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ABSTRACT 

The noticeable climate change over Tibetan Plateau and the limited systematic knowledge of land states  

make it needed to quantify soil moisture accurately. It is hard to study the Plateau scale soil moisture using 

a single satellite due to its limited lifetime and the misestimation over frozen areas. It is necessary to blend 

soil moisture products from different sources to extend the data spatial-temporal distribution and reduce 

the data biases.  

 

The methodology used in this research include surface soil moisture data blending and subsurface soil 

moisture data prediction. The surface soil moisture data blending method in this research was performed 

with the constraint of in-situ data climatology based on a least square method. Most of the satellites and 

blended soil moisture products can produce the top layer soil moisture only, and the relationship between 

surface and profile soil moisture is non-linear. It is challenging to quantify the profile soil moisture 

accurately. A depth scaling based on CDF matching was performed to obtain the consistent profile soil 

moisture from the blended surface soil moisture product. 

 

After output products analysis, it is verified that the methodology used in this research, which includes 

satellite data merging, in-situ constrained climatology scaling, least squares and triple collocation method 

based objective merging, is an integrated method for surface and subsurface soil moisture quantifying. 
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1. INTRODUCTION 

1.1. Background 

Research on the land surface and subsurface states contribute to research on the freeze-thaw process of 

Tibetan Plateau. Quantifying land surface and subsurface states is a sufficient way to quantify water and 

heat balance in the land-atmosphere system and trends of climate change over the Tibetan Plateau. As an 

essential water source in Asia, Tibetan Plateau has significant effects on the Asian monsoon process, the 

atmospheric circulation, and the climate patterns (Ma et al., 2017). The noticeable climate changes in past 

thirty years over Tibetan Plateau (Kang et al., 2010) added demand of rigorous land states quantification. 

As a crucial land surface and subsurface states variable, soil moisture plays a critical role in the climate 

system. The variability in soil moisture could be used to reveal feedbacks between the climate system and 

the hydrological cycle (Su, De Rosnay, Wen, Wang, & Zeng, 2013). Soil moisture physics and dynamics 

need to be quantified to achieve a deeper understanding of the land-atmosphere interactions (Milly & 

Dunne, 1994; Polcher, 1995; Reynolds, Jackson, & Rawls, 2000;  Drusch, 2007). Rigorous quantification 

of the energy and water exchanges in the land-atmosphere system can be used for the current numerical 

weather prediction models validation (Zeng et al., 2016).  

 

Besides, as an important subsurface state, the root-zone profile soil moisture is an important variable in 

the agricultural system, meteorological system, and hydrological cycle. The saturation of profile soil 

moisture affects the quantity of water absorbed by crop and plays a significant role in the latent and 

sensible energy distribution and the precipitation redistribution (Gao et al., 2016). The subsurface soil 

moisture has a significant spatial variability and has effects on the surface soil moisture through infiltration 

and capillary phenomenon in a non-linear way (Han, Merwade, & Heathman, 2012). 

 

There are three primary sources for soil moisture data retrieval, which include: in-situ measurements, 

satellite observations, and model simulations (Zeng et al., 2016). Several in-situ soil moisture observation 

networks, namely the Third Pole Environment in situ component(TPE) (Ma et al., 2008), the central 

Tibetan Plateau multi-scale soil moisture and temperature monitoring network (Tibet-Central) (Yang et al., 

2013), and the Tibetan Plateau Observatory of soil moisture and soil temperature (Tibet-Obs) (Su et al., 

2011), are available over Tibetan Plateau. The currently existing satellite observed soil moisture products 

include passive and active microwave observations. SMOS: The Soil Moisture and Ocean Salinity (Kerr et 

al., 2001) and SMAP: the Soil Moisture Active Passive (Entekhabi et al., 2010) are specialised to soil 

moisture mission. There are also several soil moisture products retrieved from the existing satellites using 

specific algorithms, for example The Advanced Microwave Scanning Radiometer (AMSR) soil moisture 

products retrieved by using the Land Parameter Retrieval Model (LPRM) (Owe, de Jeu, & Holmes, 2008), 

and the Advanced Scatterometer (ASCAT) soil moisture products retrieved by change detection method 

(Wagner et al., 2013). Besides, the model simulations indicate the reanalysis (land data assimilation) data, 

which can be provided through the land surface scheme. For example, ERA-Interim: the European Centre 

for Medium-Range Weather Forecasts interim reanalysis (Dee et al., 2011; Balsamo et al., 2015), and 

GLDAS: the Global Land Data Assimilation System (Rodell et al., 2004). 

The limited lifetime of a single satellite and the period that has complete coverage of the Tibetan Plateau is 

not sufficient for climate change studies (Wagner et al., 2012). Therefore it is necessary to blend several 
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available satellite observed data together to obtain a superior soil moisture dataset (Zeng et al., 2016). The 

blended dataset may solve the problem of misestimation by using specific satellite observed data (e.g. the 

overestimation of AMSRE and ASCAT over Tibetan Plateau) (Su et al., 2011). For this reason, several 

merged satellite datasets have been produced by scaling and blending satellite data with model-simulated 

data, such as ESA-CCI: the Climate Change Initiative soil moisture product (Dorigo et al., 2015) and 

SMOPS: the Soil Moisture Operational Products System (Zhan, Liu, & Zhao, 2016) from U.S. National 

Oceanic and Atmospheric Administration (NOAA). These Merged datasets improved the soil moisture 

data resolution (Owe et al., 2008). 

 

Most of the satellite observed products have not included the profile soil moisture, except for a minority 

of satellite observed products, such as SMAP Level 4 profile soil moisture product. Usually, the profile 

data can be obtained from surface soil moisture by using filtering techniques (Petropoulos, 2013). Besides, 

the CDF matching could be used to operate the depth scaling as well, and it is a robust method to 

estimate root-zone soil moisture from the surface dataset (Gao et al., 2016).  

 

1.2. Problem Definition 

The observable climate change in the Tibetan Plateau scale is reshaping the local environment and 

changing the hydrological cycles (Yang et al., 2014; Kang et al., 2010). The high-quality quantifying of the 

surface and subsurface states is needed as the Tibetan Plateau is a sensitive area, but the systematic 

knowledge of the land surface and subsurface states and climate change over it are limited (Ma et al., 

2017). 

 

It is hard to study the Tibetan Plateau scale soil moisture content (especially the profile soil moisture) and 

climate change by using a single satellite-based soil moisture product due to its limited lifetime and the 

circumscribed performance over frozen and partial-frozen areas (e.g. Tibetan Plateau). To solve this 

shortcoming, all available data should be used to produce a superior dataset by using appropriate method 

(e.g. objective blending). Although the existing merged products (e.g. ESA-CCI, SMOPS) improved soil 

moisture data temporal resolution, the data availability over Tibetan Plateau is limited because of the 

existing frozen or partial-frozen areas (Owe et al., 2008). Besides, the profile soil moisture has not been 

included in the results of merged products.  
 

Most of the existing applications of climatology scaling before data blending are performed based on one 

model simulated soil moisture product without the constraint of in-situ measurement climatology (Liu et 

al., 2011; Reichle & Koster, 2004; Drusch, Wood, & Gao, 2005; Petropoulos, 2013). It means that the 

results will be different when the different land surface model would be used, and it may deviate from the 

real soil moisture dynamics and physics. There was a research on the satellite data blending based on the 

in-situ climatology scaled reanalysis data and got a high-quality, superior surface soil moisture dataset 

(Zeng et al., 2016). However, the time range could be extended from 2 years to a longer one by using 

more available satellite retrieved soil moisture products. 

 

Due to the significant spatial-temporal variability and highly expensive in-situ measurements, it is 

challenging to quantify the profile soil moisture accurately over Tibetan Plateau. Most of the satellite can 

produce the top layer soil moisture (<5cm) only, and as well as the existing merged soil moisture products. 

Moreover, the relationship between surface and profile soil moisture is non-linear, basically (Han, 

Merwade, et al., 2012). 
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1.3. Objective and Research Questions 

1.3.1. Main objective 

To produce a superior surface soil moisture product by merging satellite observed, reanalysis data and in-

situ measured data, and a consistent profile soil moisture product by depth scaling. 

1.3.2. Sub-objectives 

(1) To produce the merged passive and active microwave observation products. 

(2) To obtain the in-situ data climatology by combining in-situ measurement network and the 

classification of climatic zones over the Tibetan Plateau. 

(3) To constrain the model simulated soil moisture with the in-situ measured data climatology. 

(4) To blend merged passive and active satellite datasets into a consistent dataset with sufficient length, by 

using the in- situ scaled model simulated datasets. 

(5) To evaluate the quality of blended datasets by anomalies analysis and intercomparison with other 

products. 

(6) To perform the depth scaling from the surface to root-zone area soil moisture. 

(7) To evaluate the quality of depth scaled profile soil moisture datasets. 

 

1.3.3. Research Questions 

The following research questions ought to be answered to achieve the objectives: 

(1) Do the merged passive and active satellite datasets have a better spatial-temporal coverage over 

Tibetan Plateau? 

(2) Is there any difference between the results of the scaling with or without the constraint of in-situ data 

climatology? 

(3) How are the performances of climatology scaling and objective blending methods? 

(4) How is the quality of the blended surface soil moisture dataset? 

(5) How is the performance of the depth scaling method? 

(6) How is the quality of the depth scaled profile soil moisture dataset? 

 

1.4. Innovations 

(1) Merging surface soil moisture products retrieved from satellite observation, model simulation, and in-

situ measurement in a relatively extended period (ten years). Previous studies blended only two kinds of 

datasets (satellite observed, and model simulated) or blended three kinds of datasets in a short period (two 

years). 

(2) Combining the producing of superior surface soil moisture products and profile soil moisture products 

to better understand land states over Tibetan in an extended period. 
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2. MATERIAL 

2.1. Study Area 

The average elevation of the Tibetan Plateau exceeding 4000m above sea level, it is an elevated region in 

the central Asian. The Tibetan Plateau stretches 2500km along longitude and 1000km along latitude. The 

inferred area is about 2.5×106 km2 (Yang et al., 2014). 

 
Figure 2.1: The Tibetan Plateau Climatic Zones Classification Map 

(Source:  Zeng et al., (2016)) 

 

2.2. Datasets Description and Pre-processing 

The datasets used in this research and the time range of them are presented in Fig 2.2. There are three 

different types of soil moisture datasets, include in-situ data (Tibet-Obs), reanalysis data (ERA-Interim), 

and Satellites datasets (passive: AMSRE, SMOS, AMSR2, and SMAP. Active: ESA-CCI merged active 

products.). Table 2.1 presents the characteristics of these datasets, including the attributes information of 

original datasets. 

