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Abstract

Surgical excision is the most common treatment for tongue squamous cell carcinomas (TSCC).Surgeons aim to remove the tumor with a minimal resection margin of 5 mm to reduce the chanceof recurrence. Currently, there is no intra-operative assessment available to determine if a 5 mmresection margin is achieved. To improve the surgical precision of TSCC resections, this researchaims to provide surgical guidance during resections of TSCC using three-dimensional (3D) ultrasound(US) to minimize close resection margins. This research was divided into three parts which togetherinvestigated the feasibility of 3D US for intraoperative assessment of surgical resection margins oftongue squamous cell carcinomas.
The first part of this research provides a better understanding of data acquisition and reconstruc-tion of 3D US. In a phantom study, the influence of the 1) reconstruction algorithm, 2) sweepingmethod, 3) US transducer frequency, 4) stabilization rails and 5) observer was investigated. Theaccuracy of the 3D US volumes was evaluated by the signal-to-noise ratio (SNR), contrast-to-noiseratio (CNR), derivative along a scan line and the Full Width at Half Maximum (FWHM) of the peak ofthe derivative of the pixel intensity. The results show that data acquisition was performed best usingthe highest US frequency possible, a single sweep method assisted by rails and performed by a singleoperator. This study could not identify a reconstruction algorithm performing better than others.
The second part of this research investigated as a proof of concept that deep learning is a feasibletechnique for fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehandUS volumes. The multi-class segmentation of tongue specimen and tumor was split into two binarysegmentation problems by adopting the cascade strategy. Two identical UNet models were trainedupon their own dataset (from a total dataset of 44 3D US volumes of 8 patients) and the influenceof the loss function (Dice and binary cross-entropy (BCE)) and data augmentation was investigated.Evaluation based on the Dice similarity coefficient (DSC), showed 86% DSC (BCE loss with dataaugmentation applied) predicting the specimen and 18% DSC (Dice loss and data augmentationapplied) predicting the tumor.
The third part of this research explored the correlation between resection margins assessed by 3DUS and histopathology. This study included 8 patients of which the resection margins of TSCC wereassessed intra-operatively by 3DUS and post-operatively by histopathology. The correlation betweenthe measurements by 3DUS and histopathology was computed by the Pearson correlation coefficient.The results showed that the measurements of resection margins by 3D US and histopathology donot correlate statistically significant, meaning that 3D US could not provide correct intra-operativefeedback to the surgeon.
Future research should focus on expanding the dataset and improving the data acquisition, byutilizing a high frequency US transducer and stabilization rails. In addition, remodeling of histopatho-logical slices into 3D models and registering those 3D models towards the 3D US models could helpthe radiologist annotating more accurately. Also, research should investigate which hyperparametersin the deep learning models perform superior to obtain maximum DSC in predicting the specimen andtumor in 3D US volumes. Eventually after all these improvements, it is speculated that recalculatingthe correlation between the resection margins measured by 3D US and histopathology in tonguetumor specimens could be statistically significant.
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1
General Introduction

In the Netherlands, the prevalence of tongue cancer was 2069 in 2018, and the incidence is 300to 400 [1]. Tongue cancer is part of the larger subject oral cavity cancer. The dominant cancer ofthe oral cavity is squamous cell carcinoma (OSCC) and frequently associated with risk factors suchas chronic smoking, alcohol use, the presence of human papilloma virus (HPV) [2–5] and sunlightexposure [6]. OSCC is frequently diagnosed in patients aged between 55 and 65 years old for men,and 50 and 75 years old for women [4, 7]. OSCC is treated by surgery, chemo- or radiotherapy or acombination of those. However, these treatments cause damage to the tongue and have negativeeffects on speech, swallowing and mastication [3, 8] and interferes with cosmetic appearance [4].Complications can be minimized by prosthetic rehabilitation [9]. After treatment, patients should beencouraged to stop smoking and drinking alcohol as those are high risk factors for OSCC [4].OSCC is mostly detected through physical examination by dental and general practitioners.Routine biopsy of precancerous lesions such as leukoplakia, erythroplakia and chronic traumaticulcers, is performed to diagnose OSCC [6]. Additional endoscopy of the upper pulmonary tract isnecessary, since oral cancer has a high risk in developing metastasis in the head and neck regionand lungs. The severity of the disease is categorized following the Tumor, Nodes, Metastasis (TNM)staging system [6, 8, 9] of which the 8th edition of the AJCC Cancer Staging Manual is the mostrecent update, as shown in Table I and II [10].Once OSCC is diagnosed, the best treatment will be discussed and planned by a multidisciplinaryteam. A preoperative planning is based on physical examination, computed tomography (CT) ,magnetic resonance imaging (MRI) and ultrasonography (US) , which enable accurate evaluation oflocal spread, invasion of surrounding tissues and lymph node involvement [9, 11]. The shape andgrowth pattern of tongue cancer vary among patients [3]. Also, the feasibility of tumor-free resectionmargins and the postoperative quality of life are discussed by the multidisciplinary team.Treatment of OSCC is based on patient’s individual circumstances and TNM cancer staging. Forresectable tumors (Tis/T1/T2), partial glossectomy is the most common treatment, if the generalcondition of the patient is sufficient [12]. More advanced tumors (T3/T4), with vessel and per-ineural invasion and lymph node involvement require additional postoperative radiotherapy and/orchemotherapy [6, 9]. Additional postoperative therapy is advised as well in case of positive or closeresection margins, since increased chance of disease recurrence and poorer survival are knownconsequences of inadequate removal of the tumor [13].Sutton et al. and Alicandri-Ciuflli et al. state that there is no consistency about the distance of aclear resection margin [13, 14]. Most literature considers >5 mm between invasive carcinoma and thesurgical margin as a safe margin, 1-5 mm as close and less than 1mm is a positive or involved resectionmargin [2, 9, 13, 15, 16]. These distances are substantiated by The Royal College of Pathologists [17].
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Chapter 1 General Introduction

After treatment, patients will be followed up frequently since any recurrences or second malig-nancies could occur. Wang et al. show that the recurrence rate of OSCC is 32,7% [18]. Additionally,another study shows that the 5 year survival rate is significantly higher in OSCC patients withoutrecurrence (about 80-90%) than patients with recurrences (about 30%) and the overall survival rateis 60% [5]. Other important prognostic factors are tumor size, lymph node involvement [4, 6, 9] andthe status of resection margin[13, 19]. Since none of the factors can influence the prognosis of OSCCalone, all prognostic factors should be taken into consideration when determining the prognosis of apatient [5].The survival rates of early detected tumors (T1/T2) is >70% , which is higher than the survivalrates for late discovered tumor (<43%) [2]. Also, Nóbrega et al. found that patients with tumors atstages T1 and T2 and absence of lymph node involvement at initial diagnosis have a higher survivalrate [4]. A review of Jadhav et al. show that a disease-free period of three years was higher inpatients with a tumor diameter <2 cm (84%) compared to patients with tumor diameters >2 cm (52%).Besides the diameter, an invasion depth of >5 mm corresponds to more cervical metastasis (64,7%)than tumors with a depth of invasion <5 mm (5,9%). This can be explained by the fact that lymphaticchannels are present in deeper tissue and function as a pathway for cervical metastasis [5].The involvement of lymph nodes is strongly correlated with metastasis, a lower survival rate andan increased risk of local recurrences. Especially, it is found that the macroscopic extension of theextracapsular spread of the lymph node is 1.5 times more likely to develop local recurrences thanpatients with microscopic extension [5]. In a study of Mourad et al. tumor thickness and invasiondepth, assessed pre-operatively by MRI, seem to be important prognostic factors of metastasis incervical lymph nodes [3].Sutton et al. show that a narrow resection margin is related to poorer prognosis in terms ofdisease recurrence and survival [11, 19] in spite of radiotherapy to the primary site [13]. In addition,Jadhav et al. show a 5 year survival rate of 69% in patients with clear margins compared to 38% withinvolved margins [5]. On the other hand, a study of Weijers et al., excluding patients with positivemargins as well as patients with epithelial dysplasia in the mucosal resection margins, found nosignificant difference in the development of local recurrence within patients of which the specimencontained tumor cells at <5 mm from the deep surgical margin compared to specimens containingtumor cells at >5 mm [19].
Table I. T Category for oral cancer in the 8th edition of the AJCC TNM staging system [10]

T Category T CriteriaTX Primary tumor cannot be assessedTis Carcinoma in situT1 Tumor 2 cm, 5 mm depth of invasion (DOI) (DOI is depth of invasion and not tumorthickness)T2 Tumor 2 cm, DOI >5 mm and 10 mm or tumor >2 cm but 4 cm, and 10 mm DOIT3 Tumor >4 cm or any tumor >10 mm DOIT4 Moderately advanced or very advanced local diseaseT4a Moderately advanced local disease: (lip) tumor invades through cortical bone orinvolves the inferior alveolar nerve, floor of mouth, or skin of face (ie, chin or nose);(oral cavity) tumor invades adjacent structures only (eg, through cortical bone ofthe mandible or maxilla, or involves the maxillary sinus or skin of the face); notethat superficial erosion of bone/tooth socket (alone) by a gingival primary is notsufficient to classify a tumor as T4T4b Very advanced local disease; tumor invades masticator space, pterygoid plates, orskull base and/or encases the internal carotid artery
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Problem Statement

Table II. N Category for pathologic regional lymph nodes (pN) in the 8th edition of the AJCC TNMstaging system [10]. ENE = extranodal extension.
N Category N CriteriaNX Regional lymph nodes cannot be assessedNis No regional lymph node metastasisN1 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension andENE-negativeN2 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension andENE-positive; or more than 3 cm but not more than 6 cm in greatest dimension andENE-negative; or metastases in multiple ipsilateral lymph nodes,none more than 6cm in greatest dimension and ENE-negative; or metastasis in bilateral or contralat-eral lymph nodes,none more than 6 cm in greatest dimension, ENE-negativeN2a Metastasis in a single ipsilateral or contralateral lymph node 3 cm or less in greatestdimension and ENE-positive; or metastasis in a single ipsilateral lymph node morethan 3 cm but not more than 6 cm in greatest dimension and ENE-negativeN2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatestdimension and ENE-negativeN2c Metastasis in bilateral or contralateral lymph nodes, nonemore than 6 cm in greatestdimension and ENE-negativeN3 Metastasis in a lymph nodemore than 6 cm in greatest dimension and ENE-negative;or metastasis in a single ipsilateral lymph nodemore than 3 cm in greatest dimensionand ENE-positive; or metastasis in multiple ipsilateral, contralateral,or bilaterallymph nodes, with any ENE-positiveN3a Metastasis in a lymph node more than 6 cm in greatest dimension and ENE-negativeN3b Metastasis in a single ipsilateral node more than 3 cm in greatest dimension andENE-positive; or metastasis in multiple ipsilateral, contralateral, or bilateral lymphnodes, with any ENE-positive

1.1 Problem Statement
Surgeons aim to remove the tongue tumor with a minimal resection margin of 5 mm, whilepreserving vital structures in the oral cavity [11, 19]. However, in the current clinical setting thereis no intra-operative feedback providing any assessment of the resection margins [12]. Currently,these resection margins can only be confirmed post-operatively by histopathological assessment[13]. Therefore, real-time assessment of resection margins of tongue tumors is highly preferred toimprove accurate resections [12, 15]. It is thought that this will decrease the functional disabilityof the tongue, as well as the need for secondary postoperative chemotherapy, radiotherapy and/orsurgery. When developing such a real-time assessment tool, it is important to take into accountthe difference in margins during surgery and pathological assessment. It is known that the marginassessed pathologically is less than the margin aimed for during surgical resection because of tissueshrinkage caused by fixation, pathological processing [12, 13, 19] and intrinsic muscle contraction[20].
Miyawaki et al. studied intra-operative frozen section histological analysis of the resection marginsof resected OSCC specimens [11]. Mentioned advantages of this technique are 1) readily anatomicalorientation, 2) direct macroscopically observing the resection margin in cross-sectional plane, 3)possibility of reliable sampling and 4) reflecting the in-situ position from the specimen when resectionmargin is close or involved [11]. However, this method only assesses the resection margin in oneplane of the specimen. An aggressive growth and invasion pattern of the tumor could result inpositive margins elsewhere other than the cross-sectional plane. Secondly, a pathologist is required,at the operating theater, to perform the frozen section analysis, which is not feasible in most hospitals.
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Additionally, frozen sections may suffer from sample errors [12].Other studies evaluated the specimens usingMRI. Since high soft tissue capability and definementof true extent, loco-regional involvement and tumor depth, MRI had been frequently used to assesscarcinomas of the tongue [3]. Most studies specifically aimed at evaluation of resection marginsand invasion depth used 1.5T MRI. Steens et al. tried to improve this and aimed to evaluate thefeasibility and validity of ex-vivo 7T MR for evaluation of resection margins in tongue squamouscell carcinoma’s (TSCC). He states that in tumors larger than >3 mm they expect to predict whetherthe resection margin is too small. However, the total time of preparation and MR examination wastoo long for clinical application. They implied to compare the MR with US, as it provides promisingresults about the analysis of resection margins of TSCC [12].Brouwer de Koning et al. studied the correlation between MRI and US measurements of thegreatest dimension and tumor thickness of OSCC. As a result, measuring the tumor thickness usingUS is more accurately for pre-operative tumor staging [21]. This technique is more applicable in theoperating theater if implemented for assessment of resection margins. And compared to the MRstudy of Steens et al., US provides sufficient resolution for tissue determination in less scanning time[12]. Therefore, US seems to be a feasible technique to assess resection margins intra-operatively.A different study of Brouwer de Koning et al., shows that US is feasible for intra-operativeassessment of deep resection margins of TSCC. Advantages of US are 1) easy to implement in surgicalworkflow, 2) no specific training of the operator, 3) not time-consuming, 4) available in almost everyoperating complex and 5) not expensive [22]. However, scans of the specimens by US were madein only 2 axis. Only those slices could be examined and compared to histopathological analysis.Therefore, as recommended, three-dimensional (3D) scanning of the whole tumor volume by USwould provide information about the deep resection margins in all slices surrounding the tonguetumor. A second recommendation is to create an operator independent setup. This setup will bemore reproducible and ease the proceedings of the surgeon. Finally, advise is given to solve theorientation of the resected specimen to the resection field before implementing this technique [22].This challenging problem of orientation of the specimen to the resection field is noticed by Hinni etal. as well [23].
1.1.1 Aim of the study

