all
unique sequences. During the search, the rule determines if it matches or not
based on length. There are two conditions to meet, first, it shares the common

12

sequence with the existing LCSSeq (including token position); second, length
of the LCSsequence is greater than a threshold which is by default the length
of original log entry sequence. If it meets both conditions, the line ID of it
will be added to the corresponding LCSObject. Otherwise, it goes to the next
step, create a new LCSObject.

For example, suppose we have an existing LCSseq: “Connecting from * ”,
where * represents variable and it is limited to a single token. Then, a new
log entry “Connecting from 0.0.0.0” comes. First, this log entry has the same
sequence as the existing LCSSeq. Second, the length of LCSSeq is 2 (tokens)
and the length of this raw log entry “Connecting from 0.0.0.0” is 3, 2 is bigger
than half of 3. Therefore, it meets both conditions and its line ID will be
added.

2.1.4 Parsing tree with fixed depth

Drain [11], as a representative for paring tree with fixes depth, works by 5 steps.
The same as Spell (the longest common sequence method), it works in an online
mode. Graph2.3 shows a simple 2-layer tree model.

Figure 2.3: A tree model with depth of 3

1. According to an empirical study by He et al. [10], preprocessing helps im-
prove parsing accuracy. Therefore, before employing the parsing model, Darin
first removes some obvious parameters by the regular expression which can
also be customized by users. Those obvious parameters are like block ID or
IP addresses, which are just a string of numbers and characters generated
automatically.

2. From this step, Drain starts to build the parsing tree with preprocessed logs
from the first step. The 1-st layer nodes in the tree are based on the assumption

13

that log entries with the same length will be more likely to group together.
Therefore, each node has a unique length(number of tokens in one log message)
and parse logs by length.

3. This step supposes that the first word of a log message is usually constant.
For example, the first word of “Receive from node 4” ”receive” is considered a
constant word. Then all unique first words will be one node in the 2-nd layer.
However, in some cases, log messages can also start with a parameter. For
example, ”120 bytes received”. To avoid chaos due to these parameters, if the
first position is a digit then it will be ignored and replaced by a *.

4. After step three, Drain gathered a list of log groups. Each group consists of log
messages that start with the same word and have the same length. Suppose
we now have a group of log messages starting with ”receive” and have 4 tokens
each message. In this step, they will be further distinguished by calculating
the token similarity. The calculation is simply done by comparing each token
in a specific position and set a threshold to judge if they are similar enough
to be grouped together or not.

5. Last step is to take care of the updating issue. If logs find a suitable group
in step 4, then the log ID of the current log message will be added to this
group. Besides, the log event will be updated based on their di↵erence (replace
di↵erent parts by *).

2.1.5 Summary

To summarize the performance of di↵erent log parsing model, a comparison among
these mentioned methods is illustrated in table 2.1. This table compares the per-
formance of di↵erent log parsing techniques from five aspects. First, mode indicates
the way that technique works. Typically, there are two types of modes – O✏ine
and Online. O✏ine log parsing techniques work by batch processing and require
all datasets to be available before parsing. However, online parsing techniques can
handle log messages one by one in a streaming manner. The second one, coverage
means the capability of a parser to parse all input logs. For Example, SLCT and
LogCluster perform well by applying frequent pattern mining but fail when it comes
to rare event templates. Third, preprocessing is a data cleaning step to remove some
common variable values such as IP addresses and numbers, which requires manual
work. Here, symbol “check” represents the preprocessing step is explicitly specified
in a parser and “cross” means otherwise. Fourth, open-source indicates the current
source code release status of those parsing methods. The last one, industrial use,
indicates the practical value of these methods. Here, a “check” means the method
is in industrial use and “cross” for pure research. The industrial value is evaluated
according to the research by J.zhu et al.[35]

As summarized in the table above, di↵erent methods have di↵erent usage cases.
They all process e�ciently regarding time consumption but some of them can not
handle rare log types. Also, they work in di↵erent modes, only Spell and Drain
models have an online mode, which means they are able to parse logs in a streaming
and timely manner. Considering the volume of logs is large in this study and it

14

Log Parser Year Technique Mode Coverage
Pre-

processing
Open
Source

Industrial
Use

IPloM 2012 Iterative partitioning O✏ine 4 8 8 8
SLCT 2003 Frequent pattern mining O✏ine 8 8 4 8

LogCluster 2015 Frequent pattern mining O✏ine 8 8 4 4
Spell 2016 Longest common subsequence Online 4 8 8 8
Drain 2017 Parsing tree Online 4 4 4 8

Table 2.1: Comparison between log parsing tools

also increases rapidly day by day, Spell and Drain models might be chosen to be
applied in the parsing stage. Or, a better way of encoding the raw log message will
be discussed in the experiment design stage.

2.2 Log extraction

After parsing the log, each log message now has a template with some positions of
parameters (e.g. “Receive from node * ”, * represents one parameter). However,
there is still some other interesting information that has not been considered to
be fed into the model, such as “TIMESTAMP”, “PRIORITY”. Some of this in-
formation is important because it might indicate the error, while some are always
constant so it does not help with the anomaly detection. This log extraction step is
to deal with the information and it is the last step of data preprocessing. The goal
of this step is to construct feature vectors, which will be then fed into the model.
In this step, appropriate variables are filtered to extract useful information, also
related messages are grouped together because message groups show strong corre-
lations among their members.[33] In a nutshell, all meaningful information will be
considered to be as a part of the feature vectors.

The extracted information can be stored in separate matrices and trained sepa-
rately. But it might also be di↵erent, which depends on the dataset and design of
the model. As an example, in the model created by Xu et al.(2009)[33], the ex-
tracted information is stored in two matrices, namely the state ratio matrix and
message count matrix.

In Xu et al.’s research, the state ratio matrix is used to capture the aggregated
behavior of the system over a time window. Because in the dataset used by Xu et
al., a large portion of messages contains state variables within countable categories.
More importantly, these variables are closely related to anomalies. For example, in
the dataset they used, the ratio between ABORTING and COMMITTING is very
stable during daily execution but changes significantly when an error happens. Con-
sidering this situation, Xu et al. (2009) created a matrix to store the information
of states by encoding the correlation: each row indicates the state ratio over a time
window, while each column corresponds to a distinct state value. Graph 2.4 is an
illustration of the ratio distribution and feature vector within a specific time window
of 100 log lines. A complete state ratio matrix consists of lines of vectors like the
one in graph 2.4, if one vector is judged as abnormal based on the algorithm, it
indicates there must be something wrong within that time window. However, it can

15

not locate to a specific line, and in order to use this matrix, the log should be first
divided into blocks based on the same time window (100 in figure 2.4).

Figure 2.4: State ratio matrix

Another matrix introduced by Xu et al. (2009) is more widely used. It is composed
of message count vectors, which describe the occurrences of basic log types. The
log data for their experiment is collected from the Hadoop Distributed File System
(HDFS). Files in HDFS are broken into block-sized chunks called data blocks. These
blocks are stored as independent units and each block has a unique block ID [30],
which is an important identifier for Xu et al[33]. Based on block ID, they divide the
whole log into di↵erent blocks and encode information of each block to one row. As
the final matrix, each vector represents one block. While dimensions of the vector
correspond to all log template types across the whole log file, the value of each cell is
the number of appearances of the message type in the corresponding block. Graph
2.5 shows the process of matching the raw logs with template id and then mapping
it to the matrix. It is notable that in the third box of the message count matrix,
only the first line corresponds to the example in the graph. The other two lines from
block 326 and 327 are just dummy data to show how the matrix looks.

Figure 2.5: The process of constructing message count matrix

In Xu et al.’s study, they only consider the message body part because their dataset
does not contain other info like “TIMESTAMP”, “PRIORITY”. So they construct

16

two matrices only based on the log parsing results (each raw log message returns
with a template and a set of parameters (e.g. “Receive from node * ”, [4])). Besides,
they introduce two concepts, time window, and block. First, the time window is
used to construct the state ratio matrix, which means grouping equal lines of log
messages together and encoding the state ratio within the specific time window. By
sliding the window, the complete state ratio matrix will be able to cover the whole
dataset. For example, if the length of the window is set to be 100, then line 1 to line
100 will be encoded as row 1 of the matrix, line 101 to line 200 as row 2 and so on.
Second, the block id groups log messages from one process together and it is used
for constructing the message count matrix. By creating those meaningful subsets
(each represents one process), it allows the algorithm to detect the specific process
causing errors so it benefits debug a lot.