 

  

Figure 2.2: Start-End Dates Diagram of all the Data Sets for Data Processing  

 

3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12

In-situ Tibet-Obs

Reanalysis ERA-Interim

AMSRE

SMOS

AMSR2

SMAP

Acitive ESA-CCI

Passive

Year

Month

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016



QUANTIFYING SURFACE AND SUBSURFACE SOIL MOISTURE OVER TIBETAN PLATEAU 

6 

Table 2.1: Characteristics of all the Data Sets for Data Processing 

 
 

2.2.1. In-situ 

 

 

Figure 2.3: In-situ Network and the Location Scatters Diagrams 

(source: Zhao, Zeng, Lv, & Su, (2018)) 

 

The Tibetan Plateau Observatory (hereafter as Tibet-Obs) introduced by Su et al. (2011) includes semi-

arid Naqu network, subhumid Maqu network and arid Ali-Shiquanhe network. These networks cover 

three climate zones with 45 observation stations monitoring different depths soil moisture continuously at 

15 minutes interval. The surface (5cm) soil moisture data over 2010-Nov-01 to 2011-Oct-31 was used to 

perform the calibration of surface soil moisture scaling, and it over 1-May-2008 to 2010-Oct-31 was used 

to validate the blended surface soil moisture data. The surface (5cm) and the profile (average of values at 

10cm, 20cm, 40cm, 80cm) soil moisture data over 2014-Sept to 2015-Sept was used to perform the 

calibration of the depth scaling and it over 2015-Sept, and 2016-Sept was used to validating the final 

profile soil moisture product. The averaged soil moisture data series from various observation networks 

were used to produce in-situ measured input data of each network. 

 

 

Data sets type In-situ Data Reanalysis Data

Data sets name Tibet-Obs ERA-Interim AMSRE SMOS AMSR2 SMAP ESA-CCI ACTIVE

Platform \ \ Aqua SMOS GCOM-W1 SMAP \

1-Sep-2010 1-Jun-2007 1-Jun-2007 1-Jun-2010 3-Jul-2012 31-Mar-2015 25-Apr-2013

31-Aug-2016 31-Dec-2016 3-Oct-2011 31-Dec-2016 31-Dec-2016 31-Dec-2016 31-Dec-2016

Channel used for soil moisture \ \ 6.9 GHz 1.4GHz 6.9 Ghz 1.4GHz 5.2GHz

Original Timporal resolution 15min Daily Daily Daily Daily Daily Daily

Original Spatial resolution (km2*km2) \ 25*25 25*25 25.8*23 25*25 36*36 25*25

Spatial Coverage Tibetan N25-N40, E74-E104 Global N20-N45, E50-E130 Global W180-E180, S84-N84 Global

Equatorial crossing time \ \ Descending Descending Descending Descending Ascending

Satellites Data

Time period used
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2.2.2. Satellite Data 

2.2.2.1. AMSR-E 

Figure 2.4: AMSRE Soil Moisture Products Retrieval Flowchart 

(Source: Njoku, Jackson, Lakshmi, Chan, & Nghiem, (2003) ) 

 
The VUA-NASA retrieval soil moisture product (hereafter AMSR-E) used in this research were derived 

from the Advanced Microwave Scanning Radiometer-Earth Observing System (Owe et al., 2008; Njoku, 

Jackson, Lakshmi, Chan, & Nghiem, 2003). The passive microwave observed brightness temperature (e.g. 

AMSR-E resampled brightness temperature product AE_L2A) were processed by using LPRM: The Land 

Parameter Retrieval Model. There are three land surface parameters related to the LPRM, which include: 

land surface temperature, vegetation water content, and soil dielectric constant. The land surface 

temperature was obtained from the Ka-band (36.5 GHz) (Holmes, de Jeu, Owe, & Dolman, 2009). The 

vegetation optical depth was derived from the soil dielectric constant (Meesters, De Jeu, & Owe, 2005). 

The soil dielectric constant was derived from the soil dielectric mixing model with a global database of soil 

physical properties (Wang & Schmugge, 1980). Then the soil moisture was derived from a forward 

radiative transfer model using a nonlinear iterative optimisation method and the microwave polarisation 

difference index of the brightness temperature (Mo, Choudhury, Schmugge, Wang, & Jackson, 1982). The 

two products provided by LPRM include volumetric soil moisture retrieved from C-band and X-band 

observations. C-band over Tibetan has less signal attenuation from atmosphere and vegetation and less 

radio-frequency interference ( Njoku, Ashcroft, Chan, & Li, 2005 ). So, the soil moisture products used in 

this research were derived from C-band with a time range of 01-July-2007 to 03-Oct-2011 and provided 

on a 25km×25km grid. The original spatial coverage starts from W 180˚ to E 180 ˚, from N 90 ˚ to S 90 ˚, 

they were 720 rows×1440 columns before subsetting. After subsetting, the grids became 61 rows×121 

columns (E 74˚- E 104˚, N 25˚- N 40˚). Only the descending mode (night time: 01:30 am local time) 

AMSR-E products were used because there are fewer uncertainties caused by temperature variations 

during night-time (Dente, Ferrazzoli, Su, van der Velde, & Guerriero, 2014). 
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(1) Original 

 
(2) TP scale 

Figure 2.5: AMSRE soil moisture maps example on 2007-June-05 

2.2.2.2. AMSR-2 

The AMSR-2 datasets are derived from the Advanced Microwave Scanning Radiometer 2 loaded on the 

Water GCOM-W1 satellite launched by JAXA: the Japan Aerospace Exploration Agency (Keiji Imaoka et 

al., 2010). The AMSR-2 is a follow-up of AMSR-E, and it has worked together with AMSR-E since 3 July 

2012 to provide a long-term satellite observation (Imaoka et al., 2012). LPRM was used to retrieve soil 

moisture products as well, the steps are similar with AMSR-E, but the input datasets are from the AMSR-

2 brightness temperatures with a matched spatial-resolution. The descending daily products used in this 

study were the night-time products over the period of 03-July-2012 to 31-Dec-2016. The original spatial 

coverage, the spatial resolution, and the subsetting approach are same with AMSR-E. 

2.2.2.3. SMOS 

The SMOS soil moisture data were derived from the European Soil Moisture and Ocean Salinity satellite 

by France National Centre for Space Studies (cnes). As one of the Earth Explorer Opportunity Missions 

from ESA: the European Space Agency, the SMOS satellite was launched successfully with a 1.4 GHz L-

Band radiometer as the baseline payload on 2-Nov-2009 (Kerr et al., 2010). One of the scientific 

objectives is retrieving the global soil moisture over land surfaces with better accuracy (4% volumetric soil 

moisture) in a spatial resolution less than 50 km. The SMOS operates with a revisit time less than three 

days and provides global coverage with an ascending orbit (6:00 am) and a descending orbit (6:00 pm) 

(Kerr et al., 2012). The L-band microwave emission is obtained from a zero-order radiative transfer 

equation, and the L-MEB biosphere model is the retrieval algorithm of SMOS (Wigneron et al., 2007). 

The multiangular observation helped SMOS obtain the soil moisture and ancillary information 

simultaneously (Wigneron et al., 2007; Zeng et al., 2015). As a re-sampled and temporally accumulated 

data, the Level 3 one-day descending surface soil moisture products located over 01-June-2010 to 31-Dec-

2016 were used in this research.  

 
(1) Original 

 
(2) TP Scale 

Figure 2.6: SMOS soil moisture maps example on 2011-June-05 
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The original spatial coverage of the downloaded data starts from E 50˚ to E 130 ˚, from N 20 ˚ to N 45 ˚, 

they were 108 rows×310 columns before subsetting. Moreover, the original data were multiplied by the 

scale factor 0.000030519 to obtain the real soil moisture values. After subsetting them to E 74 ˚ - E 104 ˚, 

N 25 ˚ - N 40 ˚, and resampling to 25*25km resolution, the grids became 61 rows ×121 columns. All the 

satellites data and reanalysis data in this research were resampled to 25*25km resolution in both latitude 

and longitude extension. This is a trade-off between the higher resolution scatter meter data and the 

generally coarser passive microwave observations. The resolution of the products is often adopted by land 

surface models. The linear interpolation was used in resampling step as it is the most widely used 

interpolation algorithm for reconstruction since it produces reasonably good results at moderate cost.  

2.2.2.4. SMAP 

The SMAP soil moisture data was retrieved from L-band (1.41 GHz) of the passive microwave radiometer 

of Soil Moisture Active Passive mission. NASA (National Aeronautics and Space Administration) 

launched the SMAP satellite on 31-Jan-2015. The soil moisture data was derived from L-band brightness 

temperature. The SMAP soil moisture observation target is a volumetric accuracy of 0.04m3·m-3 in the top 

layer of land surface every two to three days (Akbar & Moghaddam, 2015; Panciera et al., 2014). The tau-

omega model is the retrieval algorithm of soil moisture retrieval, and it used at a constant incident angle. 

The open water area has been corrected, then the retrieval algorithm was operated (O’Neill, Chan, Njoku, 

Jackson, & Bindlish, 2014). 

The SMAP product used in this research is a SMAP L3 Radiometer Global Daily data of descending orbit 

(6:00 pm to 6:00 am) SMAP radiometer-based soil moisture retrieval on the global 36-km Equal-Area 

Scalable Earth (EASE 2.0) Grid designed by the National Snow and Ice Data Center (NSIDC). The data 

used here is from 31-March-2015 to 31-Dec-2016 over Tibetan Plateau. The original spatial coverage of 

the downloaded data starts from W 180˚ to E 180 ˚, from N 84 ˚ to N 84 ˚, they were 406 rows×964 

columns before subsetting. After subsetting them to E 74 ˚ - E 104 ˚, N 25 ˚ - N 40 ˚, and resampling to 

25*25km resolution, the grids became 61 rows ×121 columns. The linear interpolation was used in 

resampling step as well. 

(1) Original 

 
(2) TP Scale 

Figure 2.7: SMAP soil moisture maps example on 2015-June-05 

 

2.2.2.5. ESA-CCI Merged ACTIVE Products 

The ESA-CCI (ESA Climate Change Initiative) merged ACTIVE products are merged by Metop-A and 

Metop-B ASCAT products. The ACTIVE soil moisture products used in this research were obtained from 

01-June-2007 to 31-Dec-2016. The original products are provided as saturation degrees (0% - 100%), and 

it should be converted to the volumetric soil moisture. The porosity values over Tibetan Plateau were used 
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to multiply saturation degrees yields the volumetric soil moisture with a unit of m3·m-3. The porosity 

values were provided by ESA-CCI. 

