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ABSTRACT 

Desalinated water contributes to about 90 % of the potable water demand of Gulf Countries due to their 

characteristic arid climate. However, high level of algal biomass associated with Harmful algal blooms 

(HABs) have been a major hindrance to the full operation and functioning of the seawater desalination 

plants. Estimation of chlorophyll-a (Chl-a) concentration from existing satellites images are used as 

indicators for the monitoring of algal blooms known to be present in coastal waters but at coarser scale. 

However, high spatial resolution Chl-a maps can be derived directly from Sentinel-2 MSI with Neural 

Networks algorithms. However, the spectral set-up of Sentinel-2 limits it applicability to accurately estimate 

Chl-a using such models.  

Hence, in this study, a new method of regression analysis model is utilized to retrieve Chl-a by relating 

Sentinel-2 MSI derived indices with MODIS L2 Chl-a product to obtain Chl-a maps at high spatial and 

spectral resolution. Three existing semi-empirical algorithms for retrieving Chl-a consisting, the Red Tide 

Index (RI) and Red Tide Index Chlorophyll Algorithm (RI/RCA), Maximum Chlorophyll Index (MCI) and 

Normalized Difference Chlorophyll Index (NDCI) based on band ratio are calibrated and validated using 

two independent datasets of Chl-a data from MODIS Aqua L2 1 km observed over the Arabian Gulf (AG) 

from 27 December 2015 to 27 October 2017.  

Preliminary results revealed 9 x 9 as the optimal window size for extracting data for model development. 

RI/RCA model run with exponential fit as the best model for estimating Chl-a than the other two models. 

We obtain an R2 of 0.507, a root-mean-square error (RMSE) of 2.75 mg/m^3 and mean absolute percentage 

error (MAPE) and 43.4 % respectively were estimated for the entire range of Chl-a concentration (~0.48 

mg/m3 to 18.42 mg/m3) modelled compared with MODIS observed Chl-a data.  Also, retrieved map with 

RI/RCA algorithms resolved into more details the spatial variation in Chl-a concentration near the intake 

of Ras Abu Fontas desalination plant compared with MODIS OC3M Chl-a maps. Results of MCI model 

also showed potential for Chl-a retrieval. 

Seasonal analysis of MODIS observed Chl-a and Sentinel-2 derived Chl-a concentration showed summer 

maximum and spring minimum. The residual error in upscaled Sentinel-2 MSI derived Chl-a versus the 

reference MODIS L2 downgraded each at 90 m and 1 km, ranges between -7.2 to 7.5 mg/m^3. The results 

of RI/RCA showed more sensitivity to Chl-a more than MODIS OC3M.  In all, the preliminary results 

revealed that, RI/RCA model derived through the downscaling technique is more sensitive to Chl-a in the 

AG and has the potential of being used as an indicator for algal bloom monitoring near the desalination 

plant intakes.  
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1. INTRODUCTION 

The Arabian Gulf (also called the Persian Gulf), surrounded by a hyper-arid and dry region in the Middle-

East is a semi-enclosed shallow basin with a mean depth of approximately 35 m and a width of 370 km. The 

Arabian Gulf is classified as coastal case II water  under a dusty environment characterized by extreme 

climatic weather condition where evaporation exceeds precipitation resulting in hypersaline water (Al-Ansari 

et al., 2015; Nezlin et al., 2007). Many arid countries along the Arabian Gulf (AG) are increasingly dependent 

on seawater desalination due to an increasing potable water demand for drinking purpose and the prevailing 

arid climate. Desalinated water helps in meeting good portions of freshwater needs (about 99% in Qatar, 

96% in Kuwait, and 60% in Saudi Arabia) in the Arabian Gulf countries (Darwish, Abdulrahim, Hassan, & 

Shomar, 2016). A critical threat to this freshwater demand is from harmful algal blooms (HABs).  

“Harmful algal bloom (HAB) can be described as any sudden and rapid growth of any monospecific algae 

or heterotrophic organism as a consequence of ecological perturbation and concomitant imbalance in the 

nutrients of a given water body” (Anderson, Glibert, & Burkholder, 2002; Heisler et al., 2008; Olalekan 

& Malik, 2015). The prolific growth in algae found in coastlines responsible for the water surface 

decolourisation is caused mainly by two types of HABs including; red tides (RT) (dinoflagellates) and 

cyanobacteria (blue-green algae) blooms. While not all algal species are harmful, some produce potent neuro-

toxins (such as cyanobacteria and diatoms) which are harmful to aquatic living organisms and poses threats 

to the health of humans if they persist in the treated water. Majid et al., (2016) reported the presence of 

cyanobacteria releasing cyanotoxins within 80 % of sampled water bodies as well as other water storage 

reservoirs (such as impoundments) in the Arabian Gulf. Moreover, samples of desert soils tested revealed 

the presence of neurotoxins that has the potential to bioaccumulate and the subsequent leaching into the 

aquifer with a potential of polluting the groundwater resources (Majid et al., 2016). These therefore render 

water sources unwholesome for consumption or irrigation purpose. 

The Arabian Gulf (AG) has historically been susceptible to HABs and HABs have occurred more frequently 

in recent years both in the AG and around the world (Darwish et al., 2016). Also, cases of massive harmful 

algal blooms have been reported by Al Shehhi et al., (2014) in Qatar and the Southwest of India between 

1996 and 1998, and along the Coast of Kuwait in October 1999 and September 2001. The impact of HABs 

can be detrimental to desalination plant operations as it was seen during the 2008-2009 severe red tide 

episode in the Gulf of Oman that triggered concerns of irreversible membrane fouling problems and 

eventually led to the shutdown of some plants due to clogging and reduce operations for more than 55 days 

(Anderson & Price, 2015). The global and regional expansion of HABs is occurring at a time when there is 

also an increase in the construction of desalination plants to produce drinking water (Villacorte et al., 2015) 

and therefore more HABs impacts are probable to re-occur. The high level of algal biomass associated with 
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severe algae bloom decomposition at the intake results in the suspension of desalination plant operations 

due to the high cost involved in the chemical treatment of toxins and malodours in the water. It is therefore 

very important to mitigate the impacts of such harmful algal blooms before they cause any devastating 

impacts to humans and the marine ecosystem.  

In the Arabian Gulf, it has been a difficult task with the traditional method of constant monitoring of HABs 

along the Gulf as well as near intakes of seawater desalination plants. Previous studies employing traditional 

point monitoring or measurements of bio-optical water parameters do not reflect the spatial variability of 

the water constituents effectively. Moreover, various studies utilizing in-situ measurements and satellite 

products have been utilized in mapping chlorophyll-a (as proxies for algal blooms) and other bio-optical 

water properties. But the processes responsible such as nutrient inflow, light penetration, hydrodynamics 

and water temperature and turbidity for bloom initiation and transport at a localized area are difficult to 

model and monitor (Conley et al., 2009; Elkadiri et al., 2016). It is therefore of high priority to monitor and 

forecast the blooms development and movement before they cause any catastrophic effects. 

Several studies have used satellite data in monitoring the occurrence of HABs in the Arabian Gulf utilizing 

these coarser satellite resolution images including Moderate Resolution Imaging Spectroradiometer 

(MODIS), Medium Resolution Imaging Spectrometer (MERIS) and Seaviewing Wide Field-of-view Sensor 

(SeaWiFS) (Al-Shehhi, Gherboudj, Jun, Mezhoud, & Ghedira, 2013; Ghanea, Moradi, & Kabiri, 2015; 

Mohsen Ghanea, Moradi, & Kabiri, 2016; Zhao, Ghedira, & Temimi, 2014; Moradi & Kabiri, 2012; Zhao, 

Temimi, Al-Azhar, & Ghedira, 2015). In some case, these space-based sensors have also provided huge and 

varied amount of data used for the geophysical validation of hydrodynamic models by many researchers.  

However, their coarser resolution does not allow for estimation of water quality constituents at a fine scale. 

Therefore, the usefulness of high spatial resolution sensors for monitoring coastal and inland water has 

become apparent with new applications quickly emerging (Vanhellemont & Ruddick, 2016b).  

Monitoring HABs at a fine scale is significant for environmental, ecological, and biological management of 

water regions. With a high spatial resolution (10-60 m) of Sentinel-2 MSI satellite image with improved 

spectral resolution from MODIS, turbid tidal wakes together with chlorophyll-a and other water quality 

parameters can effectively be retrieved and analysed in more detail and at a fine scale for optically complex 

coastal waters. Also, smaller water bodies not captured by coarser satellite images can effectively be 

delineated together with the retrieval of its bio-optical properties.  
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1.1.  Research Problem 

Globally, chlorophyll-a concnetration plays  important role as an indicator of the quality of water bodies 

They are also used as proxies for characterizing harmful algal blooms (HABs). During periods of HABs, 

algal blooms cover large areas whereby chlorophyll-a of very high concentration exceeding  10 mg/m^3 are 

observed. When chlorophyll-a concentration of coatal waters exceeds this threshold (10 mg/m^3), they are 

regarded as harmful algal bloom (Comprehensive Studies Task Team of Group Coordinating Sea Disposal 

Monitoring [CSTT], 1997; World Health Organization [WHO], 2003). For effective monitoring and 

prediction of harmful algal blooms long period of algal bloom or phytoplankton biomass data are required. 

However, the scarcity of available in-situ measured data due to low spatial coverage over short sampling 

periods, time constraints and cost involved limits this application (Al-Naimi, Raitsos, Ben-Hamadou, & 

Soliman, 2017).  

Therefore, the integration of Sentinel-2 and or Landsat 8 and MODIS and/or MERIS at high spatial and 

temporal scale respectively may be more appropriate for retrieving chl-a. However, there are limitations in 

these existing satellites products since revisit time for the fine spatial resolution sensors is typically poor, 

while those with a high revisit frequency are characterized by a coarse spatial resolution (Bisquert, Sanchez, 

& Caselles, 2002). Moreover, the long repeat cycle of MSI, also makes it difficult in observing water quality 

changes due to its vulnerability to heavy dust storms, clouds, water vapor  and haze effects which is common 

in the Arabian Gulf region especially during summer (June-August) (Al-Naimi, et. al, 2017; Mohsen Ghanea 

et al., 2016). 

Currently (i.e., in mid 2015), there are two well-calibrated global ocean color sensors in operation, Moderate 

Resolution Imaging Spectroradiometer on Aqua (MODISA) and Visible Infrared Imaging Radiometer Suite 

(VIIRS) on Suomi NPP (Kahru, Kudela, Anderson, & Mitchell, 2015) that can be used for monitoring and 

forecasting blooms in data scarce areas. MODIS Ocean colour data at 1km (daily), 4km (monthly) or 9km 

(monthly) is capable of being used in place of in-situ measurements since it has been successfully used to 

mapping chlorophyll-a concentration and other water quality parameters globally. The daily revisit time 

makes it suitable for observing small changes in chlorophyll concentration and the dynamics in algal bloom 

episodes. 

To the researchers’ knowledge, downscaling of MODIS Level-2 1 km Chlorophyll-a product with Sentinel-

2 MSI data for the reliable estimate and monitoring of Chl-a and mapping of algae blooms at a high temporal 

and spatial scale near desalination plant intakes is not yet known. The spectral set-up of Sentinel-2 is not 

good enough in estimating chlorophyll-a in coastal and in-land water compared with MODIS since it was 

apparently designed for Land applications. Therefore, in this study, MODIS Level-2 chlorophyll-a product 

will be complemented with the very high spatial resolution data of Sentinel-2 MSI to derive chlorophyll-a 

products of a high temporal and spectral resolution of the MODIS and the high spatial scale of Sentinel-2. 



Deriving algal concentration from Sentinel-2 through a downscaling technique: A case near the intake of a desalination plant 

 

4 

Also, retrieved chl-a maps will be cross validated with with derived chl-a concentration with the recently 

available Case 2 Regional coastcolor (C2RCC) neural network algorithm. 

1.2. Research Objectives 

The main objective of this study is to derive chlorophyll-a concentration maps from Sentinel-2 at high spatial 

resolution from Sentinel-2 using MODIS 1 km Chl-a product as input and evaluate the spatial variability of 

algal biomass near the intake of Ras Abu Fontas desalination plant in Qatar. 

1.2.1. Specific objectives 

The specific objectives of this study include; 

▪ To derive chlorophyll-a concentration maps from Sentinel-2 at 10 m resolution near the intake 

of a desalination plant. 

▪ To investigate the spatial variation of Chl-a concentration near the intake of the desalination 

plant from 2016-2017. 

