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ABSTRACT 

For climate change impact assessment studies, GCMs outputs commonly cannot be directly used because 

of their coarse spatial resolution. As such the provided atmospheric and meteorological information is not 

directly suitable for hydrological studies due to mismatch of scale. Therefore, GCM outputs are 

downscaled to a finer resolution so that projections can serve hydrological modelling studies on water 

resources under climate change at regional level. Two main types of downscaling methods exist; statistical 

and dynamical. Both techniques have their own pros and cons. Understanding the limitations and 

strengths of each of the downscaling methods is important to ensure that for a particular terrain the 

suitable approach is being implemented to serve specific research purposes. Thus, the main objective of 

this study was to evaluate and compare the performance of the two downscaling approaches on the 

Gwadar-Ormara basin, Pakistan to analyse which technique can better simulate and predict the spatial-

temporal rainfall distribution. The downscaled outcomes of monthly rainfall were evaluated for a baseline 

period, compared to in-situ observations. The evaluation was for rainfall only and was based on 

climatological averages and standard deviation for both historic (1971-2000) and future (2041-2070) time 

periods under RCPs 4.5 and RCPs 8.5 scenarios. This study also assessed the reliability of observed rainfall 

time series with grid-based rainfall time series of the APHRODITE dataset, which resulted that 

APHRODITE data cannot be used in place of observed data to overcome the problem of inconsistency 

in the observed dataset.  

 

For statistical downscaling the CanESM2 AOGCM was used whereas for dynamical downscaling the 

RegCM4 RCM, using outputs from the same CanESM2 AOGCM, was used. The latter data is provided 

under the Coordinated Regional Climate Downscaling Experiment – South Asia (CORDEX-SA) initiative. 

The performance evaluation of the two downscaling techniques led to the conclusion that statistical 

downscaling is preferred to simulate and to project rainfall pattern in the study area where in-situ data 

available is scarce with unreliability in time series. The Statistical DownScaling Model (SDSM) used 

showed relatively poor performance in calibrating and validating the simulations with respect to observed 

data in the historic period. But overall the SDSM generated satisfactory results in terms of projecting 

monthly rainfall cycle for the entire basin. On the contrary, RCM showed high biased rainfall simulations 

for both historic as well as future time periods. Dynamical downscaling may show large uncertainties in 

coastal terrains where rainfall patterns are highly variable. However, the use of a multi-model ensemble of 

regional climate models can be a viable option in such cases to simulate rainfall variability and patterns if 

there is confidence in the observed dataset to be used for bias correction of the RCMs outputs. Different 

combinations of RCMs and GCMs may perform differently to simulate and project climatic variations 

depending upon the season, topography, model initialization, parametrization, boundary conditions, etc. 

Thus, the performance of more than one climate model should be tested before using the RCMs outputs 

in climate change impact and adaptation studies. 

 

Keywords: statistical downscaling, dynamical downscaling, RCPs, CORDEX-SA, Gwadar- Ormara basin 

Pakistan 
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1. INTRODUCTION 

1.1. Background  

According to the 5th Assessment Report (AR5) of the Inter- governmental Panel on Climate Change 

(IPCC), the global (land and ocean) average temperature has shown a 0.85 oC increase over the period of 

1800–2012 (IPCC, 2013), and a 0.74 ± 0.18 oC increase during the last hundred years (1906– 2005) (IPCC, 

2007). The impacts of climate change extend well beyond the increase in temperature alone. Nowadays 

there is clear evidence that sectors like water, energy, wildlife, agriculture, ecosystems, and human health 

are affected out of which the water sector is crucial, as availability of sufficient and non-polluted water is 

indispensable for all forms of life.  

 
Most of the studies in the world on climate change impact assessment on water resources focus on key 

indicative variables like temperature, precipitation and evaporation for water resources management 

(Wang et al., 2012). Hence, it is of great importance to evaluate the possible impacts of climate change on 

these climatic variables in order to get a better understanding about how long term changes of these 

variables affect the hydrological cycle behaviour, water balance and water availability to ensure sustainable 

development in any region. Such studies, consequently, can help in achieving meaningful insights to 

address extreme events related to water such as water scarcity, flooding, drought. In this regard, since the 

1970’s, General Circulation Models (GCMs) have been developed to simulate the average, synoptic-scale, 

general-circulation patterns of the atmosphere for present climate and to predict future climate change 

(Kour, Patel, & Krishna, 2016).  

 

GCM outputs based on the Special Report on Emission Scenarios (SRES) have been used extensively to 

project future meteorological variables for use as inputs into hydrological models at a regional scale (Kour 

et al., 2016). The direct representations of hydrological quantities from GCMs are large-scale averages with 

little spatial reliability for specific regions. Moreover, the coarse spatial resolution and temporal 

deficiencies of GCM model output limit the effectiveness of the model in providing useful information at 

the regional scale (Wilby and Wigley, 1997). Therefore, there is a need to convert GCM outputs into 

regional high-resolution meteorological fields required for reliable hydrological modelling, and this process 

is generally referred to as ‘downscaling’ (Hewitson and Crane, 1992).  

 

There are two main downscaling approaches: ‘Dynamical downscaling’ and ‘Statistical downscaling’. 

Dynamical downscaling is commonly carried out using a Regional Climate Model (RCM) set up for an 

area of interest and nested within a GCM. “The RCM uses time-varying atmospheric boundary conditions 

around a finite domain from the GCM (one-way nesting)” (Sunyer, Madsen, & Ang, 2012). Whereas, 

statistical or empirical downscaling methods are more straightforward as they define a statistical 

relationship between large-scale variables (‘predictor’ – either from GCM or RCM) and observed small- 

scale meteorological variables (‘predictand’) using techniques which range from simple interpolation to 

complex statistical neural networks and weather generators (Kour et al., 2016).  

1.2. Problem Statement 

There can be different sources of uncertainty in undertaking climate change impact studies. The first and 

primary source of uncertainty evolves when representing different emission scenarios for future climate. 

The change in atmospheric variables (like precipitation, temperature) may largely depend upon different 
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emission scenarios as well as on future climatic windows. Choudhary and Dimri, (2017) studied the 

COordinated Regional climate Downscaling EXperiment for South Asia (CORDEX-SA) to determine 

probable changes in monsoonal rainfall over the Himalayan region for three different greenhouse gas 

emission scenarios (i.e. Representative Concentration Pathways or RCPs1) and two future time slices. They 

discovered that change in rainfall variability increases from the least intensive carbon emission scenario to 

the most intensive scenario and from the near (2020-2049) to the far future (2070-2099). 

  

Another source of uncertainty may arise due to the coarse spatial resolution of GCMs. GCMs provide 

projections at a resolution of approximately 150–300 km and are often biased and hence should not be 

used directly in hydrological models (like rainfall-runoff models, water balance models) for climate change 

impact assessments (Fowler et al., 2007). Because of the coarse spatial resolution of GCMs, they become 

unsuitable to represent climate variations at the scale of 20-50 km (Wilby et al., 2000). Accurate and 

reliable simulation and (future) projections of the climate over a region of interest remains a challenge 

mainly because of scale issues by “ i) large differences in the spatial and temporal scales on which the 

processes occur, ii) the processes are observed and iii) the processes are simulated” (Haile and Rientjes, 

2015). 

 

As already mentioned, GCM outputs require downscaling to finer spatial resolution to assess future 

climatic changes. These downscaled outputs are then used to drive other sector-specific models for 

climate change impact studies. The two downscaling methods both can exhibit uncertainty in their results. 

Although RCMs might simulate meteorological variables better than GCMs because of their finer 

resolution; they also might not precisely match with observed meteorological variables and inherit biases 

from their driving GCM. The reason of uncertainty from RCMs can be due to imperfect model 

conceptualization, parameterization physics, choice of initial conditions, boundary conditions and spatial 

averaging over grid cells. 

 

A large number (>100) of climatic models have been developed over the past decades. Different climatic 

models (GCMs as well as RCMs) since differ in their approach which causes simulation results and 

projections for the future dissimilar and thus, the outcome from the models becomes associated to 

uncertainty. Also, the unique characteristics of each downscaling method leads to different future climate 

scenarios, indicating that the downscaling approaches adds uncertainty in climate projections. This leads to 

the requirement to inter-compare the performance of models and/or methods before utilization of the 

model outputs in impact, climate mitigation and adaptation studies. In addition, it is unclear which method 

or approach is more suitable or appropriate for a particular study area and for a specific purpose of 

research. Hence, the final selection of the climate model and/ or downscaling approach becomes 

problematic and questionable.  

1.3. Literature Review 

1.3.1. Statistical Downscaling 

Statistical downscaling is a two-step process consisting of: i) the development of statistical relationships 

between long term, historic, observations of local climate surface variables (predictands) and large scale 

atmospheric variables (predictors). ii) application of such relationships to projected output of GCMs for 

selected future time windows to simulate local and regional climate variables (Hoar and Nychka, 2008). 

The most common form of a statistical downscaling model is that the predictand is described as a 

regression function of pre-selected predictor(s). In mathematical terms: 

                                                      
1 RCPs are elaborated in section 1.3.3 
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R= F (L) 

Where, R represents the predictand, L represents the predictor, and F is a deterministic/ stochastic 

function conditioned by L and has to be found empirically from historical observation or reanalysis data 

sets (Abdo, 2008).  

 

Statistical downscaling methods can be classified according to the techniques used (Wilby and Wigley, 

1997) or according to the chosen predictor variables (Rummukainen, 1997). In Wilby and Wigley’s study, 

statistical downscaling techniques are categorized in three classes, namely: (a) Regression Methods, (b) Weather 

pattern- based approaches, and (c) Stochastic Weather Generators. Whereas, in Rummukainen’s (1997) study, 

statistical downscaling methods are classified as: (a) Downscaling with surface variables, (b) The perfect prog(nosis) 

(PP) method, and (c) The model output statistics (MOS) method. A summary of how these different techniques 

establish statistical relationships between predictors and predictands is provided in the literature by Kour 

et al., (2016) and Xu, (1999b). Many downscaling approaches embrace attributes of more than one of the 

above mentioned techniques and therefore, are hybrid in nature.  

 

Statistical downscaling methods are computationally inexpensive and efficient as compared to dynamical 

downscaling methods and thus can be easily applied to the output from different GCM experiments. This 

is one of the major practical advantages of statistical downscaling over dynamical downscaling. Another 

advantage is that empirical methods can be used to provide site- specific information, which can be useful 

for many climate change impact studies. On the other hand, the main theoretical weakness of empirical 

downscaling is the basic assumption that “the relationship between large and local scale will remain 

constant in the future” (Fowler et al., 2007). This means that the statistical relationships developed for the 

present day climate are assumed to be valid for possible future climates under different radiative forcings 

(Wilby et al., 2004). This is also referred to as the “Stationarity Assumption”.  