 
Figure 2.8: TP Scale Porosity map 

(1) Original (%) (2) TP Scale (VWC) 
Figure 2.9: ESACCI Soil Moisture Maps Example on 2007-June-05 

 

As a real aperture backscatter radar, the Advanced Scatterometer (ASCAT) is being loaded on the 

Meteorological Operational (METOP) satellites (Wagner et al., 2013). There are three METOP satellites 

operate as a polar-orbiting satellites series. METOP-A and METOP-B were launched in Oct-2006 and 

Sept-2012. They are operating in parallel in a dual constellation, and it could provide a better spatial and 

temporal resolution. METOP-C will be launched in 2018, and it will work together with METOP-A and 

METOP-B to deliver a full-coverage ASCAT backscatter observation (Zeng et al., 2015). The ASCAT 

observes the land surface in both ascending (9:30 pm) and descending (9:30 am) mode by operating in 

5.255 GHz C-band at VV polarisation (Wagner et al., 2013).  

 

A change detection method based on time series was used to retrieve soil moisture from ASCAT 

backscatter observations(Bartalis, Naeimi, & Wagner, 2008). The retrieve algorithm was developed by 

Wagner et al. (2013) and Naeimi, Scipal, Bartalis, Hasenauer, & Wagner (2009). Although the effect of 

vegetation on the active microwave observation is still poorly understood, the C-band has been found has 

a significant response of soil even in the vegetated areas when the incidence angle is low (Su, Troch, & 

DeTroch, 1997; Wen & Su, 2003). The different responses of three scatterometer antenna geometries to 

the vegetation was used to model sensitivity of the backscattering signal to the seasonal vegetation effect. 

The backscattering was normalized by using a reference incidence angle. The dry land surface condition is 

the highest backscattering value over the entire research period, while the lowest backscattering value 

refers to the saturated soil condition. 
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Figure 2.10: ASCAT soil moisture products retrieval flowchart 

 

 

2.2.3. Reanalysis Product 

2.2.3.1. ERA-Interim 

ERA-Interim soil moisture product (hereafter as ERA-Interim) is a part of Land Data Assimilation System 

produced by ECMWF: the European Centre for Medium-Range Weather Forecasts (Dee et al., 2011).The 

soil moisture simulated volumetric soil moisture content in four layers separately, and the daily average soil 

moisture of the first layer (0-7 cm) is the one to be used in the proposed research. As the reference 

dataset, the reanalysis data requires a comparable spatial (25km) and temporal (daily) resolution with 

satellites data to be used in climatology scaling (Liu et al., 2011). So, the daily ERA-Interim soil moisture 

product to be used here has been interpolated to a comparable resolution of 25km instead of the original 

coarse resolution (80km) while retrieving it from ECMWF web page. 

 
(1) Original 

 
(2) TP Scale 

Figure 2.11: ERA-Interim Soil Moisture Maps Example on 2007-June-05 
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3. METHODOLOGY 

3.1. Overview 

The processing steps in this research include Satellites Data Merging, Objective Blending, and Depth Scaling. The 

figure 3.1 Methodology flowchart presents an overview of processing steps. In the flowchart, the TP 

indicates the Tibetan Plateau; The SSM and PSM indicate surface and profile soil moisture. The calibration 

period of surface soil moisture data blending is from 01-Sept-2014 to 31-Aug-2015 (one year include four 

full seasons), the calibration period of sub-surface soil moisture data is from 01-Sept-2013 to 31-Aug-2015 

and the surface soil moisture blending period is from 01-Jan-2007 to 31-Dec-2016 (ten years) as well as 

the depth scaling period. 

 

 
Figure 3.1: Methodology Flowchart 

 

As presented in the methodology flowchart and explained in the section “2.2 Datasets Description”, the 

input datasets (indicated as blue text) include in-situ measured soil moisture data, reanalysis soil moisture 

data ERA-Interim and satellites observed data. After Satellite Data Merging, the original single satellites data 

were merged into PASSIVE and ACTIVE two different products. To perform the Objective Blending, a 

Climatology scaling was executed in advance to scale the PASSIVE and ACTIVE products by the in-situ 

scaled reanalysis data. Then the scaled satellites data and scaled reanalysis data were blended into a 

consistent surface soil moisture product. Then, a Depth Scaling was performed to produce the profile soil 

moisture products. In the end, an analysis of the final surface and profile soil moisture products was 

performed as a validation step. The following sections are the description of algorithms and detailed 

explanations of the processing steps. 

 



QUANTIFYING LAND SURFACE AND SUBSURFACE STATES OVER TIBETAN PLATEAU 

13 

3.2. Description of Algorithms 

Three main statistical approaches were used in this research, include CDF matching, least squares method 

and triple collocation method. The core process of Satellites Data Merging and Objective Blending could be 

performed using the least squares method, which is explained in section 3.2.2. The way to ensure the input 

observations condition of the least squares method is CDF matching, which is explained in section 3.2.1. 

Moreover, it also used to perform the Depth Scaling. The way to determine the error variances required in 

the least squares method is triple collocation, which is explained in section 3.2.3.  

3.2.1. CDF Matching 

Cumulative distribution function matching (CDF matching) was used in all the three main steps to correct 

the systematic difference among data sets which is necessary for the following weighted merging step. For 

Satellites Data Merging, the passive satellite's data (i.e. SMOS, AMSR2, and SMAP) were scaled using CDF 

matching based on the reference product AMSRE. For Objective Blending, the ERA-Interim data were 

scaled by in-situ data climatology first; then the PASSIVE and ACTIVE products were scaled by the 

scaled ERA-Interim. In Depth Scaling, CDF matching was used to generate the observation operator to 

obtain profile soil moisture data from surface soil moisture data. 

 

The CDF matching approach has been widely used for removing systematic differences between two 

series, such as bias reduction in satellite-observed surface soil moisture (Liu et al., 2011;  Drusch, Wood, & 

Gao, 2005;  Reichle & Koster, 2004; Petropoulos, 2013). For example, the satellite observed time series 

can be rescaled through this approach, so that its CDF matches the CDF of the in-situ measured data. 

The method can also be used to transfer the different areas data (Gao et al., 2013) and upscale the point 

data measurements (Han, Heathman, Merwade, & Cosh, 2012). Besides, Gao et al. (2016) did the depth 

scaling by the construction of observation operators using CDF matching.  

 

To operate CDF matching, five main steps should be operated. The first step is ranking the reference data, 

and the to-be scaled data. Second, calculate the differences between the corresponding data of two 

datasets. Third, plot the calculated differences against the to-be scaled series. Next, the piece-wise linear 

CDF matching technique can be used in the satellite observed data merging and the climatology scaling 

(Zeng et al., 2016). It is a technique to perform linear regression analysis segment by segment for a certain 

number of segments on the CDF curve. The last step is using the linear parameters to scale the to-be 

scaled data for each segment (Brocca et al., 2011). Following Figure is example CDF curves of reference 

data (ref), original observation (obs), and scaled observation (Scaled obs). The CDF curve of original 

observation is different with the reference, while the CDF curve of scaled observation shows a similar 

pattern with the CDF curve of reference data after scaling. The systematic difference between the original 

observation and the reference data has been eliminated. 

 

Figure 3.2: CDF Matching Example Curves 
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Also, among four common scaling methods (linear regression, linear rescaling, MIN/MAX correction, 

and CDF matching), the CDF matching showed a better performance in some cases (Petropoulos, 2013). 

Moreover, it requires at least one year to calibrate this statistical approach due to the high number of 

parameters used in the operators (Liu et al., 2011). One-year in-situ measured data is available to do the 

calibration in this approach.  

 

3.2.2. Least Squares Merging 

Least squares method was employed in this study to perform Satellites Data Merging and Objective Blending. 

The objective is determining merged soil moisture values from two or three independent datasets. In 

Satellites Data Merging step, it executed over several time periods to merge different satellites observations 

into one consistent product. In Objective Blending, it used to blend the scaled satellite's data and the scaled 

ERA-Interim data.  

 

The least squares method is one of the most widely used data assimilation methods (Talagrand, 1997). 

Since it was shaped into the current form by Kalman, (1960), it has been used in numerous studies 

(Sorenson, 1970). It was used to blend remote sensed and model simulated soil moisture products by 

Yilmaz, Crow, Anderson, & Hain, (2012).  

 

To determine the merged soil moisture product SMm from three independent soil moisture products 

(𝑆𝑀𝑎, 𝑆𝑀𝑏, 𝑆𝑀𝑐) of the form 

𝑆𝑀𝑎 = 𝛼𝑆𝑀 + 𝑒𝑎                                                                        3-1 a 

𝑆𝑀𝑏 = 𝛼𝑆𝑀 + 𝑒𝑏                                                                        3-1 b 

𝑆𝑀𝑐 = 𝛼𝑆𝑀 + 𝑒𝑐                                                                         3-1 c 

where 𝑒𝑎, 𝑒𝑏, 𝑒𝑐 are zero-mean observational errors, and SM is the assumed true value of soil moisture. 

When the statistical means of 𝑒𝑎, 𝑒𝑏, 𝑒𝑐 are 0, the variance of them are known and expressed as 𝜎𝑎
2, 𝜎𝑏

2, 

𝜎𝑐
2. As the datasets errors are assumed independent, the error covariances can be ignored. And also the 

solution of least squares can be simplified. In this research, all the datasets used to perform least squares 

method are independent as they are obtained from different instruments. The coefficient 𝛼 indicates that 

the slopes of linear relationships between each soil moisture products and true values should be the same, 

which means the datasets have no systematic biases. It is required for obtaining the least squares solution 

and has been satisfied by performing the CDF matching before datasets merging (in this research 𝛼 = 1).  

 

When the target product is merged as a linear combination of single products, the equation of data 

merging can be expressed as: 

𝑆𝑀𝑚 = 𝜔𝑎𝑆𝑀𝑎 + 𝜔𝑏𝑆𝑀𝑏 + 𝜔𝑐𝑆𝑀𝑐                                                  3-2 

where 𝜔𝑎, 𝜔𝑏, 𝜔𝑐 are the relative weights of data sets a, b, c, and 𝑆𝑀𝑚 is the target merged product.  

 

When 𝜔𝑎 + 𝜔𝑏 + 𝜔𝑐=1, the merged product is unbiased. It is a constraint of the solution to the 

estimation error variance minimization problem. So, the solution to minimize the error variance of SMm 

relate to weights 𝜔𝑎, 𝜔𝑏, 𝜔𝑐 , and the weights could be calculated from relative error variance 𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑐
2.  

The to be minimised error variance of 𝑆𝑀𝑚 can be expressed as  

𝜎2 = 𝜔𝑎
2𝜎𝑎

2 + 𝜔𝑏
2𝜎𝑏

2 + 𝜔𝑐
2𝜎𝑐

2                                                          3-3 

Assume 𝜕𝜎2 𝜕⁄ 𝜔𝑎
2 = 0 and  𝜕𝜎2 𝜕⁄ 𝜔𝑐

2 = 0, the equations to determine the relative weights by using 

relative errors are presented below: 
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𝜔𝑎 =  
𝜎𝑏

2𝜎𝑐
2

𝜎𝑎
2𝜎𝑏

2+𝜎𝑎
2𝜎𝑐

2+𝜎𝑏
2𝜎𝑐

2                                                                  3-3 a 

𝜔𝑏 =  
𝜎𝑎

2𝜎𝑐
2

𝜎𝑎
2𝜎𝑏

2+𝜎𝑎
2𝜎𝑐

2+𝜎𝑏
2𝜎𝑐

2                                                                  3-3 b 

𝜔𝑐 =  
𝜎𝑎

2𝜎𝑏
2

𝜎𝑎
2𝜎𝑏

2+𝜎𝑎
2𝜎𝑐

2+𝜎𝑏
2𝜎𝑐

2                                                                  3-3 c 

The method can also work in two datasets situation, the equations are presented below: 

 𝜔𝑎 =  
𝜎𝑏

2

𝜎𝑎
2+𝜎𝑏

2                                                                           3-4 a 

𝜔𝑏 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑏

2                                                                       3-4 b 

 

3.2.3. Triple Collocation Analysis 

Triple collocation was used in both Satellites Data Merging and Objective Blending to determine the relative 

errors (i.e. error variances) of each input observations. In Satellite Data Merging step, the triple collocation 

method was used to calculate the relative errors of every single satellites data by using ERA-Interim data 

and ESA-CCI ACTIVE products over every single merging period. In Objective Blending, triple collocation 

method was used to generate the relative errors of the scaled ERA-Interim, scaled PASSIVE and scaled 

ACTIVE products. The relative errors were used to determine the relative weights of each product for 

subsequent satellites data merging or soil moisture products blending steps using least squares method. 