1.3. Research questions 

1. Can we derive Chl-a maps from Sentinel-2 with an acceptable accuracy w.r.t. MODIS? 

2. What is the spatial variation of Chl-a concentration near the intake of the desal plant? 

3. How the Chl-a maps are related to the operations of the desalination plants? 
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2. LITERATURE REVIEW 

2.1. Harmful Algal Blooms (HABs) detection in the Arabian Gulf (AG) regions 

Red tide, one type of harmful algal bloom, is caused by the prolific increase in toxic or nuisance algae species 

(Jun Zhao et al., 2014). According to Thangaraja et al. (2007), incidence of red tide blooms in the Persian 

Gulf is not something new due to recurrent events for some decades now. It is of great concern due to their 

adverse effects not only on the health of human and marine organisms, but also severe impacts on the 

economy of the affected areas (Jun Zhao et al., 2014). The Intergovernmental Oceanographic Commission 

(IOC), has identify 60–80 of algal species responsible for HABs out of which 75% are (Smayda, 1997; L. 

Villacorte et al., 2014). Till now, 38 taxa of HABs has been noted as present in the Arabian Gulf (AG) 

(Moradi & Kabiri, 2012; Thangaraja et al. 2001; Rao et al. 1998). In 2008 fall and winter season in the AG, 

a catastrophic red tide episode occurred which spread over and affected almost the entire the region. This 

red tide episode also resulted in the suspension of desalination plant operation and other marine activities.  

Some well-known impacts of HABs include; scum formation (can be of very high thick layers) on the water 

surface causing the blockage of sunlight needed for photosynthetic activities by aquatic plants. And, in 

extreme cases, the high algal biomass produced depletes the dissolved oxygen content in the water for their 

metabolic activities leading to the loss of life of fishes and other aquatic animals. Additionally, red tide 

outbreaks force the shutdown of desalination plants, upon which the potable water supply in the Gulf region 

relies (Berktay, 2011). The algal biomass and the associated organic load of red tide blooms lead to fouling 

of membrane surfaces and clogging of intake filters restricting the effective operations of seawater 

desalination plants. Therefore, huge costs are invested in cleaning or repairing of damage membranes filters 

and for flushing of clogged membrane. 

2.2. Remote sensing of algal biomass 

Temporal detection and observation of HABs is critical for environmental assessment, for ecological 

modelling, and for prediction and mitigation against red tide impacts (Moradi & Kabiri, 2012). Hence, it is 

very important that, satellite image with a combined high spatial and temporal resolutions is highly required 

for the detection, forecasting and monitoring of algal bloom dynamics on large scales. Most approaches for 

remote estimation of phytoplankton biomass are based on the absorption of sunlight by algal pigments in 

the presence of light scattering by algal cells and non-algal particles (Schalles, 2006). The difficulty is the 

determination if high Chl-a concentration levels are due to toxic or non-toxic species of algae.  

2.3. Applications of MODIS for chlorophyll-a mapping  

Numerous research have been performed utilizing coarser satellite data such as MODIS and MERIS  for 

the estimation of Chl-a and the monitoring of Red Tides in the Arabian Gulf and the Sea of Oman (Moradi 

& Kabiri, 2012; Al-Shehhi, Gherboudj, Jun, Mezhoud, & Ghedira, 2013; Ghanea, Moradi, & Kabiri, 2015; 
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Mohsen Ghanea, Moradi, & Kabiri, 2016; Zhao, Ghedira, & Temimi, 2014; Zhao, Temimi, Al-Azhar, & 

Ghedira, 2015). Moradi & Kabiri, (2012)  found a high correlation between the Normalised Fluorescence 

Line Height (NFLH) derived from MODIS and in-situ measurements of Chlorophyll-a during harmful algal 

bloom episodes. They also found high coefficient of determination (R2) of 0.53 between MODIS Modified 

Fluorescence Line Height (MFLH) and in-situ measurements. However, in some cases, especially during 

periods of low red tides,  there have been reported cases of overestimation when MODIS retrieved results 

were compared with in-situ Chl-a measurements within the Arabian Gulf (Jun Zhao, Temimi, Kitbi, & 

Mezhoud, 2016). Al-Shehhi, Gherboudj, & Ghedira, (2017) attributed this poor performance of the coarser 

satellite image to three reasons namely; “(i) water turbidity (sediments re-suspension), and the presence of 

coloured dissolved organic matter (CDOM), (ii) bottom reflectance and (iii) incapability of the existing 

atmospheric correction models to reduce the effect of the aerosols from the water leaving radiance”.   

2.4. Sentinel-2 MSI for Chlorophyll-a retrieval  

The use of high spatial resolution satellite images such as SPOT 5, Landsat 5-TM, and Landsat 7-ETM+. 

for deriving water quality parameters at fine scale have been in existence for awhile now (Kabbara et. al 

2008). Algorithms designed for the recently launched Landsat-8 OLI and Sentinel-2 MSI in February 2013 

and June 2015 respectively have offered an additional capability in retrieving water quality parameters such 

as chlorophyll-a at high spatial scale. However, it has been argued that, the spectral setup of Sentinel-2 with 

narrow red-edge spectral bands offers an additional advantage to Landsat-8 OLI for water quality retrieval 

in optically complex coastal areas (D’Odorico, Gonsamo, Damm, & Schaepman, 2013). Sentinel-2 MSI have 

successfully been utilised in retrieving water quality parameters including Chl-a, TSS and CDOM nearshore 

coastal waters and inland waters (Chen et al., 2017; Dörnhöfer, Göritz, Gege, Pflug, & Oppelt, 2016; Kutser 

et al., 2016; Liu et al., 2017; Toming et al., 2016). (Vanhellemont & Ruddick, 2016a) and Beck et al., (2017), 

have also recently demonstrated the capability of Sentinel-2 red-edge band  at 705 nm in detecting, 

delineating and monitoring intense algal blooms. (Clark et al., 2017), also suggested integrating MERIS and 

Sentinel-2 MSI for monitoring water quality and surface algal  blooms at high spatial resolution since MERIS 

is only accurately been able to resolve < 1 % of water bodies in U.S > 1 ha.  

2.5. Chlorophyll-a retrieval algorithms 

Satellite-derived and laboratory measured Chl-a concentrations have widely been used as an index for algal 

bloom biomass and as a potential indicator of increased nutrients in inland and coastal waters. Remote 

sensing of algal biomass and its distribution has relied on algorithms to derive the concentrations of 

chlorophyll-a (Chl-a) in coastal case 2 waters. Traditional algorithms derived for the remote sensing of Chl-

a concentration has been based on the blue-green ratio models. These models were first designed for 

monitoring vegetation using Normalized Difference Vegetation Index (NDVI). The NDVI models were 

based on bands in the blue-green regions to monitor vegetation health. Moreover, these blue-green spectral 

regions were used because, there is absorption of energy by Chl-a in the blue and red bands, resulting in 
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high reflectance in the green spectrum (Kamerosky, Cho, & Morris, 2015). Many studies have therefore use 

equations similar to the NDVI based on these spectral regions to successfully retrieve Chl-a from in-land 

and coastal water bodies. However, there have also been literature reports on these blue-green ratio 

algorithms failing to retrieve chlorophyll in case 2 waters. 

Algorithms based on the Red-NIR regions has successfully been used in deriving Chl-a utilizing coarser 

satellite images in some inland and coastal waters by many researchers and several researches to retrieve 

high accurate Chl-a products are still on-going. During photosynthesis, Chl-a is known to fluoresce in the 

near infra-red (NIR) wavelength whereas most in-water algal blooms also show a peak in the red region. 

The IR reflectance is due to the decreasing absorption by the chlorophyll pigments in the spongy mesophyll 

cells and an absorption increase by water (Patra, Dubey, Trivedi, Sahu, & Rout, 2017). Therefore, Red-NIR 

algorithms have been useful in retrieving Chl-a products from satellite images. 

There is no regionally tuned ocean colour algorithm for Chl-a retrieval in the Arabian Gulf region. The Red 

Tide index (RI), Maximum Chlorophyll-a index (MCI) and Normalised Difference Chlorophyll-a index 

(NDCI) models have been selected for use in testing the downscaling technique for estimation of Chl-a in 

this study. The models were chosen due to their wide and successful use in previous studies (Zolfaghari & 

Duguay, 2016; Tao, Mao, Wang, Lu, & Huang, 2011; Ahn & Shanmugam, 2006). These models have been 

successfully utilized in retrieving Chl-a from satellite images (such as CZCS, SeaWiFS, MODIS, MERIS 

Landsat sensors) in coastal zones of the Arabian Gulf (Jun et al., 2016; Moradi, Hasanlou, & Saadatseresht, 

2016; Jun Zhao, Temimi, & Ghedira, 2015). They have successfully been applied in the retrieval of Chl-a 

concentration and for algal bloom monitoring globally. Also, because these algorithms are based on physical 

fundamentals and that they provide indices correlated with Chl-a concentrations. Moreover, previous studies 

conducted in the Arabian Gulf region recommended the use of blue-green algorithms (RI model) together 

with NIR-Red edge models (MCI and NDCI) for the accurate retrieval of chlorophyll-a concentration for 

the monitoring and prediction of red tides in the AG. This therefore influence the selection of these models. 

2.6. Chlorophyll-a concentration estimation through a downscaling approach 

Information on the spatial extent and  variation of algal blooms on a large scale (at both regional and local) 

is required for harmful algal bloom (HAB) monitoring and assessing health of the ecosystem. In recent 

years, various remote sensing approaches have been established based on coarser satellite resolution images 

for chlorophyll-a retrieval (usually used as proxies for HAB monitoring) at high temporal scale however at 

a low to moderate spatial scale.  Ocean colour chlorophyll-a products at 1 km and 300 m at nadir derived 

from Moderate Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging 

Spectrometer (MERIS) respectively (Arun Kumar, Babu, & Shukla, 2015), are used to monitor algal blooms 

over large coastal areas. Their coarser spatial scale however does not allow the rapid monitoring and 

quantification of algal bloom episodes near desalination plants intakes and for small water bodies into a 
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more detail. Therefore, Sentinel-2 MSI at 10-60 m can be used for near real-time monitoring of algal bloom 

dynamics at a fine spatial scale in the Arabian Gulf.  However, the spectral set-up of the Sentinel-2 MSI is 

not more suitable for estimation of chlorophyll-a concentration compared with MODIS data which has the 

required spectral band  accurate retrieval of water quality parameters.  

Hence, a downscaling technique integrating the spectral and spatial properties of the two may be more 

appropriate (Atkinson, 2013), for the estimation of Chl-a concentration. That is, disaggregating methods 

provide a means where  the coarser resolution satellite images with high spectral resolution and temporal 

coverage are downscaled to finer spatial scale or vice versa. Hence, in this study we evaluate the possibility 

of transferring the chl-a data contined in MODIS L2 1 km ocean product derived with OC3M algorithm 

onto Sentinel-2 MSI to derive Chl-a maps at 10 m resolution. This is tested through a downscaling technique 

of regression analysis of model development based on a linear, exponential and polynomial model.  
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3. DESCRIPTION OF STUDY AREA AND DATA SETS 

3.1. Study area 

3.1.1. General description 

The study area for this research is the Qatar marine Exclusive Economic Zone (EEZ) (Figure 1) of the 

Arabian Gulf that serves as an intake source for the Ras Abu Fontas A2 and A3 Seawater Desalination Plant. 

The Arabian Gulf with a geographical location of Latitude 26° 4' 35.47'' N and Longitude 52° 37' 28.24'' E 

(see Figure 1) is a small part of the Indian Ocean bounded by six (6) Gulf Coast Countries (GCC) (Oman, 

United Arab Emirates, Qatar, Saudi Arabia, Kuwait, and Bahrain). The AG has a surface area of 235,000 

km2, elevation of -57 m, maximum depth of 90 m and a maximum length of 989 km. The Strait of Hormuz 

separates the AG from the Oman Sea, the Arabian Sea and Indian Ocean. This creates a varying temperature 

and salinity in these water bodies by inhibiting the exchange of marine water.  

3.1.2. Geographical description of study area 

Qatar Peninsula lies on the southern shore of the Arabian Gulf (AG) that lies directly on the tropic of 

Cancer. About 99% of Qatar’s freshwater demands comes from desalination plants. This is because at the 

AG evaporation exceeds precipitation due to the prevailing climate condition (arid) of the region. 

Evaporation is estimated to be 202.6 cm yr-1; where the monthly mean evaporation rate reaches a maximum 

of ~29.3 cm in June, and a minimum of 8.1 cm in February (Meshal and Hassan, 1986). Temperature exceed 

35oC during summer (Al-Shehhi, Gherboudj, & Ghedira, 2017).  

