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Abstract

Surgical excision is the most common treatment for tongue squamous cell carcinomas (TSCC).
Surgeons aim to remove the tumor with a minimal resection margin of 5 mm to reduce the chance
of recurrence. Currently, there is no intra-operative assessment available to determine if a 5 mm
resection margin is achieved. To improve the surgical precision of TSCC resections, this research
aims to provide surgical guidance during resections of TSCC using three-dimensional (3D) ultrasound
(US) to minimize close resection margins. This research was divided into three parts which together
investigated the feasibility of 3D US for intraoperative assessment of surgical resection margins of
tongue squamous cell carcinomas.

The first part of this research provides a better understanding of data acquisition and reconstruc-
tion of 3D US. In a phantom study, the influence of the 1) reconstruction algorithm, 2) sweeping
method, 3) US transducer frequency, 4) stabilization rails and 5) observer was investigated. The
accuracy of the 3D US volumes was evaluated by the signal-to-noise ratio (SNR), contrast-to-noise
ratio (CNR), derivative along a scan line and the Full Width at Half Maximum (FWHM) of the peak of
the derivative of the pixel intensity. The results show that data acquisition was performed best using
the highest US frequency possible, a single sweep method assisted by rails and performed by a single
operator. This study could not identify a reconstruction algorithm performing better than others.

The second part of this research investigated as a proof of concept that deep learning is a feasible
technique for fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand
US volumes. The multi-class segmentation of tongue specimen and tumor was split into two binary
segmentation problems by adopting the cascade strategy. Two identical UNet models were trained
upon their own dataset (from a total dataset of 44 3D US volumes of 8 patients) and the influence
of the loss function (Dice and binary cross-entropy (BCE)) and data augmentation was investigated.
Evaluation based on the Dice similarity coefficient (DSC), showed 86% DSC (BCE loss with data
augmentation applied) predicting the specimen and 18% DSC (Dice loss and data augmentation
applied) predicting the tumor.

The third part of this research explored the correlation between resection margins assessed by 3D
US and histopathology. This study included 8 patients of which the resection margins of TSCC were
assessed intra-operatively by 3D US and post-operatively by histopathology. The correlation between
the measurements by 3D US and histopathology was computed by the Pearson correlation coefficient.
The results showed that the measurements of resection margins by 3D US and histopathology do
not correlate statistically significant, meaning that 3D US could not provide correct intra-operative
feedback to the surgeon.

Future research should focus on expanding the dataset and improving the data acquisition, by
utilizing a high frequency US transducer and stabilization rails. In addition, remodeling of histopatho-
logical slices into 3D models and registering those 3D models towards the 3D US models could help
the radiologist annotating more accurately. Also, research should investigate which hyperparameters
in the deep learning models perform superior to obtain maximum DSC in predicting the specimen and
tumor in 3D US volumes. Eventually after all these improvements, it is speculated that recalculating
the correlation between the resection margins measured by 3D US and histopathology in tongue
tumor specimens could be statistically significant.
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General Introduction

In the Netherlands, the prevalence of tongue cancer was 2069 in 2018, and the incidence is 300
to 400 [1]. Tongue cancer is part of the larger subject oral cavity cancer. The dominant cancer of
the oral cavity is squamous cell carcinoma (OSCC) and frequently associated with risk factors such
as chronic smoking, alcohol use, the presence of human papilloma virus (HPV) [2-5] and sunlight
exposure [6]. OSCC is frequently diagnosed in patients aged between 55 and 65 years old for men,
and 50 and 75 years old for women [4, 7]. OSCC is treated by surgery, chemo- or radiotherapy or a
combination of those. However, these treatments cause damage to the tongue and have negative
effects on speech, swallowing and mastication [3, 8] and interferes with cosmetic appearance [4].
Complications can be minimized by prosthetic rehabilitation [9]. After treatment, patients should be
encouraged to stop smoking and drinking alcohol as those are high risk factors for OSCC [4].

OSCC is mostly detected through physical examination by dental and general practitioners.
Routine biopsy of precancerous lesions such as leukoplakia, erythroplakia and chronic traumatic
ulcers, is performed to diagnose OSCC [6]. Additional endoscopy of the upper pulmonary tract is
necessary, since oral cancer has a high risk in developing metastasis in the head and neck region
and lungs. The severity of the disease is categorized following the Tumor, Nodes, Metastasis (TNM)
staging system [6, 8, 9] of which the 8th edition of the AJCC Cancer Staging Manual is the most
recent update, as shown in Table | and Il [10].

Once OSCC is diagnosed, the best treatment will be discussed and planned by a multidisciplinary
team. A preoperative planning is based on physical examination, computed tomography (CT) ,
magnetic resonance imaging (MRI) and ultrasonography (US) , which enable accurate evaluation of
local spread, invasion of surrounding tissues and lymph node involvement [9, 11]. The shape and
growth pattern of tongue cancer vary among patients [3]. Also, the feasibility of tumor-free resection
margins and the postoperative quality of life are discussed by the multidisciplinary team.

Treatment of OSCC is based on patient’s individual circumstances and TNM cancer staging. For
resectable tumors (Tis/T1/T2), partial glossectomy is the most common treatment, if the general
condition of the patient is sufficient [12]. More advanced tumors (T3/T4), with vessel and per-
ineural invasion and lymph node involvement require additional postoperative radiotherapy and/or
chemotherapy [6, 9]. Additional postoperative therapy is advised as well in case of positive or close
resection margins, since increased chance of disease recurrence and poorer survival are known
consequences of inadequate removal of the tumor [13].

Sutton et al. and Alicandri-Ciuflli et al. state that there is no consistency about the distance of a
clear resection margin [13, 14]. Most literature considers >5 mm between invasive carcinoma and the
surgical margin as a safe margin, 1-5 mm as close and less than 1 mm is a positive or involved resection
margin [2, 9, 13, 15, 16]. These distances are substantiated by The Royal College of Pathologists [17].
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After treatment, patients will be followed up frequently since any recurrences or second malig-
nancies could occur. Wang et al. show that the recurrence rate of OSCC is 32,7% [18]. Additionally,
another study shows that the 5 year survival rate is significantly higher in OSCC patients without
recurrence (about 80-90%) than patients with recurrences (about 30%) and the overall survival rate
is 60% [5]. Other important prognostic factors are tumor size, lymph node involvement [4, 6, 9] and
the status of resection margin[13, 19]. Since none of the factors can influence the prognosis of OSCC
alone, all prognostic factors should be taken into consideration when determining the prognosis of a
patient [5].

The survival rates of early detected tumors (T1/T2) is >70% , which is higher than the survival
rates for late discovered tumor (<43%) [2]. Also, Nobrega et al. found that patients with tumors at
stages T1 and T2 and absence of lymph node involvement at initial diagnosis have a higher survival
rate [4]. A review of Jadhav et al. show that a disease-free period of three years was higher in
patients with a tumor diameter <2 cm (84%) compared to patients with tumor diameters >2 cm (52%).
Besides the diameter, an invasion depth of >5 mm corresponds to more cervical metastasis (64,7%)
than tumors with a depth of invasion <5 mm (5,9%). This can be explained by the fact that lymphatic
channels are present in deeper tissue and function as a pathway for cervical metastasis [5].

The involvement of lymph nodes is strongly correlated with metastasis, a lower survival rate and
an increased risk of local recurrences. Especially, it is found that the macroscopic extension of the
extracapsular spread of the lymph node is 1.5 times more likely to develop local recurrences than
patients with microscopic extension [5]. In a study of Mourad et al. tumor thickness and invasion
depth, assessed pre-operatively by MRI, seem to be important prognostic factors of metastasis in
cervical lymph nodes [3].

Sutton et al. show that a narrow resection margin is related to poorer prognosis in terms of
disease recurrence and survival [11, 19] in spite of radiotherapy to the primary site [13]. In addition,
Jadhav et al. show a 5 year survival rate of 69% in patients with clear margins compared to 38% with
involved margins [5]. On the other hand, a study of Weijers et al., excluding patients with positive
margins as well as patients with epithelial dysplasia in the mucosal resection margins, found no
significant difference in the development of local recurrence within patients of which the specimen
contained tumor cells at <5 mm from the deep surgical margin compared to specimens containing
tumor cells at >5 mm [19].

Table I. T Category for oral cancer in the 8th edition of the AJCC TNM staging system [10]

T Category T Criteria

TX Primary tumor cannot be assessed

Tis Carcinoma in situ

T1 Tumor 2 cm, 5 mm depth of invasion (DOI) (DOl is depth of invasion and not tumor
thickness)

T2 Tumor 2 cm, DOI >5 mm and 10 mm or tumor >2 cm but 4 cm, and 10 mm DOI

T3 Tumor >4 cm or any tumor >10 mm DOI

T4 Moderately advanced or very advanced local disease

T4a Moderately advanced local disease: (lip) tumor invades through cortical bone or

involves the inferior alveolar nerve, floor of mouth, or skin of face (ie, chin or nose);
(oral cavity) tumor invades adjacent structures only (eg, through cortical bone of
the mandible or maxilla, or involves the maxillary sinus or skin of the face); note
that superficial erosion of bone/tooth socket (alone) by a gingival primary is not
sufficient to classify a tumor as T4

T4b Very advanced local disease; tumor invades masticator space, pterygoid plates, or
skull base and/or encases the internal carotid artery
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Table Il. N Category for pathologic regional lymph nodes (pN) in the 8th edition of the AJCC TNM
staging system [10]. ENE = extranodal extension.

N Category N Criteria

NX Regional lymph nodes cannot be assessed

Nis No regional lymph node metastasis

N1 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension and
ENE-negative

N2 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension and

ENE-positive; or more than 3 cm but not more than 6 cm in greatest dimension and
ENE-negative; or metastases in multiple ipsilateral lymph nodes,none more than 6
cm in greatest dimension and ENE-negative; or metastasis in bilateral or contralat-
eral lymph nodes,none more than 6 cm in greatest dimension, ENE-negative

N2a Metastasis in a single ipsilateral or contralateral lymph node 3 cm or less in greatest
dimension and ENE-positive; or metastasis in a single ipsilateral lymph node more
than 3 cm but not more than 6 cm in greatest dimension and ENE-negative

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest
dimension and ENE-negative

N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest
dimension and ENE-negative

N3 Metastasis in a lymph node more than 6 cm in greatest dimension and ENE-negative;

or metastasis in a single ipsilateral lymph node more than 3 cm in greatest dimension
and ENE-positive; or metastasis in multiple ipsilateral, contralateral,or bilateral
lymph nodes, with any ENE-positive
N3a Metastasis in a lymph node more than 6 cm in greatest dimension and ENE-negative
N3b Metastasis in a single ipsilateral node more than 3 cm in greatest dimension and
ENE-positive; or metastasis in multiple ipsilateral, contralateral, or bilateral lymph
nodes, with any ENE-positive

1.1 Problem Statement

Surgeons aim to remove the tongue tumor with a minimal resection margin of 5 mm, while
preserving vital structures in the oral cavity [11, 19]. However, in the current clinical setting there
is no intra-operative feedback providing any assessment of the resection margins [12]. Currently,
these resection margins can only be confirmed post-operatively by histopathological assessment
[13]. Therefore, real-time assessment of resection margins of tongue tumors is highly preferred to
improve accurate resections [12, 15]. It is thought that this will decrease the functional disability
of the tongue, as well as the need for secondary postoperative chemotherapy, radiotherapy and/or
surgery. When developing such a real-time assessment tool, it is important to take into account
the difference in margins during surgery and pathological assessment. It is known that the margin
assessed pathologically is less than the margin aimed for during surgical resection because of tissue
shrinkage caused by fixation, pathological processing [12, 13, 19] and intrinsic muscle contraction
[20].

Miyawaki et al. studied intra-operative frozen section histological analysis of the resection margins
of resected OSCC specimens [11]. Mentioned advantages of this technique are 1) readily anatomical
orientation, 2) direct macroscopically observing the resection margin in cross-sectional plane, 3)
possibility of reliable sampling and 4) reflecting the in-situ position from the specimen when resection
margin is close or involved [11]. However, this method only assesses the resection margin in one
plane of the specimen. An aggressive growth and invasion pattern of the tumor could result in
positive margins elsewhere other than the cross-sectional plane. Secondly, a pathologist is required,
at the operating theater, to perform the frozen section analysis, which is not feasible in most hospitals.

4
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Additionally, frozen sections may suffer from sample errors [12].

Other studies evaluated the specimens using MRI. Since high soft tissue capability and definement
of true extent, loco-regional involvement and tumor depth, MRI had been frequently used to assess
carcinomas of the tongue [3]. Most studies specifically aimed at evaluation of resection margins
and invasion depth used 1.5T MRI. Steens et al. tried to improve this and aimed to evaluate the
feasibility and validity of ex-vivo 7T MR for evaluation of resection margins in tongue squamous
cell carcinoma’s (TSCC). He states that in tumors larger than >3 mm they expect to predict whether
the resection margin is too small. However, the total time of preparation and MR examination was
too long for clinical application. They implied to compare the MR with US, as it provides promising
results about the analysis of resection margins of TSCC [12].

Brouwer de Koning et al. studied the correlation between MRI and US measurements of the
greatest dimension and tumor thickness of OSCC. As a result, measuring the tumor thickness using
US is more accurately for pre-operative tumor staging [21]. This technique is more applicable in the
operating theater if implemented for assessment of resection margins. And compared to the MR
study of Steens et al., US provides sufficient resolution for tissue determination in less scanning time
[12]. Therefore, US seems to be a feasible technique to assess resection margins intra-operatively.

A different study of Brouwer de Koning et al., shows that US is feasible for intra-operative
assessment of deep resection margins of TSCC. Advantages of US are 1) easy to implement in surgical
workflow, 2) no specific training of the operator, 3) not time-consuming, 4) available in almost every
operating complex and 5) not expensive [22]. However, scans of the specimens by US were made
in only 2 axis. Only those slices could be examined and compared to histopathological analysis.
Therefore, as recommended, three-dimensional (3D) scanning of the whole tumor volume by US
would provide information about the deep resection margins in all slices surrounding the tongue
tumor. A second recommendation is to create an operator independent setup. This setup will be
more reproducible and ease the proceedings of the surgeon. Finally, advise is given to solve the
orientation of the resected specimen to the resection field before implementing this technique [22].
This challenging problem of orientation of the specimen to the resection field is noticed by Hinni et
al. as well [23].