Triple collocation is an error estimation method which can be used to estimate random error variances 

and systematic biases in different datasets without reliable reference data sets. It improved the accuracy of 

calibration or validation when compared with the dual comparisons which were widely used before. To 

operate the triple collocation method, three independent datasets should be used jointly to constrain the 

relative errors determining (Stoffelen, 1998).  The triplets to perform triple collocation analysis are three 

collocated and independent data sets. The error variance can be presented as: 

𝜎𝜀𝑎
2 = 𝜎𝑎

2 −
𝜎𝑎,𝑏𝜎𝑎,𝑐

𝜎𝑏,𝑐
                                                                3-5 a 

𝜎𝜀𝑏
2 = 𝜎𝑏

2 −
𝜎𝑏,𝑎𝜎𝑏,𝑐

𝜎𝑎,𝑐
                                                                3-5 b 

𝜎𝜀𝑐
2 = 𝜎𝑐

2 −
𝜎𝑎,𝑐𝜎𝑏,𝑐

𝜎𝑎,𝑏
                                                                3-5 c 

 

where 𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑐
2 are the data variances, and 𝜎𝜀𝑎

2 , 𝜎𝜀𝑏
2 , 𝜎𝜀𝑐

2  are the errors variances. 𝜎𝑎,𝑏,  𝜎𝑏,𝑐, 𝜎𝑎,𝑐 are data 

covariance. 

 

3.3. Processing Steps 

3.3.1. Satellite Data Merging 

Satellites Data Merging aims to merge all the available passive observations data into one PASSIVE product, 

and all the active observations data into one ACTIVE product. As explained in section “2.2 Datasets 

Description and Pre-processing”, the available passive satellites data include AMSRE, SMOS, AMSR2, 

and SMAP. As for active satellites observations, I was planned to merge Metop-A and Metop-B ASCAT 

products into the ACTIVE products, but when I tried to download and process the ASCAT products, 
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some problems occurred. Moreover, ESA-CCI merged ACTIVE products were obtained in the same way 

as I planned. So, the ESA-CCI Merged ACTIVE products were used as the input of the second step 

Objective Blending directly. In this section, the detailed merging steps of passive satellites data are explained. 

 

The passive satellites datasets include AMSRE, SMOS, AMSR2, and SMAP as explained, and the available 

time of them are different. These datasets were merged where more than one dataset exist, then they were 

concatenated in sequence. The merging period of passive satellites data has been decided based on the 

available period of every single satellite (Figure 3.3). The first merging period (S1) includes only AMSRE 

data, and the third merging period (S3) has only SMOS data, which can be used directly as a part of the 

PASSIVE product. The second part of the PASSIVE product (merging period S2) was merged by 

AMSRE and SMOS. The fourth part (S4) was merged by SMOS and AMSR2.  Moreover, The fifth part 

(merging period S5) was merged by SMOS, AMSR2 and SMAP. The steps of merging passive microwave 

datasets (AMSRE, SMOS, AMSR2, SMAP) are presented in Figure 3.4. The main sub-steps include 

Rescaling using CDF Matching, error characterisation using Triple Collocation Analysis and merging using 

the least squares method, and they are explained step by step in the following sections. 

 

 
Figure 3.3: Passive satellites data merging period diagram 

 

 

 
Figure 3.4: Passive products merging flowchart 

(1) Rescaling 

Differences in sensors specifications, particularly in microwave frequency and spatial resolution, result in 

different absolute soil moisture values from AMSR2, SMOS, SMAP, AMSR-E. Even though AMSR2 and 

AMSR-E have a similar frequency (i.e., C-band), their absolute values are different. I scaled the datasets 

into a common data climatology before I performed the satellites data merging. Rescaling of all the passive 

microwave soil moisture observations to the climatology of AMSR-E. Rescaling was performed using 

cumulative distribution function (CDF) matching, which was explained in section 3.2.1. 

 

Year

Month 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12

AMSRE

SMOS

AMSR2

SMAP

2016

S1 S2 S3 S4 S5

2007 2008 2009 2010 2011 2012 2013 2014 2015
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Based on previous research by Liu et al., (2012), the AMSR-E soil moisture retrievals were identified as 

more accurate than the other passive products due to the relatively low microwave frequency and high 

temporal and spatial resolution of the sensor. Thus, soil moisture retrievals from AMSR-E are selected as 

the reference to which soil moisture retrievals from SMOS, AMSR2, and SMAP are scaled. In Figure 3.3, 

the box with red border indicates the overlap period of the AMSRE (scaling reference) and SMOS, and 

SMOS (dark blue bar) overlaps with all the other satellites. So, as indicated in the flowchart Figure 3.4, the 

scaled SMOS is the reference to all the others. 

(2) Error Characterization 

Error characterisation aims to obtain the relative errors of all the to be merged datasets using triple 

collocation analysis. A necessary condition for the feasibility of triple collocation method is statistically 

significant, which requires determination of the minimum correlation coefficient values range. Usually, the 

p-values corresponding to statistical significant is <0.05. Others, it has been discussed by Zwieback, 

Scipal, Dorigo, & Wagner, (2012) that 100 triplets numbers are the minimum sample size for a reliable 

triple collocation method calculation. Under these two conditions, the corresponding minimum 

correlation coefficient should be >0.15. The primary procedures are illustrated in the flowchart in Figure 

3.5. First, as indicated in Figure 3.5, the three-collocated data number over each merging period were 

checked. Then, the minimum correlation coefficients of SMOS, AMSR2, and SMAP against ACTIVE and 

ERA-Interim were calculated to check the significant level. Then the error variance of each pixel where 

statistical significant were calculated using triple collocation method. After triple collocation analysis, the 

relative errors of each dataset were used to perform the least squares method. 

 

 
Figure 3.5: Error Characterization for Satellites Data Merging over Period S5 

(31-Mar-2015 to 31-Dec-2016) 

 

Error characterization was performed over every single merging period after rescaling. Satellites Data over 

S5 are served as an example in the following explanation, the error variance of three individual passive 

products (scaled SMOS, AMSR2 and SMAP) was characterized using triple collocation analysis. Triple 

collocation analysis was explained detailed in section 3.2.3. This method requires the errors of the three 

data sets to be uncorrelated. Therefore triplets always comprise of an active data set, a passive data set, 

and a model simulated dataset, which is commonly assumed to fulfil this requirement (Dorigo et al., 2010). 

So, the ESA-CCI Merged ACTIVE product and ERA-interim product over the same period were used to 

complement the triplets. The equations for determining the error variances are presented below: 

𝜎𝜀𝑆𝑀𝑂𝑆
2 = 𝜎𝑆𝑀𝑂𝑆

2 −
𝜎𝑆𝑀𝑂𝑆,𝐴𝐶𝑇𝐼𝑉𝐸𝜎𝑆𝑀𝑂𝑆,𝐸𝑅𝐴

𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝐸𝑅𝐴
                                                               3-6 a 
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𝜎𝜀𝐴𝑀𝑆𝑅2
2 = 𝜎𝐴𝑀𝑆𝑅2

2 −
𝜎𝐴𝑀𝑆𝑅2,𝐴𝐶𝑇𝐼𝑉𝐸𝜎𝐴𝑀𝑆𝑅2,𝐸𝑅𝐴

𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝐸𝑅𝐴
                                                        3-6 b 

𝜎𝜀𝑆𝑀𝐴𝑃
2 = 𝜎𝑆𝑀𝐴𝑃

2 −
𝜎𝑆𝑀𝐴𝑃,𝐴𝐶𝑇𝐼𝑉𝐸𝜎𝑆𝑀𝐴𝑃,𝐸𝑅𝐴

𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝐸𝑅𝐴
                                                              3-6 b 

where 𝜎𝑆𝑀𝑂𝑆
2 , 𝜎𝐴𝑀𝑆𝑅2

2 , 𝜎𝑆𝑀𝐴𝑃
2  are the data variances, and 𝜎𝜀𝑆𝑀𝑂𝑆

2 , 𝜎𝜀𝐴𝑀𝑆𝑅2
2 , 𝜎𝜀𝑆𝑀𝐴𝑃

2  are the errors variances. 

 𝜎𝑖,𝑗 are data covariance, where i=SMOS, AMSR2, or SMAP, and j=ACTIVE or ERA. 

The error variances 𝜎𝜀𝑆𝑀𝑂𝑆
2 , 𝜎𝜀𝐴𝑀𝑆𝑅2

2 , 𝜎𝑆𝑀𝐴𝑃
2  were used to estimate the merging parameters and for 

characterizing the errors of the merged product. Notice that these error estimates represent the average 

random error variance of the entire considered period, which is commonly assumed to be stationary. 

Furthermore, the soil moisture uncertainties of the target product (PASSIVE product) can also be 

determined from the error variances of single product. 