However, their matrix construction method seems to be not applicable to our situ-
ation. First, parameter values in our dataset hardly ever repeat and they are not
so related to states. In fact, most of them are just machine ids or addresses which
change from machine to machine. Therefore, it is not very meaningful in our case
to follow the state ratio matrix construction. But our dataset does provide lots of
additional information like “TIMESTAMP”, “PRIORITY”, a new way of encoding
this information will be discussed in the following chapter – experiment stage. Sec-
ond, in Xu et al. ’s study, their dataset contains block id which helps distinguish
di↵erent processes. But in our case, all processes log in parallel without indicators
so it is hard to tell which process produces which lines of log. It might also a↵ect the
performance of the model because the order of log messages might be noise itself.
Therefore, to construct a similar message count matrix, the time window technique
might be a choice. In more detail, the matrix can be constructed based on the
assumption that log messages within a specific time window come from the same
process and will be encoded as one vector. The final encoding technique being used
in the experiment will be discussed in the research design phase.

2.3 Modeling and detection

Currently, anomaly detection for log lines can be organized in three broad categories,
PCA-based method[33] that distinguishes anomalies with a distance threshold to
the normal space, workflow-based method[34] that captures illogical log lines, and
invariant mining based method[23] which identifies co-occurrence patterns between
di↵erent log messages.

2.3.1 PCA-based methods

Principal Component Analysis(PCA) is a statistical method that captures patterns
of features by choosing a set of coordinates from high-dimensional data. Using
the PCA technique, repeating patterns in features will be separated which makes
it easier to detect abnormal situations. Figure 2.6 illustrates the intuition behind
PCA-based anomaly detection method. Suppose there are now two variables in fea-
ture vector and they are plotted in this two-dimensional graph, Sd captures a strong
correlation between these two variables and thus Sd is used to represent the normal
situation of these two variables, which can be also called normal space. Then, two

17

new points A and B come. Intuitively, point A is far from the Sd which shows
an unusual correlation so it is regarded as an anomaly. However for point B, even
though it is far from most of the points, it still follows the pattern of Sd line and it
is classified to the normal.

Figure 2.6: The intuition behind PCA detection with simplified data[33]

To explain the procedure with mathematical formulas, first a PCA model decom-
poses a vector into two portions[8],

x = x̂+ ex (2.1)

Here, in equation 2.1, x̂ represents the modeled portion, which are components
set chosen by PCA (normal space Sd in fig. 2.6), and ex corresponds to the resid-
ual portions (abnormal space Sa in fig. 2.6). The modeled portion is constructed
through projecting original data with formula 2.2, where the C = PP

T represents
the projection matrix to transfer the original vectors into modeled space Sd of N
dimensions.

x̂ = PP
T
x = Cx (2.2)

Suppose the original vector has M dimensions, then the left ex in equation 2.1 lies in
the residual subspace of M-N dimension, where eC represents the projection matrix
on the residual subspace in equation 2.3.

ex = (I � C)x = eCx (2.3)

An unusual execution will be detected as an anomaly because it does not conserve
the normal relations, which is shown in a way that increases its projection to the
residual subspace Sa. As a result, the magnitude of ex reaches an extreme value that
surpasses the threshold. Usually, a statistic for detecting these unusual conditions
is the squared prediction error (SPE),

SPE = ||ex||2 = || eCx||2 (2.4)

and the sample is considered normal only if,

SPE �
2 (2.5)

where �
2 denotes a threshold for the SPE.

18

The choice of normal space Sd is based on how much information is chosen to be
contained in Sd (e.g. choose k dimensions that explain 95% of variance to be Sd).
The model will be di↵erent with di↵erent k values. But the intuition behind the
PCA-based method is the same, to distinguish anomalies by examining the SPE of
residual projection.

Moreover, there is another very important setting in this experiment about how
to determine the threshold �

2 . A statistical test for the residual vector known as
Q-statistic developed by Jackson and Mudholkar[16] is used in many anomaly detec-
tion studies, such as in Xu et al.’s study of detecting large system problems [33] and
Anukool et al.’s work of diagnosing network-wide tra�c anomalies[19]. Q-statistic
introduces the threshold under 1� ↵ confidence level as:

�
2
↵ = �1[

c↵

q
2�2h

2
0

�1
+ 1 +

�2h0(h0 � 1)

�
2
1

]
1
h0 (2.6)

where

h0 = 1� 2�1�3

2�2
2

, and �i =
mX

j=r+1

�
i
j; for i = 1, 2, 3 (2.7)

In equation 2.6 and 2.7, �j is the variance captured when the data is projected on
the j � th principal component, c↵ is the 1 � ↵ percentile in a standard normal
distribution, m and r describe the shape of the projection matrix where m stands
for the rows of data and r denotes the number of normal axes. Additionally, as
pointed out by Jensen and Solomon [17], the Q-statistic changes little even when
the distribution of the original data di↵ers substantially from Gaussian distribution.
Thus, Q-statistic can be widely used for PCA-based anomaly detection regardless
of the data distribution.

With two feature matrices explained in section 2.2, Xu et al. (2009) build two
PCA models for two types of anomalies, event occurrence anomaly and parameter
anomaly respectively (See figure 2.7). The output of their model is an array com-
posed of binary values 0 or 1, with 1 representing anomalies. Each value in the
output array corresponds to one vector of the input matrix. Thus the length of
output array matches the number of input vectors, which is exactly the number of
blocks. It means it can only tell if one block is abnormal, but it can not distinguish
which specific line is abnormal. In the last step, they developed a decision tree visu-
alization to summarize the PCA detection results in an intuitive picture that is more
friendly to operators because the judgment rule and threshold are then visualized.

19

F
ig
u
re

2.
7:

T
h
e
w
or
kfl

ow
of

P
C
A
-b
as
ed

m
et
h
od

by
X
u
et

al
.[
33
]

20

2.3.2 Workflow-based methods

System logs are usually produced following a set of rigorous rules and there is al-
ways a workflow pattern for a certain program[7]. This feature determines how
workflow-based methods work: First learning from regular workflow and meanwhile
constructing workflow models with the learned knowledge. Then detecting outliers
that deviate from the sequence model. There can be various ways to learn the pat-
tern. For example, in Deeplog [7], Du et al. proposes a method to model sequences
of log entries based on Long Short-Term Memory(LSTM) model. Additionally, they
demonstrate a way to make decisions in a streaming fashion. Figure 2.8 shows an
overview of the Deeplog architecture.

Figure 2.8: Deeplog architecture[7]

In this model, log keys and parameters are extracted and stored in two separate
matrices. Also, they are processed by two separate models. In this method, ei-
ther the log key or the value vector of its parameters is predicted as abnormal will
lead to the result that the log entry being marked as an anomaly. In Deeplog’s
design, LSTM is applied to deal with the log key anomaly detection. Figure 2.9
illustrates a detailed view of the stacked LSTM model being used. Given a sequence
of log messages, LSTM model is trained by learning the probability distribution
Pr(mt = ki|mt�h, ...,mt�2,mt�1) (k 2 K, K represents all log keys) of the next log
key. By finding logs keys that maximize the probability Pr, a set of possible log keys
are predicted. Then, by comparing the predicted ones with the real log key that
actually happened, the anomalies will be distinguished (if the real log key is out of
the predictions).

As illustrated in Figure 2.9 : mt�h represents the input. Together with cell state
vector (Ct�i), the output from last block (Ht�h) work as hidden neurons. They
both influence the output of the current block and then will be passed to the next
block to initialize its state. All these operations are accomplished through a set of
gating functions, which determines state dynamics to control how much previous
information to be retained.

However, system behavior may change over time and the training data may not
always cover all possible normal execution patterns. Therefore, Deeplog [7] also
creates a mechanism to update model weights with manual feedback. For instance,
suppose the model is predicting based on the previous 3 log entries {k1, k2, k3} and

21

Figure 2.9: A detailed view of statcked LSTM model[7]

it predicts the next one to be k1 with a probability of 1, while the next one appears
to be k2, so k2 is labeled as an anomaly. However, if a user reports that this pre-
diction is a false positive which means k2 is actually normal but it is classified as an
anomaly, then the model will update the weight of its model by learning the new
pattern {k1, k2, k3 ! k2}. In this way, the model is able to learn continuously and
benefit even with execution updating.

2.3.3 Invariant mining based methods

Invariant mining methods are based on linear relationships between logically pair-
wise log messages (e.g. “open file”, “close file”) from console logs that can be
learned with automatic techniques. It was first applied to log anomaly detection in
the study of Lou et al.[23]. Linear relationships are extracted from system execution
behavior, and thus, they always carry the logic rule of the workflow. As a simple
example for invariant: in normal executions of a system, if a file is opened then at
some stage it should be closed. In a way that can be calculated, the log messages
indicate “Open file” should be equal to the number of logs that indicate “Close file”.
Suppose message indicating “open file” is type A, and “close file” is type B, a rule
is then created in a mathematical way:

c(A) = c(B) (2.8)

When invariant rules like this are developed, an anomaly will be identified when a
log message breaks certain invariants. In this sense, it not only detects the anoma-
lies but also makes the errors logically explainable.