This study is part of a larger project focusing on the overall improvement of surgical precisionof the TSCC resections. This involves pre-operative planning by different imaging modalities andintraoperative surgical guidance. This research can be seen as successor of Brouwer de Koning andwill aims to provide surgical guidance during resections of TSCC using 3D US to minimize involvedresection margins and preserve maximum functionality of the tongue.The first objective of this research is to determine how to create a 3D model of a resected tonguespecimen from US images. This objective includes the reconstruction method and variables whichcome across during the study. Secondly, the objective is to segment specimen and tumor from the 3DUS volume fast and automatically. Based on these segments, the resection margin could be computedfor the entire specimen. The final objective is to determine whether the computed resection marginin 3D US correlates to histopathology.
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Background

2.1 Clinical Background
The tongue is located in the center of the oral cavity and partially within the oropharynx [24].The tongue enables taste of food [25] and plays a critical role in speech, swallowing and breathing[24, 26–29].It consists of three parts: the base, body and blade, of which the base is attached to the mandibleand hyoid bone. The sulcus terminalis divides the tongue in an oral (anterior) and pharyngeal (posterior)part or the base, in which the tongue can easily be explained. At the end of this pharyngeal partis located the vallecula, which is the transition of smooth mucosa between the tongue base to theepiglottis [24]. The body of the tongue extents from the sulcus terminalis to the frenulum linguae.The part anterior of the frenulum linguae is the blade [29]. The tongue has two symmetrical muscularhalves separated by the fibrofatty lingual septum, except for the blade [24].

Figure 1. The major anatomical structures related to the tongue.
There are four types of papillae on the tongue, as shown in Fig. 1, of which three (fungiform,circumvallate and foliate) contain taste buds, which enable taste, while filiform papillae plays a role ineating, controlling the food [30] and providing information about temperature, texture and pain. The
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filiform papillae is the most presented of all four papillae and only located at the oral (anterior) partof the tongue [25].The taste buds in the papillae can distinguish five tastes of sweet, sour, salt, bitter and umamidepending on 3 types of receptor cells [25]. Once a receptor cells in a papillae is activated, the sensoryinformation will be transfered via innervation of three central nerves (CN). The filiform papillae arelocated at the oral part of the tongue and transfers signals through lingual branch of the trigeminalnerve (CN-V). The fungiform papillae, also at the oral part of the tongue, is innervated by chordatympani branch of the facial nerve (CN-VII) [24, 25, 31]. The circumvillate and foliate papillae at thepharyngeal part sends information via the glossopharyngeal nerve (CN-IX) [25, 31].
Since the tongue derives during embryonic development from both ectoderm and endodermlinings, similar to the skin and gastrointestinal tract, the tongue contains a stratified squamousepithilium, as well as a moist mucosa like the gastrointestinal tract [30]. The embryonic origin ofthe oral tongue is from the first pharyngeal arch, ectoderm, while the pharyngeal tongue has anendodermal embryonic development originating from the third and fourth pharyngeal arch. The thirdpharyngeal arch ends up as the pharyngeal tongue, and the fourth pharyngeal arch provides thevallecula. Because of the different embryonic development, the vallecula is separately innervated bythe internal laryngeal nerve [24].
The tongue exists of multiple muscles surrounded by mucous membrane [24]. Several studiesstate that the tongue is muscular hydrostat, which means that the biomechanics of the tongue aremore similar to hydraulic systems relative to mechanical levers known for skeletal muscles [26–29].Those muscular hydrostat structures change shape and position by deforming local regions [26] andmaintain constant volume [28].The muscles of the tongue can be divided in extrinsic muscles, which are one-sided attachedto a bone and insert within the tongue, and intrinsic muscles, which has the origin and insertionin the tongue without any attachment to a bone [24, 28, 29]. Generally, the extrinsic muscles 1)genioglossus, 2) hyoglossus, 3) styloglossus and 4) palatoglossus are responsible for the positionand movement of the tongue while the intrinsic muscles 1) superior and 2) inferior longitudinals, 3)vertical and 4) transverse bands alter the shape of the tongue [24, 27–29].During movement and shaping of the tongue, the detailed contribution of each individual musclesas agonist, antagonist or stabilizer is unknown [29]. All muscles of the tongue are motor innervatedby the hypoglossal nerve (CN-XII) [24, 31, 32] , which is subdivided into lateral and medial branches[27]. The lateral-hypoglossal nerve supplies the extrinsic styloglossus and hyoglossus musclestogether with the intrinsic superior and inferior longitudinal muscles [27]. The rest of the intrinsicmuscles (transverse and vertical) with addition of the genioglossus muscle are innervated by themedial-hyoglossal nerve. The palatoglossus is more essentially an palate muscle innervated by thepharyngeal plexus and forms therefore the only exception of all muscles [24].
Lymph drains from the base of the tongue to bilateral nodes in the neck and from the bladeto submental nodes. A third of the drainage of the oral tongue is ipsilateral to submandibular andjugulodigastric nodes while the rest has lymph vessels to bilateral nodes [24].The tongue is vascularized bilaterally by the lingual arteries originating from the external carotidartery [20]. Additional blood supply is supported by the facial artery and pharyngeal artery [24]. Thelingual arteries run symmetrically and no transseptal anastomosis occur between the left and rightside. During partial glossectomy, damage to both lingual arteries will result in necrosis of the tongueblade. The anatomical distribution of the lingual arteries should be taken into account when decidingthe resection margins and to avoid intraoperative injury of the lingual arteries. Together with otheroral structure such as tongue blade, foramen cecum, dorsal (superior) surface, the lingual arteriesmight be used as anatomical landmarks. From blade to base, the course of the lingual arteries bentinto deeper tissue below the dorsal surface as it reaches the pharyngeal part of the tongue [20].
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2.2 Technical Background

2.2.1 Two dimensional ultrasound

US imaging is based on the transmission of pressure waves through a medium and receiving thereflected wave with the transducer [33, 34]. US refers to the high frequencies above human hearing(>20000 Hz) [34, 35] caused by oscillations in pressure by piezoelectric crystals in a probe [33].By applying an electric current with a specific frequency, the piezoelectric crystals change lengthand create a pressure wave with the corresponding frequency [35]. Following, the electric currentstopped and the crystals deform when receiving a pressure wave, which induces electric currents. Byaltering these phases, the vibrating crystals create longitudinal wave and the reflections contain theinformation about the medium it transmitted through, which is used to create an image [33, 34].The velocity or speed of sound (v), frequency (f ) and wavelength (λ) of the pressure wave aredescribed by eq. (1). The speed of sound (in m/s) in which a pressure wave transmits through tissuedepends on the tissue properties [33]. The frequency (in 1
s ), or oscillations per second [34, 35],depends on the chosen electrical current applied with the transducer [33]. Wavelength (in m) is thedistance between two high pressure areas and is depending on both the velocity and frequency,as shown by eq. (1) [33]. This equation shows that the wavelength is inversely proportional to thefrequency, so shorter wavelengths result in higher frequencies [34, 35].

v/λ = f (1)
At each boundary, a fraction of the sound will transmit through adjacent tissues and the remainingpart will be reflected in infinite directions including back to the probe [33, 35]. This attenuation of theoriginal wave intensity is caused by 1) reflection, 2) absorption, 3) scattering [33] and 4) refraction[35]. 1) Each boundary reflects some of the wave, so boundaries in deeper tissue reached by thetransmitted part, receive smaller portions of the original wave and reflect less strong. Time gaincompensation increases the intensity of echos further away, to create a more even image [33–35]. 2)Wave energy is partially absorbed by the tissue, since particles start oscillating and produce heatdue to friction [35]. The amount of absorption is dependent on the tissue [33]. 3) The wave couldscatter in all directions when the pressure wave meets boundaries not perpendicular to the wave’spath [33] and at structure much smaller than the wavelength. This refracted part will not reach thetransducer probe and is therefore a loss of energy. 4) At the boundary, transmission of the waveenergy in a different direction than the original wave, is called refraction. Due to this new direction,the reflection will be in a different direction as well, resulting in no receiving of the reflection [35].The amount of attenuation depends on the difference in acoustic impedance (Z) of the twotissues [34, 35]. As shown in eq. (2), Z depends on the tissue density ρ and speed of sound v in thattissue [34, 35].

Z = ρ · v (2)
A large difference in material density is present when comparing soft tissue with air or bone, and so
Z1 and Z2 are different [35]. Difference in Z means attenuation in transmission energy caused byreflection. The sound wave will not reach deeper tissue resulting in dark areas of no information inthe ultrasound image (posterior acoustic shadowing) [34, 35]. In clinical practice, collagen and fat aredemonstrated as hyperechoic tissues and muscles and fluids such as blood and urine as hypoechoic[33, 34]. In this study, based on the finding van Brouwer de Koning et al. [22], it is assumed that thedifference in tongue muscle tissue and TSCC is visible.

To create an 2D image containing many pixels (brightness or B-mode), the location of the reflectionand its corresponding intensity is required. The location of the boundary is determined by measuringthe elapsed time between a created pulse and the corresponding received sound reflection, assumingthat the overall speed of sound in human soft tissue is 1540 m/s [33, 35, 36]. A short travel timecorresponds to a location close to the probes surfaces, represented by the upper pixels of the image
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and vice versa. The amplitude of the receiving wave determines the intensity the pixel displayed [33,35]. Mostly, a scale of 256 shades of gray is used to differentiate intensity as a result of differentreflections. The image could be optimized by keeping as many shades of gray as possible [33].The spatial resolution of an ultrasound image is divided into two types: axial and lateral. The axialresolution is the ability to differentiate two points in the direction of the wave [33, 35]. To visualize astructure, it is required that the structure is larger than multiple wavelengths [35]. Therefore, smallerwavelengths come with higher frequencies and so a high frequency probe is required to image smallerstructures. The lateral resolution is the ability to distinguish two points at equal distance in twodifferent directions [33, 35].The best resolution is where the beam converges, also called the focal zone or focal range. Thiszone is adversely related to the frequency due to attenuation, which in tissue ranges from 0.5 to 1.1db/cm/MHz [33]. In practice, high frequencies (and short wavelengths) provide more detailed imagesas lower frequencies reach deeper tissues and expanded the field of imaging [33–35]. Therefore,5-12 MHz linear probes are used for high resolution assessment of superficial tissues [34], while 2-5MHz probes are deployed for imaging deeper tissues [35].
2.2.2 Three dimensional ultrasound

With the additional third dimension in US multiple advantages arise. Images to diagnose patientsare completely reproducible. 3D US provides a wider ranges of scan planes to analyze becauseof a reconstructed volume [36]. Even a panoramic view of the region of interest can be made tohelp surgeons locate their instruments in the target area. 3D US is not dependent on the expertiseand knowledge of the operator any more, since it provides full understanding of the distribution ofanatomical structures. Obtaining the shape and location of the region of interest (ROI) with 3D USis definitely improved as it enables fast and accurate diagnostics. Finding a precise location duringsurgery is limited by 2D US, while this extra dimension can visualize a full 3D target area in real-time[37].In this section, the necessary steps of 3D ultrasound will be described in general. Based on theavailable techniques at Netherlands Cancer Institute (NCI), those will be explained in further detail.
3D US images can be made in four different ways: 2D array probes, mechanical 3D probes,mechanical localizers and freehand scanners [37].Volumetric scanning with 2D array probes is possible by steering the sound wave in both azimuthand elevation dimension. The diverging sound wave produced by the 2D array transducer has anpyramidal shape and the reflected waves are processed into integrated 3D images. Adjusting phasedarray delays serve to steer and focus on the ROI, so the probe could be held at the same locationwhile scanning [37].A 3D image could also be made with mechanical 3D probes which contain motorized lineartransducers acquiring a collection of 2D images. This mechanical 3D probes can rotate, tilt andtranslate across the target area. Linear scanning acquires parallel images at a consistent slice-distanceby adjusting the frame rate. This results in a non-isotropic resolution: in the scanning direction equalto conventional 2D images and in the translation direction dependent on the elevation of the probe[37].Tilting scanners are fixed on the skin of the patient and obtain a fan of images separated bya specified angle depending on the tilting speed and imaging frame rate. The resolution of thistechnique is non-isotropic as well, as it degrades when the separation angles increases [37].To scan the ROI with a rotating scanner, it has to be held statically while it rotates around thecentral axis of probe. This means that the resolution is depending on the angular distance betweenimages resulting in non-isotropic resolution again. Depending on a convex or linear probe, theresulting 3D images will have a conical or cylindrical shape [37].
hoi
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Figure 2. Schematic drawing of imaging a volume by a single crystal in a 2D array probe [37].
Mechanical localizers are motorized and move linearly, tilt and rotate as well as mechanical3D probes. Instead of a internal motor, mechanical localizers use an external holder to acquire acollection of 2D images using a 1D transducer. To reconstruct the 3D images, the relative positionand orientation of the 2D images have to be recorded accurately. However, these localizers areinconvenient since they are heavy and large [37].
A 3D scanning technique more convenient for application is the freehand scanner. This techniqueprovides operators the opportunity to scan the ROI in any direction and position to get optimalanatomical orientation. For reconstruction of 2D images into 3D images, position and orientationparameters are required for each 2D slice [37]. Different device tracking mechanisms are available inclinical setting. However, due to the small operational area during tongue surgery, this research islimited to electromagnetic (EM) tracking.This tracking mechanism requires a EM transmitter and a receiver located at the probe. Based onEM signal, the required position and orientation of the probe can be calculated which enables 3Dreconstruction. The advantage of EM tracking is the relative small sensors and no required line ofsight. On the other side, EM interference and metal objects will distort the EM signal and reduce thetracking accuracy [37].
Object reconstruction is an inevitable step and the accuracy and speed are significant for real-time3D imaging. The main reconstruction algorithms are voxel based methods (VBM) and pixel basedmethods (PBM) [37]. These reconstruction algorithms will be described in details at chapter 4 withinthe limits of the available methods of this study.
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3
Research Questions

Is 3D ultrasound a feasible technique for intraoperative assessment of surgical resection
margins of tongue squamous cell carcinomas?