(3) Merging Passive Products 

Except for the data merging period S1: 2007-June-01 to 2010-May-31 (AMSRE) and S3: 2011-Oct-04 to 

2012-July-02 (SMOS), there are various combinations of data overlap as indicated in Figure 3.3. The data 

periods AMSRE and SMOS (S2: 2010-June-01 to 2011-Oct-03), SMOS and AMSR2 (S4: 2012-July-03 to 

2015-March-30), SMOS, AMSR2, and SMAP (S5: 2005-March-31 to 2016-Dec-31) were merged by means 

of a weighted average on a pixel basis which considers the error properties of the individual data sets that 

are being merged. The method is the least squares method discussed in section 3.2.2, and the optimal 

weights for a weighted average are determined by the error variances of the input datasets. The error 

variances, which represent the rescaled error variances of rescaled data sets, have been calculated using 

triple collocation method as described before. The example specific equations used in merging period S5 

can be presented as:   

𝜔𝑆𝑀𝑂𝑆 =  
𝜎𝜀𝐴𝑀𝑆𝑅2

2 𝜎𝜀𝑆𝑀𝐴𝑃
2

𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝐴𝑀𝑆𝑅2

2 +𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝑆𝑀𝐴𝑃

2 +𝜎𝜀𝐴𝑀𝑆𝑅2
2 𝜎𝜀𝑆𝑀𝐴𝑃

2                                           3-7 a 

𝜔𝐴𝑀𝑆𝑅2 =  
𝜎𝜀𝑆𝑀𝑂𝑆

2 𝜎𝜀𝑆𝑀𝐴𝑃
2

𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝐴𝑀𝑆𝑅2

2 +𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝑆𝑀𝐴𝑃

2 +𝜎𝜀𝐴𝑀𝑆𝑅2
2 𝜎𝜀𝑆𝑀𝐴𝑃

2                                         3-7 b 

𝜔𝑆𝑀𝐴𝑃 =  
𝜎𝜀𝑆𝑀𝑂𝑆

2 𝜎𝜀𝐴𝑀𝑆𝑅2
2

𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝐴𝑀𝑆𝑅2

2 +𝜎𝜀𝑆𝑀𝑂𝑆
2 𝜎𝜀𝑆𝑀𝐴𝑃

2 +𝜎𝜀𝐴𝑀𝑆𝑅2
2 𝜎𝜀𝑆𝑀𝐴𝑃

2                                           3-7 c 

𝑆𝑀𝑚𝑆5 = 𝜔𝑆𝑀𝑂𝑆𝑆𝑀𝑆𝑀𝑂𝑆 + 𝜔𝐴𝑀𝑆𝑅2𝑆𝑀𝐴𝑀𝑆𝑅2 + 𝜔𝑆𝑀𝐴𝑃𝑆𝑀𝑆𝑀𝐴𝑃                              3-7 d 

 

where 𝜔𝑆𝑀𝑂𝑆, 𝜔𝐴𝑀𝑆𝑅2, 𝜔𝑆𝑀𝐴𝑃 are the relative weights of data sets SMOS, AMSR2, SMAP, and 𝑆𝑀𝑚𝑆5 is 

the target merged product over S5. The method can also work in two datasets situation, such as merging 

period S2, the specific equations are presented below: 

 𝜔𝐴𝑀𝑆𝑅𝐸 =  
𝜎𝜀𝑆𝑀𝑂𝑆

2

𝜎𝜀𝑆𝑀𝑂𝑆
2 +𝜎𝜀𝐴𝑀𝑆𝑅𝐸

2                                                       3-8 a 

𝜔𝑆𝑀𝑂𝑆 =  
𝜎𝜀𝐴𝑀𝑆𝑅𝐸

2

𝜎𝜀𝑆𝑀𝑂𝑆
2 +𝜎𝜀𝐴𝑀𝑆𝑅𝐸

2                                                               3-8 b 

𝑆𝑀𝑚𝑆2 = 𝜔𝑆𝑀𝑂𝑆𝑆𝑀𝑆𝑀𝑂𝑆 + 𝜔𝐴𝑀𝑆𝑅𝐸𝑆𝑀𝐴𝑀𝑆𝑅𝐸                         3-8 c 
 

where 𝜔𝑆𝑀𝑂𝑆, 𝜔𝐴𝑀𝑆𝑅𝐸 are the relative weights of data sets SMOS, AMSRE, and 𝑆𝑀𝑚𝑆2 is the target 

merged product over S2. 
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The weighted merging work in both three datasets case (S5) and two datasets case (S2, S4) as every single 

relative error variance against the ACTIVE and ERA has been determined. However, for certain locations, 

triple collocation analysis does not yield valid error estimates. In such cases, weights were equally 

distributed amongst the available sensors (e.g. 0.33 for AMSR2, SMOS, and SMAP over S5 if all three 

datasets are available, 0.5 for AMSRE and SMOS over S2, and 0.5 for AMSR2 and SMOS over S4). After 

the generation of merged data over S2, S4, and S5, and the scaled data over S1 and S3, the resulting 

consistent passive satellites product (hereafter is referred to as the PASSIVE product) was generated by 

concatenating these datasets based on the sequence of periods.  

 

3.3.2. Objective Blending 

After previous step Satellite Data Merging, the input datasets for Objective Blending include in-situ measured 

data, ERA-Interim data, merged PASSIVE, and ACTIVE data over blending period. The time range 

diagram is presented in Figure 3.5. The calibration period (the box with red borders) for surface soil 

moisture product is from Sept-2014 to Sept -2015 which aims to obtain the scaling parameters between 

in-situ measured surface soil moisture data and ERA-Interim soil moisture product. Then the parameters 

were used to scale ERA-Interim data over the entire period. The validation periods, which include one 

period form Sept-2015 to Sept-2016, and one period from Sept-2010 to Sept-2014, can test the quality of 

product under different merging situations.  

 

Figure 3.6 Start-End Dates Diagram of all the Data Sets for Objective Blending  

 

Objective Blending step aims to blend satellites data, reanalysis data and in-situ measured soil moisture 

datasets. Similar with Satellites Data Merging, the sub steps of Objective Blending include Rescaling, Error 

Characterization, and Merging as the Objective Blending flowchart presented in Figure 3.6. CDF matching 

explained in section 3.2.1 was used to constrain reanalysis dataset ERA-Interim with in-situ measured data 

climatology and to scale satellite data with rescaled reanalysis dataset. Triple collocation and least squares 

method were used to perform the error characterization and weighted average.  

Year

Month 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12

In-situ

ERA-Interim

PASSIVE

ACTIVE

2016

Validation

SMOS+AMSREAMSRE SMOS SMOS+AMSR2 SMOS+AMSR2+SMAP

Validation Calibration

2007 2008 2009 2010 2011 2012 2013 2014 2015
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Figure 3.7: Objective Blending Flowchart 

(1) Rescaling 

i. In-situ Climatology 

The in-situ soil moisture data climatology was obtained from the in-situ measured data over calibration 

period and the classification of the FAO Aridity Index map. The in-situ output datasets require a 25km 

spatial resolution to execute the next scaling step. The specific process to produce the data climatology 

was combining the in-situ data with the FAO Aridity Index map, for the calibration period between 01-

Spet-2014 and 31-Aug-2015. After combining, it is comprehensible that the averaged in-situ measured soil 

moisture values of Naqu network are used to indicate the semi-arid situation, Maqu network for the sub-

humid situation, and both Ali and Shiquanhe for the arid situation (Zeng et al., 2016). Each averaged value 

series was used to scale the reanalysis data ERA-Interim indicates different climate zones over Tibetan 

Plateau. 

ii. In-situ Climatology Scale ERA-Interim 

First, ERA-Interim soil moisture products in 25km spatial resolution over the calibration period was 

scaled based on the obtained in-situ data climatology using CDF matching. The seasonal CDF matching 

parameters were obtained from it, and they were used in climatology scaling of ERA-Interim data in the 

blending period (2007-06-01 to 2016-12-31). Then, the climatology scaled ERA-Interim soil moisture data 

in 25km spatial resolution in blending period was produced using the CDF matching parameters obtained 

before. Also, the rescaling of reanalysis data ERA-Interim based on different seasons across the 

calibration period. 
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Table 3.1 Season separation from climatology scaling 

Seasons Month Date 

Winter Dec-March 2010-12-01 to 2011-04-01 

Transition 1 April 2011-04-01 to 2011-04-30 

Monsoon May-Oct 2011-05-01 to 2011-10-31 

Transition 2 November 2010-11-01 to 2010-11-30 

iii. Rescaled ERA-Interim Scale Passive and Active Products 

Execute another CDF matching between each merged satellite dataset (PASSIVE and ACTIVE) and the 

scaled ERA-Interim data generated from the previous step. The scaled ERA-Interim data over blending 

period was used to scale the PASSIVE product and the ACTIVE product which generated from the 

Satellite Data Merging section. 

 

(2) Error Characterization 

The relative errors among the scaled PASSIVE, ACTIVE, and ERA-Interim, were calculated by using the 

Triple Collocation method as explained before. The results error variances 𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 , 𝜎𝐴𝐶𝑇𝐼𝑉𝐸

2 , and 𝜎𝐸𝑅𝐴
2  

were used to generate the optimal weights for objective blending. The equations are presented below: 

𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 = 𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸

2 −
𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸,𝐴𝐶𝑇𝐼𝑉𝐸𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸,𝐸𝑅𝐴

𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝐸𝑅𝐴
                                                    3-9 a 

𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸
2 = 𝜎𝐴𝐶𝑇𝐼𝑉𝐸

2 −
𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝑃𝐴𝑆𝑆𝐼𝑉𝐸𝜎𝐴𝐶𝑇𝐼𝑉𝐸,𝐸𝑅𝐴

𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸,𝐸𝑅𝐴
                                                        3-9 b 

𝜎𝜀𝐸𝑅𝐴
2 = 𝜎𝐸𝑅𝐴

2 −
𝜎𝐸𝑅𝐴,𝐴𝐶𝑇𝐼𝑉𝐸𝜎𝐸𝑅𝐴,𝑃𝐴𝑆𝑆𝐼𝑉𝐸

𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸,𝐴𝐶𝑇𝐼𝑉𝐸
                                                                     3-9 b 

where 𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 , 𝜎𝐴𝐶𝑇𝐼𝑉𝐸

2 , 𝜎𝐸𝑅𝐴
2  are the data variances, and 𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸

2 , 𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸
2 , 𝜎𝜀𝐸𝑅𝐴

2  are the errors 

variances.  𝜎𝑖,𝑗 are data covariance, where i, j=PASSIVE, ACTIVE, or ERA. 

(3) Merging 

A weighted average based on least squares method was used to merge scaled PASSIVE, ACTIVE, and 

ERA-Interim products. The equation for blending can be presented as: 

𝑆𝑀𝑏𝑙𝑒𝑛𝑑 = 𝜔𝑃𝐴𝑆𝑆𝐼𝑉𝐸𝑆𝑀𝑃𝐴𝑆𝑆𝐼𝑉𝐸 + 𝜔𝐴𝐶𝑇𝐼𝑉𝐸𝑆𝑀𝐴𝐶𝑇𝐼𝑉𝐸 + 𝜔𝐸𝑅𝐴𝑆𝑀𝐸𝑅𝐴                       3-10 

Where 𝜔𝑃𝐴𝑆𝑆𝐼𝑉𝐸,  𝜔𝐴𝐶𝑇𝐼𝑉𝐸,  𝜔𝐸𝑅𝐴 are the relative weights of each soil moisture products. If  𝜔𝑃𝐴𝑆𝑆𝐼𝑉𝐸  + 

𝜔𝐴𝐶𝑇𝐼𝑉𝐸  + 𝜔𝐸𝑅𝐴= 1, the merged estimation is unbiased optimal. The relative weights were calculated 

using the variance of satellites. The error variances of satellites calculated by using triple collocation, which 

used three collocated datasets to constrain the relative error variance determination without a manually 

decided reference.  The equations to calculate the relative weights are presented as: 

𝜔𝑃𝐴𝑆𝑆𝐼𝑉𝐸 =  
𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 𝜎𝜀𝐸𝑅𝐴
2  

𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 +𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  +𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  
                                          3-11 a 

𝜔𝐴𝐶𝑇𝐼𝑉𝐸 =  
𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸

2 𝜎𝜀𝐸𝑅𝐴
2  

𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 +𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  +𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  
                                            3-11 b 

𝜔𝐸𝑅𝐴 =  
𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 𝜎𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2

𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 +𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  +𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸
2 𝜎𝜀𝐸𝑅𝐴

2  
                                                 3-11 c 

where 𝜎𝜀𝑃𝐴𝑆𝑆𝐼𝑉𝐸
2 , 𝜎𝜀𝐴𝐶𝑇𝐼𝑉𝐸

2 , and 𝜎𝜀𝐸𝑅𝐴
2  are the errors variances of satellites and ERA-Interim products. 