 

Another disadvantage of statistical techniques (like the regression method) is that the method tends to 

underestimate the variance of climatic patterns. Also the partial statistical relationship between regional or 

local climate and large scale climate variables represent extreme events poorly (Fowler, Blenkinsop, & 

Tebaldi, 2007). The advantages and disadvantages of statistical and dynamical downscaling methods are 

well summarized in Kour et al., (2016). 

1.3.2. Dynamical Downscaling 

The aim of dynamical downscaling, i.e.; to extract local-scale information from large-scale GCM data, is 

achieved by limited-area models (LAMs) or regional climate models (RCMs). Dynamical downscaling 

involves the nesting of RCMs in GCMs; thus, this method is also called a ‘nested’ RCM approach 

(Teutschbein, 2013). There are two kinds of nesting approaches: one-way or two-way nesting (Harris and 

Durran, 2010). If the RCM uses the GCM output to define the initial and lateral boundary conditions, it is 

termed as ‘one-way nesting approach’ (without feedback from the RCM to GCM). Whereas, the ‘two-way 

nesting approach’ comprises a feedback from RCM simulations back to the GCM (Kour et al., 2016). 

According to Rummukainen (1997), dynamical downscaling can be performed in three ways: 

1) “Running a regional-scale limited-area model with the coarse GCM data as geographical or 

spectral boundary conditions (‘one-way/ two-way nesting’)” 

2) “Performing global-scale experiments with high-resolution atmosphere GCMs, with coarse GCM 

data as initial (and partially also as boundary) conditions” 

3) “Using a variable-resolution global model (with the highest resolution over the area of interest)” 
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Recently RCMs have been developed having horizontal resolution in the order of tens of kilometres or 

less over areas of interest. Compared to previous generation RCMs, such RCMs can provide a better 

agreement with observations on synoptic and regional scales and on monthly, seasonal and inter-annual 

timescales. While nested modelling is likely to be the most informative and widely used approach to drive 

regional information for 20–50 km horizontal grid spacing and 100–1000 m vertical resolution, there are 

several admitted restrictions of the approach (Xu, 1999b). In principle RCMs cannot remove GCM biases 

related to large scale variables. However, RCMs may lead to improved simulation of downscaled GCM 

outputs at the GCM sub-grid scale because of using relatively high resolution data of for instance 

topography and land cover (Haile and Rientjes, 2015). One major disadvantage of RCMs is that they 

require substantial computing resources and are as expensive to run as a global GCMs (Abdo, 2008). 

 

Dynamical downscaling methods have gained importance over statistical downscaling primarily due to the 

lack of in-situ data required for statistical downscaling. They have a better skill to simulate small scale 

atmospheric features, such as orographic precipitation than statistical methods. RCMs due to relatively 

high spatial resolution allow use of circulation to regional scale climate impact assessments. Also 

algorithms that drive and represents climate circulation patterns represent real world atmospheric physics 

that as such often is considered more reliable and preferred above statistical relations that are established 

at point scale only. Another advantage of dynamical downscaling over statistical downscaling is that the 

“Stationarity Assumption” is not applied, as dynamical downscaling methods have the ability to respond in 

a physically consistent way to different external forcing signals, such as land surface or atmospheric 

chemistry changes. Given the range of downscaling methods and the fact that each method has its own 

advantages and disadvantages, there exists no universal approach which works for all situations. It is 

recommended through different research studies that arduous testing and comparison of statistical and 

dynamical downscaling approaches should be undertaken. 

1.3.3. Representative Concentration Pathways (RCPs) 

IPCC in its 5th assessment report has introduced a new set of emission scenarios called Representative 

Concentration Pathways (RCPs) (Van Vuuren et al., 2011; Taylor et al., 2012), based on a set of scenarios 

of anthropogenic forcings which are used under the framework of CMIP5 for the new climate model 

simulations carried out. RCP scenarios represent a high potential proposition for research and assessment, 

including emissions’ impact and mitigation analysis (Van Vuuren et al., 2011) and they represent a wide 

variety of possible future climate scenarios. Till the release of the AR5, IPCC used climate change 

scenarios based on the Special Report on Emission Scenarios (SRES), which are outdated and these 

scenarios are now replaced with RCPs. The RCPs provide combination of adaptation and mitigation to 

greenhouse gas (GHG) concentrations and therefore, future climate projections based on RCPs are more 

realistic compared to SRES (Taylor et al., 2012). SRES explicitly used to consider the effects of prescribed 

levels of emissions into the atmosphere, offering ‘what if’ scenarios that if a given amount of carbon 

dioxide equivalent is emitted what will happen to the atmosphere. Thus they were more uncertain 

regarding contributing factors such as population growth, economic development and technological 

advances. Whereas, RCPs relate to concentrations of greenhouse gas that represent cumulative emission 

budgets, hence these are considered more realistic.  

 

RCPs produce a range of responses from continued warming, to approximately steady forcing, to an 

emission mitigation (or reduction) scenario that stabilizes and then gradually reduces the radiative forcing 

(RF) after the mid-21st century. Four RCPs have been used in AR5 to represent future scenarios. They are 

RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. These RCPs together span the range up to 2100 with radiative 

forcing values and their descriptions are presented in Table-1. In all RCPs, the atmospheric GHG 

concentrations are assumed to be higher in 2100 as a result of a further increase of cumulative emissions 
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of GHGs to the atmosphere during the 21st century. The reason of taking different RCPs is to understand 

how the rainfall is being affected under a changing climate of increased radiative forcing and concentration 

of CO2. Generally, most of the climate change impact studies try to evaluate climate projections using low, 

medium and high emission scenarios.  

 

Table 1: Overview of RCPs (source: Van Vuuren et al., 2011) 

 Description 

RCP 2.6 (low emission 
scenario) 

Radiative forcing rise at 3.1 W/m2 (~490 ppm CO2 eq) in the 
middle period of the 21st century and then decline to 2.6 W/m2 by 
2100 

RCP 4.5 (intermediate 
stabilization scenario) 

Stabilization without overshoot pathway to 4.5 W/m2 (~650 ppm 
CO2 eq) before 2100 by employment of a range of technologies and 
strategies for reducing greenhouse gas emissions. 

RCP 6  
Stabilization scenario without overshoot pathway to 6 W/m2 (~850 
ppm CO2 eq) after 2100 

RCP 8.5 (high emission 
scenario) 

Rising radiative forcing to 8.5 W/m2 (~1370 ppm CO2 eq) by 2100. 

 

1.3.4. Overview of Climate Change Impact Studies on Pakistan 

Under Global Change Impact Studies Centre (GCISC), which is a dedicated research institute for climate 

change in Pakistan (http://www.gcisc.org.pk/index.php), studies have been performed in water related 

sectors over South Asia with a focus on Pakistan in a few. These studies have mostly conducted climate 

change projections over entire Pakistan using PRECIS and RegCM3 regional climate models (focusing on 

dynamical downscaling only) under the SRES – A2 scenario. For example:  

1) Saeed et al., (2009) attempted to validate the regional climate model PRECIS over South Asia by 

simulating the summer monsoon and winter seasons in 1992, an extreme precipitation event of 

September, 1992 over Jhelum river basin and the Super Cyclonic storm of 1999 in the Bay of 

Bengal. The study investigated the performance of the model for synoptic events and large scale 

monsoon circulation when driven by the European Centre for Medium Range Weather Forecast 

(ECMWF) reanalysis datasets- which are merged climate model and observed datasets. 

2) Mehmood et al., (2009) tried to develop high resolution climate change scenarios for the South 

Asian region using RegCM3 for the period 2041-2070 and 2071-2100. They carried out the study 

first on South Asia and then focused on entire Pakistan producing simulations driven by the 

lateral boundary conditions from two GCMs (ECHAM5 and FVGCM), with an additional 

analysis of temperature and precipitation prediction for the Upper Indus basin, Kabul River basin 

and Jhelum River basin.  

3) Islam et al., (2009) performed a similar kind of study in which they developed high resolution 

climate change scenarios over South Asia and Pakistan using the PRECIS RCM nested within 

HadAM3P GCM for the future time slice of 2071-2100 under the A2 scenario.  

 
Other studies used only statistical downscaling methods for climate change assessment over entire or 

some part of Pakistan. For instance, Khattak et al., (2011) examined trends in several hydro meteorological 

variables (minimum temperature, maximum temperature, precipitation and stream flow) over the Upper 

Indus Basin using the non-parametric Mann-Kendall test in combination with Sen’s slope method, a non-

parametric alternative for estimating a slope for a uni-variate time series to determine the magnitude of 

http://www.gcisc.org.pk/index.php
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trends. Khan et al., (2017) studied the future availability of water for the Upper Indus Basin under the A2, 

B2, RCP4.5 and RCP8.5 emission scenarios. They conducted a meta-analysis (a statistical method which 

can be used to produce combined projections from individual model outputs) to present a collective 

picture by combining the results from the emission scenarios. The meta-analysis showed higher 

confidence in RCPs projections. Ghumman et al. (2013) studied the variability in precipitation patterns of 

Pakistan due to environmental and climatic changes using different GCMs downscaled using the k-NN 

statistical method under the A2 scenario. They concluded that the average annual precipitation of the 

country will undergo an increase in the range of +57 to +71% as compared to the average of the base 

period (1971-2000). 

 

Mahmood & Babel, (2014) projected future changes in extreme temperature events under A2 and B2 

climate scenarios using a Statistical DownScaling Model (SDSM) in the trans-boundary region of the 

Jhelum river basin. Kazmi et al., (2015) employed SDSM for downscaling of daily minimum and 

maximum temperature for Pakistan and projected future scenarios using HadCM3 daily data for A2 and 

B2 story lines.  Mahmood et al., (2016) investigated the possible impacts of climate change on the water 

resources of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3 GCM. They also 

used SDSM to downscale and further used GCM simulations to predict stream flow in the basin for three 

future periods (2011–2040, 2041–2070, and 2071–2099).  

  

Recently many studies have used statistical downscaling approaches with RCP scenarios for climate 

change projections. For example, Su et al., (2016) attempted to analyse the impacts of climate change on 

climatic parameters (temperature and precipitation) by evaluating the simulation ability of multi- GCM 

models ensembles within the Coupled Model Inter-comparison Project Phase 5 (CMIP5) over the Indus 

River Basin using different RCP scenarios (2.6, 4.5 and 8.5). They applied the Equidistant Cumulative 

Distribution Functions matching (EDCDFm) method to correct systematic biases and applied statistical 

downscaling to GCM simulations. Amin et al., (2017) did a statistical analysis of monthly, seasonal and 

annual precipitation trends for Pakistan at different temporal (1996-2015 and 2041-2060) scales. They 

used the SimCLIM model for future precipitation projections using RCP 6.0 alone. Similar studies have 

been performed in other areas of Nepal, China and India (e.g. Khadka & Pathak, 2016; Zhang et al., 2016; 

Shivam, Goyal & Sarma, 2017; Singh & Goyal, 2016) which have employed SDSMs forced under different 

RCPs.  

