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ABSTRACT 

Increased demand for food due to the rapid growth of population coupled with fierce competition from 

other sectors and uncertainty in climate change, has put tremendous pressure on agricultural water.  To 

meet food demands for the coming generations, the agricultural sector needs to use its water resource 

more efficiently. To meet this challenge, the production per unit water consumed, the crop water 

productivity needs to be improved.  To improve agricultural water use efficiency, FAO is developing a 

remote sensing tool (FRAME) at three different spatial levels; level -I (250m), level – II (100m) and level –

III (30m) to monitor agricultural water productivity for sustainable improvement of agricultural 

production.  

This study evaluated level –III (30m) water productivity data components of FRAME by comparing it 

with AquaCrop model output and in-situ data based on case study of Wonji sugarcane plantation.  

AquaCrop model was applied using 30 plots selected from the study area.  The plot by plot comparison of 

FRAME with in-situ data for sugarcane yield (AGB) gave RMSE (ton/ha) ranging from 2.97 to 24.12. 

While in terms of R2 it ranges from 0.03 to 0.99. Further comparison of FRAME with model revealed 

RMSE (ton/ha) ranging from 3.55 to 22.87 and R2 from 0 to 0.99. The analysis revealed that AGB 

estimated by FRAME has consistently under estimated in reference to in-situ data and model output. The 

overall average of seasonal AET over 30 plots estimated by FRAME and model is 1686 mm and 915 mm 

respectively with RMSE (mm/season) of 842. Analysis of dekadal time step between FRAME and model 

did not give significant correlation for both AET and AGB. The water productivity in terms of AGB 

computed from FRAME is 1.43 – 3.46 kg/m3 while the model estimate gave 2.49 – 5.39 kg/m3. As 

expected, the WP estimated from FRAME is lower than the model estimate. 

It is discussed that lack of sufficient data for reliable calibration of the  model was a limitation in this study 

and therefore recommendations are proposed including the need for more measured data, evaluation of 

FRAME in short growing cycle crop (rain-fed agriculture), and the need for further integration of remote 

sensing with AquaCrop for model calibration.  
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1. INTRODUCTION 

1.1. Background and problem definition 

The population of the world is expected to reach 7.9 billion, more than 80% of whom will live in 

developing countries (UN, 2015). This growth in population coupled with the expected rise in living 

standards will put a significant degree of stress on available water resources (Rijsberman, 2006).  A major 

challenge for the coming years is to provide a secure food supply for future generations given that 

majority of populations in developing countries are already undernourished (Zwart et al., 2010). 

Agricultural sector, the single highest consumer of planet’s accessible fresh water (Clay, 2004), is facing 

enormous pressures from increasing demand for food, fierce competitions from other sectors and 

uncertainties due to climate change resulting in situations where the agriculture sector is unlikely to be 

allocated more water in the coming years (Zwart et al., 2010).  Thus in such conditions increasing 

agricultural water productivity, a key indicator for evaluating agricultural water management (Wesseling & 

Feddes, 2006), is required to produce more food per drop to meet food demands for the coming 

generations.  

Agricultural water productivity is defined as the ratio of crop yield per unit of water consumption by 

evapotranspiration (Molden et al., 2010). In order to improve the performance of agricultural water use we 

need to understand the quantity, distributions and patterns of water productivity over a given area. In 

most cases, water productivity is assessed at plot or field level or determined from secondary crop yield 

and water use data, however actual evapotranspiration may be unknown and measurements may not well 

represent spatial variation (Bastiaanssen et al., 2000). This calls for development of new technologies for 

better water productivity to guarantee food security in the future. Recent advancements in earth 

observation techniques offer estimations of crop patterns, evapotranspiration, biomass, and yield 

accumulation both at greater spatial coverage and spatial detail at a regular time interval (Cai et al., 2009). 

Remote sensing based assessment of water productivity helps us to pinpoint areas of higher and lower 

water productivity and analyze the reasons for variability and assess the potentials for improvement 

through scientific research.  

To this end, FAO-FRAME is recently developing a publicly accessible database of biomass, actual 

evapotranspiration, water productivity and other datasets mainly derived from remote sensing covering 

Africa and the Middle East at spatial resolutions of 250 m ( level - I), 100 m (level - II) and 30 m ( level - 

III) starting from the year 2009. The aim is to help monitoring of water productivity, identifying water 

productivity gaps, proposing solutions to reduce these gaps and contributing to sustainable improvement 

of agricultural production (FAO, 2017).  If the reliability and accuracy of these datasets is considered 

acceptable, it will greatly help water managers, agronomists, farmers and all other concerned bodies in 
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making decisions on the best management practices according to practical situations and further improve 

sustainability in agricultural production. However, despite advancements in remote sensing there exist 

uncertainties and errors in those derived data sets mainly resulting from algorithms used for deriving 

biomass and actual evapotranspiration (AET), key variables used for water productivity (WP) estimation. 

As a result assessment of the level of the accuracy of those data sets is important.  

Given the above background, the main goal of this study is to evaluate level -3 (30 m resolution) FRAME 

data components that are used for estimating water productivity using AquaCrop model (model based 

validation) together with data gathered from the field. The study focused on Wonji sugar cane plantation 

located in Upper Awash basin of Ethiopia, one of the validation sites of FRAME (level -3).  

1.2. Objective 

The overall objective of this study is to validate the FAO-FRAME remote sensing based WP data 

components using AquaCrop model simulation and in-situ data. To achieve this, the following specific 

objectives were executed; 

 To calibrate and validate AquaCrop model based on in-situ data 

 To compare FRAME estimate of AGB  with actual field data 

 To compare FRAME estimate of AGB, AET and WP with AquaCrop model estimate 

1.3. Research question 

The main research question of this study is:  

 How well FRAME remote sensing based WP data components are correlated with in-situ data 

and AquaCrop model estimate? 
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2. LITERATURE REVIEW 

2.1. Agricultural water productibity (WP) 

The concept of water productivity in agricultural production system is based on “more crop per drop”, a 

key term in evaluation of agricultural water use and in its broader sense defined as the value or benefit 

obtained from the use of water (Kijne et al., 2003; Oweis et al., 2010). It is a useful tool when comparing 

the productivity of water in different parts of the basin and also when comparing the productivity of water 

in agriculture with other competing sectors (Zwart & Bastiaanssen, 2004). In the context of this study it is 

defined as kilograms of yield (or dry biomass) produced per unit of m3 water lost by evapotranspiration 

(equation2-1). 

 

     
 

   
        ) ----------------------------- (2-1) 

 

Where Y is the actual crop yield (kg/ha) and AET is the sum of water lost by soil evaporation and crop 

transpiration during the crop cycle (m3/ha). One can consider that crop water production is derived by 

transpiration only (i.e. only transpired water is used in a productive way). As the partitioning of 

evapotranspiration into crop transpiration and soil evaporation (which does not directly contribute to crop 

production) is difficult, defining crop WP in terms of evapotranspiration makes practical sense (Zwart & 

Bastiaanssen, 2004).  WP can be affected by several factors, such as crop cultivar type, water availability 

and climate, soil characteristics and management practices (Ali & Talukder, 2008). 

 Indicative WP values of various crops around the world was first compiled by (Doorenbos & Kassam, 

1979) and published on FAO drainage paper 33. More recently Steduto et al. (2012) have published WP 

values of various crops on FAO drainage paper 66 based on their review of the result of field 

experimental measurements reported in international literature. It has been reported that the recent WP 

values of most crops are higher than those of 1970’s, this was attributed to the development of improved 

crop varieties that are able to produce higher yields, drought and pest/disease resistant crops, improved 

soil fertility and land water management practices.  

2.2. Remote sensig of water productivity 

Over the past decades advancements in remote sensing and development of quantitative algorithms for 

converting raw data from sensor into useful information has greatly contributed to water resources 

research and applications especially in the agricultural sector (Schultz & Engman, 2000). The potential use 

of satellite data is of great importance for obtaining reliable and accurate, real time information on physical 

land surface processes especially over vast agricultural lands (Bastiaanssen et al., 2000). The derivation of 
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remotely sensed WP on the first hand requires conversion of remotely sensed spectral radiances into 

energy fluxes and estimation of crop parameters (biomass and yield).  And once those two parameters are 

derived, WP can then be easily estimated by using equation (2-1). Energy balance algorithms such as 

SEBAL(Bastiaanssen et al., 2000), SEBS (Su, 2002), METRIC (Allen et al., 2007) and ETLook 

(Bastiaanssen et al., 2012) can be used to derive AET from satellite images. ETLOOK is an algorithm 

used by FRAME project for calculation of AET. The details of the algorithm are not presented here as it 

is beyond the scope of this study and the reader is advised to consult the authors of the algorithm. 

 The idea of estimating crop production from RS was derived from Monteith(1972) who related that the 

plant biomass production is directly proportional to the photosynthetically active radiation (PAR) over the 

course of the growing cycle of the crop. PAR (0.4 - 0.7µm) which is a part of shortwave solar radiation 

(0.3 - 3.0µm) is the primary source responsible for production of crop biomass. PAR is absorbed by 

chlorophyll for plant photosynthesis and it regulates the net primary production (Bastiaanssen & Ali, 

2003).  The algorithm used for derivation of biomass production from satellite imagery is given in detail in 

Veroustraete et al. (2002)  and it has been implemented by FRAME project. By applying harvest index, i.e. 

the harvestable portion of above ground biomass, the yield can be estimated from biomass production.  