Sub research questions:

• What is the impact of the reconstruction algorithm, ultrasound frequency, acquisition method,
stabilizer and observer on the accuracy of 3D ultrasound reconstruction?

• Is deep learning a feasible technique for fast automatic intra-operative multi-class segmentation of
3D US volumes of resected tongue specimen and tumor?

• What is the correlation between the resection margin in tongue tumor specimens assessed by 3D
ultrasound and histopathology?
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4
The influence of multiple variables on

accurate 3D US reconstructions, a
phantom study

4.1 Introduction
The first step to know if 3D US is a feasible and accurate technique for intraoperative assessmentof surgical resection margins of tongue squamous cell carcinomas, is to obtain a better understandingabout 3D US. This chapter focuses on the acquisition of US images and the reconstruction methodsto create 3D US volumes.
US acquisition contains two phases: the acquisition of 2D grey scale US images (B-scans) itselfand the reconstruction from 2D B-scans into a 3D US volume [38]. The acquisition of 2D imagescan be performed by freehand or motorized in a linear, tilt or rotational manner. Freehand scanningresults in a non-uniformal distribution of the distance and orientation of the slices relative to eachother [39]. The motorized acquisition result in a more regular pattern of the 2D image position. In thefinal 3D reconstruction, both freehand and motorized method are very similar [40]. The positioningdata to reconstruct the 3D volumes could be obtained optically, mechanically, electromagneticallyand acoustically [40]. In this study, the position and orientation of the 2D US images relative to theother images is based on the electromagnetic (EM) navigation.The acquisition and reconstruction phase both include variables which influence the accuracy ofthe output 3D US volume [40]. The US acquisition phase has variables involving the experimentalsetup and the settings of the US system. The reconstruction phase has a computational variable, as thereconstruction could be created by several algorithms. It is important to keep in mind that artefactsmay be introduced by these algorithms and thereby reduce image quality [39]. The differencesbetween reconstruction algorithms are explained below.

4.1.1 US reconstruction algorithms

Most algorithms are simple and quick so the physician can visualize the 3D US volumes immedi-ately after acquisition [38]. Reconstruction algorithms provided by CustusX, an open-source researchplatform for image-guided interventions [41], could be divided into two groups, the pixel basedalgorithms and voxel based algorithms. For both algorithms, a voxel grid has to be filled with valuesfrom the acquisition image planes [42]. The algorithms differ in computational time, which, in caseof clinical implementation, have to be taken into account. For a wider range of possible algorithms,reference is made to the review of Solberg et al., who describes the benefits and drawbacks of severalreconstruction algorithms [40].
14
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Pixel based methods (PBM)Pixel Nearest Neighbor (PNN) reconstruction iterates over each acquired image plane. Within theimage plane, for each pixel the algorithm finds the nearest voxel in the voxel grid and assigns the pixelvalue to this voxel [37, 38]. Normally, if the voxel already contains a value, multiple contributionsare averaged. However, assigning the most recent, the first, or the maximum value is possible aswell. After iteration over all image planes, the empty voxels in the voxel grid are filled with a valuefrom neighboring voxels [38, 42, 43]. Several methods are available such as the average of nonzeropixels in 2D planes, average, median, or maximum of nonzero voxels in a 3D local neighborhood orinterpolation of the nearest voxels. However, this step may not be necessary when the distancebetween slices is small enough [40]. Artefacts as a result of this two-step method are visible as aboundary between the voxels with assigned pixel values and voxels filled from the second step [38].
Voxel based methods (VBM)Many voxel based reconstruction algorithms are available for application. The first is Voxel NearestNeighbor (VNN) which iterates over the output voxel grid. For each voxel, the nearest image pixelis found and assigned to the voxel [37]. This is a fast method, since the nearest pixel lies on a linenormal to the nearest image [38]. If there is no image plane within the maximum radius around thevoxel, it is left empty. [40, 42]A more complex variant of this algorithm is the Voxel Nearest Neighbor2 (VNN2) which doesnot assign the value of the nearest pixel, but takes all image planes within radius R and assigns adistance-weighted average of the nearest pixels from all images planes to the voxel.The distance weighted (DW) reconstruction finds the closest 2D pixel on each side of the voxeland applies a bilinear interpolation of the four surrounding pixels before assigning the voxel value[40, 42].Finally, this distance weighing algorithm is also available with an additional varying Gaussian filter,the anisotropic reconstruction algorithm. This adaptive algorithm keeps details in high-frequencyregions and cancels out noise [42].For all algorithms, artefacts due to reconstruction could occur and can be observed in the voxelarray [38].

As described, 3D US acquisition is subject to multiple variables. To know if 3D US is a feasibletechnique, the impact of these variables on the accuracy of the output volume needs to be inves-tigated. High accuracy with respect to contrast, signal and noise is preferred to differentiate thematerials in the US image. Or in clinical setting, differentiate the specimen from tumor tissue. Thisphantom study investigates the impact of the reconstruction algorithm, acquisition method, USfrequency, stabilization rails and observer on the accuracy of US acquisition and reconstruction. Thegoal of this phantom study is to experimentally substantiate the preferred conditions to acquireaccurate 3D US reconstructions of resected tongue tumor specimens.
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4.2 Research question
What is the impact of the reconstruction algorithm, ultrasound frequency, acquisition method, stabilizer

and observer on the accuracy of 3D ultrasound reconstruction?

Sub research questions:• Which US reconstruction algorithm results in the most accurate 3D US reconstruction?

• Which sweep-method results in the most accurate 3D US reconstruction?

• Which US frequency provides the best resolution for small target volumes?

• What acquisition method, freehand or stabilized scanning, provides the most accurate 3D US
reconstruction?

• What is the inter- and intraobserver variability when performing US acquisition?
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4.3 Method

4.3.1 Materials

A phantom study was designed to evaluate the influence of multiple variables on the 3D recon-struction volumes. To acquire computed tomography (CT) data of the phantom, a Toshiba Acquilion(Canon Medical Acquilion series, Tokyo, Japan) was used. This study included an old prostate phan-tom (CIRS 053L, Norfolk, USA), previously used to practice prostate biopsy assisted by transrectalultrasound. The experiments were performed using a BK5000 Ultrasound system (BK Medical,Denmark) in combination with a small intraoperative convex (5-14 MHz) transducer. In addition tothe transducer, a 3D printed holder is attached to the transducer. An EM tracking system (Aurora,NDI, Canada) with two associate sensors (six degrees of freedom) were used to provide relativeposition and orientation coordinates between the two sensors. CustusX enabled combining the 2DUS images from the BK US system and the corresponding position and orientation coordinates fromthe NDI system into 3D US volumes. These reconstructions could be performed separately from theacquisitions. One of the experiments required a stabilization rail, customized to the dimensions ofthe transducer including a 3D printed holder for one of the EM sensors.Further image segmentation and quantification of both CT and US data was performed using3DSlicer, an open source software platform for medical image informatics, image processing, andthree-dimensional visualization [44] and customized code written in Python.
4.3.2 Setup of materials

Prior to all the experiments, a specific setup was build which is shown in Fig. 3. First, one EMsensor, the reference sensor, was taped at the outside bottom of specimen scan unit. The NDI EMfield generator was placed close to the bucket without any metal objects to minimize any chance ofdistortion. Then, the bucket was filled with water and the phantom was placed at the bottom of thebucket close to the reference sensor. The second NDI sensor was attached to the US transducer bythe 3D printed holder with a clip-on mechanism. To scan the phantom, the transducer was held belowthe water surface without touching the phantom. By moving the transducer, the whole phantomwas observed. During the experiments, variables of the method and US settings were changed, asshown in Table III, to investigate the impact of these variables on the accuracy of reconstruction.
4.3.3 Data Acquisition

Because the prostate phantom is outdated, the dimensions could be subject to change. Therefore,the actual dimensions of the phantom were scanned by CT (current: 100mA, exposure: 100 mAs,voxel spacing: 0.305 x 0.305 x 0.5mm). These dimensions function as the gold standard dimensionsof the phantom.
Table III shows the division of the phantom study into five experiments. The first experimentrecorded one acquisition to investigate the reconstruction algorithms.The second experiment acquired four different recordings to investigate the impact of the amountof sweeps and the acquisition time. Recording one was the already acquired recording from experi-ment one, scanned in a single sweep of 10 seconds. Recording two was scanned in a single sweep ofthree seconds, the third recording was scanned in two sweeps (back and forth) of two times threeseconds and the last recording was scanned using three sweeps (back-forth-back) all consisting ofthree seconds with a total recording time of nine seconds.It is interesting to see how 2D US images recorded by double or triple sweeps were reconstructedin 3D volumes, because the reconstruction algorithms search for close images. Therefore, the analysis
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Figure 3. The setup of 3D US acquisition of the phantom.

Table III. The investigated variables changing for each experiment highlighted in red.
Experiment Reconstr.

Algorithm
Sweeping
method

Transducer
frequency
in MHz

Freehand
vs Rails

Observer Width

1
PNN

Single, 10 s. 10 Freehand A 100VNNVNN2DWAnisotropic

2
PNN Single, 10 s.

10 Freehand A 100VNN Single, 3 s.VNN2 Double, 6 s.DW Triple, 9 s.Anisotropic
3 PNN Single, 10 s. 5 Freehand A 1007.510
4 PNN Single, 10 s. 10 Freehand A 100Rails
5 PNN Single, 10 s. 10 Freehand 3x A 1003x B3x C
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of experiment one was enlarged by investigating the reconstruction algorithm as well for the threerecordings acquired in a single, double and triple sweep.The next experiment was to obtain more insight in the transducer frequency and the resultingimage resolution. The transducer frequency for the three different acquisitions was 5, 7.5 and 10MHz, respectively.The fourth experiment recorded two acquisitions to investigate the impact of freehand scanningcompared to stabilized acquisition. The first recording was scanned by the freehand method followedby a second recording assisted by a stabilization rail.The final experiment focused on the inter- and intraobserver variability of acquisition. Therecordings were repeated three times resulting in three recordings for each observer, so a total ofnine recordings.
4.3.4 Data processing and analysis

The recordings of the first and second experiment were reconstructed five times into a 3D volume,respectively by the provided reconstruction algorithms, as described in Section 4.1.1: PNN, VNN,VNN2, DW and anisotropic in CustusX.The image quality of the 3D US reconstructions was assessed for each experiment evaluating thesignal to noise ratio (SNR) and contrast to noise ratio (CNR) , by respectively eq. (3) and (4) [45]. Thestandard deviation (SD) and mean pixel values (PV) were measured in a region of interest (ROI) andannotated as phantom (P ) or background(B) as shown in eq. (4). The phantom ROI was determinedin a homogeneous area in the phantom and the background ROI in the surrounding water. Both ROIsshare the same spherical segmentation. The PV in US images handle a gray scale from 0 (black) to255 (white).
SNR =

PV

SD
(3) CNR =

2(PVP − PVB)2

SD2
P + SD2

B

(4)
Secondly, the dimensions in the mid-slice of the spherical structure were measured along theAnterior-Posterior (AP) , Right-Left (RL) and Inferior-Superior (IS) axis. In case a clear measurementof the dimensions of the structure was not possible due to artefacts, a close estimation was noted.Finally, the contrast along a scan line was analyzed by determining the height and Full Width atHalf Maximum (FWHM) of the peak of the derivative of the pixel intensity at the transition from thephantom to the spherical structure. Herefore, the scan line was drawn in the mid-slice. However, themid-slice was rotated so the longitudinal axis of the US wave was parallel to the x-axis. Along thisscan line, a pixel intensity profile was taken and the derivative computed.
Based on the data analysis presented at Section 4.4, none of the reconstruction algorithmsoutperformed the others. On the other hand, the acquisition method using a single sweep did resultin better numbers. So further recordings of experiments three to five were acquired in a single sweepand were reconstructed by the PNN algorithm, which performed the fasted reconstruction, andanalyzed as described above.
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4.4 Results
Three different operators performed a total of 19 acquisitions, as shown in Table III. Dependingon the experiment, the acquisitions were reconstructed once or five times. A total of 34 3D USvolumes were analyzed.The phantom was used to function as practical simulator of prostate biopsies. Due to theperformed biopsies, thematerial of the phantom is affected leaving hollow spots in thematerial. Thesespots - filled with air - result in artefacts in the US images. In addition to the damaged material, severalmarkers were found in the phantom. In the CT volume, these markers are hyperdense structuresresulting in artefacts spreading through the imaged volume. Because the spherical structure in thephantom was visibly affected in both the CT and US images, the SNR and CNR were computed in adifferent ROI that was homogeneous. Secondly, some dimensions were based on estimation insteadof accurate manual measurement.
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4.4.1 Experiment One

Starting with experiment one, the different criteria result in different preferred reconstructionalgorithms. The SNR and CNR of all five experiments is shown in Table IV. For both ratios, the volumereconstructed by the anisotropic algorithm results in the highest SNR and CNR.Table V shows the dimensions of the spherical structure in the phantom in three directions. Thecomputed error (expressed in %) is a deviation between the US and the gold standard CT. Consideringthe actual measurements only, the anisotropic reconstruction algorithm results in the smallest errorof 2.7%.For the reconstructed volumes, the pixel intensity along a scan line crossing the spherical structurein the phantom of the mid-slice images are shown in Fig. 4. The height and the FWHM of the peaksof the derivatives at the transition from phantom to the spherical structure, are shown in Fig. 5. Thisgraph shows that the smallest FWHM is achieved by the VNN reconstruction algorithm while thehighest peak is provided by the VNN2 algorithm.