The workflow of this method is: Firstly, parsing log messages into structured logs.

22

Then, grouping them based on set of rules to identify the groups of cogenetic param-
eters. Thirdly, counting messages and mining invariant using greedy algorithm to
obtain invariant candidates and validate them using collected historical logs. Finally,
detecting anomalies based on these invariant rules. See graph 2.10 for illustration
of invariant mining workflow.

Figure 2.10: The workflow of invariant mining technique for log anomaly detection

This method is suitable for dataset that shows strong correlations between log pairs.
However, in our dataset it is hard to capture this kind of pair-wise relationships.
The dataset used in this study is collected during installing a software on distributed
systems, the amount of the same type of messages di↵er from system to system and
it does not follow certain invariants sometimes. For example, during the initializing
stage there are a lot of messages about initializing certain devices that are detected
(e.g. “Initializing XFRM netlink socket”). For di↵erent machines, devices that
needs to be initialized might be di↵erent (e.g. some machines does not have certain
devices) and thus the amount of this type of messages di↵er a lot. Moreover, these
types of message usually happen without “closure”. It is hard to capture invariant
rules in our case and therefore, this method is not further researched in this study.

2.4 Baseline

The baseline for experiments in this study is the model that is currently used by
the company. The current model is called Stupid Backo↵ method that combines
multiple N-gram models in a very simple way[25]. First, the next log template label
to be predicted is denoted as i , the maximum n-gram length as k and the probability
distribution of some j-gram model as Pj(ti|ti�j+1, ..., ti�1). In the inference phase,
the procedure works as follows:

1. Given the sequence of prior log templates ti�k+1, ...ti�1, if it has occurred in
the training data, return pk(ti|ti�k+1, ..., ti�1).

2. If not, check if the sequence ti�k+2, ...ti�1 (corresponding to the (k-1)-Gram
model) was in the training data and return pk�1(ti|ti�k+2, ..., ti�1) if so.

3. If not, continue in the same way until the lowest-order model is reached. If
none of the models can provide a prediction, return a probability of zero.

There are, however, drawbacks with the current solution: Firstly, it does not give an
actual probability distribution, since each of the submodels has their own distribu-
tions. This makes it harder to interpret results and improve the analysis. Secondly,

23

no smoothing is done so that any predictions based on low counts are probably bad.
Thirdly, especially in the specific context of anomaly detection for our dataset, the
fact that some log keys/templates never come after a given sequence can actually
be significant, which means they have zero probability to appear. However, since
the model goes back o↵, it can then wrongly back o↵ to a lower n-gram submodel
and give a nonzero probability to it.

24

Chapter 3

Research design

3.1 Data analysis

3.1.1 An overview of Log data

The log data for this study is quite di↵erent from log data experimented in previous
researches mentioned in literature review. Table 3.1 shows some rough statistics
about log files. Additionally, some key insights from the log datasets are described
as follows:

Variables value

Number of log data files 20
Rows per file 240,000

Log types in total for 20 files (Spell) 7,730
Train data 80%

Validation data 10%
Test data 10%

Table 3.1: Comparison between log parsing tools

key insight 1: Sequence is important
These log files show strong patterns in the message sequence. By plotting the log
distribution of each log file, it is observed that these log files all show a similar pat-
tern. This sequence pattern will be a good indicator to detect problems rather than
just considering single messages as independent instances. Figure 3.1 is a scatter
plot of the log type (Event ID) distribution, which only plots the data from five log
files for the simplicity. In this graph, the X-axis refers to the index of log lines and
the Y-axis refers to event ID which Indicates the log template that specific line be-
longs to, di↵erent colors represent di↵erent log files. As can be seen from the graph,
many of the dots are overlapping which means these logs share the same pattern.
In the meanwhile, in the upper part of the plot, it shows some di↵erences between
di↵erent logs. These di↵erences with bigger event ID correspond to new types of
log entries. These are the log entries that have never be seen by the log template
library because with adding log templates, the event ID number grows. These new
entries are also anomaly targets of this study.

25

Figure 3.1: Log type distribution

Some previous work(e.g.[17][30]) divides log messages into blocks, then construct
vectors of log frequency and detect when log counts appear to be abnormal. This
method can trace the sourcing process causing errors. But it might lose the logical
information of sequence. For example, suppose in a normal block log type 1 appears
twice and log type 3 appears four times in the order of {1,3,1,3,3,3}. By using the
log count matrix, it will be able to detect when log type 1 appears 4 times and type
3 only once as an anomaly because the quantity changes. However, it will not tell
when the order changes. For example, {3,3,3,3,1,1} might also be an anomaly but
since the quantity keeps the same, it will not be recognized by the log count matrix.
Second, in our dataset, it is hard to di↵erentiate log entries from di↵erent processes.

key insight 2: Noisy data
Log rows in the dataset can originate from multiple parallel threads running at the
same time, which means the order of some log entries can di↵er from log to log.
This makes detection based on the sequence more di�cult. However, as discussed
in key Insight 1, these log files still show a similar pattern of workflow from a global
perspective. So, how to capture the sequence pattern and at the same time avoid
noise can be a challenge in this study.

key insight 3: Uneven distribution
Log types in the dataset are very unevenly distributed. For example, some log tem-
plates such as logs at the beginning of the files don’t repeat almost at all. Meanwhile,
some log types repeat quite often and make up a large portion of the whole file. For
example, the most frequent log type (log template: node controller - * type * msg
audit (*.* *) *) makes up 23% for the whole log files in the experiment dataset.
Figure 3.2 plots the distribution of di↵erent log types, the x-axis is the log id (After
log parsing, each log line finds its template and thus has an assigned template id),
while the y-axis represents the times of occurrence of that specific type of log. As
can be seen from the graph, logs with template id 588 reach a peak, which appears

26

Figure 3.2: Distribution of di↵erent log templates Figure 3.3: Ratio of oc-
currences

1,192,072 times out of 4,535,115 log lines in total. By contrast, most of the log types
appear less. 3.3 plots the ratio of occurrences of log messages. 59.0% of log tem-
plates only appear less than 10 times through the whole training data set and 29.3%
appear 10-100 times. These two groups make up 80% percent of the log templates.

3.1.2 Data selection

Raw log files for this study contain lots of information and not each log line contains
the same attributes. By going through the whole dataset, it is observed that each
log line at least contains 12 basic common attributes, while the most can have 23
attributes. Based on the analysis, these 12 categories are namely “CURSOR”, “RE-
ALTIME TIMESTAMP”, “MONOTONIC TIMESTAMP”, “BOOT ID”, “SOURCE
MONOTONIC TIMESTAMP”, “TRANSPORT”, “SYSLOG FACILITY”, “SYS-
LOG IDENTIFIER”, “MACHINE ID”, “HOSTNAME”, “PRIORITY” and “MES-
SAGE”. According to discussions with experienced engineers about and data anal-
ysis on the dataset about data variance and importance, some of these columns
are dropped. Among all these 12 columns of basic information, four categories are
considered to be valuable for anomaly detection and thus chosen as data to be the
training set for our model. These four categories are interpreted as follows:

Monotonic Timestamp: The monotonic timestamp indicates the time when one
log entry is received by the journal. It is a relative timestamp and formatted as
a decimal string in microseconds. It begins from zero as the beginning of each log
file and then increases as time goes by. Compared to real-time timestamp, which is
formatted as the clock time and thus di↵erent for every log file, it better describes
at which time point is this log most likely to come.

Transport: Transport indicates how the entry is received by the journal service,
valid transport is: Audit – for those read from the kernel audit subsystem; Syslog
– for those received via the local Syslog socket with the Syslog protocol; Kernel –
for those read from the kernel, etc. Transport is helpful to detect these kinds of
anomalies that certain types of message come from the wrong source, or the source
identifier appears at a wrong time.

Priority: Priority indicates the severity level of log entries. The levels are from 0-7,
while 0 is the most severe level that means emergency which might be a “panic”

27

condition, level 7 is debugging info that is only useful for debugging.

Log message: Log message is the main body of information that contains the
real content of the log. How to encode this part is a very important task that af-
fects the model performance. In the literature review section, all the parsing and
extracting techniques are applied exactly for the log message body.