Increasing crop WP is one important way toward more efficient water use in agricultural production as it 

helps in achieving real water saving and thereby meeting food demands (Seckler, 1996). In order to define 

an action towards increasing WP one has to achieve two important steps. First, reliable and accurate 

mapping of current levels of WP at farm level, this requires knowledge of current levels of real farm 

conditions. Second, understanding of why such spatial variations of WP occur.   

Bastiaanssen et al. (2000), Cai et al. (2009), Ahmad et al. (2009), Blatchford (2016), Van Dam et al. (2006) 

and several other studies have used satellite data (high and low resolution) for mapping spatial variations 

of WP. In all those studies it has been stressed that RS has the strength of showing an overview of spatial 

variation of WP both at farm and regional scale thereby helping water managers to pinpoint where water 

resources are wasted and where WP can be improved. These achievements in RS has recently motivated 

FAO undertaking development of an operational and open access remotely sensed database covering 

Africa and Middle East (FRAME) to assess and monitor WP in real time.  However, one of the biggest 

problems of RS products is that they suffer from uncertainties. Therefore, it is important to validate and 

check the level of accuracy of RS products. Without validation, any RS products derived from any 

methods, models or algorithms cannot be used plausibly for agricultural, water resources or other intended 

purposes.  

2.3. Validation of remote sensing of water productivity 

Validation is defined as the process of determining whether the simulation model is an accurate  

representation of the real world for a particular purpose of the study (Law, 2006).  Validation is necessary 

for ensuring the quality of RS products before they can be further used for decision making. For 

validation of RS estimated WP, ground data (measured) of each component of water productivity: 
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evapotranspiration and yield are required.  Evapotranspiration is the key component of WP that has to be 

accurately measured or validated. The most common approach for validation of RS estimated AET 

primarily involves comparison of direct evapotranspiration measurements from lysimeters, Large Aperture 

Scintillometer (LAS), tower based energy flux measurement system using Bowen ratio methods and eddy 

correlation (Xiong et al., 2008). Data from these measurements can make a valuable contribution to boost 

confidences in RS estimates. Allen et al. (2011), Sun et al. (2012), Teixeira et al. ( 2009), Tasumi et al.( 

2005) have used ground measured data of ET using the above mentioned techniques to evaluate RS  

based ET estimates at various resolutions.  

In those studies it has been stressed that the level of accuracy of the RS estimates (the degree of 

correlation with observed data) mainly depends on the quality and spatial resolution of satellite images 

used, the quality of model (algorithm) employed, measurement precision, time of measurement (wet or dry 

season) and the land surface characteristics where measurements are taken. However, the above methods 

of routine direct field measurements of evapotranspiration are often difficult to conduct due to cost and 

time constraints as in the case of this study. Thus alternative methods based on crop simulation model 

which use weather data; for calculation of Penman-Monteith reference evapotranspiration (ETo) and crop 

coefficient (Kc) as described in Allen et al. (1998) can be used to indirectly validate remote sensing 

estimates.  

2.4. Crop models 

The need for crop growth and yield modelling has received  tremendous attention in recent times due to 

global climate change and food security problem emerging from high population growth (Castro Teixeira, 

2008). One of the main purposes of crop growth models is to simulate yield production as a function of 

weather parameters, soil conditions and land and water management practices. In the past few decades, a 

number of crop yield models such as WOFOST (Diepen et al., 1989), Daisy (Abrahamsen & Hansen, 

2000), DSSAT (Jones et al., 2003), APSIM (Mccown et al.., 1996), CERES (Wang et al., 2009) have been 

developed and applied at different scale in the simulation of crop development and production. However, 

these models are relatively sophisticated ( a large number of parameters) and require a detailed and 

extensive input data that are often not easily available for a diverse range of crops (Kim & Kaluarachchi, 

2015). Another widely used relatively simple model  is AquaCrop (Steduto et al., 2009) model developed 

by Food and Agricultural Organization (FAO) of the United Nations. This model provides a balance 

between detailed simulation models mentioned above and the simplicity of empirical functions described 

in Doorenbos & Kassam (1979) with low input requirement, applicability for a wide range of crops, 

reasonable accuracy, robustness and ease of use (Hsiao et al., 2009). As a result, AquaCrop model was 

selected for this study.  
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2.5. AquaCrop model 

AquaCrop is a water driven model designed for simulating green canopy and root growth under governing 

environmental conditions (Steduto et al., 2009).  It simulates daily water balances in the root zones and 

crop development with limited number of input requirement (air temperature, rainfall, ETo and CO2 

concentration).  AquaCrop separates ET into soil evaporation and crop transpiration to calculate the daily 

crop biomass and yield production whereas the first empirical model known as crop yield function 

(Doorenbos & Kassam, 1979) does not consider the separation between soil evaporation and crop 

transpiration. The separation makes it possible to avoid the confounding effect of non productive (soil 

evaporation) water consumption. The model has been successfully applied for a wide range of climate 

conditions, different soils and different crops throughout the world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The general simulation procedure of the model is described in figure 2-1. AquaCrop simulates the daily 

soil water balance by considering climate, soil, crop and management practices (field and irrigation).  The 

amount of water stored in root zone is calculated by accounting of incoming (rainfall, irrigation and 

capillary rise) and outgoing (runoff, ET, deep percolation) water fluxes at its boundaries. The amount of 

water stored in the root zone determines the magnitude of water stress affecting: (a) green canopy (CC) 

expansion, (b) canopy senescence and decline, (c) root system deepening, (d) stomatal conductance and 

transpiration, and (e) harvest index.  Apart from water stress, temperature stress reduces crop transpiration 

(f) and reduces harvest index (g) (figure 2-1). 

Figure 2-1: simulation steps of AquaCrop model. Dotted arrows indicate the processes affected by water stress (a to e) and 
temperature stress (f to g). CC is the simulated canopy cover, CCpot is the potential canopy cover, Zr is the root deepening, ETo 
is the reference evapotranspiration, GDD is the growing degree days, WP* is the normalized crop water productivity, and HI is 
the harvest index ( Raes et al., 2017) 



VALIDATION OF FAO-FRAME REMOTE SENSING BASED AGRICULTURAL WATER PRODUCTIVITY ESTIMATES 

 

7 

AquaCrop uses green canopy cover (CC) to express the foliage development. The CC and reference 

evapotranspiration (ETo) are then used with crop coefficient to calculate transpiration from plant and 

with the soil evaporation coefficient to calculate soil evaporation.  The model simulates the separation of 

yield into biomass and harvest index (HI). Crop yield is simulated as a product of biomass and HI 

(equation 2-3). Cumulative above ground biomass production is function of daily ratio of crop 

transpiration (Tr) and ETo and the normalized biomass water productivity (    ) (equation 2-2).  

Biomass water productivity is the slope of linear relationship between biomass and cumulative 

transpiration over growth cycle of crop. When normalizing it by evaporation demand of the atmosphere 

and carbon dioxide concentration of a certain place, WP* acts approximately constant (becomes 

conservative parameter) for a given species of crop ( Raes et al., 2017). 

 

             ................................................ (2-2) 

      ................................................................ (2-3) 

Where, B = cumulative aboveground biomass production (g/m2) 

     = normalized biomass water productivity (g/m2) 

Tr = daily crop transpiration (mm/day) 

ETo = reference evapotranspiration (mm/day) 

Y = yield production (g/m2) 

HI = harvest index (-) 

Raes et al. (2017) gives complete details of simulation procedure of AquaCrop model and the reader is 

advised to consult it. AquaCrop is available in different versions; standard window, plug-in, GIS and OS 

versions.  The choice of version for a particular study depends on the number of simulations required. 

The standard window version is available with user interface and it supports a single simulation at a time. 

The other three versions can help to make high number of simulations at a time and thereby providing a 

significant computational time savings as compared to original standard window version. For this 

AquaCrop plug-in (version 6) was selected.  
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3. METHODOLOGY 

3.1. Study area description 

The study focused on Wonji Shoa large scale sugarcane irrigation scheme located in Upper Awash basin, 

one of validation sites of level -3 FAO-FRAME project. Wonji Shoa scheme was the first commercial 

large scale irrigation scheme in Ethiopia. The Wonji sugar esate is situated downstream of Koka dam in 

central rift valley of Ethiopia, 110 km South East of Addis Ababa.  The source of irrigation for the 

scheme is the Awash River, a perennial river. The scheme is situated at 8021’- 8029’ N and 39012’- 39018’ E 

(figure 3-1) at average altitude of 1550m asl with area under cane of over 7000 ha (excluding currently 

expanded project areas).  Wonji plain is characterized by very gentle and regular topography making it 

most suitable for irrigation. Sugarcane is grown in the area mostly as monoculture.  Legume crops such as 

crotalaria and haricot bean are grown on heavy clay soils during the fallow period in case of cane after 

fallow system. These legume crops are usually used for increasing the fertility of fallow soils.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3-1: location of study site. The right picture indicates plots selected for AquaCrop model application and 
subsequent evaluation of FRAME 
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The climate of the area is characterised as semi arid. The main rainy season take place between month of 

June to September (figure 3-2). The rainfall of the area is erratic both in quantity and distribution. The area 

receives mean annual rainfall of 831 mm with mean annual maximum and minimum temperature of 27oC 

and 15 oC respectively while the peak daily evapotranspiration is 4.8 mm.  In general, the climate of the 

area is suitable for production of sugarcane.  

 

 
Figure 3-2: Average daily rainfall and temperature in month. (Source: observed climatic data for Wonji during period 2007- 
2016) 

3.2. Methodological framework 

The methodology followed to achieve the stated objective is summarized in figure 3-3.  AquaCrop plug-in 

(version-6) was selected because of two main reasons. Firstly, the model has to be applied for multiple 

plots (multiple simulations); 30 plots were selected for this study (figure 3-1). The selection was based on 

availability of crop production data that cover the period of 2009-2016 as purpose of evaluating FRAME. 