Ras Abu Fontas (RAF) Seawater Desalination Plant important for this study consist of the Ras A2 and Ras 

A3 Desal plant. The Ras A2 is a thermal desalination plant utilizing a multi-stage flash distillation (MSF) 

technology (http://www.water-technology.net/projects/ras-abu-fontas-raf-a2-seawater-desalination-

plant/) located at about 10km south of Doha in Qatar along the Arabian Gulf which produces 

160,000m³/day freshwater amounting to about 10% of Qatar's municipal water needs. While the Ras A3 is 

a Seawater Reverse Osmosis (SWRO) system that supplies potable water to about 1 million of Qatar 

inhabitants. The Ras A3 is the first large-scale SWRO system operational in Qatar.  The desalination plants 

lie between latitude 25°06´N and longitude 51°37´E.  

http://www.water-technology.net/projects/ras-abu-fontas-raf-a2-seawater-desalination-plant/
http://www.water-technology.net/projects/ras-abu-fontas-raf-a2-seawater-desalination-plant/
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Figure 1: Map showing the Arabian Gulf, the study area and matchup sites of Multispectral images and MODIS L2 

ocean colour product; red box indicates study region  
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3.2. Satellite Datasets 

In this study, a total of 12 Sentinel-2 L1C images (from 2015 – 2017) coincident with MODIS L2 1 km 

chlorophyll-a products (already pre-processed) were obtained as shown in Table 2. The available images 

acquired were grouped into four main seasons representing the Arabian Gulf region (AG); Winter 

(December - February), Spring (March-May), Summer (June – September) and Autumn (October – 

November) (Al-Naimi et al., 2017). In all, matchup of Sentinel-2 and MODIS images acquired in the winter 

period were more than those acquired in summer and in spring.  

3.3. MODIS Level-2 Chlorophyll product 

The MODIS instrument on board the Terra and Aqua satellites has viewing swath width of 2330 km and a 

revisit period of one day with 36 spectral bands ranging in wavelength from 0.4 um to 14.4 um (Al Kaabi, 

Zhao, & Ghedira, 2016; Che, Feng, Jiang, Song, & Jia, 2015). These two platforms provide two daily passes 

of ocean color products over an area.  A level-2 data product was made using the most recent update of 

instrument calibration, atmospheric correction and reprocessing algorithms (R2014.0). The ocean color 

products were freely downloadable at the NASA OceanColor website (https://oceancolor.gsfc.nasa.gov/) 

from late December 2015 to late October 2017. The data is produced by the NASA Goddard Space Flight 

Center’s Ocean Data Processing System (ODPS) and distributed by the Ocean Biology Active Archive 

Center (OB.DAAC). Gordon and Wang (1994) atmospheric correction scheme based on the NIR (Zhao et 

al., 2014) are applied on MODIS L1 data from which MODIS L2 ocean colour product is obtained. The 

default chlorophyll-retrieval algorithm is a merged chlorophyll retrieval algorithm between the standard 

OC3/OC4 (OC3M) band ratio algorithm and the color index (CI) algorithm developed by Hu et al (2012) 

that returns the concentration of chlorophyll-a in mgm-3, where CI and OC3M occurs at 0.15 < CI < 0.2 

mgm-3. The datasets of this product suite include; Rrs, Chl-a, Kd490, PAR, PIC, POC, etc 

(https://oceancolor.gsfc.nasa.gov/docs/format/l2nc/).  

3.3.1. Sentinel-2 MSI Datasets 

Sentinel-2 Multi-spectral imager is freely downloadable at Copernicus Open Access Hub website 

(https://scihub.copernicus.eu/). Sentinel-2 MSI has 13 spectral bands of central wavelength range from 

443–2190 nm (Table 1). The spatial resolution ranges from 10 – 60 m including four visible and near-

infrared bands at 10 m, six red edge and shortwave infrared bands with spatial resolution at 20 m and three 

atmospheric correction bands of 60 m spatial resolution and a revisit period of Sentinel-2 is 2 -5 days 

(https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-2). The 

spectral bands of Sentinel-2 MSI and their wavelengths are shown in Table 1. Also, matchup datasets for 

the MODIS Level-2 chlorophyll-a product and Sentinel-2 images are given in table 2; 

 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/docs/format/l2nc/
https://scihub.copernicus.eu/
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Table 1: Bands of Sentinel-2 MultiSpectral Imager (MSI) adapted from paper (Drusch et al., 2010; Vanhellemont & 

Ruddick, 2016). 

Band 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution (m) 

SNR at 

reference L 

Reference L  

(Wm-2sr-

1um-1) 

1 443 20 60 129 129 

2 490 65 10 154 128 

3 560 35 10 168 128 

4 665 30 10 142 108 

5 705 15 20 117 74.5 

6 740 15 20 89 68 

7 783 20 20 105 67 

8 842 115 10 172 103 

8a 865 20 20 72 52.5 

9 945 20 60 114 9 

10 1380 30 60 50 6 

11 1610 90 20 100 4 

12 2190 180 20 100 1.5 

 

Table 2: Downloaded matchup products of MODIS Chl-a product and Sentinel-2 MSI 

Acquisition 

Date 

MODIS L2 chl 

product 

Time 

(UTC) 

Sentinel-2 MSI image Time 

(UTC) 

27/12/2015 A2015361094500.L2

_LAC_OC 

9:47 S2A_OPER_PRD_MSIL1C_PDMC_20151227T131949_R

106_V20151227T072331_20151227T072331.SAFE 

07:22 

16/01/2016 A2016266100000.L2

_LAC_OC 

9:27 S2A_OPER_PRD_MSIL1C_PDMC_20160116T163256_R

106_V20160116T072452_20160116T072452.SAFE 

07:24 

15/02/2016 A2016046093500.L2

_LAC_OC 

9:37 S2A_OPER_PRD_MSIL1C_PDMC_20160216T015819_R

106_V20160215T071840_20160215T071840 

07:28 

22/09/2016 A2016296100000.L2

_LAC_OC 

9:47 S2A_OPER_PRD_MSIL1C_PDMC_20160922T124504_R

106_V20160922T070622_20160922T071839.SAFE 

07:22 

22/10/2016 A2016296100000.L2

_LAC_OC 

10:12 S2A_OPER_PRD_MSIL1C_PDMC_20161022T122305_R

106_V20161022T071302_20161022T071302 

07:22 

11/11/2016 A2016316094000.L2

_LAC_OC 

9:47 S2A_OPER_PRD_MSIL1C_PDMC_20161111T171508_R

106_V20161111T071302_20161111T071302 

07:29 

11/12/2016 A2016346100000.L2

_LAC_OC 

10:02 S2A_MSIL1C_20161211T071302_N0204_R106_T39RWH

_20161211T071654 

07:24 

31/12/2016 A2016366093500.L2

_LAC_OC 

9:37 S2A_MSIL1C_20161231T071302_N0204_R106_T39RWH 07:29 

01/03/2017 A2017060100000.L2

_LAC_OC 

10:02 S2A_MSIL1C_20170301T071301_N0204_R106_T39RWH 07:29 

22/09/2017 A2017265093000.L2

_LAC_OC 

10:02 S2B_MSIL1C_20170922T070609_N0205_R106_T39RWH

_20170922T071248 

07:22 

27/09/2017 A2017270094500.L2

_LAC_OC 

9:47 S2A_MSIL1C_20170927T070641_N0205_R106_T39RWH

_20170927T071322.SAFE 

07:22 

27/10/2017 A2017300100000.L2

_LAC_OC 

9:32 S2A_MSIL1C_20171027T071301_N0206_R106_T39RWH

_20171027T105111 

07:22 
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4. METHODOLOGY 

4.1. Overview 

This research is aimed at deriving chlorophyll-a concentration (as proxies for algal blooms monitoring) near 

the intake of the RAS Abu Fontas A2/A3 desalination plant through downscaling Level-2 1 km MODIS 

ocean colour product with Sentinel-2 data at 10 m resolution. In this study, the downscaling of MODIS L2 

Chl-a data consist of mainly two main components shown in Figure 2. This includes first; the derivation of 

three (3) Sentinel-2 MSI Chl-a semi-empirical algorithms (NDCI, MCI and RI) based on band ratios for the 

qualitative and quantitative monitoring of algal blooms/biomass. And spatial aggregating (upscaling) the 

Chl-a indicators to match the spatial resolution of MODIS L2 1km Chl-a data. And, secondly, the 

establishment of the upscaled Chl-a indices (dependent variables) and MODIS Level-2 chl product 

(independent variable) relationship based on randomly selected 36-pixel location values (Figure 1) from each 

satellite image covering the study area. The derived model calibration coefficients based on the pixel domain 

of sampled locations are applied to the Sentinel-2 images to generate Chl-a maps at 10 m resolution.  
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The processing steps (Fig 2) followed to achieve the objectives of this study 

 
Figure 2: Flowchart for deriving chlorophyll-a maps  
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4.2. Satellite data preprocessing  

4.2.1. Matchup of MODIS Level-2 Chl-a products  

The MODIS chlorophyll-a product which is important for this research downloaded from NASA ocean 

colour website (https://oceancolor.gsfc.nasa.gov/) was derived using a combined algorithm of the current 

global OC3/OC4 (OCM) algorithm by (O’Reilly et al, 1998 and 2000) given as; 

 𝑙𝑜𝑔10(𝑐ℎ𝑙𝑜𝑟𝑎) = 𝑎𝑜 + ∑ 𝑎𝑖 (𝑙𝑜𝑔_10 (
𝑅𝑟𝑠(λ𝑏𝑙𝑢𝑒) 

𝑅𝑟𝑠(λ𝑔𝑟𝑒𝑒𝑛) 
)

𝑖
)4

𝑖=1 ,      (1) 

and the CI algorithm proposed by (Hu, Lee, & Franz, 2012) given as;  

CI =
Rrs(λgreen)−[Rrs(λblue)+(λgreen−λblue)

(λred−λblue)∗(Rrs(λred)−Rrs(λblue)
       (2) 

where λblue, λgreen and λred are the MODIS-specific wavelengths closest to 443, 555 and 670 nm 

respectively (https://oceancolor.gsfc.nasa.gov/).  

The Level-2 MODIS chlorophyll-a product in sinusoidal projection was reprojected to the WGS 84 UTM 

coordinates of Sentinel-2 MSI data for all images downloaded. A subset of the L2 product covering the area 

of study is extracted.  

4.2.2. Atmospheric correction (AC) of Sentinel-2 MSI images with ACOLITE algorithm 

Accuracy of the atmospheric correction method is a requirement of almost all bio-optical properties retrieval 

based on reflectance (R𝑊) of the water surface. The shortwave infra-red (SWIR) bands (20 m) at 1.6 and 

2.2 μm on board of Sentinel-2 allow for thorough atmospheric correction, over highly turbid waters 

(Vanhellemont & Ruddick, 2015; Vanhellemont, Vanderzande, & Ruddick, 2016). Hence, Vanhellemont & 

Ruddick, (2014) developed ACOLITE (in-built with IDL programming software) for the removal of 

contribution to reflectance of Sentinel-2  MSI images useful for the application on coastal or marine 

environments and inland case 2 waters. ALCOLITE uses NIR and SWIR bands for estimating the aerosol 

scattering on clear and turbid to highly turbid waterbodies respectively while Look up tables (LUTs) from 

6SV model (Kotchenova, Vermote, Matarrese, & Klemm, 2006) is use for Rayleigh scattering correction. 

The Rayleigh-corrected reflectance is used to compute aerosol scattering. The performance of AC by 

ACOLITE using the SWIR at 1.6 um over water is due to the high absorption by the water at these 

wavelengths. Usually, reflectance values at these wavelengths are presumed to be zero (0) or close to zero 

in clear and even over turbid waters. Hence, the contribution of water to reflectance values may be assumed 

as negligible. 

In ACOLITE the default threshold value for masking non-water pixels (masking out, sun-glints, artefacts, 

clouds and land) on the 1610 nm (1.6um) SWIR band is at 2.15% (0.0215). However, in this study, the 

default threshold value for masking non-water pixels was varied depending on the image pixel values for 
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the 1610 nm band of each Sentinel-2 image downloaded. This because, the water leaving reflectance varied 

between the summer periods (with high incidence of algal blooms) and that of the winter months. Also, 

SWIR band at 1.6um of Sentinel-2 is noted to be of low signal-to-noise ratio (SNR) and therefore, a spatial 

smoothing window over an extent of 32 m with dilation 16 m was applied to reduce the noise in the output 

product (Vanhellemont & Ruddick, 2016). After processing the image with ACOLITE, the output product 

of Sentinel-2 MSI at 10 m grids are obtained.  