1.1.1 Aim of the study

This study is part of a larger project focusing on the overall improvement of surgical precision
of the TSCC resections. This involves pre-operative planning by different imaging modalities and
intraoperative surgical guidance. This research can be seen as successor of Brouwer de Koning and
will aims to provide surgical guidance during resections of TSCC using 3D US to minimize involved
resection margins and preserve maximum functionality of the tongue.

The first objective of this research is to determine how to create a 3D model of a resected tongue
specimen from US images. This objective includes the reconstruction method and variables which
come across during the study. Secondly, the objective is to segment specimen and tumor from the 3D
US volume fast and automatically. Based on these segments, the resection margin could be computed
for the entire specimen. The final objective is to determine whether the computed resection margin
in 3D US correlates to histopathology.



Background

2.1 Clinical Background

The tongue is located in the center of the oral cavity and partially within the oropharynx [24].
The tongue enables taste of food [25] and plays a critical role in speech, swallowing and breathing
[24, 26-29].

It consists of three parts: the base, body and blade, of which the base is attached to the mandible
and hyoid bone. The sulcus terminalis divides the tongue in an oral (anterior) and pharyngeal (posterior)
part or the base, in which the tongue can easily be explained. At the end of this pharyngeal part
is located the vallecula, which is the transition of smooth mucosa between the tongue base to the
epiglottis [24]. The body of the tongue extents from the sulcus terminalis to the frenulum linguae.
The part anterior of the frenulum linguae is the blade [29]. The tongue has two symmetrical muscular
halves separated by the fibrofatty lingual septum, except for the blade [24].

Epiglottis

Palatopharyngeal arch Vallecula

Palatine tonsil Foramen cecum

Ligual tonsil Terminal sulcus

Circumvallate

Palatoglossal arch papillae

Foliate papillae

Filiform papillae ~—— Fungiform papillae

Medial sulcus

Apex

Figure 1. The major anatomical structures related to the tongue.

There are four types of papillae on the tongue, as shown in Fig. 1, of which three (fungiform,
circumvallate and foliate) contain taste buds, which enable taste, while filiform papillae plays a role in
eating, controlling the food [30] and providing information about temperature, texture and pain. The
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filiform papillae is the most presented of all four papillae and only located at the oral (anterior) part
of the tongue [25].

The taste buds in the papillae can distinguish five tastes of sweet, sour, salt, bitter and umami
depending on 3 types of receptor cells [25]. Once a receptor cells in a papillae is activated, the sensory
information will be transfered via innervation of three central nerves (CN). The filiform papillae are
located at the oral part of the tongue and transfers signals through lingual branch of the trigeminal
nerve (CN-V). The fungiform papillae, also at the oral part of the tongue, is innervated by chorda
tympani branch of the facial nerve (CN-VII) [24, 25, 31]. The circumvillate and foliate papillae at the
pharyngeal part sends information via the glossopharyngeal nerve (CN-I1X) [25, 31].

Since the tongue derives during embryonic development from both ectoderm and endoderm
linings, similar to the skin and gastrointestinal tract, the tongue contains a stratified squamous
epithilium, as well as a moist mucosa like the gastrointestinal tract [30]. The embryonic origin of
the oral tongue is from the first pharyngeal arch, ectoderm, while the pharyngeal tongue has an
endodermal embryonic development originating from the third and fourth pharyngeal arch. The third
pharyngeal arch ends up as the pharyngeal tongue, and the fourth pharyngeal arch provides the
vallecula. Because of the different embryonic development, the vallecula is separately innervated by
the internal laryngeal nerve [24].

The tongue exists of multiple muscles surrounded by mucous membrane [24]. Several studies
state that the tongue is muscular hydrostat, which means that the biomechanics of the tongue are
more similar to hydraulic systems relative to mechanical levers known for skeletal muscles [26-29].
Those muscular hydrostat structures change shape and position by deforming local regions [26] and
maintain constant volume [28].

The muscles of the tongue can be divided in extrinsic muscles, which are one-sided attached
to a bone and insert within the tongue, and intrinsic muscles, which has the origin and insertion
in the tongue without any attachment to a bone [24, 28, 29]. Generally, the extrinsic muscles 1)
genioglossus, 2) hyoglossus, 3) styloglossus and 4) palatoglossus are responsible for the position
and movement of the tongue while the intrinsic muscles 1) superior and 2) inferior longitudinals, 3)
vertical and 4) transverse bands alter the shape of the tongue [24, 27-29].

During movement and shaping of the tongue, the detailed contribution of each individual muscles
as agonist, antagonist or stabilizer is unknown [29]. All muscles of the tongue are motor innervated
by the hypoglossal nerve (CN-XII) [24, 31, 32], which is subdivided into lateral and medial branches
[27]. The lateral-hypoglossal nerve supplies the extrinsic styloglossus and hyoglossus muscles
together with the intrinsic superior and inferior longitudinal muscles [27]. The rest of the intrinsic
muscles (transverse and vertical) with addition of the genioglossus muscle are innervated by the
medial-hyoglossal nerve. The palatoglossus is more essentially an palate muscle innervated by the
pharyngeal plexus and forms therefore the only exception of all muscles [24].

Lymph drains from the base of the tongue to bilateral nodes in the neck and from the blade
to submental nodes. A third of the drainage of the oral tongue is ipsilateral to submandibular and
jugulodigastric nodes while the rest has lymph vessels to bilateral nodes [24].

The tongue is vascularized bilaterally by the lingual arteries originating from the external carotid
artery [20]. Additional blood supply is supported by the facial artery and pharyngeal artery [24]. The
lingual arteries run symmetrically and no transseptal anastomosis occur between the left and right
side. During partial glossectomy, damage to both lingual arteries will result in necrosis of the tongue
blade. The anatomical distribution of the lingual arteries should be taken into account when deciding
the resection margins and to avoid intraoperative injury of the lingual arteries. Together with other
oral structure such as tongue blade, foramen cecum, dorsal (superior) surface, the lingual arteries
might be used as anatomical landmarks. From blade to base, the course of the lingual arteries bent
into deeper tissue below the dorsal surface as it reaches the pharyngeal part of the tongue [20].
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2.2 Technical Background

2.2.1 Two dimensional ultrasound

US imaging is based on the transmission of pressure waves through a medium and receiving the
reflected wave with the transducer [33, 34]. US refers to the high frequencies above human hearing
(>20000 Hz) [34, 35] caused by oscillations in pressure by piezoelectric crystals in a probe [33].
By applying an electric current with a specific frequency, the piezoelectric crystals change length
and create a pressure wave with the corresponding frequency [35]. Following, the electric current
stopped and the crystals deform when receiving a pressure wave, which induces electric currents. By
altering these phases, the vibrating crystals create longitudinal wave and the reflections contain the
information about the medium it transmitted through, which is used to create an image [33, 34].

The velocity or speed of sound (v), frequency (f) and wavelength ()\) of the pressure wave are
described by eq. (1). The speed of sound (in m/s) in which a pressure wave transmits through tissue
depends on the tissue properties [33]. The frequency (in %), or oscillations per second [34, 35],
depends on the chosen electrical current applied with the transducer [33]. Wavelength (in m) is the
distance between two high pressure areas and is depending on both the velocity and frequency,
as shown by eq. (1) [33]. This equation shows that the wavelength is inversely proportional to the
frequency, so shorter wavelengths result in higher frequencies [34, 35].

v/A=f (1)

At each boundary, a fraction of the sound will transmit through adjacent tissues and the remaining
part will be reflected in infinite directions including back to the probe [33, 35]. This attenuation of the
original wave intensity is caused by 1) reflection, 2) absorption, 3) scattering [33] and 4) refraction
[35]. 1) Each boundary reflects some of the wave, so boundaries in deeper tissue reached by the
transmitted part, receive smaller portions of the original wave and reflect less strong. Time gain
compensation increases the intensity of echos further away, to create a more even image [33-35]. 2)
Wave energy is partially absorbed by the tissue, since particles start oscillating and produce heat
due to friction [35]. The amount of absorption is dependent on the tissue [33]. 3) The wave could
scatter in all directions when the pressure wave meets boundaries not perpendicular to the wave's
path [33] and at structure much smaller than the wavelength. This refracted part will not reach the
transducer probe and is therefore a loss of energy. 4) At the boundary, transmission of the wave
energy in a different direction than the original wave, is called refraction. Due to this new direction,
the reflection will be in a different direction as well, resulting in no receiving of the reflection [35].

The amount of attenuation depends on the difference in acoustic impedance (Z) of the two
tissues [34, 35]. As shown in eq. (2), Z depends on the tissue density p and speed of sound v in that
tissue [34, 35].

Z=p-v (2)

A large difference in material density is present when comparing soft tissue with air or bone, and so
Z1 and Z2 are different [35]. Difference in Z means attenuation in transmission energy caused by
reflection. The sound wave will not reach deeper tissue resulting in dark areas of no information in
the ultrasound image (posterior acoustic shadowing) [34, 35]. In clinical practice, collagen and fat are
demonstrated as hyperechoic tissues and muscles and fluids such as blood and urine as hypoechoic
[33, 34]. In this study, based on the finding van Brouwer de Koning et al. [22], it is assumed that the
difference in tongue muscle tissue and TSCC is visible.

To create an 2D image containing many pixels (brightness or B-mode), the location of the reflection
and its corresponding intensity is required. The location of the boundary is determined by measuring
the elapsed time between a created pulse and the corresponding received sound reflection, assuming
that the overall speed of sound in human soft tissue is 1540 m/s [33, 35, 36]. A short travel time
corresponds to a location close to the probes surfaces, represented by the upper pixels of the image
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and vice versa. The amplitude of the receiving wave determines the intensity the pixel displayed [33,
35]. Mostly, a scale of 256 shades of gray is used to differentiate intensity as a result of different
reflections. The image could be optimized by keeping as many shades of gray as possible [33].

The spatial resolution of an ultrasound image is divided into two types: axial and lateral. The axial
resolution is the ability to differentiate two points in the direction of the wave [33, 35]. To visualize a
structure, it is required that the structure is larger than multiple wavelengths [35]. Therefore, smaller
wavelengths come with higher frequencies and so a high frequency probe is required to image smaller
structures. The lateral resolution is the ability to distinguish two points at equal distance in two
different directions [33, 35].

The best resolution is where the beam converges, also called the focal zone or focal range. This
zone is adversely related to the frequency due to attenuation, which in tissue ranges from 0.5 to 1.1
db/cm/MHz [33]. In practice, high frequencies (and short wavelengths) provide more detailed images
as lower frequencies reach deeper tissues and expanded the field of imaging [33-35]. Therefore,
5-12 MHz linear probes are used for high resolution assessment of superficial tissues [34], while 2-5
MHz probes are deployed for imaging deeper tissues [35].

2.2.2 Three dimensional ultrasound

With the additional third dimension in US multiple advantages arise. Images to diagnose patients
are completely reproducible. 3D US provides a wider ranges of scan planes to analyze because
of a reconstructed volume [36]. Even a panoramic view of the region of interest can be made to
help surgeons locate their instruments in the target area. 3D US is not dependent on the expertise
and knowledge of the operator any more, since it provides full understanding of the distribution of
anatomical structures. Obtaining the shape and location of the region of interest (ROI) with 3D US
is definitely improved as it enables fast and accurate diagnostics. Finding a precise location during
surgery is limited by 2D US, while this extra dimension can visualize a full 3D target area in real-time
[37].

In this section, the necessary steps of 3D ultrasound will be described in general. Based on the
available techniques at Netherlands Cancer Institute (NCI), those will be explained in further detail.

3D US images can be made in four different ways: 2D array probes, mechanical 3D probes,
mechanical localizers and freehand scanners [37].

Volumetric scanning with 2D array probes is possible by steering the sound wave in both azimuth
and elevation dimension. The diverging sound wave produced by the 2D array transducer has an
pyramidal shape and the reflected waves are processed into integrated 3D images. Adjusting phased
array delays serve to steer and focus on the ROI, so the probe could be held at the same location
while scanning [37].

A 3D image could also be made with mechanical 3D probes which contain motorized linear
transducers acquiring a collection of 2D images. This mechanical 3D probes can rotate, tilt and
translate across the target area. Linear scanning acquires parallel images at a consistent slice-distance
by adjusting the frame rate. This results in a non-isotropic resolution: in the scanning direction equal
to conventional 2D images and in the translation direction dependent on the elevation of the probe
[37].

Tilting scanners are fixed on the skin of the patient and obtain a fan of images separated by
a specified angle depending on the tilting speed and imaging frame rate. The resolution of this
technique is non-isotropic as well, as it degrades when the separation angles increases [37].

To scan the ROI with a rotating scanner, it has to be held statically while it rotates around the
central axis of probe. This means that the resolution is depending on the angular distance between
images resulting in non-isotropic resolution again. Depending on a convex or linear probe, the
resulting 3D images will have a conical or cylindrical shape [37].
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Figure 2. Schematic drawing of imaging a volume by a single crystal in a 2D array probe [37].

Mechanical localizers are motorized and move linearly, tilt and rotate as well as mechanical
3D probes. Instead of a internal motor, mechanical localizers use an external holder to acquire a
collection of 2D images using a 1D transducer. To reconstruct the 3D images, the relative position
and orientation of the 2D images have to be recorded accurately. However, these localizers are
inconvenient since they are heavy and large [37].

A 3D scanning technique more convenient for application is the freehand scanner. This technique
provides operators the opportunity to scan the ROI in any direction and position to get optimal
anatomical orientation. For reconstruction of 2D images into 3D images, position and orientation
parameters are required for each 2D slice [37]. Different device tracking mechanisms are available in
clinical setting. However, due to the small operational area during tongue surgery, this research is
limited to electromagnetic (EM) tracking.

This tracking mechanism requires a EM transmitter and a receiver located at the probe. Based on
EM signal, the required position and orientation of the probe can be calculated which enables 3D
reconstruction. The advantage of EM tracking is the relative small sensors and no required line of
sight. On the other side, EM interference and metal objects will distort the EM signal and reduce the
tracking accuracy [37].