Secondly, the crop calendar of each plot is varying from cycle to cycle (this can be easily noticed from a 

sample of crop production data given in appendix A). Thus a separate project files and input files were 

created for each crop calendar (the model is run for each crop calendar separately). The model output was 

then compared with FRAME extract as basis of evaluating the accuracy of FRAME. A brief description of 

methods used in this study is given in the following sections.  
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Figure 3-3: Methodological framework adapted in this study 

3.2.1. Data collection 

During a three weeks visit to field, data relevant to application of AquaCrop model and subsequent 

evaluation of FRAME was collected.  These include weather, crop, soil, irrigation and field management. 

Thirty (30) plots were selected for analysis. The location of each selected plots were recorded using 

handheld GPS. Consequently, the shape files of each plot were created from Google earth. A brief 

description is presented below.  

 

Weather data 

The atmospheric environment of the crop is described in the climate module of the AquaCrop and deals 

with key input meteorological variables. The daily climatic data required for running AquaCrop model was 

collected from estate research centre. Rainfall (mm), maximum and minimum temperature (oC), relative 

humidity(%), sunshine hours(hr)  and wind speed(m/s) at daily time step for the period of 2007- 2016 

were collected. The wind speed measured at day and night was averaged to get mean daily values and the 

original unit of km/hr were converted into m/s. Similarly the relative humidity measured at 6hr, 12hr, 

15hr and 18hr are averaged to get for the mean daily relative humidity. The reference evapotranspiration 

was then calculated by ETo calculator program built within AquaCrop model based on FAO Penman-

Montheith equation described by (Allen et al.,1998) (equation 3-1).  The program also offers a method for 

estimating missing climatic parameters. In case of missing rainfall and temperature a data from nearby 

weather station was used. The model also requires annual atmospheric CO2 concentration. Default CO2 

concentration of Mauna Loa in Hawaii given by AquaCrop model was used in this study.   
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------------------------------ (3-1) 

 

where ET0 = reference evapotranspiration rate [mm.day-1], Rn = net radiation at the crop surface [MJ.m-

2.day-1], G = soil heat flux density [MJ.m-2.day-1], T = mean daily air temperature [°C], u2 = average wind 

speed at 2 m height [m.s-1], es = saturation vapour pressure [kPa], ea = actual vapour pressure [kPa],  Δ = 

slope of the vapour pressure curve [kPa.°C-1], and  γ = psychrometric constant [kPa.°C-1].  

 

Crop data 

The crop module of AquaCrop has five major components: phenology, canopy development, root 

deepening, production of biomass and harvestable yield. All these parameters can be measured from the 

field at regular time interval throughout the growing season of the crop. However, for this study due to 

lack of time for regular measurement coupled with long growth cycle of crop under study,  historical data 

of fresh cane yield and field sugar yield together with planting/harvesting date for a period of 2007- 2016 

was used as a basis for model calibration. A factor of 0.3 as a dry matter content of sugar cane (Steduto et 

al., 2012) is applied  to fresh cane yield to obtain dry above ground biomass. Average harvest index was 

then calculated as the ratio of the dry biomass to field sugar yield from time series data of the selected 

plots. For estimation of initial canopy cover, the plant and row spacing were measured. Apart from this, 

information on general crop management practices like, initial field conditions, crop cultivars, fertilizer 

and pesticide applications, weeding and harvesting mechanisms were gathered.  

Soil 

The soil type distribution over sugarcane field is shown in figure 3.4. The soil texture of the study area is 

generally classified as heavy textured (clay) with high soil moisture holding capacity and medium/coarse 

textured soils with low water holding capacity (loam and sand). AquaCrop model requires the number of 

soil horizons present and the physical characteristics of each horizon such as the soil water content at field 

capacity, permanent wilting point and saturation and the saturated hydraulic conductivity. This can be 

obtained by field soil sampling (profile pit excavation) and soil laboratory analysis at the expense of time 

and resource. For this study no field sampling was run and measurements are not available. Thus, the 

physical characteristics of the soil was estimated using pedo-transfer function described in Saxton et al. 

(1986) and a single soil horizon was assumed for AquaCrop model application.  
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Figure 3-4: soil type distribution of Wonji plantation (Ruffeis et al., 2006) 

 

 

Ground water  

The groundwater table of the area is characterised as shallow and spatially and temporally varying (Dinka 

& Ndambuki, 2014). Thus for application of AquaCrop model the presence of groundwater table is taken 

into account. However, there is no clear-cut information about the depth of groundwater table below the 

soil surface.  Dinka & Ndambuki ( 2014) stated that about 90% of the plantation is affected by water 

logging problem due to shallow ground water table and they revealed that the depth of groundwater table 

in the plantation is approximately 1.5m on average based on ground water monitoring conducted over the 

period of 2007-2009.  Their study also revealed that there is no significant difference of groundwater table 

depth between summer (rainy season) and winter (dry season). The shallow groundwater depth in 

plantation and Wonji area in general is as result of seepage losses from storage reservoirs, channels, Lake 

Koka reservoir and frequent over irrigation. Though, the current groundwater table depth may differ from 

the finding of Dinka & Ndambuki ( 2014) due to lack information on current status of groundwater 

approximate depth of 1.5m was assumed in this study.  

.  

Irrigation 

Blocked end furrow type of irrigation is used to irrigate sugarcane fields of both estate and out growers 

expect for newly expanded areas which use centre pivot sprinkler irrigation system. Irrigation is diverted to 

field canals from Awash River using centrifugal pumps. Irrigation is run from beginning of October to 

end of June. Irrigation application volume and intervals vary depending on the type of soil and the growth 
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stage of crop. Generally the gross application rate is 30 lit/sec for low plant canes and 75 lit/sec for high 

plant canes and ratoons. Duration of irrigation lasts for 9 hr (the output is 1.5 ha). The interval of 

irrigation application varies from 15 days for sand soil, 25 days for loam soil and 30 days for clay soil. 

Depending on the condition of rainfall irrigation is usually delayed for one day for every 5 mm depth of 

rainfall (if rainfall occurs during irrigation season). This was due to the fact that the long term average 

evaporative demand of study area is 4.8 mm/day. Irrigation is shut off roughly about two months prior to 

harvest (pre harvest drying off) to facilitate for movement of vehicles and man powers for easy harvesting.   

Irrigation water quality is generally very good (< 2 ds/m).  This locally collected information was put into 

irrigation module of AquaCrop model. Since AquaCrop model does not take into account irrigation losses, 

an application efficiency of 60% was assumed based on FAO irrigation guidelines.  

 

Field management  

Irrigation is applied immediately after planting in order to ensure proper germination of cane and reduce 

delay in germination. So when running AquaCrop model the initial condition is assumed as soil water 

content at FC.  Practices like mulching and soil bunds are not present in the study area. Weed 

management practices, soil fertility level, pest and disease control are assumed optimal for application of 

AquaCrop model.  

3.2.2. AquaCrop model Sensitivity analysis 

Sensitivity analysis helps us to investigate how the variation in model output can be attributed to changes 

in input parameters,  guiding us to where calibration has to be focused (Pianosi et al., 2016).  If changes in 

values of input parameters have minor effects on model output, that input data have insignificant effect 

on the result and it is termed as less or non sensitive.  Thus to study the behaviour of AquaCrop model to 

changes in model parameters (inputs) sensitivity analysis was carried out. This was done by altering non 

conservative crop parameters and the soil conditions by ±10 and ± 20 %. First AquaCrop model was run 

with default parameter values and the result was considered as the basic output. Then for each next run 

one parameter at time is changed and the others kept constant. The relative changes in simulated biomass 

for each change in model parameters were used for assessment by graphical approach. Sensitivity analysis 

was then followed by model calibration.  

3.2.3. AquaCrop model calibration and validation 

Calibration is the process of adjusting model parameters to reach a best agreement between measured and 

simulated variables (Pianosi et al., 2016). The four important parameters required for calibration of 

AquaCrop model are; canopy cover, soil moisture content, above ground biomass and yield. These 

parameters are typically available through ground measurements conducted at different stages of growth 

cycle of crop.  The effort to conduct ground measurements of these parameters can be costly, labor 

intensive, and time consuming as the data needs to be collected over a complete cropping cycle.  
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The AquaCrop model has been parameterized and crop database has been constructed for many crops 

including sugarcane (Steduto et al., 2012).  The parameterization and testing of model for variety of crops 

under different local conditions has led to establishment of conservative parameters (parameters which do 

not change significantly with locations). For better simulation result conservative parameters still needs to 

be calibrated however, that requires extensive measurement on experimental fields. As result, for this 

study conservative parameters are retained and calibration focused on non conservative/cultivar specific 

parameters.  

To calibrate AquaCrop model in-situ cane production data for the year 2007-2016 were used. During 

calibration process crop parameters like time to reach different phenological stages, maximum canopy 

cover, and the rooting depth were fine tuned iteratively until the observed and simulated dry biomass and 

yield are in close agreement. Soil water stresses coefficients for leaf expansion, stomatal closure, and early 

canopy senescence were also fine tuned by simply changing different stress classes. Phenological stages 

were calibrated in calendar day mode, as the growing degree day (GDD) mode is more precise only when 

crop development is limited by unfavourable temperature (heat or cold stress). The result of calibration 

was then validated on the rest of plots based on their respective soil type. This method of validating on 

multiple plots gives us some confidences on calibration result.  