 

Some other studies like Ding & Ke, (2013) compared two statistical approaches for improving seasonal 

precipitation prediction skills for Pakistan. They employed the statistical regression method and statistical 

downscaling to perform rainfall predictions for the monsoon season in Pakistan. They used Linear 

Regression (LR) and Optimal Subset Regression (OSR) for each approach, and compared the raw model 

outputs with the regression forecast methods. Ahmed et al., (2015) applied a multilayer perceptron (MLP) 

neural network for the downscaling of rainfall in the data scarce arid region of Baluchistan province of 

Pakistan. While many studies including (Akhtar, Ahmad, & Booij, 2008; Hewitt, 1998; Hewitt, 2005; 

Mayer et al., 2006; Fowler and Archer, 2006; Bhutiyani et al., 2007; Tahir et al., 2011; Naeem et al., 2013; 

Immerzeel et al., 2009; Reggiani and Rientjes, 2015; Tahir et al., 2016; Tiwari et al., 2014) have evaluated 

the impact of climate change on the surface waters in the Northern part (Hindukush – Karakoram – 

Himalaya belt) of Pakistan.   

1.4. Research Gap  

By effects of climate change, Pakistan will become one of the most water stressed countries in the world 

according to a study conducted by Maddocks et al., (2015) for the World Resources Institute (WRI). The 
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country faces challenges like high glacial melt, prolonged droughts, flash floods and rise in sea levels. A 

significant research gap exists in this regard to assess the impact of climate change on water resources 

specifically in the southern part of Pakistan. The southern part is more arid and downscaling rainfall in 

such regions is more challenging compared to wet regions due to erratic and infrequent rainfall. The 

complexity is further enhanced due to scarcity of data in such regions and rapidly changing climatic 

settings from Arabian see towards the Upper Indus area. Baluchistan being geographically Pakistan’s 

largest province, having an area of 347,190 km2, has a climate lying in hyper-arid, arid and semi-arid 

domains. The Gwadar-Ormara basin that is the area of study in this research, is located on the south 

western fringe of Baluchistan. From literature review, it appears that Ahmed et al., (2015) is the only 

study that has been conducted on the southern part (Baluchistan) of Pakistan, using statistical techniques 

only to downscale rainfall. Further, this study took the province in its entirety and has not focused 

specifically Gwadar-Ormara basin. 

 

All the studies as cited in section 1.3.4, have evaluated rainfall and/or temperature variability and change 

over Pakistan using only one downscaling approach (statistical or dynamical). To the best of the author’s 

knowledge, no study has been performed to compare statistical downscaling with dynamical downscaling 

over Pakistan or on any part of it, which is a significant research gap. Further, before the AR4 SRES 

scenarios were not obsolete, statistical and dynamical methods were being used with IPCC AR4 SRES 

emission scenarios (A1, A2, B1, B2) in climate research community. Fewer studies have recently tried to 

analyse climate change impacts on atmospheric variables (rainfall and/or temperature) using RCPs. These 

studies focused on particular regions in Pakistan and have performed the analysis using only one 

downscaling method. Therefore, there still exists a gap to assess and compare the impacts of climate 

change on the spatial-temporal trends and variation of atmospheric variables using different RCPs and 

using both statistical and dynamical approaches together over any region or entire Pakistan for future 

climatic windows. In this study due to time limitation, an attempt has been made to address the research 

gap of comparing statistical downscaling with dynamical downscaling under RCPs to identify which 

downscaling method provides the most reliable simulations and projections over the Gwadar-Ormara 

basin, without performing the climate change impact assessment.  

1.5. Research Objectives 

The main objective of the study is to evaluate and compare the performance of two downscaling 

approaches to analyse which technique can better simulate and predict the spatial-temporal rainfall 

distribution over the Gwadar- Ormara basin, Pakistan. For both approaches model outcomes of 

CanESM2 AOGCM are used to make evaluation more objective. The comparison of the two downscaling 

methods includes first the evaluation of the performance of the downscaling approach individually, for the 

baseline period (1971-2000) over the Gwadar-Ormara basin of Pakistan. Secondly, for the future climatic 

window (2041-2070) using RCP 4.5 and RCP 8.5 scenarios. In this study, only RCP 4.5 and RCP 8.5 are 

used following the priority set by CMIP5 and furthermore one future time period is considered only due 

to time constraints. The analysis and comparison of the downscaling methods is based on the evaluation 

using first order statistics (mean and standard deviation) of rainfall in the reference period (1971-2000), for 

which daily observed data was used from weather stations. The evaluation is done based on climatological 

averages at a monthly time scale to understand the limitations and strengths of the two downscaling 

approaches driven by the same climate model. 

1.6. Research Identification and Novelty 

Previous studies have tried to project future changes in temperature and/or rainfall either for the entire 

region of Pakistan, the Upper Indus area or for the Jhelum river basin specifically. None of the studies 
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have explicitly focused the Gwadar-Ormara catchment in Baluchistan, Pakistan. To choose this study area 

is in itself a novelty as general circulation models may perform and project future changes differently for 

different regions with specific climatic conditions, rapidly changing topography and observational scale. 

The challenging task of the research was to analyse the performance of the two downscaling approaches in 

simulating and predicting spatial-temporal rainfall distribution over the Gwadar-Ormara basin, where the 

available observed data was not only scarce but also uncertain to some extent. The uncertainty of 

observed meteorological data was evaluated with the APHRODITE gridded rainfall product and the 

results of this analysis added another novelty to the work.  

 

Also, most of the climate change impact studies in Pakistan have focused on analysing future climate 

variability under SRES emission scenarios, which are now outdated. Hence, the idea to compare the two 

downscaling methodologies under RCPs scenario is new for Pakistan, as no such study has been done 

before for whole or for any region of Pakistan.  

1.7. Thesis Layout 

This thesis consists of five chapters and is organized as follows:   

 Chapter-1 is the introduction to the study. 

 Chapter-2 describes the study area, the data sets and the models to be used.  

 Chapter-3 explains the methodology applied. 

 Chapter-4 shows the results and discussion about the results obtained. 

 Chapter-5 finalizes the thesis by conclusions and recommendations. 
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2. STUDY AREA, DATA AND MODEL 

2.1. Study Area 

2.1.1. Location 

Gwadar- Ormara basin is the largest coastal district of Pakistan. It is located between 25o - 27o north 

latitude and 60o – 65o east longitude. The district is bounded on the north by other two districts namely 

Kech and Awaran, on the east by district Lasbela, on the south by the Arabian Sea and on the west by 

Iran. It has a total area of 12,637 km2.  The area is geo-strategically important to Pakistan because of the 

46 billion US dollars CPEC (China Pakistan Economic Corridor) project under way. Gwadar district will 

serve as a key centre for future industrial and shipping activity, once the project will be completed. The 

district's coastline stretches for 600 kilometres comprising 78 percent of the provincial coastline and 55 

percent of the entire coastline of Pakistan. In places, the topography climbs to 300 metres above sea level 

with a few mountain peaks up to 1,000 metres above sea level. Figure-1 shows the location, topography 

and meteorological stations of the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Location, topography and meteorological stations of Gwadar-Ormara basin, Pakistan 
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2.1.2. Climate 

The climate of Gwadar-Ormara basin can be classified as arid with warm summers, mild winters and 

erratic rainfall patterns. The winter lasts for three months from December to February and is pleasant 

except for occasional and brief cold spells. May and June are the hottest months with a mean maximum 

temperature of around 35oC and December- January are the coldest months with a mean minimum 

temperature of around 13oC. The mean annual rainfall varies from 75 to 100 mm. Most rainfall occurs 

between December and February with a monthly average rainfall of 20 mm.  

2.2. Datasets 

2.2.1. Observed Data 

Observed rainfall data were required for downscaling AOGCM and National Center for Environmental 

Prediction (NCEP) data using statistical downscaling model (SDSM) and to validate the downscaled RCM 

simulations. Daily rainfall time series data for all 9 stations, as shown in Figure-1, is collected from the 

archive of the National Engineering Services Pakistan (NESPAK). The stations in the study area are non-

uniformly distributed. The in-situ station data obtained from NESPAK was having lot of missing values 

over the requisite time period of 1971-2000. This can be observed in Figure-2. The daily mean monthly 

rainfall for the period 1971-2000 recorded at 9 different rainfall gauging stations over the study area is 

shown in Figure-3. 

 

From the 9 gauging stations for which the daily rainfall data for a certain time period was available, 

Gothamun showed very high mean monthly rainfall values. This can be clearly witnessed in Figure-3. 

Therefore, to ensure that the observed data to be used for analysis is free from anomalies, Gothamun 

station data was not further incorporated in the study.  Figure-4 and Figure-5 represent the mean daily 

standard deviation (SD) and mean daily coefficient of variation (CV) of observed rainfall data averaged 

over months for the period of 1971-2000, respectively. 

 

Figure 2: Daily rainfall data available for the study area from the archive of NESPAK 
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Figure 3: Daily mean monthly rainfall for the baseline period (1971-2000) 

 

 

Figure 4: Mean monthly standard deviation of rainfall for the baseline period (1971-2000) 
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Figure 5: Mean monthly coefficient of variation of rainfall for the baseline period (1971-2000) 

 

2.2.2. APHRODITE Gridded Data 

In order to overcome the problem of missing data in the observed rainfall time series, gridded dataset of 

the Asian Precipitation - Highly Resolved Observational Daily Integration Towards Evaluation of Water 

Resources (APHRODITE) project for daily rainfall was evaluated to fill observed rainfall time series. 

APHRODITE’s Water Resources data consists of daily gridded precipitation data (version V1101) for 

monsoon Asia (60˚ - 150˚E, 15˚ - 55˚N) for the period 1951 to 2007 available at both 0.25o and 0.5o 

resolutions (Shrestha, 2017). These high resolution daily gridded datasets are outcomes of data collected 

from 5,000 – 12,000 stations, with significant improvement in description of areal distribution and 

variability of rainfall around the Himalaya compared to other available products (Yatagai et al., 2012). 

Information on the APHRODITE’s product was retrieved from 

http://www.chikyu.ac.jp/precip/english/products.html.  