3.2 PCA experiment design

3.2.1 Data pre-processing

PCA is a technique that reduces the dimension by keeping enough principle compo-
nents that contain most of the information. In this study, there are four variables
to be expressed in feature vectors, namely “Monotonic Timestamp”, “Transport”,
“Priority”, “Log message”. To include all the information in feature vector, instead
of using log entry count in separate blocks to construct vectors, a new way of encod-
ing these four categories for each line of logs is proposed here. In other words, each
log line will be encoded as one vector in the input matrix, which makes it possible
to associate anomaly with a specific line. To construct the feature vector, a detailed
discussion about encoding each variable is as follows:

Monotonic Timestamp: Since monotonic timestamp is a relative time, it can
be used to describe the sequence. However, instead of using absolute accurate mi-
croseconds, the percentage might be more appropriate to construct vectors. Using
the percentage of time range instead of the exact time point compensates for dif-
ferences in execution speed on di↵erent forms of hardware and data noise. As an
example of data noise, suppose log A and log B are from two processes working in
parallel, sometimes A’s timestamp is later than B’s while sometimes it is not. But
anyhow they will both happening around a percentage of the log because the pro-
cesses are still executed in a high-level order. In this case, the noise can be solved by
rounding the timestamp percentage. To get the percentage, we can easily calculate
the duration from zero points divided by the total duration of executing and omit
a few decimal places. Also, this can be tuned during experiments. As an instance,
suppose the duration of one log file is 155,155,485 microseconds, and log A comes
at 608,000 microseconds. Divide 608,000 by 155,155,485 we get 0.003918649..., keep
five decimal places we will then have 0.00392 which is 0.392% and it means that
this log type A comes roughly around 0.392% of the log regarding the time of logging.

Transport: Transport is the variable that indicates how the log entry is received by
the journal service, it describes the journal source by hardware at a high level. There
are six types of valid transports, namely “audit”, “driver”, “Syslog”, “journal”, “std-
out” and “kernel” which represent di↵erent sources for logging. The “audit” tag
marks logs read from the kernel audit subsystem; The “driver” tag is for internally
generated messages; “Syslog” for those received via the local Syslog socket with the
Syslog protocol; The “journal” tag is for those received via the native journal proto-
col; The “stdout” is for those read from a service’s standard output or error output;
The “kernel” tag is for those read from the kernel. Transport can not tell which
specific process produces log entries but it indicates the source of the log at a higher

28

level. Sometimes errors happen when the wrong transport produces some abnormal
messages, so it is interesting to include transport in the training dataset. Since this
variable is categorical data, it will be encoded via one-hot encoding, which is a tech-
nique to map categorical data into binary vectors. For example, after processing the
transport part of row n that comes from “audit” will be:

Row number audit driver syslog journal stdout kernel

n 1 0 0 0 0 0

Table 3.2: An example of transport encoding

Priority: Priority between 0 to 7 is compatible with the Syslog priority concept and
it indicates the emergence level of a specific logline. Unlike the way to encode trans-
port which is nominal data, priority is ordinal data so the value of number matters.
Therefore, the value is kept for priority. But considering 0 represents emergency
information which is more severe than 7 debug information, the value for priority is
reversed. To be more specific, 0-7 is mapped to 7-0.

Log message: The log message is the main body for the whole training, which
is the most important part. The goal of this experiment is to detect anomalies that
are narrowed down to a specific line number, unlike the PCA experiment done by
Xu et al. [33] which detects the abnormal blocks. Therefore, each line of the log
will be encoded as one vector to construct the whole matrix. There are two ways to
encode it, one is to be the same as done in other researches using template id only,
the other way is to use word embedding techniques to encode by tokens. About
the first method to use log id, it is proved and widely used by most of the research
of log anomaly detection. But unlike other studies that construct the log count
matrix divided by blocks, we are encoding each log line separately. In this situa-
tion, a single number representing a log message is too simple and it does not carry
interpretable meaning for the PCA model. This is also why the second way using
word embeddings is proposed. Word embedding is a technique that enables words
to be mapped to numerical vectors with vocabulary learned from the whole set of
text information. This creates semantically more meaningful dimensions for PCA
to model. For example, if log messages are coming from the same process, they are
supposed to have some similar words. By catching these keywords, PCA is able to
recognize when a wrong log message happens at the wrong time. As a conclusion,
a word embedding is chosen to encode the message body.

Word Embedding is a collective name for a set of language modeling and feature
learning techniques. In more detail, there are two typical types of mainstream word
embedding techniques. The first one is based on word frequency and another type is
prediction-based embedding. Two representatives are “Term frequency-inverse doc-
ument frequency” (TF-IDF) and Word2vec, respectively. The Word2vec model is a
two-layer neural network that is trained to reconstruct linguistic contexts of words.
It relies on either skip-grams or continuous bag of words (CBOW) to create neural
word embeddings. This method is good to capture relationships between words and
linguistic context. But in our case, it is not very useful to look into linguistics and
the most important task is to capture the keywords. Therefore, TF - IDF method

29

is chosen to be the encoding method for log messages.

By the definition of TF-IDF, it is a metric that multiplies the two quantities TF and
IDF. Term frequency (TF) is a direct estimation of the occurrence probability of a
term showing up in the document at hand. It represents how often a term occurs
in the documents , and therefore how representative it is of the document. Inverse
document frequency (IDF) can be interpreted as ”the amount of information” ac-
cording to conventional information theory [3][18]. It models how common the term
is in other documents, and therefore how unique and informative it is in general. To
explain the calculating process, suppose a corpus consists of only two documents, as
shown in graph 3.4. Take word “sunny” as an example, TF is simply the occurrence

Figure 3.4: An example of tf-idf word embedding

probability of the term so:

TF (“sunny”, d1) =
1

5
(3.1)

TF (“sunny”, d2) =
0

5
= 0 (3.2)

IDF is constant per corpus, it calculates the ratio of documents that include the
word “sunny” through dividing the number of documents at hand in total (N) by
the number of documents the word “sunny” appears (d). In this example, “sunny”
only appears in document 1 out of 2 documents in total so:

IDF (“sunny”, D) = log(
N

d
) = log(

2

1
) ⇡ 0.301 (3.3)

Therefore, by multiplying TF and IDF, the TF-IDF value of word “sunny” is 0.0602
for document 1 and 0 for documents 2. Following the same equation, it can be
calculated that the TF-IDF scores of “is”, “a”, “day” are all 0. As can be learned
from the process, TF-IDF is trying to assign a higher value to those informative
words while excluding these frequent words that appear everywhere. It is because
of this feature, TF-IDF can be an e↵ective way to catch keywords in our dataset as
it is expected. In this study, TfidfVectorizer from the Scikit-learn library is used for
the encoding work. Due to the diversity of words, if the whole vocabulary of around
8000 words is kept, the matrix will be too large. And the disk and memory space
will not be able to allocate enough space to store the matrix. So in this study, only
the top 3000 words with the highest TF-IDF score are kept after vectorizing.

30

To summarize the data pre-processing section, after data processing a complete
feature vector (One row of the matrix) looks like example 3.3. In this table, the
first row indicates column name and the numbers of columns corresponding to that
specific variable are marked inside the bracket.

Mono timestamp(1) Transport(6) Priority(1) Log message(3000)

0.9925332 0,0,0,0,0,1 6 0.33298,0,0,..,0.22324,0,0,0,0

Table 3.3: An instance of complete feature vector

3.2.2 Modeling

Modeling has four steps, the first two-step can be understood as the training stage
while the latter two steps are implementing the predicting function. The first step is
to decompose the original input matrix. In this study, singular value decomposition
(SVD) is used for feature ranking and selecting, which is the goal of PCA. The
intuition behind is that any matrix can be decomposed into the production of three
separate matrices as illustrated in equation below, Where A is a random matrix, U
is an orthogonal m ⇥m matrix, V is an orthogonal n ⇥ n and S is a real diagonal
m⇥ n matrix. The elements of the leading diagonal of matrix S are called singular
values, by ranking these elements we will be able to get principle components in
order.

A = USV
t (3.4)

Second, select the first k principal components that contain 95% (95% is the default
value which is normally used in PCA dimension reduction, it is also used in the
research by Xu et al.) of the information in the original dataset. Third, extract the
transform matrix from the second step and project test dataset with the transform
matrix to the same high-dimensional space. The last step is to detect anomalies
by calculating the projection to the residual subspace discussed in section 2.3.1,
where the threshold is calculated based on the c↵ value selected (corresponding to
confidence level). The equation for calculation is illustrated in section 2.3.1 equation
2.6 and the lookup table for c alpha is listed in the appendix . The whole procedure
is illustrated in graph 3.5.