Goodness of fit of simulation results of calibration and validation were assessed against field data using 

root mean squared error (RMSE) and percent bias (Pbias) and coefficient of determination (R2). RMSE is 

an overall a mean deviation between observed (obs) and simulated (sim) values and Pbias measures the 

average tendency of simulated result to be under estimating (positive values) or over estimating (negative 

values) the observed data (Moriasi et al., 2007). 

 

    
                   

                        
 ........................................................... (3-2) 
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 ............................................................... (3-4) 

3.2.4. FRAME data components: extraction, analysis and evaluation 

Level -3 FRAME data components net primary production (NPP), actual evapotranspiration (AET) and 

transpiration fraction (Tfrac) of Awash basin was made available by ITC Faculty of University of Twente.  

Overview of the data used for this study is presented in table 3-1. Temporal resolution of data 

components are in dekadal resolutions. In one month there are 3 dekads with the first two dekads 

containing 10 days while the last dekad ranges between 8 to 11 days. The method (algorithms) used for 

derivation of each data components is given in detail in WaPOR database methodology document (FAO, 

2017).   
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Table 3-1: Overview of FRAME data components used for this study 

level Data 

component 

Temporal 

resolution 

Temporal 

extent 

Spatial 

resolution 

Coordinate 

system 

Conversion 

factor 

The unit 

L3 NPP dekad 2009-2016 30 m WGS 84  multiplied 

by 0.001 

gC/m2/day 

L3 AET dekad 2009-2016 30 m WGS 84 multiplied 

by 0.1 

mm/day 

L3 Tfrac dekad 2009-2016 30 m WGS 84 none % 

  

NPP indicates the conversion of CO2 into biomass driven by photosynthesis. It is used to calculate above 

ground biomass production (AGBP).  Dry matter production (DMP) which represents dry biomass 

increase of vegetation is directly related to NPP by following relationship (FAO, 2017).  The relationship 

indicates that NPP and DMP only differ by constant (the efficiency of conversion between carbon and dry 

matter is 0.45).  

 

1 kgDM/ha/day = 1000 gDM/ha/day = 0.1 gDM/m2 /day ----------------------------------- (3-4) 

 

 NPP [gC/m2 /day] = DMP [kgDM/ha/day] * 0.45 * 0.1 --------------------------------------- (3-5) 

 

AGBP indicates the sum of above ground dry matter produced during the course of growing season. 

Thus, AGBP increases steadily between start towards the end of growing season.  AGBP by dekad is the 

average daily value in dekad multiplied by the number of days in each dekad. To account for the division 

between the above and below ground components of dry matter, i.e the shoot/root ratio, a constant value 

of 0.65 was applied.  Generally, 

 

 AGBP [kg/ha/dekad] = DMP [kgDM/ha/day] * 0.65 * number of days of that dekad ---------- (3-6) 

 

Once AGBP is calculated for each dekad, its accumulation can be calculated as sum (cumulative) over 

growth period of crop. It can also be expressed in units of ton/ha (1 ton = 1000 kg).  

 

The harvestable yield of AGBP can be calculated by using harvest index (HI). Since HI data of FRAME is 

not available yet to calculate yield, HI estimated from in-situ data was used. WP was estimated by using 

equation 2-1. With the help of transpiration fraction (Tfrac), AET was separated into crop transpiration 

and soil evaporation. 

Time series of FRAME data components of Awash basin was masked to Wonji plantation using model 

builder function of ArcGis tool. A conversion factor was applied as given in table 3-1. The shape file of 
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selected plots of Wonji plantation was created from Google earth. The area of selected plots varies from 7 

ha to 24 ha which is greater in spatial extent as compared to FRAME resolution (30 m resolution). As 

result FRAME has to be aggregated to the same spatial extent of plots. This was done by using zonal 

statistics as table function of ArcGis each plot representing zone. The method of statistics used was mean 

that calculates the average of all pixel values belonging to zone. Since the spatial distribution of growth of 

plants in a certain selected plot may vary as result of non uniformity in irrigation application or part of 

plants may suffer from kind of stresses/disease, averaging method of aggregation which takes into 

account all pixels found in selected plot was selected. The calculated zonal statistics table was then 

exported to excel to further compare extracted values with AquaCrop output and in-situ data 

AquaCrop model offers simulations at daily, 10-daily and monthly time step. In this study the model was 

run at 10-daily time step to match temporal resolution of FRAME. Care should be taken that the 

simulated output for transpiration (T), evaporation (E), actual evapotranspiration (AET) and biomass are 

10-daily total. In FRAME data components are given as the daily average of that dekad. Therefore the 10-

daily totals of T, E and AET simulated by model are converted to average by dividing the totals by 

number of days of that dekad. Biomass of FRAME converted to dekad can be directly compared to model 

output. The seasonal biomass can be calculated by cumulative of dekadal simulated biomass over growth 

period of the crop. The extracted values of FRAME was analysed and compared with AquaCrop model 

output and in-situ data using statistical analysis and graphical approaches. Details of analysis and 

evaluation are presented in next chapter.  
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4. RESULT AND DISCUSSIONS 

4.1. Assessment of data collected 

Weather data 

The weather condition of the environment has a crucial influence on crop production. It generally defines 

the amount of energy available for evaporation and therefore, when it comes to applying models for 

simulation of crop production assessment of quality of weather data is important. The key meteorological 

parameters used for calculating ETo was collected from Wonji estate research centre. The data record has 

a lot of missing and suspicious data points were detected based on visual graphical analysis.  To deal with 

this problem other nearby principal stations; Melkasa, Nazreth and Metehara located at approximate 

distance of 10 km, 15 km and 100 km respectively from Wonji are used. Figure 4-1 presents analysis of 

rainfall and mean daily temperature of stations for the period where the data record is available. The 

analysis clearly shows that stations Melkasa and Nazreth have close similarity with Wonji station as a result 

of close proximity in distance. Therefore, for gap filling and cleaning up of suspicious records stations 

Melkasa and Nazreth are used by means of direct transfer. However, for wind speed 30% of data points 

are still missing as there is no record for surrounding stations too. AquaCrop model can still estimate ETo 

when solar radiation, wind speed and/or air humidity data are missing based on calculation procedures as 

outlined in FAO Irrigation and Drainage paper Nr. 56. The average daily wind speed based on available 

record is about 1.27 m/s. For estimating missing wind speed a general class of light to moderate winds in 

the area was selected. Wind speed has significant impact on estimated ETo as it plays main role in 

transport of heat and water vapour.  

 

Figure 4-1: (A) average monthly precipitation, (B) average daily temperature in a month of stations 

 
Even though, the large percentage of missing in wind speed data puts uncertainty in estimated 

evapotranspiration, the daily average of ETo as computed by model  (after filling the gap) based on data 

record of 2007- 2016 is 4.55 mm/day which is quite the same as the long term average evaporative 
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demand of study area (Wonji) reported in literatures. Figure 4-2 presents average monthly precipitation 

and computed ETo based on data record 2007- 2016. The main rainy season runs from end of June to end 

of September. During main rainy season the evapotranspiration rate has decreased probably due to less 

incoming solar radiation as result of high cloud coverage and then starts to rise after rainy season. The 

mean monthly ETo ranged from 123 to 164 mm while the mean monthly precipitation ranged from 5 to 

236 mm.  

 

Figure 4-2: average monthy precipitation and ETo of wonji. . (Source: observed climatic data for Wonji during period 2007- 
2016) 

Management practices 

A short description of the management practices used by sugar estate as discussed with agricultural 

operation manager and irrigation foreman during field visit is presented here. The general management 

practices which have direct link with outcome of crop production are field management, irrigation 

application, fertilizer application, pest/disease control and weed management were discussed. 

For the purpose of obtaining good production fallow fields are usually properly managed by planting 

legume crops such as crotalaria and soya beans. These legume crops help to improve the soil nitrogen 

content, the soil physical, chemical as well as biological properties. Deep ploughing of land is practiced as 

sugarcane stands in field for long time usually more than a year.  

Extensive network of irrigation canals and drains are used for application of water to field. The furrow 

width of 145cm and three different lengths of 32 m, 48m and 64 m are being used depending on gradient 

of farm. Irrigation scheduling varies as per type of soil and growth stage of plant as described in section 

3.2.1. Irrigation foreman is responsible for deciding the need for irrigation. Usually the hand feel or finger 

test method is practiced in the scheme. The test is conducted at soil depth of 30 cm and 60 cm few days 

before expected date of irrigation and the time for next irrigation application is fixed when the test result 

indicates dry soil. The limitation of this method is that the decision for scheduling irrigation is rather 

subjective and depends on the experience of irrigation foreman in charge. Nitrogen fertilizer (urea) at rate 
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of 2 qt/ha for plant cane and 4.5 qt/ha for ratoon crop is applied for providing nutrient for plant finally 

providing higher yield per unit area.  

Insecticides are sprayed on top of soil before first irrigation for controlling beetle attack based on 

recommended dosage. It has been reported that the sugarcane plantation of the study area suffers from 

diseases that affect the crop production. Smut, ratoon stunting disease and bacterial disease prevail in 

Wonji. Proper treatments are applied for prevention. The effect of weed in sugarcane yield is 

understandable. The sugar estate applies proper weed control mechanism to ensure that sugarcane is not 

suffering from weed infestations. Herbicides are generally applied three times over growth season of 

sugarcane.  

Keeping this on mind for application of model field management practices assumed as optimal. Even 

though the management practices being used in the estate is described as good/best, it is difficult to 

believe if those practices are being efficiently and uniformly being applied throughout the plantation field. 