Table IV. The SNR and CNR for each variable of the five experiments. The numbers in bold representthe highest value within each experiment.
Experiment Variable SNR CNR

1
PNN 22.4 979VNN 19.2 722VNN2 20.1 794DW 22.0 952Anisotropic 27,9 1415

2
Single, 10 s. 22.4 979Single, 3 s. 25.8 1307Double, 6 s. 14.2 398Triple, 9 s. 4.7 43.7

3 5 MHz 12.1 2907.5 MHz 13.5 36110 MHz 8.0 124
4 Freehand 22.4 979Rails 6.9 43.9

5: Observer A Scan 1 20.0 771Scan 2 9.4 173Scan 3 20.2 801

5: Observer B Scan 1 13.8 375Scan 2 3.6 25.9Scan 3 20.0 795

5: Observer C Scan 1 6.6 86.1Scan 2 7.6 89.0Scan 3 6.6 53.2
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Table V. The measured dimensions of the spherical structure in the phantom for each variable ofthe five experiments. The distance error compared to the CT is expressed as a percentage. Thenumbers in bold represent the lowest distance error within each experiment. Estimated dimensionsare highlighted in red. AP = Anterior-Posterior, RL = Right - Left, IS = Inferior - Superior.
Direction AP mm (%) RL mm (%) IS mm (%)
CT 37 43 34

Experiment Variable

1
PNN 35 (5.4) 38 (11.6) 31 (8.8)VNN 35 (5.4) 40 (7.0) 32 (5.8)VNN2 35 (5.4) 39 (9.3) 31 (8.8)DW 35 (5.4) 37 (14.0) 32 (5.8)Anisotropic 36 (2.7) 44 (2.3) 31 (8.8)

2
10 s. single 35 (5.4) 38 (11.6) 31 (7.8)3 s. single 35 (5.4) 40 (7.0) 32 (5.8)6 s. double 36 (2.7) 36 (16.3) 32 (5.8)9 s. triple 36 (2.7) 42 (2.3) 31 (8.8)

3 5 MHz 36 (2.7) 41 (4.6) 32 (5.8)7.5 MHz 35 (5.4) 41 (4.6) 31 (8.8)10 MHz 36 (2.7) 43 (0) 32 (5.8)
4 Freehand 35 (5.4) 38 (11.6) 31 (8.8)Rails 36 (2.7) 46 (7.0) 32 (5.8)

5: Observer A Scan 1 36 (2.7) 44 (2.3) 31 (8.8)Scan 2 35 (5.4) 46 (7.0) 33 (2.9)Scan 3 36 (2.7) 46 (7.0) 33 (2.9)
5: Observer B Scan 1 36 (2.7) 38 (11.6) 31 (8.8)Scan 2 33 (10.8) 33 (23.2) 31 (8.8)Scan 3 35 (5.4) 33 (23.2) 31 (8.8)
5: Observer C Scan 1 38 (2.7) 42 (2.3) 34 (0)Scan 2 37 (0) 39 (9.3) 34 (0)Scan 3 38 (2.7) 40 (7.0) 34 (0)

The results of the expansion of experiment one are shown in Appendix 9, Table X. For each of thesweeping methods, the highest SNR and CNR was achieved when the 3D volume was reconstructedby anisotropic algorithm.In Appendix 9, Table XI shows the dimensions for each reconstruction of the single, double andtriple sweep acquisitions. In a single sweep acquisition, the VNN, DW and anisotropic reconstructionalgorithm resulted in the lowest error of 2.7%. All reconstruction algorithm provided the lowest error(2.7%) in a double acquisition. In a triple sweep acquisition, the lowest error of 2.7% was the resultof the PNN and VNN2 reconstruction algorithm.For each acquisition method, the highest peak of derivatives was achieved by a different recon-struction algorithm, as shown in Appendix 9, Fig. 22. However, the FWHM is the smallest whenreconstructed by the VNN algorithm for all acquisition methods.
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Figure 5. Experiment 1: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in five US 3D volumes with different reconstruction algorithms.The FWHM of the maximum peak is plotted at the top of the peak.

Figure 6. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3DUS volumes were reconstructed by the PNN algorithm. The FWHM of the maximum peak is plottedat the top of the peak.
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4.4.2 Experiment Two

Experiment two was designed to investigate the influence of the sweeping method during USacquisition. Table IV shows the SNR and CNR for all acquisition methods reconstructed by thePNN algorithm. It is noteable that both single (10 and 3 sec.) acquisitions resulted in higher ratioscompared to double and triple acquisition methods. In Appendix 9, Table X shows that the singleacquisition methods provided higher ratios when reconstructed by the other algorithms as well. Onlythe anisotropic reconstruction resulted in similar ratios for double sweep acquisition in 6 seconds asthe single sweep acquisition in 3 seconds.The dimensions of the recordings of the four acquisition methods, reconstructed by the PNNalgorithm are shown in Table V. Compared to the CT data, the lowest errors were achieved bythe double and triple sweep acquisition methods. However, the dimensions of the four recordingmethods reconstructed by the other algorithms, shown in Table XI, were the lowest error for thesingle and double acquisition methods. So, the lowest error for each acquisition method is dependingon the reconstruction algorithm.Figure 6 shows that the triple sweep acquisition method provided the highest peak of thederivatives and the smallest FWHM of 3.7 pixels. Analyzing the acquisition methods reconstructedby the other algorithms, as shown in Appendix 9 Fig. 22, the highest peak for each acquisitionmethod was again depending on the reconstruction algorithm. The smallest FWHM was providedby the single sweep acquisition method, except for the reconstruction by the anisotropic algorithmwhich showed the smallest FWHM for the triple sweep acquisition method.Also, a second peak of the derivative occurred when the triple sweep acquisition method wasused. In the mid-slice image of the triple sweep acquisition method, as shown in Fig. 7, some sort ofcheckerboard effect could be noticed which was not visible in reconstruction acquired by the singleand double sweep acquisition methods. This checkerboard effect with multiple intensity transitionsresulted in an additional peak of the derivative.Finally, the single sweep for 3 seconds acquisition method resulted in the highest SNR and CNR.The dimensions did not show an out-performing acquisition method. The FWHM was the lowestwhen the volume was acquired by the single sweep acquisition method. Also, no checkerboard effectarose.
4.4.3 Experiment Three

Experiment three focused on the influence of transducer frequency on accurate 3D US acquisition.Table IV shows that a US frequency of 7.5 MHz provided the highest SNR and CNR. Looking at thedimensions in Table V, the lowest error of 2.7% (36 mm) in AP direction was achieved by 5 and 10MHz. Figure 8 displays that the smallest FWHM (2.9 pixels) and highest peak of the derivative ofpixel intensity at the transition from phantom to spherical structure was the result of acquisition with10 MHz.Summarized, each of the transducer frequencies provided the lowest or highest numbers at oneof the analysis criteria.
4.4.4 Experiment Four

To understand the influence of freehand compared to stabilized US scanning experiment four wasset up. Table IV shows that the freehand acquisition results in higher SNR and CNR compared to theacquisition assisted by a stabilization rails. However, the dimensions of the spherical structure showlower errors in all directions with a minimum 2.7% when the volume was acquired by stabilizationrails, as shown in Table V. Focusing on the peak of the derivatives of the pixel intensity along a scanline, plotted in Fig. 9, acquisition assisted by stabilization rails resulted in a higher peak and a smallerFWHM compared to the freehand acquisition method.
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Figure 7. The 3D US mid-slice of the spherical structure in the phantom with the scan line plotted inred and the pixel intensity along this scan line plotted in cyan. The 3D US volume is acquired usingthree sweeps and reconstructed by the PNN algorithm. A checkerboard artefact is visible throughoutthe image.

4.4.5 Experiment Five

The final experiment investigated the observer variability of 3D US acquisition. As Table IVpresents, large deviations between the three scans occur for both observer A and B. Observer Cshowed deviations between the scans, but substantially less than the other observers. Between theobservers, the SNR and CNR showed major differences as the maximum SNR and CNR deviatedfrom 7.6 to 20.2 and 89 to 801, respectively.Table V shows that differences in errors of the AP dimension within the observer’s acquisitionsranged from 2.7% (observer A and C) to 8.1% (observer B). Between the observers the maximumdifference in error of the dimensions is 13.5% (4 mm).The FWHM and height of the peaks of the derivatives, shown in Fig. 10, showed a large varietyfor observer B only. The smallest FWHM ranged from 2.7 to 4.3 pixels and the highest peak rangedfrom 60 to 90 between the observers.
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Figure 8. Experiment 3: The derivatives of the pixel intensity along a scan line at the transitionfrom phantom to the spherical structure in three 3D US volumes with different US frequencies. TheFWHM of the maximum peak is plotted at the top of the peak.

Figure 9. Experiment 4: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in two 3D US volumes acquired with and without stabilization.The FWHM of the maximum peak is plotted at the top of the peak.

27



Results

Figure 10. Experiment 5: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in 3D US volumes. The top, middle and bottom figures representsthe acquired 3D US volumes by observer A, B and C, respectively. The FWHM of the maximum peakis plotted at the top of the peak.
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4.5 Discussion
The present study was designed to determine the impact of the reconstruction algorithm, USfrequency, acquisition method, stabilizer and observer on the accuracy of 3D US reconstruction.The main findings of the experiments were that 1) none of the reconstruction algorithms wasout-performing the others, 2) the single sweep acquisition method provides better SNR, CNR andcontrast along a scan line and reconstruction artefacts did not occur, 3) there was no US frequencyresulting in better 3D US reconstruction, 4) acquisition assisted by a stabilization rails provides moreaccurate reconstructions and 5) there was an inter- and intraobserver variability during acquisitionand reconstruction of 3D US volumes.Inferring from these findings, the best acquisition method would be scanning using a singlesweep method assisted by rails and performed by a single operator. Based on existing theory, thepreferred US frequency is 10 MHz or higher, resulting in a higher spatial resolution. Contrary to theexpectations, this study could not identify a reconstruction algorithm performing better than others.This suggests that acquisition variables do have a clear impact, while the reconstruction variabledoes not provide a preference with regard to the clinical problem of accurate 3D US reconstruction.
Compared to previous studies in the literature, 3D reconstructed volumes were created usingsimilar tracking, scanning and reconstruction systems [38, 39, 46]. However, the impact of thevariables of US acquisition and reconstruction was unknown. This study showed the impact ofseveral variables on the acquisition and reconstruction of 2D US images into a 3D US volume.The results from this study confirm the presence of checkerboard artefacts after reconstruction,which were not present during acquisition. As indicated by several previous studies [38, 39], theseartefacts created due to reconstruction were visible in the voxel array. On top of that, this studyshowed the differences in image quality and contrast of 3D US volumes in various conditions offrequency, acquisition methods and reconstruction algorithms.This study providedmore details about the influence of US acquisition and reconstructionmethodson the accuracy of 3D US volumes, where others focused on the clinical implementation of 3D US.
The first research question was set up with the aim of assessing the impact of the reconstructionalgorithm on the accuracy of 3D US reconstruction. Interpreting the results from experiment one,the highest SNR and CNR at the anisotropic reconstruction could be explained by the description ofalgorithm in Section 4.1. The anisotropic algorithm applies a Gaussian filter on top of the distanceweighted sum of the surrounding pixels to assign the voxel value [42]. This Gaussian filter reducesthe amount of noise, creating a lower SD in the measured ROI resulting in the highest SNR and CNR.Including all acquisition methods, the anisotropic reconstruction was not the best-performingalgorithm for the criteria dimensions and FWHM.The 3D volumes have a voxel size of 0.21 x 0.21 x 0.21 mm, so manually selecting a neighboringpixel twice due to intraobserver variability causes a deviation of 0.42 mm already. Therefore, it can beconcluded that the presented outcomes from the dimension criteria are not reliable to substantiatestatements of a best performing algorithm.The FWHM was the smallest when reconstructed by the VNN algorithm for all acquisitionmethods. Compared to the other VBM, VNN is the only algorithm not averaging values but directlyassigning the nearest image pixel. The averaging algorithms eventually create a smooth transitionwhile VNN relies on the actual pixel value resulting in a steep transition, in other words: a smallFWHM.Eventually, the description of algorithms explains the differences in best performing algorithm foreach criteria but, unexpectedly, a preferred algorithm for clinical implementation cannot be inferredfrom this study.
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(a) Freehand (b) Assisted by rails
Figure 11. Rendered volumes of the 3D US reconstruction acquired by (a) Freehand and (b) assistedby rails. The 2D US images show less deviation relative to each other when acquisition is assisted byrails.