3.2.3 Model tuning and evaluation

In this PCA experiment, two important parameters can be modified. The first one
is the percentage of information to keep, it determines the dimension of the projec-
tion matrix. As a default, PCA usually takes 95%. During the experiment, it can
be adjusted until it performs best in distinguish anomalies. The second parameter
that can be changed is c alpha, it determines the confidence level of the detecting
result because it is used to calculate the threshold. According to the lookup table
for c alpha, a suitable confidence level can be chosen so it is not too strict that it
detects everything as anomalies or too loose that it detects nothing.

About the evaluation process, because our dataset does not provide labels that

31

Figure 3.5: PCA-based anomaly detection modeling workflow

indicate anomalies or not, it is hard to calculate the confusion matrix. Therefore, a
way to fake errors as anomalies manually and label these lines as anomalies are used
here. The test data set for this study is a successful log with 240,000 lines. In this
test log, 100 lines will be modified manually to inject errors. This error injection
is based on empirical study, including domain knowledge provided by experienced
engineers about frequent anomalies. Then the values of True Positive(TP), True
Negative(TN), False Positive(FP) and False Negative(FN) are counted to calculate
standard metrics of the detection. In this study, precision, recall, and F-measure
are used as measurements.

Recall, or sensitivity denotes the ratio of real positive cases that are detected
correctly[28]. In this study, recall measures how sensitive is the model to anomalies.
It is defined by the equation below:

Recall =
TP

TP + FN
(3.5)

Precision, or confidence, is the proportion of predicted positive cases that are true
positives. Precision describes the rate of discovering real positives, anomalies in this
study. It is defined by the equation:

Precision =
TF

TP + FP
(3.6)

F-measure is the harmonic mean of the two metrics above, namely recall and pre-
cision. F1 score is a single measure to capture the e↵ectiveness of a system. It can
be calculated with the equation:

F �measure =
2⇥ Precision⇥Recall

Precision+Recall
(3.7)

In statistical hypothesis testing, the rejection of a true null hypothesis (False Posi-
tive) is defined as type I error. Conversely, type II error is the non-rejection of a false

32

null hypothesis (False Negative)[5]. In di↵erent fields of research, the seriousness of
type I and type II error varies. For example, if the goal is to detect cancer, then the
type II error is relatively more acceptable. Because it is likely that the momentary
stress of a false positive is better than failing to treat the disease at an early stage.
But in most fields of study, type I error is seen as more serious than type II errors.
The reason is that with type I error, the null hypothesis is wrongly rejected, and
eventually, it leads to a conclusion that is not true. In this study, type II error is also
more acceptable because the anomaly detection goal is to assist manual debugging
by narrowing down the anomaly scope and if False Positive happens, it can still
be excluded by humans in the later stage. However, if potential anomalies are not
detected, some important details might be ignored.

3.3 LSTM experiment design

3.3.1 Data pre-processing

LSTM anomaly detection is based on sequential predicting, it predicts the next log
based on previous ones. Then by comparing the predictions with the real following
one, anomalies are identified with the rule that if a real log is among predictions
then it is normal and vice versa. In order to learn the sequence pattern, a supervised
learning model is created which uses each following log id as the label for the previous
sequence. To construct the feature matrix, if we regard log types as categorical data,
then the prediction is to predict the following possible category. For example, in
{k1, k2, k4� > k2} it uses a sequence of k1, k2, k4 to predict the next possible one,
where the result is k2. To represent logs by category, the result from log parsing
(template id) can be directly used. Because the main focus of the LSTM model is on
the sequence of messages, other variables like timestamp, priority, transport used in
the PCA method are not considered here. Take a window size of 10 as an example,
one row of the matrix will be a sequence of 10 log ids, and the corresponding label
for the row will be the next log id. Eventually, a feature matrix of template ids is
constructed as shown in table 6.3. In this table, numbers like “67” do not carry any

Feature matrix(10) Labels(1)

66,67,67,67,67,67,67,67,67,68 69
67,67,67,67,67,67,67,67,68,69 69
67,67,68,69,69,69,69,69,69,69 70
67,68,69,69,69,69,69,69,69,70 71

... ...

Table 3.4: An instance of feature matrix for LSTM model

meaning with the value itself but it is just meaning a category. To avoid bias for
the model, one-hot encoding is used here also to encode these categories as nominal
binary vectors. After transforming, the matrix looks like table 3.5. Because there
are 7730 log types in total, there are 7730 * 10 columns for the input matrix and
7730 columns for the label matrix.

33

Feature matrix(77300) Labels(7730)

0,0,0,0,0,1,0,0,0... 0,0,0,0,0,1,0,0,0...
0,0,0,0...1,0,0,0... 0,0,0,0...1,0,0,0...
0,0,0,0...1,0,0,0... 0,0,0,0...1,0,0,0...

... ...

Table 3.5: An instance of one-hot encoded feature matrix for LSTM model

3.3.2 Modeling

In this study, the initial LSTM model is built with Keras using TensorFlow back
end[2]. The main model consists of only two hidden layers, 128 neurons for each
layer, and between each layer there is a dropout layer to avoid overfitting. The
initial model architecture and some other parameters are illustrated in table 3.6.
Besides, “Categorical crossentropy” is used as a loss metric in the model. “Categor-

Layer Neurons Input shape Output shape Parameter

Input layer 128 (77300,) (128,) initializer=‘orthogonal’
Dropout layer dropout percentile = 0.2
Hidden layer 128 (128,) (128,)
Dropout layer dropout percentile = 0.2
Hidden layer 128 (128,) (128,)
Output layer 128 (128,) (77300,) activation=‘softmax’

Table 3.6: Initial LSTM model structure

ical crossentropy” is a loss function that is used in multi-class classification tasks.
These tasks are usually when the model needs to decide which category an instance
belongs to. Formally, this loss function is designed to quantify the di↵erence between
two probability distributions. In the LSTM model, the output will be a probability
distribution over 7730 log template classes for each sequence. By minimizing the
loss value between the predicted distribution and real vector, this model will learn
to predict the right template for the following log by assigning a high probability
to the right template. Graph 3.6 shows how the output of the model looks like.
The categorical crossentropy loss function calculates the loss of an instance by the
equation below:

Loss = �
outputsizeX

i=1

yi ⇥ log ŷi (3.8)

Here, ŷi is the i � th predicted probability value in the model output,yi is the cor-
responding target value and the output size is the number of scalar values in the
output which is 7730 (number of log types) in our case. With the calculation, the
loss value can be a good indicator of how distinguishable these two distributions
can be. In our output prediction, ŷi is the probability that log type i appears and
the sum of all ŷi is 1, which means that exactly one event may occur. In the target
vector, there is only one event appears which corresponds to our one-hot-encoding
for the log messages.

34

Figure 3.6: Output of LSTM model

Besides, “softmax” is the only recommended activation function to use with cat-
egorical crossentropy and thus is chosen. It also ensures that the output of the
model will be all positive so that the logarithm of every output value ŷi exists. The
widely used optimizer method – “rmsprop” is chosen in this model. It restricts the
oscillations in the vertical direction so that the learning rate can be increased and
the algorithm could take larger steps in the horizontal to converge faster. Besides
speeding up the mini-batch learning, another advantage of this optimizer is its sepa-
rate and adaptive learning rate. It adjusts the learning rate by dividing the learning
rate for a specific weight by a running average of the magnitudes of recent gradients
for that weight[14].

3.3.3 Model tuning and evaluation

The first important thing that can be changed about the LSTM model is structure,
which includes the number of layers and the number of neurons in each layer. About
the number of layers, Heaton [13] summarized the capabilities of neural network
architectures with various hidden layers. According to his theorem, one hidden
layer can approximate any function that contains a continuous mapping from one
finite space to another and two layers can represent an arbitrary decision boundary
to arbitrary accuracy with rational activation functions and can approximate any
smooth mapping to any accuracy. The more layers added the more complex model
will be. In our case, there are only four features of each vector but many instances
(240,000 lines per file⇥ 19 files) to learn. A two-layer architecture is then defined
to capture patterns of training data. For the number of neurons, there are many
rule-of-thumb methods for determining the correct number of neurons to be used.
One of these methods[15] proposes that calculating the number of neurons based
on the equation below helps prevent over-fitting. Where Ni stands for the number
of input neurons, N0 stands for the number of output neurons, Ns stands for the
number of samples in training data set and ↵ stands for an arbitrary scaling factor
which is usually in the range of 2-10.

Nh =
Ns

↵⇥ (Ni +N0)
(3.9)

35

Based on this equation, with ↵ of 2, we get a result of 144. Empirically, the number
of neurons should be the powers of two so the closest number 128 is taken as the
number of neurons in our experiment. It can be also tuned to a larger number such
as 256 based on performance. Other hyper-parameters like batch size, epoch are
tuned according to performance.