2.2.3. NCEP Reanalysis Data 

For this study, daily reanalysis data from the NCEP/NCAR (National Center of Environmental 

Prediction/ National Center for Atmospheric Research) for the period of 1961-2005 was used for 

establishing statistical relationships with observed station data. NCEP reanalysis data is required to 

calibrate and validate statistical downscaling model. Also, in statistical downscaling daily atmospheric 

predictors’ (NCEP) data is required to quantify the relative change of climatic variables between the 

current and the future time periods (Abdo, 2008). The NCEP data is usually regarded as a set of observed 

large-scale atmospheric variables with a resolution of 2.5° (longitude) × 2.5° (latitude). NCEP predictors’ 

variable data interpolated and normalized with CanESM2 predictors is provided on a grid box by grid box 

basis, hence the data was downloaded from the grid box that represented the study area best. Because of 

the large differences between observed and GCM-simulated conditions, the GCM bias may give poor 

results through statistical downscaling and therefore, a normalisation process is required to reduce the 

bias. Table-2 below shows a list of large-scale atmospheric variables which are used as predictors in 

SDSM.  
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Table 2: List of predictor variables in NCEP reanalysis data 

S.N.  
Predictor 

variables 

Description of predictor 

variables 
S.N.  

Predictor 

variables 

Description of predictor 

variables 

1  mslpgl Mean seal level pressure  14  p5zhgl 500hPa Divergence  

2  p1_fgl 1000hPa Wind speed 15  p850gl 
850hPa Geopotential 

height 

3  p1_ugl 
1000hPa Zonal wind 

component 
16  p8_fgl 850hPa Wind speed 

4  p1_vgl 
1000hPa Meridional wind 

component 
17  p8_ugl 

850hPa Zonal wind 

component 

5  p1_zgl  
1000hPa Relative vorticity 

of wind 
18  p8_vgl  

850hPa Meridional wind 

component 

6  p1_thgl 1000hPa Wind direction  19  p8_zgl 
850hPa Relative vorticity 

of wind 

7  p1_zhgl 1000hPa Divergence 20  p8thgl 850hPa Wind direction 

8  p500gl 
500hPa Geopotential 

height 
21  p8zhgl 850hPa Divergence  

9  p5_fgl 500hPa Wind speed  22  s500gl  
Specific humidity at 

500hPa 

10  p5_ugl 
500hPa Zonal wind 

component 
23  s850gl 

Specific humidity at 

850hPa 

11  p5_vgl  
500hPa Meridional wind 

component 
24  prcpgl Total precipitation 

12  p5_zgl 
500hPa Relative vorticity 

of wind 
25  shumgl  Surface specific humidity 

13  p5thgl 500hPa Wind direction  26  tempgl Mean temperature at 2m 

 

2.2.4. Climate Models Data 

In this study, also dynamically downscaled output of the CanESM2 GCM was evaluated.  CanESM2 is one 

of the ensemble members of a RCM (IITM-RegCM4) in the Coordinated Regional Climate Downscaling 

Experiment (CORDEX) – South Asia. The CORDEX program was initiated under the support of the 

World Climate Research Program (WCRP) to bring forth an ensemble of high-resolution past and future 

climate projections at the regional scale. The CORDEX dataset, utilized in this research, comprises 

downscaled climate scenarios for the South Asian region that are drived from the CanESM2 AOGCM 

runs conducted under the Coupled Model Inter-comparison Project Phase 5 (CMIP5) (Taylor et al., 2012). 

The CORDEX- SA dataset, used in this study includes two (4.5 and 8.5) of the four greenhouse gas 

concentration scenarios – RCPs (Meinshausen et al., 2011). In general, CORDEX- South Asia consists of 

thirteen downscaled RCMs driven by different AOGCMs’ initial and boundary forcing, details of which 

are shown in Table-3. The RCMs’ information and models’ outputs was obtained from the CCCR website 

(http://cccr.tropmet.res.in/home/aboutus.jsp).  

 

 

 

 

 

 



COMPARISON BETWEEN STATISTICAL AND DYNAMICAL DOWNSCALING OF RAINFALL UNDER REPRESENTATIVE CONCENTRATION PATHWAYS SCENARIO OVER 

THE GWADAR-ORMARA BASIN, PAKISTAN 

 

20 

Table 3: List of the 13 CORDEX South Asia downscaled RCM simulations driven by 10 CMIP5 AOGCMs (source: 
http://cccr.tropmet.res.in/home/esgf_data.jsp) 

CORDEX 
South Asia 

RCM 

RCM 
Description 

Contributing 
CORDEX 
Modeling 

Center 

Driving CMIP5 
AOGCM 

Contributing  
CMIP5 Modeling Center 

 

IITM-
RegCM4 

(6 ensemble 

members) 

The Abdus 

Salam 

International 

Centre for 

Theoretical 

Physics (ICTP) 

Regional 

Climatic Model 

version 4 

(RegCM4) 

Centre for 

Climate 

Change 

Research 

(CCCR), Indian 

Institute of 

Tropical 

Meteorology 

(IITM), India 

CCCma-CanESM2 
Canadian Centre for Climate Modelling 

and Analysis (CCCma), Canada 

NOAA-GFDL-
GFDL-ESM2M 

National Oceanic and Atmospheric 
Administration (NOAA), Geophysical 
Fluid Dynamics Laboratory (GFDL), 

USA 

CNRM-CM5 
Centre National de Recherches 

Me´te´orologiques (CNRM), France 

MPI-ESM-MR 
Max Planck Institute for Meteorology 

(MPI-M), Germany 

IPSL-CM5A-LR 
Institut Pierre-Simon Laplace (IPSL), 

France 

CSIRO-Mk3.6 
Commonwealth Scientific and 

Industrial Research Organization 
(CSIRO), Australia 

SMHI-
RCA4 

(6 ensemble 
members) 

Rossby Centre 
regional 

atmospheric 
model version 4 

(RCA4) 

Rossby Centre, 
Swedish 

Meteorological 
and 

Hydrological 
Institute 
(SMHI), 
Sweden 

ICHEC-EC-
EARTH 

Irish Centre for High-End Computing 
(ICHEC), European Consortium  (EC) 

MIROC-MIROC5 
Model for Interdisciplinary Research 
On Climate (MIROC), Japan Agency 
for Marine-Earth Sci. & Tech., Japan 

NOAA-GFDL-
GFDL-ESM2M 

NOAA, GFDL, USA 

CNRM-CM5 CNRM, France 

MPI-ESM-LR MPI-M, Germany 

IPSL-CM5A-MR IPSL, France 

MPI-CSC-
REMO2009 
(1 ensemble 

member) 

Max Planck 
Institute (MPI) 
Regional model 

2009 
(REMO2009) 

Climate Service 
Center (CSC), 

Germany 
MPI-ESM-LR MPI-M, Germany 

 
The main reason of selecting CanESM2 as a driving model to assess the impact of climate, is its ready-to-

use atmospheric variables available in coherence with atmospheric variables of NCEP reanalysis data to be 

used directly in SDSM (Wilby et al., 2002). Both CanESM2 output and NCEP/NCAR reanalysis data use 

the same set of 26 predictor variables to keep consistency. It is important to mention here that the number 

and attributes of NCEP atmospheric predictors and any GCM daily atmospheric variables should be the 

same to perform spatial downscaling statistically, as it is a designed requirement of SDSM. The GCM 

predictor variables must be normalized with respect to a reference period and available for all variables 

used in model calibration (Wilby and Dawson, 2007). Keeping this in mind, only CanESM2 GCM under 

CMIP5 has the data available normalized with NCEP predictors, which makes CanESM2 a reasonable 

choice to evaluate the two main downscaling methodologies. Other GCMs do not include all atmospheric 

predictors needed to be used for statistical downscaling in SDSM, and hence require additional extraction 

and time consuming processing to match resolution with NCEP reanalysis predictors’ set. 

 

CanESM2 is a fourth generation coupled global climate model developed by the Canadian Centre for 

Climate Modelling and Analysis (CCCma) contributing to the IPCC 5th Assessment Report. 

The 128x64 grid cells of CanESM2 cover the global domain according to the T42 Gaussian grid. This grid 

is uniform along the longitude with a horizontal resolution of 2.8125° and nearly uniform along the 
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latitude with a horizontal resolution of roughly 2.8125°. It is generally recommended to use multiple 

GCMs while studying the potential future change in climate. However, this study included only one model 

due to the time limitation to reach the study objectives. The CanESM2 daily atmospheric predictors for 

baseline (1971-2000) and future (2041-2070) periods and for the two climate scenarios under RCP 4.5 and 

RCP 8.5 were downloaded from the website: http://climate-scenarios.canada.ca/?page=pred-canesm2  

 

The choice for the IITM –RegCM4 RCM, to evaluate dynamical downscaling, was made because this is 

the only RCM available having CanESM2 as driving AOGCM in the CORDEX-SA experiment. The 

IITM-RegCM4 dataset of precipitation (pr) at a spatial resolution of 0.44o x 0.44o (~50 km x 50 km) and 

daily temporal resolution for historic (1971-2000) as well as future (2041-2070) climate windows was 

downloaded from: https://climate4impact.eu/impactportal/data/esgfsearch.jsp.  

2.3. Model Used- Statistical DownScaling Model (SDSM) 

2.3.1. Generic Description 

Among the downscaling models, the Statistical DownScaling Model (SDSM) has been used widely 

throughout the world in climate change assessment studies (Wilby et al., 2002; Gagnon et al., 2005; Chu et 

al., 2010; Huang et al., 2011; Mahmood and Babel, 2014). The model was developed by Dawson & Wilby 

(2007), supported by the Environment Agency of England and Wales. SDSM is based on a combination 

of Multiple Linear Regression (MLR) and the Stochastic Weather Generator (SWG) empirical approaches. 

The model establishes a statistical relationship between large-scale variables and local-scale variables, 

producing regression parameters, and facilitates the rapid development of multiple, single-site scenarios of 

daily surface weather variables under current and future climate forcing. These relationships are developed 

using daily observed weather data – local climate data for a specific location for the predictand and larger-

scale NCEP data for the predictors. Assuming that these relationships remain valid in the future, these 

relationships are then used to obtain downscaled daily weather local information for some future time 

period by driving the relationships with GCM-derived predictors (modified after Dawson & Wilby 

(2007)). 
 

In SDSM, there are two kinds of methods to optimize parameters of regression equations and thus 

optimizing model results: i. Ordinary least squares (OLS) and ii. Dual simplex (DS). Ordinary least squares is 

faster than dual simplex and produces comparable results with DS (Huang et al., 2011). There are three 

kinds of sub-models present for periodic analysis namely, monthly, seasonal, and annual for developing of 

empirical relationship between the local-scale and large-scale atmospheric variables. Annual sub-model 

establishes the same regression parameters for 12 months. The monthly sub-model denotes 12 regression 

equations, giving different calibrated parameters for each of the 12 months. Whereas, seasonal sub- model 

produces 4 regression equations, each for a set of 3 months. There are also two other types of sub-models, 

conditional and unconditional which can be used according to the local-scale variables. The ‘Unconditional’ 

model assumes a direct link between the predictors and the predictand. While the ‘Conditional’ model is 

used when there is an intermediate process between regional forcing and local weather. For example, in 

case of local precipitation that depends on the occurrence of wet days, further depends on regional-scale 

predictors such as humidity and atmospheric pressure (Wilby and Dawson, 2007). 