The second question in this study sought to determine which sweep method results in the mostaccurate 3D US reconstruction. Taking a closer look at the results of experiment two, the SNR andCNR were the highest in single sweep acquisition. The presence of checkerboard artefacts afterreconstruction by multi-sweep acquisition results in areas of high and low pixel intensity within aselect ROI. This large range of pixel intensity decreases the mean value and increases the SD in theROI resulting in lower SNR and CNR.The checkerboard artefacts affect the derivative of the pixel intensity as well. A second peakrepresents the transition to the area of high intensity within the spherical structure. Therefore, thisstudy proved that acquiring US data using a multi-sweep method introduces artefacts and that asingle sweep method is preferred in 3D US acquisition in a clinical setting.
The third question in this research was to know which US frequency provides the best resolutionfor small target volumes. The theory about ultrasound waves is that a higher US frequency providesbetter spatial resolution but reaches superficial tissue, while lower frequency reaches deeper tissuebut has less spatial resolution. This phenomenon is confirmed by the results shown in Fig. 8, whereboth the highest peak and smallest FWHM are achieved with the highest US frequency, 10 MHz.The SNR and CNR increase by changing US frequency from 5 to 7.5 MHz. However, increasing to 10MHz does not extend this relationship. It is hard to interpret these results based on an underlyingmechanism. Based on the theory, a US frequency of 10 MHz would provide the best resolution forsmall superficial volumes.The fourth objective of this study was to identify whether freehand or stabilized acquisitionprovides the most accurate 3D US reconstruction. It is expected that the stabilization rails preventirregularities, such as shaking, during the US acquisition. If the rails succeeded cannot be derived fromthe SNR and CNR, dimensions or the contrast along a scan line. Comparing the rendered volumes inFig. 11, freehand acquisition showed deviation in the alignment of 2D images due to shaking, whichis not visible in case of acquisition assisted by rails.However, a contradiction can be noticed between freehand acquisition, achieving higher SNR andCNR, and acquisition assisted by rails resulting in smaller FWHM and higher peaks of the derivativesat the transition from phantom to the spherical structure. So, the impact of stabilization rails whileacquiring the US data is visible in the 3D rendered volume, but the analysis could not substantiatethis finding.With respect to the final research question, a variability was found in all criteria between theobservers as well as within. During the acquisition all circumstances remained equal except the
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trajectory, including shaking, and duration of acquisition. This is visible in length of the trajectoryand the amount of slices, resulting in different voxel sizes (all around 0.2 x 0.2 x 0.2 mm) afterreconstruction. A transition of a certain length could be visualized in a different amount of voxels.So, when less voxels represent change in pixel intensity, the FWHM becomes smaller. However, thismechanism could not explain the large difference in SNR and CNR. Since the inter- and intraobservervariability is certainly present, US acquisition in clinical setting should be performed by a singleoperator and always take into account the intraobserver variability.
The findings of this study are clinically relevant because intra-operative assessment of resectionmargins by 3D US could be contributing to improving image guided therapy. Then, surgeons couldperform re-excisions within the current operation, resulting in less requirements of adjunct therapy.This study provided a better understanding of 3D US which is necessary for further research aboutthe correlation between the resection margins assessed by 3D US and histopathology.
This study had some strengths and limitations. The first strength is that the setup of the experi-ments was created in a clinical setting. To implement this setup for clinical usage to investigate tumormargins, no changes have to be made. So any conclusion from this phantom study could be appliedclinically and is not subject to environmental changes when scanning fresh specimens. Anotherstrength of the method was to select a preferred acquisition method and reconstruction algorithmbased on the first two experiments prior to acquisition of experiments three to five.However, the old prostate phantom did introduce some limitations. The artefacts due to thedamage of the phantom ensured that the SNR and CNR were measured at a different location and thedimensions were estimated instead of measured. Because of these estimations by manual selection,which are subject to observer variability, the dimensions became a weak validating criteria. Only theAP direction was measured, leaving 2/3 of the morphological dimensions useless. Also, the phantomdid not provide small structures to analyze the spatial resolution for various reconstruction algorithms.Secondly, the contrast along a scan line is an analysis performed along a single line. The analysisshows a local contrast within a single image at one transition and is therefore not representative forthe entire volume. However, the phantom contains a spherical structure meaning that the contrastshould be equal along the scan line crossing the structure in all directions. Third, the setup was builtto prevent occurrence of random errors. However, the bed at the operating theater and surroundingequipment are made of materials which could possibly distort the electromagnetic field. Incorrecttracking of the location and orientation of 2D images might be the result from these distortions.In the end, some limitations were solved by changing the method and others were taken intoaccount when interpreting the results. Eventually, we do not expect those limitations to have majorimpact on the conclusions as stated above.

4.6 Conclusion
3D US acquisition is subject to several variables during both US acquisition and reconstruction.The goal of this study was to experimentally substantiate the preferred settings to acquire an accurate3D reconstruction of resected tongue tumor specimens. The experiments in this study have shownthat this could be accomplished by an acquisition using a single sweep method assisted by rails,applying the highest US frequency possible and performed by one operator. Unexpectedly, a preferredreconstruction algorithm could not be found based on these experiments.
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5
3D US volume segmentation by deep

learning network UNet

5.1 Introduction
Surgeons aim to remove a tongue tumor with a minimal resection margin of 5 mm. However, Smitset al. show that 85% of the resection margins is <5 mm [47]. Another study shows a local recurrencerate of 32,7% in patients with oral squamous cell carcinoma (OSCC) [18]. Currently, histopathologicalassessment of the resection margins provides the only feedback about the accurateness of resection[13]. Therefore, intra-operative assessment of resection margins of tongue tumors is recommendedto obtain a minimal resection margin of 5 mm [12, 15].US proves to be a feasible technique to assess resection margins intra-operatively. Using 2D US,Brouwer de Koning et al. confirm a correlation of the margins assessed by US and histopathology.The whole specimen was examined. Based on the operator’s decision a 2D intersection with theclosest margin was chosen [22]. However, measuring the margins or segmenting the tumor for all 2DUS images is time-consuming and not feasible during surgery. Therefore, 3D volume segmentationof specimen and tumor is required to improve accurate intraoperative assessment of resected tumormargins.Segmenting of the tongue tumor is challenging given the different geometry and US pixel intensityin each specimen. Due to varying size, shape and anatomical location in oral cavity, the orientationof the specimen during US acquisition differs. Also, noise and the appearance of US artefacts couldlead to difficult differentiation between specimen and tumor. Therefore, a radiologist is requiredduring surgery.Manual segmentation would be an obvious technique. However, it is often accompanied byobserver variability. Furthermore, because it is time-consuming, this technique is not feasible duringsurgery. Semi-automatic algorithms are faster but require manual initialization. Stevenson et al.show that the random-walker algorithm provides equal results compared to manual segmentation[48]. Recently, studies show promising result by applying deep learning using convolutional neuralnetworks (CNN) to segment the first trimester placenta in 3D US automatically [49].Zhu et al. show that UNet [50], a fully CNN and widely used in medical image segmentation,can automatically segment tongue contour in US images for speech research. With the mean sumdistance (MSD) as evaluation metric, which is the comparison of two curves without point-wisealignment, an accuracy of 3.5 pixels MSD was achieved [51]. Even when the training data size wassmall (1% of the original dataset), a reasonable accuracy of 5-6 pixels in MSD can be achieved byimplementing data augmentation [51]. A CNN, trained on segmented data of tongue tumors volumes,could provide fully automated resected tongue specimen and tongue tumor segmentation in 3D USfor the first time.In this study, an open-source CNN, UNet [50], was used to segment resected tongue specimens
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and tongue tumors in 3D US volumes. The labels for supervised learning were manually providedby a radiologist. Evaluation of the results was based on the Dice similarity coefficient (DSC). Thegoal of this study is to show as a proof of concept that deep learning is a feasible technique for fastautomatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.
5.1.1 Semi-automatic algorithm

Prior to the implementation of fully automatic segmentation algorithms, some techniques requirethe manual input from an operator such as region growing and K-means clustering. The regiongrowing algorithm is basically a region starting at an initial point and expanding towards neighboringpixel or voxels that have similar gray values until all surrounding pixels do not meet the propertiesof the region [52]. The initial point and growth settings have a large influence at the performanceof this algorithm. These settings should be changed over and over when performing this algorithmrepetitively with data being inconsistent. Also, segmentation by this algorithm is difficult and ofteninaccurate in case the target area consists of a wide distribution of gray values. Then, the algorithmstops without reaching the edges of the target area or over-expands due to the absence of clearedges as shown in Fig. 12.K-means clustering is an unsupervised machine learning algorithm which separates an image orvolume into K clusters. This iterative algorithm minimizes the distance between the image pixels[53]. Figure 13 shows an original 2D US image and the partitioning of pixels into 3, 5 and 8 clusters.Again, a large distribution of gray values results in inaccurate segmentation and requires severalpost-processing steps, for example selecting the cluster or the combination of clusters representingthe target area.

Figure 12. A 2D US image of a tongue specimen including a squamous cell carcinoma incorrectlysegmented by the region grow algorithm. Due to the absence of clear edges of the tumor, the regiongrow algorithm expanded in the background until a preset maximum was reached, visualized by thered area. The specimen annotated in green shows that the algorithm actually could be limited at theedges of the specimen, where large deviations in pixel intensities are present.
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Figure 13. K-Means Clustering for 3, 5 and 8 clusters.

5.1.2 Deep learning

A well-known technique within artificial intelligence is machine learning (ML) , which constructsanalytic algorithms to learn predictions from examples in data [54][55]. In case outputs of interestare known, the predictive models learn associations between inputs and outputs, which is calledsupervised learning. Modern ML, using a predictive model containing multiple hidden layers, is calleddeep learning (DL) [56]. DL can explore more complex (non)linear patterns in the data and enablesto deal with increased volume and complexity of data such as medical images [55]. A popular DLalgorithm for image segmentation and image classification is the CNN, which handles large numbersof inputs compared to traditional ML algorithms. A CNN is widely used for imaging analysis, sinceimage data contains large numbers of pixels as inputs [55][56].

36



Chapter 5 3D US volume segmentation by deep learning network UNet

5.2 Research question
Is deep learning a feasible technique for fast automatic intra-operative multi-class segmentation of 3D

US volumes of resected tongue specimen and tumor?

Sub research questions:• What is the variability between ground truth annotations by a radiologist within the same specimen?

• How accurate is deep learning in segmentation of tongue specimen and tumor in intra-operatively
acquired 3D US volumes?

• What is the feasibility of intra-operative multi-class segmentation predictions by deep learning?
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Figure 14. Visualization of the UNet architecture [50]. The numbers in gray represent example sizesof the input and output images, and the amount of features maps throughout the model.

5.3 Method
This section describes data acquisition, the adopted UNet architecture, the data pre- and post-processing steps, the training strategy and performed experiments.In this prospective study, nine patients were included based on the diagnosis of a TSCC andsurgery as therapy. The clinical tumor stages were: T1 (one cases), T2 (five cases), T3 (two cases) andone case was a residue after radiotherapy for an initial T2. The patients were treated according tostandard protocol and if required, they received adjuvant therapy as well. The study had full localethical approval from the institutional research board of the Netherlands Cancer Institute.

5.3.1 Materials and data acquisition

For this study, 2D US data were acquired intra-operatively on nine subjects using a BK5000ultrasound system (BK Medical, Denmark) and a small intraoperative convex (5-14 MHz) transducer,as shown in Fig. 15c. The operator used a freehand sweep with a transducer frequency of 10 MHz.The position and orientation of the transducer were measured and recorded by an EM tracking system(Aurora, NDI, Canada) with two sensors (six degrees of freedom), one attached to the transducer andthe other located at the bottom of the setup, as reference. The 2D US images were reconstructed into3D US volumes, as shown in Fig 15d-e, for fast and easy annotation using a Pixel Nearest Neighboralgorithm in CustusX, an open-source navigation platform for image guided therapy [42]. From eachsubject, several acquisitions from different directions were performed which resulted in a total of69 3D US volumes. Some acquisitions were excluded because the field of view did not capturethe complete specimen or extreme movement of the transducer resulted in useless reconstructedvolumes, ending up with 44 3D US volumes included for this study. The pre- and post-processing ofthe US data was performed with Python. The ground truth labels of the specimen and tumor wereannotated, as shown in Fig. 15g, by a radiologist in 3DSlicer, an open-source software platform formedical image informatics, image processing, and three-dimensional visualization [44]. The UNetmodel was trained using a Tesla K80 with 17 GB of video memory.
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(a) In-vivo tongue and tumor prior to sur-gical excision. (b) Ex-vivo tongue specimen includingtumor. The orientation was indicatedwith red, white and blue markers.
(c) Acquisition of the specimen with anavigated US transducer.

(d)A 2DUS image in gray scale of a crosssection of the specimen. (e) The black boxes represent the multi-ple 2D US images which were acquiredin sub-figure (c).
(f) The multiple 2D images were recon-structed into a 3D US volume visible inthis rendered volume.

(g) A US image in gray scale of a crosssection of the 3D volume. The specimenis segmented in light blue and the tumorin yellow.

(h) A 3D view of the segmented speci-men (light blue) and tumor (yellow). AUS image in gray scale at the relative lo-cation within the 3D US volume.