To evaluate the validity of the LSTM model, top k categorical accuracy from Keras
metrics will be used as one indicator. The top k accuracy metric computes the ac-
curacy rate if the y true value is among the selected top k predictions. Additionally,
the same anomaly injection experiment will be run to construct a confusion matrix.
Then two confusion matrices will be compared to answer the research question.

3.4 Common practical challenges

3.4.1 Out of memory due to large data set

The transformed (One-hot encoded) matrix for the LSTM model in table 3.5 is very
large with 77300 columns and it occupies large disk space and also Random-access
memory (RAM) during work, which causes out of memory error. To describe its
quantity with real numbers, 19 log files are used as the training set in this study
and they request 560 GB disk space to be stored. When it comes to RAM, it is far
beyond the machine’s capability. Thus, finding solutions to compress the matrix or
to process data with many batches.

For compressing the matrix, methods such as feature hashing and sparse matrix
are tested in our experiment. Like one-hot encoding, hashing is a way to encode
categorical data but fewer dimensions. The intuition behind is to use a hash function
and map original data of arbitrary size to fixed-size values, returning hash values
and these values are then used as data for training. However, it has collisions when
di↵erent values (categories) are mapped to the same value. Since it is important in
our case to keep each category independent, the hash is tested not to be a good so-
lution. Since the matrix consists of a large number of zeros and only positions with
value “1” contain information, the second way to store data in a sparse matrix seems
an e↵ective way. The sparse matrix only stores coordinates of non-zero values and it
did solve the memory issue. However, the sparse matrices still need to be transferred
back to the dense matrix because the Keras model does not accept the sparse ma-
trix as input. This brings us to the second topic, processing data in a streaming way.

Data generator from Keras is such a way that tries to deal with the memory con-
sumption issue. The motivation behind is to break some very large data file into
smaller parts and these parts will be subsequently fed to the model for training.
The data generator has another advantage that is it allows to generate dataset on
multiple cores in real-time and feed it right away to the model, which also helps
speed up the process.
Eventually, the solution to solve the memory issue for this study is to combine the
sparse matrix with a data generator. First, during data pre-processing stage, the
one-hot encoded dataset is stored in the SciPy sparse matrix with which only co-
ordinates of non-zero values are saved. Then when it comes to the training stage,

36

the data generator helps to transform the sparse matrix back to the dense matrix as
the input for the model in streaming. Since it only processes a subset of the whole
dataset, it would not fill the whole memory space. Thus, by setting the batch size
of data to be processed each time, we are able to control the memory usage based
on hardware ability.

3.4.2 Running speed

Running speed is also a challenge when the machine is not powerful enough to deal
with a very large data set. In this study, with a 2.8 GHz CPU and no GPU, it takes
18 hours to finish 3 epochs on training a total of 19 log files. When more epochs are
added, it takes even much longer. Therefore, how to speed up the process is also an
important topic to discuss. There are mainly two ways to improve, first to improve
from the programming side and another way is to find more powerful machines to
train.

To improve the code e�ciency, several rounds of code reviews are done during ex-
periments to better increase e�ciency. As the most commonly used python library
used for data manipulation and data analysis, library pandas is also used for many
places in this study. However, it takes much longer to process data in a data frame
format compared to python native formats like array or list. Thus, to improve the
performance regarding speed, code refactoring has been done for three rounds dur-
ing the whole project.

Regarding the hardware, the Graphics Processing Unit (GPU) is one of the most
widespread tools to improve computation performance due to its implicit parallel
nature[29]. Particularly, GPUs have been applied extensively in data mining algo-
rithms and performing well[4]. Many libraries, such as TensorFlow, can harness the
power and speed of computation that GPUs o↵er through CUDA toolkits(CUDA,
a parallel computing platform and application programming interface (API) model
created by Nvidia). In this study, the experiment is done with back-end support
from TensorFlow and thus can utilize the GPU resource. By shifting to a machine
equipped with GPUs, the time to train all file is shortened to 107 mins, which is ten
times faster.

3.4.3 Incremental learning

Incremental learning is a method in which the input data is continuously fed to ex-
tend the existing model’s knowledge. There are two main reasons to apply incremen-
tal learning in machine learning. From the computational intelligence perspective,
incremental learning is important to help process large-scale dynamic stream data.
Second, from the machine intelligence side, intelligent models should be capable
to learn information incrementally. This is a wise way for machine intelligence be-
cause it can accumulate experience and knowledge without forgetting things learned
before[9]. In this paper, due to the updating nature of logs, incremental learning is
also applied in the experiment. The final model works in a way that whenever one
training session is over, a checkpoint will be saved as the initial status for the next
training. Therefore, the model does not train from scratch every time. Instead, it

37

is trying to update the model based on accumulated knowledge.

38

Chapter 4

Experiment results

4.1 LSTM

Table 4.5 records the LSTM tuning process with di↵erent number of layers, neurons
in the hidden layers, and batch size. In this table, the accuracy refers to categorical
accuracy which examines if the top one prediction matches the real value. The value
in bold refers to the best performance for each column. As can be learned from these
values, the last row has the best accuracy value and the training time is relatively
short. Thus, the parameter setting of the last row is used as the experiment setting.

Layers Hidden neurons Batch size Accuracy Time/per file (s)

2 128 512 0.88064 1794

3 128 512 0.86798 1878
2 256 512 0.88711 1808
3 256 512 0.88436 2258
2 256 256 0.89052 3492
2 256 1024 0.89083 1872

Table 4.1: Experiment setting

LSTM experiment is running with the optimal parameter setting shown in table 4.2.
The experiment is done with incremental learning, thus the total 19 training sets

parameter value

Hidden layer 2
Hidden layer neurons 256
Dropout layer rate 0.2

Epochs 10
Batch size 1024

Table 4.2: Experiment setting

are added one by one to the model. Each time a new log file is added, it will be
trained based on weights saved from last round.

39

Figure 4.1: Accuracy curve Figure 4.2: Loss curve

Figure 4.3: Accuracy curve Figure 4.4: Loss curve

Graphs 4.1 and 4.2 below show the training progress for the first single training data
set.The blue line represents the training data while orange line stands for validation
data.Graph 4.1 shows the accuracy curve of first training data set with 10 epochs.
Graph 4.2 shows the loss curve of the first training data set. After 10 epochs, the
accuracy for training data set grows from 0.48 to 0.86, and for validation set from
0.63 to 0.84. In these two graphs, the accuracy refers to categorical accuracy, which
is the accuracy rate of the top one prediction.

Graphs 4.3 and 4.4 show the progress when adding more data sets to update the
model. In these two graphs, X axis represents the number of files that have been
added, while Y axis shows the corresponding accuracy and loss value. As can be
seen from the graph, accuracy increases rapidly during the first training. How-
ever, with adding more files to the model, training accuracy tends to be steady
and validation set fluctuates slightly. However, validation set achieves higher accu-
racy compared with training set surprisingly. The accuracy score for validation set is
0.864 on average, with its best performance reached 0.891 when the 7th file is added.

As the “k” value which determines the accuracy is also an variable, di↵erent “k”
values is also experimented to compare the performance. Table 4.3 is a comparison
of performance with di↵erent “k” values. Here, “k” = 5 refers to the case that real
log line is compared with top 5 predictions and the accuracy is calculated based on
the validation set. As the “k” value grows bigger, the accuracy also increases. And
with the top 15 predictions, the accuracy can reach 95.1%.

40

K value Accuracy

5 0.93750
10 0.94629
15 0.95117

Table 4.3: Top k prediction accuracy with k = 5,10,15

The rule of detecting anomalies is to categorize those real log lines which are not
in the top 10 predictions as abnormal lines. Graph 4.5 shows the anomalies dis-
tribution in the test data set, where x axis stands for the line number and y axis
for the number of anomalies within the corresponding log range. In total, 12844
lines are detected as anomalies out of 248748 lines, which is 5.16% of the log file.
Additionally, as can be seen from the graph most anomalies happen in the beginning
or the end of the file, but it appears that not so many anomalies are detected in the
middle of the execution.

Figure 4.5: Anomalies being detected in test set by LSTM

To also evaluate the LSTM model’s performance with real-life cases, anomalies are
manually injected into test log files. The operation is done by manually changing the
event id randomly in normal log lines. Here, normal lines refers to the log lines that
are not detected as anomalies by the LSTM model. The process of injection is: First,
the LSTM model is used to predict anomalies in test log file, which detects 12844
lines as anomalies. Then, an assumption is made that other than these abnormal
lines, the left of log are normal. Second, 200 lines are chosen as the evaluation set
out of all these normal lines. Among these 200 lines, 100 lines are randomly chosen
to inject errors by manually changing the event id. Lastly, the same trained LSTM
model is used to detect anomalies within these 200 lines. The result is demonstrated
in table 4.4.