They are relative errors represent the uncertainties of datasets while comparing with the others (Talagrand, 

1997).  
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3.3.3. Depth Scaling 

Figure 3.8: Input data for depth scaling 

 
For depth scaling, an observation operator built by CDF matching method will be used to calculate profile 

soil moisture series form the blended surface soil moisture series. The Tibet-Obs in-situ measured surface 

and profile soil moisture datasets (Su et al., 2011) were used to generate this observation operator. As 

explained before, CDF matching was used to obtain the relationship between in-situ measured profile and 

surface soil moisture. Note that the profile soil moisture refers to a mean value of the soil moisture in the 

0-80 cm depth: 

𝜃𝑝 =
2𝜃1𝐿1+(𝜃1+𝜃2)𝐿2+(𝜃2+𝜃3)𝐿3+⋯+(𝜃𝑖−1+𝜃𝑖)𝐿𝑖

2(𝐿1+𝐿2+⋯+𝐿𝑖)
                                  3-12 

where I refers to the order of the soil layer; 𝜃𝑝 is the profile soil moisture (m3·m-3); Li is the soil layer 

depth (m); 𝜃𝑖 is the ith layer soil moisture (m3·m-3). The specific products used in the Tibet-Obs insitu 

measured data include the soil moisture data of 5cm, 10cm, 20cm, 40cm, and 80cm under the land surface. 

 

 
Figure 3.9: Depth Scaling Methodology Flowchart 

 

 

As presented in the flowchart, the procedure of the depth scaling includes four steps. The first step was 

ranking the in-situ profile and surface soil moisture datasets over the calibration period. Then the 

differences between the corresponding values of profile and surface soil moisture were calculated as: ∆=

𝜃𝑠 − 𝜃𝑝. The third step was fitting a fifth-order polynomial to identify the relationship between the 

differences and surface soil moisture. To define the observation operators for depth scaling, Gao et al. 

(2016) identified the fifth-order polynomial as the optimal choice based on a pre-analysis. That is the 

reason why the fifth-order polynomial presented below was used to quantify the requested relationship: 

 

Year
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∆′= 𝑘0 + 𝑘1 × 𝜃𝑠+𝑘2 × 𝜃𝑠
2 + 𝑘3 × 𝜃𝑠

3 + 𝑘4 × 𝜃𝑠
4 + 𝑘5 × 𝜃𝑠

5                                 3-13 

where 𝑘𝑖 ( 𝑖 = 1,2,3,4,5) is the required parameter for depth scaling period and ∆′ is the predicted 

difference. The whole equation is the constructed observation operators. The target is scaling soil 

moisture data from surface to profile. The last step was rescaling the surface dataset using the predicted 

difference: 

𝜃𝑝
′ = 𝜃𝑠 − ∆′                                                                             3-14 

where 𝜃𝑝
′  is the predicted profile soil moisture (Gao et al., 2016). 
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4. RESULTS & DISCUSSION 

4.1. Satellite Data Merging 

4.1.1. Rescaling 

The original SMOS soil moisture products have been scaled against the AMSR-E reference using the 

piece-wise linear cumulative distribution function (CDF) matching technique based on their overlapping 

period (S2: 01-June-2010 to 03-Oct-2011), the scaling parameters obtained in S2 were used to scale all the 

available SMOS products over the other periods (03-Oct-2011 to 31-Dec-2016). As the SMOS soil 

moisture product has a longest available period, the rescaled SMOS product in period S4 was used to scale 

AMSR2 data, and the rescaled SMOS products in period S5 were used to scale SMAP data. The detailed 

scaling procedure and the prepared datasets after rescaling is presented below in Table 4.1. The scaled 

SMOS 1 means the original SMOS data were scaled based on the AMSRE data over the same period 

directly, and the scaling parameters were generated in the meantime. The scaled SMOS 2 means the 

original SMOS data were scaled based on the parameters which generated in the SMOS scaling over S2. 

 
Table 4.1 Prepared Datasets for Satellites Data Merging after Rescaling 

 

A latitude-time diagram can be used to demonstrate the average zonal dynamics, volumetric water content 

values in the diagrams mean the average soil moisture values along latitude. Figure 4.1 include latitude-

time diagrams of both original and scaled SMOS datasets, which can serve as an example of rescaling. It is 

obvious that the rescaling step based on CDF matching method keeps the seasonal dynamics of the 

original products and changes the absolute values of original datasets (e.g. SMOS, AMSR2, and SMAP 

products). This conclusion has been demonstrated by Liu et al., (2011). The left side of the diagram 

indicates the western part of TP, which is relatively dry compared with the eastern part TP. The seasonal 

pattern of the eastern part TP is clear and regular. For example, soil moisture values are high during the 

monsoon season (May to October) and relatively low during winter (December to March). The grey areas 

in the diagram mean the data have been flagged out, especially the areas between 75˚E to 80˚E due to the 

desert area located in the western TP. Others, the absolute values of scaled SMOS data are higher than the 

original SMOS data, which means AMSRE products show relatively high soil moisture values. After 

scaling, they have consistent climatology now, which is a necessary condition for the following merging 

procedures. 

Original Scaling Reference Results

S1 AMSRE \ AMSRE

AMSRE \ AMSRE

SMOS AMSRE Scaled SMOS 1

S3 SMOS Parameters Scaled SMOS 2 

SMOS Parameters Scaled SMOS 2 

AMSR2 scaled SMOS 2 Scaled AMSR2

SMOS Parameters Scaled SMOS 2 

AMSR2 scaled SMOS 2 Scaled AMSR2

SMAP scaled SMOS 2 Scaled SMAP

S5

S2

S4
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(1) Original SMOS  (2) Scaled SMOS 
Figure 4.1: Longitude-Time diagram of Original and Scaled SMOS over the entire period  

(01-June-2010 to 31-Dec-2016) 

 

4.1.2. Error Characterization 

Based on the discussion in section 3.3.1, several procedures were performed to test the feasibility of triple 

collocation method. In this section, the processing procedures over S5 (31-Mar-2015 to 31-Dec-2016) 

serve as examples. Figure 4.3 and Figure 4.4 shows the triplets number and the relative errors over 

merging period S5. It should be emphasized that the triplets number in Figure 4.2 means the number of 

three-collocated data with ACTIVE and ERA-Interim, while the number of pixels has relative errors in 

Figure 4.3 indicates that these pixels can give a valid error variance after performing a triple collocation 

analysis. However, as it presented in Figure 4.3, it is evident that the error variances of many pixels cannot 

be decided, where only the equal weight average can be performed to merge the datasets.  

   
 Figure 4.2: Triplets Number of Scaled AMSR2, SMOS, and SMAP over Merging Period S5  

(31-Mar-2015 to 31-Dec-2016) 

 

   
Figure 4.3: Relative errors of Scaled AMSR2, SMOS, and SMAP over Merging Period S5  

(31-Mar-2015 to 31-Dec-2016) 
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For other satellites data merging period, the error characterisation procedures are similar. For S1 and S3, 

as only one satellites data exists, the relative errors are calculated to characterise the relative uncertainties 

without another purpose. For S2, the merging time is relatively short, and the data number of SMOS is 

much less than AMSRE, but these conditions did not influence the performance of error characterisation. 

For S4, the relative errors of SMOS and AMSR2 are similar. The specific averaged values of them over the 

merging period and the entire study area are presented below in Table 4.2. 

 

Table 4.2 Averaged Relative Errors of Satellites Data over every Merging Periods 

Period Date Averaged Relative Errors (m3/ m3) 

S1 2007-06-01 to 2010-05-31 AMSRE 0.0023 

  S2 2010-06-01 to 2011-10-03 AMSRE 0.0031 SMOS 0.0068 

 S3 2011-10-04 to 2012-07-02 SMOS 0.0231 

  S4 2012-07-03 to 2015-03-30 SMOS 0.0085 AMSR2 0.0057 

 S5 2015-03-31 to 2016-12-31 SMOS 0.0074 AMSR2 0.0047 SMAP 0.0065 

 

 

4.1.3. Merging 

The final averaged merging weights of satellites data are presented in Table 4.3. In merging period S1 and 

S3, only one satellite data comprised in the merged product, so, the merging weights of them is 1. Others, 

the merging weights were calculated from relative errors indicated in Figure 4.4 and table 4.2, the pixels 

without valid relative errors were set the equal weights. So, the averaged merging weights in table 4.3 

indicate the averaged weights include the equal weights situation. As AMSRE and AMSR2 have lower 

errors, the weights of them are relatively high, and SMOS, SMAP has similar relative errors which are 

higher than AMSRE and AMSR2, the weights of them are relatively low. However, the difference is small, 

especially in S5. The difference between the merging results of this method and the simple averaged 

merging are small, but the uncertainties of the merged products are reduced. Figure 4.4 presents an 

example of passive satellites data merging, which is a merging of scaled AMSR2, scaled SMOS, and scaled 

SMAP. The result merged PASSIVE product shows a spatial extension of surface soil moisture data. 

 
Table 4.3 Averaged Merging Weights of Satellites Data over every Merging Periods 

Period Date Averaged Merging Weights 

S1 2007-06-01 to 2010-05-31 AMSRE 1 

  S2 2010-06-01 to 2011-10-03 AMSRE 0.613 SMOS 0.387 

 S3 2011-10-04 to 2012-07-02 SMOS 1 

  S4 2012-07-03 to 2015-03-30 SMOS 0.431 AMSR2 0.569 

 S5 2015-03-31 to 2016-12-31 SMOS 0.313 AMSR2 0.395 SMAP 0.292 
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(1) AMSR2 (2) SMOS (3) SMAP 

(4) Merged PASSIVE 
Figure 4.4 Satellites Data Merging example on 05-June-2016 

where: (1) scaled AMSR2 soil moisture data (2) scaled SMOS soil moisture data (3) scaled SMAP soil 

moisture data (4) Merged PASSIVE soil moisture data 

 

4.2. Objective Blending 

4.2.1. Climatology Scaling 

The first climatology scaling was performed to scale ERA-Interim products with the in-situ climatology. 

There were two sub-steps to perform the ERA-Interim climatology scaling as explained in section 3.3.2. 

