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ABSTRACT 
In many catchments, issues of limited hydro-meteorological data availability restrict effective water 
resources planning and management. Nowadays, satellite based meteorological products are available 
providing alternative source of hydro-meteorological information. Products, however, have inherent 
systematic and random errors constraining direct applications in hydrological modelling. With focus on 
assessing accuracies of satellite rainfall estimate, this study compares CMORPH, CHIRPS and TMPA 
estimates to rainfall estimates from 6 gauge stations for Kabompo Basin located in Zambia. 
 
Comparisons are carried out at 0.05°, daily scales, over dry and wet seasons, and 6 rain rate classes for the 
period 2008-2012. Detection indices (e.g. POD, FAR and CSI) and frequency based statistics (e.g. RMSE, 
bias estimates and correlation coefficients) are computed and documented. This helps to understand how 
the rainfall products produce salient rainfall features for the dry and wet seasons and rainfall rates affecting 
runoff responses in the basin. Besides evaluating biases, focus is put on correcting prevailing systematic 
errors in the products by adopting linear based (Spatio-temporal) and an additive (Distribution 
Transformation) bias correction schemes. Further, Topographic driven model (TOPMODEL) is selected 
to illustrate how errors in the satellite rainfall products impact water balance closure. 
 
For the selected rainfall products, CHIRPS product was less skilful in detecting extreme rainfall (<2.5 and 
>20 mmd-1); signified by reduced rainfall occurrence detection capability to 20% during dry season. 
CHIRPS, however, had the least falsely detected rainfall (FAR<0.1 for dry period). Investigations reveal 
that better rainfall detections are achieved during wet than dry seasons. TMPA outperformed the other 
products detecting up to 88% of rainfall occurrence during wet season while CMORPH exhibited the best 
CSI between 0.69 and 0.8. The three products were found to underestimate rainfall depths (CMORPH 
bias: 1.56 mmd-1 and TMPA bias: 0.05 mmd-1). TMPA exhibited a closer agreement with gauge 
observation (SD range 0.14 and 3.44 mm d-1). 
 
Research findings show that effectiveness of each of the bias correction schemes widely varies and 
depends on the indicator selected. Out of 5 selected bias correction schemes, most effective are DT 
(exhibiting highest CC > 0.7, least standard deviation of 0.52 mm d-1 and daily accumulated error of 5.24-
10.42 mm), TFSV for correcting mean rainfall and TVSV exhibiting the lowest daily bias < 0.09 mm 
respectively. Finally, a clear improvement in water balance closure error is shown on bias correcting the 
satellite rainfall estimates to as low as 1.7%. 
 
Keywords: Satellite rainfall estimates; Bias correction; TOPMODEL; Kabompo; Streamflow simulation 
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1. INTRODUCTION 

1.1. Background 
Quantification of spatio-temporal changes in water cycle components is essential for promoting effective 
planning and management of water resources (Nourani et al., 2014). Such requires knowledge on 
hydrological processes which demands accurate hydro-meteorological information. Traditionally, in-situ 
meteorological measurements (either from rain gauge or weather radar) facilitate such assessments. In 
most catchments, however, especially the semi-arid and water limited environments, there are vast 
challenges faced with in-situ measurements networks. Some of the challenges manifest in the form of non-
existence and sparse distribution of rain gauging networks (Behrangi et al., 2011; University of California, 
2004; Wagner et al., 2009). Furthermore, radar installations for rainfall measurements are not available in 
many developing countries where resources are limited. As CHRS (2004) argues, topographic relief and 
mountains often also suffer from limited rain gauge installations thus resulting in large gaps in rainfall 
coverages. Quality of in-situ data is also a concern due to dependency on spatial and temporal scales (after 
Gosset et al., 2013). Besides, gauging flows in sensitive ecosystems such as floodplains is difficult or 
imprecise. This situation results in poor or inadequate in-situ data availability hampering effective water-
related studies thus restricting affected water resources management, particularly for near-real-time 
predictions (Bhattacharya and Solomatine, 2015). 
 
As an alternative to overcome such constrains, remote sensing technologies have evolved providing 
spatially and temporally continuous meteorological data for water related studies (Li et al., 2014). 
Furthermore, meteorological data from such satellite based models have large spatial coverages (e.g. less 
than 0.25°) and high temporal resolutions (e.g. daily and sub-daily) (Abera et al., 2016; Behrangi et al., 
2011; Yang and Luo, 2014). For instance, the Climate Hazards Group InfraRed Precipitation with Stations 
data (CHIRPS; Funk et al., 2015) provides rainfall estimates at 0.05° resolution while from the USGS 
Famine Early Warnings Systems Network (FEWSNET) PET, daily global potential evapotranspiration 
information is accessible (Maathuis et al., 2014). Availability of these products near-real time facilitate 
modelling applications where water resources management is critical yet data collection and quality 
assurance is a concern (Xianghu et al., 2014). These products are available at varying accuracies, 
performances and resolution (spatial and temporal) thus impacting water resources modelling. 
 
However, the accuracy of the satellite based meteorological estimates when compared to gauge 
measurements are often not impressive (Behrangi et al., 2011; Bhatti et al., 2016; Khan et al., 2011; Sun et 
al., 2012). They suffer from some inherent shortcomings and are contaminated with random and 
systematic errors (commonly termed as bias) as Pan et al. (2010) argued. These systematic differences arise 
from sensor limitations, retrieval algorithm errors, poor spatio-temporal sampling frequencies and sensor 
parameterization uncertainties among others (Hong et al., 2006; Maggioni et al., 2013). Results from 
several studies suggest that accuracies of the satellite rainfall products (hereinafter SREs) is dependent on 
topography, location, season, rain type, elevation, climatological factors; and manifest in the form of 
rainfall depths, occurrence and intensities (Dinku et al., 2008; Gumindoga et al., 2016; Habib et al., 2012; 
Yang and Luo, 2014). 
 
Based on the aforementioned shortcomings, estimates from the satellite products need validation with in-
situ measurements (that commonly is referred to as ground truth) to quantify their direct relevance for a 
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targeted application (Abera et al., 2016; Xianghu et al., 2014). The systematic difference in the products 
then need adequate correction and refining before deemed fit for any water resources application (Habib 
et al., 2014). As Bhattacharya and Solomatine (2015) emphasized, adopting bias (error) correction can 
potentially compensate for these systematic differences in SREs thus improving their reliability. 
 
Kabompo River Basin, focus area for this study, is a headwater basin of the Zambezi River Bain and 
located in the North-western part of Zambia. Like many African catchments, the basin is poorly covered 
by rain gauges. Issues of environmental changes in form of land cover (emanating from increased mining 
activities and deforestation) and climate changes are common in this basin (ZEMA, GRID-Arendal, 
GRID-Sioux Falls, UNEP, 2012). These aspects directly affect runoff response in the catchment, 
streamflow variability and frequency of hydrological extremes. As the hydrological regimes get affected, so 
does water balance in the basin, thus threatening sustainability of its water resources and consequently 
higher-order streams of Zambezi Basin.  

1.2. Study relevance 
This study is on use of bias corrected SREs for hydrological modelling for the Kabompo Basin in Zambia. 
The Kabompo is a head river basin for Zambezi Basin, a transboundary river basin shared by eight 
countries in the Southern African Development Community (SADC). In this regard, determining runoff 
response and water balance from the basin as it influences higher-order streams is urgently needed. Except 
for two recent studies carried out by Gumindoga et al. (2016) and Valdés-Pineda et al. (2016) in the 
Zambezi Basin, most bias correction schemes and/or assessments focus on Europe (e.g. Piani et al., 
2010), America (e.g. Chen et al., 2013; Tobin and Bennett, 2010) and Asia (e.g. Tian et al., 2007) and so 
far, none has focused on the Kabompo Basin. In hydrological application in the Zambezi Basin, previous 
studies report on the use of uncorrected SREs despite evidence of errors in satellite products (Cohen et 
al., 2012). This study thus brings significant contributions to scientific community focusing on i) finding 
appropriate precipitation bias correction scheme for the Kabompo Basin; ii) understanding the efficiency 
and need of applying bias corrected SREs data in streamflow simulations of the basin, as an example of 
sparsely distributed rain-gauge basin; and iii) serves as a feedback to respective products’ developers and 
end users in understanding the errors and uncertainties involved and how they propagate in hydrological 
response applications. 

1.3. Problem statement 
Water resource assessment and planning requires reliable rainfall data. Aspects of poor spatial distribution 
and non-existence of reliable rain gauge networks that applies to many catchments also applies to the 
Kabompo Basin. As such, satellite-derived rainfall has emerged as a viable option to indirectly retrieve 
rainfall estimates. However, accuracies of the rainfall products as compared to gauge measurements are 
often not impressive, so bias correction that can potentially compensate for the systematic errors is 
essential. Performance of the SREs also need to be assessed when estimates are used as inputs to 
hydrological modelling. For Kabompo Basin, the use of bias corrected rainfall estimates in streamflow 
simulations is yet to be fully explored. Furthermore, and among other factors, many studies reveal that 
accuracies of SREs are affected by season, yet very few studies have analysed such aspects. Motivated by 
this existing gap, this study thus attempts to assess effects of bias corrections of rainfall estimates from 
Climate prediction center MORPhing (CMORPH), Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) 3B42v7 (hereinafter TMPA) and CHIRPS satellites. Inter-
comparison of different seasonal performance, and application of SREs to streamflow simulations and 
water balance closure assessments are required to understand the runoff behaviour in the basin, applying 
Topographic driven model (hereinafter TOPMODEL). 
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1.4. Objectives and research questions 

1.4.1. Objectives 
The study aims at assessing the performance of bias corrected daily precipitation time series for 
streamflow simulation for the period 2008-2012 in the Kabompo Basin (Zambia) applying TOPMODEL. 
 
Specific objectives are: 

i. To evaluate the effect of elevation and seasonality on CMORPH, CHIRPS and TMPA satellite 
rainfall detection in the Kabompo basin, 

ii. To apply and compare bias correction schemes for CMORPH, CHIRPS and TMPA rainfall for 
different rain rates and seasons, 

iii. To parameterize TOPMODEL rainfall-runoff model using remote sensing data, and 
iv. To assess water balance closure using TOPMODEL as affected by use of bias corrected 

CMORPH, CHIRPS and TMPA satellite rainfall. 

1.4.2. Research questions 
i. What differences in magnitude of errors exist between CMORPH, CHIRPS and TMPA estimates 

when compared to ground observations? 
ii. What are the seasonal characteristics of CMORPH, CHIRPS and TMPA satellite rainfall in the 

basin? 
iii. What is the most effective rainfall bias correction scheme for the Kabompo Basin? 
iv. Does the use of bias corrected CMORPH, CHIRPS and TMPA satellite rainfall instead of gauge 

data improve TOPMODEL streamflow simulation and water balance closure for the basin? 
 

This study hypothesises that space-time variant bias correction scheme results in improved satellite-rainfall 
driven streamflow simulations for the Kabompo Basin. 

1.5. General research methodology 
This research involved the acquisition and subsequent pre-processing of in-situ and remote sensing 
datasets required for TOPMODEL rainfall-runoff application for the Kabompo Basin. The in-situ based 
meteorological data for the period 2008-2012 were provided by Webster Gumindoga, who is a Ph.D. 
candidate at the WRS department, Faculty ITC. Similarly, satellite-based data were retrieved from 
respective data provider’s archives and pre-processed in appropriate formats. These include ½-h 
CMORPH, 3-h TMPA and 24-h CHIRPS at 0.05°, 0.07° and 0.25° spatial resolutions respectively, plus 
SRTM-90m digital elevation model. TOPMODEL IDL code, a conversion of FORTRAN TOPMODEL 
version in Beven and Kirkby (1979), were acquired, checked and modified where appropriate for 
distribution modelling. 
 
The collected in-situ meteorological data were subjected to quality assessments, completions and pre-
processing. Subsequently, systematic errors in the SREs were assessed in comparison to rain gauge 
observations as ground truth. Based on literature, selected bias correction schemes were used in adjusting 
errors in satellite rainfall estimates prior to TOPMODEL simulations. The model was initialised, 
calibrated based on sensitive parameters and validated using gauge rainfall. Thereafter, uncorrected and 
bias corrected satellite rainfall estimates were independently used as forcing in the model; and 
consequently, water balance closure analysis done. Figure 1.1 outlines these general research sequence. 
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Figure 1.1: Schematic diagram outlining the general research sequence. 
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2. STUDY AREA AND DATA SOURCES 

2.1. Study area 

2.1.1. Geographical location and topography 
The study focuses on a 69,737 km2 Kabompo Basin, a headwater basin of Zambezi River Basin that is 
shared by eight SADC countries. The basin is located in the North-western part of Zambia between 11°S 
to 15°S latitude and 23°E to 26°E longitude. At its outlet is the basin’s gauging station, the Watopa 
Pontoon, with an upstream area of ~ 67,261 km2 (Kampata et al., 2013; Mwiza, 2012; Siwila et al., 2013). 
The Kabompo River originates from a highland forming the eastern watershed between the Zambezi and 
Congo River Basins. The river receives water flows from two rivers: Western Lunga and Dongwe. The 
elevation of the basin ranges from 1076 to 1508 m above mean sea level (SRTM) with lower elevation 
ranges at the South-western parts. It is characterised by undulating terrain and good network of tertiary 
drainage patterns. Figure 2.1 shows the location of the study area including the distribution of streamflow 
and rainfall measuring stations in and around the basin. 
 

 

 
Figure 2.1: Location of the Kabompo Basin, Zambia and distribution of hydro-meteorological stations. 
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2.1.2. Climate and land cover 
Kabompo Basin is described to have a sub-tropical savanna climate experiencing 3 distinct seasons: wet 
and hot (November – March), dry and cool (April – July) and dry and hot (August – October) (Kampata 
et al., 2013). On average the basin receives annual rainfall of ~1200 mm (World Bank, 2010). Its mean 
annual potential and actual evapotranspiration is estimated to be 1337 and 1113 mm respectively. The 
average temperature in the area is between 16 °C (in July) and 22 °C (in November). The variation of 
altitude and rainy seasons (driven by Inter-Tropical Convergence Zone – ITCZ) are reported to affect the 
tropical climate in the region (Siwila et al., 2013). Summer rainfall patterns in the region are also reported 
to be dependent on the El Nino/Southern Oscillations phenomenon. 
 
The north and south of the Kabompo River is confined with a dense tropical evergreen forest dominated 
by Crypotsepalum exfoliatum pseudotaxus, locally known as mavunda (WWF, 2006). The rest of the region is 
dominated by miombo and savanna woodlands. However, increased mining activities in the Upper 
Kabompo Basin and encroachment of agriculture into Forest Reserves (e.g. Ndeta Forest Reserves) have 
resulted in loss of forest cover. 

2.2. In-situ data 
Daily time series of precipitation, air temperature, humidity, wind speed, sunshine hours and discharge 
from stations in and around the basin are obtained from Webster Gumindoga, a Ph.D. candidate at WRS 
department, Faculty ITC. Based on proximity to the basin, only 6 stations shown in Figure 2.1 are suitable 
for the study. Four stations namely Kabwe, Kalabo, Mongu and Senaga, for which in-situ data were 
available, are then excluded. 
 
For precipitation, recording period is 1998-2013 for all stations except Kabompo (1998-2005) with data 
gaps existing. The historical discharge data collected are for the period 01/01/1998 - 30/04/2013, with 
missing records. This is measured at Watopa Pontoon, the basin’s only discharge-gauging station with 
upstream area of ~67,261 km2 from 5 sub-catchments. Potential evapotranspiration variables are limited 
and vary between the stations with several missing records, particularly in recent years. For instance, solar 
radiation was only available at Mwinilunga and Zambezi stations while Kasempa had no wind speed 
record. An inventory of meteorological variables from the selected stations are summarized in Table 2.1. 
 

Table 2.1: An inventory of meteorological variables collected from stations in and around the basin. 

Station Coordinates of station Type of meteorological variable from the station 
ID Name Lat. Lon. Altitude P Tmax Tmin RH WS SS 
675430 Kabompo -1360 +02420 +1075 x x x x x 

 676410 Kaoma -1480 +02480 +1213 x x x x x 
 675410 Kasempa -1353 +02585 +1234 x x x x 

  674410 Mwinilunga -1175 +02443 +1363 x x x x x x 
675510 Solwezi -1218 +02638 +1386 x x x x x 

 675310 Zambezi -1353 +02311 +1078 x x x x x x 
P –rainfall, Tmax - daily maximum temperature. Tmin – daily minimum temperature, RH – relative humidity, WS – wind speed and SS – sunshine 

hours  

2.3. Satellite rainfall estimation products 
In this section, three high resolution satellite rainfall products for which their accuracies are compared and 
evaluated against rain gauge observations are described. These are Climate Prediction Center MORPHing 
(CMORPH; Joyce et al. 2004), Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis 
version 7 (TMPA 3B42 v7; Huffman et al., 2010) and Climate Hazards group InfraRed Precipitation with 
Stations (CHIRPS; Funk et al., 2015). Table 2.2 gives a summary of the selected products with brief 
descriptions. 
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Table 2.2: Main characteristics summary of satellite rainfall products used. 

Rainfall product CMORPH TMPA CHIRPS 
Provider NOAA-CPC NASA CHG, USGS 
Spatial coverage 60°N to 60°S, globally 50°N to 50°S, globally 50°N to 50°S, across all longitudes 
Temporal coverage Since 01.01.1998 since 01.01.1998 Since 01.01.1981 
Period tested 2008-2012 2008-2012 2008-2012 

Original/ used spatial 
resolution 0.07° / 0.05° 0.25° / 0.05° 0.05° 

Original/ used time 
step ½ h / 24 h 3 h / 24 h 24 h 

Main input data 
sources 

Geostationary IR, SSM/I, AMSU, 
AMSR-E, and TMI 

Geostationary and LEO IR, TCI, SSM/I, 
AMSU, AMSR-E, CAMS and GPCC 

CHPClim, Geostationary IR, TRMM 
3B42 products, CFSv2, In-situ 
precipitation observations from various 
sources e.g. GHCN, GSOD 

Retrieval algorithm 

Precipitation estimates are based on 
PMW data. IR data are only used in 
deriving CSAVs to propagate PMW-
derived precipitation. The estimates 
are adjusted using GPCP data 
(Tramblay et al., 2016). 