(i)A 3D view of the segmented specimenand tumor. The color of the specimen’ssurface represents the resection marginin 3D from 0 to 5 mm, in respectively redto green.
Figure 15. All steps from surgical resection till 3D visualization of 5 mm margins around the tumor. Ifgood performance in clinical setting is proved, the trained UNet models could replace the manualsegmentation in sub-figure (g).
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5.3.2 UNet

For this study, the UNet architecture, as shown in Fig. 14, was adopted. Since this study used thecascade training strategy, explained in section 5.3.3, this UNet architecture was used to create twoidentical UNet models, the model specimen and the model tumor. It consists of a down-samplingpathway, up-sampling pathway and skip-connections to reuse low-level features in higher levels.The down-sampling pathway contains convolutional blocks and max-pooling layers repetitively. Theup-sampling pathway was built from de-convolutional layer and convolutional blocks. The followingsettings were used for the UNet model. Each convolutional block was made up of 3x3 conv + rectifiedlinear unit (ReLU) + 3x3 conv + ReLU + 2x2 max pool. The components in the de-convolutional blockare: 2x2 up-conv + 3x3 conv + ReLU + 3x3 conv + ReLU. The movement of the convolutional filterhad a stride of one in both dimensions and to ensure that the output image has the same size as theinput image, padding was activated for all convolution operations. After each convolutional block,the number of feature maps was doubled ranging from 8 to 128, and halved during the up-samplingpathway due to each de-convolutional blocks. The final layer consists of a 1x1 convolutional layerwith a sigmoid activation. The weights of the network were updated using an Adam optimizer withan initial learning rate of 0.001 and decays with 10% in case the validation loss did not decrease for5 epochs. Depending on the experiment, see section 5.3.8, the models had a binary cross-entropy ordice coefficient loss function.
5.3.3 Cascade Strategy

This study proposes a strategy adopted from the cascade strategy [57–59], where a complexmulti-class segmentation problem is split into multiple simple binary segmentation problems. This isalso known as coarse-to-fine medical image segmentation [57, 58]. This strategy is popular becauseof the class imbalance problem, which is known in medical images [57]. As mentioned above, twomodels (specimen and tumor) were built and each trained upon their own dataset. The cascadestrategy decreases the class imbalance problem for tongue tumor segmentation by the followingsteps, listed referring to Fig. 16: c) predict the pixels containing specimen including tumor, d) computea ROI around the prediction of model specimen, e) crop the input images by the computed ROI, g)predict the pixels containing tumor only in cropped input images, i) combine the predictions, wherethe tumor is correctly re-located in the predicted specimen.
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Figure 16. Schematic overview visualizing all steps of predicting specimen and tumor in a cascadestrategic fashion. a) Original images as input for model specimen, b) Pre-process the input images byresizing to slices x 256 x 256 x channel, normalizing and binarizing, c) Predict the pixels containingspecimen, d) Compute a ROI (256x256) around the predicted specimen, e) Crop the original imagein the size of the ROI, f) Cropped images as input for model tumor, g) Predict the pixels containingtumor, h) Re-locate the ROI back into the original position in the prediction specimen and i) A finalmulti-class prediction.
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5.3.4 Loss

The outputs of the network are a representation of the probability of each pixel to belong toa certain label. In the US images, the tumor and specimen pixels occupy a small region causing aclass imbalance between the target areas and the background. This imbalance results in predictionsstrongly biased towards the background and target areas are missed or partially detected [51, 60].The accuracy has not been a correct evaluation metric in such case, since it would remain highbecause of the background largely present in labels and correctly predicted. Previous approachesrestored this imbalance by re-weighting the pixels belonging to the foreground [60]. Another optionis the Dice Similarity Coefficient (DSC), which only takes the predicted foreground and ground truthforeground into account. The DSC is calculated by eq. 5 [57], where TP is the number of true positivepredicted pixels, FP is the number of false positive predicted pixels and FN indicates the number offalse negative predicted pixels. This coefficient is ranging from 0 to 1 and should be maximized.
DSC =

2TP

FP + 2TP + FN
(5)

During the training process, the soft Dice loss function, eq. 6, should be minimized [51, 58]:
Ldice =

2
∑N

i=1 oili + ε∑N
i=1 oi +

∑N
i=1 li + ε

(6)

where the sums run over the N voxels, of the predicted output volume oi ∈ O and the ground truthvolume li ∈ L. oi is the probability between 0 and 1, and li = 0 when i is not in the ground truth and1 if i is. A smoothing factor ε is set to 1, to smooth the loss function and avoid zero division.
5.3.5 Dataset splitting

The ground truth labels were created by manual segmentation of the tongue specimen and tumorby a radiologist. These annotations were exported as labelmap, containing the labels 0, 1 and 2 forbackground, tumor and specimen, respectively. From the 44 included 3D US volumes the patientswere divided over datasets based on the amount of included 3D US volumes from the same patient,so the training dataset contained patient 2, 5, 8 and 9, the validation dataset contained patients 4 and6 and patients 3 and 7 functioned as the test dataset. The 3D volume structure of both the inputsand labels were split into 2D images and tagged with an ID, corresponding to the inputs and labels.Only 2D images presenting >300 pixels of ground truth specimen have been used, since images withless pixels contribute less to the training of the model. These images with less pixels were present atthe head and tail of the 3D US volume. The included 2D images were captured from the center ofthe 3D US volumes and accounted for 65-70% of the total number of slices within the datasets.The cascade strategy required two datasets for two UNet models. From the total dataset, datasetspecimen and dataset tumor were made, while maintaining the distribution of the patients intotraining, validation and test datasets. Figure 17 visualizes the process of creating the datasetsspecimen and tumor.In the first dataset, containing all the 2D images and labels presenting >300 pixels of groundtruth, the annotations were binarized, so 0 representing background and 1 representing specimenincluding tumor. In total, dataset specimen contained 12648 2D images divided into training (8233images, 65%), validation (2658 images, 21%) and test sets (1757 images, 14%).To create the dataset tumor, several pre-processing steps had to be performed. In case theoriginal 2D image and label in dataset specimen presented the annotation tumor, the minimum andmaximum x- and y-value of the specimen including tumor were found. The center of these values
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was computed and a fixed region of interest (ROI), corresponding to the input size of model tumor,was cropped from both the original input images and labels. Now, the annotations were binarizedagain, with 0 representing background including specimen and 1 representing tumor only. Finally,dataset tumor only contained cropped images and labels which present tumor annotation. In total,dataset tumor contained 5718 2D images divided into training (4284, 75%), validation (886, 15%)and test sets (548, 10%).

Figure 17. Schematic overview of creating datasets specimen and tumor.
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Figure 18. Examples of inputs and labels after augmentation from dataset specimen.

5.3.6 Data pre-processing and augmentation

Pre-processing of the data in both datasets, equal for input images and labels, was performed perbatch and consists of normalization and resizing into 1 slice x 256 pixels x 256 pixels x 1 channel.Data augmentation was randomly applied to generate additional diverse data and avoid overfittingby the following transformations: rotation (range: -30°, +30°), horizontal and vertical shift (range:-10, +10%), zooming (range: 70-130%), brightness shift (range: 50-100%) and horizontal and verticalflip. Figure 18 shows some examples of augmented data.
5.3.7 Evaluation

The quality of manual segmentation of the specimen and tumor as annotations by a radiologistwere evaluated by comparing the 3D volumes of the ground truth annotations for each patient.Since DSC is used as key evaluation metric within segmentation challenges, such as the BraTS(Brain Tumor Segmentation) challenge [59], the DSC was computed for each region to evaluate theperformance of both models.
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5.3.8 Experiments

To prove the effect of data augmentation on overfitting during the training of the models, in thefirst experiment both models specimen and tumor were trained with and without application of thedescribed data augmentation. The second experiment investigated the influence of the loss functionin both models specimen and tumor. The dice loss function is effective in alleviating class imbalance.The results of this loss function were compared with the results of the binary cross-entropy (BCE)loss function, common in binary classification problems, calculated as followed:
BCE = − 1

N

N∑
i=1

gi · log(ĝi) + (1− gi) · log(1− ĝi) (7)
with N the number of pixels, gi the ground truth label and ĝi the predicted output.For all experiments, the data were divided randomly into batches of 32 images. The models weretrained end-to-end for 50 epochs.

In the end, the final predictions of all slices were combined into a 3D volume. These volumeswere exported to 3DSlicer. Here, the distance between the tumor and specimen was computed in3D and visualized by a colormap ranging from 0 (red) to 5 mm (green), as shown in Fig. 15i.
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5.4 Results
In this section, the intraobserver variability in ground truth annotations and the achievements ofthe models is presented.From the nine patients who underwent oral surgery of the tongue, a total of 69 3D US volumeswere acquired from the specimens of which 44 volumes were included in this study. All 3D USvolumes from patient 1 have been excluded, since the specimen was not entirely observed in thefield of view of the 3D US.
Table VI shows the variability of 3D volumes of the ground truth annotations within each patient.What stands out in the table is the large standard deviation (SD) for specimen and tumor. For example,patient 3 has a SD of 39% and 72% of the average volume for specimen and tumor, respectively.

Table VI. The average volumes of the annotation within each patient.
# included 3D volumes Average volume specimen

in mm3 (SD)
Average volume tumor in
mm3 (SD)

Patient

1 excluded excluded excluded
2 5 18222 (±328) 766 (±316)
3 4 21513 (±8482) 121 (±87)
4 4 47104 (±902) 708 (±268)
5 7 30066 (±2506) 9075 (±2520)
6 6 19020 (±1495) 2017(±1084)
7 3 13729 (±469) 1290 (±163)
8 7 36485 (±1407) 2276 (±792)
9 8 12782 (±435) 1059 (±260)

The performance of both models specimen and tumor is shown in Table VII. Figure 19 shows aprediction compared to the corresponding annotated ground truth and the original US image fromthe best performing network combination. Predicting a test volume took approximately 12 seconds.
Table VII. The DSC of Model Specimen and Model Tumor. The bold values represent the highestDSC.

Model Specimen Model Tumor
Data Augmentation Data Augmentation

Loss True False Loss True FalseBinary Cross-entropy 86% 68% Binary Cross-entropy 9% 0%Dice coefficient 76% 77% Dice coefficient 18% 0%
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(a) Input image (b) Ground truth (c) Prediction
Figure 19. Comparison of the input image, ground truth and final prediction.