4.3. Chlorophyll-a algorithms development 

In this study, two sources of satellite data, Sentinel-2 MSI and MODIS L2 Chl-a product from late 

December 2015 to October 2017, are obtained and used for the chlorophyll-a model development. The 

blue-green ratio algorithm (RI model) and Red-NIR algorithms (MCI and NDCI) originally developed based 

on the spectral bands of SeaWiFS and MERIS respectively for the retrieval of chlorophyll-a were explored 

in this study. Remote sensing reflectance retrieved after application of ACOLITE AC processor on Sentinel-

2 MSI images were used to derive the chlorophyll-a indices for each Sentinel-2 image downloaded. In using 

the algorithms, small adaptations were made in the specific spectral bands of Sentinel-2 due to changes in 

band settings. The datasets used in this study encompassed 12 image pairs with 36 randomly selected data 

points from each image resulting in a total of 432 matchups of MODIS L2 Chlorophyll-a (Chl-a) values and 

Sentinel-2 MSI derived Chlorophyll-a (Chl-a) indices values. However, the number of matchups of datasets 

for each model varied depending on the number of flagged pixels in the MODIS L2 product and unqualified 

datasets in the Sentinel-2 retrieved indices (Salem et al., 2017).  

Chlorophyll-a concentration obtained from the pixel locations extracted from MODIS L2 product at the 36 

selected data sites for the model development range from ~0.48 mg/m3 to 18.42 mg/m3 with closet point 

to shore at about 5-10 m away. And an average chlorophyll-a concentration of 2.11 mg/m3 was obtained.  

High level of Chl-a concentration (4.2 - 18.42 mg/m3) were observed in summer while low levels (~0.48 – 

2.35 mg/m3) were observed in winter (January - February) and in spring (March). There were no images 

obtained between April - August. Model calibration and validation were run for the entire range of Chl-a 

~0.48 mg/m3 to 18.42 mg/m3 and also for a non-bloom water condition when the Chl-a concentration is 

low (< 3 mg/m3) (Mohsen Ghanea et al., 2016).  

The mean of the Chl-a indices values was extracted which are centred around each pixel location site for 

each moving window size in ESA Snap Software (version 5.0.0). Thirty-six (36) randomly selected data 

points covering the area of study were used of the models. Coincident MODIS data were also extracted at 

each data point. For statistical accuracy and reasonable results, extracted Sentinel-2 indices values within 

each moving window size explored, that did not meet a minimum threshold set at 60 % of the total average 

window size values extracted were excluded from the data for model calibration and validation analysis. 

Also, areas affected with clouds were also excluded from analysis data.  
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For NASA MODIS L2 ocean colour processed data, the following data flags made a pixel invalid: 

ATMFAIL, LAND, STRAYLIGHT, HISATZEN, HIGLINT, HILT, CLDICE, CHLFAIL, SEAICE, 

NAVFAIL and ATMWARN (Kahru, Kudela, Anderson, Manzano-Sarabia, & Mitchell, 2014; 

https://oceancolor.gsfc.nasa.gov/docs/format/l2oc_modis/#specs_42). Hence these flags were used to 

remove MODIS grids of contaminated data sets. After applying the above filters to the MODIS data, almost 

99 % of chlorophyll-a products values > 3 mgm-3 were filtered. However, during periods of algal bloom, 

concentration levels in the AG exceeds this 10 mgm-3 with some areas reaching as high as > 30 mgm-3.  

Therefore, in applying the MODIS L2 flags, chlorophyll-a products values > 3 mgm-3 were excluded from 

flag filtering after consistency check with nflh, kd and AOT865nm in order to include some data in this range 

in the model development. For example, most Chl-a values extracted from MODIS L2 in summer periods 

(September) where between ~ > 3 mgm-3 – 18 mgm-3. Hence, pixel values that were considered as 

homogeneous (based on the above criteria) for each moving window explored for extracting data were used 

for the calibration and validation of each model. In all, a total of 50 - 136 coincident matchups data points 

between MODIS data and Sentinel-2 derived chl indices were obtained from the combined datasets 

depending on the average moving window size after removing flagged pixels. 

4.3.1. Maximum Chlorophyll index (MCI) 

The Maximum Chlorophyll-a index (MCI) was the first MERIS based Chl-a algorithm developed by ( Gower 

et al., 2008) to model chlorophyll-a concentrations. The MCI algorithm is useful for estimating and the 

detection of phytoplankton biomass, cyanobacterial blooms or biomass, and varied concentrations of 

chlorophyll-a. The MCI estimates concentration of Chl-a utilizing bands that are centred at the NIR and 

red-edge regions (681 nm, 708 nm, and 753 nm band) and the most prominent characteristic of the model 

is the use of 708/709 nm band that is centred over the Chl-a fluorescence. This is because at these 

wavelengths, the combined effects of TSS and CDOM are minimized (Kamerosky et al., 2015). But, this 

peak height is adjustable for other sensors and can be redefined by the researcher. However, according to 

Hu et 2009, high MCI values may be attributed to surface floating algae or may be suspended matter in the 

column of the water or even might be caused by sediment plumes. The MCI model adopted for use in this 

study with the specific wavelength bands of Sentinel-2/MSI after atmospheric correction is of the form; 

MCI = Rrs(λ2) − Rrs(λ1) [
(708−665)

(753−665)
∗ (Rrs(753)−Rrs(665))]     (3) 

The (λ2 − λ1)/(λ3 − λ1) is a factor which is approximately equal to 0.389 and is the ratio between the 

wavelengths determining peak (709-681) and baseline (753-681). It has been shown by Binding, Greenberg, 

& Bukata, (2013), that the MCI model is effective for estimating and monitoring severe algal blooms of 

concentration of Chl-a in the range of 10-300 mgm-3. It important therefore to critically consider the 

reflectance spectra of the algal bloom type during an application of MCI model to avoid false alarm of any 

algal bloom event. This model is available as a plug-in tool in ESA snap (5.0.0) software used in this study. 
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4.3.2. Normalised Difference Chlorophyll-a Index (NDCI) 

The Normalised Difference Chlorophyll-a index (NDCI) model was developed by (Mishra & Mishra, 2012) 

for Chl-a estimation in optically complex waters to improve the existing two-band ratio algorithm based on 

MERIS bands. According to Zhang et al., (2015), these two algorithms both assume that: 1) absorption at 

red wavelengths is dominated by phytoplankton absorption; 2) absorption at NIR wavelengths is dominated 

by water absorption; and 3) backscattering is independent of λ between λ1 and λ2. Further, the NDCI was 

developed following the simplistic structure of normalized difference vegetation index (NDVI) which is 

used in monitoring the health of vegetation. NDCI was developed by taking the spectral band difference  at 

708 nm and 665 nm and normalizing by the sum of their reflectance to  eliminate any uncertainties in the 

estimation of Rrs, seasonal solar azimuth differences, and atmospheric contributions at those wavelengths 

(Mishra & Mishra, 2012). The combined effects of CDOM and TSM  are minimized by closely selecting 

band 708 nm and 665 nm as well as considering the reflectance and the absorption peak close to 700 nm 

and 675 nm respectively (Pei et al., 2015). Mishra et al., (2014) established that, the NDCI model could be 

used to analyse the spatiotemporal variability of phytoplankton distribution accurately over a wide range of 

water bodies starting from low Chl-a (<7.5 µg/L) open ocean to moderate Chl-a (7.5–25 µg/L) near-costal 

to high Chl-a (25–50 µg/L) inland water to extremely high Chl-a (>50 µg/L) agricultural ponds such as 

catfish pond waters. Hence, the NDCI can effectively be used in monitoring Chl-a quantitatively and 

qualitatively. The structure of NDCI is follows;  

𝐶ℎ𝑙 − 𝑎 ∝
[𝑅𝑟𝑠(708)−𝑅𝑟𝑠(665)]

[𝑅𝑟𝑠(708)+𝑅𝑟𝑠(665)]
         (4) 

4.3.3. Red-tide index Chlorophyll-a Model (RI/RCA) 

The Red-tide Index (RI) was developed by (Ahn & Shanmugam, 2006) based on SeaWiFS data for the 

identification of potential HABs in the Korean South Sea. The RI model has also successfully been used to 

retrieve Chla in East China Sea, the Bohai Sea, and Yellow Sea using satellite measured data. The RI index 

was developed utilizing three spectral bands in the blue-green region centred at band 443 nm, band 510 nm 

and band 555 nm. The developed blue-green ratio algorithm yield indices that can be more related to HABs. 

Hence bloom dominated waters can be separated from non-bloom waters with RI within the range of −1 

to +1. RI values closer to −1 implies the absence of any bloom and closer to +1 means a high possibility of 

HAB (Shanmugam, Ahn, & Ram, 2008; Chu & Kuo, 2010). Ahn & Shanmugam, (2006) related the RI to 

band 443 nm to derive the Red Tide Index Chlorophyll Algorithm (RCA). The newly derived RCA algorithm 

is more sensitive to algal bloom but in-sensitive to non-algal matter and suspended particles and it related 

the red tide index to in-situ measured or satellite derived chlorophyll-a. Zhao et al., (2016) recently applied 

the RI algorithm to MODIS imagery to successfully map Chl-a in the South-eastern Arabian Gulf. RI 

algorithm formulated and used in this study is as follows;  
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𝑅𝐼 =
[𝐿𝑤(510)/𝐿𝑤(555)−𝐿𝑤(443)]

[𝐿𝑤(510)/𝐿𝑤(555)+𝐿𝑤(443)]
         (5) 

Table 3: Structure and bands adopted by the different band ratio algorithms used in the study. Sentinel-2 bands used 
in this study; where; λ1=443, λ2=490, λ3=560, λ4=665, λ5=705, and λ6=740 with MCI =Maximum Chlorophyll 
index, NDCI=Normalized Difference Chlorophyll index and RI= Red Tide index 

 Model Equations Sensor Author 

a MCI 
𝑀𝐶𝐼 = 𝑅𝑟𝑠(𝜆5) − 𝑅𝑟𝑠(𝜆4) ∗

(𝜆5 − 𝜆4)

(𝜆6 − 𝜆4)
∗ (𝑅𝑟𝑠(𝜆6)−𝑅𝑟𝑠(𝜆4)) 

 

MERIS Gower et al., 

(2008)  

b NDCI 
𝑁𝐷𝐶𝐼 =

[𝑅𝑟𝑠(𝜆5)– 𝑅𝑟𝑠(𝜆4)]

[𝑅𝑟𝑠(𝜆5) +  𝑅𝑟𝑠(𝜆4)]
 

 

MERIS Mishra & 

Mishra, (2012)  

  

c RI 
𝑅𝐼 =

[(𝑅𝑟𝑠(𝜆2)/𝑅𝑟𝑠(𝜆3)) − 𝑅𝑟𝑠(𝜆1))]

[(𝑅𝑟𝑠(𝜆2) /𝑅𝑟𝑠(𝜆3)) + 𝑅𝑟𝑠(𝜆2))]
 

SEAWIFS Ahn and 

Shanmugam 

(2006) 

4.3.4. Aggregation of Sentinel-2 Chl models  

The sensitivity of the average moving window size of Sentinel-2 derived Chl-a models for extracting MODIS 

L2 1km chlorophyll-a data is not found in literature.  That is whether setting the average window size very 

close to or at the same spatial resolution of the coarser satellite image or using a small window size is required 

for the aggregation and subsequent downscaling of the coarser Chl-a data. It was therefore important to 

determine the critical aggregation level needed for downscaling the coarser MODIS L2 Chl-a product with 

the high spatial Sentinel-2 Chl-a derived indices in order to obtain reliable results of low uncertainties in 

Chl-a retrieval. A simple spatial averaging method is employed in this study for the downscaling of MODIS 

Level-2 chl data with Sentinel-2 derived Chl-a indices. Six (6) spatial-averaging-moving-window-size (3 x 3 

windows for the 10 m Sentinel-2 resolution pixels at (30 x 30 m2), 5 x 5 moving window (50 x 50 m2), 7 x 7 

moving window (70 x 70 m2), 9 x 9 moving window (90 x 90 m2), 11 x 11 moving window (110 x110 m2) 

and 99 x 99 moving window (990 x 990 m2) were explored in this research to obtain the optimal moving 

window size (or critical aggregation level) for obtaining relationship between MODIS L2 Chl-a and Sentinel-

2 derived-Chl-a- indices. Hence, the chlorophyll-a retrieval models were calibrated and validated for each 

extracted MODIS data and their corresponding model indices values under each moving window size 

explored to obtain the critical aggregation level.  

4.4. Calibration of chlorophyll-a retrieval models 

In other to achieve the objectives of this research, it was important to calibrate and validate the Chl-a 

retrieval models used in this study. This is a requirement for generating reliable and accurate results where 

regionally calibrated and accepted Chl-a retrieval models are unavailable. The atmospheric corrected remote 

sensing reflectance (Rrs) values of all Sentinel-2 images obtained for the period of 2015 – 2017 (See table 2) 
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were used to derive the Chl-a indices values for each model (Table 3) by adopting the specific wavelength 

bands. In all, a total of 50 - 136 coincident matchups data points between MODIS data and Sentinel-2 

derived chl indices were obtained from the combined datasets depending on the average moving window 

size. The calibration and validation method employed in this study was based on the GeoCalVal model 

developed by (Salama et al., 2012).  