MW-based estimates are merged and 
calibrated, then combined with IR-based 
estimates. Combined estimate is then 
rescaled using monthly CAMS and 
GPCC data. 

Blends 0.05° CCD-based rainfall estimates 
with ground station data to produce 
preliminary products (2-days latency) and 
final product (with 3-weeks latency). The 
CCD-estimates are calibrated using 
TMPA 3B42 v7. 

References Joyce et al. (2004) Huffman et al. (2007) Funk et al. (2015); Funk et al. (2014) 

For data access ftp://ftp.cpc.ncep.noaa.gov/precip/   http://mirador.gsfc.nasa.gov/ 
ftp://ftp.chg.ucsb.edu/pub/org/chg/pro
ducts/ 

 
CMORPH is chosen because of validation results by Dinku et al. (2008) who showed detection capability 
up to 63% of rainfall occurrence over the Zambezi region; and because of high spatial (0.07°) and 
temporal resolution (½ h) the product is available. Similarly, TMPA provides long time-series data for 
runoff simulation which increases the period of records available for calibration and validation as shown 
by Cohen et al. (2012); and is suitable for rainfall distribution assessments (Huffman et al., 2016). Selection 
of CHIRPS is motivated by its fairly low latency and bias, high resolution, long period of record and 
suitability for hydrological assessments in data sparse regions dependent on convective rainfall (Funk et 
al., 2015). Moreover, these products cover the study area and are readily accessible online by end users. 

2.3.1. CHIRPS rainfall product 
The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) is a quasi-global (50°S-50°N) 
infrared Cold Cloud Duration (CCD) based precipitation estimates (Funk et al., 2015). Main data sources 
for CHIRPS creation include CHPClim, quasi-global geostationary IR satellite observations from CPC and 
NCDC, TRMM 3B42 product from NASA, atmospheric model rainfall fields from the NOAA CFSv2 
and in-situ precipitation from various sources (Funk et al., 2014). 
  
The CHIRPS algorithm involves: i) creating infrared precipitation (IRP) pentad estimates from satellite 
information (i.e. based on 0.05° CCD) to represent sparsely gauged locations, then ii) expressing IRP 
pentad as a percent normal by dividing the values with their long-term averages, iii) resulting normal IRP 
pentad is then multiplied by corresponding CHPClim pentad to give CHIRP – unbiased gridded estimate, 
then iv) CHIRP is blended with stations data to produce CHIRPS (after Funk et al., 2015). The CCD-
estimates are calibrated using TMPA 3B42 v7 products. For this study, the CHIRPS Africa daily 
precipitation product at 0.05° resolution used are sourced from 
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ accessible as at November 2016.  

2.3.2. TRMM rainfall product 
The TRMM TMPA 3B42 version 7 dataset uses TMI orbit data (from 2A12 rain estimates) and monthly 
TCI calibration parameters (from 3B31 rain estimates) in adjusting merged-IR rain rates to produce 
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TRMM-adjusted merged infrared and root mean square precipitation-error estimates (Huffman et al., 
2016). Major data sources for the TMPA are precipitation-related passive microwave data from low-earth-
orbit (LEO) satellites and window channel (~10.7 µm) infrared brightness temperatures data from 
geostationary satellites. It also employs TCI estimates and monthly rain gauge analysis from GPCC and 
CAMS (Huffman et al., 2007). 
 
The TMPA estimates are generated by calibrating and combining precipitation-related microwave data to 
TRMM TCI; monthly microwave-IR histogram matching is then applied to compute IR precipitation 
estimates; which is used in filling missing data in individual 3-h merged microwave fields; then applying 
inverse-error-variance weighting, monthly totals of the 3-h multi-satellite are integrated with monthly 
GPCC rain gauge data producing TRMM 3B43; finally each of the 3-h field in the month are scaled by 
computing the ratio between satellite-gauge combination and multi-satellite product (Huffman et al., 2007, 
2010). This gives 3-h 3B42 estimates [mm h-1] at 0.25° spatial resolution with a global coverage of 50°N-
50°S. This dataset is only used to the extent of the study area and accessed from 
http://mirador.gsfc.nasa.gov/. 
 
According to Liu (2015), TMPA product is relatively better than its precursors in providing accurate 
estimates given substantial changes in its input datasets and algorithm, thus extensively used in research. 
Its key limitations however include consistent overestimation of calibrated microwave data (3-5% higher 
than 2B31 calibrator) and deficiencies in precipitation occurrence originating from introduction of IR data 
sources at different points (e.g. AMSU-B over 2000-2003). However, this is corrected at monthly scales 
(Huffman, 2013). 

2.3.3. CMORPH rainfall product 
The CPC Morphing technique (CMORPH) is based on morphing approach where passive microwave 
(PMW) derived precipitation estimates and infrared (IR) brightness temperature are blended to generate 
high resolution (~0.10°, latitude/longitude, ½-h) global (in longitude, 60°N-60°S) precipitation (Joyce et 
al., 2010). The geostationary satellite IR data used is retrieved from the European Meteosat-5/7 (at ½-h 
interval), US GOES-8/10 (every 3-h) and Japanese MTSAT (hourly). PMW information are generated 
from polar orbiting satellite such as TMI, SSM/I and AMSU. Tables 1 and 2 by Joyce et al. (2004) 
summarizes these geostationary and PMW sensors. 
 
The CMORPH dataset generation involves assembling all ½ h, 8-km combined PMW rainfall estimates 
from various sensors, calibrated to TRMM TMI 2A12; IR data is then used in deriving cloud system 
advection vectors (CSAVs) to spatially propagate forward and backward in time the combined PMW 
rainfall for every ½ h of the day; subsequently both forward- and backward-propagated rainfall are 
inversely-weighted by the respective temporal distance from observed PMW rainfall – producing the 
shape and intensity of precipitation at a location every ½ h (Joyce et al., 2004). This study uses CMORPH 
rainfall product at ½ h and 0.07° resolution from ftp://ftp.cpc.ncep.noaa.gov/precip/ archives. 

2.4. FEWSNET global potential evapotranspiration product 
The USGS Famine Early Warnings Systems Network (FEWSNET) PET provided daily global potential 
evapotranspiration used in evaluating suitability of FAO-56 calculated 𝐸𝑇0 for this study. It is estimated 
based on weather parameters extracted from Global Data Assimilation System (GDAS) analysis fields 
generated every 6 hours by NOAA – including air temperature, atmospheric pressure, wind speed, relative 
humidity and solar radiation (Maathuis et al., 2014). Standardized Penman-Monteith equation (2.1) (after 
Allen et al., 1998) is used in computing the 6-hourly global PET. This is then aggregated to give daily PET, 
𝜆𝐸𝑇 [mm d-1]. 
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where 𝑅𝑛 is the net radiation [MJ m-2 d-1], 𝐺 is ground heat flux [MJ m-2 d-1], (𝑒𝑠 − 𝑒𝑎) is air 
vapour pressure deficit [kPa], 𝜌𝑎 is mean air density at constant pressure [kg m-3], 𝐶𝑝 is specific 
heat of air [MJ kg-1 °C-1], ∆ is the slope of the saturated vapor pressure curve [kPa °C-1], 𝛾 is the 
psychrometric constant [kPa °C-1], 𝑟𝑠 and 𝑟𝑎 are the (bulk) surface and aerodynamic resistances [s 
m-1]. 

 
The PET data is available since 2001 at 1° spatial resolution with global spatial coverage (180°W to 180°E 
longitude, 90°N to 90°S latitude). This study uses daily FEWSNET PET at 1° grid size for 2001-2013 
retrieved from http://earlywarning.usgs.gov/fews/datadownloads/Global/PET/days. 

2.5. SRTM 90m digital elevation model 
The NASA Shuttle Radar Topographic Mission (SRTM) digital elevation model is a product of NASA’s 
SRTM in 2000 (Farr et al., 2007). It is offered and distributed free of charge by NASA/USGS through 
Earth Explorer (via USGS EROS Data Center accessible at http://earthexplorer.usgs.gov/) as a post-
processed 3-arc second (~90m resolution at equator) global elevation data. The SRTM 90m DEM’s 
geographical coverage is 60°N-57°S latitude by 180°W-180°E longitude. 
 
Selection of this digital elevation is motivated by its high resolution, less vertical error ~16 m as reported 
by CGIAR (1998) and availability in different formats (GeoTIFF, BIL and DTED) facilitating seamless 
data processing in GIS applications. Selected 90m resolution version is a trade-off between the size of the 
basin and desire of having a fine-scale raster DEM that better describes the hillslope flow paths required 
in modelling rainfall-runoff processes as Gumindoga et al. (2011) argued. The SRTM data used in the 
study is retrieved in GeoTIFF format from http://droppr.org/srtm/v4.1/6_5x5_TIFs/ at 5 x 5 degree 
tiles. 
 
  

 𝜆𝐸𝑇 =
∆(𝑅𝑛 + 𝐺) + 𝜌𝑎𝐶𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ + 𝛾 (1 + 𝑟𝑠
𝑟𝑎

)
 (2.1) 
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3. LITERATURE REVIEW 

3.1. Image re-sampling and scale issues 
Most spatial data are collected at variable spatial scales from a variety of sources and often they are 
incompatible. As a result, selecting an appropriate scale to use for specific remote sensing application 
usually is challenging (Gotway and Young, 2002). This is because, studying spatial information at one scale 
may differ on applying another scale. Furthermore, integrating such spatial information at multiple scales 
is increasingly becoming common leading to increased concern on scale issues. This requires unifying scale 
that permits merging and comparing spatial data from various sources and at multiple scales. In remote 
sensing, this is achieved through resampling.   
 
As Santhos and Devi (2010) describes, image resampling involves interpolating new pixel values of a raster 
image from existing pixel values whenever a raster image is rescaled (i.e. rows and columns modified) or 
re-projected to a different coordinate reference system. More often after geometric corrections, raster 
images only maintain their spatial extents but not spatial information stored within the pixels (e.g. 
measured precipitation, surface reflectance derived from respective sensors). This becomes a concern 
when dealing with satellite imagery where scientific interpretation and data integrity ought to be upheld. 
 
Nowadays, several GIS and image-editing applications exist offering variety of resampling techniques for 
computing new pixel values, the commonly used in remote sensing given in increasing order of complexity 
and accuracy are nearest neighbour (Cover and Hart, 1967), bilinear interpolation and cubic convolution. 
Each of these techniques have their own pros and cons, necessitating careful considerations driven by 
intended application of the resampled output, an understanding of error propagation and potential effects 
introduced on resampling satellite imagery. Besides, assessing how the interpolated and original pixel 
values correlate and how best their corresponding averages are preserved is a requisite. 

 
Figure 3.1: Schematic diagram showing nearest neighbour, bilinear and bicubic resampling principles. 

The nearest neighbour resampling determines the value of a pixel in a resampled raster by matching it to the 
corresponding position in an original raster. In case no corresponding pixel is available, the nearest pixel is 
used. For instance, in Figure 3.1 (a) considering the red and black grids as resampled and original raster 
images respectively, the value of the target pixel (dark blue) is determined by assigning it the value of the 
yellow pixel (i.e. nearest original pixel). 

Target pixel in resampled raster image Input pixel used in computing the new cell value 

Original raster image Resampled raster image 

c) Bicubic a) Nearest Neighbour b) Bilinear 
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The nearest neighbour method is useful because of its speed, simplicity and ability to preserve original 
pixel values hence widely suits discrete and sometimes continuous data. The method is, however, known 
to result in noticeable disjointed appearance and occasionally giving duplicate pixel values or omitting 
them thus considered least accurate interpolation method (Studley and Weber, 2011). 
 
In the case of bilinear interpolation, a linear distance-weighted average of four nearest pixels in the original 
raster closest to the target pixel is calculated applying a 2x2 kernel, as illustrated in Figure 3.1 (b). This 
method tends to smoothen the output raster grid and gives better positional accuracy than nearest 
neighbour method thus suitable for up-sampling. However, it introduces some blurring effect on the 
resampled raster edges. In addition, the method alters original pixel values through the averaging process 
introducing a new set of values never existing in the original raster; which may be undesirable for 
subsequent quantitative analysis (Santhos and Devi, 2010). 
 
The bicubic resampling (also known as cubic convolution), is similar to bilinear interpolation only that the 
target pixel value is calculated based on cubic distance-weighted average of sixteen surrounding pixels in 
the original raster as demonstrated in Figure 3.1 (c). This method produces a more continuous, smooth 
and accurate results with no disjoints than either bilinear or nearest neighbour resampling. In some cases, 
however, it may result in resampled pixel values that are outside the range of observed input values, 
including negative values (ESRI, 2016). A phenomenon that arises when cubic convolution fits a smooth 
curve to a local window with high deviance data (i.e. extremely different values across small distances) or 
applying unconstrained splines. In essence the algorithm can extrapolate data to maintain its full variation 
of the datasets. Another shortcoming is that resampling requires much computing time. 

3.2. Bias in satellite rainfall products and their correction 
Several studies reveal that accuracy of satellite rainfall products, when compared to gauge measurements 
are less impressive (e.g. Bhattacharya and Solomatine, 2015; Bhatti et al., 2016; Sun et al., 2012). Results 
from these studies suggest that SREs are contaminated with inherent random and systematic errors, which 
is directly linked to how the estimates are derived (Pan et al., 2010); the former tend to cancel out when 
products are considered at large spatial and temporal scale (Jobard et al., 2011). As described in Smith et 
al. (2006), this systematic difference between satellite and ground truth is commonly termed as bias, and 
computable based on equation (3.1) after Gosset et al. (2013). In the equation, 𝐺𝑖 and 𝑆𝑖 are daily rainfall 
series from gauge and satellite, while 𝑁 is the total number of days considered. 

As explained in Tian et al. (2009), this uncertainty associated with SREs can further be decomposed into a) 
hit bias: difference occurring when both satellite and gauge detect rainfall leading to under/over 
estimations; b) missed rainfall: total rainfall depth reported by gauge when satellite detects nothing, and c) 
false rain: occurring when satellite falsely detect rainfall. These error components are obtainable using 
equations in Table 3.1. 
  

 𝐵𝑖𝑎𝑠 [𝑚𝑚 𝑑−1] =
∑ (𝑆𝑖 − 𝐺𝑖)𝑁

𝑖=1
𝑁  (3.1) 
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Table 3.1: Satellite rainfall error components. 

Bias type Short description Equation 

Hit bias 

Total difference between satellite and 
gauge rainfall depths when both detect 
rainfall leading to over or 
underestimations. 

𝐻𝐵 = ∑(𝑃𝑠 − 𝑃𝑔)|(𝑃𝑠 > 0&𝑃𝑔 > 0)
𝑛

𝑖=1

 

Missed rain bias 
Total rainfall depth reported by gauge 
when satellite detects nothing. 

𝑀𝑅𝐵 = ∑ 𝑃𝑔|𝑃𝑠 = 0&𝑃𝑔 > 0)
𝑛

𝑖=1

 

False rain 
Total amount of satellite falsely detected 
rainfall. 

𝐹𝑅𝐵 = ∑ 𝑃𝑠|𝑃𝑠 > 0&𝑃𝑔 = 0)
𝑛

𝑖=1

 

where 𝑃𝑠 and 𝑃𝑔 are satellite and gauge based data at day 𝑖. 
 
Based on the above uncertainties, many efforts have been devoted to examine the quality of various 
satellite estimates versus in-situ observations around the world; that encompasses characterising and 
quantifying the errors (e.g. Alemohammad et al., 2015; Hong et al., 2006; Maggioni et al., 2013; Mei et al., 
2014; Tian et al., 2007). Examples in Africa include Dinku et al. (2008) and Jobard et al. (2011) focusing 
on East and West Africa respectively. The former evaluated 10 satellite products at monthly and decadal 
precipitation accumulations and found products’ accumulated errors to vary from 45 to 60% indirectly 
relating to time steps; while the latter found CMORPH to have a stronger positive bias out of 7 
operational products evaluated at 10-daily timescale. 
 
Some studies that evaluate CMORPH accuracy include Cohen et al. (2012) who found the product to 
overestimate rainfall volume over Zambezi River Basin as large as 40% at monthly time scale; Gosset et al. 
(2013) demonstrating this product overestimating daily rainfall in Niger by an average of 2 mm; Jobard et 
al. (2011) and Dinku et al. (2008) respectively showing it poorly performed in West Africa and Ethiopia 
exhibiting low linear correlations (~0.32) when decadal estimates were used. In western highland of 
Ethiopia, Dinku et al. (2010) show that CMORPH and TMPA overestimated rainfall occurrence by 13% 
and 11% respectively. Evaluating TRMM-3B42 v7 in Morocco, Tramblay et al. (2016) found the product 
adequately reproducing observed precipitation patterns (i.e. monthly and annual totals) but 
underperformed in detecting precipitation extremes in Nepal as shown by Duncan and Biggs (2012). 
 
Several studies (e.g. Dinku et al., 2008; Gumindoga et al., 2016; Habib et al., 2012; Yang and Luo, 2014) 
reveal that satellite rainfall biases are highly influenced by topography, location, season, rain type, 
elevation, and climatological factors; and manifest in the form of rain depths, occurrence and intensities. 
Carrying a study in the northern Russia, eastern coastal Canada and along Bering Strait coasts, Tian et al. 
(2007) demonstrated that negative biases in daily precipitation can be as large as 50-100% in cold seasons 
over high latitudes. Evaluating rainfall products over complex mountainous terrain, Ward et al. (2011) 
show that both PERSIANN and TMPA experienced difficulties detecting light rainfall amounts thus 
resulting in underestimates during the dry season. In the Great Rift Valley and Awash River Basin 
(Ethiopia), TMPA and CMORPH exhibited elevation-dependency showing rainfall underestimations at 
higher elevations (Hirpa et al., 2010). According to Yamamoto et al. (2011), PERSIANN exhibited large 
differences during winter whereas CMORPH overestimated rainfall in the pre- and post-monsoon seasons 
over Nepal Himalayas. These errors in rainfall products impair their use in water-related applications. It is, 
therefore, essential that they be assessed, corrected and adequately refined to improve their reliability 
(Aghakouchak et al., 2012; Habib et al., 2014). 
 