Object reconstruction is an inevitable step and the accuracy and speed are significant for real-time
3D imaging. The main reconstruction algorithms are voxel based methods (VBM) and pixel based
methods (PBM) [37]. These reconstruction algorithms will be described in details at chapter 4 within
the limits of the available methods of this study.
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Research Questions

Is 3D ultrasound a feasible technique for intraoperative assessment of surgical resection
margins of tongue squamous cell carcinomas?

Sub research questions:

e What is the impact of the reconstruction algorithm, ultrasound frequency, acquisition method,
stabilizer and observer on the accuracy of 3D ultrasound reconstruction?

o [s deep learning a feasible technique for fast automatic intra-operative multi-class segmentation of
3D US volumes of resected tongue specimen and tumor?

o What is the correlation between the resection margin in tongue tumor specimens assessed by 3D
ultrasound and histopathology?
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The influence of multiple variables on
accurate 3D US reconstructions, a
phantom study

4.1 Introduction

The first step to know if 3D US is a feasible and accurate technique for intraoperative assessment
of surgical resection margins of tongue squamous cell carcinomas, is to obtain a better understanding
about 3D US. This chapter focuses on the acquisition of US images and the reconstruction methods
to create 3D US volumes.

US acquisition contains two phases: the acquisition of 2D grey scale US images (B-scans) itself
and the reconstruction from 2D B-scans into a 3D US volume [38]. The acquisition of 2D images
can be performed by freehand or motorized in a linear, tilt or rotational manner. Freehand scanning
results in a non-uniformal distribution of the distance and orientation of the slices relative to each
other [39]. The motorized acquisition result in a more regular pattern of the 2D image position. In the
final 3D reconstruction, both freehand and motorized method are very similar [40]. The positioning
data to reconstruct the 3D volumes could be obtained optically, mechanically, electromagnetically
and acoustically [40]. In this study, the position and orientation of the 2D US images relative to the
other images is based on the electromagnetic (EM) navigation.

The acquisition and reconstruction phase both include variables which influence the accuracy of
the output 3D US volume [40]. The US acquisition phase has variables involving the experimental
setup and the settings of the US system. The reconstruction phase has a computational variable, as the
reconstruction could be created by several algorithms. It is important to keep in mind that artefacts
may be introduced by these algorithms and thereby reduce image quality [39]. The differences
between reconstruction algorithms are explained below.

4.1.1 US reconstruction algorithms

Most algorithms are simple and quick so the physician can visualize the 3D US volumes immedi-
ately after acquisition [38]. Reconstruction algorithms provided by CustusX, an open-source research
platform for image-guided interventions [41], could be divided into two groups, the pixel based
algorithms and voxel based algorithms. For both algorithms, a voxel grid has to be filled with values
from the acquisition image planes [42]. The algorithms differ in computational time, which, in case
of clinical implementation, have to be taken into account. For a wider range of possible algorithms,
reference is made to the review of Solberg et al., who describes the benefits and drawbacks of several
reconstruction algorithms [40].

14



Chapter 4 The influence of multiple variables on accurate 3D US reconstructions, a phantom study

Pixel based methods (PBM)

Pixel Nearest Neighbor (PNN) reconstruction iterates over each acquired image plane. Within the
image plane, for each pixel the algorithm finds the nearest voxel in the voxel grid and assigns the pixel
value to this voxel [37, 38]. Normally, if the voxel already contains a value, multiple contributions
are averaged. However, assigning the most recent, the first, or the maximum value is possible as
well. After iteration over all image planes, the empty voxels in the voxel grid are filled with a value
from neighboring voxels [38, 42, 43]. Several methods are available such as the average of nonzero
pixels in 2D planes, average, median, or maximum of nonzero voxels in a 3D local neighborhood or
interpolation of the nearest voxels. However, this step may not be necessary when the distance
between slices is small enough [40]. Artefacts as a result of this two-step method are visible as a
boundary between the voxels with assigned pixel values and voxels filled from the second step [38].

Voxel based methods (VBM)

Many voxel based reconstruction algorithms are available for application. The first is Voxel Nearest
Neighbor (VNN) which iterates over the output voxel grid. For each voxel, the nearest image pixel
is found and assigned to the voxel [37]. This is a fast method, since the nearest pixel lies on a line
normal to the nearest image [38]. If there is no image plane within the maximum radius around the
voxel, it is left empty. [40, 42]

A more complex variant of this algorithm is the Voxel Nearest Neighbor2 (VNN2) which does
not assign the value of the nearest pixel, but takes all image planes within radius R and assigns a
distance-weighted average of the nearest pixels from all images planes to the voxel.

The distance weighted (DW) reconstruction finds the closest 2D pixel on each side of the voxel
and applies a bilinear interpolation of the four surrounding pixels before assigning the voxel value
[40, 42].

Finally, this distance weighing algorithm is also available with an additional varying Gaussian filter,
the anisotropic reconstruction algorithm. This adaptive algorithm keeps details in high-frequency
regions and cancels out noise [42].

For all algorithms, artefacts due to reconstruction could occur and can be observed in the voxel
array [38].

As described, 3D US acquisition is subject to multiple variables. To know if 3D US is a feasible
technique, the impact of these variables on the accuracy of the output volume needs to be inves-
tigated. High accuracy with respect to contrast, signal and noise is preferred to differentiate the
materials in the US image. Or in clinical setting, differentiate the specimen from tumor tissue. This
phantom study investigates the impact of the reconstruction algorithm, acquisition method, US
frequency, stabilization rails and observer on the accuracy of US acquisition and reconstruction. The
goal of this phantom study is to experimentally substantiate the preferred conditions to acquire
accurate 3D US reconstructions of resected tongue tumor specimens.
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4.2 Research question

What is the impact of the reconstruction algorithm, ultrasound frequency, acquisition method, stabilizer
and observer on the accuracy of 3D ultrasound reconstruction?

Sub research questions:
e Which US reconstruction algorithm results in the most accurate 3D US reconstruction?

e Which sweep-method results in the most accurate 3D US reconstruction?

Which US frequency provides the best resolution for small target volumes?

What acquisition method, freehand or stabilized scanning, provides the most accurate 3D US
reconstruction?

What is the inter- and intraobserver variability when performing US acquisition?

16



Chapter 4 The influence of multiple variables on accurate 3D US reconstructions, a phantom study

4.3 Method

4.3.1 Materials

A phantom study was designed to evaluate the influence of multiple variables on the 3D recon-
struction volumes. To acquire computed tomography (CT) data of the phantom, a Toshiba Acquilion
(Canon Medical Acquilion series, Tokyo, Japan) was used. This study included an old prostate phan-
tom (CIRS 053L, Norfolk, USA), previously used to practice prostate biopsy assisted by transrectal
ultrasound. The experiments were performed using a BK5000 Ultrasound system (BK Medical,
Denmark) in combination with a small intraoperative convex (5-14 MHz) transducer. In addition to
the transducer, a 3D printed holder is attached to the transducer. An EM tracking system (Aurora,
NDI, Canada) with two associate sensors (six degrees of freedom) were used to provide relative
position and orientation coordinates between the two sensors. CustusX enabled combining the 2D
US images from the BK US system and the corresponding position and orientation coordinates from
the NDI system into 3D US volumes. These reconstructions could be performed separately from the
acquisitions. One of the experiments required a stabilization rail, customized to the dimensions of
the transducer including a 3D printed holder for one of the EM sensors.

Further image segmentation and quantification of both CT and US data was performed using
3DSlicer, an open source software platform for medical image informatics, image processing, and
three-dimensional visualization [44] and customized code written in Python.

4.3.2 Setup of materials

Prior to all the experiments, a specific setup was build which is shown in Fig. 3. First, one EM
sensor, the reference sensor, was taped at the outside bottom of specimen scan unit. The NDI EM
field generator was placed close to the bucket without any metal objects to minimize any chance of
distortion. Then, the bucket was filled with water and the phantom was placed at the bottom of the
bucket close to the reference sensor. The second NDI sensor was attached to the US transducer by
the 3D printed holder with a clip-on mechanism. To scan the phantom, the transducer was held below
the water surface without touching the phantom. By moving the transducer, the whole phantom
was observed. During the experiments, variables of the method and US settings were changed, as
shown in Table lll, to investigate the impact of these variables on the accuracy of reconstruction.

4.3.3 Data Acquisition

Because the prostate phantom is outdated, the dimensions could be subject to change. Therefore,
the actual dimensions of the phantom were scanned by CT (current: 100mA, exposure: 100 mAs,
voxel spacing: 0.305 x 0.305 x 0.5mm). These dimensions function as the gold standard dimensions
of the phantom.

Table Ill shows the division of the phantom study into five experiments. The first experiment
recorded one acquisition to investigate the reconstruction algorithms.

The second experiment acquired four different recordings to investigate the impact of the amount
of sweeps and the acquisition time. Recording one was the already acquired recording from experi-
ment one, scanned in a single sweep of 10 seconds. Recording two was scanned in a single sweep of
three seconds, the third recording was scanned in two sweeps (back and forth) of two times three
seconds and the last recording was scanned using three sweeps (back-forth-back) all consisting of
three seconds with a total recording time of nine seconds.

It is interesting to see how 2D US images recorded by double or triple sweeps were reconstructed
in 3D volumes, because the reconstruction algorithms search for close images. Therefore, the analysis
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CustusX

Bucket with water
+ reference sensor

US system

EM field generator

US transducer +
3D printed holder
Figure 3. The setup of 3D US acquisition of the phantom.
Table lll. The investigated variables changing for each experiment highlighted in red.
Experiment | Reconstr. Sweeping Transducer | Freehand Observer | Width
Algorithm method frequency | vs Rails
in MHz
PNN
VNN
1 VNN2 Single, 10s. | 10 Freehand A 100
DW
Anisotropic
PNN Single, 10 s.
VNN Single, 3 s.
5 VNN2 Double, 6 s. 10 Freehand A 100
DW Triple, 9 s.
Anisotropic
5
3 PNN Single, 10s. | 7.5 Freehand A 100
10
4 PNN Single, 10's. | 10 Freehand | 100
Rails
3x A
5 PNN Single, 10s. | 10 Freehand 3x B 100
3xC
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of experiment one was enlarged by investigating the reconstruction algorithm as well for the three
recordings acquired in a single, double and triple sweep.

The next experiment was to obtain more insight in the transducer frequency and the resulting
image resolution. The transducer frequency for the three different acquisitions was 5, 7.5 and 10
MHz, respectively.

The fourth experiment recorded two acquisitions to investigate the impact of freehand scanning
compared to stabilized acquisition. The first recording was scanned by the freehand method followed
by a second recording assisted by a stabilization rail.

The final experiment focused on the inter- and intraobserver variability of acquisition. The
recordings were repeated three times resulting in three recordings for each observer, so a total of
nine recordings.

4.3.4 Data processing and analysis

The recordings of the first and second experiment were reconstructed five times into a 3D volume,
respectively by the provided reconstruction algorithms, as described in Section 4.1.1: PNN, VNN,
VNN2, DW and anisotropic in CustusX.

The image quality of the 3D US reconstructions was assessed for each experiment evaluating the
signal to noise ratio (SNR) and contrast to noise ratio (CNR), by respectively eq. (3) and (4) [45]. The
standard deviation (SD) and mean pixel values (PV) were measured in a region of interest (ROIl) and
annotated as phantom (P) or background(B) as shown in eq. (4). The phantom ROI was determined
in a homogeneous area in the phantom and the background ROl in the surrounding water. Both ROls
share the same spherical segmentation. The PV in US images handle a gray scale from O (black) to
255 (white).

PV 2(PVp — PVp)?

SNR= <> (3) CNR = SD% 1 5D2 4)

Secondly, the dimensions in the mid-slice of the spherical structure were measured along the
Anterior-Posterior (AP) , Right-Left (RL) and Inferior-Superior (IS) axis. In case a clear measurement
of the dimensions of the structure was not possible due to artefacts, a close estimation was noted.

Finally, the contrast along a scan line was analyzed by determining the height and Full Width at
Half Maximum (FWHM) of the peak of the derivative of the pixel intensity at the transition from the
phantom to the spherical structure. Herefore, the scan line was drawn in the mid-slice. However, the
mid-slice was rotated so the longitudinal axis of the US wave was parallel to the x-axis. Along this
scan ling, a pixel intensity profile was taken and the derivative computed.

Based on the data analysis presented at Section 4.4, none of the reconstruction algorithms
outperformed the others. On the other hand, the acquisition method using a single sweep did result
in better numbers. So further recordings of experiments three to five were acquired in a single sweep
and were reconstructed by the PNN algorithm, which performed the fasted reconstruction, and
analyzed as described above.
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4.4 Results

Three different operators performed a total of 19 acquisitions, as shown in Table Ill. Depending
on the experiment, the acquisitions were reconstructed once or five times. A total of 34 3D US
volumes were analyzed.

The phantom was used to function as practical simulator of prostate biopsies. Due to the
performed biopsies, the material of the phantom is affected leaving hollow spots in the material. These
spots - filled with air - result in artefacts in the US images. In addition to the damaged material, several
markers were found in the phantom. In the CT volume, these markers are hyperdense structures
resulting in artefacts spreading through the imaged volume. Because the spherical structure in the
phantom was visibly affected in both the CT and US images, the SNR and CNR were computed in a
different ROI that was homogeneous. Secondly, some dimensions were based on estimation instead
of accurate manual measurement.
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Results

441 Experiment One

Starting with experiment one, the different criteria result in different preferred reconstruction
algorithms. The SNR and CNR of all five experiments is shown in Table IV. For both ratios, the volume
reconstructed by the anisotropic algorithm results in the highest SNR and CNR.

Table V shows the dimensions of the spherical structure in the phantom in three directions. The
computed error (expressed in %) is a deviation between the US and the gold standard CT. Considering
the actual measurements only, the anisotropic reconstruction algorithm results in the smallest error
of 2.7%.