First, scale the original ERA-Interim soil moisture data based on the in-situ data climatology, for the 

calibration period between 1-Sept-2015 and 31-Aug-2016. Then the CDF matching seasonal parameters 

generated during the calibration period were used to scale the ERA-Interim products over the entire 

period (Blending period: 2007-June-01 to 2016-Dec-31). The time-longitude diagram for the original 

ERA-Interim and the scaled ERA-Interim are presented below, as well as an example CDF curves figure 

to illustrate how the CDF matching worked. The time-longitude diagrams were used to investigate the 

calibration results(Zeng et al., 2016). They can show the temporal evolution of the zonal average of soil 

moisture data along the longitude across the Tibetan Plateau (from west to east).  

 

As presented in Figure 4.5 (3), the original ERA-Interim did not show obvious seasonal change while it is 

significant in the in-situ climatology (Figure 4.5 (1)). For example, the eastern part of Tibetan Plateau, it is 

dry during the winter, and it is wet during the monsoon season. Moreover, the western part is relatively 

dry when compared with eastern part. After being scaled by using the CDF matching method, the scaled 

ERA-Interim product shows a similar pattern to the time-longitude diagram of in situ climatology. The 

volumetric water content is around 0.35 (𝑚3/𝑚3) during the wet season (monsoon season: from May to 

October), while it is around 0.07(𝑚3/𝑚3) during the dry season (winter: from December to March). And 

also, they have two transition seasons (April and November). 
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(1) In-situ Data                                               

(2) CDF curves (a: reference; b: scaled; c: original;  

      x: SM; F(x): CDF ) 

(3) Original ERA-Interim (4) Scaled ERA-Interim 

Figure 4.5: Example Curves of CDF Matching and Time-longitude Diagrams of SM products  

(1) In-situ data climatology; (3) original ERA-Interim data over the entire period; (4) ERA-Interim data 

after scaling based on in-situ climatology 

 

Then, the rescaled ERA-Interim soil moisture product was used to scale the PASSIVE and ACTIVE 

products. The time-longitude diagrams of original and scaled PASSIVE and ACTIVE products and also 

the reference data: scaled ERA-Interim data presented in Figure 4.6. Although the original PASSIVE and 

ACTIVE products have some spatial-temporal patterns, which can reveal the seasonal and spatial 

dynamics, they are not significant. Moreover, both of them overestimated the soil moisture over Tibetan 

Plateau, especially during the monsoon seasons. After scaling, both AMSRE and ASCAT data show a 

similar climatology with the scaled ERA-Interim data, as well as the dynamic range of soil moisture. The 

effect of climatology scaling was relatively significant, and the averaged soil moisture in the eastern part of 

Tibetan Plateau was up to 0.45(𝑚3/𝑚3) before scaling. After scaling, the absolute values of PASSIVE 

products changed based on the systematic difference with the reference data (scaled ERA-Interim). 

Others, in original ACTIVE products, the westerm part of Tibetan Plateau show a relative high value, 

while it is reduced during the climatology scaling. The time series of PASSIVE and ACTIVE products 

scaling in Figure 4.6 and 4.7 are revealing a simiar conclusion. 
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Figure 4.7:  Time series of scaled ERA-Interim, original and scaled ACTIVE products. 

 

4.2.2. Blending  

The scaled PASSIVE, ACTIVE, and ERA-Interim soil moisture products with the consistent climatology 

blended into one consistent set of soil moisture data using the objective blending method introduced in 

section 3.3.2. Figure 4.8 (4) presents the spatial-temporal dynamics of blended surface soil moisture 

product, which indicates that blended soil moisture product is systematically close to the scaled ERA-

Interim. So, it is close to the in-situ climatology as well. 

 

Figure 4.6: Time series of scaled ERA-Interim, original and scaled PASSIVE products. 
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(1) scaled ERA-Interim (2) original PASSIVE (3) original ACTIVE 

(4)Blended data (5) Scaled PASSIVE (6) Scaled ACTIVE 
Figure 4.8: Time-longitude Diagrams of SM Products 

 

(1) ERA-Interim (2) PASSIVE  (3) ACTIVE  
Figure 4.9: Data Number Map 

 

The blending of these scaled soil moisture products implemented with two sub-steps. First, blend the 

three collocated SM data, where the datasets can form triplets together. Second, blend the rest of data, 

where one satellite data collocates individually with the scaled ERA-Interim data, but not collocate with 

another satellite data to form triplets. To tackle the first situation, I checked the data number of each 

product and the constructed triplets number first. The data number maps in Figure 4.9 aim to give a 

general idea of the data number magnitude, which influences the decision of suitable triplets’ number and 

the analysis of statistics. The ERA-interim product has more than 3500 data across the southern and 

eastern part of Tibetan Plateau, and even have many data in the arid zones. The PASSIVE and ACTIVE 

products have less data number, but they are better distributed, mainly in ACTIVE. 

 

Then I checked the triplets number, which indicates the number of three-collocated data. Figure 4.10 (1) 

presents the amount of collocated SM data among the three datasets over the blending period, and it 

shows that the eastern areas have around 1200 triplets while some western regions have less than 400 

triplets. Considered the original data number, the three-collocated data are less than half of them. Also, in 

figure 4.10(1), only the data with more than 100 observation triplets were presented as 100 observation 

triplets are required for a reliable estimation of the relative error among the three SM products(Zwieback 

et al., 2012).  
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Next, the minimum correlation coefficient among the three collocated soil moisture products was 

calculated to check if the identified number of triplets is statistically significant to apply with triple 

collocation method. The distribution of minimum correlation coefficient presented in figure 4.10 (2) and 

most of the areas are with a minimum correlation coefficient more than 0.15, which is required for a 

sample with more than 100 data to achieve the statistical significance.  

 

Figure 4.10 (3) plotted with (1-P_values), which shows the significance level corresponding to the 

minimum correlation coefficient and indicates that the area with triplet number >100 (where the p_value 

< 0.05) are all statistically significant to be applied with TC method to identify the relative errors. As most 

of the P_values were close to zero, the 1-P_values plot improved the visibility of the image.  

 

 
(1) Number of Triplets 

 
(2) Minimum Correlation Coefficient 

 
(3) 1-P_Values 

Figure 4.10 Statistics of triple collocated data 

 

Figure 4.11 shows the optimal weights of scaled ERA-Interim, PASSIVE and ACTIVE, which 

determined by least squares and triple collocation method. Among three soil moisture products, the 

ACTIVE has the smallest average relative error (0.0032 cm3/ cm3) while the highest weight (0.5999) 

contributing to the blended products. The average weight of the PASSIVE product is 0.1402, and for 

ERA is 0.2999. The reason why the merging weights of PASSIVE are relatively low is the low soil 

moisture retrieval rate of passive satellites over the central and western TP. The AMSRE flagged out the 

region with frozen ground, which leads to the low soil moisture retrieval rate of passive microwave 

satellites. Such a limitation caused by the problem of distinguishing the dry and frozen soil using passive 

satellites observations (Wolfgang Wagner et al., 2013).  

 

   
        (1) Scaled ERA-Interim                               (2) Scaled PASSIVE                                     (3) Scaled ACTIVE  

Figure 4.11: Optimal weights of soil moisture products 

 

The second step is to blend the scaled satellite SM data collocating individually with the scaled ERA-

Interim data, but not collocating with each other. The weights for blending determined from the scaled 

PASSIVE product and ERA-Interim, or the scaled ACTIVE product and ERA-Interim. For those two 

arranged PASSIVE data (no ACTIVE data satisfied the requirement in this case), the average weight of 
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ERA-Interim is 0.45981, and the average weight of the scaled PASSIVE is 0.54032, corresponding with a 

relative error of 0.01231 cm3/cm3 and 0.0063 cm3/cm3, respectively. As can be seen from Figure 4.12,  

both the scaled PASSIVE and ACTIVE blended into the final SM product after objective blending. 

 

(1) Scaled PASSIVE (2) Scaled ACTIVE (3) Blended SM 

Figure 4.12: Soil Moisture data on 05-June-2007 

 

4.3. Depth Scaling 

4.3.1. Calibration 

The calibration of depth scaling aims to generate an observation operator to define the relationship 

between the surface-profile difference and the surface soil moisture. The observation operator means one 

fifth order polynomial for one single grid to illustrate the relationship between the time series of profile 

soil moisture and surface soil moisture. First, the in-situ measured surface and subsurface soil moisture 

over four different networks were studied. The observation operators generated from the Ali and 

Shiquanhe networks represented Arid climatic zones. The relationships found in Naqu network and Maqu 

network serve Semiarid zone and Subhumid area individually. In Ali, there are four stations for soil 

moisture measuring, and the zonal averaged surface and subsurface (5cm, 10cm, 20cm, 40cm, and 80cm) 

soil moisture time series attached in the appendix.  

 

The relationship between surface and subsurface soil moisture is complicated. First, look into the time 

series of zonally averaged surface soil moisture and profile soil moisture presented in Figure 4.13. The 

time series in Figure 4.13 (1) is the averaged soil moisture conditions from 4 stations in Ali network. The 

profile soil is wetter than a surface with a smaller fluctuation. However, when it refers to a single station, 

sometimes there are incredibly high soil moisture values in 80cm soil layer, and some stations, the 40cm 

soil layer have an extremely high value, and in 80cm the moisture values come down sharply. So, the way 

to generate the averaged values is averaging soil moisture layer by layer instead of averaging station by 

station. Then, the soil moisture values presented below were used to generate the observation operators 

using CDF Matching method. 
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(1) Ali Network  

(2) SQ Network 

(3) Naqu Network 
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(4) Maqu Network 
Figure 4.13 In-situ Measured surface and subsurface SM Data over Calibration Period  

(01-Sept-2013 to 31-Aug-2015) 

 

4.3.2. Scaling 

After calibration, the observation operators of different climatic zones scaled every single grid over the 

entire study period (01-June-2007 to 31-Dec-2016). The scaling results presented in the time-longitude 

diagrams. The Figure 4.14 (1) shows the spatial-temporal dynamics of blended surface soil moisture data 

which generated in previous section 4.2. It is a consistent surface soil moisture product, and it can serve as 

a single dataset to be studied. The seasonal dynamics of it is apparent that during wet monsoon season, 

the surface soil moisture data may reach 0.4 (𝑚3/𝑚3) in subhumid regions, and during the winter, the 

surface soil moisture is extremely dry or frozen. The seasonal differences are low in semiarid areas and is 

obvious in subhumid and arid regions. The Figure 4.14(2) shows the spatial-temporal dynamics of scaled 

profile soil moisture obtained in this section. Compared with the time series in Figure 4.13, there are some 

similar patterns exsit. For example, in arid regions, the profile soil moisture is slightly higher than surface 

which is obvious in figure 4.13(1). In Figure 4.14(2), the soil moisture values in arid region are slightly 

higher than surface and the seasonal difference are relatively small. Others, the semiarid area shows a 

smoother pattern which means the fluctuation is smaller, but the absolute values are slightly higher than 

surface. The profile product shows a reasonable pattern and kept the in-situ data climatology qualitatively.  