As discussed in several studies (Bhatti et al., 2016; Chen et al., 2013; Fang et al., 2015; Habib et al., 2014; 
Lee et al., 2015), many bias correction algorithms have been proposed to correct systematic errors in 
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SREs. Examples include mean based comparisons (Seo et al., 1999), quantile-matching (Li et al., 2010), 
spatio-temporal methods, distribution-based, power transformation bias corrections, and multiplicative 
shift technique (Ines and Hansen, 2006). The choice of any of the schemes is driven by desired accuracy 
levels of the bias corrected products, the application for which the bias corrected product is meant (Habib 
et al., 2014), and the accountability of spatial and temporal patterns in the bias. 
 
Globally, researchers continue to assess various bias correction schemes including performance of bias 
corrected products. For instance, Gumindoga et al. (2016) evaluated 5 bias correction schemes for 
CMORPH across 54 rain gauge stations in Zambezi Basin and found Distribution Transformation and 
Spatio-Temporal bias schemes to be effective in correcting mean values of CMORPH for the basin. The 
latter reduced CMORPH rainfall bias at ~70% of the stations. Power transformation scheme poorly 
performed for the upper Zambezi (with a RMSE ~10.1 mm d-1) for 1998-2013. In the study, a minimum 
of 5 rainy days within preceding 7-day window and at least 5 mm rainfall accumulated depth was used in 
bias factor calculation. Bhatti et al. (2016) in the Gilgel Abbay watershed (Ethiopia) proposed and 
identified 7-days sequential window approach as most effective in assessing and correcting CMORPH 
rainfall error distribution. In the procedure, a multiplicative shift technique that entails multiplying the 
uncorrected satellite estimates with spatially interpolated bias factor was applied. Aghakouchak et al. 
(2012) investigated systematic and random error components of CMORPH, PERSIAN and TMPA over 
different seasons, thresholds and temporal accumulations; concluding that spatiotemporal characteristics 
of errors should be considered in choosing appropriate bias correction procedure. Lafon et al. (2013) 
compared 4 bias correction techniques: linear, non-linear, empirical and γ-based quantile mapping; 
concluding that non-linear scheme is more effective in correcting daily precipitation simulated by 
HadRM3-PPE-UK, a regional climate model. 

3.3. Hydrological simulations 

3.3.1. Sampled hydrological modelling based on bias corrected data 
Apart from correction of errors in satellite products, their application in rainfall-runoff modelling 
application has gained attraction in hydrology. For instance, Habib et al. (2014) forced Hydrologiska 
Byråns Vattenbalansavdelning (HBV-96) with CMORPH bias corrected data based on 3 spatio-temporal 
schemes for the Gilgel Abbay catchment; and show that accounting for temporal variability largely 
influence rainfall-runoff simulations. Besides, observed hydrograph patterns and volumes were better 
captured when using bias corrected products instead. Chen et al. (2013) compared the performance of 6 
bias correction methods for hydrological modelling in North America using HSAMI and highlighted that 
hydrological model performance is highly dependent on suitable bias correction scheme adopted. Tian et 
al. (2007) forced Community Land Model version 3 (CLM3) land surface model with bias corrected 
precipitation and found bias corrections applied to induce snowfall accumulation which resulted in runoff 
and streamflow increasing by up to 0.6 mm d-1 and 25% respectively for most rivers in the northern 
latitudes. Errors in bias corrected precipitation were found to propagate in runoff modelling simulations 
by Teng et al. (2015). 

3.3.2. TOPMODEL application 
TOPMODEL, a topography-based variable contributing area conceptual model of Beven and Kirkby 
(1979), is among the many models used in hydrology to predict streamflow in data scarce environments. 
The model relies on catchment topography, soil transmissivity and slope for its distributed and semi-
distributed predictions of hydrological responses (Beven and Freer, 2001; Devia et al., 2015). Topography 
in the model is analysed by means of gridded elevation data (DEM) (Rientjes, 2015). Currently, the model 
supports the use of finer resolution raster DEM thus, better defined flow paths for rainfall-runoff 
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simulations (Gumindoga et al., 2011). The model structure consists of 3 soil layers: saturated, unsaturated 
and root zones. 
 
Among other governing equations detailed in (Beven and Kirkby, 1979; Rientjes, 2015), the model 
computes local storage deficit (𝑆𝑖) as a function of topographic index, 𝑇𝐼 in equation (3.2). 𝑇𝐼 values are 
directly proportional to local saturation degree (expressed as 𝑆𝑖 𝑚⁄ ) by large upstream contributing areas 
(Quinn et al., 1995). Since equal 𝑇𝐼 values behave in a hydrologically similar manner, the index is 
considered a measure of hydrological similarity of any point in the catchment (after Muhammed, 2012). 

where 𝑎 is, specific discharge contributing area, tan 𝛽 is the local topographic gradient and 𝑇0 is 
the effective soil transmissivity of top soil when saturated. 

 
According to Beven & Freer (2001) and Rientjes (2015), the model simplifies reality on dynamic flow 
behaviour across saturated flow domain by assuming that: 

a) the dynamics of the saturated zone are approximated by successive steady state representations, 
b) effective hydraulic gradient of the saturated zone can be approximated by the local topographic 

surface gradient (tan β), 
c) effective down slope transmissivity of a soil profile at a point is a function of soil moisture deficit 

at that point, and 
d) “saturation of the soil column occurs from below and as such runoff generated by the saturation 

excess overland mechanism” (Gumindoga, 2010). 
 
In Table 3.2, a summary of TOPMODEL parameters adapted from works of Gumindoga et al. (2014) are 
given. Previous studies (e.g. Gumindoga et al., 2014, 2011) indicate 𝑚 , 𝑇0 and 𝑆𝑅𝑚𝑎𝑥 as the most 
sensitive parameters for hydrological modelling. 
 

Table 3.2: TOPMODEL parameters (after Gumindoga et al., 2014). 

Parameter Description Equation 
𝑚[m] Scaling parameter that controls the rate of decline of transmissivity 

function which is a function of local storage deficit or depth to water 
table. Value range 0.001-0.05 

𝑇 = 𝑇0𝑒−𝑠𝑖 𝑚⁄  

𝑇0[m2/h] Effective transmissivity of top soil when saturated. Value range 0.01-
2.25 

𝑇 = 𝑇0𝑒−𝑠𝑖 𝑚⁄  

𝑡𝑑 [h] Time delay constant for infiltration to recharge the saturated zone. 
Value range 0.01-24 𝑞𝑣 =

𝑆𝑢𝑧

𝑆𝑖𝑡𝑑
 

𝐶𝐻𝑉[m/h] Overland flow velocity. Ranges are catchment specific 
𝑡𝑑 = ∑

𝑥𝑖

𝐶𝐻𝑉𝑡𝑎𝑛𝛽𝑖

𝑁

𝑖=1
 

𝑅𝑉[m/h] Stream flow velocity. Ranges are catchment specific 𝐸𝑎 = 𝐸𝑝(1 − 𝑆𝑅𝑍 𝑆𝑅𝑚𝑎𝑥⁄ ) 
𝑆𝑅𝑚𝑎𝑥[m] Maximum root zone available water storage capacity. Published range 

0-0.3 
𝑑𝑄𝑏

𝑑𝑡 =
𝑄𝑏

𝐴𝑆𝑚

𝑑𝑄𝑏

𝑑𝛿  

𝑄𝑏[m/h] Initial stream discharge representing base flow  
𝑆𝑅0[m] Initial root zone moisture deficit. Range 0.001-0.1  
𝐼𝑁𝐹𝐸𝑋[-] Flag for infiltration simulation. Activated when set to 1 to include 

infiltration excess calculations, otherwise 1 
 

𝐾𝑠𝑎𝑡  [m/h] Hydraulic conductivity and land surface that declines with depth  
𝜓𝑓[m] Effective suction head for infiltration excess flow calculations  
𝜃 [-] Change of water content across the wetting front  

 

 𝑇𝐼 = ln (
𝑎

𝑇0tan 𝛽) (3.2) 
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For hydrological simulations, the model requires these ASCII files: i) project file describing application 
and input file names and paths, ii) catchment data file with topographic index distributions and other 
parameter values in Table 3.2, iii) forcing input data (daily accumulations of precipitation, potential 
evapotranspiration and observed discharge as model calibration target), iv) topographic index map data file 
and v) distance to outlet file for routing channel and overland flows. 
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4. RESEARCH METHODS 

4.1. Methodological approach 
In the study, both in-situ hydro-meteorological and remote sensing data are used. The former was provided 
by Webster Gumindoga, a Ph.D. candidate at the WRS department, Faculty ITC while the latter were 
retrieved from respective providers’ archives discussed in sections 2.2-2.5. In-situ data consistency checks 
and completion were done by incorporating SASCAL WeatherNet information accessible at 
http://www.sasscalweathernet.org/. 
 
Focussing on assessing accuracies of satellite rainfall products, point-to-pixel derived estimates of 
CMORPH, CHIRPS and TMPA were compared with gauged counterparts from 6 stations across 
Kabompo Basin located in Zambia. The comparisons are carried out at 0.05°, daily scales, over dry and 
wet seasons and 6 rain rate classes for the period 2008-2012. Commonly applied evaluation metrics are 
computed, documented and analysed to understand how the selected products produce salient rainfall 
features seasonally and within different rain rate classes affecting rainfall-runoff responses. Such are 
detection capability indices (e.g. probability of detection (POD), false alarm ratio (FAR) and critical 
success index (CSI)) and frequency based statistics (e.g. root mean square error, bias estimates and 
correlation coefficients). 
 
Further focus is put on correcting prevailing errors in the rainfall products by adopting linear based 
(Spatio-temporal) and an additive (Distribution Transformation) bias correction schemes. Bias corrected 
rainfall estimates are then inter-compared to find the most optimal correction algorithm for the basin. 
 
The Topographic driven model (TOPMODEL) proposed by Beven and Kirkby (1979) is selected for 
illustrating how errors in the satellite rainfall products impact the basin’s water balance closure. Simulation 
runs were performed based on remote sensing and in-situ data. The key model forcing components are 
Thiessen polygon interpolated rainfall and FAO-56 𝐸𝑇0 estimates. Daily discharge time series served as 
model calibration target. The SRTM-90m resolution was used in DEM hydro-processing for calculating 
topographic index and generating distance to catchment file. The model was then initiated, manually 
calibrated and validated prior to performing water balance closure analysis. Figure 4.1 summarizes the 
conceptual framework and research sequence adopted. 
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Figure 4.1: Conceptual framework showing the sequence of research process and methodology. 
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4.2. In-situ data processing, completion and quality assessment 

4.2.1. Rainfall data 
Except for Kabompo, the daily rain gauge data is generally 1998-2013 for all stations. None of the stations 
have complete rainfall data with Kasempa missing more than 20% of the records as shown in Table 4.1. 
Available time series are, however, of sufficiently long period allowing assessment of effects of seasons on 
the satellite rainfall estimates. Furthermore, they overlap with period for SREs evaluated. Missing rainfall 
records, particularly for Kabompo were therefore completed by fitting a multiple linear regression 
equation (4.1) (after Michelle, 1997; Rientjes, 2015) to neighbouring stations’ records besides using 
SASCAL WeatherNet information accessible at http://www.sasscalweathernet.org/. 

where 𝑃𝑥 is estimated rainfall for 𝑥𝑡ℎ station, 𝛽0 is a constant, 𝛽𝑗  and 𝑃𝑗 are regression coefficient 
and precipitation value for 𝑗𝑡ℎ station, 𝜀 is an error term. 

 
Table 4.1: Inventory of gauge precipitation in Kabompo Basin showing year of data availability and gap analysis. 

      Station Coordinates of station  Altitude Period of data          Gaps 
ID Name Lat. Lon. [masl] Start End # % 
675430 Kabompo -1360 +2420 +1075 1/1/1998 30/04/2005 0 0 
676410 Kaoma -1480 +2480 +1213 1/1/1998 30/11/2013 575 9.89 
675410 Kasempa -1353 +2585 +1234 1/1/1998 31/12/2013 1729 29.59 
674410 Mwinilunga -1175 +2443 +1363 1/1/1998 31/12/2013 282 4.83 
675510 Solwezi -1218 +2638 +1386 1/1/1998 31/12/2013 1 0.02 
675310 Zambezi -1353 +2311 +1078 1/1/1998 31/12/2013 122 2.09 

 
For assessing the SREs, collected in-situ rainfall records are taken as ground truth, hence adopted without 
adjustments. Prior to completions, the normal annual rainfall of the stations range between 415.7 to 
1313.1 mm, with annual accumulated rainfall reaching 1600 mm as shown in Figure 4.2. 

 
Figure 4.2: Annual rainfall of the meteorological stations for 1998-2013. 

4.2.2. Potential evapotranspiration 
Daily potential evapotranspiration (𝐸𝑇0) is determined based on the widely accepted FAO-56 Penman-
Monteith method (Allen et al., 1998; Zotarelli et al., 2013). Several gaps, however, exist in meteorological 
records of relative humidity, air temperature, wind speed and sunshine as illustrated in Table 4.2. These 
were assessed and data completion done using expectation-maximization (EM) algorithm (Dempster et al., 
1977) in SPSS software prior to applying the FAO-56 equation (4.2). 

 𝑃𝑥 = 𝛽0 + ∑ 𝛽𝑗𝑃𝑗

𝑚

𝑗=1

+ 𝜀 (4.1) 
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where 𝐸𝑇0= reference evapotranspiration rate [mm d-1], 𝑅𝑛= net radiation flux at the crop 
surface [MJ m-2 d-1], 𝐺= sensible heat flux into the soil [MJ m-2 d-1], 𝛾=psychrometric constant 
[kPa °C-1], 𝑇= mean daily air temperature at 2m height [°C], 𝑢2= wind speed at 2m height [m s-1], 
𝑒𝑠= saturation vapor pressure [kPa], 𝑒𝑎= actual vapor pressure [kPa], 𝑒𝑠 − 𝑒𝑎= saturation vapor 
pressure deficit [kPa], ∆=slope of the saturated vapor pressure curve [kPa °C-1]. 

 
Table 4.2: Summary of potential evapotranspiration data gaps for the period 1998-2013. 

Station Missing Gaps (%) 
Wind speed Relative Humidity Temperature 

Kabompo 64.9 57.5 58.0 
Kaoma 50.4 24.5 77.4 
Kasempa - 82.1 16.3 
Mwinilunga 0.5 34.2 9.3 
Solwezi 0.3 4.3 37.8 
Zambezi 0.2 26.8 3.3 

 
The FAO-56 based 𝐸𝑇0 is evaluated against daily FEWSNET 𝐸𝑇0 at gauge station-level. This remote 
sensing data was downloaded via ISOD toolbox in ILWIS and subsequently resampled to area of interest. 
In order to subset the FEWSNET 𝐸𝑇0 product to Kabompo Basin and extract daily 𝐸𝑇0 pixel values from 
the GDAS grids, projection coordinates of Kabompo Basin in Figure 2.1 were used. Only three stations 
having at least 60% complete 𝐸𝑇0 variables (i.e. Mwinilunga, Solwezi and Zambezi) were used in 
validation. 
 
First, time series cumulative curves at the respective stations were visually inspected to help understand 
any accumulated error in the 𝐸𝑇0 estimates and reveal volumetric agreement between them. Secondly, 
time series plots were generated to observe deviations from the mean 𝐸𝑇0 calculated. Scatter plots were 
visually inspected to identify any over or underestimations tendencies from the FEWSNET 𝐸𝑇0 product. 
Lastly, commonly used performance indices (e.g. mean bias, mean absolute error and root mean square 
error) were applied to quantify the differences for the period 2008-2012. 
 
The mean bias in equation (4.3), helps evaluate the daily average differences between the FEWSNET and 
FAO-56 𝐸𝑇0 time series for the entire 5-years span. The positive and negative differences in the 𝑀𝐸 may, 
however, cancel out hence not showing the actual magnitude of over or underestimations. Therefore, 
mean absolute error in equation (4.4), was applied to obtain the absolute difference between the 
FEWSNET and FAO-56 𝐸𝑇0 time series. The root mean square error, equation (4.5), aids in getting a 
clear picture on the distribution of the differences. For detailed description on these indices, reference is 
made to (Chai and Draxler, 2014; Rientjes, 2015). 

where 𝑒𝑖 represents the differences between FEWSNET and FAO-56 based 𝐸𝑇0 estimates while 
𝑛 is the number of observations. 

 𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾 900

𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)
∆ + 𝛾(1 + 0.34𝑢2)  

(4.2) 

 𝑀𝐸 =
∑ 𝑒𝑖

𝑛
𝑖=1
𝑛  (4.3) 

 𝑀𝐴𝐸 =
∑ |𝑒𝑖|𝑛

𝑖=1
𝑛  (4.4) 

 𝑅𝑀𝑆𝐸 =  √
∑ 𝑒𝑖

2𝑛
𝑖=1

𝑛  (4.5) 



ASSESSMENT OF BIAS CORRECTED SATELLITE RAINFALL PRODUCTS FOR STREAMFLOW SIMULATION: A TOPMODEL APPLICATION IN THE KRB, ZAMBIA 

21 

4.2.3. Screening and correcting spurious discharge data 
The observed discharge time series for 1998-2013 were screened and unreliable records corrected. Initially, 
the hydrograph at Watopa Pontoon gauging station was visually inspected, and some records flagged as 
suspicious particularly at the onset and end of low flow phases as seen in Figure 4.3. These are, however, 
of short duration (i.e. less than 2 days). Due to absence of neighbouring gauge observation to aid in 
correcting the suspicious records, values preceding and succeeding an incorrectly identified record were 
linearly interpolated to obtain filled in discharge values. 

 
Figure 4.3: Rainfall and observed discharge daily time series (1998-2013) for Kabompo Basin showing spurious 

recordings and exceptional inconsistencies highlighted. 