For the reconstructed volumes, the pixel intensity along a scan line crossing the spherical structure
in the phantom of the mid-slice images are shown in Fig. 4. The height and the FWHM of the peaks
of the derivatives at the transition from phantom to the spherical structure, are shown in Fig. 5. This
graph shows that the smallest FWHM is achieved by the VNN reconstruction algorithm while the
highest peak is provided by the VNN2 algorithm.

Table IV. The SNR and CNR for each variable of the five experiments. The numbers in bold represent
the highest value within each experiment.

Experiment | Variable SNR | CNR
PNN 224 | 979
VNN 19.2 | 722
1 VNN2 20.1 | 794
DW 22.0 | 952
Anisotropic | 27,9 | 1415
Single, 10s. | 224 | 979
5 Single, 3 s. 25.8 | 1307
Double, 6s. | 14.2 | 398
Triple, 9 s. 4.7 43.7
5 MHz 12.1 | 290
3 7.5 MHz 13.5 | 361
10 MHz 8.0 124
4 Freehand 224 | 979
Rails 6.9 43.9
Scan 1 20.0 | 771
5: Observer A | Scan 2 94 173
Scan 3 20.2 | 801
Scan 1 13.8 | 375
5: Observer B | Scan 2 3.6 25.9
Scan 3 20.0 | 795
Scan1 6.6 86.1
5: Observer C | Scan 2 7.6 89.0
Scan 3 6.6 53.2
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Table V. The measured dimensions of the spherical structure in the phantom for each variable of
the five experiments. The distance error compared to the CT is expressed as a percentage. The
numbers in bold represent the lowest distance error within each experiment. Estimated dimensions
are highlighted in red. AP = Anterior-Posterior, RL = Right - Left, IS = Inferior - Superior.

Direction AP mm (%) | RLmm (%) | IS mm (%)
CT 37 43 34
Experiment | Variable
PNN 35(5.4) 38(11.6) 31(8.8)
VNN 35(5.4) 40 (7.0) 32(5.8)
1 VNN2 35(5.4) 39 (9.3) 31(8.8)
DW 35(5.4) 37 (14.0) 32(5.8)
Anisotropic | 36 (2.7) 44 (2.3) 31(8.8)
10 s. single | 35(5.4) 38(11.6) 31(7.8)
5 3 s. single 35(5.4) 40(7.0) 32 (5.8)
6s. double | 36(2.7) 36 (16.3) 32(5.8)
9 s. triple 36(2.7) 42 (2.3) 31(8.8)
5 MHz 36(2.7) 41 (4.6) 32(5.8)
3 7.5 MHz 35(5.4) 41 (4.6) 31(8.8)
10 MHz 36(2.7) 43 (0) 32(5.8)
4 Freehand 35(5.4) 38(11.6) 31(8.8)
Rails 36(2.7) 46 (7.0) 32(5.8)
Scan 1 36(2.7) 44 (2.3) 31(8.8)
5: Observer A | Scan 2 35 (5.4) 46 (7.0) 33(2.9)
Scan 3 36(2.7) 46 (7.0) 33(2.9)
Scan 1 36(2.7) 38 (11.6) 31(8.8)
5: Observer B | Scan 2 33(10.8) 33(23.2) 31(8.8)
Scan 3 35(5.4) 33(23.2) 31(8.8)
Scan 1 38(2.7) 42 (2.3) 34 (0)
5: Observer C | Scan 2 37 (0) 39 (9.3) 34 (0)
Scan 3 38(2.7) 40 (7.0) 34 (0)

The results of the expansion of experiment one are shown in Appendix 9, Table X. For each of the
sweeping methods, the highest SNR and CNR was achieved when the 3D volume was reconstructed
by anisotropic algorithm.

In Appendix 9, Table Xl shows the dimensions for each reconstruction of the single, double and
triple sweep acquisitions. In a single sweep acquisition, the VNN, DW and anisotropic reconstruction
algorithm resulted in the lowest error of 2.7%. All reconstruction algorithm provided the lowest error
(2.7%) in a double acquisition. In a triple sweep acquisition, the lowest error of 2.7% was the result
of the PNN and VNN2 reconstruction algorithm.

For each acquisition method, the highest peak of derivatives was achieved by a different recon-
struction algorithm, as shown in Appendix 9, Fig. 22. However, the FWHM is the smallest when
reconstructed by the VNN algorithm for all acquisition methods.
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Figure 5. Experiment 1: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in five US 3D volumes with different reconstruction algorithms.
The FWHM of the maximum peak is plotted at the top of the peak.
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phantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3D
US volumes were reconstructed by the PNN algorithm. The FWHM of the maximum peak is plotted

at the top of the peak.
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4.4.2 Experiment Two

Experiment two was designed to investigate the influence of the sweeping method during US
acquisition. Table IV shows the SNR and CNR for all acquisition methods reconstructed by the
PNN algorithm. It is noteable that both single (10 and 3 sec.) acquisitions resulted in higher ratios
compared to double and triple acquisition methods. In Appendix 9, Table X shows that the single
acquisition methods provided higher ratios when reconstructed by the other algorithms as well. Only
the anisotropic reconstruction resulted in similar ratios for double sweep acquisition in 6 seconds as
the single sweep acquisition in 3 seconds.

The dimensions of the recordings of the four acquisition methods, reconstructed by the PNN
algorithm are shown in Table V. Compared to the CT data, the lowest errors were achieved by
the double and triple sweep acquisition methods. However, the dimensions of the four recording
methods reconstructed by the other algorithms, shown in Table Xl, were the lowest error for the
single and double acquisition methods. So, the lowest error for each acquisition method is depending
on the reconstruction algorithm.

Figure 6 shows that the triple sweep acquisition method provided the highest peak of the
derivatives and the smallest FWHM of 3.7 pixels. Analyzing the acquisition methods reconstructed
by the other algorithms, as shown in Appendix 9 Fig. 22, the highest peak for each acquisition
method was again depending on the reconstruction algorithm. The smallest FWHM was provided
by the single sweep acquisition method, except for the reconstruction by the anisotropic algorithm
which showed the smallest FWHM for the triple sweep acquisition method.

Also, a second peak of the derivative occurred when the triple sweep acquisition method was
used. In the mid-slice image of the triple sweep acquisition method, as shown in Fig. 7, some sort of
checkerboard effect could be noticed which was not visible in reconstruction acquired by the single
and double sweep acquisition methods. This checkerboard effect with multiple intensity transitions
resulted in an additional peak of the derivative.

Finally, the single sweep for 3 seconds acquisition method resulted in the highest SNR and CNR.
The dimensions did not show an out-performing acquisition method. The FWHM was the lowest
when the volume was acquired by the single sweep acquisition method. Also, no checkerboard effect
arose.

4.4.3 Experiment Three

Experiment three focused on the influence of transducer frequency on accurate 3D US acquisition.
Table IV shows that a US frequency of 7.5 MHz provided the highest SNR and CNR. Looking at the
dimensions in Table V, the lowest error of 2.7% (36 mm) in AP direction was achieved by 5 and 10
MHz. Figure 8 displays that the smallest FWHM (2.9 pixels) and highest peak of the derivative of
pixel intensity at the transition from phantom to spherical structure was the result of acquisition with
10 MHz.

Summarized, each of the transducer frequencies provided the lowest or highest numbers at one
of the analysis criteria.

4.4.4 Experiment Four

To understand the influence of freehand compared to stabilized US scanning experiment four was
set up. Table IV shows that the freehand acquisition results in higher SNR and CNR compared to the
acquisition assisted by a stabilization rails. However, the dimensions of the spherical structure show
lower errors in all directions with a minimum 2.7% when the volume was acquired by stabilization
rails, as shown in Table V. Focusing on the peak of the derivatives of the pixel intensity along a scan
line, plotted in Fig. 9, acquisition assisted by stabilization rails resulted in a higher peak and a smaller
FWHM compared to the freehand acquisition method.
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Figure 7. The 3D US mid-slice of the spherical structure in the phantom with the scan line plotted in
red and the pixel intensity along this scan line plotted in cyan. The 3D US volume is acquired using
three sweeps and reconstructed by the PNN algorithm. A checkerboard artefact is visible throughout
the image.

4.4.5 Experiment Five

The final experiment investigated the observer variability of 3D US acquisition. As Table IV
presents, large deviations between the three scans occur for both observer A and B. Observer C
showed deviations between the scans, but substantially less than the other observers. Between the
observers, the SNR and CNR showed major differences as the maximum SNR and CNR deviated
from 7.6 to 20.2 and 89 to 801, respectively.

Table V shows that differences in errors of the AP dimension within the observer’s acquisitions
ranged from 2.7% (observer A and C) to 8.1% (observer B). Between the observers the maximum
difference in error of the dimensions is 13.5% (4 mm).

The FWHM and height of the peaks of the derivatives, shown in Fig. 10, showed a large variety
for observer B only. The smallest FWHM ranged from 2.7 to 4.3 pixels and the highest peak ranged
from 60 to 90 between the observers.
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FWHM of maximum derivative peaks of three US frequencies
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Figure 8. Experiment 3: The derivatives of the pixel intensity along a scan line at the transition
from phantom to the spherical structure in three 3D US volumes with different US frequencies. The
FWHM of the maximum peak is plotted at the top of the peak.
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Figure 9. Experiment 4: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in two 3D US volumes acquired with and without stabilization.
The FWHM of the maximum peak is plotted at the top of the peak.
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Figure 10. Experiment 5: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in 3D US volumes. The top, middle and bottom figures represents
the acquired 3D US volumes by observer A, B and C, respectively. The FWHM of the maximum peak
is plotted at the top of the peak.
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4.5 Discussion

The present study was designed to determine the impact of the reconstruction algorithm, US
frequency, acquisition method, stabilizer and observer on the accuracy of 3D US reconstruction.
The main findings of the experiments were that 1) none of the reconstruction algorithms was
out-performing the others, 2) the single sweep acquisition method provides better SNR, CNR and
contrast along a scan line and reconstruction artefacts did not occur, 3) there was no US frequency
resulting in better 3D US reconstruction, 4) acquisition assisted by a stabilization rails provides more
accurate reconstructions and 5) there was an inter- and intraobserver variability during acquisition
and reconstruction of 3D US volumes.

Inferring from these findings, the best acquisition method would be scanning using a single
sweep method assisted by rails and performed by a single operator. Based on existing theory, the
preferred US frequency is 10 MHz or higher, resulting in a higher spatial resolution. Contrary to the
expectations, this study could not identify a reconstruction algorithm performing better than others.
This suggests that acquisition variables do have a clear impact, while the reconstruction variable
does not provide a preference with regard to the clinical problem of accurate 3D US reconstruction.

Compared to previous studies in the literature, 3D reconstructed volumes were created using
similar tracking, scanning and reconstruction systems [38, 39, 46]. However, the impact of the
variables of US acquisition and reconstruction was unknown. This study showed the impact of
several variables on the acquisition and reconstruction of 2D US images into a 3D US volume.

The results from this study confirm the presence of checkerboard artefacts after reconstruction,
which were not present during acquisition. As indicated by several previous studies [38, 39], these
artefacts created due to reconstruction were visible in the voxel array. On top of that, this study
showed the differences in image quality and contrast of 3D US volumes in various conditions of
frequency, acquisition methods and reconstruction algorithms.

This study provided more details about the influence of US acquisition and reconstruction methods
on the accuracy of 3D US volumes, where others focused on the clinical implementation of 3D US.

The first research question was set up with the aim of assessing the impact of the reconstruction
algorithm on the accuracy of 3D US reconstruction. Interpreting the results from experiment one,
the highest SNR and CNR at the anisotropic reconstruction could be explained by the description of
algorithm in Section 4.1. The anisotropic algorithm applies a Gaussian filter on top of the distance
weighted sum of the surrounding pixels to assign the voxel value [42]. This Gaussian filter reduces
the amount of noise, creating a lower SD in the measured ROI resulting in the highest SNR and CNR.

Including all acquisition methods, the anisotropic reconstruction was not the best-performing
algorithm for the criteria dimensions and FWHM.

The 3D volumes have a voxel size of 0.21 x 0.21 x 0.21 mm, so manually selecting a neighboring
pixel twice due to intraobserver variability causes a deviation of 0.42 mm already. Therefore, it can be
concluded that the presented outcomes from the dimension criteria are not reliable to substantiate
statements of a best performing algorithm.

The FWHM was the smallest when reconstructed by the VNN algorithm for all acquisition
methods. Compared to the other VBM, VNN is the only algorithm not averaging values but directly
assigning the nearest image pixel. The averaging algorithms eventually create a smooth transition
while VNN relies on the actual pixel value resulting in a steep transition, in other words: a small
FWHM.

Eventually, the description of algorithms explains the differences in best performing algorithm for
each criteria but, unexpectedly, a preferred algorithm for clinical implementation cannot be inferred
from this study.
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(a) Freehand (b) Assisted by rails

Figure 11. Rendered volumes of the 3D US reconstruction acquired by (a) Freehand and (b) assisted
by rails. The 2D US images show less deviation relative to each other when acquisition is assisted by
rails.

The second question in this study sought to determine which sweep method results in the most
accurate 3D US reconstruction. Taking a closer look at the results of experiment two, the SNR and
CNR were the highest in single sweep acquisition. The presence of checkerboard artefacts after
reconstruction by multi-sweep acquisition results in areas of high and low pixel intensity within a
select ROI. This large range of pixel intensity decreases the mean value and increases the SD in the
ROI resulting in lower SNR and CNR.

The checkerboard artefacts affect the derivative of the pixel intensity as well. A second peak
represents the transition to the area of high intensity within the spherical structure. Therefore, this
study proved that acquiring US data using a multi-sweep method introduces artefacts and that a
single sweep method is preferred in 3D US acquisition in a clinical setting.

The third question in this research was to know which US frequency provides the best resolution
for small target volumes. The theory about ultrasound waves is that a higher US frequency provides
better spatial resolution but reaches superficial tissue, while lower frequency reaches deeper tissue
but has less spatial resolution. This phenomenon is confirmed by the results shown in Fig. 8, where
both the highest peak and smallest FWHM are achieved with the highest US frequency, 10 MHz.
The SNR and CNR increase by changing US frequency from 5 to 7.5 MHz. However, increasing to 10
MHz does not extend this relationship. It is hard to interpret these results based on an underlying
mechanism. Based on the theory, a US frequency of 10 MHz would provide the best resolution for
small superficial volumes.