Hence to generate calibration coefficients needed for further estimation of the chlorophyll-a, the data sets 

obtained after data quality checks in this study were numbered from 1 to n based on the MODIS L2 Chl-a 

product by first arranging the datasets specifically the independent variable (MODIS L2 Chl-a-data) from 

smallest to highest together with their corresponding Chl-a retrieved indices values at each data point. The 

data was then divided into two data sets for calibration and validation. Those with odd numbers were used 

for the calibration and the other with even numbers for validation. From the calibration datasets, extracted 

under each window size, the RI, MCI and NDCI indices values were related to their corresponding MODIS 

Chl-a values. Both linear and nonlinear regression (exponential, power and polynomial) models were tested 

by fitting indices values derived from Chl-a models’ equation to their corresponding MODIS Chl-a values 

in each average moving window datasets.  

Prior to calibrating the RI model, a new red tide index (RI) here called RIII was estimated by establishing a 

relation between the RI and Rrs at 443 nm. According to (Ahn & Shanmugam, 2006), the newly developed 

RI model provides Chl-a indices values that are more responsive to algal bloom variation and is also more 

resistant to other environmental factors caused by lights and atmospheric conditions which may affect the 

model performance.  The results of initial statistical analysis revealed a polynomial goodness of fit between 

RI and Rrs at 443 nm (see equation 6) with a coefficient of determination (R2) of 0.82. The newly developed 

RIII values were then use for model calibration and validation. RIII model showed an exponential fit with 

the MODIS Chl-a data run with all the average moving window sizes (3 x 3 to 99 x 99). The calibration 

function of the 9 x 9 average pixel moving window size with the high R2 is shown as equation (7). The 

model obtained as equation (7) is called the Red tide index Chlorophyll Algorithm (RCA).  

Also, MCI and NDCI showed good relationship with MODIS Chl-a using a second order polynomial fit 

consistent with results by (Al Shehhi et al., 2017). This is shown as equation (8).  

The derived regression equations are of the form; 

𝑅𝐼𝐼  =  𝑎𝑜  × Rrs(443)
2  −  𝑎1  × Rrs443  + 𝑎2        (6) 

Chl − a𝑀 =  𝑏𝑜exp[𝑏1× RID]          (7) 

Chl − a𝑀 = 𝑐𝑜 × ModelSen2
2 − 𝑐1 × ModeSen2 + 𝑐2      (8) 



Deriving algal concentration from Sentinel-2 through a downscaling technique: A case near the intake of a desalination plant 

 

21 

 

Where; Chl-a (M) = MODIS L2 Chl-a product; Model (Sen2) = Sentinel-2 derived MCI and NDCI indices and 

𝑎𝑜, 𝑎1, 𝑎2, 𝑏𝑜, 𝑏1,𝑐𝑜, 𝑐1, 𝑐2 are calibration coefficient of model fittings   

4.5. Accuracy assessment of models validation results. 

The performance of each models (MCI, NDCI and RI) efficiency in the retrieval of chlorophyll-a products 

run with each window size (3 x 3 to 11 x 11 and 99 x 99) is evaluated with the second (even numbered) 

independent validation datasets by calculating the following statistical metrics; the root mean squared error 

(RMSE); and the mean absolute percentage error (MAPE).  

The root-mean-squared error (RMSE) is estimated as; 

𝑅𝑀𝑆𝐸 = √
(𝐶ℎ𝑙𝑎𝑀𝑂𝐷𝐼𝑆−𝐶ℎ𝑙𝑎𝑆2_𝑚𝑜𝑑𝑒𝑙)2

𝑛
            (9) 

 where  𝑀𝑂𝐷𝐼𝑆𝑐ℎ𝑙𝑎 = MODIS Level-2 Chl-a data, 𝑆𝑒𝑛2𝑐ℎ𝑙𝑎  is the Chl-a derived from sentinel-2 by 

inverting equation of line of 𝑆𝑒𝑛2𝑐ℎ𝑙𝑎 against  𝑀𝑂𝐷𝐼𝑆𝑐ℎ𝑙𝑎 and n represents the number of observations. 

The mean absolute percentage error (MAPE) is given as; 

MAPE =
100

𝑛
×

|𝑀𝑂𝐷𝐼𝑆𝑐ℎ𝑙𝑎−𝑆𝑒𝑛2𝑐ℎ𝑙𝑎|

𝑀𝑂𝐷𝐼𝑆𝑐ℎ𝑙𝑎
        (10) 

where 𝑀𝑂𝐷𝐼𝑆𝑐ℎ𝑙𝑎= MODIS Level-2 Chl-a data, 𝑆𝑒𝑛2𝑐ℎ𝑙𝑎 is the Chl-a and n represents the number of 

observations 

4.6. Estimation of chlorophyll-a  

The downscaling of ocean colour products especially chlorophyll-a at coarser spatial scale to a high spatial 

resolution requires, a dependent variable (the predictor) and an independent variable (response variables). 

The dependent variable used here (the Sentinel-2/MSI derived algorithms indices) should specifically be of 

high correlation with the response variables, in this study, (the MODIS L2 ocean colour Chl-a data). Also, 

to ensure consistency between downscaled Chl-a product and coarser chlorophyll-a product, it is reported 

that, the fine resolution downscaled product are upscaled to the coarser resolution and then, the difference 

(residual) between them is estimated and added to the original fine resolution image (Díaz-Uriarte et al., 

2014). 

After evaluating the critical aggregation level needed for downscaling the coarser MODIS L2 Chl-a product, 

none of the models used in this study had a better mean percentage error of variation in the retrieved 

chlorophyll products. However, the statistical results from RI/RCA model derived with the exponential 

model under the 9 x 9-pixel moving window size performed better than the other models. It is also more 
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sensitive to Red Tides which is the main prominent type of HAB present in the AG. Hence, the calibration 

coefficients derived with the RI/RCA model were used in estimating Chl-a concentration near the intake of 

the Ras Abu Fontas desalination plant for each month of satellite image downloaded. The equation derived 

for the downscaling function obtained for application on the Sentinel-2 derived indices for chlorophyll-a 

retrieval is of the form shown as equation (12).  

4.7. Evaluating the effect of spatially aggregation on spatial variation of retrieved Chl-a products 

After applying the calibration coefficients of the RI model run with 9 x 9-pixel window shown as equation 

(12) to generate fine 10 m resolution chlorophyll-a products, the approaches used to analyse the spatial 

variability in Chl-a distribution are described.  The Chl-a map derived at 10 m for each Sentinel-2 derived 

Chl-a product are re-aggregated to 90 m and the MODIS L2 is disaggregated to 90 m. Also, Sentinel-2/MSI 

derived Chl-a are re-aggregated to 1 km (at the same spatial resolution of the MODIS L2 Chl-a product). 

The difference (residual) between the re-aggregated Sentinel-2 and the MODIS L2 at 90 m for each image 

were estimated. Average of 3 x 3 pixel was extracted around the selected 36 sampling data points distributed 

within the area study in each image and used to train the residuals.  

Various researchers report adding the mean of the residual to the downscaled product or adding the residuals 

per pixel basis to ensure consistency (residual correction) between the reference Chl-a product and the 

downscaled product at fine spatial resolution as in (Bisquert et al., 2002; Kustas, Norman, Anderson, & 

French, 2003). The assumption is that, the residual introduced is as a result of the spatial variability between 

the fine and the coarser image, viewing geometry and the differences in the sensitivity of the sensors (Njuki, 

2016) and other environmental factors not fully captured in the predictor and response variable relationship. 

The result obtained from this approach is a chlorophyll product of high spatial resolution obtained through 

the linear relationship of upscaled 90 m Chl-a indices as prediction variables and MODIS L2 as response 

variable. However, due to the localized nature of the study and the complexity in modelling chlorophyll-a 

in the study region because of it shallow and turbid nature, the average of the residuals was not added to 

the original downscaled product. Because large error may be introduced in the final product and hence affect 

the capability of the model in predicting Chl-a.  

Hence, to assess the consistency in the spatial variability of the derived chlorophyll-a and MODIS observed 

Chl-a product in the study area at different spatial resolution for cross comparison purpose and the capability 

of the derived model in Chl-a estimations, scatter plots of Sentinel-2/MSI aggregated to 90 m and 1 km 

against MODIS L2 Chl-a product disaggregated at 90 m and its 1 km spatial resolution at nadir for images 

acquired on 22 September 2017 were generated.  

4.8. Consistency check in cross-validation of spatial variation of Sentinel-2/MSI Chl-a product  

To further evaluate  whether the discrepancy in the retrieved Chl-a products were as a result of the AC 

method and algorithms used or whether it was caused by uncertainties of MODIS Rrs (Shang et al., 2014). 
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Two approaches were used to assess the accuracy in the derived Chl-a products. First, we examined the 

uncertainties based on the atmospheric correction method for the two satellite products and we evaluated 

the consistency on the atmospheric corrected products of Sentinel-2 and MODIS. The evaluation was 

performed using band 443, 488, 547 nm of MODIS with apparently close bands 443, 497, and 560 nm of 

Sentinel-2 MSI. This is because, the derivation of the OC3M and the RI/RCA Chl-a products were based 

on these bands. Secondly, the 10 m Sentinel-2/MSI retrieved Chl-a products were (i) aggregated to 90 m 

while the spatial scale of the MODIS L2 was disaggregated to 90 m and (ii) were further aggregated to the 

1 km spatial scale of the MODIS L2 ocean color product. The accuracy in retrieved products were evaluated 

and the residuals and the average of the residuals were estimated for each product using satellite product 

obtained on 22 September 2017.  

4.9. Chlorophyll-a retrieval with Neural Network models 

Estimation of water quality parameters have relied on bio-optical models such as empirical, semi-empirical, 

analytical, and semi-analytical techniques (Ambarwulan, 2010; Ogashawara, Li, & Moreno-Madriñán, 2016). 

However, most of these approaches are limited to the representative datasets or parameters  with distinctive 

absorption characteristics (Gholizadeh, Melesse, & Reddi, 2016). Neural network models provides a robust, 

fast and easy to implement approaches in estimating bio-optical constituents by also taking into 

consideration the IOPs in highly turbid and eutrophic waters where the conventional bio-optical models 

fails. These includes Case 2 Regional (C2R), FUB (Free University of Berlin, Eutrophic Lake (EUL) and 

Coast Color (C2RCC) neural network developed for MERIS. In-situ measurement for robust model 

calibration and validation is unavailable for use.  

Hence, in this study, the performance of Case 2 Regional Coast Color (C2RCC) neural network algorithm 

compared with results of our downscaling technique for water quality retrieval (Chlorophyll-a retrieval). 

Case 2 Regional Coast Color (C2RCC) neural network processor recently developed by (Brockmann et al., 

2016) by updating Case 2 Regional (C2R) (Doerffer and Schiffler 2007) but with improvement in water 

quality retrieval as well as Inherent Optical Propertioes (IOPs) and water leaving reflectance. C2RCC is part 

of the current ESA SNAP Sentinel toolbox (Version 6.0.0) made available in 15 January 2018. The neural 

nets model supports Sentinel-2 MSI, Landsat OLI, OLCI, MODIS, MERIS, and SeaWiFS. Output of 

C2RCC neural nets after processing in SNAP includes (IOPs), water quality parameters including Chl-a 

concentration and TSM together with atmospheric corrected water leaving reflectance data. 
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5. RESULTS AND DISCUSSION  

5.1. Model calibration and Validation 

Following the atmospheric correction step, the structure of RI/RCA model proposed by (Ahn & 

Shanmugam, 2006), MCI proposed by (Gower, King, & Goncalves, 2008), and NDCI model proposed by 

(Mishra & Mishra, 2012) were adopted and applied to the results of the atmospheric corrected reflectance 

products for chlorophyll-a concentration retrieval. However, some adaptations were made regarding the 

chl-a indices bands of Sentinel-2. For example; in place of band 709 nm for MERIS MCI, we use band 705 

for Sentinel-2 MCI model. Chlorophyll-a concentration obtained from all images the 36 data sites varied 

from ~0.48 mg/m3 to 18.42 mg/m3 with average chlorophyll-a concentration of 2.11 mg/m3. It should be 

noted that, values of Chl-a and indices extracted from all 12 images were used for model calibration and 

validation divided into two independent datasets. However, after removing flagged pixel and unqualified 

datasets, the number of matchups of datasets for each model under each average moving window size varied. 

Regression analysis of linear, exponential, power and polynomial fitting models were all explored in this 

study for the calibration datasets using least square methods.  