As highlighted, exceptional inconsistencies between interpolated rainfall and discharge are identified, 
perhaps sign of either unique events, erroneous data or uncertainties introduced during rainfall spatial 
interpolation process. These are high peak events in the discharge without coinciding causative rainfall 
events or high intensity rainfall events without significant response to observed discharge. 
 
The pre-adjusted discharge time series were then checked for accuracy and consistency through 
comparison with spatially interpolated rainfall besides applying rainfall-discharge double-mass curve 
analysis (after Searcy & Hardison, 1960) as illustrated in Figure 4.4 (a). The principle applied by double-
mass curves is that, by plotting the cumulative rainfall versus corresponding discharge recorded at the 
same period and station, a consistent slope pattern should result. On visual inspection, a fairly consistent 
slope pattern is evident. 
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Figure 4.4: Rainfall - discharge relation using double-mass curves [x100 mm] (a) and the basin’s runoff responses for 

2000-2011 hydrological years (b). 

Further investigation of the runoff coefficients (equation (4.6)) at annual base for the period 2000-2011 in 
Figure 4.4 (b) reveal that on average 10.9% of rainfall received results in runoff production in the basin. 
This is variable for the hydrological years evaluated at ±1.5% margin and 0.9% standard deviation, 
perhaps due to catchment heterogeneity and variations in rainstorm characteristics such as intensities, 
duration and distribution. This low runoff coefficient also implies most of rainwaters in the catchment 
infiltrates into the soils thus delayed discharge peaks observed. No runoff coefficients’ outliers are present. 

As a final procedure in identify individual unreliable discharge measurements during the high rainfall 
events, incremental differences method was applied (after Rientjes et al., 2011). This involved, calculating 
the incremental or decremental differences of precipitation (∆𝑃) and corresponding observed discharge 
(∆𝑃) for each time step applying equations (4.7) and (4.8), then plotting the ratio of absolute precipitation 
differences against corresponding discharge differences, |∆𝑃| ∆𝑄⁄  for the period 1998-2013. 

Most of the |∆𝑄| ∆𝑃⁄  and |∆𝑃| ∆𝑄⁄  values lie close to zero while some appear as outliers as demonstrated 
in Figure 4.5. These were selected, inspected against the rainfall events and appropriately adjusted. 
 

 

 𝑅𝑢𝑛𝑜𝑓𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 [𝑚𝑚]

𝐴𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 [𝑚𝑚]  (4.6) 

 ∆𝑃 = 𝑃𝑡 − 𝑃𝑡−1 (4.7) 

 ∆𝑄 = 𝑄𝑡 − 𝑄𝑡−1 (4.8) 
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Figure 4.5: Showing the |∆Q|/∆P and |∆P|/∆Q ratios during 1998-2013 for Kabompo Basin. 

Figure 4.6 shows obtained hydro-meteorological time series in the basin corrected for spurious data. A 
consistent pattern of dry and wet seasons with base flows occurring in any year is shown. This is an 
indication of the Kabompo River being a perennial stream.  

 
Figure 4.6: Corrected rainfall and discharge time series in Kabompo Basin for 1998-2013. 

4.3. Selection of unifying resampling scale and method 
Prior to comparing the three satellite rainfall products: ½-h CMORPH, 3h-TMPA and 24h-CHIRPS 
discussed in section 2.3, they had to be of a uniform scale. Thus, resampling the satellite imageries was 
crucial. Three resampling techniques discussed in section 3.1, were tested on how best they preserve 
spatial information contained in the satellite imageries (e.g. pixel values and their averages) when 
resampled across different spatial scales (i.e. fine scale of 0.05°, 0.07° and coarser 0.25° pixels) for the 
period 2007-2008. 
 
Each of the interpolation methods were first evaluated based on their ability to reproduce satellite-derived 
estimates patterns in the basin. Then, the best resulting interpolation method was assessed against the 
three spatial scales. To assess their accuracies, quantitative metrics such as root mean square error 
(𝑅𝑀𝑆𝐸), mean bias (𝑀𝐵), Pearson correlation coefficients (𝑟) in equations (4.9) - (4.11) with detailed 
description in Chai and Draxler (2014), Jagalingam and Hegde (2015) and Yusuf et al., (2013) were used 
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besides computing averages and extreme-values. Qualitatively, scatter plots and graphical representations 
were visually inspected. 

where 𝐸𝑠𝑎𝑡 and 𝐸𝑟𝑒𝑠 are satellite and resampled estimates respectively, 𝑁 is the total number of 
data elements, while 𝜎𝑠𝑎𝑡 and 𝜎𝑟𝑒𝑠 are satellite and resampled estimates standard deviations. 

 
In this study, the 𝑀𝐵 is expressed as a percentage to give the mean difference between the satellite (as 
reference image) and resampled estimates. An ideal value of 0 is obtained when the two estimates are 
similar. Similarly, 𝑅𝑀𝑆𝐸 calculates the variations in the pixels with a value of 0 indicating resampled estimates 
to be close to their satellite counterparts. And, 𝑟 indicates similarities between the estimates with 1 as an ideal 
value. 
 
The investigation was carried out at 24-h, monthly and semi-annual time-steps. Besides, extreme rainfall 
rates (below 1 mm d-1 and above 20 mm d-1), the dry and wet seasons were assessed. Point to pixel 
method was applied in extracting the satellite estimates used in this procedure. 

4.4. Satellite-based rainfall estimates retrieval 
Each of the rainfall product imageries were downloaded from their respective archives listed in Table 2.2 
via GeoNETCAST ISOD toolbox in ILWIS GIS software available at http://52north.org/downloads. 
Except for CHIRPS available on daily scale, CMORPH and TMPA data are provided at ½-h and 3-h 
scales respectively. 
 
Customised ILWIS routines were then incorporated to download ½-h CMORPH rainfall product at 0.07° 
resolution from ftp site and process it to hourly values. Subsequently, the hourly images were aggregated 
to daily totals through ILWIS batch processing. This process sequence is summarized in Figure 4.7. 
Similarly, 3-h TMPA estimates with 0.25° resolution were downloaded, processed to hourly images and 
then aggregated to daily totals. This is to synchronize with daily accumulation time steps for available 
gauged rainfall for the period 2008-2012 applied in this study. 

 
Figure 4.7: Processing sequence for half-hourly CMORPH data at 0.07° scale to daily estimates. 

 𝑀𝐵 =
𝐸𝑠𝑎𝑡̅̅ ̅̅ ̅ − 𝐸𝑟𝑒𝑠̅̅ ̅̅ ̅

𝐸𝑠𝑎𝑡̅̅ ̅̅ ̅  (4.9) 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝐸𝑠𝑎𝑡 − 𝐸𝑟𝑒𝑠)2𝑛

𝑖=1
𝑛  (4.10) 

 𝑟 =
1
𝑁 ∑ (𝐸𝑠𝑎𝑡,𝑖 − 𝐸̅𝑠𝑎𝑡)(𝐸𝑟𝑒𝑠,𝑖 − 𝐸̅𝑟𝑒𝑠)𝑁

𝑛−1

𝜎𝑠𝑎𝑡𝜎𝑟𝑒𝑠
 

(4.11) 
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In retrieving daily SREs per pixel corresponding to the 6 rain gauge stations, a maplist of the imported 
images at daily time steps is generated and subset to area of interest. These images are geometrically 
corrected and registered to WGS 84 datum with the Universal Transverse Mercator zone 34S projection. 
To allow for satellite-gauge comparisons, resulting subset datasets are then spatially averaged to uniform 
space grids (based on section 4.3 results) and overlaid with stations point locations. This gives daily totals 
[in mm d-1] which is exported to MS Excel for subsequent analysis. 

4.5. Evaluation of SREs bias 
Existing systematic differences in the satellite rainfall products are calculated by comparing their rainfall 
estimates with reference to rain gauge observations as data indicating the true rainfall. The reference data 
is derived from 5 out of 6 stations in the basin for the period 2008-2012. Irrespective of the rainfall 
products’ native grid sizes, they are assessed at daily (24-h) time-step and 0.05° x 0.05° pixels. Daily 
accumulations are used not only because rain gauge measurements are available at this temporal scale, but 
also to ensure that random errors cancel out in the process based on Jobard et al. (2011) observation. 
 
The SREs performance in detecting rainfall distribution in the basin is evaluated by clustering daily gauge 
measurements into 6 rain rate classes (0-1, 1-2.5, 2.5-5, 5-10, 10-20 and above 20 mm d-1). Similarly, their 
seasonal dynamics in detecting and reproducing salient rainfall features during wet (November – March) 
and dry (April – October) seasons is assessed. 
 
First, accuracy and precision of the individual products on detecting rainfall events at every station is 
analysed based on three commonly used detection capability indices: POD, FAR and CSI described in 
details by Wilks (2006). These indices are computed based on contingency diagram in Figure 4.8 and 
equations in Table 4.3. POD indicates rainfall occurrence correctly detected and is defined as ratio of false 
alarm to total number of rainfall non-occurrence. It ranges from 0 to 1, with a perfect score of 1. FAR 
gives proportion of falsely detected rainfall occurrence by SREs. It ranges from 0 to 1 with a perfect score 
of 0. CSI measures the fraction of the number of correctly identified precipitation, with best and worst 
scores of 1 and 0 respectively. 

 
Figure 4.8: Visual representation of contingency diagram based on which detection capability indices are computed. 

Table 4.3: Detection capability indices computed for different SREs and seasons. 

Statistic Description Units 
POD Probability of Detection: Hits/ (Hits + Misses) [-] 
FAR False Alarm Rate: False Alarm/ (Hits + False Alarm) [-] 
CSI Critical Success Index: Hit/ (Hit + Misses + False Alarm) [-] 

 
Errors in the products, when compared with rain gauge observations, in terms of volume and rain depths 
were then quantified. This was done by calculating standard statistical scores measuring systematic 
differences (e.g. bias in equation (3.1)), accumulated error (e.g. root mean square error) and degree of 
linear agreements between the satellite and gauge series (e.g. correlation coefficients) (Haile et al., 2013; 
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Moazami et al., 2014) expressed in equations (4.12)-(4.15). Graphical summaries of the relative skills 
(particularly 𝑅𝑀𝑆𝐸, 𝑟 and standard deviations) were then generated using Taylor diagrams (Taylor, 2001) to 
compare how close satellite-based estimates match gauge observations in the basin.  

where 𝑃𝑠,𝑖 and 𝑃𝑔,𝑖 are satellite and gauge based data at day 𝑖; 𝑁 is the total number of data 
elements; 𝜎𝑠 and 𝜎𝑔 are satellite and gauge data standard deviations; 𝑃̅𝑠 and 𝑃̅𝑔 are satellite and 
gauge data mean values. 

 
The range for bias, relative bias, 𝑅𝑀𝑆𝐸 and 𝑀𝐵 is −∞ to +∞ with a perfect score of 0 (SREs = gauge-
based measurements) while that of 𝑟 is −1 to +1 with a perfect agreement score of 1 (Mashingia et al., 
2014). 
 
Lastly, the total bias in the products was decomposed into different sources i.e. hit bias, missed rain and 
false rain based on equations in Table 3.1 and expressed in mm d-1. This facilitated quantifying amount of 
water lost or added to water budget from hydrological viewpoint, inter-comparing the rainfall products 
and gaining deeper knowledge on the sources and nature of their bias. 

4.6. Satellite-based rainfall bias correction 
This procedure aimed at getting a new set of CMORPH, CHIRPS and TMPA daily estimates adjusted to 
match rain gauge observations. To achieve this, the respective daily satellite rainfall estimates are 
multiplied by bias factor estimated through these schemes: 

4.6.1. Spatio-temporal bias correction 
Here, space-time variant bias factor, 𝐵𝐹𝑇𝑉𝑆𝑉, is determined based on 7-day’s sequential window approach, 
proposed by Bhatti et al. (2016). This multiplication factor is only calculated for a certain day when a 
minimum of 5 mm rainfall accumulation depth and at least 3 rainy days within the preceding 7-days’ 
window is recorded, if not, no bias factor is assigned. Besides, no bias factor is assigned in cases when the 
gauge either had no records or continuous zero values. 
 
The space-time variant bias factor is then obtained by dividing the sum of the satellite-based estimates and 
the sum of the gauge observations estimated from equation (4.16).  

where 𝑆 and 𝐺 are satellite and gauge based data respectively; 𝑖 is gauge location; 𝑡 is julian day 
number; 𝑙 is length of a time window for bias correction. 

 

Relative Bias [-] 𝑅𝐵𝑖𝑎𝑠 =
∑ (𝑃𝑠,𝑖 − 𝑃𝑔,𝑖)𝑁

𝑖=1
∑ 𝑃𝑔,𝑖

𝑁
𝑖=1

 (4.12) 

Root Mean Square Error [mm d-1] 𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑠,𝑖 − 𝑃𝑔,𝑖)2𝑛

𝑖=1
𝑁  

(4.13) 

Mean Error [%] 𝑀𝐵 =
𝑃𝑔̅ − 𝑃𝑠̅

𝑃𝑔̅
 (4.14) 

Correlation Coefficient [-] 𝑟 =
1
𝑁 ∑ (𝑃𝑠,𝑖 − 𝑃̅𝑠)(𝑃𝑔,𝑖 − 𝑃̅𝑔)𝑁

𝑛−1

𝜎𝑠𝜎𝑔
 

(4.15) 

 𝐵𝐹𝑇𝑉𝑆𝑉 =
∑ 𝐺(𝑖, 𝑡)𝑡=𝑑−l

𝑡=𝑑

∑ 𝑆(𝑖, 𝑡)𝑡=𝑑−l
𝑡=𝑑

 (4.16) 
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In addition to the space-variant bias scheme, (i) time and space fixed, 𝐵𝐹𝑇𝐹𝑆𝐹, correcting for all time steps 
and pixels based on equation (4.17); and (ii) time variable, 𝐵𝐹𝑇𝑣𝑆𝐹, correcting at daily time step for every 
pixel based on equation (4.18) are applied. 

4.6.2. Distribution transformation 
As described in Gumindoga et al. (2016) but based on 5-day window, the differences in the mean values 
and statistical variations between SREs and gauge measurements are matched following steps in equations 
(4.19)-(4.21). First, bias correction factor for the mean, 𝐷𝑇µ, is determined based on equation (4.19). 

where 𝐺µ and 𝑆µ are mean values of 5-day gauge and particular satellite rainfall estimates for 
stations overlaying gauge locations. 

 
Then, bias correction factor for the variation, is determined by quotient of the 5-day standard deviations 
for the gauge (𝐺𝜏) and satellite based rainfall (𝑆𝜏) following equation (4.20). 

Finally, the correction factors are applied on daily SREs (𝑆𝑖,𝑡) to obtain bias corrected satellite estimates 
𝑆𝐷𝑇 using equation (4.21). The formula is modified to ensure retention of uncorrected satellite-based 
rainfall estimates in cases of negative correction satellite estimates. 

4.7. DEM hydro-processing and parameterization 
The SRTM 90m resolution DEM covering the study area was retrieved from specified source in section 
2.5. ISOD toolbox routine incorporated in ILWIS is used in this process where extracted GeoTIFF tiles 
are transformed into ILWIS raster formats. Prior to DEM hydro-processing (Figure 4.9), the extracted 
elevation data are mosaiced, sub-mapped to area of interest then resampled and projected in UTM zone 
34S with WGS84 datum and 1984 ellipsoid. 
 
Figure 4.10 a) shows the spatial variation of elevation for the Kabompo Basin. The elevation ranges 
between 1075 m and 1508 m, thus a little variation of ~500 m. 
 

 𝐵𝐹𝑇𝐹𝑆𝐹 =
∑ ∑ 𝐺(𝑖, 𝑡)𝑖=𝑛

𝑖=1
𝑡=𝑇
𝑡=1

∑ ∑ 𝑆(𝑖, 𝑡)𝑖=𝑛
𝑖=1

𝑡=𝑇
𝑡=1

 

 

(4.17) 

 𝐵𝐹𝑇𝑣𝑆𝐹 =
∑ ∑ 𝐺(𝑖, 𝑡)𝑖=𝑛

𝑖=1
𝑡=𝑑−1
𝑡=𝑑

∑ ∑ 𝑆(𝑖, 𝑡)𝑖=𝑛
𝑖=1

𝑡=𝑑−1
𝑡=𝑑

 (4.18) 

 𝐷𝑇µ =
𝐺µ

𝑆µ
 (4.19) 

 𝐷𝑇𝜏 =
𝐺𝜏
𝑆𝜏

 (4.20) 

 𝑆𝐷𝑇 = 𝐷𝑇𝜏(𝑆𝑖,𝑡 − 𝑆µ) + 𝐷𝑇µ𝑆𝜏 (4.21) 
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Figure 4.9: Drainage and catchment extraction schematic overview (modified after Maathuis and Wang, 2006). 

4.7.1. Flow determination 
The downloaded SRTM 90m DEM was useful in delineating drainage area including sub-catchments, 
extracting drainage network, elevation zoning besides generating topographic index (a key TOPMODEL 
input). The DEM hydro-processing thus involved: i) applying fill-sink operation on digital elevation map 
(Figure 4.10 a) to remove natural and artificial topographic depressions (Maathuis and Wang, 2006), where 
truncated streamflow pathways in the DEM domain are removed; ii) computing natural flow direction for 
each cell within the depression-free DEM (Figure 4.10 b) using the Deterministic-8 algorithm; then iii) 
based on the flow directions (Figure 4.10 c), the flow accumulation map (Figure 4.10 d) is calculated to 
find the drainage pattern of the terrain. 
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Figure 4.10: Showing original DEM, depression-free DEM, flow direction and accumulation maps. 