The fourth objective of this study was to identify whether freehand or stabilized acquisition
provides the most accurate 3D US reconstruction. It is expected that the stabilization rails prevent
irregularities, such as shaking, during the US acquisition. If the rails succeeded cannot be derived from
the SNR and CNR, dimensions or the contrast along a scan line. Comparing the rendered volumes in
Fig. 11, freehand acquisition showed deviation in the alignment of 2D images due to shaking, which
is not visible in case of acquisition assisted by rails.

However, a contradiction can be noticed between freehand acquisition, achieving higher SNR and
CNR, and acquisition assisted by rails resulting in smaller FWHM and higher peaks of the derivatives
at the transition from phantom to the spherical structure. So, the impact of stabilization rails while
acquiring the US data is visible in the 3D rendered volume, but the analysis could not substantiate
this finding.

With respect to the final research question, a variability was found in all criteria between the
observers as well as within. During the acquisition all circumstances remained equal except the
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trajectory, including shaking, and duration of acquisition. This is visible in length of the trajectory
and the amount of slices, resulting in different voxel sizes (all around 0.2 x 0.2 x 0.2 mm) after
reconstruction. A transition of a certain length could be visualized in a different amount of voxels.
So, when less voxels represent change in pixel intensity, the FWHM becomes smaller. However, this
mechanism could not explain the large difference in SNR and CNR. Since the inter- and intraobserver
variability is certainly present, US acquisition in clinical setting should be performed by a single
operator and always take into account the intraobserver variability.

The findings of this study are clinically relevant because intra-operative assessment of resection
margins by 3D US could be contributing to improving image guided therapy. Then, surgeons could
perform re-excisions within the current operation, resulting in less requirements of adjunct therapy.
This study provided a better understanding of 3D US which is necessary for further research about
the correlation between the resection margins assessed by 3D US and histopathology.

This study had some strengths and limitations. The first strength is that the setup of the experi-
ments was created in a clinical setting. To implement this setup for clinical usage to investigate tumor
margins, no changes have to be made. So any conclusion from this phantom study could be applied
clinically and is not subject to environmental changes when scanning fresh specimens. Another
strength of the method was to select a preferred acquisition method and reconstruction algorithm
based on the first two experiments prior to acquisition of experiments three to five.

However, the old prostate phantom did introduce some limitations. The artefacts due to the
damage of the phantom ensured that the SNR and CNR were measured at a different location and the
dimensions were estimated instead of measured. Because of these estimations by manual selection,
which are subject to observer variability, the dimensions became a weak validating criteria. Only the
AP direction was measured, leaving 2/3 of the morphological dimensions useless. Also, the phantom
did not provide small structures to analyze the spatial resolution for various reconstruction algorithms.
Secondly, the contrast along a scan line is an analysis performed along a single line. The analysis
shows a local contrast within a single image at one transition and is therefore not representative for
the entire volume. However, the phantom contains a spherical structure meaning that the contrast
should be equal along the scan line crossing the structure in all directions. Third, the setup was built
to prevent occurrence of random errors. However, the bed at the operating theater and surrounding
equipment are made of materials which could possibly distort the electromagnetic field. Incorrect
tracking of the location and orientation of 2D images might be the result from these distortions.

In the end, some limitations were solved by changing the method and others were taken into
account when interpreting the results. Eventually, we do not expect those limitations to have major
impact on the conclusions as stated above.

4.6 Conclusion

3D US acquisition is subject to several variables during both US acquisition and reconstruction.
The goal of this study was to experimentally substantiate the preferred settings to acquire an accurate
3D reconstruction of resected tongue tumor specimens. The experiments in this study have shown
that this could be accomplished by an acquisition using a single sweep method assisted by rails,
applying the highest US frequency possible and performed by one operator. Unexpectedly, a preferred
reconstruction algorithm could not be found based on these experiments.

31



32



Chapter4 The influence of multiple variables on accurate 3D US reconstructions, a phantom study

33



3D US volume segmentation by deep
learning network UNet

5.1 Introduction

Surgeons aim to remove a tongue tumor with a minimal resection margin of 5 mm. However, Smits
et al. show that 85% of the resection margins is <5 mm [47]. Another study shows a local recurrence
rate of 32,7% in patients with oral squamous cell carcinoma (OSCC) [18]. Currently, histopathological
assessment of the resection margins provides the only feedback about the accurateness of resection
[13]. Therefore, intra-operative assessment of resection margins of tongue tumors is recommended
to obtain a minimal resection margin of 5 mm [12, 15].

US proves to be a feasible technique to assess resection margins intra-operatively. Using 2D US,
Brouwer de Koning et al. confirm a correlation of the margins assessed by US and histopathology.
The whole specimen was examined. Based on the operator’s decision a 2D intersection with the
closest margin was chosen [22]. However, measuring the margins or segmenting the tumor for all 2D
US images is time-consuming and not feasible during surgery. Therefore, 3D volume segmentation
of specimen and tumor is required to improve accurate intraoperative assessment of resected tumor
margins.

Segmenting of the tongue tumor is challenging given the different geometry and US pixel intensity
in each specimen. Due to varying size, shape and anatomical location in oral cavity, the orientation
of the specimen during US acquisition differs. Also, noise and the appearance of US artefacts could
lead to difficult differentiation between specimen and tumor. Therefore, a radiologist is required
during surgery.

Manual segmentation would be an obvious technique. However, it is often accompanied by
observer variability. Furthermore, because it is time-consuming, this technique is not feasible during
surgery. Semi-automatic algorithms are faster but require manual initialization. Stevenson et al.
show that the random-walker algorithm provides equal results compared to manual segmentation
[48]. Recently, studies show promising result by applying deep learning using convolutional neural
networks (CNN) to segment the first trimester placenta in 3D US automatically [49].

Zhu et al. show that UNet [50], a fully CNN and widely used in medical image segmentation,
can automatically segment tongue contour in US images for speech research. With the mean sum
distance (MSD) as evaluation metric, which is the comparison of two curves without point-wise
alignment, an accuracy of 3.5 pixels MSD was achieved [51]. Even when the training data size was
small (1% of the original dataset), a reasonable accuracy of 5-6 pixels in MSD can be achieved by
implementing data augmentation [51]. A CNN, trained on segmented data of tongue tumors volumes,
could provide fully automated resected tongue specimen and tongue tumor segmentation in 3D US
for the first time.

In this study, an open-source CNN, UNet [50], was used to segment resected tongue specimens
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and tongue tumors in 3D US volumes. The labels for supervised learning were manually provided
by a radiologist. Evaluation of the results was based on the Dice similarity coefficient (DSC). The
goal of this study is to show as a proof of concept that deep learning is a feasible technique for fast
automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.

5.1.1 Semi-automatic algorithm

Prior to the implementation of fully automatic segmentation algorithms, some techniques require
the manual input from an operator such as region growing and K-means clustering. The region
growing algorithm is basically a region starting at an initial point and expanding towards neighboring
pixel or voxels that have similar gray values until all surrounding pixels do not meet the properties
of the region [52]. The initial point and growth settings have a large influence at the performance
of this algorithm. These settings should be changed over and over when performing this algorithm
repetitively with data being inconsistent. Also, segmentation by this algorithm is difficult and often
inaccurate in case the target area consists of a wide distribution of gray values. Then, the algorithm
stops without reaching the edges of the target area or over-expands due to the absence of clear
edges as shown in Fig. 12.

K-means clustering is an unsupervised machine learning algorithm which separates an image or
volume into K clusters. This iterative algorithm minimizes the distance between the image pixels
[53]. Figure 13 shows an original 2D US image and the partitioning of pixels into 3, 5 and 8 clusters.
Again, a large distribution of gray values results in inaccurate segmentation and requires several
post-processing steps, for example selecting the cluster or the combination of clusters representing
the target area.

Figure 12. A 2D US image of a tongue specimen including a squamous cell carcinoma incorrectly
segmented by the region grow algorithm. Due to the absence of clear edges of the tumor, the region
grow algorithm expanded in the background until a preset maximum was reached, visualized by the
red area. The specimen annotated in green shows that the algorithm actually could be limited at the
edges of the specimen, where large deviations in pixel intensities are present.
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Original image Simplified levels, n_clusters = 3

Simplified levels, n_clusters =5 Simplified levels, n_clusters = 8

Figure 13. K-Means Clustering for 3, 5 and 8 clusters.

5.1.2 Deep learning

A well-known technique within artificial intelligence is machine learning (ML) , which constructs
analytic algorithms to learn predictions from examples in data [54][55]. In case outputs of interest
are known, the predictive models learn associations between inputs and outputs, which is called
supervised learning. Modern ML, using a predictive model containing multiple hidden layers, is called
deep learning (DL) [56]. DL can explore more complex (non)linear patterns in the data and enables
to deal with increased volume and complexity of data such as medical images [55]. A popular DL
algorithm for image segmentation and image classification is the CNN, which handles large numbers
of inputs compared to traditional ML algorithms. A CNN is widely used for imaging analysis, since
image data contains large numbers of pixels as inputs [55][56].
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5.2 Research question

Is deep learning a feasible technique for fast automatic intra-operative multi-class segmentation of 3D
US volumes of resected tongue specimen and tumor?

Sub research questions:
o What is the variability between ground truth annotations by a radiologist within the same specimen?

e How accurate is deep learning in segmentation of tongue specimen and tumor in intra-operatively
acquired 3D US volumes?

o What is the feasibility of intra-operative multi-class segmentation predictions by deep learning?
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Figure 14. Visualization of the UNet architecture [50]. The numbers in gray represent example sizes
of the input and output images, and the amount of features maps throughout the model.

5.3 Method

This section describes data acquisition, the adopted UNet architecture, the data pre- and post-
processing steps, the training strategy and performed experiments.

In this prospective study, nine patients were included based on the diagnosis of a TSCC and
surgery as therapy. The clinical tumor stages were: T1 (one cases), T2 (five cases), T3 (two cases) and
one case was a residue after radiotherapy for an initial T2. The patients were treated according to
standard protocol and if required, they received adjuvant therapy as well. The study had full local
ethical approval from the institutional research board of the Netherlands Cancer Institute.

5.3.1 Materials and data acquisition

For this study, 2D US data were acquired intra-operatively on nine subjects using a BK5000
ultrasound system (BK Medical, Denmark) and a small intraoperative convex (5-14 MHz) transducer,
as shown in Fig. 15c. The operator used a freehand sweep with a transducer frequency of 10 MHz.
The position and orientation of the transducer were measured and recorded by an EM tracking system
(Aurora, NDI, Canada) with two sensors (six degrees of freedom), one attached to the transducer and
the other located at the bottom of the setup, as reference. The 2D US images were reconstructed into
3D US volumes, as shown in Fig 15d-e, for fast and easy annotation using a Pixel Nearest Neighbor
algorithm in CustusX, an open-source navigation platform for image guided therapy [42]. From each
subject, several acquisitions from different directions were performed which resulted in a total of
69 3D US volumes. Some acquisitions were excluded because the field of view did not capture
the complete specimen or extreme movement of the transducer resulted in useless reconstructed
volumes, ending up with 44 3D US volumes included for this study. The pre- and post-processing of
the US data was performed with Python. The ground truth labels of the specimen and tumor were
annotated, as shown in Fig. 15g, by a radiologist in 3DSlicer, an open-source software platform for
medical image informatics, image processing, and three-dimensional visualization [44]. The UNet
model was trained using a Tesla K80 with 17 GB of video memory.
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(a) In-vivo tongue and tumor prior to sur- (b) Ex-vivo tongue specimen including (c) Acquisition of the specimen with a
gical excision. tumor. The orientation was indicated navigated US transducer.
with red, white and blue markers.

I

(d) A 2D US image in gray scale of a cross  (e) The black boxes represent the multi- (f) The multiple 2D images were recon-
section of the specimen. ple 2D US images which were acquired structed into a 3D US volume visible in
in sub-figure (c). this rendered volume.

(g) A US image in gray scale of a cross (h) A 3D view of the segmented speci- (i) A 3D view of the segmented specimen

section of the 3D volume. The specimen men (light blue) and tumor (yellow). A and tumor. The color of the specimen’s

is segmented in light blue and the tumor US image in gray scale at the relative lo- surface represents the resection margin

in yellow. cation within the 3D US volume. in 3D from O to 5 mm, in respectively red
to green.

Figure 15. All steps from surgical resection till 3D visualization of 5 mm margins around the tumor. If
good performance in clinical setting is proved, the trained UNet models could replace the manual
segmentation in sub-figure (g).
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5.3.2 UNet

For this study, the UNet architecture, as shown in Fig. 14, was adopted. Since this study used the
cascade training strategy, explained in section 5.3.3, this UNet architecture was used to create two
identical UNet models, the model specimen and the model tumor. It consists of a down-sampling
pathway, up-sampling pathway and skip-connections to reuse low-level features in higher levels.
The down-sampling pathway contains convolutional blocks and max-pooling layers repetitively. The
up-sampling pathway was built from de-convolutional layer and convolutional blocks. The following
settings were used for the UNet model. Each convolutional block was made up of 3x3 conv + rectified
linear unit (ReLU) + 3x3 conv + ReLU + 2x2 max pool. The components in the de-convolutional block
are: 2x2 up-conv + 3x3 conv + ReLU + 3x3 conv + ReLU. The movement of the convolutional filter
had a stride of one in both dimensions and to ensure that the output image has the same size as the
input image, padding was activated for all convolution operations. After each convolutional block,
the number of feature maps was doubled ranging from 8 to 128, and halved during the up-sampling
pathway due to each de-convolutional blocks. The final layer consists of a 1x1 convolutional layer
with a sigmoid activation. The weights of the network were updated using an Adam optimizer with
an initial learning rate of 0.001 and decays with 10% in case the validation loss did not decrease for
5 epochs. Depending on the experiment, see section 5.3.8, the models had a binary cross-entropy or
dice coefficient loss function.