The results of initial statistical analysis between RI and Rrs at 443 nm to obtain RIII revealed a polynomial 

goodness of fit (See Annex A) with a coefficient of determination (R2) of 0.82 shown as equation 11. Also, 

the calibration of RIII using MODIS L2 Chl-a (for all data range) revealed a non-linear fit with an exponential 

fit as the strongest for datasets with run with all average moving window size. Models run with 9 x 9 was 

the best for extracting the indices values for model development. For RIII versus MODIS L2 Chl-a data run 

with 9 x 9 we obtained an R2 of 0.507 shown as equation 12.  The polynomial fitting model obtained between 

RI  and band 443 nm deriving RIII and then exponential fitting model between RIII and MODIS data 

respectively agrees with findings by Chu & Kuo, (2010) and Ahn & Shanmugam, (2006). However, the RIII 

model was found to saturate at Chl-a concentration above 4 mg/m^3.  

The same approach was also followed for linear, polynomial and exponential model calibration for Sentinel-

2 derived MCI and NDCI run for each pixel moving window (from 3 x 3 to 11 x 11 and 99 x 99) explored. 

For MCI model calibration good correlation coefficients were using MODIS L2 Chl-a; For linear model 

with R2 of 0.82, polynomial model (2nd order) with R2 of 0.84 and exponential model R2 of 0.71 respectively. 

Also, for relationship between NDCI and MODIS Chl-a, R2 of 0.67, 0.76 and 0.63 for linear, polynomial 

and exponential model calibration respectively were estimated. Also, MCI and NDCI models both showed 

high accuracy with the polynomial relation with the MODIS L2 data run with 9 x 9 average pixel moving 

window shown in Figure 3b and c.  

RIII = -10.402x2 - 1.3872x + 1.0002        (11) 

Where; x is the remote sensing reflevtance at 443 nm. 
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Chl-a (M) = 8E-56 e [129.69 × RI (II)]         (12) 

Where e = 2.718281  

Chl-a (M) = 163.06× ndci2 +116.67 × ndci+ 22.166       (13) 

Chl-a (M) = 1E+06× mci2 +823.22× mci - 0.0705       (14) 

    

Figure 3: Chlorophyll-a concentration retrieval algorithms based on Sentinel-2/MSI derived indices RI/RCA (a), (b) 
MCI and NDCI (c) run with 9 x 9 moving window size.  

5.2. Model validation results 

To validate the chlorophyll model performance, the second group of independent validation datasets were 

used. The validation datasets varied for each model and for each average pixel moving window size explored 

depending on the number of flagged data. For RI the validation datasets range between 53 to 55.  For MCI 

and NDCI the validation datasets range between 30 to 51 data. Figure 4 shows the validation results of all 

models run with the different average spatial window size. 

For RI/RCA, the model equation shown as Equation 12 derived with the exponential calibration model was 

applied on the validation dataset for retrieval of chlorophyll-a concentration. Also, results of linear and 

polynomial calibration coefficients were also applied to the validation dataset for chlorophyll-a retrieval.  

The validation result of RMSE and MAPE confirmed the exponential fit between Sentinel-2 derived indices 

and MODIS Chl-a as the best calibration model for chlorophyll retrieval run with all moving window sizes 

(3 x 3 to 99 x 99). The performance of the RI/RCA model for the validated datasets of all the moving 

average spatial aggregate level (3 x 3 to 99 x 99) showed similar sensitivity, with RMSE values ranging 

between 2.75 mg/m3 to 2.35 mg/m3. Also, a mirrored average absolute percentage error (MAPE) values 

were also obtained ranging (from 104 % to 38.4 %) as shown in Table 4.  

The coefficients of the polynomial together with linear and exponential calibration models of MCI and 

NDCI were also applied to the validation dataset for chlorophyll-a retrieval. From statistical accuracy 

estimation (shown in Table 4), results of RMSE for the MCI model for the polynomial model ranges 

between 9.1 to 2.47 mg/m3 and for MAPE 197 % to 52.5 %. Similar results were also obtained for the 

NDCI model with RMSE ranging between 4.81 to 2.42 mg/m3 and MAPE ranging between 150 % to 73.3 

%. The accuracy results of all models run for the whole Chl-a range extracted exceeded the acceptable level 
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of error (± 35 %) in satellite derived Chl-a by NASA. This is because, RI/RCA model underestimates Chl-

a compared with MODIS retrieved Chl-a results. However, MCI and NDCI overestimated Chl-a 

concentration at low concentration (~ < 3 mg/m^3).  Summarry statistical accuracy estimation results based 

on RMSE and MAPE of each model under different moving window size are displayed in Table 4.   

In contrast to results of RMSE AND MAPE obtained for RI, MCI and NDCI model for the Chl-a for the 

whole chlorophyll-a range (~0.48 mg/m3 to 18.42 mg/m3), characterizing the Chl-a model performance for 

non-bloom conditions (oligotrophic water) of the study area, when Chl-a < 3 mg/m3, the errors in Chl-a 

concentration decreased considerably reaching as low as 0.385 mg/m3 for RMSE and 22 % for MAPE for 

the RI/RCA model. Results of RMSE and MAPE for MCI model ranges between 0.909 to 0.804 mg/m3 

and 53.79 % to 47.68 run for each average moving window size. The validation results of the Sentinel-2 

derived Chl-a concentration by RI/RCA, MCI and NDCI model for each dataset under the spatial moving 

windows when Chl-a < 3 mg/m3 are shown in Annex C.   
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Figure 4: scatterplots of validation set of Sentinel-2 derived chlorophyll-a by RI, MCI and NDCI against MODIS 
L2 chlorophyll-a data: a – p (col 1) by RI model; b – q (col 2) by MCI model and c - r (col 3) by NDCI model; 
a, b, c for   3 x 3; d, e, f for 5 x 5; g, h, i for 7 x 7; j, k, l for 9 x 9; m, n, o for 11 x 11 and p, q, r for 99 x 99 average 
moving window size 

 

Table 4 : Statistical summary of scatter plots of Sentinel-2 derived chlorophyll-a concentration against MODIS L2 
chlorophyll-a measurement for the validation datasets of each average spatial window size.  

Window 

size 

Model 

NDCI MCI RI 

R2 RMSE 

(mg/m3) 

MAPE 

 (%) 

R2 RMSE 

(mg/m3) 

MAPE 

 (%) 

R2 RMSE 

(mg/m3) 

MAPE  

(%) 

3 x 3 0.52 2.85 91.5 0.38 2.96 89.4 0.53 2.70 38.4 

5 x 5   0.44 4.81 150.0 0.26 5.26 151 0.55 2.74 104.0 

7 x 7  0.53 2.67 78.8 0.36 3.26 54.1 0.53 2.77 47.5 

9 x 9  0.52 2.41 74.3 0.38 2.47 52.9 0.54 2.75 44.2 

11 x 11  0.58 2.38 95.7 0.38 2.88 71.3 0.64 2.35 84.5 

99 x 99  0.42 3.45 73.8 0.55 9.1 197 0.31 2.50 69.0 

5.2.1. Selecting the critical aggregation level  

The results in Table 4 show that, RI model is more sensitive to chlorophyll-a in the Arabian gulf although 

the MCI model also showed some level of accuracy in retrieved Chl-a. An increase in the average spatial 

window size to 11 x 11 and 99 x 99 (almost at same spatial scale of MODIS L2 product) did not result in 

any better improvement of the performance of the model. Therefore, the 90 m x 90 m average pixel moving 

window size was selected as the critical aggregation level (optimal window size) for the extraction of 

coincident Chl-a index values important for the estimation of chlorophyll-a concentration.  For easier 

comparison of the RI model performance (RMSE and MAPE) for each moving window size are displayed 

in Figure 5; 
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Figure 5: Statistical summary of scatter plots of Sentinel-2 derived chlorophyll-a concentration against MODIS L2 
chlorophyll-a measurement for the validation datasets of each average spatial window size for RI model.  

5.2.2. Comparison of accuracy results with standards 

In characterizing the Chl-a model performance with the validation datasets over the whole chlorophyll-a 

range ~0.48 mg/m3 to 18.42 mg/m3, the mean absolute percentage error (MAPE) in Chl-a estimates of all 

models (RI, MCI and NDCI) of each dataset in each aggregate level explored (3 x 3 to 99 x 99) exceeded 

the level of accuracy ± 35 % in satellite retrieval of chlorophyll-a values (IOCCG, 2006; Moore, Campbell, 

& Dowell, 2009)for the shallow region of the Arabian Gulf. The acceptable accuracy < ± 35 % is usually 

plausible for Chl-a retrieval in the middle of open oceans gyres where contribution of non-algal particles 

and bottom reflectance is lower (Moore et al., 2009). However, it can be > 50 % in ocean gyres and even 

exceed > 100 % for complex coastal waters (Blondeau-Patissier, Gower, Dekker, Phinn, & Brando, 2014), 

which the Arabian Gulf is not an exception. Although our results exceeded ± 35 % satellite Chl-a 

measurements, it might still be relevant or acceptable compared with other findings (e.g. D’Ortenzio, et al., 

(2002), for research conducted over the Mediterranean Sea, and Gregg & Casey, (2004), for research 

conducted over the Antarctic or the Equatorial Atlantic).  

In all, RI/RCA run with 9 x 9 model average moving window size produced the lowest error over the whole 

chlorophyll-a range although it underestimates Chl-a at high concentration compared with MODIS 

observed results. The MCI and NDCI however showed overestimation and could not retrieve chlorophyll-

a values < 1 mg/m3. However, results of MCI were better than NDCI. The RI/RCA model was selected 

for Chl-a retrieval and hence was applied on all images downloaded for use in this study.  

5.3. Chlorophyll-a retrieval with Neural Network models 

The accuracy of RI/RCA retrieved chl-a product from Sentinel-2 was tested by comparing with results of 

Chl-a concentration derived with C2RCC neural nets as shown in Figure 6. MODIS OC3M derived Chl-a 

products were also compared with with C2RCC neural nets derived Chl-a. Five chl-a products covering low 

to high chl-a concentration period were used for the validation test. These include; 22 October 2016, 11 

November 2016, 11 December 2016, 31 December 2016, and 27 September 2017. Accuracy of retrieved 

Chl-a with C2RCC compared with our approach and MODIS OC3M were poor. Our aproach of Chl-a 
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retrieval showed the lowest accuarcy with R2, RMSE and MAPE of 0.009, 2.54 mg/m3 and 73.9 % 

respectively (Figure 6b). For MODIS, R2, RMSE and MAPE of 0.0217, 2.34 mg/m3 and 54.8 % respectively 

were estimated. 

However, there was a an improvement when areas located near-shore were removed thereby generating 

0.52, 1.75 mg/m3 and 53.8 % for R2, RMSE and MAPE respectively for RI/RCA model. And for MODIS 

R2, RMSE and MAPE of  0.46, 3.18 mg/m3 and 55.7 % respectively were estimated. However, C2RCC 

significantly underestimated chl-a concentration compared with the other two models at ~> 4 mg/m3. It 

showed more constintency with MODIS chl-a for non-bloom water condition (<3 mg/m3). It was also 

more correlated with chl-a retrieved product on 22 Septemeber 2017 with RI/RCA model when algal bloom 

was suspected to have occurred with chl-a concentration exceeding 10 mg/m3. 

    

Figure 6: Comparison of Chl-a products derived with C2RCC and (a) MODIS L2; (b) Sentinel-2 RI/RCA Chl-a 
concentration 

5.4. Spatial variation of retrieved chlorophyll-a (Chl-a) product vs MODIS L2 Chl-a product  

Figure 7 and 8 show the spatial distribution pattern of chlorophyll-a(Chl-a) from late December 2015 to late 

October 2017 subset to the area near the intake of RAS A2 and A3 desalination plants. Figure 7 is the results 

of applying the best performing model, RI/RCA algorithm (shown in Equation (12)), on the Sentinel-2 

images. While Figure 8 is the result of MODIS L2 standard ocean color Chl-a products (freely available). 

From Figure 7 and 8, there was some level of agreement between the MODIS and Sentinel-2 RCA derived 

Chl-a on-shore. However, disparity in estimated Chl-a concentration was observed at near-shore in all 

images.  There was an overestimation of Chl-a near-shore for the MODIS Aqua OC3M Chl-a products. 

This because, at nearshore, where the water depth is low, the contribution of CDOM and increase sediment 

concentration are predominant over the Arabian Gulf (Al Shehhi et al., 2017). At these areas, retrieved Chl-

a from MODIS exceeded 3 mg/m^3 with some areas recording as high 10 mg/m^3 in low tide periods. But, 

Chl-a results from Sentinel-2 showed Chl-a concentrations lower than 3 mg/m^3 with some areas reaching 

as low as < 0.1 mg/m3. However, Chl-a results from MODIS and Sentinel-2 where were in agreement for 

Chl-a image obtained on 22 September 2017. At this period there was an elevated level of observed Chl-a 

from both data. There is also a rough trend in the spatial distribution of all MODIS L2 Chl-a products near-
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shore of the study area and therefore MODIS OC3M does not fully capture the spatial variability in Chl-a. 