4.7.2. Drainage network and catchment extraction 
Using the flow-determination outputs, drainage network for the study area is extracted through drainage 
network routine. This routine joins nodes where ≥ 2 streams meet and assigns every stream unique IDs. 
In this case, the minimum drainage contributing area and drainage length applied are 5000 and 25000 
pixels respectively. Thereinafter, sub-catchments are constructed for every stream in the drainage network 
ordering map. Adjacent sub-catchments are then merged using the basin’s outlet location. Figure 4.11 
shows extracted drainage network and 5 sub-catchments. 
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Figure 4.11: Drainage network and sub-basins maps 

4.8. TOPMODEL application 
An IDL TOPMODEL code modified by Tom Rientjes from WRS department of Faculty ITC, to allow 
application in a distributed manner is used. This is a conversion of FOTRAN version of TOPMODEL in 
Beven and Kirkby (1979). This version of code has successfully been applied in Gumindoga et al. (2014), 
(2011); Muhammed (2012) and Roberto (2011). 
 
Application of this model favours this study because it makes hydrological predictions which are spatially 
distributed i.e. model parameters, inputs and outputs spatially vary in contrast with lumped HBV model. 
Unlike MIKE SHE, this model requires low number of parameters to obtain good hydrologic predictions 
thus relatively simple calibration with minimized optimization problems. Compared with physically based 
models (e.g. SWAT and MIKE SHE), TOPMODEL is simple and can easily be implemented in computer 
code. The model readily accepts the use of GIS and remote sensing data (e.g. DEM) as inputs 
(Gumindoga et al., 2014). Furthermore, it relies on topography which highly influences rainfall-runoff 
production. As argued by Devia et al. (2015), this model performs well in catchments characterised by 
shallow soils and undulating terrain. 

4.8.1. Spatial interpolation of rainfall distribution and other hydro-meteorological inputs 
In water balance assessments, rainfall is a key input. Rainfall records are, however, often incomplete due to 
several reasons including irregularly spaced gauging stations that restrict their application over large areas. 
In this study, for instance, the middle of the basin is fairly unrepresented. 
 
To determine which interpolation technique best suit estimating rainfall distribution in the basin, a 
preliminary test is conducted where a station’s rainfall is temporarily assumed unknown, one at a time. The 
assumed unknown rainfall is then estimated using Thiessen polygon method (Thiessen, 1911) and Inverse 
Distance Weighting (IDW; Shepard, 1968). In Table 4.4, a brief comparison of these two rainfall 
interpolation techniques is given. Each of the interpolated rainfall estimates are then cross-validated with 



ASSESSMENT OF BIAS CORRECTED SATELLITE RAINFALL PRODUCTS FOR STREAMFLOW SIMULATION: A TOPMODEL APPLICATION IN THE KRB, ZAMBIA 

31 

practical values recorded at the respective gauges. The daily rainfall record for February 2000 from six 
irregularly spaced rainfall stations is used. 
 
The accuracy of the spatial interpolation methods is evaluated by combining three regularly employed 
forecast accuracy measures: root mean square error (𝑅𝑀𝑆𝐸), mean absolute error (𝑀𝐴𝐸) and Pearson’s 
correlation coefficient (𝑟) defined in equations (4.22) - (4.24), further details in Chai and Draxler (2014). 
Both 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 indicate magnitude of extreme errors while 𝑟 assess whether interpolated rainfall 
fits observations or not. Besides historical relevance in statistical modelling, the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 are 
selected since they are dependent on scale of data in use, thus useful when comparing different methods 
applied to same data set as Hyndman and Koehler (2006) argues. Furthermore, 𝑀𝐴𝐸 is based on absolute 
error between the actual and interpolated values, ensuring terms being summed are non-negative, and 
error accumulates rather than cancel out. 𝑅𝑀𝑆𝐸 in contrast avoids use of absolute errors, but represents 
aggregated squared residual errors between quantities compared, hence magnified differentiability. 

where 𝑁 is the number of rain events, µ𝑜 and µ𝑐 represents the observed and corresponding 
interpolated rainfall depths at a time 𝑖, µ𝑜̅̅ ̅ and µ𝑐̅̅ ̅ are the mean values for observed and 
interpolated data, while 𝜎µ𝑜  and 𝜎µ𝑐 are the observed and interpolated data standard deviations. 

 
Table 4.4: A comparison of two rainfall interpolation methods. 

Method Thiessen polygons (nearest neighbor) Inverse distance weighting (moving averages) 
Reference (Thiessen, 1911) (Shepard, 1968) 
Transitions Abrupt Gradual 

Limitations 

No error assessments, only a single data 
point per polygon, thiessen polygon patterns 
formed depend on distribution of data. 

No error assessments, results highly depend on 
size of search window and weighting parameter 
chosen. 

Best for Nominal data from point observations 
Quick interpolation from sparse data on regular 
grid or irregularly spaced samples 

Assumptions Best local predictor is nearest data point Underlying surface is smooth 
 
The Thiessen polygon method assumes that the average rainfall value over the same Thiessen polygon 
area is equivalent to point value located at the centroid of the polygon. To form the polygons, the adjacent 
stations are connected and each side of the connecting lines vertically bisected. Areal average rainfall is 
then computed by weighting each station with their corresponding polygon area applying equation (4.25) 
(after De Silva et al., 2016). 

 
where ∑ (𝐴𝑗 − 𝐴𝑖)𝑁

𝑖=1  is Thiessen polygon area for the station with missing values, 𝐴𝑗 and 𝐴𝑖 are 
Thiessen polygon area when stations with missing values are excluded and included respectively, 
𝑃𝑖 is annual precipitation of adjacent stations and 𝑃𝑥 is estimated rainfall for the station missing 
observations. 

 𝑅𝑀𝑆𝐸 =  √
∑ (µ𝑜 − µ𝑐)2𝑛

𝑖=1
𝑁  

(4.22) 

 𝑀𝐴𝐸 =
1
𝑁 ∑|µ𝑜 − µ𝑐|

𝑁

𝑖=1

 (4.23) 

 𝑟 =
1
𝑁 ∑ (µ𝑜 − µ𝑜̅̅ ̅)(µ𝑐 − µ𝑐̅̅̅)𝑁

𝑡−1

𝜎µ𝑜
𝜎µ𝑐

 (4.24) 

 𝑃𝑥 =
∑ [(𝐴𝑗 − 𝐴𝑖)𝑃𝑖]𝑁

𝑖=1

∑ (𝐴𝑗 − 𝐴𝑖)𝑁
𝑖=1

 (4.25) 
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The IDW interpolated rainfall estimates are calculated based on values at neighbouring stations weighted 
by distance from the interpolation station. This method assumes that each observed nearby station has a 
local influence that diminishes with distance i.e. the weighting is a function of inverse distance. Thus, the 
estimated rainfall at unknown site is a weighted sum of rainfall values at N nearby sites. This estimated 
rainfall using IDW, 𝑃𝑥 is then defined by equation (4.26) modified after Noori et al. (2014). 

where 𝑃𝑥 and 𝑃𝑖 is the unknown and known rainfall data respectively, 𝑁 is the number of 
surrounding stations, 𝑑𝑖 is the distance from each rainfall stations to the location rainfall is being 
estimated, 𝛼 is the power/ control parameter. 

 
For preparing the forcing ASCII file for TOPMODEL application, Thiessen interpolated rainfall, 𝐸𝑇0 
estimates based on standardized FAO-56 Penman Monteith 𝐸𝑇0 method (Zotarelli et al., 2013) and 
corrected discharge time series as calibration target discussed in section 4.2 are used. 

4.8.2. The topographic index 
The topographic index map is calculated using the DEM hydro-processing products. As a key 
TOPMODEL input file, the topographic index (𝑙𝑛 (𝑎 𝑡𝑎𝑛𝛽⁄ ), aids in approximating likely local zones of 
saturation for runoff production. Where, 𝑎 is the specific discharge contributing area (in this case 𝑎=flow 
accumulation map x 90m grid resolution) and 𝑡𝑎𝑛𝛽 is the local topographic gradient (description after 
Quinn et al., 1995). 
 
The topographic index values range between 9 and 32 with most areas having 𝑇𝐼 values of 12, 13, 14 and 
15 and fractional area contribution of 11%, 21%, 33% and 13% respectively. Highest frequency of the 
pixels has topographic index of 13 as illustrated in Figure 4.12. Regions along streams are found to be 
associated with high topographic indices (≥27) implying zones of saturation thus potential subsurface or 
surface contributing areas. Comparatively, northern regions are predominantly having lower 𝑇𝐼 values 
(≤10) qualifying as runoff contributing areas. 

 

 

Figure 4.12: Topographic index map (left) and frequency distribution of the topographic index values (right). 

 𝑃𝑥 =
∑ 𝑃𝑖𝑑𝑖

−∝𝑁
𝑖=1

∑ 𝑑𝑖
−∝𝑁

𝑖=1
 (4.26) 
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4.8.3. Channel network routing 
Selecting discharge gauging point as catchment outlet, the catchment is sub-divided into 16 area-distance 
classes as shown in Figure 4.13, through ILWIS slicing procedure. This aids defining the time any water 
droplet, travelling in a straight-line distance, would take to reach the catchment outlet. In reality, water 
droplets travel time varies for sub-basins; in the model, however, routing of surface flow is done by use of 
distance-related delay (Gumindoga et al., 2014, 2011; Muhammed, 2012). Then, any water falling within 
the same sliced distance is assumed to reach the outlet with equal travel time interval. Furthest fractional 
area from the catchment outlet determined is 379 km – straight line distance. 

 
Figure 4.13: Area-distance map for channel routing in the Kabompo basin. 

4.8.4. Model parameterization, sensitivity analysis and validation 
The model was initialized, calibrated and validated by use of in-situ data before forcing it with bias 
corrected satellite rainfall estimates. The warm up period was from Sept. 2009 – Aug. 2010 whereas 
calibration covered the period Sept. 2009 through Sept. 2012. At calibration, the selection of first 
parameter values was done based on knowledge of sensitive model parameters from literature (e.g. Beven 
and Freer, 2001; Gumindoga et al., 2011) and best fits of simulated and observed hydrographs. 
 
In the calibration process, model parameters in Table 3.2 were manually optimized through a ‘trial and 
error’ optimization procedure. This involved, changing only the value of a single parameter at each model 
run. Baseflow recessions were first fitted, then peak flows of the simulated and observed hydrographs. 
Focus was then shifted on adjusting the rising limb, timing of the peak flows and streamflow volume to 
closely match target hydrograph. The model was then meteorologically forced with a different set of in-situ 
rainfall and evaporation data for the hydrological year 2007 to test and validate the optimal parameter sets. 
 
Performance of the model is graphically (through visual inspection of simulated hydrograph) and 
numerically analyzed using Nash-Sutcliffe coefficient of efficiency, 𝑅2 (Nash and Sutcliffe, 1970) in 
equation (4.27) and Relative Volume Error, 𝑅𝑉𝐸 (Janssen and Heuberger, 1995) in equation (4.28). 𝑅2 is 
for ‘goodness-of-fit’ assessment while 𝑅𝑉𝐸 is for mass balance checks. As indicated in Nash and Sutcliffe 
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(1970), 𝑅2 value of 1 shows a perfect simulation of observed discharge. Any value between 1.0 - 0.9, 0.9 - 
0.8, and 0.8 - 0.6 respectively signifies that the model performs extremely well, very well or reasonably, 
respectively. 𝑅𝑉𝐸 ranges from −∞ to +∞ with perfect value of 0 indicating model generating no 
differences between simulated and observed discharge volume. A well and reasonable model performance 
is indicated by 𝑅𝑉𝐸 of −5 to +5 and −10 to +10 respectively (Rientjes, 2015). 

where 𝑖 is the time step, 𝑁 is the total number of time steps, 𝑄𝑠𝑖𝑚 and 𝑄𝑜𝑏𝑠  the simulated and 
observed discharges at the 𝑛𝑡ℎ time interval respectively, 𝑄̅ mean value of observed runoff over 
the calibration period. 

 
To further assess model sensitivity, three most sensitive parameters were selected: soil hydraulic 
conductivity decay (𝑚), soil transmissivity at saturation (𝑇0) and root zone available water capacity 
(𝑆𝑅𝑚𝑎𝑥). Knowledge of most sensitive model parameters was obtained from literature (e.g. Beven and 
Freer, 2001; Beven and Kirkby, 1979; Gumindoga et al., 2011). This was done by varying each chosen 
parameter across its range while keeping the values of the other parameters constant, and results graphed 
for analysis. 
  

 𝑅2 = 1 −
∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2𝑁

𝑛−1
∑ (𝑄𝑜𝑏𝑠 − 𝑄̅)2𝑁

𝑛−1
 

 

(4.27) 

 𝑅𝑉𝐸 = (
∑ 𝑄𝑠𝑖𝑚(𝑖)

𝑛
𝑖=1 − ∑ 𝑄𝑜𝑏𝑠(𝑖)

𝑛
𝑖=1

∑ 𝑄𝑜𝑏𝑠(𝑖)
𝑛
𝑖=1

) 𝑥100 (4.28) 
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5. RESULTS AND DISCUSSION 

5.1. In-situ potential evapotranspiration validation 
Here, utility of FEWSNET potential evapotranspiration (𝐸𝑇0) product is evaluated. As mentioned in 
section 4.2.3, the comparison is at daily base for three stations having at least 60% complete observation 
records for the period 2008-2012. 
 
As shown in Figure 5.1, the FEWSNET 𝐸𝑇0 has consistent lower estimates than counterparts by FAO-56 
𝐸𝑇0 estimates by in-situ data. This underestimation goes up to a daily high of 0.74 mm (Table 5.1). Similar 
pattern is portrayed on visualizing the agreement between the daily estimates at station level using scatter 
plots e.g. in Figure 5.2, where higher FAO-56 𝐸𝑇0 estimates remain unreported by FEWSNET 𝐸𝑇0 
product. Particular for extreme low and high 𝐸𝑇0 estimates, scatter plots show a noisy-pattern implying 
pronounced variations between FEWSNET and FAO-56 𝐸𝑇0 estimates. 
 
FEWSNET 𝐸𝑇0 time series show a number of erratic events that cause inconsistencies in the time series 
pattern. A close volumetric coherence between FEWSNET and FAO-56 𝐸𝑇0 estimates is seen at 
Mwinilunga meteorological station. This, however, deteriorates at the other two stations considered, where 
an increasing accumulated difference between FEWSNET and FAO-56 𝐸𝑇0 estimates is exhibited. This 
gap steadily widens with time as shown in Figure 5.2 mass-curve plots. The magnitude of this accumulated 
error is estimated to range between 1.16 to 1.43 mm with daily average differences going up to 1.12 mm. 
Graphical representations for the remaining stations are given in Appendix A and Appendix B. 
 
Thus, based on the above-mentioned results, and focusing on reducing the influence of reported 𝐸𝑇0 
under-estimations in rainfall-runoff simulations, 𝐸𝑇0 estimates based on FAO-56 Penman Monteith 
method is selected. Furthermore, the use of FEWSNET 𝐸𝑇0 estimates as meteorological forcing in 
TOPMODEL simulation would require an upfront removal of existing bias. 
 

 
Figure 5.1: Daily variation of FEWNET and FAO-56 𝐸𝑇0 estimates at Zambezi station in 2001. 
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Figure 5.2: Cumulative plots for daily FEWSNET and FAO-56 𝐸𝑇0 (left panel) and scatter plot (right panel) for the 
period 2008-2012 at Solwezi station. 

Table 5.1: Statistical evaluation indices of FEWSNET ETo using FAO-56 𝐸𝑇0 as reference for the period 2008-2012. 

 
Mwinilunga Solwezi         Zambezi         

ME [mm d-1] -0.03 -0.74 0.13 
MAE [mm d-1] 0.87 1.09 1.12 
RMSE [mm d-1] 1.16 1.43 1.42 

5.2. Evaluating the accuracy of rainfall spatial interpolation 
From Table 5.2, it is evident that both Thiessen polygon and inverse distance weighting (IDW) 
interpolation techniques could not match the daily averages and accumulated monthly rainfall for all the 
tested stations. Except for Kasempa, IDW shows consistent lower accumulated rainfall than Thiessen 
polygon method that only had underestimations at Zambezi and Solwezi stations. 
 

Table 5.2: Evaluation descriptive statistics for Thiessen polygon and IDW interpolation methods for daily rainfall 
analysed at 5 different test locations. 

Evaluation coefficients Kabompo Zambezi Kaoma Kasempa Solwezi 
Inverse Distance Weighting (IDW) 

Total [mm] 205.9 187.9 196.3 244.7 164.6 
Average [mm d-1] 7.1 6.5 6.8 8.4 5.7 
RMSE [mm] 10.5 16.2 14.7 14.0 13.4 
MAE [mm] 7.1 10.6 8.4 9.0 7.4 
Pearson r [-] 0.39 0.01 0.16 -0.03 0.17 

Thiessen polygon 
Total [mm] 239.0 221.4 221.4 244.7 175.8 
Average [mm d-1] 8.2 7.6 7.6 8.4 6.1 
RMSE [mm] 16.4 16.4 15.9 14.0 14.0 
MAE [mm] 9.8 9.8 10.2 9.0 9.0 
Pearson r [-] 0.31 0.50 0.30 0.75 -0.26 

Gauge (reference) measurements 
Total [mm] 221.4 239.0 220.3 175.8 244.7 
Average [mm d-1] 7.6 8.2 7.6 6.1 8.4 
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Correlating analysis on the spatially interpolated rainfall and their observed counterparts at the stations 
indicate that Thiessen polygon exhibited a better agreement than IDW, with Pearson’s correlation 
coefficients between 0.26 and 0.75. Though IDW outperformed Thiessen polygon in giving lower 
estimate errors, the Thiessen’s magnitude of deviations from the monthly accumulated values and daily 
averages are relatively less. At Kasempa, both methods had similar performance with exception of 𝑟 
values. 
 
Thiessen polygon method was therefore adopted because of the above findings and showing a relatively 
good fit for estimating daily averages and accumulated rainfall in the basin. Furthermore, among other 
rainfall interpolation techniques, Thiessen polygon method considers sparse distribution of stations, and 
estimates rainfall contribution from adjacent stations without considering missing observations. This 
minimizes error propagation that may result from rainfall data completion. 
 
As an illustration, Figure 5.3 shows results obtained when IDW and Thiessen polygon methods are used 
to interpolated 18/02/2000 rainfall; while Table 5.3 summarises individual station’s contribution to areal 
rainfall estimates. 