(1) Surface SM (2) Profile SM 

Figure 4.14: Time-longitude Diagrams of  Depth Scaling Reference and Results  
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5. DISCUSSION 

The main output of this research includes the blended surface soil moisture product and the profile soil 

moisture. The discussion about these products includes the anomalies analysis and inter-comparison with 

other products. 

5.1. Surface Soil Moisture  

The homogenised and merged product presents surface soil moisture with global coverage and a spatial 

resolution of 0.25°. The time spans the entire period covered by the individual sensors, i.e. 2007-2016, 

while measurements are provided at a 1-day sampling. 

(1) Anomalies of Blended data 

2011 Trans 1 Monsoon Tran 2 Winter 

2012 Trans 1 Monsoon  Tran 2 Winter  

2013 Trans 1 Monsoon  Tran 2 Winter  

Figure 5.1 Anomalies of Profile Soil Moisture 

 

The anomaly is a dimensionless value shows the seasonal pattern of soil moisture time series. In anomalies 

series, the negative values represent the dry condition, and the positive values represent the wet condition.  

In Figure 5.1, the anomalies plot in four seasons of three years, where the Trans indicate transition period. 

The anomalies are relatively gentle when compared with the other seasons during the monsoon season, 

and the anomalies values are close to zero, which means the soil moisture condition is close to the 

systematic mean. In the winter, the anomalies are negative in the eastern part which means that the soil in 

the subhumid area is dry during winter. However, in the centre of the Tibetan Plateau, the anomalies 

become positive, which means the soil is wet during the winter. Moreover, in the transition period, the 

anomalies of the centre Tibetan Plateau are high while the other place is drier than the average. 
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(2) Inter-comparison 

In this section, I compared the blended SM with different SM products for the blending period between 

1-Sept-2015 and 31-Aug-2016. The in-situ measurements over Tibet-Obs networks (Naqu, Maqu, Ali, and 

Shiquanhe) were served as a reference to validate the results product. In Figure 5.2, the original soil 

moisture products include SMOS, AMSR2, SMAP, ERA-Interim, PASSIVE, ACTIVE and their 

corresponding scaled SM data. The Taylor diagram represents the correlation coefficient, the centred 

unbiased root-mean-square difference, and the standard deviation using a two-dimensional plot 

(Petropoulos, 2013). Also, in figure 5.2, an arithmetic average was performed to obtain the average value 

of original data and scaled data. 

(1) Ali (2) SQ 

(3) Naqu (4) Maqu 

Figure 5.2 Taylor Diagram: Inter-comparison between Blended Data and Others 

 

The arithmetic averaged values H, and I represent the averaging of original soil moisture data and the 

averaging of the scaled soil moisture data. Compared I with the blended data A, the least squares method 

performs better than arithmetic averaging in Ali an SQ networks, which is closer to the in-situ measured 

data with a similar correlation coefficient and root mean squares. Although they perform similar effect in 

Maqu, it still verified that the least squares method is needed and performed better in the arid areas over 

Tibetan Plateau.  
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The original satellites data and merged PASSIVE, merged ACTIVE data (B: SMOS; C: AMSR2; D: 

SMAP; E: ERA-Interim; F: PASSIVE; G: ACTIVE) have higher standard deviations before scaling. The 

greater standard deviation indicates the more fluctuations, especially for PASSIVE and ACTIVE. After a 

scaling based on the in-situ climatology, the standard deviation of them became smaller. It is one of the 

reasons why a climatology scaling is needed before a merging step. It is important to eliminate the 

systematic difference between different datasets before the further merging can perform, and the 

climatology scaling performs well.  

 

The PASSIVE and ACTIVE products did not perform well before climatology scaling, while SMOS and 

AMSR2 performed well in most of the conditions. The SMOS data estimated soil moisture accurately and 

captured the in-situ surface soil moisture dynamics. Especially in SQ and Naqu network, it performs 

similarly to the blended data. Others, when compared PASSIVE and ACTIVE, the scaled ACTIVE 

performs better, which means the average weight of ACTIVE is greater than the weight of PASSIVE in 

the Blended product. 

 

5.2. Subsurface Soil Moisture 

The analysis methods are similar to the blended data analysis. The anomalies analysis will be carried out 

over the scaled period. The inter-comparison operated with SMAP L4 profile soil moisture data and the 

module simulated profile soil moisture data (i.e. GLDAS, ERA-Interim). 

(1) Anomalies of Profile Soil Moisture 

2011 Trans1 Monsoon Trans 2 Winter 

2012 Trans1 Monsoon  Trans 2 Winter  

2013 Trans1 
Monsoon  Trans 2 Winter  

Figure 5.3 Anomalies of Profile Soil Moisture 
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In the validation period, anomalies show similar seasonal dynamics. As the positive anomalies indicate a 
wet condition, while the negative one indicates dry, the Monsoon season is wet and with a small vibration 
when compare with winter, or the transition time. The general pattern of the anomalies distribution is 
similar to the anomalies of blended surface product. The CDF Matching performed to scale surface soil 
moisture data aims to eliminate the systematic differences, which would influence the mean value. The 
mean value then influences the anomalies characteristic. In the middle of the Tibetan Plateau, the 
anomalies values are more positive than surface data, which means wetness kept procedure during the 
winter in arid and cold areas. 
 

(2) Inter-comparison 

The inter-comparison of profile soil moisture data include the comparison with B: ERA-Interim profile 

soil moisture data; C: GLDAS profile soil moisture data; D: SMAP L4 profile soil moisture data. 

Moreover, also the corresponding in-situ scaled data. 

 

(1) Ali (2)SQ 

(3) Naqu (4) Maqu 

Figure 5.4: Taylor Diagrams: inter-comparison between profile soil moisture data and others.  

 

Before in-situ climatology scaling, the other profile soil moisture showed a low correlation with in-situ 

data, although my product profile soil moisture, which scaled using CDF Matching based on in-situ 

climatology, estimated a little bit closer to the in-situ data, the root means squares and the standard 

deviation are always low. After climatology scaling, ERA-Interim data performed better, especially in 

Naqu and Maqu networks. The performance of SMAP becomes better, but it still worse than the others. 
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The discussion shows that the climatology scaling step is important, when it needs a reliable capture of in-

situ data dynamics. Others, using CDF Matching to perform the depth scaling is simple and reliable. 
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6. CONCLUSION  

In this study, a consistent surface and subsurface soil moisture product were produced by performing 

satellites data merging, climatology scaling, objective blending and depth scaling. As discussed in chapter 5, these 

procedures composed an integrated method to study surface and subsurface soil moisture using a sparse 

in-situ measurement network over Tibetan Plateau. First, different satellites observed data were merged 

into two satellites based products. Then the satellites products were constrained by in-situ climatology 

using CDF matching and the in-situ scaled land surface model simulated data. Next, all the input data 

were merged into a consistent surface soil moisture product. Last, the surface product was scaled using 

CDF matching to obtain a profile soil moisture form surface soil moisture product.  

 

Beyond the typical data blending research; this research constrained the blending data sets with the in-situ 

climatology. It can eliminate the influence by using different land surface model simulation. It should be 

noticed that the choice of climate classification method can influence the in-situ climatology (Zeng et al., 

2016). As discussed in chapter 5, the inter-comparison indicated that the scaling and blending strategy 

could constrain the overestimation of satellites data and keep the correlation with in-situ measured data. 

The consistent surface and subsurface soil moisture products presented a reliable data quality and captured 

the in-situ data dynamics. The climatology scaling ensured the variation of the final blended product. Also, 

the least squares method has unique advantages when compared with the simple averaged method over 

the arid areas. It shows better performance. 

 

The depth scaling method predicted profile soil moisture from the blended consistent soil moisture 

product, can obtain a consistent profile soil moisture product keep the in-situ dynamics along with the 

surface product. It is a concise and efficient method to maximise the use of limited in-situ measured data. 

Others, the subsurface soil moisture states vary from station to station, for this reason, sometimes the 

zonal averaged profile soil cannot present a reliable estimation of profile soil moisture and the relationship 

between surface and subsurface. 
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Appendix Figure 1: Time Series of In-situ Measured Surface and Sub surface Soil Moisture  
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Appendix Figure 2 Anomalies of Blended Surface Soil Moisture 
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Appendix Figure 3 Anomalies of Profile Soil Moisture 

 


	1. Introduction
	1.1. Background
	1.2. Problem Definition
	1.3. Objective and Research Questions
	1.3.1. Main objective
	1.3.2. Sub-objectives
	1.3.3. Research Questions

	1.4. Innovations

	2. Material
	2.1. Study Area
	2.2. Datasets Description and Pre-processing
	2.2.1. In-situ
	2.2.2. Satellite Data
	2.2.2.1. AMSR-E
	2.2.2.2. AMSR-2
	2.2.2.3. SMOS
	2.2.2.4. SMAP
	2.2.2.5. ESA-CCI Merged ACTIVE Products

	2.2.3. Reanalysis Product
	2.2.3.1. ERA-Interim



	3. Methodology
	3.1. Overview
	3.2. Description of Algorithms
	3.2.1. CDF Matching
	3.2.2. Least Squares Merging
	3.2.3. Triple Collocation Analysis

	3.3. Processing Steps
	3.3.1. Satellite Data Merging
	(1) Rescaling
	(2) Error Characterization
	(3) Merging Passive Products

	3.3.2. Objective Blending
	(1) Rescaling
	i. In-situ Climatology
	ii. In-situ Climatology Scale ERA-Interim
	iii. Rescaled ERA-Interim Scale Passive and Active Products
	(2) Error Characterization
	(3) Merging

	3.3.3. Depth Scaling


	4. Results & Discussion
	4.1. Satellite Data Merging
	4.1.1. Rescaling
	4.1.2. Error Characterization
	4.1.3. Merging

	4.2. Objective Blending
	4.2.1. Climatology Scaling
	4.2.2. Blending

	4.3. Depth Scaling
	4.3.1. Calibration
	4.3.2. Scaling


	5. Discussion
	5.1. Surface Soil Moisture
	(1) Anomalies of Blended data
	(2) Inter-comparison

	5.2. Subsurface Soil Moisture
	(1) Anomalies of Profile Soil Moisture
	(2) Inter-comparison


	6. Conclusion
	Word 书签
	OLE_LINK23
	OLE_LINK4
	OLE_LINK26
	OLE_LINK27
	OLE_LINK6
	OLE_LINK20
	OLE_LINK21
	OLE_LINK22
	OLE_LINK14
	OLE_LINK19
	OLE_LINK24
	OLE_LINK1
	OLE_LINK3
	OLE_LINK2
	OLE_LINK59
	OLE_LINK25
	OLE_LINK9
	OLE_LINK31
	OLE_LINK12
	OLE_LINK13
	OLE_LINK55
	OLE_LINK58
	OLE_LINK10
	OLE_LINK8
	OLE_LINK5
	OLE_LINK15
	OLE_LINK56
	OLE_LINK57
	OLE_LINK49
	OLE_LINK60
	OLE_LINK51
	OLE_LINK52
	OLE_LINK53
	OLE_LINK50
	OLE_LINK16
	OLE_LINK18