But from the available derived maps, clearly, the Sentinel-2 derived Chl-a product show into more fine 

details, the spatial variation in Chl-a concentration allowing for easy identification of areas with high to no 

patches of algal bloom concentration in these maps.  

     
Figure 7: Chlorophyll-a concentration (Chl-a) derived from Sentinel-2 RI/RCA model for 11 scenes from 27 
December 2015 to 27 October 2017. All images were processes with ESA Snap software (5.00) 
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Figure 8: Seasonal trend of MODIS Aqua chlorophyll-a image derived with OC3M algorithm for 11 scenes from 

27 December 2015 to 27 October 2017. 
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5.5. MODIS and Sentinel-2 Chlorophyll-a maps as indicators for algal bloom mapping  

Chlorophyll-a products derived from Satellite images can be used as indicators of the occurrence and 

presence of algal blooms in coastal waters. Figure 7 and 8 shows the spatial distribution of chlorophyll-a 

over the study area. The development and spread of the patches of algal blooms in the study area can clearly 

be traced from Sentinel-2 maps shown in Figure 7. From Figure 7, the bloom patches are more visible for 

Chl-a maps processed on 11 December 2016 and 22 September 2017. The observed Chl-a concentration 

exceeded 3 mg/m3, indicating the presence of algal bloom (Ghanea et al., 2016). However, this is not 

apparent in the MODIS observed Chl-a products shown in Figure 7. Hence, the Sentinel-2 derived Chl-a 

product resolve into more fine detail the variation in observed Chl-a concentration. Hence, this gives an 

indication that, the RCA model developed through the downscaling technique as being more sensitive to 

Chl-a than OC3M algorithm. 

On, 22 September 2017, the chlorophyll concentration derived from MODIS L2 ocean color product 

showed a much more elevated level of observed Chl-a concentration with the minimum concentration of 

Chl-a > 1 mg/m^3 and maximum Chl-a concentration exceeding 10 mg/m^3. The high level of retrieved 

Chl-a was observed at the northern part of the study area. The Sentinel-2 derived RCA chlorophyll-a also 

showed a similar trend in the chlorophyll-a concentration during this period. Hence, confirming MODIS 

results of probable algal bloom occurrence during this period. The high levels in chlorophyll-a concentration 

may be due to a prolific growth in algae and increased nutrients concentration. We do not have extensive 

coincident/simultaneous field measurements of Chl-a data to validate the result if whether indeed there was 

truly an algal bloom event. 

However, report received from management at the project site indicates that, during the early period 

between September 2017 to middle of October 2017, desalination operations at the RAS Abu Fontas A3 

(SWRO) desalination plant was shut-down (See snapshot of report in Appendix D). Similar incidence 

occurred within this period (August – December) in 2008 - 2009 which forced several desalination plants to 

partially halt operation or completely shut-down due to an increased red tides together with its associated 

high algal biomass resulting in increased turbidity near the plant intakes (Al Shehhi, Gherboudj, & Ghedira, 

2017; Darwish et al., 2016). This is because primary productivity in the AG reaches its peak in summer and 

sometimes in spring season when the sun energy is more available (Al-Naimi et al., 2017). Although the 

OC3M algorithm is designed for detection of algal blooms but non-algal materials and bottom reflectance 

affect its ability in retrieving Chl-a  from the shallow-basin of the Arabian Gulf resulting in overestimation 

of observed Chl-a (Al Shehhi, Gherboudj, Ghedira, et al., 2017). 

Overall, it is not easy to accurately distinguish areas with patches of blooms from those of low or no patches 

of algal bloom during the winter and spring periods (when chlorophyll concentration is lower than 3 mg/m3 

and especially at offshore) for MODIS observed Chl-a products. This could be caused by the default 

parameterization of the OC3M algorithm for the MODIS sensor (Al Shehhi et al., 2017; Jun Zhao et al., 
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2016). It might also be due to the large spatial scale of MODIS incapable of resolving into detail small 

changes in Chl-a concentration. However, the RI/RCA model proved to capture small changes in the 

diverse community of small algal bloom patches even though it underestimates at high concentration 

compared to MODIS observed Chl-a products.  

5.6. Chlorophyll-a retrieved with C2RCC Neural Net algoritthm 

Figure 9 shows the results of chlorophyll-a concentration retrieved with the C2RCC Neutral Net in ESA 

SNAP software (Version 6.0,0). The Chl-a image processed with the C2RCC processor on the 22 September 

2017 also showed similar trend in obtained results to that from MODIS OC3M and Sentinel-2 RI/RCA 

algorithms. However, it showed an overestimation near-shore as compared to RI/RCA. Hence, the effects 

of CDOM and TSM were also predominant in the retrieved Chla- products. Moreover, the Chl-a retrieved 

through the downscaling technique were more spatially homogeneous and more sensitive to Chl-a in the 

area of study. Therefore, the spectral features introduced by MODIS onto Sentinel-2  for the retrieval Chl-

a is important for accurate detection and mapping of Chl-a due to limitations in the spectral set-up of 

Sentinel for Chl-a retrieval. 

      
Figure 9: Sentinel-2 MSI Chl-a images derived with C2RCC Neural Network algorithm. 

5.6.1. Time series of derived Chl-a concentration  

Figure 10 shows time series of monthly-averaged seasonal trends in Chl-a distribution over the study areas 

between 2015 – 2017 estimated from maps shown in Figure 7 and 8. Although it was difficult to accurately 

distinguish areas with small to large patches of algal bloom from non-bloom waters from the MODIS 
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derived Chl-a data, the monthly averaged Chl-a results over the study area obtained in Figure 9 however 

shows a similar trend with the spatial distribution of Chl-a in the study area.  

Minimum concentration levels of Chl-a (1.04 – 1.53 mg/m^3) and (0.45 – 0.73 mg/m^3) were observed 

between late December 2015 and middle of February 2016 for MODIS and Sentinel-2/MSI respectively. 

High concentration levels of observed Chl-a reached 9.63 mg/m^3 and 7.53 mg/m^3 in September 2017 

for MODIS and Sentinel-2/MSI respectively. The concentration then increased with maximum (3.50 

mg/m^3) in early winter (December 2016) to a minimum (1.42 mg/m^3) in March 2017 (spring). High Chl-

a in the winter was probably related to the decreases stratification of the water column (Jun Zhao et al., 

2016). Hence, high levels of Chl-a were found in summer and minimum concentration levels in late winter.  

Our result of the temporal trend in Chl-a is similar to finding by (Nezlin, Polikarpov, Al-Yamani, Subba 

Rao, & Ignatov, 2010). They found that, in the shallow western and southern regions of the AG, minimum 

chlorophyll-a concentration was observed in spring and maximum in late summer and Autumn.  Nezlin et 

al., (2010), for their research conducted over the AG observed that, these maxima coincided with the 

seasonal minimum of wind mixing over the Gulf suggesting that in shallow waters, turbidity decreased and 

bottom reflectance increased. Here the contribution of bottom reflectance may be pronounced in the Chl-

a estimates than turbidity. Hence, algorithms designed for retrieving ocean color products should be able to 

overcome bottom reflectance contribution to water leaving reflectance especially the blue band (Cannizzaro 

& Carder, 2006). However, this temporal trend in observed Chl-a for the study area deviates from previous 

findings for research conducted over the whole Arabian Gulf. The found high levels of Chl-a in winter and 

minimum concentration levels in summer. Mezhoud et al., (2016) reported that, the spatiotemporal 

variability of Chl-a together with SST, salinity, DO, pH, SDD are particularly affected and driven by the 

climatic condition of the AG.  

 

                      Figure 10: Time series of NASA MODIS satellite OC3/OC4 derived chlorophyll-a versus Sentinel-2 

MSI RI/RCA retrieved chlorophyll-a (mgm-3) averaged over 36 data stations 
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5.7. Evaluating the Atmospheric Correction method 

Several atmospheric correction models have been used in the removal of atmospheric artefacts for both 

coastal and in-land water application. ACOLITE atmospheric processor algorithm developed by 

(Vanhellemont & Ruddick, 2014) was applied on Sentinel-2 images used in the study while MODIS 1 km 

ocean color reflectance product are atmospherically corrected using the NIR algorithm for coastal case 1 

waters (Gordon and Wang, 1994) implemented in the satellite data processing software (SeaDAS: SeaWiFS 

Data Analysis System software, https://seadas.gsfc.nasa.gov/). 

From the statistical results of the atmospheric correction methods shown in Figure 11, the mean absolute 

percentage error (42 %) estimated for band 443/443 was high than the uncertainty and 28 %) (at 18 %) 

estimated for band and 488/490 nm and 547/560 nm respectively. The ACOLITE processor derived 

atmospheric corrected reflectance products are high than the MODIS ocean atmospheric corrected 

reflectance products for band 443 nm and 488 nm. However, we do not have available in-situ remote sensing 

measurement to validate the results if overestimation is by ACOLITE processor or underestimation by NIR 

algorithm (Al Shehhi, Gherboudj, Zhao, & Ghedira, 2017). But, Al Shehhi, et al., (2017) found that by 

MODIS NIR implemented in the satellite data processing software (SeaDAS: SeaWiFS Data Analysis 

System software, https://seadas.gsfc.nasa.gov/) underestimates the water leaving reflectance after AC at 

wavelengths 412 nm, 443 nm, and 531 nm compared with in-situ measurements over the turbid and shallow 

region of the Arabian Sea including the Arabian Gulf.  

Since the uncertainties in the observed remote sensing reflectance high especially the blue bands, the results 

suggest that the uncertainties in the retrieved Chl-a data by the two models (MODIS OC3M and Sentinel-2 

MSI RI/RCA) is due to the parameterization of the OC3M based on band ratio which is mostly not 

applicable in most coastal complex case 2 waters (Blondeau-Patissier et al., 2014). Also, the RI/RCA model 

may need an intense model tuning with in-situ reflectance measurements to improve results in Chl-a 

estimation over the shallow and turbid region of the Arabian Gulf. 

      

Figure 11: Comparison between MODIS Ocean color reflectance products (Rrs) and Sentinel-2 
atmospheric corrected reflectance product (Rrs) where 443/443 (a); 488/490 and 547/560 for MODIS 
and Sentinel-2/MSI respectively for all 12 images obtained. 

https://seadas.gsfc.nasa.gov/
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5.8. Comparing results of aggregated and disaggregated Chl-a products 

Figure 12 shows the scatter plot of Sentinel-2 MSI aggregated to 90 m and 1 km against MODIS L2 Chl-a 

product disaggregated at 90 m and its 1 km spatial resolution at nadir for images acquired on 22 September 

2017. For the aggregated and disaggregated Sentinel-2 and MODIS Chl-a data at 90 m respectively, a single 

MODIS pixel contains a large number of varied Chl-a data. This may have been caused by spatially 

downgrading the 1 km pixel to 90 m which is about 109 x 109 pixels of Sentinel-2 shown as Figure 10.a. 

Estimated RMSE value of 2.38 mg/m3 and MAPE value of 97 % were estimated for the upscaled Sentinel-

2 MSI Chl-a map and the downgraded MODIS L2 Chl-a map. However, spatially aggregating Sentinel-2 to 

approximately the same resolution of MODIS data at 1 km, this large variability in Chl-a range within a 

single pixel reduced but with an increased RMSE (2.68 mg/m3) and MAPE (90 %). Hence more or large 

number of pixel values in the disaggregated MODIS and aggregated Sentinel-2 product a be due to the 

spatial variability in sensor comparison and not due to noise of the sensor. 

 

  

Figure 12: Comparison of Sentinel-2/MSI against MODIS L2 Chl-a product at 90 m critical aggregate level (a) and at 

1 km MODIS spatial resolution (b) for images acquired on 22 September 2017 

 

Figure 13 shows the comparison of MODIS reference Chl-a and Sentinel-2 derived Chl-a maps aggregated 

and disaggregated at 90 m; and (1 km: From Figure 13, it can be clearly seen that, the Sentinel-2 RI derived 

Chl-a show into a much fine spatial detail than the MODIS Chl-a and hence algal bloom patches and 

patterns easily be delineated. Moreover, at concentration less than 4 mg/m3, the OC3M and RI/RCA 

derived Chl-a concentration are comparable. However, there were few over-estimations for Sentinel-2 

derived Chl-a which may need further investigation. However, large disparities arise at high MODIS OC3M 

derived Chl-a concentration. It was found that, Sentinel-2 RI/RCA underestimates at chlorophyll 

concentration greater than ~10 -15 mg/m3 when the area is near-shore. However, it should be noted that, 

these high MODIS observed Chl-a concentration were all found near-shore (See Figure 13). Hence, the 

contribution of bottom reflectance, CDOM and non-algal materials might be pronounced in the results. 