41

Actual positive(Anomalies) Actual negative

Detected positive 99 18
Detected negative 1 82

Table 4.4: Confusion matrix of LSTM experiment

As can be calculated from table 4.4, the precision of the LSTM model is 84.62% and
the recall is 99%. As a harmonic indicator, the F1 score for LSTM reaches 91.24%.

4.2 PCA

To implement PCA model, scikit-learn library is used for this study[27]. Addition-
ally, as the data set of around 5 million data points is huge, incremental PCA is used
for its ability to process data in a streaming mode. Four selected variables, namely
Mono Timestamp, Transport, Priority and Log message, are encoded as explained
in section 3.2.1. However, during the first PCA experiment it was shown that the
proportion of variance explained by Timestamp itself is already more than 99.9%,
which causes a huge bias and the model ignores other variables. Therefore, times-
tamp is then excluded and the PCA experiment is done with the left three variables.

During the PCA dimension reduction, 171 components are kept which keep 95.0%
of all encoded information. A PCA model is generated based on all training data,
graph 4.6 shows the ratio distribution of the top 20 explained variance.

Figure 4.6: Distribution of the top 20 explained variance

Figure 4.7 and 4.8 are two loading plots of PCA components from PC1 to PC4.
These plots show how strongly each characteristic influences a principal component.
In the loading plots, the project values of each variables on each PC show how much

42

weight they have on that PC. Besides, the angles between the vectors tell how char-
acteristics correlate with one another.

Figure 4.7: PC1 and PC2

Figure 4.8: PC3 and PC4

As can be seen from the two PCA loading plots, some variables are extremely signif-
icant with big projection values. These variables are mainly priority and transport
(e.g. Syslog, stdout, audit) information. About TF-IDF encoded log messages,
some important words appear to become significant from PC3 as their projection
values become larger. These TF-IDF word variables are numbered from 1-3000,
with each number representing one word among the top 3000 important words. For
example, “2084”, corresponds to a word in TF-IDF vocabulary and shows a signif-

43

icant contribution to PC4. The result of PCA meets our expectation as it catches
the correlation between transport, priority and TF-IDF key words by learning the
projection angles and values. This method is interpretable and thus meaningful in
real case. As more useful information can be added based on domain knowledge,
the PCA model will be sensitive to more comprehensive information.

Figure 4.9: Anomalies being detected in test set by PCA

Graph 4.9 illustrates the distribution of anomalies being detected. PCA detects
10768 lines of anomalies out of 248748 lines of log messages, which is 4.33% of the
whole log file. Compared with the result of LSTM, these two models both detect
many lines as anomalies in the beginning of the log file, not so many in the middle
of the log. However, as LSTM detects a significant amount of anomalies in the end
of log, PCA does not find many abnormal cases near the tail of log.

To evaluate PCA’s performance with real-life cases, two types of anomalies which
happen in real life are manually injected into log files. These two types of injection
includes wrong transport and priority information. Consider the situation that we
do not have actual labels of each log line, an assumption is made that except for the
detected 10768 lines other log messages are labeled as normal in test data set. Then
200 lines are selected randomly from the normal lines in test data set as experiment
data set for evaluating. Among these 200 lines, transport information is changed
manually for 50 lines and priority information is changed manually for another 50
lines. The left 100 lines are kept the same, which will be labeled as normal lines
in this experiment. These manual injections are all based on empirical research.
PCA model trained based on the full 19 training sets is used for detection and its
performance is demonstrated in table 4.5 below.

As can be calculated from table 4.5, the precision of PCA model is 96.59% and the
recall is 85%. As a harmonic indicator, the F1 score for PCA reaches 90.43%.

44

Actual positive(Anomalies) Actual negative

Detected positive 85 3
Detected negative 15 97

Table 4.5: Confusion matrix of PCA experiment

Notably, during the experiment running it is found that the squared prediction
error (SPE) value of all anomalies are significantly higher than SPE value of most
normal instances. As can be seen from table 4.6, the calculated threshold is 2.02,
mean of all SPE value is 0.83, 75% of SPE value is below 0.79. However, for in-
jected anomaly with Transport category, all instances’ SPE value is higher than the
threshold, which means all Transport anomalies are caught by the model. Notably,
these anomalies’ SPE value is very centralized as they have small standard devia-
tion. About priority anomalies, they have a big standard deviation of 6.31689 and
the SPE value ranges from 1.61994 to 25.67360. It means all 15 false negatives come
from priority category and also the PCA model is not very sensitive to value with
smaller changes. For example, if the priority changes from 7 to 6, it is hard to de-
tect. But if it changes from 7 to 5, then the SPE value will become bigger and thus
easier to be recognized. More research should be done regarding the real situation
such as how does this value changes usually when an error happens. However, due
to resource limitations of this study, this evaluation will be only considered in the
future work.

Full test set Priority anomalies Transport anomalies

count 8000 50 50
mean 0.83182 6.97935 2.68798
std 0.63762 6.31689 0.33085
min 0.15766 1.61994 2.28136
25% 0.71005 2.78225 2.56496
50% 0.76222 4.73581 2.67491
75% 0.79152 9.66994 2.73777
max% 25.67360 25.67360 4.75165

Table 4.6: SPE value comparison of PCA experiment

4.3 Baseline and comparison

To compare PCA and LSTM model with current method stupid backo↵, these three
models are trained with the same 19 data sets and validated by the same log file.
The column speed in table 4.7 refers to the training time in hour and the anomaly
quantity refers to the number of anomalies being detected in the same log file. As
can be seen from table 4.7, Stupid backo↵ performs the best in the speed category,
which finishes training within 0.2 hour. In contrast, LSTM takes 9.5 hour which
is significantly longer due to its large amount of computation. These two models

45

are both working based on the sequence of log messages and LSTM model detects
fewer lines as anomalies. In this comparison, it is supposed that the fewer lines are
detected as anomalies, the better a model performs since the need from end users is
to further narrow down the scope of potential abnormal lines to check. Therefore,
it can be concluded that PCA and LSTM both surpass the performance of baseline
in anomaly quantity.

Model Speed Anomaly quantity

Stupid backo↵ 0.2 14202
PCA 0.25 10768
LSTM 9.5 12844

Table 4.7: Comparison with baseline model

Besides, the same anomaly injection experiment is conducted with stupid backo↵
model. The result is shown in table 4.8.

Actual positive(Anomalies) Actual negative

Detected positive 92 95
Detected negative 8 5

Table 4.8: Confusion matrix of stupid backo↵ experiment

The precision and recall of three di↵erent models are compared in figure 4.10.

Figure 4.10: Recall, precision and F1 scores comparison

However, the real value of the model is not only about reducing the quantity or catch
these “fake” anomalies. It is about truly helping the work of developers, which refers

46

to the accuracy of shooting real-life trouble. Therefore, a further evaluation should
be taken in order to analyse the true value of the model. But due to resource
limitations, it will be only discussed in the future work.

47

Chapter 5

Discussion and Conclusion

This study researches on anomaly detection in two mainstream directions, PCA-
based and workflow-based method. Corresponding to these two directions, two
models PCA, LSTM are experimented and both performed well.

First, they both successfully narrow down the scope of potential anomalies in the
whole log file. LSTM detects 12,844 lines of the failed log as anomalies and PCA
detects 10,768 lines, which are by proportion 5.16% and 4.33% of the full log file. By
comparing the detected anomaly distributions of these two models, it is found that
around 60% of the anomaly lines detected by them are overlapping. Additionally,
these two models both show a similar distribution of anomalies that centralize at the
head and tail. According to feedback from end-users of this anomaly detection tool,
this distribution meets their expectation. To interpret the result explicitly, these
lines labeled as anomalies include updating changes and those that violate normal
patterns, which are both targets of this study. In this situation, all problems are
anomalies, but not all anomalies are problems. Both of the models are trying to de-
tect log lines that are very rare under a specific context, however, it is not promised
if these rare cases are problems. But since the need for end-users is to help them
narrow down the scope so that they can shoot trouble faster, how to define the real
problems is still human’s business. The machine’s task of finding potential abnormal
lines are accomplished and therefore, these two models are regarded as e↵ective in
the real scenario. However, to further validate the idea of using these two models.
User experience evaluation and iteration are needed until this tool truly benefits end
users.