The average seasonal production of sugarcane from field to field is varying with coefficient of variation of 

20% based on crop production data of 30 plots. Irrigation scheduling was the main challenge in this study 

when constructing model input. The field collected information on irrigation in particular management 

practices in general are standard and it is not well known how efficiently the estate is managing the 

plantation. Therefore, irrigation scheduling was constructed based on the following criteria: 

 At the time of sowing initial soil moisture is at field capacity 

 Apply irrigation at the time of germination to avoid possible delay 

 Irrigation application depth pre establishment stage < post establishment 

 No irrigation when there is rain 

 Delay irrigation by 1 day for every 5 mm depth of rain 

 Soil type 

 Pre harvest drying off ( 2 months before harvest) 

 

Productivity of sugarcane 

Table 4-1 presents commercial average, commercial maximum and experimental maximum of sugarcane 

yield as reviewed by Irvine ( 1983).  Commercial average yield is the average of reported yield of all kinds 

of varieties under all environmental conditions and under all management practices (ranging from poor to 

best management practices). Commercial maximum yields are for best management practices (use of good 

plant nutrition, irrigation and pest/disease control).  Experimental maximum yield is obtained when 

sugarcane is grown in environment where water and nutrients are none limiting and free of pest, disease 

and weeds.  As depicted in table 4-1the yield in all aspect is varying from country to country as a result of 

differences in climate. Waclawovsky et al. ( 2010) has reported that recently in Brazil due to advancements 

in breeding technology a commercial maximum yield of 260 ton/ha and experimental maximum of 299 

ton/ha in irrigated sugarcane which exceeds the values reported in table 4-1. Under favourable climatic 
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condition and adequate water supply experimental yield of 200 ton/ha can be achieved (Steduto et al., 

2012).  Based on crop production data of 30 plots of Wonji sugar plantation, the fresh cane yield per plot 

varied from 85 to 186 ton/ha with average fresh cane yield of 117 ton/ha. Despite high variability this 

average production is comparable with worldwide fresh cane yield of 120 ton/ha considered by FAO as a 

good yield under full irrigation (Steduto et al., 2012) . Even though, the achievable yield of sugarcane 

depends on climate, soil condition, management practice and cultivars, the average cane yield of study area 

is close to the values reported in literatures. The high variation in observed production data may be a 

result of not proper management of plots of low yield. 

 

Table 4-1: commercial average, commercial maximum and experimental maximum sugarcane yield (Irvine, 1983) 

location Cane yield (ton/ha/year) 

 Average Commercial max Experimental max 

Australia 81 100 250 

Colombia 78 202 219 

Iran 100 167 221 

Louisiana 53 129 242 

South Africa 94 141 166 

Zimbabwe 115 180 200 

 

4.2. Model sensitivity analyis, calibration and validation 

4.2.1. Sensitivity analysis 

Sensitivity analysis was conducted in order to analyze the influence of parameters on model output. In the 

current version of AquaCrop used for this study (version -6), there are over 40 parameters. It is not 

important to analyse the sensitivity of all these parameters as most of them are conservative. Only few key 

parameters are used as basis for understanding the behaviour of AquaCrop model to changes in input 

parameters.  The result of sensitivity analysis of some key parameters conducted on field number 106 is 

shown in figure 4-3. The most influential non conservative crop parameters were found to be the 

maximum rooting depth and time to senescence. The maximum canopy cover (CCx) and time to 

maximum canopy cover were found to be moderately sensitive, while plant density and normalized water 

productivity (WP*) seems less sensitive. On the other hand, initial soil water content was the most 

influential soil parameter.  Although a different type of crop, the result of high sensitivity of  biomass and 

thus yield to rooting depth, time to senescence  and initial soil water content found in this study is in 

agreement with result reported in Geerts et al. (2009) and Salemi et al. (2011). The maximum rooting 

depth is difficult parameter to measure in field and reliable estimate are important for model calibration. 
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In FAO Irrigation and Drainage paper Nr. 56 the maximum effective rooting depth for sugarcane is about 

1.2 – 2 m. Ohashi et al., (2015) reported effective rooting depth of 0.4 m based on field experiment 

conducted on three sugar cane cultivars in Brazil. In this study calibration gave a maximum effective 

rooting depth of 0.9 m.  

 
Figure 4-3: Sensitivity analysis of selected parameters 

As shown in figure 4-3 there is positive relationship between rooting depth and biomass production. This 

is due to the fact that biomass production is directly dependent on crop transpiration which is more 

limited by availability of water in root zone. The rooting depth parameter needs to  be calibrated with care 

as increased root depth triggers more water extraction resulting in high transpiration and biomass 

accumulation (Steduto et al., 2009). Time to maximum canopy cover and senescence are the two crop 

phonological parameters controlling the canopy growth and decline rate respectively. The influence of 

time to senescence on biomass output was found to be stronger than time to reach maximum canopy 

cover. As expected, a shorter time to senescence, triggers crops to decline and die off prematurely 

resulting in lower biomass and yield than longer and increased time to senescence while time to reach 

maximum canopy cover influences in opposite manner as reflected in figure 4-3.  

The initial soil water content is the crucial soil parameter controlling model output and found to be one of 

sensitive parameters as compared to others.  Geerts et al. (2009) stated that the high sensitivity of model 

to initial soil water content can be circumvented by running a model starting from a known very dry 

(PWP) or very wet (FC) period. The planting density directly influences the canopy cover and the model 

showed no significant change in biomass. The normalized water productivity (WP*) parameter has slightly 

impacted the model output in this study while, Geerts et al. (2009) and Salemi et al. (2011) reported 

moderate sensitivity.  As WP* is a proportional factor for deriving biomass from accumulated 
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transpiration, the low sensitivity of WP* found on this study reflect the biomass production simulated by 

the model is mostly affected by transpiration. And the transpiration is directly influenced by the soil 

moisture. This is a clear indication of how crucial is the soil moisture data for reliable calibration of 

AquaCrop model. The lack of soil moisture data in this study remains one of the biggest concern and 

uncertainty in simulated/calibrated model result.  

4.2.2. Calibration and validation 

Calibration and validation of the model was accomplished by comparing simulated and observed dry cane 

yield. To select plots for calibration the observed cane yield of each plot was analysed. The average 

observed cane yield on dry basis varied from 25.71 ton/ha in field number 43 to 56 ton/ ha in field 

number 13 which indicates the large difference in production of cane yield. The overall cane yield is about 

35.2 ton/ ha. Therefore to balance between high and low yield, some of plots with average cane yield 

around 30 - 40 ton/ha are selected as representative for calibration. Based on this 12 plots (7 from heavy 

soil and 5 from light soil) are selected which makes 40% of samples. During calibration process non 

conservative crop parameters were fine tuned until a good agreement between observed and simulated is 

obtained. Much attention was given to sensitive parameters reported in section 4.2.1. List of parameters 

calibrated/used in this study is presented in appendix B. Table 4-2 and 4-3 presents statistical summary of 

model calibration and validation respectively.  The number of years considered are 5 for plot 14, 3 for plot 

50, 71, 126, 161, 210 and 2 while for the rest of plots 4 years are considered.   

Calibration performance of model gave respectively, RMSE (ton/ha) ranging from 3.75 to 13.46 and R2 

ranging from 0.14 to 0.98. Based on statistical metrics calculated in table 4-2, there is a good agreement 

between model and observed data for all soil classes. To check reliability of calibrated model, it was 

validated on remaining fields (table 4-3).  

Table 4-2: Statistical result of AquaCrop model calibration for dry cane yield 

  In-situ model In-situ vs model 

Field 

# 

Soil  Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

RMSE 

(ton/ha) 

Pbias 

(%) 

R2 

12 clay 22.24 50.86 34.32 29.75 46.63 37.84 6.76 -10.23 0.98 

14 sand 32.78 49.18 42.87 31.48 43.54 37.62 6.24 12.25 0.69 

27 sand 22.67 45.33 32.27 33.87 41.51 38.11 12.02 -18.08 0.62 

71 clay 28.2 60.37 40.49 30.67 55.74 42.38 5.46 -4.69 0.93 

89 loam 20.64 59.21 36.99 30.06 37.25 34.35 13.46 7.14 0.14 

129 clay 17.95 47.13 33.93 34.39 40.01 37.32 12.91 -9.97 0.77 

161 clay 25.95 45.47 36.72 29.74 41.95 34.14 5.5 7.02 0.66 

172 sand 25.61 38.4 33.34 36.33 47.59 41.57 12.52 -24.7 0.81 

212 loam 25.59 48.17 37.17 34.69 38.76 37.43 9.32 -0.7 0.5 

250 clay 23.95 50.46 34.39 28.62 39.79 33.81 7.85 1.69 0.41 

275 clay 29.59 50.9 36.37 28.46 49.14 36.37 3.75 0.02 0.8 

278 clay 34.11 41.09 36.94 23.67 39.55 33.87 5.5 8.29 0.54 
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The validation result gave RMSE (ton/ha) ranging from 5.67 to 20.07 while the R2 ranges from 0 to 0.95 

for the entire validation plots. Despite a good agreement in calibration good performance of model in 

validation could not be obtained in all plots but for most of plots its performance is fairly well. The 

validation result shows that the model tends to overestimate the cane yield in majority of plots. Table 4-4 

summarizes the performance of model per soil class and overall. The overall result suggests that RMSE 

and PBias are fairly acceptable but good correlation could not be obtained.  