  
Figure 5.3: Areal rainfall distribution in the Kabompo Basin for February 18, 2000 based on Inverse Distance 

Weighting (left) and Thiessen polygon techniques (right). 

Table 5.3: Individual stations Thiessen factor in determining basin's areal rainfall estimates. 

Station Area [km2] Thiessen weight 
Kabompo 22,480  0.3224 
Kaoma 5,636  0.0808 
Mwinilunga 22,168  0.3179 
Solwezi 7,126  0.1022 
Kasempa 12,016  0.1723 
Zambezi 311  0.0045 

5.3. Comparison of SREs resampling techniques across diffrent interpolating scales 
When daily TMPA and CMORPH rainfall rates are interpolated using bicubic method, negative values are 
noticeably introduced at all the three spatial scales for every site considered. These negatives are as high as 
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2.08 mm d-1 and cancel out at monthly and semi-annual scales, but not at seasonal event and extreme 
events analysis. Conforming to ESRI (2016), the negative pixel values arise from bicubic extrapolating 
rainfall rates outside the input value range when fitting a smooth curve to a local window having extremely 
varying values across small distances. Such a phenomenon can however be avoided by restricting 
interpolation data range during resampling process in ILWIS GIS software. In Figure 5.4, scatter plots 
between satellite estimates prior to resampling (at their respective spatial grids) and interpolated estimates 
based on the three tested methods are shown. 
 

   

   

   
Figure 5.4: Scatter plots of uncorrected CHIRPS, CMORPH and TMPA estimates versus nearest neighbour, bilinear 

and bicubic resampled estimates at 0.05° (green), 0.07° (red) and 0.25° (blue) grid sizes at Zambezi station (2007-
2008). 

Unlike nearest neighbour, both bilinear and bicubic interpolations had difficulties in reproducing the daily 
and monthly maximum TMPA- and CMORPH-pixel values in the basin (example in Appendix C). At 
least half of the tested sites reportedly had their maxima satellite-estimates underestimated, with bilinear 
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method that performs poorest. When 0.07° grid size was used, nearest neighbour only had a single count 
of inaccurate interpolation of monthly maximum TMPA-estimates. 
 
On applying nearest neighbour interpolation at 0.05° and 0.07° grid sizes, a plausible pattern for daily and 
monthly maximum CHIRPS-estimates is reproduced for one third of the tested sites. Again, investigating 
daily averages and accumulated CHIRPS-interpolated estimates based on nearest neighbour at 0.05° and 
0.07° grids, a fair match is observed while the other two methods show inconsistencies for at least half of 
the test sites. The corresponding root mean squares, mean bias and coefficients of variation are as shown 
in Table 5.4. In most cases, interpolating satellite estimates at 0.05° and 0.25° using the two latter methods 
revealed consistent under-estimations, whereas for grid sizes of 0.07° over-estimates for half of the tested 
sites is shown. 
 

Table 5.4: Minimum and maximum evaluation indices based on daily time-step assessment. 

Minimum evaluation scores 
Resampling method Nearest Neighbor Bilinear Bicubic 

Applied grid size [km] 5 8 25 5 8 25 5 8 25 

TM
PA

 RMSE [mm d-1] 0.00 0.00 5.27 1.82 1.53 3.66 1.88 1.58 3.93 
Coef. Of Variation [-] 2.27 2.27 2.20 2.13 2.14 2.11 2.21 2.22 2.18 
Mean bias [%] 0.00 0.00 -8.41 -3.08 -2.76 -6.13 -3.20 -2.47 -6.55 

C
H

IR
PS

 

RMSE [mm d-1] 6.41 6.68 6.53 6.46 6.64 6.50 6.52 6.68 6.54 
Coef. Of Variation [-] 1.69 1.72 1.65 1.65 1.65 1.64 1.67 1.67 1.65 
Mean bias [%] -0.64 -1.82 -3.04 -0.50 -0.97 -3.49 -0.78 -1.28 -3.69 

C
M

O
RP

. 

RMSE [mm d-1] 5.02 5.02 5.46 5.04 4.90 5.50 5.09 4.94 5.61 
Coef. Of Variation [-] 2.46 2.46 2.45 2.43 2.43 2.39 2.45 2.45 2.42 
Mean bias [%] 0.00 0.00 -12.93 -2.18 -2.38 -12.80 -2.23 -2.53 -13.86 

Maximum evaluation scores 

TM
PA

 RMSE [mm d-1] 9.92 9.92 9.92 9.70 9.80 9.42 9.90 9.91 9.65 
Coef. Of Variation [-] 2.56 2.56 2.54 2.43 2.46 2.42 2.53 2.54 2.51 
Mean bias [%] 0.00 0.00 0.00 1.15 0.93 1.15 1.34 1.24 1.34 

C
H

IR
PS

 

RMSE [mm d-1] 8.44 8.48 8.25 8.34 8.31 8.21 8.41 8.38 8.26 
Coef. Of Variation [-] 2.18 2.17 2.18 2.15 2.15 2.15 2.16 2.16 2.16 
Mean bias [%] 3.94 1.50 3.94 2.55 1.26 2.55 2.67 1.07 2.67 

C
M

O
RP

. 

RMSE [mm d-1] 9.69 9.63 9.95 9.68 9.57 9.70 9.72 9.61 9.83 
Coef. Of Variation [-] 2.95 2.95 2.93 2.91 2.83 2.86 2.93 2.87 2.89 
Mean bias [%] 0.00 0.61 5.76 0.84 2.18 4.53 0.23 1.36 3.84 

 
For 4 out of 6 tested sites, a consistent over-estimation of daily and monthly TMPA and CHIRPS pixel 
average values is shown by bilinear, bicubic interpolations – for all the three spatial resolutions and on few 
cases nearest neighbour when 0.25° grid size is used. Overall, interpolations based on 0.25° grid sizes 
exhibited the largest mean variations ranging between +25.58% to -26.25% over the wet seasons as 
expressed in Figure 5.5 and Appendix D. 
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NN: Nearest Neighbour; BL: Bilinear; BC: Bicubic resampling methods 

Figure 5.5: Respective interpolation methods’ mean bias expressed as a percentage of satellite estimates in the basin 
at daily, dry and wet seasons and extreme rainfall occurrence at Kabompo station at 0.05°, 0.07° and 0.25° grid sizes. 

Further investigations reveal that up to 83% counts of the daily accumulated TMPA-estimates are over-
estimated, mainly from bilinear and bicubic interpolations. Similarly, 4 out of 6 tested sites show an over-
estimation of monthly TMPA-accumulations from the two methods. However, there are a few cases of 
nearest neighbour over-estimating daily and monthly TMPA-accumulated estimates, but only when 0.25° 
grid size is used. Notwithstanding that nearest neighbour interpolation at either 0.05° or 0.07° grids 
sufficiently reproduces TMPA daily estimates with accumulated error ranging from 0 to 9.92 mm d-1 and 
relative standard deviation of 2.27 to 2.56 expressed as a ratio of the mean pixel values as shown in Table 
5.4. Improved coefficient of variations resulted when evaluations are based on monthly time-steps to as 
low as 0.04 from daily high of 2.95. 
 
On assessments based on dry and wet seasons, nearest neighbour interpolation at 0.05° and 0.07° grids 
exceptionally simulates the daily maximum, averages and accumulated TMPA- and CMORPH-pixel values 
for all the test sites, except for a single count. However, this is accompanied by varying mean bias errors 
up to + or - 26% and -24.54% for dry and wet spells respectively. Unclear seasonal patterns are portrayed 
by bilinear and bicubic interpolations in representing satellite-information. Compared to the other 
methods, nearest neighbour show a good match in reporting the extreme low and high TMPA and 
CMORPH rainfall rates. A few variations are however noticed on CHIRPS-rain rates when interpolated at 
0.07° grid sizes. 
 
For this application, then, interpolating the satellite-pixel values at either 0.05° or 0.07° grids and applying 
nearest neighbour method was found suitable. Comparatively, CHIRPS pixel values are better represented 
when interpolated at 0.07° grid sizes. Generally, interpolations at 0.05° conserves satellites’ pixel 
information better than 0.07° grids. Coupled with the desire to have the selected grid size of the datasets 
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fine enough to represent daily rain rates distributions for hydrological response simulations in the basin, 
nearest neighbour resampling technique at unifying spatial scale of 0.05° is thus selected. 

5.4. Satellite-based rainfall bias analysis and comparison 
Figure 5.6 shows annual accumulated rainfall (2008-2012) for CMORPH, TMPA and CHIRPS versus in-
situ rainfall with stations that are ordered according to elevation. It is noted that station observations 
represent point scale observations by the size of the gauge funnel whereas SREs are pixel estimates for 
pixels that overlay the respective rain gauges. Findings indicate no clear relationship between accumulated 
rainfall measured at the stations and elevation. Perhaps due to insignificant elevation differences among 
the stations considered i.e. less than 310 m. As shown, TMPA consistently surpassed gauge rainfall 
accumulations unlike CMORPH that exhibits a consistent underestimation of mean annual rainfall at 
every station. Except for Kasempa, CHIRPS also underestimate gauge rainfall accumulations but 
outperforms CMORPH product. 

 

Figure 5.6: Comparison of mean annual rainfall from different SREs and gauge observations (2008-2012). 

5.4.1. Rainfall occurrence analysis 
Predominant daily rainfall occurrence in the basin are light showers (less than 1 mm), for instance in 
Figure 5.7 (a). Keeping a threshold of 0.05 mm d-1, rainfall occurrence distribution at stations in and 
around the basin is shown in Figure 5.7 (b)-(f). 
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Figure 5.7: Frequency for rainfall rates (a) without and (b – f) with 0.05 mm d-1 threshold in the Kabompo Basin. 

For low rainfall rates of 0.05 to 1 mm d-1, a high variation between satellite and gauge rainfall occurrence is 
observed with CMORPH recording the highest differences found. CHIRPS, compared to the other 
rainfall products, mainly detect rainfall at 5 to 20 mm d-1 rate and becomes less skilful in detecting rain 
rates <2.5 mm d-1 and rainfall rates >20 mm d-1. The CMORPH product on the other hand frequently 
detects rainfall with low rain rate but with huge differences from gauge observations. Except for rates of 
10-20 mm d-1, most of the TMPA rainfall occurrence are found to be evenly distributed with minimal 
deviations. This remarkable performance of TMPA witnessed could be related to the substantial 
improvements the product has received over time on its rainfall estimates over sub-Saharan Africa, as 
argued by Gosset et al. (2013). 
 
Based on rainfall events detection, CMORPH has the highest number of rainfall hits, mainly found at 
Kasempa station agreeing with the relatively higher annual average rainfall observed in Figure 5.6. All the 
products experienced least number of hits at Kaoma (a low-level elevated station) and higher number of 
hits at Kasempa (a mid-level elevated station). At higher elevated stations (i.e. Solwezi and Mwinilunga), a 
higher number of missed and false rainfall counts are experienced. 
 
Figure 5.8 shows satellite rainfall detection skills computed for SREs investigated for dry and wet seasons. 
Irrespective of seasonal variations, CHIRPS product was less skilful in detecting rainfall occurrence 
compared to other rainfall products. During dry season, for instance, its rainfall detection reduced to 20%. 
This weak performance is supposedly related to CHIRPS being less skilful in reporting extreme low and 
high rainfall rates as shown in Figure 5.7. TMPA and CMORPH show similar detection skills but the 
former had a better score detecting up to 88% of rainfall occurrence during wet periods. 
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Figure 5.8: Detection skill score for investigated satellite rainfall products during (a) dry and (b) wet seasons 

As evident, detection capabilities of all the three SREs are better during wet than dry seasons, a clear 
indication of seasonal influence on the performance of rainfall products. Rainfall occurrence correctly 
detected during wet and dry seasons varies between 68-88% and 16-83% respectively. Again, falsely 
detected rainfall occurrence during wet season outnumbers those of the dry season. TMPA reportedly has 
the highest falsely detected rainfall occurrence up to 0.83 during the wet seasons. CHIRPS product best 
performs in terms of lowest falsely detected rainfall (FAR < 0.1 for dry period) closely challenged by 
CMORPH falsely detecting less than 13% of rainfall occurrence for the same period. 
 
The fraction of correctly identified rainfall in the basin is within the range 0.12-0.8. CMORPH shows the 
best CSI (~0.8 for wet period and an overall of 0.69) observed at Kasempa station whereas CHIRPS 
product has the least CSI of 0.47. Similar to the SREs’ POD pattern observed, critical success indices 
during the dry period are lowest. In a nutshell, TMPA has the highest POD, CHIRPS product shows the 
least FAR while CMORPH has the best CSI in the basin. 

5.4.2. Rainfall estimated depth 
Here, evaluation of the satellite rainfall products across the study area over two seasons and six rain rate 
classes are presented. Statistical measures including bias, root mean square error and Pearson correlation 
coefficients (discussed in section 4.5) are used in assessing systematic differences in the satellite products 
compared to gauge observations in terms of rainfall depths and volume. Table 5.5 gives these indices 
computed for the investigated rainfall products compared to gauge observations. 
 
Results show that a wide variation of the daily average, highest and accumulated rainfall depths between 
the gauge and three rainfall products exists. None of the products could match the gauge observation with 
CHIRPS possessing the largest daily deviation of 1.05 mm from the mean value during wet seasons. 
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Table 5.5: Frequency based statistics of daily estimates for the satellite rainfall products and gauged estimates in 
Kabompo Basin (2008-2012). Best performance when compared to gauge observations are highlighted in bold. 

    Lumped Dry season Wet season 

  
SD CV Mean Max Sum SD CV Mean Max Sum SD CV Mean Max Sum 

K
ao

m
a Gauge 7.53 2.82 2.67 102.2 4873 1.45 8.64 0.17 32.4 179 10.62 1.71 6.20 102.2 4694 

CHIRPS 5.29 2.07 2.56 36 4671 1.30 6.30 0.21 15 222 6.81 1.16 5.88 36 4450 
TMPA 7.81 2.56 3.05 118 5568 1.61 7.63 0.21 34 226 10.78 1.53 7.06 118 5342 
CMORPH 6.78 2.67 2.54 60 4631 2.08 8.65 0.24 39 257 9.32 1.61 5.78 60 4374 

K
as

em
pa

 Gauge 5.84 1.86 3.14 58 5736 0.76 5.24 0.14 9 155 7.14 0.97 7.37 58 5582 
CHIRPS 6.60 1.78 3.70 48 6760 2.13 5.98 0.36 28 382 7.79 0.92 8.43 48 6379 
TMPA 9.28 2.22 4.17 89 7623 3.28 7.11 0.46 57 492 12.07 1.28 9.42 89 7131 
CMORPH 6.96 2.58 2.70 132 4927 1.98 8.99 0.22 41 236 9.50 1.53 6.20 132 4692 

M
w

in
il.

 Gauge 9.13 2.58 3.54 121 6461 3.16 4.54 0.70 36 746 12.63 1.67 7.55 121 5715 
CHIRPS 6.86 1.98 3.46 56 6323 1.90 6.37 0.30 21 319 8.62 1.09 7.93 56 6005 
TMPA 7.69 2.33 3.30 63 6031 2.23 8.21 0.27 58 291 10.22 1.35 7.58 63 5741 
CMORPH 7.52 2.78 2.71 80 4946 1.77 10.13 0.18 44 187 10.50 1.67 6.29 80 4759 

So
lw

ez
i Gauge 9.65 2.57 3.76 124 6869 2.29 6.03 0.38 37 408 13.36 1.56 8.55 124 6461 

CHIRPS 6.00 1.68 3.56 45 6500 3.03 3.58 0.84 30 904 6.98 0.94 7.40 45 5596 
TMPA 8.47 2.22 3.82 111 6965 3.38 4.41 0.77 41 821 11.20 1.38 8.13 111 6144 
CMORPH 5.81 2.64 2.20 102 4023 1.73 5.14 0.34 23 360 8.09 1.67 4.84 102 3663 

Z
am

be
zi

 Gauge 9.43 2.92 3.23 121 5907 2.87 7.13 0.40 55 431 13.26 1.83 7.23 121 5476 
CHIRPS 5.47 1.95 2.81 44 5132 1.55 5.44 0.28 24 305 6.86 1.08 6.38 44 4827 
TMPA 8.20 2.34 3.50 72 6396 2.23 5.69 0.39 29 418 11.06 1.40 7.90 72 5978 
CMORPH 7.45 2.94 2.54 77 4633 2.19 6.91 0.32 35 339 10.51 1.85 5.67 77 4294 

 
Generally, the SREs underestimated the gauge rainfall depths. For example, with exception of Kasempa 
station, CMORPH largely underestimated the maximum and mean rainfall depths in the basin for the 
entire evaluation period and during wet seasons. On one occasion, the product missed accounting for up 
to 44 mm rainfall occurrence at Zambezi station. A similar revelation on visualizing scatter plots of gauge 
estimates against respective SREs (e.g. in Appendix E), where several data points are seen spread along the 
x and y-axes. Moreover, all the rainfall products were found to underestimate maximum rainfall depths for 
every station except Kasempa, where TMPA reportedly overestimated the maximum rainfall depth. 
Seasonal evaluation results show that maximum rainfall depths by TMPA are closer to gauge counterparts 
than those of CHIRPS, that has the largest drift. At every station, CHIRPS experienced difficulties 
matching extreme low rainfall depths, a similar tendency exhibited when this product is compared with 
either TMPA or CMORPH (in Appendix F). Notwithstanding non-linear correlation amongst the three 
rainfall products, both TMPA and CMORPH show some similarities in reporting daily rainfall depths.  
 
Expressing coefficient of variation (CV) as a ratio of standard deviation to mean rainfall depths at each 
station, TMPA exhibited the highest agreement with the gauge counterparts for the entire evaluation 
period but underperforms when evaluated at seasonal scales. It comparatively had the least disparities 
matching the respective standard deviations of the gauged estimates, with a daily deviation of 0.14-3.44 
mm. Finally, the CVs from all the products were consistently lower during wet than dry seasons. 
 