 

There are few other options in SDSM that can be used as required like ‘model transformation’ option to 

transform the predictand data in conditional sub-model types. Four types of transformation options exist 

namely; None, Fourth root, Natural log and Inverse Normal. The default (None) is used whenever the 

predictand is normally distributed (in case of temperature). The others are used when data are skewed (in 

case of daily rainfall). Two other options of ‘Variance Inflation’ and ‘Bias Correction’ offered by SDSM can be 

http://climate-scenarios.canada.ca/?page=pred-canesm2
https://climate4impact.eu/impactportal/data/esgfsearch.jsp
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used and adjusted to force the model to replicate the observed climate. Variance inflation controls the 

magnitude of variance in the downscaled daily weather variables. Whereas, bias correction option 

compensates for any tendency to over or under estimate the mean of conditional processes (like rainfall) 

by the downscaling model (Wilby and Dawson, 2007). The default value of 12 for variance inflation 

produces approximately normal variance inflation, while the default value of 1 in bias correction indicates 

no bias correction.  

2.3.2. Key Functions of SDSM 

The model can perform statistically downscaling of daily weather series by executing six discrete tasks or 

functions. The purpose of each function is described below: 

 

1- Quality control and data transformation:  

The quality, accuracy and completeness of the input dataset is checked by the identification of gross data 

errors, specification of missing data codes and outliers prior to model calibration. Whereas the data 

transformation option offers to transform the predictors and/or the predictand data prior to model 

calibration. The transformations available are logarithmic, power, inverse, lag, binomial, etc.  

 

2- Screening of downscaling predictor variables: 

The function of screening of appropriate downscaling predictor variables involves identification of large-

scale predictor variables (NCEP) which are significantly correlated with observed station (predictand) data. 

In SDSM, various indicators like partial correlation, correlation matrix, explained variance, P-value, 

histograms, and scatter plots can be used to select some suitable predictors from a group of atmospheric 

predictors (Mahmood and Babel, 2014). The screening of predictors is the most important process in all 

types of statistical downscaling (Wilby et al., 2002; Huang et al., 2011) since, the choice of the predictors 

mainly determines the character of the downscaled climate scenario. During screening of predictor 

variables, multiple co-linearity between the predictor variables themselves is the major problem that occur 

which can cause high correlated predictors to be screened out. Thus, this problem should be considered 

during the selection of predictors.   

 

3- Model calibration: 

Model calibration function takes a user-specified predictand along the screened set of predictor variables 

to compute the parameters of multiple regression equations via an optimisation algorithm (either dual 

simplex or ordinary least squares) to calibrate the model. Before performing calibration, the user has to 

specify the model structure: whether monthly, annual or seasonal sub-models are required; or whether the 

process is unconditional or conditional.  

 

4- Weather generator: 

The weather generator operation produces an ensembles of synthetic daily weather series from observed 

(or re-analysis) atmospheric predictor variables. This function allows the verification of the calibrated 

model (using independent data of observed predictors) and produces the artificial time series for present 

climatic conditions. The user has to specify the period of record to be synthesized as well as the desired 

number of ensemble members. The stochastic component of SDSM allows the generation of up to 100 

ensembles of data which have the same statistical characteristics but which vary on a day-to-day basis. 

 

5- Scenario generation: 

The scenario generator function produces ensembles of synthetic daily weather series from GCM-derived 

atmospheric predictor variables (either for present or future climate), rather than observed predictors 

using the already developed statistical relationship established by model calibration function. Scenario 
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generation is a similar function like weather generation. Except in the case of scenario generator input files 

need not be the same length as those used to obtain the regression weights during calibration, as in the 

case of weather generator.   
 

6- Diagnostic testing/analysis: 

The statistical characteristics of both the observed and synthetic data can be compared by use of 

‘Summary Statistics’ and ‘Compare Results’ options in SDSM, thus determining the effect of spatial 

downscaling. Summary statistics summarizes the result of both the observed and simulated data. Whereas, 

compare results enables to plot the result of summary statistics.  

 

 
  



COMPARISON BETWEEN STATISTICAL AND DYNAMICAL DOWNSCALING OF RAINFALL UNDER REPRESENTATIVE CONCENTRATION PATHWAYS SCENARIO OVER 

THE GWADAR-ORMARA BASIN, PAKISTAN 

 

24 

3. METHODOLOGY 

This chapter describes the steps performed to achieve the study objectives through: i- quality assessment 

of observed in-situ and APHRODITE rainfall data (section 3.1); ii- statistical downscaling of CanESM2 

AOGCM data (section 3.2); and iii- dynamical downscaling using IITM – RegCM4 RCM (section 3.3).  

3.1. Data Quality Assessment 

In order to validate the outcomes of the RCM as well as for downscaling of AOGCM data using SDSM 

for the reference period, a reliable in-situ dataset without any gaps and errors is necessary. Initially, the 

research aimed to correct the inconsistencies and to fill gaps of the in-situ data with the APHRODITE 

climatic dataset. However the question arises how reliable the APHRODITE data is so that it could be 

used instead of observed rainfall data as ground truth. To address this issue, the spatial correlation 

structure of the two datasets, i.e., in-situ and APHRODITE data, was compared. A summary of this 

spatial correlation analysis is provided in section 3.1.1. 

3.1.1. Spatial Correlogram 

The quality of the observed gauged as well as the APHRODITE data was assessed by comparing 

individual correlograms of the two datasets. A correlogram is a statistical plot used to determine the spatial 

(or temporal) dependence or correlation of a specific variable. The correlation ρ(h) is defined as: 

 

 

Where, C(h) is the covariance, C(0) is the variance of a variable and h is the distance (or lag). The 

correlation values always range between +1 and -1. A spatial correlogram, where the correlation 

coefficient is plotted as a function of the distance (or time lag) was produced for both in-situ and 

APHRODITE data to check which dataset shows high correlations for closely located points and smaller 

values for points at larger distances, thus following the Tobler’s first law of Geography (Tobler, 1970). 

 

For the purpose to produce spatial correlograms, daily rainfall values in mm/day were spatially 

interpolated using the Inverse Distance Weighting (IDW) method in ArcMap using 6 stations namely 

Pasni, Shadikaur, Tank, Hore, Chibkalamati and Basolmasjid. Out of the period 1971-2000 for which data 

has been collected for this study, the four year period (1988- 1991) was chosen since only for this period 

daily time series were available without gaps for a maximum number of gauge stations in the study area. 

After interpolation, mean monthly maps were produced from interpolated daily rainfall raster maps. The 

interpolated maps were resampled at a grid scale equal to that of APHRODITE (25km x 25 km) for 

comparison purposes. This gave 27 grid cells in total covering the whole study area (shown in Figure-6). 

The center pixel values were extracted from each grid. Cross-correlation coefficients were then calculated 

between all combinations of cells. Finally, these cross-correlation coefficients were plotted against the 

corresponding distance (in km) for all combinations of cells. The same procedure was repeated for the 

APHRODITE dataset, except that no interpolation was needed in this case. Also, the APHRODITE daily 

data were first converted into monthly mean estimates using Climate Data Operators (CDO) toolkit 

before APHRODITE’s centered pixel values were extracted for each cell.  

𝜌(ℎ) =
𝐶(ℎ)

𝐶(0)
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Figure 6: Location of 27 grid cells (25x25 km size) covering study area along with position of gauge stations 

(represented by triangle) 

3.1.2. Filling in Gaps of In-situ data 

To overcome the gaps in in-situ data, missing daily rainfall data were imputed using two packages in R 

software, namely; MICE (Multivariate Imputation via Chained Equations) and missForest. MICE creates 

multiple imputations as compared to a single imputation (such as the mean) and takes the uncertainty of 

missing values into account. MICE assumes that the missing data are randomly missing, which means that 

the probability that a value is missing depends only on the observed value and can be predicted using 

them.  MissForest is an implementation of the random forest algorithm. It is a non-parametric imputation 

method, meaning it does not make explicit assumptions about the functional form of any arbitrary 

function ‘f.’ Instead, it estimates ‘f’ such that values imputed can be as close to the data points without 

seeming impractical.  

Both methods were applied and checked for each rainfall station in the study area. The results of these 

methods were then compared with available observed rainfall data. The method giving a more reasonable 

and closer match to available observed rainfall data was selected for every station.  

3.2. SDSM Methodology 

3.2.1. Model Setup 

Before constructing the relationship between predictand and predictors, some important model 

parameters were setup to achieve the best statistical agreement between observed and NCEP data as well 

as CanESM2 AOGCM data. The model setup for this study is described below whereas, terminologies 

used in settings are explained already in section 2.3.1. 

 

i- Generally the predictand is an individual daily weather series, obtained from meteorological 

observations at a single station. In this study, daily rainfall time series extracted for each of 27 grid 

cells covering the entire basin were used as predictand in SDSM. Predictand rainfall data (in 

mm/day) was retrieved by first interpolating data of 8 gauge stations for the period 1971-2000 

using IDW and then resampling it to 25km x 25 km grid cell size.  

ii- A calibration period of 20 years was taken starting from 01-01-1971 to 31-12-1990. A validation 

period of 10 years was considered starting from 01-01-1991 to 31-12-2000 for both NCEP 

reanalysis data and observed data. CanESM2 GCM data ranged from 1961 to 2005 for the historic 

period and 2006 to 2100 for the future period. The same range was used for generating GCM 

outputs.  

iii- The event threshold was set to be 0.3 mm/day for precipitation to treat trace rain days as dry 

days.  

iv- For rainfall periodic analysis, seasonal- June, July, August (further referred as JJA) along with 

conditional sub-model options were selected. Furthermore, ordinary least squares optimization 
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algorithm was selected. Seasonal sub-model type was selected because according to Wilby and 

Dawson (2007), this model is appropriate to be used in situations where data are too sparse at the 

monthly level for model calibration or where there is low incidence of precipitation in semi-arid 

regions. While, JJA season was selected to analyse the model performance for wet monsoon 

months. Due to time restriction, only one season was analysed. 

v- The model was allowed to generate the random number sequences each time the weather 

generator or scenario generator is run. 

vi- In most of the cases, precipitation data is not distributed normally. Therefore, fourth root 

transformation was applied for precipitation to render it normal before using it in a regression 

equation, following the precedent set by other studies to downscale rainfall. 

3.2.2. Procedure to Downscale 

The functionality of SDSM operations to perform the main tasks is explained in section 2.3.2. The 

following procedure was adopted to statistically downscale rainfall data. Figure-7 represents the same 

methodology of statistical downscaling in terms of a flow chart.  