The model overestimation observed in most of plots can be attributed to the following reasons. Firstly, in 

field during harvest cane is taken as the stalk cut at the base (near the ground) up to below the apex, since 

top portion of stalk is unproductive and is removed. Also on farm cane losses such as high cut and missed 

cutting and transport losses are inevitable as the cane is transported from field to mill where it is weighted 

before crushing. These combinations may lead to model overestimation. Secondly, the discrepancy may 

arise due differences in irrigation scheduling input in model and actual irrigation application in field. In 

AquaCrop model the irrigation schedule was constructed considering the rainfall conditions and soil type, 

however this may be significantly different from actual date of irrigation application in field. Thirdly, the 

observed data are subject to non negligible errors. Furthermore, a plot is cultivated with different cultivars 

from season to season and this variation in cultivars could have led to discrepancies between model 

simulations and in-situ data. Management practices were assumed optimal (non/limiting) when running 

the model but in actual case the plants may not be  always growing under good management as this was 

reflected in low observed cane yield (lower than the commercial maximum values presented in table 4-1) 

allowing the model to overestimate..  

For plots in which the model simulation showed reasonable performance, its reliability is still under 

question as the model is calibrated based on cane yield data observed at the time of harvest (i.e. the 

manner in which the plants were developing from start of planting till harvest as simulated by model 

might be much different from the manner of actual growth of plants in field). This remains biggest 

uncertainty and limitation of AquaCrop model in this study. This uncertainty could have been reduced by 

calibrating the model using observations (soil moisture, canopy cover and biomass/yield) made at 

different growth stages of plant. Therefore, data scarcity for model calibration is the major limitation in 

this study.   

Furthermore, despite the presence of sugarcane crop in AquaCrop model crop database, its effectiveness 

of simulating physiological processes of sugarcane growth leading to final yield is under question.  Most of 

internationally published literatures involving validation and evaluation of reliability of AquaCrop model 

are focused on crops other than sugarcane and have witnessed that the model is reliable. But that does not 

guarantee for sugarcane as the physiological processes are indeed different from plant to plant.  
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Table 4-3: Statistical result of AquaCrop model validation for dry cane yield 

  In-situ model In-situ vs model 

Field 

# 

Soil  Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

RMSE 

(ton/ha) 

Pbias 

(%) 

R2 

2 clay 35.88 57.47 44.76 36.64 47.7 41.92 5.67 6.35 0.95 

4 clay 33.56 51.24 39.66 34.47 49.52 41.04 11.81 -3.47 0.27 

13 clay 39.34 73.06 56.04 33.23 55.09 47.12 14.16 15.93 0.71 

43 sand 17.93 41.17 25.71 32.94 48.35 41.25 20.07 -60.42 0.06 

50 clay 15.18 42.66 28.08 27.92 53.08 41.01 17.07 -46.05 0.22 

60 sand 28.12 51.06 40.27 35.44 51.21 42.63 12.59 -5.88 0.05 

99 clay 23.85 43.36 35.44 26.5 41.55 34.37 10.32 3.02 0 

106 clay 19.29 50.49 29.97 30.74 37.77 35.41 12.28 -18.15 0.31 

116 loam 17.03 37.2 26.42 31.8 34.75 33 11.20 -24.90 0.71 

119 clay 20.31 41.98 28.61 26.98 34.27 32.08 12.11 -12.15 0.87 

122 clay 20.6 28.55 25.98 31.17 42.41 36.76 11.72 -41.46 0.03 

126 clay 22.38 51.49 34.91 34.66 43.21 39.77 16.32 -13.92 0.78 

140 clay 18.47 42.16 29.06 29.6 51.46 39.35 13.38 -35.40 0.26 

194 sand 18.59 42.25 32.73 30.21 47.9 36.23 9.10 -10.70 0.29 

210 loam 29.28 42.68 35.46 33.1 36.89 34.42 6.03 2.95 0.01 

238 clay 21.97 34.62 28.41 33.46 41.16 35.53 11.06 -25.08 0.34 

258 sand 18.7 49.37 32.01 28.64 47.3 36.75 10.44 -14.78 0.35 

M-2 clay 31.72 64.8 47.7 29.18 54.55 40.97 11.46 14.12 0.84 

 

 

Table 4-4: overall and per soil class statistics of AquaCrop model simulation 

 In-situ model In-situ vs model 

Soil  Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

RMSE 

(ton/ha) 

Pbias 

(%) 

R2 

Heavy 15.18 73.06 35.81 23.67 55.74 37.82 10.68 -5.62 0.29 

Light 17.03 59.21 34.28 28.64 51.21 37.65 11.77 -9.82 0.01 

overall 15.18 73.06 35.22 23.67 55.74 37.75 11.11 -7.18 0.18 

 

4.3. FRAME, model and in-situ: intercomparisons and assessement 

To assess the accuracy of FRAME data products, the AquaCrop model output and sugarcane yield data 

collected from field were used. For biomass inter comparisons were made between FRAME, model and 

in-situ, while for actual evapotranspiration FRAME estimate was compared with model output as there is 

no in-situ evapotranspiration. Finally, the water productivity computed from FRAME data components 

was compared to model estimate. The result of statistical metrics and discussions are presented in 

following sections.  
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4.3.1. Biomass  

It is well known that plant transpiration and photosynthesis are strongly related because stomata are the 

pathway for absorbing the CO2 and releasing the water vapour by transpiration. Therefore it is important 

to check the linearity between NPP and AET of FRAME before making comparison with in-situ or 

model. To do this, a scatter plot between NPP and AET is done for each 30 plots. The result of 

regression analysis per plot revealed R2 value ranging from 0.48 in plot number 275 and 0.75 in plot 

number 50. On average the coefficient of determination (R2) is 0.64 which indicates significant linear 

relationship between NPP and AET. An example of time series plot for field number 50 and 275 is 

presented in figure 4-4. 

 

Figure 4-4: Time series plot between NPP and AET for (A) field # 50 and (B) field # 275 for 2009-2016 

 

As depicted in figure 4-4 there is strong relationship between AET and NPP; high AET corresponds with 

high NPP and vice versa in field number 50 as compared to field number 275.  The low correlation in 

field number 275 is as result of low transpiration associated with high NPP. This may be attributed to 

presences of stresses affecting the growth/transpiration of plant. Since NDVI is a major input for 

computation of AET and it is influenced by availability of water, temperature and nutrient. NPP is 

significantly controlled by fPAR which is a function of solar radiation and land cover (plant density). This 

is to mean even if plants have high ground cover and there is abundant solar radiation leading to high 

fPAR (and thus NPP), presence of stresses and pest/disease which affect the greenness of plant (NDVI) 

will result in lower AET. Further checking for seasonality of NPP is important which can be easily 

detected in rain-fed agriculture. In this study because the study area is irrigated agriculture and the 

planting/harvesting dates are not confined to specific season, it is difficult to check for seasonality.  

In order to assess how well the model estimates and FRAME captures the spatial behaviour of observed 

data, the seasonal averages (from 2009 – 2016) of biomass was computed for 30 plots as shown in figure 

4-.5. As can be seen from figure 4-5 the FRAME biomass was consistently underestimated when 

compared to both in-situ data and model output. The FRAME biomass under estimation can be further 
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shown by figure 4-6. It is clearly depicted in figure 4-6 that the transpiration simulated by model is much 

lower than that of FRAME yet, conversely the biomass appears to be higher as compared to FRAME. 

Biomass is a direct function of transpiration and it is undeniable that if the model simulates the 

transpiration to the same level as FRAME, the expected biomass would be much higher. This suggests 

FRAME has underestimated the biomass.  

 

 
Figure 4-5: plot of seasonal averages of 30 plots of AGB between in-situ, model and FRAME 

 

 
Figure 4-6: plot of seasonal averages of transpiration and biomass of FRAME and model over 30 plots 
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Statistical metrics between in-situ and FRAME as well as FRAME and model for biomass computed per 

plot is shown in table 4-5, while the metrics between model and in-situ is presented in section 4.2.2. The 

plot by plot comparison of FRAME with in-situ gave RMSE (ton/ha) ranging from 2.97 to 24.12 where 

the RMSE in majority of plots is below 10. While in terms of R2 it ranges from 0.03 to 0.99 with R2 > 0.5 

in 18 plots out of 30 plots. Further comparison of FRAME with model revealed RMSE (ton/ha) ranging 

from 3.55 to 22.87 and R2 from 0 to 0.99. The overall agreement of FRAME and model in reference to in-

situ is shown in figure 4-7. The regression plots revealed that the correlations are poor; however, as 

compared to model FRAME has better agreement with in-situ. For model the relation has too much wide 

scattering because of model bias and this has led to poor correlation between model and FRAME. This 

suggests that a good correlation or low errors could not be found in all 30 plots. In terms of R2 a good 

correlation between the three components (in-situ, model and FRAME) is found in 10 plots (plot # 126, 

161, 12, 275, 2, 172, M-2, 71, 129 and 13). Figure 4-8 shows this correlation. However, despite good 

correlation between model and FRAME on seasonal time step further analysis on dekadal time step did 

not give good correlation suggesting that the manner in which the model simulates and the FRAME 

estimated the biomass is different.  As an example the dekadal biomass time series as simulated by model 

and estimated by FRAME for some selected plots is shown in figure 4-9. The correlation on seasonal basis 

was higher while on dekadal basis no significant correlation could be found. Uncertainty in model is one 

factor for such poor correlation.  