In Table 5.6, errors in the products in reference to gauge rainfall is shown. CMORPH shows the highest 
daily underestimation of up to 1.56 mm, while TMPA has the smallest daily bias (< 0.05 mm). In addition, 
CMORPH considerably underestimated seasonal rainfall depths with a daily variation of up to 3.7 mm. 
Results show that more bias exists during rainy season and high rainfall events than observable on no or 
little showers. An increase in bias with increasing rainfall depth is also evident, spanning up to daily 
underestimation of 29.32 mm during high rainfall events (>20 mm). When bias factor is defined for total 
rainfall depth detected by satellite against gauge observations, CMORPH shows least agreement with the 
gauge observations underestimating rainfall depth at overall bias factor of 0.79. TMPA follows with 
overestimations at 1.1 bias factor and CHIRPS best performing but with underestimation of 0.42 mm d-1 

(at 0.99 bias factor). 
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Table 5.6: Seasonal and rain-rate based biases [mm d-1] of satellite rainfall products in reference to gauge 
observations. 

Station Product Lumped Seasons Rainfall rates [mm d-1] 
Dry Wet 0-1.0 1.0-2.5 2.5-5.0 5-10 10-20 >20 

Kaoma 

CHIRPS -0.11 0.04 -0.32 0.96 3.85 2.94 -0.18 -5.78 -23.35 
TMPA 0.38 0.05 0.86 0.84 4.48 4.31 1.99 -4.06 -16.62 
CMORPH -0.13 0.07 -0.42 0.83 3.19 2.27 -0.51 -4.60 -20.32 

Kasempa 

CHIRPS 0.56 0.21 1.05 0.80 5.10 4.83 1.12 -5.29 -17.84 
TMPA 1.03 0.32 2.05 0.90 5.67 5.99 2.05 -4.39 -14.06 
CMORPH -0.44 0.08 -1.18 0.53 4.17 3.02 -1.73 -8.28 -17.76 

Mwinilunga 

CHIRPS -0.08 -0.40 0.38 1.51 4.52 3.01 -0.12 -3.18 -28.63 
TMPA -0.24 -0.43 0.03 1.42 3.87 1.77 0.68 -4.20 -27.81 
CMORPH -0.83 -0.52 -1.26 1.06 3.06 0.40 -0.36 -4.92 -29.32 

Solwezi 

CHIRPS -0.20 0.46 -1.14 1.59 5.53 4.74 0.44 -5.66 -24.68 
TMPA 0.05 0.39 -0.42 1.83 4.04 3.56 0.89 -4.67 -22.95 
CMORPH -1.56 -0.04 -3.70 1.06 2.01 1.19 -3.00 -8.85 -27.89 

Zambezi 

CHIRPS -0.42 -0.12 -0.86 1.23 4.62 2.56 0.18 -4.91 -27.25 
TMPA 0.27 -0.01 0.66 0.94 5.37 5.84 2.19 -1.68 -18.39 
CMORPH -0.70 -0.09 -1.56 0.67 2.26 4.02 -1.23 -4.74 -22.50 

 
Figure 5.9 shows a Taylor diagram based on daily rainfall time series from gauge versus satellite estimates 
for the period 2008-2012, using all the five stations. In the diagram, correlation between the satellite and 
gauge based estimates is denoted by the dark radial line while on the x and y axis, standard deviations are 
plotted indicating the amount of variance between the time series, proportional to radial distance from the 
origin. 

 
Figure 5.9: Taylor’s diagram of statistical comparison between the daily time series of rain gauge (reference) vs three 
SREs (T-CMORPH, P-CHIRPS and M-TMPA), period 2008-2012, for Kaoma, Kasempa, Mwinilunga, Solwezi and 

Zambezi stations in ascending orders (1-5). Position of the symbols relative to the origin indicates how close the 
satellite-based estimates match gauge observations. RMS differences are directly proportional to the distance between 

the centered RMS and the “REF” point on x-axis (further details, see Taylor (2001)). 

As can be inferred from the diagram, there is a weaker agreement (below 0.55) between gauge and SREs, 
with CMORPH ranging lower than 0.25 at Solwezi station. None of the products lie at the dashed arc, 
which signifies matchless standard deviations between the gauge and SREs. Besides, except for TMPA at 
Kasempa, all the other points of comparison fall below the mean standard deviation of 8.87 mm d-1. All 
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the SREs at various stations lie farther away from the reference RMS (marked “REF”) indicating high 
daily accumulated error range of 6.76-10.75 mm d-1. Individually, CHIRPS portray a closer match to 
indicated reference then TMPA and CMORPH. 

5.4.3. Rainfall bias decomposition 
Figure 5.10 shows decomposed satellite rainfall bias into hits, missed and false rain bias in terms of daily 
rainfall depths. As revealed, the main error source for CHIRPS is missed rainfall which likely originates 
from its less skilful nature in detecting extreme rainfall events as discussed in section 5.4.1. Similarly, 
TMPA and CMORPH products had their bias contributed mostly from falsely detected rainfall and hit 
bias respectively. 
 
Error sources for SREs were found to be seasonally dependent which conforms to Ward et al., (2011) 
findings. Hit bias prevails during wet periods whereas dry periods largely experience falsely detected 
rainfall. As shown, all the bias component contributed to overestimations, with exception of hit bias 
element when evaluated with(out) considering seasonal variations. 

 

 

 
Figure 5.10: Showing (a) lumped, (b) wet and (c) dry season total bias distribution for daily satellite rainfall estimates 

(2008-2012) in the Kabompo Basin. 
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5.5. SREs bias correction analysis 

5.5.1. Rainfall bias correction 
The total rainfall depth (2008-2012) for the gauge, uncorrected and bias corrected satellite products with 
corresponding mean inter-annual ratios of rainfall amounts for SREs against gauge are shown in Table 5.7. 
In the basin, space variant (TFSV), time and space variant (TVSV) and distribution transformation (DT) 
total rainfall depths are respectively found closer to gauged estimates, suggesting their effectiveness in 
correcting the total rainfall depths. As shown by ratios <1, time variant (TVSF) and time-space fixed 
(TFSF) results in underestimated rainfall depths, particularly for CHIRPS and CMORPH estimates. There 
are a few instances when uncorrected SREs outperform bias corrected SREs in reproducing rainfall 
depths (e.g. ratios of DT: 1.14 versus uncorrected CMORPH: 0.95) indicating how ineffective bias 
correction schemes can be. A similar result is shown in Teng et al. (2015) for the southern Murray–
Darling Basin, Australia. 
 

Table 5.7: Total rainfall depths and mean inter-annual ratios of rainfall amounts of SREs with(out) five bias 
correction schemes to corresponding gauge amounts (note: 1 is best) in the Kabompo Basin. Bold figures show most 

improved performance of the bias schemes per station. 

Total rainfall depth [mm] Ratio [-] 
    Kaoma Kasempa Mwinil. Solwezi Zambezi Kaoma Kasempa Mwinil. Solwezi Zambezi 
  Gauge  4,873  5,736  6,461  6,869  5,907    

    

C
H

IR
PS

 

Uncorrected  4,671  6,760  6,323  6,500  5,132  0.97 1.18 0.98 0.95 0.88 
DT  4,824  5,204  7,016  7,116  6,035  0.99 0.91 1.09 1.04 1.03 

TVSV  5,045  5,966  6,670  7,336  5,748  1.04 1.04 1.04 1.07 0.98 
TVSF 4,373  6,875  5,663  6,801  5,082  0.90 1.20 0.88 0.99 0.87 
TFSV  4,873  5,736  6,461  6,869  5,907  1.01 1.00 1.01 1.00 1.01 
TFSF 4,744  6,866  6,422  6,601  5,212  0.98 1.20 1.00 0.96 0.89 

TM
PA

 

Uncorrected 5,568  7,623  6,031  6,965  6,396  1.04 1.33 0.94 1.01 1.09 
DT 5,492  5,727  7,183  7,708  6,763  1.12 1.00 1.12 1.12 1.15 

TVSV 5,222  6,084  6,677  7,439  5,926  1.08 1.06 1.04 1.08 1.01 
TVSF 6,484  9,585  6,968  9,641  7,836  1.33 1.67 1.08 1.40 1.33 
TFSV 4,873  5,736   6,461  6,869  5,907  1.00 1.00 1.01 1.00 1.01 
TFSF 5,655  7,742  6,126  7,074  6,496  1.16 1.35 0.95 1.03 1.11 

C
M

O
RP

H
 Uncorrected 4,631  4,927  4,946  4,023  4,633  0.95 0.86 0.78 0.59 0.78 

DT 5,539  5,946  7,360  7,821  6,974  1.14 1.04 1.14 1.14 1.19 
TVSV  5,207  5,913  6,630  7,543  5,856  1.07 1.03 1.04 1.10 0.99 
TVSF 5,278  6,179  5,797  5,439  5,840  1.09 1.08 0.91 0.79 0.99 
TFSV 4,873  5,736  6,461  6,869  5,907  1.00 1.00 1.02 1.00 0.99 
TFSF 4,704  5,004  5,024  4,086  4,705  0.97 0.88 0.79 0.60 0.79 

 
In Figure 5.11, bias and relative bias values of the gauge, uncorrected and bias corrected satellite rainfall 
for the five schemes are shown. As evident and except for CMORPH estimates at 4 out of 5 stations, time 
variable bias values are exceedingly higher than those of uncorrected CHIRPS and TMPA rainfall 
estimates (e.g. TVSF: 2.11 mm d-1 vs uncorrected TMPA: 1.03 mm d-1). Notwithstanding, a general bias 
decrease for uncorrected satellite rainfall depths upon correction was noted, with TVSV outperforming 
DT and the rest of the bias schemes (e.g. from 0.56 mm d-1 to 0.13 mm d-1 for time-space variant 
correcting CHIRPS at Kasempa). Space variable bias scheme removes all the cumulative rainfall 
differences in the products. TVSF and TFSF have the highest relative bias values (up to 0.67). 
 
In Table 5.8, the statistical findings of the bias correction schemes in Kabompo are presented. As can be 
noted, the TFSV is more effective in correcting the mean values of the satellite rainfall, trailed by TVSV 
and DT bias factors. In terms of maximum rainfall values, the DT has a closer match to gauge 
observations than TVSV and other bias schemes in the basin. Large overestimation of the maximum 
rainfall depths is obtained from time variable bias factor correcting TMPA and CMORPH estimates (e.g. 
TVSF: 400.2 mm d-1 vs Gauge: 124.3 mm d-1). 
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Figure 5.11: Measures of systematic differences in gauge, uncorrected and bias corrected satellite rainfall for the five 

correction schemes in the Kabompo Basin. 

Table 5.8: Frequency evaluation coefficients for the gauge, uncorrected and bias corrected CHIRPS, CMORPH and 
TMPA. Bold figures show most improved performance of bias correction schemes from uncorrected SREs when 

compared against gauge observations. 

 
CHIRPS TMPA CMORPH 

 
B-Scheme Mean Max SD CC RMSE Mean Max SD CC RMSE Mean Max SD CC RMSE 

K
ao

m
a 

Gauge 2.67 102.20 7.53 
  

2.67 102.20 7.53 
 

  2.67 102.20 7.53 
  Uncorrected 2.56 35.63 5.29 0.43 7.08 3.05 117.70 7.81 0.48 7.87 2.54 60.00 6.78 0.45 7.55 

DT 2.64 60.92 6.43 0.59 6.40 3.01 79.97 7.26 0.72 5.54 3.03 101.33 7.47 0.72 5.65 
TVSV 2.76 59.48 6.22 0.51 6.89 2.86 74.57 7.35 0.60 6.69 2.85 57.10 7.58 0.55 7.18 
TVSF 2.39 49.79 5.70 0.56 6.39 3.55 187.55 12.29 0.47 11.02 2.89 136.57 10.06 0.48 9.27 
TFSV 2.67 37.17 5.52 0.43 7.14 2.67 103.00 6.84 0.48 7.38 2.67 63.13 7.13 0.45 7.71 
TFSF 2.60 36.19 5.37 0.43 7.10 3.10 119.53 7.93 0.48 7.94 2.57 60.94 6.88 0.45 7.60 

K
as

em
pa

 

Gauge 3.14 58.30 5.84     3.14 58.30 5.84     3.14 58.30 5.84     
Uncorrected 3.70 47.75 6.60 0.42 6.76 4.17 88.78 9.28 0.35 9.13 2.70 131.65 6.96 0.31 7.60 
DT 2.85 43.78 5.12 0.55 5.24 3.13 56.70 5.65 0.58 5.29 3.25 59.06 6.03 0.56 5.56 
TVSV 3.27 47.13 6.12 0.47 6.14 3.33 66.11 7.20 0.42 7.10 3.24 58.49 7.24 0.45 6.99 
TVSF 3.76 79.20 8.40 0.45 7.78 5.25 263.05 16.23 0.32 15.51 3.38 232.16 11.60 0.30 11.32 
TFSV 3.14 40.52 5.60 0.42 6.17 3.14 66.80 6.98 0.35 7.37 3.14 153.26 8.10 0.31 8.41 
TFSF 3.76 48.50 6.71 0.42 6.83 4.24 90.16 9.42 0.35 9.26 2.74 133.71 7.06 0.31 7.67 

M
w

in
ilu

ng
a 

Gauge 3.54 120.60 9.13     3.54 120.60 9.13     3.54 120.60 9.13     
Uncorrected 3.46 56.32 6.86 0.28 9.76 3.30 63.48 7.69 0.28 10.13 2.71 79.75 7.52 0.26 10.23 
DT 3.84 100.03 8.61 0.46 9.21 3.93 94.99 8.82 0.49 9.05 4.03 107.68 8.91 0.51 8.94 
TVSV 3.65 80.39 7.98 0.36 9.73 3.65 91.74 8.68 0.36 10.06 3.63 86.99 9.00 0.39 9.97 
TVSF 3.10 60.92 7.04 0.47 8.50 3.81 324.61 13.08 0.40 12.60 3.17 203.37 11.72 0.37 11.87 
TFSV 3.54 57.55 7.01 0.28 9.83 3.54 68.01 8.24 0.28 10.42 3.54 104.17 9.83 0.26 11.53 
TFSF 3.52 57.20 6.96 0.28 9.81 3.35 64.48 7.81 0.28 10.19 2.75 81.00 7.64 0.26 10.29 

So
lw

ez
i 

Gauge 3.76 124.30 9.65     3.76 124.30 9.65     3.76 124.30 9.65     
Uncorrected 3.56 45.17 6.00 0.35 9.41 3.81 111.34 8.47 0.30 10.75 2.20 101.95 5.81 0.24 10.11 
DT 3.90 113.22 8.56 0.51 9.05 4.22 102.61 9.15 0.47 9.66 4.28 120.16 9.86 0.43 10.42 
TVSV 4.02 71.67 7.71 0.45 9.26 4.07 72.05 8.67 0.43 9.81 4.13 102.96 9.92 0.39 10.83 
TVSF 3.72 57.51 7.61 0.43 9.36 5.28 400.20 18.09 0.26 18.22 2.98 179.70 10.56 0.25 12.39 
TFSV 3.76 47.73 6.34 0.35 9.50 3.76 109.80 8.36 0.30 10.69 3.76 174.07 9.92 0.24 12.05 
TFSF 3.61 45.88 6.09 0.35 9.43 3.87 113.08 8.61 0.30 10.82 2.24 103.54 5.90 0.24 10.14 
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Z
am

be
zi

 
Gauge 3.23 120.60 9.43     3.23 120.60 9.43     3.23 120.60 9.43     
Uncorrected 2.81 43.82 5.47 0.38 8.92 3.50 71.58 8.20 0.51 8.78 2.54 76.60 7.45 0.46 8.98 
DT 3.30 82.84 8.09 0.52 8.64 3.70 84.43 8.92 0.68 7.40 3.82 85.01 9.37 0.65 7.87 
TVSV 3.15 73.88 6.79 0.49 8.49 3.24 83.74 7.94 0.60 7.83 3.21 97.35 8.71 0.60 8.13 
TVSF 2.78 53.95 6.45 0.54 8.07 4.29 158.45 12.46 0.61 10.12 3.20 214.56 11.65 0.53 10.42 
TFSV 3.23 50.43 6.29 0.38 9.12 3.23 66.10 7.57 0.51 8.56 3.23 97.66 9.50 0.46 9.85 
TFSF 2.85 44.50 5.55 0.38 8.94 3.56 72.70 8.33 0.51 8.83 2.58 77.80 7.57 0.46 9.01 

 
The standard deviation of most of the bias correction schemes fall in the range 5.5 to 9 mm d-1. TFSF and 
DT perform better than the other schemes in giving standard deviations closer to gauge observations. 
However, deterioration of standard deviations post-bias correction is noted (e.g. DT: 9.86 vs uncorrected: 
5.81), which shows probable introduction of additional errors by these schemes. This observation is 
consistent with findings by Teng et al. (2015) confirming that bias correction can potentially introduce 
additional errors. Based on correlation coefficients, DT bias corrected rainfall shows a better agreement 
(up to 0.72 correlation) with gauge observations, followed by TVSF and TVSV schemes. Compared to 
uncorrected SREs, all the schemes yielded improved RMSEs for every station, except Solwezi, with DT 
consistently lower. 
 
Table 5.9 gives the percentage of days belonging to six rain rate classes for the gauge, uncorrected and bias 
corrected satellite rainfall. As evident, light showers (less than 1 mm d-1) are the most predominant 
accounting for more than 70% of rainfall occurrence. Heavy rainfall accounts for only 4.2% of the rainfall 
falling in the basin. Based on forgoing and in order of most effective bias correction methods, DT, TVSF 
and TVSV are found to be more appropriate in reproducing patterns of rain rates against gauged rainfall 
for Kabompo. 
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5.5.2. Seasonality influence on SREs bias correction 
DT is found more effective correcting for mean values and reducing differences between gauge and 
satellite rainfall than other schemes during the dry and wet seasons (Table 5.10). This bias correction also 
results in improved total rainfall depths but underestimation of total gauged rainfall during dry season is 
shown. Generally, all the bias schemes investigated have higher accumulated errors during wet seasons 
than dry seasons although for both seasons improvement over uncorrected rainfall is shown. Similarly, 
larger standard deviations are exhibited by these schemes for wet seasons with unsatisfactory performance 
from TVSF, TFSF and TFSF bias factors. 
 