 
1- Quality control and data transformation:  

Quality control check was made for all predictand files and no data transformation was performed on 

predictand and/or predictor data. 

 

2- Screening of downscaling predictor variables: 

In order to identify the most suitable predictor variables for the predictand, the correlation statistics and 

p-values for each of the predictor variables available from NCEP and the GCM were examined. The 

correlation matrix and p-values indicate the strength of the association between two variables. Higher 

correlation values imply a higher degree of association. Smaller p-values indicate that this association is 

less likely to have occurred by chance. A p-value less than 0.05 is generally used as a threshold value. A 

higher value than 0.05 means that the correlation between the predictor and predictand is likely to be due 

to chance and the use of such a predictor might lead to multi-co-linearity between the variables. 

 

SDSM allows a maximum of 12 predictors correlated with a predictand at one time. Therefore, multiple 

combinations of 12 predictor variables with a predictand were checked. After several trials for each of the 

27 predictands (for 27 grid cells), only those variables out of 26 NCEP predictor variables were shortlisted 

which were highly correlated with the predictand and having a p-value less than 0.05. It was observed that 

mostly two to five predictors were enough to best explain the predictand during calibration and without 

multi-co-linearity. The shortlisted predictor variables remained more or less constant for all 27 predictands 

giving confidence that the predictor variables were appropriately screened. The most frequently screened 

predictor variables for the majority of the 27 predictand (grid cells) can be found in Table-4. 

 

Table 4: List of most effective predictor variables over the study area 

S.N.  Predictor variables Description of predictor variables 

1  p8_vgl 850hPa Meridional wind component 

2  p5_vgl 500hPa Meridional wind component 

3  p1_ugl 1000hPa Zonal wind component 

4  s500gl Specific humidity at 500hPa 

5  p1_zhgl 1000hPa Divergence 

6 p5zhgl 500hPa Divergence 
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3- Model calibration: 

The model calibration was performed by establishing transfer function based on the multiple regression 

equations (4 in number for seasonal analysis) via an optimisation algorithm (OLS in this case), using 

predictand and screened predictor variables. The regression equations are then used for generating new 

synthetic data. The coefficient of determination (R2) was used to evaluate the model performance for the 

calibration period. The default values of variance inflation and bias correction factors were adjusted 

several times until the best statistical agreement between observed and simulated outputs were achieved to 

calibrate the model well.  

 

4- Weather generator: 

For period 1971-1990, synthetic daily weather data was generated with the regression model weights 

determined during the model calibration and from NCEP predictor variables. SWG can simulate up to 

100 daily time series, using the calibrated parameters along with NCEP in order to fit closely with the 

observed data (Wilby et al., 2002; Mahmood and Babel, 2013).  Twenty time series are normally 

considered as the standard precedent for validation purposes (Mahmood and Babel, 2014). Therefore, an 

ensemble of 20 members was generated and the mean of these ensembles was used to compare with the 

observed data. 

 

5- Scenario generation: 

Similar to the weather generator function, the scenario generator operation also generates the ensembles 

of synthetic daily weather time series. The output of the scenario generator was used to validate the model 

calibration. First, both NCEP/NCAR reanalysis data and CanESM2 data were used as large-scale 

atmospheric predictor variables for validation of SDSM for the period 1991-2000. Then, only CanESM2 

data was used for future scenario generation using two emission scenarios, i.e., RCP 4.5 and RCP 8.5. The 

same regression model weights that were used for weather generation were used for downscaling the 

future data. For each emission scenario, twenty ensembles of synthetic daily time series were generated for 

the period of 2006 to 2099 and the mean of these twenty ensembles was used as final daily weather data 

for the future period of 2041-2070 only.  

 

6- Graphical Analysis: 

Observed vs. simulated daily weather time series were compared in form of graphical plots. The 

comparison was performed using ‘Summary Statistics’ and ‘Compare Results’ functions in SDSM, results 

of which are provided in section 4.2.1. There are varieties of statistical options that can be chosen to 

summarize results. For this study, the comparison was made for mean and variance only. Validation of the 

model results was performed by visual inspection of these observed vs. simulated graphs. 
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Figure 7: SDSM work methodology used in the study 

3.3. RegCM4 RCM Methodology 

Raw IITM-RegCM4 regional climate model (RCM) data from the CORDEX-SA dataset available in 

rotated - polar grids was firstly re-gridded to a regular geographic grid with a spatial resolution of 0.44o x 

0.44o (50km x 50km) using Climate Data Operators (CDO) to be further used for analysis in the study. 

RegCM4 RCM which is a numerical climate prediction model forced by specified lateral and ocean 

conditions from the CanESM2 AOGCM, offers ready – to –use dynamical downscaled simulations for the 

1951-2100 time period which was divided into two periods for this study: historical (1971-2000) and 

scenario (2041-2070) periods. After re-gridding of RCM data, precipitation values in mm/day were 

extracted for each grid cell (size 50x50 km) covering the study area. The extracted values were then 

utilized directly, without performing any bias correction, to calculate the monthly climatological average 

and monthly climatological standard deviation in order to compare with the final simulated results from 

statistically downscaled CanESM2 AOGCM data. The results obtained from RegCM4 RCM are provided 

and discussed in section 4.3.  
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4. RESULTS AND DISCUSSION 

This chapter presents and discusses the results. Results of data reliability analysis through spatial 

correlogram of observed rainfall and APHRODITE data are discussed in section 4.1.  Section 4.2 deals 

with the calibration and validation of the Statistical DownScaling Model and the performance of the 

statistical downscaling technique is discussed. Results of the performance evaluation of the dynamically 

downscaled RegCM4 data are presented in section 4.3. The comparison in terms of strengths and 

limitations of each of the two downscaling approaches is provided in section 4.4. Finally, the results of this 

study are compared with other studies in section 4.5. 

4.1. Spatial Correlograms 

The correlation of both observed and APHRODITE data over distance (km) was assessed to check the 

quality of each dataset using spatial (cross) correlogram. Results of individual spatial correlogram of the 

observed and APHRODITE dataset and the comparison between them shows that the observed data 

follows Tobler’s law better than the APHRODITE data. As it can be seen from Figure-8, the correlogram 

for observed data shows a pattern that follows Tobler’s law; i.e., with the increase in distance the 

correlation coefficient decreases for all combinations among 27 central points of the grid cells covering 

the study area. Despite that Figure-8 shows a lot of noise, the sequence of grid cells’ values at increasing 

distances show generally same and overall the decreasing trend. To reduce the noise in the spatial 

correlogram, average values of correlation coefficients at each distance step of 10 km were calculated and 

plotted as shown in Figure-9. This shows a more lucid shape of the correlogram. A 10 km average was 

taken assuming that spatial rainfall occurrence over the study area is homogeneous. On the other hand, 

the APHRODITE data shows a very high correlation (0.8) at distance of 200 km that must be considered 

unrealistic. The correlogram in Figure-10 suggests that pronounced correlation even extends up to a 

distance of 350km but such also must be considered unrealistic. The correlogram in Figure-10 does not 

suggests any aspect of decorrelation, so the APHRODITE data set must be considered not reliable for 

further use. Based on this result, APHRODITE was rejected and was not further used in the research 

because of its highly processed dataset and correlogram which is not logical compared to the observed 

correlogram,. It can be concluded that in regions with scarce coverage of climate stations APHRODITE 

may provide unrealistic spatial patterns of precipitation (Climate Data Guide, 2017). 
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Figure 8: Spatial correlogram of in-situ data for all combination of pixels covering the study area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 9: 10-km averaged correlogram of in-situ data for all combination of pixels covering the study area 

y = -0.0004x + 0.7236
R² = 0.0837

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300 350

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t,

 r

Distance, km

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

20 45 70 95 120 145 170 195 220 245 270 295 320 345 370

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t,

 r

Distance, km

point 1
point 2
point 3
point 4
point 5
point 6
point 7
point 8
point 9
point 10
point 11
point 12
point 13
point 14
point 15
point 16
point 17
point 18
point 19
point 20
point 21
point 22
point 23
point 24
point 25
point 26
point 27



COMPARISON BETWEEN STATISTICAL AND DYNAMICAL DOWNSCALING OF RAINFALL UNDER REPRESENTATIVE CONCENTRATION PATHWAYS SCENARIO OVER 

THE GWADAR-ORMARA BASIN, PAKISTAN 

31 

 

Figure 10: Spatial correlogram of APHRODITE data for all combination of pixels covering the study area 

4.2. Statistical Downscaling 

4.2.1. Results of Calibration and Validation of Model  

For all 27 grid cells, the coefficient of determination (R2) after calibration ranged between 0.2 and 0.08.  

The reason for these low R2 values can be the erratic rainfall values in the dataset with observations that is 

used as predictand. Also, it might be the limitation of the transfer function used that it sometimes explains 

a fraction of the climate variability, mostly in case of precipitation (Wilby and Dawson, 2007) thus 

producing poor results in the model calibration. Moreover, the unique topography and climatic conditions 

of the coastal basin can be a major reason why statistically downscaled CanESM2 GCM and NCEP 

reanalysis data did not show a correspondance with the observed data. It is important to mention here that 

the observed dataset used is not completely reliable, however it was the only available limited dataset as 

ground truth which proved to be a better option than gridded rainfall data of APHRODITE. 

 

Regardless of the low R2 values, the observed vs. simulated NCEP and GCM plots as shown in Figure-11, 

13, 15, 17 and 19 show that the calibration performed is still considerable, as the overall rainfall trend over 

the months represented by observed and simulated data is comparable (refer Figure-23). Out of 27 grid 

cells, calibration and validation graphs for only 5 grid cells are provided in the report. Five grid cells 

numbered as grid 1, 3, 10, 11 and 24 (see Figure-6), are selected because inside these grid cells gauging 

stations are located. The validation graphs (Figure-12, 14, 16, 18 and 20) show poorer results than in the 

calibration, as the seasonal rainfall patterns of observed and simulated datasets do not correspond well. 

Furthermore, it was found that the comparison between observations and simulations at a daily time step 

was not meaningful, as most of the days in a year have no rainfall. Therefore, this study solely focused on 

the evaluation of rainfall patterns at a monthly time scale.  

 

The graphs of observed and downscaled data for monthly precipitation show that NCEP and CanESM2 

AOGCM were not able to simulate the maximum monthly rainfall well. This can be observed in all 
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calibration and validation graphs where observed maximum monthly rainfall is higher than the simulated 

counterparts because of the erratic observed data used. From calibration and validation graphs, it can be 

concluded that both observed and simulated results are uncertain. To investigate the degree of uncertainty 

in statistically downscaled CanESM2 AOGCM rainfall compared to observed data, dynamically 

downscaled results of RegCM4 RCM driven by the same AOGCM were compared with SDSM’s results. 