 

Figure 4-7: scatter plots of seasonal AGB between in-situ, model and FRAME by combining all 30 plots 
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Figure 4-8: plots of seasonal AGB between in-situ, model and FRAME for the selected plots 

 
The potential sources of error that led to discrepancies could be attributed to a number of reasons. In 

FRAME biomass is computed as a sum of dekadal AGB throughout the growing season of crop. To do 

this, start and end of growth period of crop should be accurately specified. The field reported 

planting/harvesting date could have error leading to significant differences between FRAME and in-situ 

biomass. Though, this is not the case for all plots as for instance as shown in figure 4-9 both model and 

FRAME shows similar seasonal trend. The significant under estimation of FRAME biomass compared to 

in-situ and model can be attributed to potential misclassification of information related to crop type from 

land cover classified as agriculture. Sugarcane is classified as C4 crop and as compared to C3 crops; C4 

crops are more efficient in water use and photosynthetic processes(Sinclair & Horie, 1989).  In 

computation algorithm for biomass a parameter called light use efficiency (ability of crop to convert 

absorbed radiation in to dry biomass) is one of input and it varies with crop type. Therefore, lower value 

of light use efficiency parameter used for C4 crops while C4 crops actually demonstrate much higher 

values of light use efficiency parameter than C3 might have led to underestimation of FRAME biomass. 

This is further shown in figure 4-10 that the slope between AET and biomass known as water use 

efficiency is higher in model than FRAME. Moreover, the weather data specially temperature used as 

input in algorithm to derive NPP are available at coarser resolution and they may not well represent  and 

may over estimate the actual weather condition of the area under study. Over estimation in temperature 

would mostly result in higher plant respiration consequently yielding lower NPP.  
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Table 4-5: statistical summary of in-situ vs FRAME as well as FRAME vs model 

 FRAME In-situ vs FRAME Model vs FRAME 

Field # Min 

(ton/ha) 

Max 

(ton/ha) 

Mean 

(ton/ha) 

RMSE 

(ton/ha) 

Pbias 

(%) 

R2 RMSE 

(ton/ha) 

Pbias 

(%) 

R2 

2 26.59 40.55 34.85 11.33 22.15 0.67 7.49 16.87 0.86 

4 27.19 39.01 31.48 8.77 20.63 0.88 13.12 23.29 0.1 

12 21.74 44.63 31.82 3.84 7.29 0.90 7.12 15.9 0.93 

13 29.2 45.04 36.42 24.12 35.02 0.97 12.02 22.71 0.59 

14 18.77 43.52 30.75 12.13 28.28 0.66 9.89 18.27 0.44 

27 22.12 27.25 23.69 12.30 26.59 0.03 14.53 37.83 0.54 

43 20.18 42.17 27.38 2.97 -6.49 0.93 18.62 33.62 0.08 

50 9.27 32.07 20.63 19.80 26.53 0.34 22.87 49.7 0.2 

60 24.59 42.7 30.11 12.73 25.21 0.38 14.66 29.36 0.13 

71 21.31 40.68 33.09 12.31 18.27 0.54 10.43 21.93 0.79 

89 26.47 45.79 32.96 7.98 10.89 0.90 7.84 4.05 0.04 

99 24.58 40.66 28.9 9.94 18.44 0.26 8.41 15.91 0.29 

106 20.37 33 26.63 12.08 11.14 0.11 9.22 24.79 0.65 

116 19.51 31 26.22 6.89 0.78 0.26 8.29 20.56 0.08 

119 20.61 34.19 25.15 9.65 12.09 0.07 9.04 21.62 0.01 

122 15.75 32.71 25.67 7.77 1.22 0.09 14.39 30.17 0.37 

126 32.27 39.2 34.9 9.50 0.03 0.83 8.32 12.24 0.99 

129 27.15 36.98 30.98 7.88 8.71 0.88 8.5 16.98 0.61 

140 26.84 36.61 31 8.67 -6.67 0.16 10.03 21.22 0.59 

161 25.95 37.75 30.69 7.47 16.44 0.76 3.55 10.13 0.99 

172 24.11 32.07 27.39 9.70 17.85 0.86 14.41 34.12 0.82 

194 16.16 36.94 25.27 10.85 22.79 0.38 11.16 30.25 0.92 

210 29.77 37.84 34.03 8.94 4.04 0.99 3.67 1.13 0 

212 25.55 53.82 38.06 16.19 -2.40 0.06 9.42 -1.16 0.26 

238 23.79 34.83 30.32 5.38 -6.74 0.34 6.92 14.66 0.06 

250 22.46 38.6 27.78 7.73 19.21 0.94 8.02 17.82 0.34 

258 24.38 44.16 31.2 4.41 2.55 0.93 9.23 15.1 0.28 

275 27.39 41.48 32.55 5.93 10.52 0.76 4.76 10.51 0.93 

278 19.81 40.41 27.46 10.93 25.64 0.78 9.12 18.92 0.35 

M-2 23.76 41.11 32.46 16.66 31.94 0.99 9.49 20.76 0.82 
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Figure 4-9: dekadal AGB time series of some selected plots 

 

 
Figure 4-10: AET and AGB relationship for field # 2 

 

4.3.2. Actual evapotranspiration 

In this section comparison of AET is made between FRAME and model output as there is no measured 

information about AET. The average daily AET as estimated by FRAME over 30 plots varied from 2.26 

to 3.98 mm/day and the overall average is about 3.06 mm/day while as estimated by model it varied from 

1.48 to 1.94 mm/day and the overall average is about 1.71 mm/day. The average daily ETo calculated 

based on meteorological data collected for the year 2007- 2016 is 4.55 mm/day which confirms the AET 

estimated by FRAME and simulated by AquaCrop model is lower than potential.  The average seasonal 

AET as estimated by FRAME over 30 plots varied from 1199 to 2327 mm with overall average of 1686 
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mm and corresponding overall average dry cane yield of 30 ton/ha (fresh cane yield of 100 ton/ha) while 

for model it varies from 771 to 1067 mm with overall average of 915 mm and corresponding overall 

average dry cane yield of 37.7 ton/ha (126 ton/ha of fresh cane) suggesting a big difference between 

FRAME and model.  Table 4-6 presents the actual evapotranspiration of sugarcane conducted by different 

researchers at different sites. Even though, the AET depends on climate, availability of water, growth 

cycle of crop (crop age), crop cultivar, the type of crop (plant/ratoon) and other factors, assessment of the 

result of AET and cane yield found in this study with the result of other studies is helpful. As shown in 

table 4-6 the AET are different from place to place and even under the same climatic condition degree of 

precision of measurements/estimations of AET depends on algorithm/method employed.  

 

Table 4-6: studies involving sugarcane evapotranspiration 

 

 

 

 

sources 

AET  

(mm/season) 

 

condition 

 

country 

 

Method 

 

Cabral et al., (2012) 

 

685 -829 

 

Rain fed 

 

Brazil 

 

Eddy covariance 

 

De et al., (2016) 

 

1180 

 

Irrigated 

 

Brazil 

 

Remote sensing 

 

Omary & Izuno, (1995) 

 

1060 

 

Irrigated 

 

USA 

 

Water balance 

 

Osorio et al., (2014) 

 

1081 - 1544 

 

Irrigated 

 

USA 

 

SWAT model 

 

Bezuidenhout et al., (2006) 

 

440 - 705 

 

Rain fed 

 

South Africa 

Thompson’s model 

of yield-ET 

relationship 

 

Bryant et al., (2009) 

 

970 – 1281 

 

Irrigated 

 

Australia 

 

Eddy covariance 

 

Bongani Jameson, (2015) 

 

582 - 1259 

 

Irrigated 

 

Swaziland 

 

Remote sensing 

 

Esteves et al., (2005) 

 

1088.19 

 

Irrigated 

 

Brazil 

 

Bowen ratio 

 

Hiyane et al., (2004) 

 

1043.9 

 

Irrigated 

 

Japan 

 

Bowen ratio 
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The result of AET estimated by model is comparable with those values presented in table 4-6 involving in-

situ measurements. When assessing AET estimated by FRAME it looks like over estimating the values 

reported in literatures.  The high AET estimated by FRAME could have produced higher cane yield as a 

net water supply of 1800 mm would produce a yield of 200 ton/ha as described in Steduto et al., (2012). 

 

 

Figure 4-11: scatter plot between FRAME and model seasonal AET over 30 plots 

 

Figure 4-11 shows scatter plot between model and FRAME seasonal AET by combining all 30 plots. The 

RMSE (mm/season) is about 842 suggesting large difference. As for biomass further analysis on dekadal 

time step did not give significant correlation between model and FRAME AET.  

The discrepancies and low correlations observed between model and FRAME could be attributed to a 

number of reasons. The first and foremost reason may be explained by soil moisture stress. Water stress 

affects the crop during all the growth season leading to low transpiration and yield reduction. AquaCrop 

model considers different types of soil moisture stress namely; canopy expansion, stomata closure, early 

canopy senescence and aeration stress. In FRAME the algorithm used for AET computation, ETLook 

model also considers soil moisture stress. However, AquaCrop model seems to be more efficient than 

remote sensing in taking into account the soil moisture stress to reasonably simulate the soil evaporation 

and plant transpiration. In remote sensing the soil moisture stress is often derived from top soil layer and 

the plant transpiration mostly depends on root zone soil moisture. The other important reason may be as 

result of aeration stress. Excessive water in the root zone as result of heavy rainfall, shallow ground water 

and frequent irrigation may cause aeration stress forcing lower plant transpiration. This case has been 

mostly simulated in AquaCrop in this study, while aeration stress is unlikely to be detected from remote 

sensing. Moreover, the date of satellite image acquisition and the date when plants were experiencing 

stress may not coincide resulting in exaggerated estimation of transpiration.  
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In AquaCrop model the simulated transpiration during the crop establishment stage and near harvesting is 

lower which is naturally true contrary to FRAME which appears to be higher at the beginning and end of 

growth season of crop.  This case has been observed often resulting in big accumulated difference 

between model and FRAME. An example of time series of transpiration for plot number 99 for a single 

growth season (May 2014 to September 2015) is shown in figure 4-12. It is clearly depicted how different 

the FRAME and model are at the beginning and end of growth season of crop leading to low correlation 

and high error. This mismatch may arise due to incorrect planting/harvesting date reported from field 

data. 