5.3.3 Cascade Strategy

This study proposes a strategy adopted from the cascade strategy [57-59], where a complex
multi-class segmentation problem is split into multiple simple binary segmentation problems. This is
also known as coarse-to-fine medical image segmentation [57, 58]. This strategy is popular because
of the class imbalance problem, which is known in medical images [57]. As mentioned above, two
models (specimen and tumor) were built and each trained upon their own dataset. The cascade
strategy decreases the class imbalance problem for tongue tumor segmentation by the following
steps, listed referring to Fig. 16: c) predict the pixels containing specimen including tumor, d) compute
a ROI around the prediction of model specimen, e) crop the input images by the computed ROI, g)
predict the pixels containing tumor only in cropped input images, i) combine the predictions, where
the tumor is correctly re-located in the predicted specimen.
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Figure 16. Schematic overview visualizing all steps of predicting specimen and tumor in a cascade
strategic fashion. a) Original images as input for model specimen, b) Pre-process the input images by
resizing to slices x 256 x 256 x channel, normalizing and binarizing, c) Predict the pixels containing
specimen, d) Compute a ROI (256x256) around the predicted specimen, e) Crop the original image
in the size of the ROI, f) Cropped images as input for model tumor, g) Predict the pixels containing
tumor, h) Re-locate the ROI back into the original position in the prediction specimen and i) A final

multi-class prediction.
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5.34 Loss

The outputs of the network are a representation of the probability of each pixel to belong to
a certain label. In the US images, the tumor and specimen pixels occupy a small region causing a
class imbalance between the target areas and the background. This imbalance results in predictions
strongly biased towards the background and target areas are missed or partially detected [51, 60].
The accuracy has not been a correct evaluation metric in such case, since it would remain high
because of the background largely present in labels and correctly predicted. Previous approaches
restored this imbalance by re-weighting the pixels belonging to the foreground [60]. Another option
is the Dice Similarity Coefficient (DSC), which only takes the predicted foreground and ground truth
foreground into account. The DSC is calculated by eq. 5 [57], where T P is the number of true positive
predicted pixels, F'P is the number of false positive predicted pixels and F' N indicates the number of
false negative predicted pixels. This coefficient is ranging from O to 1 and should be maximized.

2T P
D =
= FP TP+ PN (5)
During the training process, the soft Dice loss function, eq. 6, should be minimized [51, 58]:
oSN oL
Laice = D i 0ili € .

vazl 0; +Z£\i1 li+e

where the sums run over the IV voxels, of the predicted output volume o; € O and the ground truth
volume [; € L. o; is the probability between O and 1, and I; = 0 when i is not in the ground truth and
1if ¢ is. A smoothing factor ¢ is set to 1, to smooth the loss function and avoid zero division.

5.3.5 Dataset splitting

The ground truth labels were created by manual segmentation of the tongue specimen and tumor
by a radiologist. These annotations were exported as labelmap, containing the labels O, 1 and 2 for
background, tumor and specimen, respectively. From the 44 included 3D US volumes the patients
were divided over datasets based on the amount of included 3D US volumes from the same patient,
so the training dataset contained patient 2, 5, 8 and 9, the validation dataset contained patients 4 and
6 and patients 3 and 7 functioned as the test dataset. The 3D volume structure of both the inputs
and labels were split into 2D images and tagged with an ID, corresponding to the inputs and labels.
Only 2D images presenting >300 pixels of ground truth specimen have been used, since images with
less pixels contribute less to the training of the model. These images with less pixels were present at
the head and tail of the 3D US volume. The included 2D images were captured from the center of
the 3D US volumes and accounted for 65-70% of the total number of slices within the datasets.

The cascade strategy required two datasets for two UNet models. From the total dataset, dataset
specimen and dataset tumor were made, while maintaining the distribution of the patients into
training, validation and test datasets. Figure 17 visualizes the process of creating the datasets
specimen and tumor.

In the first dataset, containing all the 2D images and labels presenting >300 pixels of ground
truth, the annotations were binarized, so O representing background and 1 representing specimen
including tumor. In total, dataset specimen contained 12648 2D images divided into training (8233
images, 65%), validation (2658 images, 21%) and test sets (1757 images, 14%).

To create the dataset tumor, several pre-processing steps had to be performed. In case the
original 2D image and label in dataset specimen presented the annotation tumor, the minimum and
maximum x- and y-value of the specimen including tumor were found. The center of these values
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was computed and a fixed region of interest (ROI), corresponding to the input size of model tumor,
was cropped from both the original input images and labels. Now, the annotations were binarized
again, with O representing background including specimen and 1 representing tumor only. Finally,
dataset tumor only contained cropped images and labels which present tumor annotation. In total,
dataset tumor contained 5718 2D images divided into training (4284, 75%), validation (886, 15%)
and test sets (548, 10%).

Each dataset is split into:

Original dataset ‘ Dataset Specimen ‘ ‘ Dataset Tumor

Total: 45 3D US volumes » ' !

4

Training: patients 2, 5, 8,9
Validation: patients 4, 6

Test: patients 3, 7
= —)
Image ’

Training: 8233, 65% Training: 4284, 75%

Validation: 2658, 21% Validation: 886, 15%

Test: 1757, 14% Test: 548, 10%
Label

Total: 12648, 100% Total: 5718, 100%

Figure 17. Schematic overview of creating datasets specimen and tumor.
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Input images after augmentation

Labels after augmentation

Figure 18. Examples of inputs and labels after augmentation from dataset specimen.

5.3.6 Data pre-processing and augmentation

Pre-processing of the data in both datasets, equal for input images and labels, was performed per
batch and consists of normalization and resizing into 1 slice x 256 pixels x 256 pixels x 1 channel.
Data augmentation was randomly applied to generate additional diverse data and avoid overfitting
by the following transformations: rotation (range: -30°, +30°), horizontal and vertical shift (range:
-10, +10%), zooming (range: 70-130%), brightness shift (range: 50-100%) and horizontal and vertical
flip. Figure 18 shows some examples of augmented data.

5.3.7 Evaluation

The quality of manual segmentation of the specimen and tumor as annotations by a radiologist
were evaluated by comparing the 3D volumes of the ground truth annotations for each patient.

Since DSC is used as key evaluation metric within segmentation challenges, such as the BraTS
(Brain Tumor Segmentation) challenge [59], the DSC was computed for each region to evaluate the
performance of both models.
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5.3.8 Experiments

To prove the effect of data augmentation on overfitting during the training of the models, in the
first experiment both models specimen and tumor were trained with and without application of the
described data augmentation. The second experiment investigated the influence of the loss function
in both models specimen and tumor. The dice loss function is effective in alleviating class imbalance.
The results of this loss function were compared with the results of the binary cross-entropy (BCE)
loss function, common in binary classification problems, calculated as followed:

N
BOE =~ 300 log(a) + (1 =) log(1 ~3) )

with NV the number of pixels, g; the ground truth label and g; the predicted output.
For all experiments, the data were divided randomly into batches of 32 images. The models were
trained end-to-end for 50 epochs.

In the end, the final predictions of all slices were combined into a 3D volume. These volumes

were exported to 3DSlicer. Here, the distance between the tumor and specimen was computed in
3D and visualized by a colormap ranging from O (red) to 5 mm (green), as shown in Fig. 15i.
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5.4 Results

In this section, the intraobserver variability in ground truth annotations and the achievements of
the models is presented.

From the nine patients who underwent oral surgery of the tongue, a total of 69 3D US volumes
were acquired from the specimens of which 44 volumes were included in this study. All 3D US
volumes from patient 1 have been excluded, since the specimen was not entirely observed in the
field of view of the 3D US.

Table VI shows the variability of 3D volumes of the ground truth annotations within each patient.
What stands out in the table is the large standard deviation (SD) for specimen and tumor. For example,
patient 3 has a SD of 39% and 72% of the average volume for specimen and tumor, respectively.

Table VI. The average volumes of the annotation within each patient.

# included 3D volumes | Average volume specimen | Average volume tumor in
in mm3 (SD) mm3 (SD)
1 | excluded excluded excluded
2|5 18222 (+328) 766 (+£316)
3|4 21513 (+£8482) 121 (+87)
414 47104 (£902) 708 (+268)
Patient | 5 | 7 30066 (+£25006) 9075 (+£2520)
6|6 19020 (£1495) 2017(£1084)
7|3 13729 (£469) 1290 (+163)
8|7 36485 (£1407) 2276 (£792)
918 12782 (£435) 1059 (+260)

The performance of both models specimen and tumor is shown in Table VII. Figure 19 shows a

prediction compared to the corresponding annotated ground truth and the original US image from
the best performing network combination. Predicting a test volume took approximately 12 seconds.

Table VII. The DSC of Model Specimen and Model Tumor. The bold values represent the highest
DsC.

Model Specimen Model Tumor
Data Augmentation Data Augmentation
Loss True False Loss True False
Binary Cross-entropy | 86% 68% Binary Cross-entropy | 9% 0%
Dice coefficient 76% 77% Dice coefficient 18% 0%

46



Chapter 5 3D US volume segmentation by deep learning network UNet

(a) Input image (b) Ground truth (c) Prediction

Figure 19. Comparison of the input image, ground truth and final prediction.

5.5 Discussion

The goal of this study was to show as a proof of concept that deep learning is a feasible technique
for fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US
volumes. The main findings of this study were: 1) the radiologist had difficulties with annotating the
ground truth in the 3D US volumes, 2) the BCE out-performed the Dice loss function in segmentation
of the specimen but not the tumor in 3D US data, 3) data augmentation provided more accurate
results in segmenting the tumor. From these findings, one can infer that the current models’ accuracies
were not sufficient for implementation in clinical setting. Clinical implementation might be able once
the models’ predictions significantly correlate to the histopathological findings, the gold standard,
and the assessment by 3D US fits into the intra-operative workflow. Higher accuracy could be
obtained by increasing the dataset, improving data acquisition, assisting the radiologist with accurate
annotating based on histopathology slices, combining the models into one so it could be trained as
one, although the individual impact is unknown. It is speculated that deep learning could perform
automated 3D segmentation of tongue specimen and tumor in 3D US volumes if improvements were
carried out.

Comparing to previous studies, the findings of this study showed that the BCE loss achieved a
higher DSC than the Dice loss for larger areas, and vice versa for smaller regions, which confirms the
results of Wang et al. [57]. Applying data augmentation showed minimal effect on model specimen
while the DSC largely improved on model tumor because of data augmentation. Zhu et al. had similar
findings of models with data augmentation which outperformed models without data augmentation,
only in case of a minimal training data [51]. Besides confirmation of the impact of loss function and
data augmentation, this study was the first segmenting 3D US volumes of tongue resected specimens
for resection margin assessment by deep learning. To accomplish this, a complete intra-operative
workflow from data acquisition to intuitive colormap visualization was set up. The colormap provided
the surgeon feedback about the obtained resection margins.

The first objective of this study was to gain insights in the variability in annotating ground truth
in 3D US volumes by a radiologist. A small deviation between the annotated volumes of one patient
has been expected, since manual segmentation is hard to reproduce accurately. Surprisingly, the SD
of volumes within one patient, shown in Table VI, ranges 1-39 %, 12-72 % of the average volume
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for specimen and tumor annotations, respectively. Low reproducibility of manual segmentation
could not cause such largely diverging annotated volumes. A possible explanation might be the
intra-observer variability during US acquisition and reconstruction, resulting in large differences
between the acquired volumes of one patient. Another reason could be the low US frequency of 10
MHz used during data acquisition. With a 10 MHz US transducer, the borders of small tumors, such
as 2 mm tumor thickness following the histopathology reports, were hard to detect by the radiologist.
High frequency US transducers should provide more details when acquiring small parts such as the
resected specimens from this study. Summarizing, the intra-observer variability during US acquisition
and additionally a low US transducer of 10 MHz were likely the reason of the high variability in the
annotated volumes by a radiologist.

The second question in this research was to investigate the accuracy of deep learning in seg-
mentation of tongue specimen and tumor in intra-operatively acquired 3D US volumes. The two
investigated variables which influence this accuracy were the loss functions and the application of
data augmentation. The results from Table VIl:Model specimen showed that the BCE loss function
provided a better DSC over the Dice loss function when data augmentation was applied. It was
expected that the data contained large class-imbalance between background and specimen includ-
ing tumor. Previous studies stated that a Dice loss function is able to deal with class-imbalance
[57], as this function does not take true negative predictions into account, whereas the BCE loss
function does. However, BCE loss function achieved higher DSC so it can be concluded that the
class-imbalance between background and specimen including tumor was overestimated.

Contrary, the BCE loss functions in model specimen resulted in lower DSC compared to the Dice
loss function without applying data augmentation. During predictions of the seven test volumes from
patient 3 and 7, large differences in the predictions between the patients occurred. The deviations in
annotated volumes within patient 3 were very hard to predict, which decrease the average prediction
DSC of all 7 test volumes. When only the test volumes of patient 7 were predicted, the BCE loss
function without application of data augmentation would have resulted in a average DSC of 79%.

Focusing on model tumor, the results were as expected. The tumor was a small region compared
to the background including specimen, resulting in a class-imbalance by which the Dice loss should
provided the best DSC. And to take into account the large SD of the average volume of the tumor
within patient 3, the average DSC would have been 43% when only the test volumes of patient 7
were predicted.

Applying data augmentation resulted in a minimal impact at the test DSC for both loss functions
when predicting the specimen, as shown in Table VII. Data augmentation creates more diverse
data so training the model while applying this technique should result in a more generalized model.
An explanation could be that dataset specimen, containing 12648 images, was sufficient to train a
generalized model. The impact of data augmentation on model tumor was more evident. The only
difference between the two datasets was the total amount of images, 12648 relative to 5718 images
in dataset tumor. Concluding, application of data augmentation was effective in case the dataset did
not contain a sufficient amount of images.

Another aspect to discuss is the 0% accuracy of model tumor for both loss functions when
data augmentation was not applied. This suggests that the 5718 2D US images in dataset tumor
contain deficient information to train the model in segmenting the tumor. However, applying data
augmentation provided 9% and 18% accuracy suggesting that the effects of rotating, shifting, flipping,
zooming and brightness adjustments makes the information in the 2D US images sufficient to predict
tumor pixels correctly.