5.5 Discussion
The goal of this study was to show as a proof of concept that deep learning is a feasible techniquefor fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand USvolumes. The main findings of this study were: 1) the radiologist had difficulties with annotating theground truth in the 3D US volumes, 2) the BCE out-performed the Dice loss function in segmentationof the specimen but not the tumor in 3D US data, 3) data augmentation provided more accurateresults in segmenting the tumor. From these findings, one can infer that the current models’ accuracieswere not sufficient for implementation in clinical setting. Clinical implementation might be able oncethe models’ predictions significantly correlate to the histopathological findings, the gold standard,and the assessment by 3D US fits into the intra-operative workflow. Higher accuracy could beobtained by increasing the dataset, improving data acquisition, assisting the radiologist with accurateannotating based on histopathology slices, combining the models into one so it could be trained asone, although the individual impact is unknown. It is speculated that deep learning could performautomated 3D segmentation of tongue specimen and tumor in 3D US volumes if improvements werecarried out.
Comparing to previous studies, the findings of this study showed that the BCE loss achieved ahigher DSC than the Dice loss for larger areas, and vice versa for smaller regions, which confirms theresults of Wang et al. [57]. Applying data augmentation showed minimal effect on model specimenwhile the DSC largely improved on model tumor because of data augmentation. Zhu et al. had similarfindings of models with data augmentation which outperformed models without data augmentation,only in case of a minimal training data [51]. Besides confirmation of the impact of loss function anddata augmentation, this study was the first segmenting 3D US volumes of tongue resected specimensfor resection margin assessment by deep learning. To accomplish this, a complete intra-operativeworkflow from data acquisition to intuitive colormap visualization was set up. The colormap providedthe surgeon feedback about the obtained resection margins.
The first objective of this study was to gain insights in the variability in annotating ground truthin 3D US volumes by a radiologist. A small deviation between the annotated volumes of one patienthas been expected, since manual segmentation is hard to reproduce accurately. Surprisingly, the SDof volumes within one patient, shown in Table VI, ranges 1-39 %, 12-72 % of the average volume
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for specimen and tumor annotations, respectively. Low reproducibility of manual segmentationcould not cause such largely diverging annotated volumes. A possible explanation might be theintra-observer variability during US acquisition and reconstruction, resulting in large differencesbetween the acquired volumes of one patient. Another reason could be the low US frequency of 10MHz used during data acquisition. With a 10 MHz US transducer, the borders of small tumors, suchas 2 mm tumor thickness following the histopathology reports, were hard to detect by the radiologist.High frequency US transducers should provide more details when acquiring small parts such as theresected specimens from this study. Summarizing, the intra-observer variability during US acquisitionand additionally a low US transducer of 10 MHz were likely the reason of the high variability in theannotated volumes by a radiologist.
The second question in this research was to investigate the accuracy of deep learning in seg-mentation of tongue specimen and tumor in intra-operatively acquired 3D US volumes. The twoinvestigated variables which influence this accuracy were the loss functions and the application ofdata augmentation. The results from Table VII:Model specimen showed that the BCE loss functionprovided a better DSC over the Dice loss function when data augmentation was applied. It wasexpected that the data contained large class-imbalance between background and specimen includ-ing tumor. Previous studies stated that a Dice loss function is able to deal with class-imbalance[57], as this function does not take true negative predictions into account, whereas the BCE lossfunction does. However, BCE loss function achieved higher DSC so it can be concluded that theclass-imbalance between background and specimen including tumor was overestimated.Contrary, the BCE loss functions in model specimen resulted in lower DSC compared to the Diceloss function without applying data augmentation. During predictions of the seven test volumes frompatient 3 and 7, large differences in the predictions between the patients occurred. The deviations inannotated volumes within patient 3 were very hard to predict, which decrease the average predictionDSC of all 7 test volumes. When only the test volumes of patient 7 were predicted, the BCE lossfunction without application of data augmentation would have resulted in a average DSC of 79%.Focusing on model tumor, the results were as expected. The tumor was a small region comparedto the background including specimen, resulting in a class-imbalance by which the Dice loss shouldprovided the best DSC. And to take into account the large SD of the average volume of the tumorwithin patient 3, the average DSC would have been 43% when only the test volumes of patient 7were predicted.Applying data augmentation resulted in a minimal impact at the test DSC for both loss functionswhen predicting the specimen, as shown in Table VII. Data augmentation creates more diversedata so training the model while applying this technique should result in a more generalized model.An explanation could be that dataset specimen, containing 12648 images, was sufficient to train ageneralized model. The impact of data augmentation on model tumor was more evident. The onlydifference between the two datasets was the total amount of images, 12648 relative to 5718 imagesin dataset tumor. Concluding, application of data augmentation was effective in case the dataset didnot contain a sufficient amount of images.Another aspect to discuss is the 0% accuracy of model tumor for both loss functions whendata augmentation was not applied. This suggests that the 5718 2D US images in dataset tumorcontain deficient information to train the model in segmenting the tumor. However, applying dataaugmentation provided 9% and 18% accuracy suggesting that the effects of rotating, shifting, flipping,zooming and brightness adjustments makes the information in the 2D US images sufficient to predicttumor pixels correctly.Overall answering the second question, this study gave more insight in the impact of the lossfunction and data augmentation on the final model’s accuracy. However, due to a small group ofincluded patients, cross-validation has not been applied, since the datasets were too small to begeneralized. By applying cross-validation, totally different datasets would be created, resulting indifferent outcomes which could not be compared. Therefore, the chance remains that some resultswere exceptions.
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The final objective was to understand the feasibility of intra-operative multi-class segmentationpredictions by deep learning. In other words, what are the requirements to perform this techniqueintra-operatively and how long requires deep learning for a prediction? Once the models were trained,they could be transferred to any computer at the operating room with the required open-sourcesupporting software to run a prediction. Since all 3D US acquisitions had already been performedat the operating theater, no changes in materials were required to perform a prediction. The timerequired for predicting one test volume was approximately 12 seconds. With the additional steps ofcomputing the distances between specimen and tumor in order to create a clinical intuitive colormapto support the surgeon, a total of five minutes could be assumed. Since surgeons requested to providethe feedback within 30 minutes, deep learning could be a feasible technique for intra-operativemulti-class segmentation.
The findings contribute to the improvement of surgical resection of tongue squamous cell carci-noma (TSCC). Intra-operative assessment by 2D US was already possible, since Brouwer et al. provedthe significant relationship between the resection margins measured on 2D US and histopathologicalslice [22]. In this study, the assessment of resection margins was extended from 2D US images to 3DUS volumes, to ensure that the measured margin on US is the actual minimal margin. The correlationbetween the measured margins on 3D US and histopathological slices should be investigated again.If a significant relationship between the two modalities could be proved, intra-operative 3D USassessment based on fully automatic segmentation of the tumor should be implemented to reducethe recurrence rates and excision with resection margins <5mm. Therefore, further research focusingon the correlation between the measured resection margins on 3D US and histopathological slices isrecommended.
Pointing out several strengths of this study, the first one was that data acquisition was performedin an intra-operative clinical setting. Conclusions from this study were representative for findings afterclinical implementation. Secondly, annotating the ground truth in 3D was helpful for the radiologist.The information of subsequent slices provided additional insight in the orientation of the specimenand the location of the tumor. Also, investigating the influence of two loss functions on the finalprediction was a strong point in the method of this study. In advance, binary class-imbalance wastaken into account, so the Dice loss functions, effective in dealing with class-imbalance, could beinvestigated. Last but not least, adopting the state-of-the-art cascade strategy could be seen as astrong point to deal with the complex multi-class segmentation problem in this study. This strategyeasily deals with the class-imbalance between tumor and background including specimen by croppingthe input images. Also, more insights were provided about class specific segmentation difficulties.Now it is clear which segmentation problem requires more improvements.
On the other hand, this study was subject to some limitations. The major limitation of this studywas the small group of patients. The final results from this study were based on only two patients.Therefore, the findings could not be generalized. However, as a proof of concept, this researchprovided indications about the possibility that deep learning might be a feasible technique for fastautomatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.Additionally, the models would have been trained better when the datasets were extended. Also,more patients would facilitate the possibility to perform cross-validation. This will reduce the chanceof findings by coincidence.Besides the impact on training, the adopted UNet model could be converted from 2D to 3D.Then, inputs will be entire 3D US volumes instead of 2D images and therefore segmentation of thespecimen and tumor could be more accurate when information of subsequent slices will be included.Secondly, it was unfortunate that the annotations of the ground truth by the radiologist showeda large SD of the average volumes within a patient. This inconsistency did not contribute in trainingan accurate model. Because of the low frequency US transducer (10 MHz) some 3D US volumeslack details in case the tumor was very small. Simply introducing a high frequency US transducer
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would have provided these details and could help the radiologist annotating more correctly. Anotherreason for the large SD was the lack of feedback towards the radiologist about the accuracy ofannotations. The 3D US volumes of unknown tissue without specific anatomical landmarks impededthe radiologist to annotate with certainty. Taking a closer look at Fig. 19 a, it could be speculatedthat the model might be more accurate in segmenting the tumor than the actual ground truthannotation. Annotations based on the gold standard of histopathology slices could ensure moreaccuracy. This means that the entire specimen needs to be cut into slices with a known inter-slicedistance. Annotating the specimen and tumor in the histopathology slices and remodel these slicesinto a 3D histopathological model would provide gold standard information. Registration of the 3Dhistopathological model towards the 3D US model including the gold standard annotations couldsupport the radiologist in annotating with certainty.Finally, future research should focus on: 1) implementing a 3D UNet when more data is acquired,2) remodeling the histopathological slices into a 3D model and registering towards the 3D US models,3) improving the implementation of the cascade strategy. With a 3D UNet, the information ofsubsequent slices will be included which could help segmenting the specimen and tumor in the 3DUS volumes. Currently, the models were trained independently while the actual cascade strategy aspublished in previous literature connects the models so the output of model 1 will be propagatedforward into model 2 and both models will be optimized at once during training [57–59].

5.6 Conclusion
This study was set out as a proof of concept to show that deep learning is a feasible technique forfast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.The results of this investigation showed that two UNet models trained on 12648 and 5418 slices,respectively, from 44 3D US volumes could reach a DSC of 86% segmentation of the specimenand 18% DSC in segmenting the tumor. This implicates that fast automatic segmentation of tonguespecimen and tumor in 3D US volume by deep learning is a feasible technique for intra-operativeassessment of resection margins. This is the first study adopting state-of-the-art methodology, toassess resected tumors with 3D freehand US volumes and fast automatic segmentation of multipleregions from these 3D US volumes. In addition, a full intra-operative workflow was created fromdata acquisition to intuitive visualization of close resection margins using a colormap.
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6
The correlation between the resection

margin assessed by 3D US and
histopathology

6.1 Introduction
Complete surgical excision of TSCC has been very important, since close resection margins arerelated to poor prognosis in terms of local recurrence and 5 years of survival [5, 11, 19]. Opinionsabout the distance representing clear or closemargins are divided [13, 14]. However, in most literature<1 mm, 1-5 mm and >5 mm measured in histopathological slices are considered as positive, closeand clear resection margins, respectively [2, 9, 13, 15–17]. Unfortunately, histological assessmentis performed post-operatively [13], while intra-operative assessment of the resection margins intongue tumors is highly preferred [12, 15]. Several studies investigate techniques such as frozensection and intra-operative imaging modalities to meet this preference.Brouwer de Koning et al. prove that 2D US is a feasible intra-operative assessment techniqueand significantly correlates to histopathology [22]. Nonetheless, the chance remains that the actualclosest resection margin is missed as the 2D US is limited to an intersection view only. The previoussection 5 tried to prove the potential of intra-operative 3D US to assess resections margins, andso providing complete feedback about the entire specimen to the surgeon. However, very little iscurrently known about the correlation between the resection margins found by intra-operative 3DUS and histopathology. When correlation is proven, intra-operative 3D US could be implementedclinically and prevent potential close margins.Applying 3D US in other clinical cases, such as assessing the response of tumor angiogenesis inbreast cancer patients undergoing neoadjuvant chemotherapy, 3D US proved to be effective whencontrast was enhanced [61]. Also, Hashad et al. show that 3D US was able to accurately diagnoseadenomyosis in 59% of the patients [62]. To the best of our knowledge, the correlation betweenresection margins assessed by 3D US and histopathology has not been reported before.For this research, in nine patients the resection margins of TSCC were assessed intra-operativelyby 3D US and post-operatively by histopathology. The correlation between the measurements by 3DUS and histopathology was computed by the Pearson correlation coefficient. The aim of this study isto explore the correlation between resection margins assessed by 3D US and histopathology.
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6.2 Research question
What is the correlation between the resection margin in tongue tumor specimens assessed by 3D

ultrasound and histopathology?

6.3 Method
In this section, the subjects, study design, performed measurements and analysis are described.

6.3.1 Subjects

Nine patients who underwent surgical treatment at the Netherlands Cancer Institute were in-cluded. The group consisted of five men and four women. The average age was 72.5 years, rangingbetween 49 and 86 years. The tumor was located either at the tongue blade (six times right, 2 timesleft) or tongue base (left). Clinically the tumor stages, following the 8th edition of the AJCC CancerStaging Manual [10], were: T1 (one cases), T2 (five cases), T3 (two cases) and one case was a residueafter radiotherapy. The institutional research board of the Netherlands Cancer Institute provided fulllocal ethical approval to this study.
6.3.2 Methods of measurement

From each patient, the resected tongue specimen was acquired as 3D US volume between fiveand 12 times per patient. 3D US volumes were excluded in case the specimen exceeded the fieldof view or severe shaking of the US transducer occurred during acquisition. Data acquisition wasperformed as described in section 5.3.1.The specimen and tumor within the 3D US volumes were annotated by a radiologist in 3DSlicer.A 3D distance map between the specimen and tumor was computed, which visualizes the resectionmargins surrounding the tumor, as shown in Fig. 20a. A customized colormap from red to yellow wascreated to represent the resection margins between 0 and a user defined distance, respectively. Theareas at a distance equal to or larger than the user defined distance (e.g. 5 mm) were representedin green. For each 3D US volume, the user defined distance was adjusted until the specimen onthe resection plane turned yellow. Than, the corresponding distance was noted as closest resectionmargin, as shown in Fig 20b. Finally, the average resection margin within each patient was computed.The resected tissues were treated by a pathologist following standard protocol. First, the specimenwas inked followed by fixation in formalin for 24 hours. Slides of 4 mm were cut from the specimenbefore embedding those slides in paraffin. Finally, 4 um sections were cut from the 4 mm slides,stained with haemotoxylin-eosin dye (HE) and mounted on histopathological glass. The closestresection margin measured by the pathologist was extracted from the histopathological report.The correlation between the resection margins measured at the annotated ground truth in 3D USand the histopathological slices was determined by performing the Pearson correlation coefficient.Since only two patients were distributed as test group in chapter 5, a correlation between theresection margins measured at the deep learning predicted segments and histopathological sliceswas not calculated.
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(a) 3D colormap (b)Measuring a resection margin in an intersecting slide
Figure 20. a) 3D colormap representing the resection margins on the specimens surface. The 2D USimage is shown intersecting the specimen and tumor. b) A 2D US image with the distance colormapand the measured distance in mm.

Figure 21. The relationship between resection margin by histopathological slice and 3D ultrasound.The error bars represent the SD of the average resection margins by ultrasound of each patient. Thered dotted line represents a correlation of Y = x. There was no statistically significant correlationbetween the measurements (n=8). R = 0.518, Y = 0.5054x+ 2.8889
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Table VIII. Theminimal resection margins measured by different methods and the absolute differencesbetween those methods.
Case TNM stage Tumor location Average resec-

tion margin by
3D US in mm
(SD)

Resection
margin by
histopathology
in mm

Absolute
difference
between
3D US and
histopathology
in mm1 pT3pN3b Tongue bladeright excluded excluded excluded

2 pT2N1 Tongue bladeright 4.7 (±2.1) 8.0 3.3
3 pT1N0M0 Tongue bladeright 10 (±1.2) 10 0.3
4 Residue Tongue baseleft 4.6 (±1.7) 5.0 0.4
5 pT4aN2b Tongue bladeright 3.6 (±1.5) 3.0 0.6
6 pT2N0 Tongue bladeleft 5.0 (±2.6) 3.0 2.0
7 pT2N2c Tongue bladeright 2.9 (±0.7) 4.5 1.6
8 pT2N2b Tongue bladeleft 10 (±1.3) 5.1 4.9
9 pT1N0 Tongue bladeright 6.5 (±1.1) 10 3.5

Average 6.0 (±2.6) 6.1 (±2.7) 2.1 (±1.6)