Although the OC3M algorithm, has been used previously by many researchers to qualitatively derive Chl-a 

concentration in oligotrophic waters bodies, however, poor results have been obtained in and some few 
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successful results in case 2 waters due to its inability to distinguish Chl-a from non-algal materials. Moreover, 

it has been reported that, it is incapable of differentiating bloom from non-bloom water conditions. Hence, 

we could not qualitatively compare the results of 10 m downscaled Sentinel-2/MSI from the OC3M derived 

Chl-a from MODIS. Nonetheless, the use of in-situ measurement to accurately validate this is needed. 

 

     

            

 

Figure 13: Comparison of MODIS reference Chl-a and Sentinel-2 derived Chl-a at 90 m for (a) and (b); and 1 km 

for (c) and (d): Small triangles represent intakes of desalination plants; top (intake of RAS A3 (SWRO system) 
and down intake 3 is the intake of Ras A2 (multi-stage flash distillation (MSF)).   

5.9. Residual map for MODIS and Sentinel-2 Chlorophyll-a maps 

In many cases, the downscaling algorithm/equation derived from regression analysis of model fitting used 

for the downscaling may not be enough for the downscaling (Wang, Shi, Atkinson, & Zhao, 2015), hence 

residual correction methods are usually applied to compensate for the residual in order obtain the final 

downscaled product. The result of subtracting Sentinel-2 derived Chl-a aggregated to 90 and 1 km shown 

in Figure 14 a and b respectively for image acquired on 22 September 2017. The residual error obtained 
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through the downscaling approach of deriving the final Chl-a product is evident in Figures 14.  Area of map 

that are red colored shows areas where MODIS observed Chl-a were high than those derived from Sentinel-

2 MSI while blue colored areas indicates areas where RCA estimates of Chl-a were greater than the OC3M 

derived Chl-a. It is evident from the two images that, MODIS OC3M algorithm, overestimates Chl-a near-

shore. Hence the contribution of bottom reflectance and CDOM may be abundant in the Chl-a estimates 

revealed as deep red colors. The errors in retrieved Chl-a product were within the range of -7.23 to 7.43 

mg/m^3 for the image acquired on 22 September 2017. In all, the average residual for the whole study 

period range between -0.5 to 1.6 mg/m^3 (See Annex G). The values of errors obtained are in line with 

similar findings by (Pereira, Harari, & de Camargo, 2014) in which the residual error in estimated Chl-a 

determined from MODIS and numerical modelling for the Tropical and South Atlantic Ocean were within 

the range of <0.005 to 10 mg/m^3.   The errors obtain were too large during bloom periods, which may be 

due to the difference in sensitivity of the models (RI/RCA and OC3M) to Chl-a in the study area and also 

due to the complexity and localized nature of the region. We currently do not have in-situ measurement to 

accurately determine which of the models can best be used to delineate algal blooms. Hence adding residual 

to the final downscaled Chl-a product may not be appropriate in this instance due to errors which may be 

introduced to the original derived Chl-a maps at 10 m. 

 

Figure 14: Spatial variation in residual error of Sentinel-2 derived Chl-a aggregated to (a) 90 and (b) 1 km 

for image acquired on 22 September 2017 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

In this study, we investigated a newly developed approach using regression analysis as an attempt to 

downscale MODIS L2 1 km ocean color (Chl-a) product with ACOLITE atmospheric corrected Sentinel-

2 MSI indices data extracted with several average spatial moving window sizes ranging from 3 x 3 to 99 x 

99 to obtain Chl-a maps at high spatial resolution. Although MODIS ocean colour products have been 

freely available for a long time and provides twice daily Chl-a data, its usage in the monitoring of complex 

coastal case 2 waters have been limited due to reported cases of poor performance of the standard OC3M 

algorithm affected by CDOM, non- algal particles and bottom reflectance over such waters and also its 

spatial resolution is too coarse to track and observe small variations in water quality parameters that may 

lead to HABs. Nonetheless, accurate Chl-a results from been retrieved using the MODIS ocean colour 

product by previous researchers over coastal oceans. Three semi-empirical algorithms based on band ratios 

comprising RI, MCI, and NDCI models derived from Sentinel-2 MSI data (predictor variables) tested with 

linear, polynomial, exponential and power models were used to relate them with MODIS L2 1 km Chl-a 

product (response variable) to develop final algorithm for Chl-a retrieval.  

The RI/RCA algorithm derived with an exponential model and run with a 9 x 9 average moving window 

size proved to be the best model and the critical aggregation level respectively for relating Seninle-2 MSI 

indices data with MODIS L2 1 km Chl-a product. High resolution Chl-a maps at 10 m spatial resolution 

were obtained from the application of the RI/RCA algorithm on the Sentinel-2 images with a resultant high 

accuracy in Chl-a retrieval for the study area with an estimated RMSE and MAPE values of 2.75 mg/m^3 

and 43% respectively for the whole Chl-a range. The MCI model also showed a good potential for use as 

Chl-a retrieval algorithm for the area of study. However, poor results were estimated for the NDCI model 

and hence is inappropriate for use in the study area.  

There was high consistency in retrieved Chl-a products for Sentinel-2 MSI data compared with MODIS L2 

Chl-a data for chlorophyll-a at low concentration at ~< 3 mg/m^3 and with a decreasing trend in Chl-a 

concentration from near-shore to off-shore in both maps. But large disparities in retrieved Chl-a products 

were seen at high Chl-a concentration at ~> 10 mg/m^3. Nonetheless, these areas were very found off-

shore and at the very shallow region of the study area. However, the newly developed RI/RCA algorithms 

generated 10 m Chl-a maps resolved into more details the spatial variation in chlorophyll-a concentration 

near the intake of Ras Abu Fontas desalination plant in Qatar off the complex coastal waters of the Arabian 

Gulf region. Hence, the RI/RCA algorithm was also capable of differentiating patches of bloom from non-

bloom water conditions other than the MODIS OC3M algorithm Chl-a derived maps and hence could be 

used as proxies for HAB monitoring and development. 
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The Sentinel-2 MSI retrieved Chl-a data showed a similar seasonal trend in observed Chl-a as MODIS L2 

Chl-a product. The seasonal variation of observed Chl-a concentration follows similar finding by Nezlin et 

al., (2010) for research conducted over the shallow western and southern regions of the AG, observing 

minimum chlorophyll-a concentration in spring and maximum in late summer and Autumn. However, 

failure of our newly developed Chl-a algorithm for the study area to accurately estimate extremely high Chl-

a values at the high spatial resolution was still unaccounted for in this study. High chlorophyll-a 

concentration was observed at the Northwestern part of the study area close to the RAS A3 (SWRO system) 

intakes ~> 10 mg/m^3 for image acquired on 22 September 2017 for both Sentinel-2 MSI derived Chl-a 

and MODIS L2 observed Chl-a data confirming an incidence of algal bloom.  However, there were no in-

situ measurements to validate these results. But report from project site indicated a possible shut-down of 

the RAS A3 (SWRO system) desalination plant within this period.  

In relating upscaled Sentinel-2 MSI derived Chl-a and the disaggregated MODIS L2 observed Chl-a product 

with each at 90 m and at 1km with scatterplots, revealed that, the spatial variation between the two products 

may have caused an increased vertical stripping in 90 m scatter plots rather than noise in the Sentinel-2 MSI. 

Compared with scatter plot analysis for upscaled Sentinel-2 Chl-a data and the reference MODIS L2 Chl-a 

data at 1 km showed a reduction in vertical stripping. This is because the Sentinel-2 MSI data was spatially 

smoothened to reduce noise in observed reflectance data during atmospheric correction application 

processing. Although both sensors showed different sensitivity to HAB with accuracy results exceeding the 

maximum tolerable error (± 35 %) in satellite retrieved Chl-a. But, the residual error estimated using 

upscaled Sentinel-2 MSI derived Chl-a versus the reference downgraded MODIS L2 each at 90 m and 1 km 

range from -7.2 to 7.5 mg/m^3 which is within typical uncertainty in modelled and satellite retrieved 

chlorophyll-a measurements reported to be ~ 10 mg/m^3 (Pereira et al., 2014).  Moreover, the combined 

effect of bottom reflectance and total suspended particulate matter led to an increase in error in retrieved 

Chl-a found near-shore. Hence there were large disparity in observed Chl-a concentration between MODIS 

derived Chl-a and Sentinel-2 RI/RCA retrieved Chl-a near-shore than at off-shore. 

Overall, with the improve spectral resolution of Sentinel-2 from introduce by MODIS through the 

downscaling approach of regression analysis, the generated maps at fine spatial scale, shows potentials of 

using the newly developed RI/RCA model to estimate Chl-a. We can also can accurately track the onset, 

development, spread and trends of algal bloom with results of newly developed maps with RI/RCA than 

OC3M derived Chl-a over the study area throughout the different seasons for a long period of time. 

However, there were no simultaneous coincident in-situ measurements to validate the results of the 

atmospheric correction and retrieved chlorophyll-a data, hence, there is a need for coherent field measured 

chlorophyll-a data to validate the performance of the derived model applied to the datasets for chlorophyll-

a retrieval used in this study. 
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6.2. Recommendations 

The following recommendations are drawn for future works to optimize results attained in this research;  

1. The performance of ACOLITE atmospheric correction may need to be validated to evaluate if 

errors in retrieved products in some part may be due to the AC method, therefore, simultaneous 

coincident in-situ radiometric measured data is required. 

2. The derived approach of algorithm development although pertains to the area studied can be 

applied or regionally extended to the whole Arabian Gulf to examine the model performance for 

the different regions in the study area. Also, it can be used to investigate the long-term trend in Chl-

a variation in under-sampled areas and under eutrophic conditions for inland water bodies. 

3. A follow-up of testing the downscaling approach of regression analysis used in this study for 

MERIS Chl-a data at 300 m with Sentinel-2 MSI and/or Landsat 8 OLI may also be more 

appropriate to retrieve Chl-a and monitor HABs at high spatial scale. 

4. Integrating MCI with RI/RCA can improve delineation and early detection of bloom patches from 

non-bloom waters although results of the analysis of MCI model indicated overestimation and 

incapable of retrieving very low Chl-a concentration (~< 1 mg/m^3). However, both models will 

need a robust tuning and calibration using in-situ measured data.  

5. Incorporating sea-surface temperature (SST), total suspended matter (TSM) and other 

environmental factors responsible of HABs development with RI/RCA and MCI in future research 

to separate bloom from non-bloom water condition is also recommended to avoid possible false 

alarms of HABs. 
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APPENDIX 

Annex A: Scatter plots of Sentinel-2 derived RI versus Rrs (443nm) 

 

 

 

 

 

 

APPENDIX 

Annex A 

 

Annex B: Scatterplots of Sentinel-2 derived chlorophyll-a by RI, MCI and NDCI against MODIS L2 chlorophyll-a 
data: a - f by RI model; g - l by MCI model and m - r by NDCI model; a, g, m for   3 x3; b, h , n for 5 x 5; c,i,o for 7 
x 7; d, j, p for 9 x 9; e, k, q for 11 x 11 and f, l, r for 99 x 99 moving window size with Chl-a< 3mg/m3.  

       

(a) (g) 

(b) (h) (n) 

(c) (i) (o) 
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Annex C Statistical summary of scatter plots of Sentinel-2 derived chlorophyll-a concentration against MODIS L2 

chlorophyll-a measurement for the validation datasets when Chl-a < 3 mg/m^3 

Window size Model 

NDCI MCI RI 

RMSE 
(mg/m3) 

MAPE  

(%) 

RMSE 
(mg/m3) 

MAPE 

 (%) 

RMSE 
(mg/m3) 

MAPE  

(%) 

3 x 3 0.903 55.24 0.885 55.69 0.423 25.79 

5 x 5   0.949 64.07 0.865 52.66 0.525 30.09 

7 x 7  0.779 44.76 0.804 47.68 0.505 29.62 

(d) (j) (p) 

(e) (k) (q) 

(f) (l) (r) 
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9 x 9  0.803 45.41 0.809 48.79 0.385 22.92 

11 x 11  0.808 48.28 0.805 49.89 0.544 31.73 

99 x 99  0.789 47.85 0.909 53.79 0.595 34.37 

 

 

 

 
Annex D: Email received from project management of possible HAB occurrence due to plant shutdown 

 

 

Annex E: Comparison between MODIS-derived Rrs and Sen2 derived Rrs at data point  
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modis Sen 2 

Rrs_443 Rrs_443 

Rrs_488 RRS_497 

Rrs_645 RRS_560 

Rrs_667 RRS_665 

Rrs_678 RRS_704 

 

 
Annex G: Graph of Average residual estimated for aggregated Sentinel-2 MSI and disaggregated MODIS L2 Chl-a 
maps at 90 m all 12 images 

 