The sources of uncertainty and comparison of the results of the two downscaled methods are discussed in 

section 4.4. Due to the uncertainty in observed and statistically downscaled GCM results, a bias correction 

procedure was not carried out. Bias correction is generally performed on downscaled climate model data 

(see e.g. Salzmann et al., 2007; Mahmood and Babel, 2013; Khadka & Pathak, 2016; Mahmood and Babel, 

2014) when there is sufficient confidence in the observed dataset. However, this is not the case for the 

observed data in this study.  

 

Model calibration and validation are essential steps to analyse the performance of any model showing how 

well the model can replicate the observed data. Figure-21 and 22 show the plots of observed and 

simulated data for all the five grid cells with gauging stations for the calibration and validation period 

separately. From Figure-21, it can be observed that December, January, February (DJF) and June, July, 

August (JJA) are wet months and observed, NCEP and CanESM2 all show somewhat higher rainfall 

amounts in these seasons. Whereas, March, April, May (MAM) and September, October, November 

(SON) are dry months. Observed, NCEP and CanESM2 all show smaller rainfall amounts in these dry 

months. On the contrary, no clear rainfall pattern can be observed for the validation period as shown in 

Figure-22.  

 

Figure 11: Observed vs. simulated daily mean monthly rainfall for the calibration period for grid cell-1 
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Figure 12: Observed vs. simulated daily mean monthly rainfall for the validation period for grid cell-1 

 

 

 

 

Figure 13: Observed vs. simulated daily mean monthly rainfall for the calibration period for grid cell-3 
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Figure 14: Observed vs. simulated daily mean monthly rainfall for the validation period for grid cell-3 

 

 

 

Figure 15: Observed vs. simulated daily mean monthly rainfall for the calibration period for grid cell-10
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Figure 16: Observed vs. simulated daily mean monthly rainfall for the validation period for grid cell-10 

 

 

 

 

 
Figure 17: Observed vs. simulated daily mean monthly rainfall for the calibration period for grid cell-11 
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Figure 18: Observed vs. simulated daily mean monthly rainfall for the validation period for grid cell-11 

 

 

 

 

 
Figure 19: Observed vs. simulated daily mean monthly rainfall for the calibration period for grid cell-24 
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Figure 20: Observed vs. simulated daily mean monthly rainfall for the validation period for grid cell-24 

 

 

 

 
Figure 21: Calibration graph for all 5 grid cells combined 
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Figure 22: Validation graph for all 5 grid cells combined 

4.2.2. Results of Statistical Downscaling 

The performance evaluation of SDSM was finally achieved by means of calculating the climatological 

averages and standard deviations of rainfall for the historic (1971-2000) as well as future (2041-2070) 

period for 27 grid cells covering the study area. The final graphs showing statistically downscaled 

CanESM2 AOGCM results for the baseline and future period under RCP 4.5 and RCP 8.5 scenarios 

compared to observed data are provided in Figure-23 and Figure-24. Figure-23 shows the monthly average 

graph for observed and simulated rainfall over the basin. Whereas, Figure-24 presents the monthly 

standard deviation for observed and simulated rainfall. 

From Figure-23, it can be seen that the downscaled CanESM2 for the historic period (1971-2000), though 

simulated relatively low maximum and high minimum monthly rainfall values compared to the observed 

data. The simulated results generated were satisfactory in terms of simulating the overall monthly rainfall 

cycle over the study area, i.e., the wetting and drying seasonal trend shown by the simulation was in 

coherence with the observed. Except that the observed data showed sharp average monthly climatological 

plot and CanESM2 showed the seasonal rainfall pattern in a smoother manner. Furthermore, the observed 

maximum rainfall value in the month of July was close in a match to the downscaled monthly maximum 

value for 1971-2000. Also, for November and December, the simulated data fitted reasonably to the 

observed data. The performance evaluation of SDSM based on the standard deviation showed poor 

results for NCEP and CanESM2 simulations compared to observed data for historic time period (see 

Figure-24). The observed dataset showed very high standard deviation values and large monthly variation 

due to the irregular rainfall values in the data. This behaviour was not replicated well by the model with 

lower NCEP and CanESM2 simulated standard deviation values.  

 
For future projections (2041-2070), the SDSM results obtained show hardly any difference in CanESM2 

simulations under emission scenarios between RCPs 4.5 and RCPs 8.5 (i.e., graphs overlay). This is 

reflected in both Figure-23 and Figure-24. The average monthly rainfall and standard deviation graphs for 

the future CanESM2 simulations under RCP 4.5 and RCP 8.5 showed similarity in presenting trend and 

variance of rainfall over the study area. It can also be observed from Figure-23 and Figure-24 that the 

statistically downscaled future projections of CanESM2 are close to the historic downscaled simulations of 
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the AOGCM that by itself is highly unlikely, given the increased GHGs emissions in the atmosphere one 

can expect that rainfall will change. Also, the model showed inadequate results in projecting future 

simulations under RCPs 4.5 and RCPs 8.5 compared to the simulated AOGCM (shown alike in Figure-23 

and Figure-24). In this regard, it can be concluded that the selected NCEP predictors within SDSM are 

insensitive to different radiative forcings which reflects that the performance of SDSM in predicting future 

rainfall was not satisfactory.  

 

It is important to highlight that the pronounced difference between observed and simulated GCM results 

in the phase of calibration and validation (as can be seen in Figure-11 to Figure-20) reduced significantly 

when daily means on a monthly basis for all 27 grid cells combined were calculated. The climatological 

averaging of rainfall over 30 years for historic and future periods resulted in suppressing of the erratic 

observed precipitation pattern and showed a rainfall change trend that somehow weakly matches the 

downscaled CanESM2 simulations. 
 

 
Figure 23: Observed vs. simulated average monthly rainfall for entire basin 
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Figure 24: Observed vs. simulated mean monthly rainfall standard deviation graph for entire basin 

4.3. Dynamical Downscaling 

The performance of the dynamical downscaling approach (RegCM4 RCM) was also evaluated by 

comparing the monthly average rainfall graph (Figure-25) and monthly standard deviation graph (Figure-

26) for both historic as well as future time periods. Figure-25 shows that the RegCM4 historic simulation 

largely over-estimated the monthly mean values of precipitation in particular for the summer season so 

that the climatological rainfall pattern of the observed data is no longer visible under the projected trend 

of RegCM4 RCM and has appeared as a straight line. However, SDSM results obtained as discussed in the 

previous section well indicate the observed annual cycle of rainfall. Moreover, the RCM also failed to 

simulate the accurate seasonal pattern of rainfall over the study area. In Gwadar-Ormara basin, there are 

two wet seasons: i- December, January, February (DJF) and ii- June, July, August (JJA). The dynamical 

downscaling method failed to simulate the winter precipitation season – DJF completely for both historic 

and future climate periods.    
 

The RegCM4 RCM simulated standard deviation values of monthly rainfall at the basin scale are 

erroneously high compared to the observed counterparts for the baseline period. Figure-26 shows the 

unrealistic results obtained from dynamically downscaled RegCM4 RCM lead to the conclusion that 

SDSM results are significantly better than the RCM ones, despite of uncertainties existing to some extent 

in all datasets utilized. The uncertainty in RCM data is higher than the observed and CanESM2 AOGCM 

data, as can be noticed from both Figure-25 and Figure-26. As a matter of fact, in statistical downscaling 

method, rainfall was simulated close to observed rainfall by establishing regression equations between 

local scale predictands (observed) and large-scale atmospheric predictors (NCEP/NCAR and AOGCM) 

due to which SDSM results can be considered more trustworthy than the RCM’s.  

 

Dynamically downscaled future climatic projections for the period 2041-2070 under RCPs 4.5 and RCPs 

8.5 also showed very high average mean monthly rainfall and standard deviation values compared to the 

observed dataset. From both Figure-25 and Figure-26, it can be seen that the difference between the two 
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RCPs scenarios’ simulations of RegCM4 RCM is not significant. The projection under RCPs 4.5 is 

identical to projection under RCPs 8.5 except for the months of June, July and September for which the 

difference is trivial and can be overlooked. The future projections from the RCM under the RCPs show a 

relative change in rainfall variability compared to the historic simulated rainfall variability. Thus, from the 

overall results of dynamical downscaling, it can be concluded that the RCM results are biased and cannot 

be directly used in hydrological climate change impact studies.  

 

As mentioned already in section 4.2.1, to reduce uncertainties from climate models, a bias correction step 

is generally applied. Many other studies like Teutschbein and Seibert, (2012); Berg, Feldmann and Panitz, 

(2012); and Chen et al., (2017) have recommended this step before further use of the RCMs simulations. 

The author understands that the over-estimation of the seasonal (JJA) mean precipitation by RegCM4 

over the entire basin should have been first bias corrected and then the performance of the RCM should 

have been evaluated and compared with the statistical downscaling model results. However due to the 

uncertainty in the observed data itself, bias correction was not undertaken. Nevertheless, it is uncertain 

whether in this case a bias correction procedure would produce appropriate results because of the large 

bias correction factors required (179- for June in the historic period) to remove the bias from the RCM 

simulations considering observed data as the ground truth. This is a reason why RegCM4 RCM can said to 

be unreliable to simulate spatial-temporal rainfall variability, as similar poor results have been obtained for 

the same climate model in studies like Haile and Rientjes, (2015) and Almazroui, (2016). Furthermore, the 

RCM may require improvement in the physical parameterization, convection and land-surface scheme 

settings (Sanjay et al., 2013) 

 

 
Figure 25: Observed vs. RCM simulated average monthly rainfall for entire basin 
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Figure 26: Observed vs. RCM simulated mean monthly standard deviation of rainfall for entire basin 

 

A main reason of unlikely high rainfall values from RegCM4 could be the error propagation in RCM data 

from the driving AOGCM due to the fact that regional climate models utilize the outputs provided by 

AOGCMs as lateral boundary conditions to provide spatio-temporal variations of climatic parameters at 

spatial scales much smaller than the AOGCMs’ grid. To ensure that the poor results of the RCM were 

because of inheriting of physical characteristics from the parent GCM or because of the functional 

properties (like choice of parameters, initial conditions and mathematical algorithms) of the RCM itself; 

rainfall estimates of pixels of the parent AOGCM (CanESM2) covering the study area were compared to 

the rainfall estimates of pixels of RegCM4 RCM falling within those grid cells of the AOGCM. The pixel 

values of the AOGCM were then arranged in a similar manner as those of the RCMs to determine 

climatological averages and standard deviation values for the historic period only. The final results, as 

shown in Figure-25 and Figure-26, confirm that CanESM2 AOGCM is giving more reasonable results 

close to the observed data than the RegCM4 RCM. Therefore, the high bias in RCMs data is much likely 

due to the characteristics of the model itself and not inherited by the driving AOGCM. 
 