 

 

 
Figure 4-12: Time series (dekadal time step) plot of transpiration simulated by model and FRAME estimate for single crop 

season 

The uncertainty of AquaCrop model is a critical factor that has to be considered as well. The data used in 

this study was not sufficient for reliable calibration of model. Even though, it can be derived from rainfall 

irrigation scheduling input to model has significant effect on simulated AET. The field collected 

information about irrigation does not tell us the exactly date and amount (depth) of application. This 

uncertainty is even more exaggerated in sugarcane as it has a very long growth cycle. Errors and 

uncertainties resulting from such cases could be reduced by applying AquaCrop model in rain-fed 

agriculture and cereal crops which has short growth cycle. Therefore, further testing of FRAME in rain-

fed agriculture is important. Considering such uncertainty embedded in model the FRAME estimates of 

AET could be reliable. The reliability of ETLook model has already been tested for different 

climatological conditions and locations (Bastiaanssen et al., 2012).  

4.3.3. Water productivity 

In this section the water productivity based on model simulation and FRAME estimate was compared. As 

discussed in section 2.1. water productivity is a function of AGB/yield and AET. Therefore, the accuracy 

of estimated water productivity depends on accuracy of AGB/yield and AET. For model the water 
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productivity estimated in terms of above ground biomass ranges from 2.49 - 5.39 kg/m3 while for 

FRAME it ranges from 1.43 - 3.46 kg/m3. As a result of high AET and low AGB estimated by FRAME 

the water productivity is lower than that of model. The result estimated by model is comparable with value  

3.5 - 5.5 kg/m3 mentioned by Steduto et al., (2012). Leal et al., (2017) found water productivity in terms 

of stem fresh biomass ranging from 11.45 to 18.45 kg/m3 conducted for 23 sugarcane varieties in Brazil 

under two level of drip irrigation. Assuming moisture content of 70% for sugarcane the water productivity 

value estimated by model is comparable with result of Leal et al., (2017). Teklay & Ayana (2014) estimated 

water productivity in terms of yield for major crops (cotton, sugarcane and onion) grown in upper and 

middle Awash basin based on survey conducted on 29 irrigation water users (including the Wonji 

irrigation scheme) for 2005/06 – 2009/10 production year using CROPWAT model. Their study revealed 

crop water productivity for sugarcane varied from 9.8 – 18.8 kg/ m3 with average value of 15.2 kg/m3.  

Considering harvest index of 0.4 (estimated based on crop production data of 30 plots) the model estimate 

of water productivity is in agreement with that of Teklay & Ayana (2014).  
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5. CONCLUSIONS AND RECCOMENDATIONS 

The goal of present study was to evaluate FAO-FRAME remote sensing derived water productivity data 

components by using the AquaCrop model together with observed in-situ data. Three data components; 

NPP, AET and Tfrac of FRAME for the year 2009 - 2016 were extracted for each plots and used for the 

analysis. The AquaCrop model was applied to 30 selected plots of the study area. A sensitivity analysis of 

Aquacrop model variables revealed that the rooting depth has to be calibrated with great care as increased 

root depth triggers more water extraction resulting in high transpiration and biomass accumulation while 

high sensitivity of model to initial soil water content can be circumvented by running a model starting 

from a known very dry (PWP) or very wet (FC) period. Since the AquaCrop model is being proposed  as a 

bench mark for evaluation of the FRAME water productivity data, it is important to have reasonable 

model simulations. This study has demonstrated that  use of only biomass/ crop yield for AquaCrop 

model calibration is not good enough for a reliable simulation of the model as the model originally 

demands observations made at different growth stages of the crop and not only just at the time of harvest. 

Therefore, it is recommended to have more continuous measurements of canopy cover, soil moisture and 

biomass. Remote sensing data can be also used to derive such local information at different stages of crop.  

The study also demonstrated that irrigation scheduling has a significant impact on simulated AET and 

thus the final AGB and crop yield suggesting that accurate local information on irrigation is needed at the 

plot (field) level. To overcome this problem it is recommended to also apply the AquaCrop model in rain-

fed agriculture involving cereal crops. The study revealed that the FRAME data generally underestimate 

the AGB as compared in-situ observed and simulated model output. This has been further motivated by 

low transpiration and high AGB simulated by model while FRAME estimate went in opposite manner. As 

expected the water productivity computed from FRAME appears lower compared to the simulated 

AquaCrop model output. Given the limitations and low confidences in model output, it is generally 

difficult to judge or conclude about the final accuracy of FRAME data. Therefore, further research needs 

to be undertaken for more detailed and accurate in-situ evaluation of FRAME. This can be achieved by 

undertaking in-situ AET measurements using likes of flux towers, derivations of WP data components 

using algorithms and satellite images which were not employed by FRAME and making comparisons and 

further evaluation of FRAME in rain-fed agriculture.  
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APPENDICES 

A. Samples of crop data collected 

 

 

 

 

 

 

Field 

number 

Soil 

type 

Planting 

date 

Harvesting 

date 

Cane type Area 
(ha) 

Cane yield 
(ton/ha) 
(fresh) 

Field sugar 
(ton/ha) 

4 Clay Dec-08 Mar-10  3rd ratoon 

11 

116.33 12.48 

Mar-11 Dec-12 Plant crop 170.80 21.49 

Jan-13 Jul-14 1st  ratoon 111.86 14.45 

Aug-14 Dec-15 2nd  ratoon 129.81 16.17 

14 Sand Feb-09 Mar-10  1st  ratoon 

24 

154.51 16.85 

Apr-10 May-11 2nd  ratoon 130.80 15.31 

Jun-11 Jan-13  3rd ratoon 163.93 20.90 

Feb-13 Jan-15 4th ratoon 156.04 19.97 

Feb-15 Dec-15 5th ratoon 109.28 12.43 

43 Sand Dec-08 Mar-10  1st ratoon 

23 

80.50 7.88 

Apr-10 May-11 2nd ratoon 59.77 6.71 

Dec-11 May-14 Plant crop 137.22 17.59 

Jun-14 Nov-15 1st ratoon 65.36 8.26 

50 Clay Apr-08 Dec-09 Plant crop 

18 

78.13 10.26 

Jan-10 Jan-11  1st  ratoon 50.61 5.82 

May-11 Feb-13 Plant crop 87.99 11.59 

Mar-13 Aug-14 1st ratoon 142.20 17.01 

60 Sand Dec-08 Mar-10  3rd ratoon 

23 

93.74 10.01 

Dec-10 Jan-12 Plant crop 160.72 18.09 

Feb-12 May-14 1st ratoon 170.19 23.20 

Jun-14 Dec-15 2nd ratoon 112.24 14.55 

71 Clay Dec-09 Nov-11 Plant crop 

22 

201.24 25.51 

Dec-11 Feb-14 1st  ratoon 109.59 14.71 

Mar-14 Jun-15 2nd  ratoon 94.01 11.02 

89 loam Dec-08 Mar-10 2nd  ratoon 

24 

108.85 11.13 

Apr-10 May-11  3rd ratoon 68.79 7.43 

Dec-11 Apr-14 Plant crop 197.38 26.65 

May-14 Dec-15 1st ratoon 118.14 15.94 

116 loam Feb-09 May-10 Plant crop 

9 

67.71 7.64 

Jun-10 Oct-11  1st ratoon 139.94 15.92 

Feb-12 Dec-13 Plant crop 103.20 12.97 

Jan-14 Mar-15 1st ratoon 70.60 8.08 
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B. List of AquaCrop model parameters used 

 

description Value unit 

Base temperature 9 oC 

Upper temperature 32 oC 

Upper threshold for canopy expansion (Pupper) 0.1  - 0.2  % TAW 

Lower threshold for canopy expansion (Plower) 0.45  - 0.55 

 

%TAW 

Shape factor for water stress coefficient for canopy 

expansion 

3 - 

Upper threshold for stomatal closure 0.45 - 0.55 %TAW 

Shape factor for water stress coefficient for stomatal 

control 

3 - 

Canopy senescence stress coefficient (Pupper) 0.45 - 0.55 %TAW 

Shape factor for senescence stress coefficient 3 - 

Aeration stress sensitivity to water logging 10 % 

Crop coefficient when canopy is complete but prior to 

senescence 

1.02 - 

Decline of crop coefficient as a result of ageing, nitrogen 

deficiency 

0.16 %/day 

Minimum effective rooting depth 0.5 m 

Maximum effective rooting depth 0.9 m 

Shape factor describing root zone expansion 9 - 

Soil surface covered by an individual seedling at 90 % 

emergence 

6 cm2 

Number of plants per hectare 137,931 - 

Canopy growth coefficient (CGC) 0.06012 %/day 

Canopy decline coefficient (CDC)  0.13048 %/day 

Maximum canopy cover (CCx) 90 % 

Calendar Days: from sowing to emergence 20 (for ratoon) and 60 (for 

plant crop) 

days 

Calendar Days: from sowing to maximum canopy cover Emergence + 120 days days 

Calendar Days: from sowing to start senescence 30 days before maturity days 

Calendar Days: from sowing to maturity Harvest date! days 

Water Productivity normalized for ETo and CO2 (WP*) 30 (gram/m2) 

Reference Harvest Index (HIo)  40 (%) 
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C. Wonji climate (2007-2016) 
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D. AquaCrop irrigation input example 
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