Overall answering the second question, this study gave more insight in the impact of the loss
function and data augmentation on the final model’s accuracy. However, due to a small group of
included patients, cross-validation has not been applied, since the datasets were too small to be
generalized. By applying cross-validation, totally different datasets would be created, resulting in
different outcomes which could not be compared. Therefore, the chance remains that some results
were exceptions.
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The final objective was to understand the feasibility of intra-operative multi-class segmentation
predictions by deep learning. In other words, what are the requirements to perform this technique
intra-operatively and how long requires deep learning for a prediction? Once the models were trained,
they could be transferred to any computer at the operating room with the required open-source
supporting software to run a prediction. Since all 3D US acquisitions had already been performed
at the operating theater, no changes in materials were required to perform a prediction. The time
required for predicting one test volume was approximately 12 seconds. With the additional steps of
computing the distances between specimen and tumor in order to create a clinical intuitive colormap
to support the surgeon, a total of five minutes could be assumed. Since surgeons requested to provide
the feedback within 30 minutes, deep learning could be a feasible technique for intra-operative
multi-class segmentation.

The findings contribute to the improvement of surgical resection of tongue squamous cell carci-
noma (TSCC). Intra-operative assessment by 2D US was already possible, since Brouwer et al. proved
the significant relationship between the resection margins measured on 2D US and histopathological
slice [22]. In this study, the assessment of resection margins was extended from 2D US images to 3D
US volumes, to ensure that the measured margin on US is the actual minimal margin. The correlation
between the measured margins on 3D US and histopathological slices should be investigated again.
If a significant relationship between the two modalities could be proved, intra-operative 3D US
assessment based on fully automatic segmentation of the tumor should be implemented to reduce
the recurrence rates and excision with resection margins <5mm. Therefore, further research focusing
on the correlation between the measured resection margins on 3D US and histopathological slices is
recommended.

Pointing out several strengths of this study, the first one was that data acquisition was performed
in an intra-operative clinical setting. Conclusions from this study were representative for findings after
clinical implementation. Secondly, annotating the ground truth in 3D was helpful for the radiologist.
The information of subsequent slices provided additional insight in the orientation of the specimen
and the location of the tumor. Also, investigating the influence of two loss functions on the final
prediction was a strong point in the method of this study. In advance, binary class-imbalance was
taken into account, so the Dice loss functions, effective in dealing with class-imbalance, could be
investigated. Last but not least, adopting the state-of-the-art cascade strategy could be seen as a
strong point to deal with the complex multi-class segmentation problem in this study. This strategy
easily deals with the class-imbalance between tumor and background including specimen by cropping
the input images. Also, more insights were provided about class specific segmentation difficulties.
Now it is clear which segmentation problem requires more improvements.

On the other hand, this study was subject to some limitations. The major limitation of this study
was the small group of patients. The final results from this study were based on only two patients.
Therefore, the findings could not be generalized. However, as a proof of concept, this research
provided indications about the possibility that deep learning might be a feasible technique for fast
automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.

Additionally, the models would have been trained better when the datasets were extended. Also,
more patients would facilitate the possibility to perform cross-validation. This will reduce the chance
of findings by coincidence.

Besides the impact on training, the adopted UNet model could be converted from 2D to 3D.
Then, inputs will be entire 3D US volumes instead of 2D images and therefore segmentation of the
specimen and tumor could be more accurate when information of subsequent slices will be included.

Secondly, it was unfortunate that the annotations of the ground truth by the radiologist showed
a large SD of the average volumes within a patient. This inconsistency did not contribute in training
an accurate model. Because of the low frequency US transducer (10 MHz) some 3D US volumes
lack details in case the tumor was very small. Simply introducing a high frequency US transducer
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would have provided these details and could help the radiologist annotating more correctly. Another
reason for the large SD was the lack of feedback towards the radiologist about the accuracy of
annotations. The 3D US volumes of unknown tissue without specific anatomical landmarks impeded
the radiologist to annotate with certainty. Taking a closer look at Fig. 19 a, it could be speculated
that the model might be more accurate in segmenting the tumor than the actual ground truth
annotation. Annotations based on the gold standard of histopathology slices could ensure more
accuracy. This means that the entire specimen needs to be cut into slices with a known inter-slice
distance. Annotating the specimen and tumor in the histopathology slices and remodel these slices
into a 3D histopathological model would provide gold standard information. Registration of the 3D
histopathological model towards the 3D US model including the gold standard annotations could
support the radiologist in annotating with certainty.

Finally, future research should focus on: 1) implementing a 3D UNet when more data is acquired,
2) remodeling the histopathological slices into a 3D model and registering towards the 3D US models,
3) improving the implementation of the cascade strategy. With a 3D UNet, the information of
subsequent slices will be included which could help segmenting the specimen and tumor in the 3D
US volumes. Currently, the models were trained independently while the actual cascade strategy as
published in previous literature connects the models so the output of model 1 will be propagated
forward into model 2 and both models will be optimized at once during training [57-59].

5.6 Conclusion

This study was set out as a proof of concept to show that deep learning is a feasible technique for
fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US volumes.
The results of this investigation showed that two UNet models trained on 12648 and 5418 slices,
respectively, from 44 3D US volumes could reach a DSC of 86% segmentation of the specimen
and 18% DSC in segmenting the tumor. This implicates that fast automatic segmentation of tongue
specimen and tumor in 3D US volume by deep learning is a feasible technique for intra-operative
assessment of resection margins. This is the first study adopting state-of-the-art methodology, to
assess resected tumors with 3D freehand US volumes and fast automatic segmentation of multiple
regions from these 3D US volumes. In addition, a full intra-operative workflow was created from
data acquisition to intuitive visualization of close resection margins using a colormap.

50



Chapter 5 3D US volume segmentation by deep learning network UNet

51



The correlation between the resection
margin assessed by 3D US and
histopathology

6.1 Introduction

Complete surgical excision of TSCC has been very important, since close resection margins are
related to poor prognosis in terms of local recurrence and 5 years of survival [5, 11, 19]. Opinions
about the distance representing clear or close margins are divided [13, 14]. However, in most literature
<1 mm, 1-5 mm and >5 mm measured in histopathological slices are considered as positive, close
and clear resection margins, respectively [2, 9, 13, 15-17]. Unfortunately, histological assessment
is performed post-operatively [13], while intra-operative assessment of the resection margins in
tongue tumors is highly preferred [12, 15]. Several studies investigate techniques such as frozen
section and intra-operative imaging modalities to meet this preference.

Brouwer de Koning et al. prove that 2D US is a feasible intra-operative assessment technique
and significantly correlates to histopathology [22]. Nonetheless, the chance remains that the actual
closest resection margin is missed as the 2D US is limited to an intersection view only. The previous
section 5 tried to prove the potential of intra-operative 3D US to assess resections margins, and
so providing complete feedback about the entire specimen to the surgeon. However, very little is
currently known about the correlation between the resection margins found by intra-operative 3D
US and histopathology. When correlation is proven, intra-operative 3D US could be implemented
clinically and prevent potential close margins.

Applying 3D US in other clinical cases, such as assessing the response of tumor angiogenesis in
breast cancer patients undergoing neoadjuvant chemotherapy, 3D US proved to be effective when
contrast was enhanced [61]. Also, Hashad et al. show that 3D US was able to accurately diagnose
adenomyosis in 59% of the patients [62]. To the best of our knowledge, the correlation between
resection margins assessed by 3D US and histopathology has not been reported before.

For this research, in nine patients the resection margins of TSCC were assessed intra-operatively
by 3D US and post-operatively by histopathology. The correlation between the measurements by 3D
US and histopathology was computed by the Pearson correlation coefficient. The aim of this study is
to explore the correlation between resection margins assessed by 3D US and histopathology.
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6.2 Research question

What is the correlation between the resection margin in tongue tumor specimens assessed by 3D
ultrasound and histopathology?

6.3 Method

In this section, the subjects, study design, performed measurements and analysis are described.

6.3.1 Subjects

Nine patients who underwent surgical treatment at the Netherlands Cancer Institute were in-
cluded. The group consisted of five men and four women. The average age was 72.5 years, ranging
between 49 and 86 years. The tumor was located either at the tongue blade (six times right, 2 times
left) or tongue base (left). Clinically the tumor stages, following the 8th edition of the AJCC Cancer
Staging Manual [10], were: T1 (one cases), T2 (five cases), T3 (two cases) and one case was a residue
after radiotherapy. The institutional research board of the Netherlands Cancer Institute provided full
local ethical approval to this study.

6.3.2 Methods of measurement

From each patient, the resected tongue specimen was acquired as 3D US volume between five
and 12 times per patient. 3D US volumes were excluded in case the specimen exceeded the field
of view or severe shaking of the US transducer occurred during acquisition. Data acquisition was
performed as described in section 5.3.1.

The specimen and tumor within the 3D US volumes were annotated by a radiologist in 3DSlicer.
A 3D distance map between the specimen and tumor was computed, which visualizes the resection
margins surrounding the tumor, as shown in Fig. 20a. A customized colormap from red to yellow was
created to represent the resection margins between 0 and a user defined distance, respectively. The
areas at a distance equal to or larger than the user defined distance (e.g. 5 mm) were represented
in green. For each 3D US volume, the user defined distance was adjusted until the specimen on
the resection plane turned yellow. Than, the corresponding distance was noted as closest resection
margin, as shown in Fig 20b. Finally, the average resection margin within each patient was computed.

The resected tissues were treated by a pathologist following standard protocol. First, the specimen
was inked followed by fixation in formalin for 24 hours. Slides of 4 mm were cut from the specimen
before embedding those slides in paraffin. Finally, 4 um sections were cut from the 4 mm slides,
stained with haemotoxylin-eosin dye (HE) and mounted on histopathological glass. The closest
resection margin measured by the pathologist was extracted from the histopathological report.

The correlation between the resection margins measured at the annotated ground truth in 3D US
and the histopathological slices was determined by performing the Pearson correlation coefficient.
Since only two patients were distributed as test group in chapter 5, a correlation between the
resection margins measured at the deep learning predicted segments and histopathological slices
was not calculated.
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(a) 3D colormap (b) Measuring a resection margin in an intersecting slide

Figure 20. a) 3D colormap representing the resection margins on the specimens surface. The 2D US
image is shown intersecting the specimen and tumor. b) A 2D US image with the distance colormap
and the measured distance in mm.
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Figure 21. The relationship between resection margin by histopathological slice and 3D ultrasound.
The error bars represent the SD of the average resection margins by ultrasound of each patient. The
red dotted line represents a correlation of Y = x. There was no statistically significant correlation
between the measurements (n=8). R = 0.518, Y = 0.5054x + 2.8889
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Table VIII. The minimal resection margins measured by different methods and the absolute differences

between those methods.

Case | TNM stage Tumor location | Average resec- | Resection Absolute
tion margin by | margin by | difference
3D US in mm | histopathology | between
(SD) in mm 3D US and
histopathology
in mm
1 pT3pN3b Tongue blade | excluded excluded excluded
right
2 pT2N1 Tongue blade | 4.7 (£2.1) 8.0 3.3
right
3 pTINOMO Tongue blade | 10 (£1.2) 10 0.3
right
4 Residue Tongue base | 4.6 (+1.7) 5.0 0.4
left
5 pT4aN2b Tongue blade | 3.6 (+1.5) 3.0 0.6
right
6 pT2NO Tongue blade | 5.0 (£2.6) 3.0 2.0
left
7 pT2N2c Tongue blade | 2.9 (+0.7) 4.5 1.6
right
8 pT2N2b Tongue blade | 10 (£1.3) 51 49
left
9 pT1NO Tongue blade | 6.5(+1.1) 10 3.5
right
] \ | Average | 6.0(£2.6) | 6.1(£27) | 21(x1.6) \
6.4 Results

Table VIII shows the pathological TNM stages and tumor location of the included patients. Patient
1 (man, clinical stage: T3) has been excluded since the specimen was not entirely observed in the field
of view of the 3D US. The data analysis of all patients is shown in Table VIII. The mean difference
between 3D US and histopathology was -0.1 mm (SD: 2.6 mm). Figure 21 shows the correlation
between the measurements by 3D US and histopathology. The Pearson correlation coefficient
showed no statistically significant correlation between these measurements (R = 0.518,p = 0.187).
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6.5 Discussion

This study set out with the aim of exploring the correlation between resection margins assessed
by 3D US and histopathology. The main finding of this study was that the measurements of resection
margins by 3D US and histopathology do not correlate statistically significant. Inferring from this
finding, 3D US could not provide correct intra-operative feedback to the surgeon. However, with a
small sample size (n=8), caution must be applied when interpreting this result. Also, certainty about
measuring the resection margin by 3D US and histopathology at the same location could not be
guaranteed. More insights about the measuring location could suggest that assessment of resection
margins by 3D US and histopathology correlates.

Novel in the present study was the use of 3D US to assess the resection margin and calculating
its correlation with histopathology. Comparing the correlation between measurements by 2D US and
histopathology with other studies, Shintani et al. evaluated the lesion pre-operatively by measuring
tumor thickness and found significant correlations between 2D US and histological sections [63].
Others found a Pearson correlation between assessing tumor thickness in TSCC by 2D US and
histopathology of R = 0.80 [64]. The utility of 3D US was proved by Lunardelli da Silva et al., as the
correlation between 3D US and histopathology in diagnosing endometriosis was 72.5% (n=40) [65].

The initial objective of this study was to identify the correlation between the resection margins
assessed by 3D US and histopathology in tongue tumor specimens. There were three likely causes
for the statistically not significant correlation. First, the result has been expected since it is probably
related to the small sample size (n=8).

Secondly, this finding may be explained by the large SD of the average resection margin by 3D
US. These large SD were probably the outcome of the manual annotation by the radiologist. Section
5 shows large SD in the average volume of the annotations by the radiologist. Since the resection
margins by 3D US were assessed based on the same annotations, a large SD of the average resection
margin by 3D US has been expected.

Finally, it is uncertain that the resection margins assessed by 3D US and histopathology were mea-
sured at the same location. The current data did not provide the location of measuring the resection
margin by histopathology. Therefore, the absolute differences between 3D US and histopathology
could be correct and accurate. By providing the location of the resection margin by histopathology
additionally, recalculating the correlation could result in statistically significant. Reconstruction of
the histopathological sections into a 3D model could provided this information.