Second, instead of choosing a single model with better performance. The com-
bination of di↵erent types of model is recommended for real-life production. As the
intuition behind the PCA and LSTM models di↵er, these two models are suitable
for di↵erent situations. LSTM model is focusing on the sequence of log messages
and therefore it is able to detect the changes of the order of log lines, which can
also be understood as workflow pattern. Additionally, as the log parsing phase is
done with training sets and thus only log types in training sets will be added to
the library of log templates. When a new log type appears in the test data set,
it will be categorized as “others” which is also one type of anomaly in this thesis
study (updating changes). PCA works for another case with its ability to catch the
correlation between di↵erent features. It is sensitive to “transport”, “priority”, and

48

“keywords in messages”, which are three variables encoded during the experiment.
Once these three features do not match each other, which will lead to a large SPE
value, the instance will be labeled as an anomaly. In practice, PCA will perform
well and fit the need for real scenarios with more domain knowledge added. In
other words, if typical features that cause anomalies can be summarized based on
the experience of engineers, then the PCA model will target these anomalies more
accurately. Because the PCA-based method solves the anomaly detection problem
by analyzing available features to determine what constitutes a “normal” class [1].
With the assistance of engineers’ experience, the available features can be wisely
selected because they know what information is important to focus on. Addition-
ally, these features can be encoded accordingly based on their domain knowledge.
Take priority level as an example, if one category is significantly more important
than others then it could be highlighted with a larger number. In this way, it would
enhance the performance of the PCA model.

Overall, it is highly recommended if these two models can be combined and help
with di↵erent aspects for anomalies detection.

49

Chapter 6

Future work

6.1 User research and experience evaluation

There is some limitation for this study, especially the way to evaluate model perfor-
mance. To productize this anomaly detection tool, more end-user feedback should
be involved in the iteration. Both implicit methods and explicit methods can be used
to evaluate the utility and usability of this application, such as think-aloud proto-
cols, interviews, and system benchmarking. The think-aloud protocol is a method to
gather feedback in usability testing in product design and development, it involves
participants through thinking aloud as they are asked to perform a set of specific
tasks. This method is introduced by Clayton Lewis [20] and it can help dig out the
users’ real needs. In this anomaly detection tool development, it can also help by
observing and listening to how they act in daily debugging, and then this tool will
be able to target at their pain point more accurately. Besides, the interview is also
a way to collect more in-depth insights from the end-users’ daily work. One of the
reasons that no standard evaluation is performed in this study is that the real need is
not very clear. For example, we are missing the information that what specific types
of anomalies happen most frequently, the importance ranking of di↵erent types of
anomalies, and how these engineers would expect this tool to help. By clarifying
these questions, this anomaly detection tool will target more accurately. One last
method – system benchmarking, which is already used in this study to compare the
results of di↵erent models, can be used more widely. During the whole development
process, for instance, a profiling tool that benchmarks the computation speed can
be added to improve e�ciency. Overall, if more user experience methods can be
combined in the study of industrial tool development, this tool will benefit users
more in real scenarios.

6.2 Adding features

Currently, both models are focusing only on log patterns. However, except for the
anomaly identified by abnormal workflow and pattern, another type of anomaly can
be ascribed to the abnormal parameters conveyed by the log message. For example,
when the IP address should be within the same range of allowable LAN and it
appears not to be, it will cause the failure of installation but can not be detected
by our model. The reason is that these parameters are filtered out by regular
expressions during the log pre-processing phase to extract log type. In order to detect

50

this type of anomaly, during grouping di↵erent types of logs as templates, their
parameters should be stored in separate matrices. To deal with these parameters,
empirical research is needed to manually di↵erentiate the important parameters and
drop the meaningless ones such as generated keys. Then separate models are needed
to be built for each specific type of log so that it can not only tell when something
goes wrong but also make it explainable (value too big/small, not in a normal range,
etc.).

6.3 Algorithm improvement

In this study, two representative algorithms for PCA-based and work-flow based
methods are tested, namely PCA and LSTM. They both completed the task to
detect anomaly detection with a success rate above 80%. However, these two models,
especially the LSTM model, take a long time to finish the task. So there is still a
growing space to improve e�ciency. Regarding computation speed, the algorithm
can be optimized according to the time report produced by profiling tools. Di↵erent
functions, especially for the data pre-processing step, can be optimized to more
e�cient and reliable code with the optimal algorithm complexity [26]. Furthermore,
more models can be evaluated to be compared with LSTM.

51

Bibliography

[1] Pca-based anomaly detection - ml studio (classic) - azure — microsoft docs.
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/pca-based-anomaly-detection: :text=The(Accessed on 08/25/2020).

[2] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo↵rey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[3] BC Brookes. The shannon model of ir systems. Journal of Documentation,
1972.

[4] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast support vec-
tor machine training and classification on graphics processors. In Proceedings
of the 25th international conference on Machine learning, pages 104–111, 2008.

[5] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and
Ludolf Erwin Meester. A Modern Introduction to Probability and Statistics:
Understanding why and how. Springer Science & Business Media, 2005.

[6] Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM), pages 859–864.
IEEE, 2016.

[7] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1285–1298, 2017.

[8] Ricardo Dunia and S Joe Qin. Multi-dimensional fault diagnosis using a sub-
space approach. In American Control Conference, 1997.

[9] Haibo He, Sheng Chen, Kang Li, and Xin Xu. Incremental learning from stream
data. IEEE Transactions on Neural Networks, 22(12):1901–1914, 2011.

52

[10] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. An evaluation
study on log parsing and its use in log mining. In 2016 46th annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pages
654–661. IEEE, 2016.

[11] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log
parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS), pages 33–40. IEEE, 2017.

[12] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report:
System log analysis for anomaly detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pages 207–218. IEEE,
2016.

[13] Je↵ Heaton. Introduction to neural networks with Java. Heaton Research, Inc.,
2008.

[14] Geo↵rey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent. Cited on,
14(8), 2012.

[15] hobs (https://stats.stackexchange.com/users/15974/hobs). How to choose the
number of hidden layers and nodes in a feedforward neural network? Cross
Validated. URL:https://stats.stackexchange.com/q/136542 (version: 2019-05-
27).

[16] J Edward Jackson and Govind S Mudholkar. Control procedures for residuals
associated with principal component analysis. Technometrics, 21(3):341–349,
1979.

[17] Donald R Jensen and Herbert Solomon. A gaussian approximation to the
distribution of a definite quadratic form. Journal of the American Statistical
Association, 67(340):898–902, 1972.

[18] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 1972.

[19] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-
wide tra�c anomalies. ACM SIGCOMM computer communication review,
34(4):219–230, 2004.

[20] Clayton Lewis. Using the” thinking-aloud” method in cognitive interface design.
IBM TJ Watson Research Center Yorktown Heights, NY, 1982.

[21] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
Log clustering based problem identification for online service systems. In 2016
IEEE/ACM 38th International Conference on Software Engineering Compan-
ion (ICSE-C), pages 102–111. IEEE, 2016.

[22] Chris Lonvick. Rfc3164: The bsd syslog protocol, 2001.

53

[23] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Jiang Li, and Bin Wu. Mining
program workflow from interleaved traces. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 613–622, 2010.

[24] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios.
Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1255–1264, 2009.

[25] James H Martin and Daniel Jurafsky. Speech and language processing: An in-
troduction to natural language processing, computational linguistics, and speech
recognition. Pearson/Prentice Hall Upper Saddle River, 2009.

[26] Svetlin Nakov and Veselin Kolev. Fundamentals of Computer Programming
with C#: The Bulgarian C# Book. Faber Publishing, 2013.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[28] David Martin Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. 2011.

[29] Raghavendra D Prabhu. Somgpu: an unsupervised pattern classifier on graph-
ical processing unit. In 2008 IEEE Congress on Evolutionary Computa-
tion (IEEE World Congress on Computational Intelligence), pages 1011–1018.
IEEE, 2008.

[30] D Team. Data block in hdfs - hdfs blocks & data block size - dataflair.
https://data-flair.training/blogs/data-block/. (Accessed on 08/25/2020).

[31] Risto Vaarandi. A data clustering algorithm for mining patterns from event logs.
In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003)(IEEE Cat. No. 03EX764), pages 119–126. IEEE, 2003.

[32] Risto Vaarandi and Mauno Pihelgas. Logcluster-a data clustering and pattern
mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM), pages 1–7. IEEE, 2015.

[33] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan.
Detecting large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
117–132, 2009.

[34] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
Cloudseer: Workflow monitoring of cloud infrastructures via interleaved logs.
ACM SIGARCH Computer Architecture News, 44(2):489–502, 2016.

54

[35] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and
Michael R Lyu. Tools and benchmarks for automated log parsing. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 121–130. IEEE, 2019.

55

Appendix

A. Qstatistic: Lookup table for c alpha

C alpha alpha

1.7507 0.08
1.9600 0.05
2.5758 0.01
2.807 0.005
2.9677 0.003
3.2905 0.001
3.4808 0.0005
3.8906 0.0001
4.4172 0.00001

56