Table 5.10: Frequency based statistics for gauge, uncorrected and bias corrected satellite rainfall for dry and wet 
seasons. 

    Dry season Wet season 
  Bias scheme Mean Max Sum SD RMSE Ratio Mean Max Sum SD RMSE Ratio 

 
Gauge 0.36 105.2 5969 8.32 

  
7.38 105.2 5586 11.40 

  

C
H

IR
PS

 

Uncorrected 0.40 23.6 426 1.98 2.70 0.069 7.20 45.7 5451 7.41 12.62 0.978 
DT 0.37 34.3 394 2.12 2.18 0.064 7.46 80.2 5645 9.69 11.67 1.009 
TVSV 0.42 33.5 452 2.30 2.75 0.073 7.53 66.5 5702 8.91 12.14 1.021 
TVSF 0.27 27.7 285 1.68 2.45 0.045 7.23 60.3 5474 9.29 12.10 0.979 
TFSV 0.41 24.0 437 2.02 2.69 0.071 7.31 46.7 5532 7.56 12.57 0.992 
TFSF 0.40 23.9 433 2.01 2.72 0.070 7.31 46.5 5536 7.53 12.67 0.993 

TM
PA

 

Uncorrected 0.42 43.7 450 2.55 2.94 0.073 8.01 90.6 6067 11.07 14.07 1.093 
DT 0.43 34.0 464 2.27 1.80 0.075 8.07 83.7 6110 10.50 11.27 1.095 
TVSV 0.45 46.3 485 2.68 2.85 0.079 7.64 77.6 5785 10.57 12.42 1.037 
TVSF 0.37 54.9 400 2.71 2.99 0.065 10.18 266.8 7703 20.87 20.66 1.379 
TFSV 0.39 40.3 415 2.33 2.76 0.067 7.34 82.7 5554 10.14 13.40 0.996 
TFSF 0.43 44.4 457 2.58 2.97 0.075 8.14 92.0 6162 11.24 14.18 1.110 

C
M

O
RP

H
 Uncorrected 0.26 36.4 276 1.95 2.57 0.047 5.75 90.0 4356 9.58 13.47 0.791 

DT 0.46 33.5 489 2.38 2.12 0.079 8.24 94.7 6239 11.06 11.66 1.118 
TVSV 0.34 38.7 362 2.28 2.53 0.059 7.75 79.2 5867 11.55 13.02 1.049 
TVSF 0.23 38.5 248 1.98 2.44 0.041 7.21 193.3 5458 16.24 16.91 0.987 
TFSV 0.34 46.0 367 2.51 2.90 0.061 7.40 118.5 5602 12.36 15.01 1.003 
TFSF 0.26 37.0 280 1.98 2.59 0.047 5.84 91.4 4424 9.73 13.54 0.804 

 
As observed, the effectiveness of each of these bias factors widely varies in the basin depending on 
evaluation indicator being considered. Overall, the three most effective bias correction schemes are DT 
(exhibiting highest CC > 0.7, least standard deviation of 0.52 mm d-1 and daily accumulated error range 
5.24-10.42 mm), TFSV for correcting mean rainfall and TVSV exhibiting the lowest daily bias < 0.09 mm 
respectively. This is consistent with Gumindoga et al. (2016) findings showing DT and spatial-temporal to 
be effective in correcting mean values of SREs for Zambezi Basin. 

5.6. Impact on TOPMODEL rainfall-runoff application 

5.6.1. Model calibration, sensitivity analysis and validation 
Table 2.1 shows parameter values used in initializing the TOPMODEL for the period between Sept. 2009 
and Aug. 2010. Initialization results suggested the model could well simulate baseflows, rising and 
recession curves of the hydrograph but posed difficulties in matching the peak discharges. Three 
dimensional plots in Figure 5.12 and Figure 5.13 represent sensitivity of the model to changes in 𝑚, 𝑇0 
and 𝑆𝑅𝑚𝑎𝑥 parameters that aided further fine-tuning the model performance for the period Sept. 2009 – 
Oct. 2012. 
 

Table 5.11: Parameter values used in initializing the model. 

Parameter m [m] T0 [m2/h] Td [h] CHV [m/h] RV [m/h] SRmax [m] Q0 [m/dt] SR0 [m] 
Value 0.035 4.2 28 1200 402 0.009 0.000109053 0.002 
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Figure 5.12: Showing effects of 𝑚 and 𝑆𝑅𝑚𝑎𝑥 parameters on model efficiency. 

 
Figure 5.13: Effects of 𝑇0 parameter on model efficiency. 

While keeping the initial parameter values in Table 5.11 fixed, soil hydraulic conductivity decay (𝑚) 
parameter was changed within the range 0.015-0.045. These changes directly influenced the Nash Sutcliffe 
(𝑁𝑆) efficiency and relative volume error (𝑅𝑉𝐸). For example, increasing 𝑚 from 0.015 to 0.045 resulted 
in improved model efficiency to 0.76 and reduced over-simulated water volume error by 3.86%. Smaller 
values of 𝑚 cause high peaks and virtually no to little base flows. This implies that, at low 𝑚 values, less 
effective soil depths is available for water infiltration, thus reduced sub-surface flows resulting in increased 
surface routing of water to the outlet as also noted by Gumindoga et al. (2011). 
 
Varying maximum root zone available water capacity (𝑆𝑅𝑚𝑎𝑥) values within range 0.0045-0.0135 
significantly affects 𝑅𝑉𝐸 . It results in 𝑅𝑉𝐸 changing from 72.9% for low values to -6.74% for higher values 
of 𝑆𝑅𝑚𝑎𝑥. The model efficiency is, however, not very sensitive to this parameter. But 𝑁𝑆 efficiencies 
become low (i.e. 0.02 and 0.57) at 0.0054 and 0.0135 values of 𝑆𝑅𝑚𝑎𝑥 respectively. Similarly, effective soil 
transmissivity at saturation (𝑇0) varied between 2.1 and 6.3 both decreases and increases model efficiency. 
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At low 𝑇0 values, a more satisfactory 𝑅𝑉𝐸 < 7.12% are obtained but show poor model performance (𝑁𝑆 
<43%). The above are the three most critical TOPMODEL parameters found for accurate streamflow 
simulations. 
 
Fine-tuning the model by incorporating the above sensitivity results yields hydrograph in Figure 5.14 and 
optimal model parameter values summarized in Table 5.12. Compared to observed streamflow, the model 
successfully reproduced the baseflows for all the years. Similarly, both the rising and recession limbs of the 
model hydrograph were well predicted on combining higher (𝑇0 > 4) and lower (𝑚 ≤ 0.03) values. 
However, the model could not fully predict high peaks; for instance, at the onset year, the amount of 
runoff simulated substantially exceed reality. This indicates either a shallow nature of the catchment thus 
low infiltration capacity or possible errors in spatial distribution of rainfall and discharge, a subject for 
further investigations. Alternatively, this could be related to errors in coupling optimal 𝑚 and 𝑇0 values 
governing effective soil depth and thus transmissivity decay. Furthermore, by setting the 𝑇0 value in the 
model, a homogeneous soil is assumed for the catchment; which likely varies for such a large basin. 
Attempts of further improving the peak flows only yielded compromised baseflows while deteriorating 
other parts of the simulated hydrograph. The model also achieved good timing of the peaks exhibiting 
reasonable performance at 𝑁𝑆 efficiency of 0.65 and 𝑅𝑉𝐸 of 10.03%. 

 
Figure 5.14: Calibration results for the Kabompo Basin (Sept. 2009 – Aug. 2012). 

Table 5.12: Optimal parameter values and model efficiency on calibration. 

m [m] T0 [m2/h] SRmax [m] NS [-] RVE [%] 
0.03 4.2 0.009 0.65 10.03 

 
The optimal calibration parameter values when applied to different hydro-meteorological dataset (Sept. 
2007-Nov. 2008) yields validation hydrograph shown in Figure 5.15. Generally, the model was able to 
simulate the patterns of recession curves and base flows of the hydrograph with a 𝑅𝑉𝐸 of 21.2% lower 
compared to 10.03% obtained during calibration. Similarly, the high peaks were moderately matched and 
timed with 𝑁𝑆 efficiency reducing to 0.57 from 0.65. However, the model could not match the rising limb 
of the observed hydrograph, particularly the onset of rainy period. 



ASSESSMENT OF BIAS CORRECTED SATELLITE RAINFALL PRODUCTS FOR STREAMFLOW SIMULATION: A TOPMODEL APPLICATION IN THE KRB, ZAMBIA 

54 

 
Figure 5.15: Validation results for the Kabompo Basin, Sept. 2007 - Nov. 2008. 

5.6.2. Model water balance closure based on remote sensing rainfall 
Comparison of simulated hydrographs based on uncorrected versus space-time variant bias corrected 
satellite rainfall instead of in-situ rainfall are shown in Figure 5.16 - Figure 5.18. The uncorrected rainfall 
products poorly simulated baseflows and could not properly model recession curves. A clear indication of 
bias in SREs propagating into streamflow simulations. For the uncorrected products, TMPA shows the 
highest model efficiency of 0.78 whereas CMORPH has the largest volume error (-16.42 %) for the 
simulation period of 2008-2012. 

 
Figure 5.16: Comparing streamflow simulations based on uncorrected and bias corrected TMPA rainfall estimates 

(Sept. 2009-Aug 2012). 
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Figure 5.17: Streamflow simulations based on uncorrected and bias corrected CHIRPS rainfall estimates (Sept. 2009-

Aug 2012). 

 
Figure 5.18: Streamflow simulations based on uncorrected and bias corrected CMORPH rainfall estimates (Sept. 

2009-Aug 2012). 

TOPMODEL calibration output based on bias corrected rainfall, except for CMORPH, results in more 
visually improved peak flows than both uncorrected satellite and in-situ rainfall. In addition to better 
captured hydrograph patterns, an improved volumetric error between 4.8% and 9.9% are achieved than 
when uncorrected rainfall (-16.42%) or in-situ rainfall (10.03%) is used. This is consistent with Habib et al. 
(2014) findings when they forced HBV-96 with bias corrected CMORPH rainfall in the Gilgel Abbay 
catchment. Resulting model efficiency in terms of 𝑁𝑆 both improved and deteriorated on using bias 
corrected rainfall. 𝑁𝑆 for CHIRPS improved to 0.67 whereas that of CMORPH reduced to 0.52 
compared to in-situ rainfall, but an improvement over uncorrected counterpart. For TMPA, corrected 
rainfall estimates show lower 𝑁𝑆 of 0.53 than uncorrected and in-situ rainfall. 
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Except for the delayed effect, the model simulates well the high peaks, recession curves, falling limbs and 
base flows of the hydrographs. The delayed effect, could be due to model infiltrating most of rainwaters 
into the soil. TMPA results in lower simulated streamflow than CHIRPS and CMORPH. Figure 5.19 
illustrates an inter-comparison of streamflow results from the three bias corrected rainfall. 

 
Figure 5.19: Streamflow simulation based on bias corrected (TVSV) TMPA and CHIRPS rainfall (Sept. 2009 – Aug. 

2012). 

Table 5.13 shows a comparison of water balance components obtained from the model based on in-situ, 
uncorrected and bias corrected satellite rainfall forcing. These are based on simulation results for the 
period 2009-2012, where the end of the dry season in 2009 marked the onset of the simulation period. All 
the three rainfall products (uncorrected and bias corrected) over-simulated accumulated rainfall, 
evaporation and root zone storage versus in-situ model forcing. Uncorrected SREs show higher over-
estimates than bias corrected estimates. Water balance closure errors presented represent the water 
balance equation residual term, and are expressed as percentage of precipitation, as the main model 
forcing. A clear improvement in water balance closure is shown on bias correcting the satellite rainfall 
estimates. However, correcting CMORPH resulted in deteriorating closure (4.2%) compared to that of in-
situ rainfall (1.9%) in the basin. 
 
Table 5.13: Kabompo Basin water balance components and closure error for TOPMODEL simulation (2008-2012). 

Water balance components [mm] In- situ 
Un-corrected Corrected 

TMPA CHIRPS CMORPH TMPA CHIRPS CMORPH 
Precipitation 2414 4006 3639 3026 2655 2649 2635 
Actual ET 1950 2424 2566 2440 2207 2199 2207 
Simulated Discharge 479.2 493.7 489.9 366.9 457.7 463.8 437.0 
Root zone storage deficit 9.0 69.3 100.0 97.8 16.8 20.2 23.4 
Upper zone storage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catchment deficit to saturation 52.4 1963.0 678.7 275.5 38.9 41.7 97.0 
Water balance Closure Error 46.2 3120.6 1361.8 592.4 46.0 48.1 111.4 
WB Closure Error, [%] 1.9 77.9 37.4 19.6 1.7 1.8 4.2 
NS [-] 0.64 0.78 0.60 0.45 0.53 0.67 0.52 
RVE [%] 10.03 11.82 11.82 -16.42 4.80 5.81 9.99 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 
A clear relationship between elevation and accumulated satellite rainfall measured in the basin could not 
be indicated in this study. Perhaps due to insignificant elevation differences between the gauge stations 
considered (i.e. less than 310m). That notwithstanding, most of the missed and falsely detected rainfall 
originated from higher-elevated stations (i.e. Solwezi and Mwinilunga). 
 
This study shows that detection skills of the rainfall products can be related to the dry and wet season 
periods. For wet seasons, rainfall is better detected than during dry seasons. However, in rainy seasons and 
in case of extreme rainfall events, bias was reported to be as large as 29.32 mm d-1. TMPA outperformed 
the other products with best detecting of 88% of rainfall occurrence in wet periods. 
 
Since CHIRPS is a blend-product of CHIRP and in-situ stations data, it was expected to outperform the 
other rainfall products in terms of detection skills. This was however not the case, and can possibly be 
explained by the omission of other rain gauge stations in and around Kabompo Basin. This except for 
Kaoma station that was used in the blending procedure by the product providers. A complete list of rain 
gauge stations used each month in the CHIRPS rainfall estimation algorithm is available at 
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-
2.0/diagnostics/list_of_stations_used/monthly/. CHIRPS detection skills in dry season reduced to 20% 
that directly can be contributed to the less skilful nature in detecting low rainfall depths. 
 
The SREs underestimates maximum and mean gauged rainfall. CMORPH shows the largest daily 
underestimation (1.56 mm) whereas TMPA has the lowest daily bias (less than 0.05 mm). Generally, 
CHIRPS and TMPA portrayed a closer match to gauged rainfall than CMORPH. CVs for the SREs were 
consistently lower during wet seasons than dry seasons. Error sources for SREs vary and are seasonally 
dependent, which conforms to Ward et al. (2011) findings. Wet seasons had the largest amount of hit 
rainfall and falsely detected rainfall than during dry seasons. 
 
This study also shows that effectiveness of the selected bias correction schemes varies depending on what 
indicator is of focus, coinciding with Habib et al. (2014) findings. Errors in the SREs reduced on bias 
correction with DT, TFSV and TVSV being the most effective methods. DT has the best correlation 
coefficient > 0.7 and low standard deviation of 0.52 mm d-1. TVSV shows the lowest daily bias (less than 
0.09 mm) whereas TFSV was the best for correcting mean daily rainfall. 
 
No perfect fit of observed discharge could be modelled by respective rainfall forcing types used. However, 
acceptable model efficiencies (evaluated on 𝑁𝑆 ≥ 0.6 and 𝑅𝑉𝐸 of ±10%) were obtained. TOPMODEL 
simulations based on bias corrected satellite rainfall estimates show visually improved hydrograph patterns 
than those by in-situ and uncorrected SREs rainfall. A clear improvement in water balance closure error is 
shown on bias correcting the satellite rainfall estimates to as low as 1.7%. in the basin. 
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6.2. Recommendation 
Based on the findings, further research on improving CHIRPS rainfall detection of extreme rainfall 
occurrence in the basin is encouraged. In addition, to improve the CHIRPS accuracy, omitted rain gauge 
stations need to be incorporated in its blending procedure, to improve its performance. 
 
Limited availability of rainfall gauges covering the extent of the Kabompo Basin was a major constraint in 
this study, and inconsistencies in the rainfall and discharge time series hampered streamflow simulation 
outputs. An increase in number of meteorological gauge stations across the basin, particularly for rainfall 
measurements, is recommended. Crucial for streamflow simulations in the basin are further investigations 
on spatial distribution of rainfall distributions and/or validating discharge records used, before concluding 
on TOPMODEL errors. 
 
This study assessed and concluded on the effect of seasonal variations on products’ rainfall detections. To 
improve the rainfall products’ accuracies thereby reducing systematic errors, further studies should assess 
how the seasonality effect can be incorporated in these products algorithms. 
 
Even though TOPMODEL requires modest number of calibration parameters, the ‘trial and error’ 
optimization procedure adopted in streamflow simulation was laborious. This would likely be facilitated by 
an automated calibration routine, but for further studies. 
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APPENDICES 
Appendix A Daily variation of FEWSNET and FAO-56 based 𝑬𝑻𝟎 estimates (2008-2011). 
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Appendix B Cumulative and scatter plots for daily FEWSNET and FAO-56 𝑬𝑻𝟎 estimates (2008-2012). 
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Appendix C Showing TMPA-imagery of 31/12/2008 when interpolated using nearest neighbour, bilinear and bicubic 
methods at 0.05°, 0.07° and 0.25° grids for a sub-catchment in Kabompo Basin. A clear indication of how 
resampling have difficulties reproducing maximum pixel values. 
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Appendix D Respective interpolation methods’ mean bias expressed as a percentage of satellite estimates in the 
basin at daily, monthly, seasonal and >20mm d-1 rainfall occurrence in the basin at 0.05°, 0.07° and 0.25° grid sizes 
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Appendix E Scatterplots of various satellite-based rainfall and in-situ measurements in Kabompo Basin. 
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Appendix F Scatterplots comparing performance of CHIRPS, CMORPH and TMPA in Kabompo Basin 

   

   

   

   

   