Additionally, the inter-observer variability among histopathologists has to be taken into account
[66, 67]. In the current method, a single histopathologist assessed the resection margins. Because of
this degree of variability, a certain difference between measured resection margins by 3D US and
histopathology was expected. Correctly assessing the resection margin by histopathology should
therefore by performed repetitively by a single or multiple operator(s) followed by computation of
the degree of agreement among assessments.

Answering the research question, the correlation between assessing the resection margin in
tongue tumor specimens by 3D US and histopathology was not statistically significant.

The findings of this study contribute to the improvement of surgical excision of TSCC by pro-
viding feedback to the surgeon about the obtained resection margins. Unfortunately, there was
no statistically significant correlation between measurement of the resection margin by 3D US
and histopathology. However, the correlation between measurement of the resection margin by
3D US and histopathology should be calculated again, after improving the 3D US data acquisition,
reconstructing histopathological section into 3D models and obtaining a large patient group. It is
speculated that the correlation between the resection margins by 3D US and histopathology could be
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statistically significant as 2D US is [22]. For now, physicians can already be provided of intra-operative
feedback by assessing the resection margin in 2D US.

Addressing strong points and limitations, the strength of this study was the set up which provides
simple implementation of new data. Recalculating the correlation would be easy when sufficient data
is available.

This research was limited by the small sample size, the large SD of the average resection margin
by 3D US which was already mentioned in section 5.5 and the absence of the location measuring
the resection margin by histopathology. Possible reduction of these limitations is already mentioned
above or in section 5.5.

6.6 Conclusion

The purpose of the current study was to determine the correlation between resection margins
measured by 3D US and histopathology in tongue tumor specimens. The result of this research show
that assessment of the resection margin in tongue tumor specimens by 3D US and histopathology
do not correlate statistically significant. This study should be repeated using more included patients,
accurate and consistent annotations in 3D US and the location of the measured resection margin of
both 3D US and histopathology. Then, in case correlation is statistically significant, this technique
could be implemented to assess the resection margin intra-operatively which helps us reaching the
goal of minimizing the resection margins <5 mm.
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In 2018, the prevalence of tongue cancer was 2069 in the Netherlands [1]. Surgical treatment is
mostly common, however in 85% of the cases the obtained resection margin is below the minimum
of 5 mm [17, 47]. Currently, post-operative histopathological assessment is the only way to confirm
the resection margin. A tool to assess the resection margin intra-operatively and provide feedback
to the surgeon is highly preferred. Previously, investigation showed that 2D US was successful and
recommended extension to 3D US since only a single plane can be observed [22]. An invasive growth
pattern of the tumor could result in involved margins elsewhere other than the observed plane. This
thesis describes three consecutive studies which attempted to solve the clinical problem and create
an intra-operative tool to assess resection margins of tongue squamous cell carcinomas based on 3D
us.

To reach this goal, the first section aimed to experimentally substantiate the preferred conditions
to acquire accurate 3D US reconstructions of resected tongue tumor specimens. The results showed
that accurate 3D reconstruction of resected tongue tumor specimens could be accomplished by an
acquisition using a single sweep method assisted by rails, applying the highest US frequency possible
and performed by one operator. Unexpectedly, a preferred reconstruction algorithm could not be
found.

Secondly, the goal was to show as a proof of concept that deep learning is a feasible technique
for fast automatic multi-class segmentation of tongue specimen and tumor in 3D freehand US
volumes. This study implicates that fast automatic segmentation of tongue specimen and tumor in
3D US volume by deep learning is a feasible technique for intra-operative assessment of resection
margins, based on a DSC of 86% and 43% DSC in segmenting the specimen and tumor, respectively.
Additionally, a full intra-operative workflow was created from data acquisition to intuitive visualization
of close resection margins using a colormap.

The goal of the final study was to determine the correlation between resection margins in tongue
tumor specimens assessed by 3D US and histopathology. Unfortunately, this study found that
assessment of resection margins in tongue tumor specimens by 3D US and histopathology do not
correlate statistically significant.

The overall project resulted in a clinical relevancy that for now, physicians can already be provided
of intra-operative feedback by assessing the resection margin in 2D US besides the physical exami-
nation. The resection margins of the entire specimen could be determined by manual segmentation
if the additional time and possible variabilities are taken into account.

Future research should focus on the improvement of data acquisition, by utilizing a high frequency
US transducer and stabilization rails, and remodeling the histopathological slices into a 3D model
and registering towards the 3D US models. This would probably result in more accurate annotations
by the radiologist. It is expected, as a consequence, that the deep learning models will become more

58



Chapter 7 General Conclusion

accurate in predicting specimen and tumor in the 3D US volumes. Eventually, it is speculated that
recalculating the correlation between the resection margin in tongue tumor specimens by 3D US
and histopathology could be statistically significant. Additionally, research should focus on adequate
orientation of involved margins to the in-situ resection field. This would be as response to act upon
the found involved margins and perform a secondary resection to rectify and prevent local recurrence.
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Appendix A

Table IX. Lip, oral cavity, and non-HPV oropharynx stages following the 8th edition of the AJCC
Cancer Staging Manual [68]

AJCC stage | Stage grouping | Lip, oral cavity and non-HPV oropharynx stage description*
The cancer is still within the epithelium (the top layer of cells
Tis lining the oral cavity and oropharynx) and has not yet grown
0 NO into deeper layers.
MO It has not spread to nearby lymph nodes (NO) or distant sites
(MO0). This stage is also known as carcinoma in situ (Tis).
T1
I NO The cancer is 2 cm (about % inch) or smaller. It's not growing into
MO nearby tissues (T1). It has not spread to nearby lymph nodes (NO)
or to distant sites (MO0).
T2
Il NO The cancer is larger than 2 cm but no larger than 4 cm (about 1%
MO inch). It's not growing into nearby tissues (T2). It has not spread
to nearby lymph nodes (NO) or to distant sites (MO).
T3
NO The cancer is larger than 4 cm (T3). For cancers of the oropharynx,
1] MO T3 also includes tumors that are growing into the epiglottis (the
base of the tongue). It has not spread to nearby lymph nodes
(NO) or to distant sites (MO).
OR
-l[lll 72,73 The cancer is any size and may have grown into nearby structures
MO if oropharynx cancer(T1-T3) AND has spread to 1 lymph node on

the same side as the primary tumor. The cancer has not grown
outside of the lymph node and the lymph node is no larger than
3 cm (about 1% inch) (N1). It has not spread to distant sites (MO).

To be continued on the next page...
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AJCC stage

Stage grouping

Lip, oral cavity and non-HPV oropharynx stage description*

IVa

T4a
NO or N1
MO

The cancer is any size and is growing into nearby structures such
as:For lip cancers: nearby bone, the inferior alveolar nerve (the
nerve to the jawbone), the floor of the mouth, or the skin of the
chin or nose (T4a)For oral cavity cancers: the bones of the jaw or
face, deep muscle of the tongue, skin of the face, or the maxillary
sinus (T4a)For oropharyngeal cancers: the larynx (voice box), the
tongue muscle, or bones such as the medial pterygoid, the hard
palate, or the jaw (T4a).This is known as moderately advanced
local disease (T4a).,AND either of the following:It has not spread
to nearby lymph nodes (NO)It has spread to 1 lymph node on
the same side as the primary tumor, but has not grown outside
of the lymph node and the lymph node is no larger than 3 cm
(about 1% inch) (N1).It has not spread to distant sites (MO).

OR

T1,T2, T3
or T4a

N2

MO

The cancer is any size and may have grown into nearby structures
(TO-T4a). It has not spread to distant organs (MO). It has spread
to one of the following:1 lymph node on the same side as the
primary tumor, but it has not grown outside of the lymph node
and the lymph node is larger than 3 cm but not larger than 6 cm
(about 2% inches) (N2a) OR It has spread to more than 1 lymph
node on the same side as the primary tumor, but it has not grown
outside of any of the lymph nodes and none are larger than 6 cm
(N2b) OR It has spread to 1 or more lymph nodes either on the
opposite side of the primary tumor or on both sides of the neck,
but has not grown outside any of the lymph nodes and none are
larger than 6 cm (N2c).

To be continued on the next page...
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AJCC stage | Stage grouping

Lip, oral cavity and non-HPV oropharynx stage description*

Any T
N3

IVb MO

The cancer is any size and may have grown into nearby soft
tissues or structures (Any T) AND any of the following:It has
spread to 1 lymph node that's larger than 6 cm but has not grown
outside of the lymph node (N3a) OR It has spread to 1 lymph
node that’s larger than 3 cm and has clearly grown outside the
lymph node (N3b) OR It has spread to more than 1 lymph node
on the same side, the opposite side, or both sides of the primary
cancer with growth outside of the lymph node(s) (N3b) OR It
has spread to 1 lymph node on the opposite side of the primary
cancer that's 3 cm or smaller and has grown outside of the lymph
node (N3b). It has not spread to distant organs (MQ).

OR

T4b
Any N
MO

The cancer is any size and is growing into nearby structures such
as the base of the skull or other bones nearby, or it surrounds
the carotid artery. This is known as very advanced local disease
(T4b). It might or might not have spread to nearby lymph nodes
(Any N). It has not spread to distant organs (MO).

Any T
Any N
M1

IVc

The cancer is any size and may have grown into nearby soft
tissues or structures (Any T) AND it might or might not have
spread to nearby lymph nodes (Any N). It has spread to distant
sites such as the lungs (M1).

* The following additional categories are not described in the table above:
TX: Main tumor cannot be assessed due to lack of information.

TO: No evidence of a primary tumor.

NX: Regional lymph nodes cannot be assessed due to lack of information.
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Appendix B

Table X. The SNR and CNR for each acquisition method of the five reconstruction algorithms. The
numbers in bold represent the highest value within each reconstruction algorithm. Results of experi-
ment two.

Reconstruction algorithm | Acquisition method | SNR | CNR
Single, 10 sec. 224 | 979
PNN Single, 3 sec. 25.8 | 1307
Double, 6 sec. 14.2 | 398
Triple, 9 sec. 4.7 43.7
Single, 10 sec. 19.2 | 722
VNN Single, 3 sec. 22.8 | 1008
Double, 6 sec. 13.3 | 345
Triple, 9 sec. 4.9 46.8
Single, 10 sec. 20.1 | 794
VNN2 Single, 3 sec. 284 | 1540
Double, 6 sec. 20.9 | 865
Triple, 9 sec. 9.2 166
Single, 10 sec. 220 | 952
DW Single, 3 sec. 28.0 | 1502
Double, 6 sec. 22.3 | 986
Triple, 9 sec. 8.8 152
Single, 10 sec. 27.9 | 1416
Anisotropic Single, 3 sec. 34.5 | 2167
Double, 6 sec. 345 | 2351
Triple, 9 sec. 19.3 | 737
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Table XI. The measured dimensions of the spherical structure in the phantom for each reconstruction
algorithm of three acquisition methods. The distance error compared to the CT is expressed as
percentage. Estimated dimensions are highlighted in red. AP = Anterior-Posterior, RL = Right - Left,
IS = Inferior - Superior.

Direction AP mm (%) | RLmm (%) | IS mm (%)
CT 37 43 34
Acquisition method | Reconstruction method
PNN 35 (5.4) 38 (11.6) 40 (17.6)
VNN 35(5.4) 40 (7.0) 32(5.8)
Single, 10 sec. VNN2 35(5.4) 39 (9.3) 31(8.8)
DW 35(5.4) 37 (14.0) 32(5.8)
Anisotropic 36(2.7) 44 (2.3) 31 (8.8)
PNN 35(5.4) 40 (7.0) 32 (5.8)
VNN 36(2.7) 41 (4.6) 32(5.8)
Single, 3 sec. VNN2 35(5.4) 43 (0) 32(5.8)
DW 36(2.7) 42 (2.3) 31(8.8)
Anisotropic 36(2.7) 44 (2.3) 31 (8.8)
PNN 36(2.7) 36(16.3) 32(5.8)
VNN 36(2.7) 36 (16.3) 31(8.8)
Double, 6 sec. VNN2 36(2.7) 40 (7.0) 31(8.8)
DW 36 (2.7) 36(16.3) 31(8.8)
Anisotropic 36(2.7) 42 (2.3) 31 (8.8)
PNN 36(2.7) 42 (2.3) 31(8.8)
VNN 35(5.4) 43 (0) 32 (5.8)
Triple, 9 sec. VNN2 36 (2.7) 45 (4.6) 32(5.8)
DW 35(5.4) 46 (7.0) 32(5.8)
Anisotropic 35(5.4) 44 (2.3) 32(5.8)
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FWHM of maximum derivative peaks of four acquisition methods.

Reconstructed by VNN
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Figure 22. The derivatives of the pixel intensity along a scan line at the transition from phantom
to the spherical structure in four 3D US volumes with different acquisition methods. From top to
bottom the 3D US volumes were reconstructed, respectively by the VNN, VNN2, DW and anisotropic
algorithm.
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Appendix C

FWHM of the maximum peaks of the derivatives of four aquisition methods reconstructed by VNN
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Figure 23. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3D
US volumes were reconstructed by the VNN algorithm. The FWHM of the maximum peak is plotted
at the top of the peak.
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FWHM of the maximum peaks of the derivatives of four aquisition methods reconstructed by VNN2
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Figure 24. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in four US 3D volumes with different acquisition methods. All
3D US volumes were reconstructed by the VNN2 algorithm. The FWHM of the maximum peak is
plotted at the top of the peak.
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FWHM of the maximum peaks of the derivatives of four aquisition methods reconstructed by DW
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Figure 25. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3D
US volumes were reconstructed by the DW algorithm. The FWHM of the maximum peak is plotted
at the top of the peak.
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FWHM of the maximum peaks of the derivatives of four aquisition methods reconstructed by An-isotropic
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Figure 26. Experiment 2: The derivatives of the pixel intensity along a scan line at the transition from
phantom to the spherical structure in four US 3D volumes with different acquisition methods. All 3D
US volumes were reconstructed by the anisotropic algorithm. The FWHM of the maximum peak is
plotted at the top of the peak.
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