6.4 Results
Table VIII shows the pathological TNM stages and tumor location of the included patients. Patient1 (man, clinical stage: T3) has been excluded since the specimen was not entirely observed in the fieldof view of the 3D US. The data analysis of all patients is shown in Table VIII. The mean differencebetween 3D US and histopathology was -0.1 mm (SD: 2.6 mm). Figure 21 shows the correlationbetween the measurements by 3D US and histopathology. The Pearson correlation coefficientshowed no statistically significant correlation between these measurements (R = 0.518, p = 0.187).
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6.5 Discussion
This study set out with the aim of exploring the correlation between resection margins assessedby 3D US and histopathology. The main finding of this study was that the measurements of resectionmargins by 3D US and histopathology do not correlate statistically significant. Inferring from thisfinding, 3D US could not provide correct intra-operative feedback to the surgeon. However, with asmall sample size (n=8), caution must be applied when interpreting this result. Also, certainty aboutmeasuring the resection margin by 3D US and histopathology at the same location could not beguaranteed. More insights about the measuring location could suggest that assessment of resectionmargins by 3D US and histopathology correlates.
Novel in the present study was the use of 3D US to assess the resection margin and calculatingits correlation with histopathology. Comparing the correlation between measurements by 2D US andhistopathology with other studies, Shintani et al. evaluated the lesion pre-operatively by measuringtumor thickness and found significant correlations between 2D US and histological sections [63].Others found a Pearson correlation between assessing tumor thickness in TSCC by 2D US andhistopathology of R = 0.80 [64]. The utility of 3D US was proved by Lunardelli da Silva et al., as thecorrelation between 3D US and histopathology in diagnosing endometriosis was 72.5% (n=40) [65].
The initial objective of this study was to identify the correlation between the resection marginsassessed by 3D US and histopathology in tongue tumor specimens. There were three likely causesfor the statistically not significant correlation. First, the result has been expected since it is probablyrelated to the small sample size (n=8).Secondly, this finding may be explained by the large SD of the average resection margin by 3DUS. These large SD were probably the outcome of the manual annotation by the radiologist. Section5 shows large SD in the average volume of the annotations by the radiologist. Since the resectionmargins by 3D US were assessed based on the same annotations, a large SD of the average resectionmargin by 3D US has been expected.Finally, it is uncertain that the resection margins assessed by 3D US and histopathology were mea-sured at the same location. The current data did not provide the location of measuring the resectionmargin by histopathology. Therefore, the absolute differences between 3D US and histopathologycould be correct and accurate. By providing the location of the resection margin by histopathologyadditionally, recalculating the correlation could result in statistically significant. Reconstruction ofthe histopathological sections into a 3D model could provided this information.Additionally, the inter-observer variability among histopathologists has to be taken into account[66, 67]. In the current method, a single histopathologist assessed the resection margins. Because ofthis degree of variability, a certain difference between measured resection margins by 3D US andhistopathology was expected. Correctly assessing the resection margin by histopathology shouldtherefore by performed repetitively by a single or multiple operator(s) followed by computation ofthe degree of agreement among assessments.Answering the research question, the correlation between assessing the resection margin intongue tumor specimens by 3D US and histopathology was not statistically significant.
The findings of this study contribute to the improvement of surgical excision of TSCC by pro-viding feedback to the surgeon about the obtained resection margins. Unfortunately, there wasno statistically significant correlation between measurement of the resection margin by 3D USand histopathology. However, the correlation between measurement of the resection margin by3D US and histopathology should be calculated again, after improving the 3D US data acquisition,reconstructing histopathological section into 3D models and obtaining a large patient group. It isspeculated that the correlation between the resection margins by 3D US and histopathology could be
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statistically significant as 2D US is [22]. For now, physicians can already be provided of intra-operativefeedback by assessing the resection margin in 2D US.
Addressing strong points and limitations, the strength of this study was the set up which providessimple implementation of new data. Recalculating the correlation would be easy when sufficient datais available.This research was limited by the small sample size, the large SD of the average resection marginby 3D US which was already mentioned in section 5.5 and the absence of the location measuringthe resection margin by histopathology. Possible reduction of these limitations is already mentionedabove or in section 5.5.

6.6 Conclusion
The purpose of the current study was to determine the correlation between resection marginsmeasured by 3D US and histopathology in tongue tumor specimens. The result of this research showthat assessment of the resection margin in tongue tumor specimens by 3D US and histopathologydo not correlate statistically significant. This study should be repeated using more included patients,accurate and consistent annotations in 3D US and the location of the measured resection margin ofboth 3D US and histopathology. Then, in case correlation is statistically significant, this techniquecould be implemented to assess the resection margin intra-operatively which helps us reaching thegoal of minimizing the resection margins <5 mm.
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General Conclusion

In 2018, the prevalence of tongue cancer was 2069 in the Netherlands [1]. Surgical treatment ismostly common, however in 85% of the cases the obtained resection margin is below the minimumof 5 mm [17, 47]. Currently, post-operative histopathological assessment is the only way to confirmthe resection margin. A tool to assess the resection margin intra-operatively and provide feedbackto the surgeon is highly preferred. Previously, investigation showed that 2D US was successful andrecommended extension to 3D US since only a single plane can be observed [22]. An invasive growthpattern of the tumor could result in involved margins elsewhere other than the observed plane. Thisthesis describes three consecutive studies which attempted to solve the clinical problem and createan intra-operative tool to assess resection margins of tongue squamous cell carcinomas based on 3DUS.
To reach this goal, the first section aimed to experimentally substantiate the preferred conditionsto acquire accurate 3D US reconstructions of resected tongue tumor specimens. The results showedthat accurate 3D reconstruction of resected tongue tumor specimens could be accomplished by anacquisition using a single sweep method assisted by rails, applying the highest US frequency possibleand performed by one operator. Unexpectedly, a preferred reconstruction algorithm could not befound.Secondly, the goal was to show as a proof of concept that deep learning is a feasible techniquefor fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand USvolumes. This study implicates that fast automatic segmentation of tongue specimen and tumor in3D US volume by deep learning is a feasible technique for intra-operative assessment of resectionmargins, based on a DSC of 86% and 43% DSC in segmenting the specimen and tumor, respectively.Additionally, a full intra-operative workflowwas created from data acquisition to intuitive visualizationof close resection margins using a colormap.The goal of the final study was to determine the correlation between resection margins in tonguetumor specimens assessed by 3D US and histopathology. Unfortunately, this study found thatassessment of resection margins in tongue tumor specimens by 3D US and histopathology do notcorrelate statistically significant.
The overall project resulted in a clinical relevancy that for now, physicians can already be providedof intra-operative feedback by assessing the resection margin in 2D US besides the physical exami-nation. The resection margins of the entire specimen could be determined by manual segmentationif the additional time and possible variabilities are taken into account.
Future research should focus on the improvement of data acquisition, by utilizing a high frequencyUS transducer and stabilization rails, and remodeling the histopathological slices into a 3D modeland registering towards the 3D US models. This would probably result in more accurate annotationsby the radiologist. It is expected, as a consequence, that the deep learning models will become more
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Chapter 7 General Conclusion

accurate in predicting specimen and tumor in the 3D US volumes. Eventually, it is speculated thatrecalculating the correlation between the resection margin in tongue tumor specimens by 3D USand histopathology could be statistically significant. Additionally, research should focus on adequateorientation of involved margins to the in-situ resection field. This would be as response to act uponthe found involved margins and perform a secondary resection to rectify and prevent local recurrence.
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8
Appendix A

Table IX. Lip, oral cavity, and non-HPV oropharynx stages following the 8th edition of the AJCCCancer Staging Manual [68]
AJCC stage Stage grouping Lip, oral cavity and non-HPV oropharynx stage description*

0 TisN0M0

The cancer is still within the epithelium (the top layer of cellslining the oral cavity and oropharynx) and has not yet growninto deeper layers.
It has not spread to nearby lymph nodes (N0) or distant sites(M0). This stage is also known as carcinoma in situ (Tis).

I T1N0M0 The cancer is 2 cm (about ¾ inch) or smaller. It’s not growing intonearby tissues (T1). It has not spread to nearby lymph nodes (N0)or to distant sites (M0).
II T2N0M0 The cancer is larger than 2 cm but no larger than 4 cm (about 1½inch). It’s not growing into nearby tissues (T2). It has not spreadto nearby lymph nodes (N0) or to distant sites (M0).

III
T3N0M0 The cancer is larger than 4 cm (T3). For cancers of the oropharynx,T3 also includes tumors that are growing into the epiglottis (thebase of the tongue). It has not spread to nearby lymph nodes(N0) or to distant sites (M0).OR
T1, T2, T3N1M0

The cancer is any size and may have grown into nearby structuresif oropharynx cancer(T1-T3) AND has spread to 1 lymph node onthe same side as the primary tumor. The cancer has not grownoutside of the lymph node and the lymph node is no larger than3 cm (about 1¼ inch) (N1). It has not spread to distant sites (M0).
To be continued on the next page...
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AJCC stage Stage grouping Lip, oral cavity and non-HPV oropharynx stage description*

IVa
T4aN0 or N1M0

The cancer is any size and is growing into nearby structures suchas:For lip cancers: nearby bone, the inferior alveolar nerve (thenerve to the jawbone), the floor of the mouth, or the skin of thechin or nose (T4a)For oral cavity cancers: the bones of the jaw orface, deep muscle of the tongue, skin of the face, or the maxillarysinus (T4a)For oropharyngeal cancers: the larynx (voice box), thetongue muscle, or bones such as the medial pterygoid, the hardpalate, or the jaw (T4a).This is known as moderately advancedlocal disease (T4a).,AND either of the following:It has not spreadto nearby lymph nodes (N0)It has spread to 1 lymph node onthe same side as the primary tumor, but has not grown outsideof the lymph node and the lymph node is no larger than 3 cm(about 1¼ inch) (N1).It has not spread to distant sites (M0).OR
T1, T2, T3or T4aN2M0

The cancer is any size and may have grown into nearby structures(T0-T4a). It has not spread to distant organs (M0). It has spreadto one of the following:1 lymph node on the same side as theprimary tumor, but it has not grown outside of the lymph nodeand the lymph node is larger than 3 cm but not larger than 6 cm(about 2½ inches) (N2a) OR It has spread to more than 1 lymphnode on the same side as the primary tumor, but it has not grownoutside of any of the lymph nodes and none are larger than 6 cm(N2b) OR It has spread to 1 or more lymph nodes either on theopposite side of the primary tumor or on both sides of the neck,but has not grown outside any of the lymph nodes and none arelarger than 6 cm (N2c).
To be continued on the next page...
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AJCC stage Stage grouping Lip, oral cavity and non-HPV oropharynx stage description*

IVb
Any TN3M0

The cancer is any size and may have grown into nearby softtissues or structures (Any T) AND any of the following:It hasspread to 1 lymph node that’s larger than 6 cm but has not grownoutside of the lymph node (N3a) OR It has spread to 1 lymphnode that’s larger than 3 cm and has clearly grown outside thelymph node (N3b) OR It has spread to more than 1 lymph nodeon the same side, the opposite side, or both sides of the primarycancer with growth outside of the lymph node(s) (N3b) OR Ithas spread to 1 lymph node on the opposite side of the primarycancer that’s 3 cm or smaller and has grown outside of the lymphnode (N3b). It has not spread to distant organs (M0).OR
T4bAny NM0

The cancer is any size and is growing into nearby structures suchas the base of the skull or other bones nearby, or it surroundsthe carotid artery. This is known as very advanced local disease(T4b). It might or might not have spread to nearby lymph nodes(Any N). It has not spread to distant organs (M0).
IVc Any TAny NM1

The cancer is any size and may have grown into nearby softtissues or structures (Any T) AND it might or might not havespread to nearby lymph nodes (Any N). It has spread to distantsites such as the lungs (M1).* The following additional categories are not described in the table above:TX: Main tumor cannot be assessed due to lack of information.T0: No evidence of a primary tumor.NX: Regional lymph nodes cannot be assessed due to lack of information.
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Appendix B

Table X. The SNR and CNR for each acquisition method of the five reconstruction algorithms. Thenumbers in bold represent the highest value within each reconstruction algorithm. Results of experi-ment two.
Reconstruction algorithm Acquisition method SNR CNR

PNN Single, 10 sec. 22.4 979Single, 3 sec. 25.8 1307Double, 6 sec. 14.2 398Triple, 9 sec. 4.7 43.7
VNN Single, 10 sec. 19.2 722Single, 3 sec. 22.8 1008Double, 6 sec. 13.3 345Triple, 9 sec. 4.9 46.8
VNN2 Single, 10 sec. 20.1 794Single, 3 sec. 28.4 1540Double, 6 sec. 20.9 865Triple, 9 sec. 9.2 166
DW Single, 10 sec. 22.0 952Single, 3 sec. 28.0 1502Double, 6 sec. 22.3 986Triple, 9 sec. 8.8 152

Anisotropic Single, 10 sec. 27.9 1416Single, 3 sec. 34.5 2167Double, 6 sec. 34.5 2351Triple, 9 sec. 19.3 737
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Table XI. The measured dimensions of the spherical structure in the phantom for each reconstructionalgorithm of three acquisition methods. The distance error compared to the CT is expressed aspercentage. Estimated dimensions are highlighted in red. AP = Anterior-Posterior, RL = Right - Left,IS = Inferior - Superior.
Direction AP mm (%) RL mm (%) IS mm (%)
CT 37 43 34

Acquisition method Reconstruction method

Single, 10 sec.
PNN 35 (5.4) 38 (11.6) 40 (17.6)VNN 35 (5.4) 40 (7.0) 32 (5.8)VNN2 35 (5.4) 39 (9.3) 31 (8.8)DW 35 (5.4) 37 (14.0) 32 (5.8)Anisotropic 36 (2.7) 44 (2.3) 31 (8.8)

Single, 3 sec.
PNN 35 (5.4) 40 (7.0) 32 (5.8)VNN 36 (2.7) 41 (4.6) 32 (5.8)VNN2 35 (5.4) 43 (0) 32 (5.8)DW 36 (2.7) 42 (2.3) 31 (8.8)Anisotropic 36 (2.7) 44 (2.3) 31 (8.8)

Double, 6 sec.
PNN 36 (2.7) 36 (16.3) 32 (5.8)VNN 36 (2.7) 36 (16.3) 31 (8.8)VNN2 36 (2.7) 40 (7.0) 31 (8.8)DW 36 (2.7) 36 (16.3) 31 (8.8)Anisotropic 36 (2.7) 42 (2.3) 31 (8.8)

Triple, 9 sec.
PNN 36 (2.7) 42 (2.3) 31 (8.8)VNN 35 (5.4) 43 (0) 32 (5.8)VNN2 36 (2.7) 45 (4.6) 32 (5.8)DW 35 (5.4) 46 (7.0) 32 (5.8)Anisotropic 35 (5.4) 44 (2.3) 32 (5.8)
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Figure 22. The derivatives of the pixel intensity along a scan line at the transition from phantomto the spherical structure in four 3D US volumes with different acquisition methods. From top tobottom the 3D US volumes were reconstructed, respectively by the VNN, VNN2, DW and anisotropicalgorithm.
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10
Appendix C

Figure 23. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3DUS volumes were reconstructed by the VNN algorithm. The FWHM of the maximum peak is plottedat the top of the peak.
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Figure 24. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in four US 3D volumes with different acquisition methods. All3D US volumes were reconstructed by the VNN2 algorithm. The FWHM of the maximum peak isplotted at the top of the peak.
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Figure 25. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3DUS volumes were reconstructed by the DW algorithm. The FWHM of the maximum peak is plottedat the top of the peak.
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Figure 26. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition fromphantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3DUS volumes were reconstructed by the anisotropic algorithm. The FWHM of the maximum peak isplotted at the top of the peak.
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