Further, the RCMs data was also analysed to assess its spatial distribution of rainfall over the study area, as 

there is a large spatial variation in the observed rainfall data. The results of this analysis are provided in 

Figure-27. The AOGCM with its coarse resolution cannot be used to validate the observed spatial rainfall 

variability pattern over the Gwadar-Ormara basin. Hence, the RCM is the only means to analyse if the 

regional climate model can simulate the rainfall variation similar to that of observed. Figure-27 shows the 

difference between the observed rainfall distribution and RCM simulated rainfall distribution over the 

study area, averaged over 30 years (1971-2000) for the wet month of July only. From the figure, it can be 

seen that the RCM (50km x 50km grid cell size) somehow showed a similar rainfall pattern as the 

observed one (gauged station data interpolated at a 25km x 25km grid cell size), despite that RCM mean 

monthly values were highly biased. The rainfall from the coastline to the upland area changes from high 

mean monthly to low mean monthly precipitation, as represented in both maps. Except that observed 
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rainfall pattern showed more variation from the West end of the basin to the East which was not 

simulated satisfactorily by the RCM. For instance, in the central part of the basin where three stations 

(Hore, Shadikaur and Pasni) are located, observed data showed high mean rainfall of about 0.561 mm/day 

in the month of July over 30 years period. RCM, because of biased dataset, showed mean rainfall of 

25.735 mm/day in the same area. The maximum mean rainfall of 36.636 mm/day by RCM data showed in 

the right corner of the basin does not correspond with the rainfall distribution of the observed dataset. 

This further supports the argument that RCMs’ outputs cannot be directly used for quantifying the 

hydrological impacts of climate change. Moreover, it should be noted that different classification scales in 

Figure-27 were applied to make visual analysis and interpretation of both maps meaningful. 

 

 
Figure 27: Spatial rainfall variation map of RCM (above) and spatial rainfall variation map of observed data (below) 
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4.4. Comparison of Statistical vs. Dynamical Downscaling 

Performance evaluation of dynamically downscaled RegCM4 regional climate model data without any bias 

adjustment was performed in the same manner as it was done for statistically downscaled CanESM2 

AOGCM by constructing monthly rainfall climatological average and standard deviation graphs for both 

historic as well as future time periods. It is important to mention that the comparison is established at 

basin scale but although dissimilar grid cell sizes are used, i.e., 25km x 25km for AOGCM and 50km x 

50km for RCM; such did not affect the comparison of the downscale rainfall estimates as end results 

coming from the two downscaling approaches. The comparison of the two approaches in terms of key 

strengths and limitations is discussed below: 

4.4.1. Statistical Downscaling 

 Strengths: 

i- The statistical downscaling performs better than dynamical downscaling in less data intensive areas, 

where there is no full confidence in the available observed dataset and bias correction is not 

appropriate.   

ii- Despite the very coarse resolution of the AOGCM, statistical downscaling method develops 

multiple regression equations between large-scale atmospheric variables and local climate surface 

variables due to which the statistical downscaling method is forced to simulate the rainfall close to 

that of observed. In this study, because of statistical relationship developed the downscaled 

AOGCM simulations produced more realistic rainfall estimates than dynamically downscaled for 

the baseline period (1971-2000). The bias and uncertainty in downscaled simulated rainfall were 

comparatively less in case of statistical downscaling. 

iii- The monthly rainfall and seasonal trend over the Gwadar-Ormara basin was well captured by 

statistical downscaling in comparison to dynamical downscaling for both historic as well as future 

periods. The observed annual cycle of rainfall was noticeable and comparable to statistically 

downscaled CanESM2 AOGCM simulations, while this was not the case with dynamically 

downscaled simulations.   

 Limitations: 

i- Model calibration and validation required for statistical downscaling produced unsatisfactory results 

leading to uncertainty in the model outputs.  

ii- SDSM showed insensitivity of selected large-scale atmospheric predictors to different emission 

scenarios due to which performance of statistical downscaling was not satisfactory in projecting 

future rainfall (for window 2041-2070). RCP 4.5 and RCP 8.5 emission scenarios generated by 

SDSM were identical to each other. Also, these projections under RCPs showed lower mean 

monthly rainfall than the simulated in the historic period (1971-2000), which is not plausible.  

4.4.2. Dynamical Downscaling 

 Strengths: 

i- Dynamical downscaling is better than statistical downscaling in terms of predicting spatial-temporal 

rainfall variation due to a finer resolution of regional climate models (refer Figure-27). Additionally, 

statistical downscaling can underestimate the variation of rainfall patterns because of statistical 

relationships, between local and large-scale climate variables, which is assumed that will remain 

constant and valid in the future.  

ii- The dynamically downscaled future rainfall projections under RCPs 4.5 and RCPs 8.5 were 

significantly higher than the observed ones as well as simulated ones in the historic time period. 

Rainfall values under carbon emission scenarios generally tend to increase compared to the historic 
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simulations. So, in case of dynamical downscaling, this general behaviour of the climate model was 

well represented but was not reflected in case of statistical downscaling.   

iii- In dynamical downscaling, no model was utilized to downscale rainfall. Hence, model calibration 

and validation steps were not required.   

 Limitations: 

i- The unrealistically biased rainfall values from the dynamical downscaling in the wet season of June, 

July, August (JJA) make the usage of RCM data uncertain. Without bias correction, the RCM 

showed poorer results than SDSM in downscaling rainfall.   

ii- The RegCM4 RCM showed a higher uncertainty in simulating rainfall variability compared to the 

CanESM2 AOGCM might be due to the choice of the parameterization of cumulus convection 

schemes, mathematical algorithms, land-sea contrast and surface characteristics settings.  

iii- The RegCM4 RCM completely missed one of the wet seasons (DJF) over the Gwadar-Ormara 

basin in both historic as well as future periods. 
 

For further comparison purposes, the annual climatological means of observed and simulated rainfall 

(from both SDSM and RCM) for the historic (1971-2000) and future period (2041-2070) for the entire 

basin are provided in Table-5. These annual climatological mean values show how each method 

performed in downscaling rainfall with respect to the observed dataset. 

 

Table 5: Observed vs. simulated annual climatological means  

S.N.  Time Period 
Annual Climatological 

Mean (mm/day) 

1  Observed historic (1971-2000) 0.1918 

2  RegCM4 historic (1971-2000) 5.4402 

3  RegCM4 RCP 4.5 (2041-2070) 8.1851 

4  RegCM4 RCP 8.5 (2041-2070) 8.1536 

5 CanESM2 AOGCM historic (1971-2000) 0.1731 

6 CanESM2 AOGCM RCP 4.5 (2041-2070) 0.1473 

7 CanESM2 AOGCM RCP 8.5 (2041-2070) 0.1483 

 

While comparing statistical and dynamically downscaled future projections in period 2041-2070 under the 

two RCPs, it was noticed that the emission scenarios projected an identical patterns in both approaches. 

Therefore, probably it partly is a limitation of the driving model used (CanESM2 AOGCM) that it does 

not show a significant difference in between the results of the two RCP scenarios (one intermediate and 

one intensive) and it is not due to the poor performance of any downscaling approach; either statistical or 

dynamical. 

4.5. Validation of Results Obtained 

A study conducted by Sanjay et al., (2013) tried to evaluate the performances of the RCMs being part of 

the CORDEX-SA evaluation and historical experiments in comparison with those of the AOGCMs being 

part of the CMIP5 to facilitate multi-model inter-comparison over South Asia. Amongst the selected ten 

AOGCMs and five RCMs for a common 15 year evaluation period (1990-2004), they found that the 

CanESM2 AOGCM showed a dry (negative) bias in simulating  annual mean precipitation (mm/day) over 

central India and Southern parts of Pakistan against the monthly mean rain gauge – based global land 

precipitation dataset from the Climate Research Unit (CRU) at the University of East Anglia. They also 
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found that individual RCMs (driven by CMIP5 AOGCMs) resulted in biases varying from dry to wet over 

central India and Southern parts of Pakistan in the historical simulations. Another main conclusion of the 

study was that the RCMs (including RegCM4) overestimate the spatial variability compared to observed 

(CRU) annual precipitation climatology over South Asia. A study conducted by Choudhary and Dimri, 

(2017) also concluded similar results that RCMs under CORDEX-SA exhibit a large wet bias over the 

region which mean overestimation of precipitation in historic as well as in future projections. The results 

of these past studies performed over South Asia using CORDEX somewhat support the results of this 

study undertaken over Gwadar-Ormara basin, Pakistan.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

 Data reliability analysis was performed for observed rainfall and APHRODITE gridded rainfall data 

using spatial correlogram which resulted in rejecting the use of APHRODITE for the Gwadar-

Ormara study area. For unknown reasons, APHRODITE data used produced unrealistic spatial 

patterns of rainfall. 

 Calibration and validation plots of the Statistical DownScaling Model (SDSM) showed erratic 

observed mean monthly rainfall values (in mm/day) which the model could not replicate well. 

 Uncertainty in the observed data was because of two reasons; i- missing and possible erroneous 

daily rainfall values in the available dataset and ii- imputation techniques used to fill those missing 

values. 

 Statistical downscaling performed better in simulating the monthly rainfall cycle compared to 

dynamical downscaling for the historic period (1971-2000), without application of bias correction to 

the outputs of both downscaling methods. 

 In period 2041-2070 under the two RCPs 4.5 and 8.5, future rainfall projections did not show any 

significant difference from each other in both downscaling approaches. This might highlight a 

limitation of the driving model (CanESM2 AOGCM) and not necessarily poor performance of any 

downscaling approach; either statistical or dynamical. 

 Dynamical downscaling (using RegCM4 RCM) over-estimated the monthly mean precipitation over 

the study area in both historic and future time periods. RCM showed highly biased rainfall 

simulations and future projections. The bias in RCM results can be attributed to uncertain initial 

conditions, lateral-atmospheric-boundaries and lower-surface boundaries with time-variable 

conditions, which made the outputs from RCM inconsistent with those from the CanESM2 

AOGCM. 

 Dynamical downscaling due to the finer resolution of regional climate models satisfactorily showed 

spatial rainfall variation compared to observed data and was able to represent the large variation in 

the rainfall pattern over the study area similarly to that of observed rainfall.  

5.2. Recommendations 

 It is recommended that bias correction should be applied to downscaled results (from both SDSM 

and RCM) using a high-quality observational dataset before using the outputs further in 

hydrological or impact studies. Further, the performance of a multi-model ensemble and other 

GCMs/RCMs should be assessed for this case study. 

 Further research and studies are required to assess the weaknesses and strengths of the RegCM4 

RCM driven by the CanESM2 AOGCM over arid systems. 

http://glossary.ametsoc.org/wiki/Initial_conditions
http://glossary.ametsoc.org/wiki/Initial_conditions
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