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ABSTRACT

In this study streamflow simulation and water balance closure was assessed in Wabe watershed located in
Ethiopia, Eastern Africa by applying the HBV Light model. Limited ground meteorological measurements
restrict water resources planning and management. Such for gauged based rainfall as well as satellite-based
rainfall estimates from CMORPH, ARC2, and CHRIPS, and satellite-based potential evaporation
estimates from PET-20km was tested.

Satellite-based rainfall estimates was compared with five-gauge stations over the entire time seties, wet and
dry season (2012-2016). The point to pixel approach was used at daily base and image pixel. The
comparison was evaluated by detection indices, scatter plots and frequency-based statistics. The result
shows the source of error for a dry was missed rain whereas for wet season was false rain. The result
shows that CMORPH outperforms by detecting rainfall depth ~80% in wet season and ~60% in a dry
season. Findings reveal that uncorrected CHRIPS matches mean annual rainfall with gauge besides
underestimation at the highest elevation. ARC2 underestimates mean annual rainfall followed by
CMORPH.

Four bias correction schemes were tested to refine systematic errors in satellite rainfall estimates before
being used for the hydrological application. The research findings show that the distribution
transformation bias scheme reasonably matches gauge observations with daily accumulated error as low as
5.4mm and coefficient of cotrelation up to 0.64. However, the prevailing rain rate (<1mm), which
accounts for 65%, was reasonably reproduced by space and time variant bias scheme. Furthermore,
propagation of errors when comparing and applying bias scheme of SRE’s with poor quality gauge
measurement is evaluated and verified (Gubire station).

HBYV Light model was calibrated following Trial and Error procedure (2012-2016) for gauge rainfall
Model efficiency was evaluated by NSE = 0.72, RVE = (-2.56%), Qbias=0.97. Model validation (2009 and
2011) showed NSE = 0.77, RVE = 6.78%. Replacing in-situ ETo with satellite PET resulted in increased
peak flows (RVE=2.25). Recalibrating the model with bias-corrected SRE’s resulted in minimized bias in
streamflow simulation Qpiss=0.997 (ARC2) and Quies=0.994 (CHRIPS) whereas, CMORPH showed
deterioration (Quis=1.017). However, no perfect fit of base flow and peak flow could be simualed by
respective SRE’s products.

The mean annual water balance closure analysis result shows that water is taken from the system over a
five-year period for the respective rainfall and potential evaporation forcing. However, improvement in
water balance closure is shown by recalibrating bias corrected SRE’s as low as 0.09 (9%).

Keywords: Water balance closute; Streamflow simulation; Distribution transformation; HBV Light;
Satellite rainfall estimates; Wabe watershed
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Satellite-based rainfall and potential evaporation for streamflow simulation and water balance assessment

1.  INTRODUCTION

1.1. Background

Ethiopia has 12 river basins with a total area of approximately 1.104 million km? (99.3% land area and
0.7% covered with water body) (Melesse et al., 2013). The country has an annual runoff volume of 122
billion cubic meters and approximately 2.6-6.5 billion cubic meters of groundwater potential (Awulachew
et al,, 2007). Omo Gibe river basin with a total area of 79000 km? (Awulachew et al., 2007) is the second
largest river basin next to the Nile river basin in Ethiopia. The proposed study area Wabi watershed with
an area of 1846 km?is in the northeast part of Omo Gibe river basin.

The hydrologic cycle is the central focus of hydrology (Chow, 1988). Quantification and identifying the
interaction of this continuous cycle has been a topic of scientific exploration in the past century, now and
in the future. However, the paucity of reference measurement triggered the quantification of catchment
runoff response concerning catchment behavior in the globe, regional and or local scale.

Understanding spatiotemporal catchment hydrological behavior is important for water resources planning
and management. Hydrological modelling often is practices improving understanding with rainfall and
Potential evaporation is main inputs. In the past centuries, in-situ hydro-meteorological measurements
provide reliable information to evaluate water balance components and their closure analysis (Rientjes,
2015). However, sparse and inadequate distribution of surface gauge measurements is a challenge to make
scientifically sound decisions on water resources and management (Wagner et al., 2009). As argued in a
study of Hassan and Jin, (2016) and Dinku et al., (2007) the sparse distribution and limited temporal
resolution of ground measurements constrain hydrological modelling in regional and local scale as it
requires reliable spatial and temporal time series forcing input data. Concurrently, reliable forcing
information in Ethiopia, particularly in Wabi watershed, is hindered by the limitation of surface-based
gauge observational networks.

The alternative source for gauge measurement data are satellite rainfall estimates. Nowadays there are
several rainfall retrieval satellites in continental and a global scale. Over the past decades and currently,
many studies have evaluated the applicability of satellite rainfall estimates. For example, Ashouri et al.,
(2016), Dinku et al., (2007), Habib et al., (2014), Lyimo, (2015) and Rientjes et al., (2013) was evaluated
different SRE’s products for streamflow simulation in different regions of the globe, (Hassan and Jin,
2016; Oliveira et al., 2014 and Wagner et al., 2009) was assessed the performance of SRE’s products for
water balance estimation and Rientjes et al., (2011) evaluated the reliability of SRE’s products in
regionalization for lake level simulation.

Currently, there are several satellite rainfall products that provide time series of rainfall at spatiotemporal
resolution applicable to hydrology. For example the African rainfall climatology version 2 (ARC2;

Novella and Thiaw, 2013), the climate prediction center (CPC) morphing technique ( CMORPH; Joyce et
al,, 2004) and the climate hazard group infrared precipitation with station ( CHRIPS; Funk et al., 2015),
Tropical rainfall measuring mission multi-satellite precipitation (Huffman et al, 2009) etc,. Simultaneously,
coarser spatial scale satellite potential evaporation products from USGS Famine Early Warning Systems
Network daily global Potential evaporation (FEWSNET; Funk et al., 2015) was used in different regions
of the world depending on the time series availability. However, different scholars for example German
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and Bolliger, (2000), Artan et al., (2007), Vila et al, 2009, Pan and Wood, 2010 and Nogueira et al, (2018)
argued that using satellite precipitation for streamflow simulation, water balance assessment and other
hydrological application constrained by systematic errors/bias arise from retrieval algorithm and limitation
of sensor.

Hydrological models become essential tools in simulating watershed response and quantification of water
balance components. Also, models are crucial for the understanding of hydrological variables and their
interaction in a quantitative manner (Seibert and Vis, 2012). There ate plenty of hydrological models
developed for different purposes for example MIKE SHE, ArcSWAT, HBV, HECRAS, HEC HMS, etc.
Seibert and Vis, (2012) argued that Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff
model was mainly developed for streamflow simulation and quantification of water balance components.
Different authors were used HBV rainfall-runoff model for simulating streamflow from satellite
meteorological forcing for instance in Ethiopia (Habib et al., 2014; Rientjes et al., 2013; Sendama, 2015;
Uhlenbrook et al, 2010) in Chile (Nauditt et al., 2017), in Central Asia (Radchenko et la, 2014), in Tanzania
(Lyimo, 2015) and in Rwanda (Sendama, 2015), Mississippi ((Aguirre U. et al., 2013), England, ( Rientjes et
al, 2010) so and so on.

This study aims to correct and use satellite rainfall and potential evaporation products to simulate and
quantify streamflow, and to evaluate the products in modelling. In this study HBV light version (Seibert
and Vis, 2012) has been used to address the modelling section. The selection of the model was motivated
by its attractive feature of small input data to simulate reasonable result, freely available in lumped and
distributed version, its applicability in more than 50 countries and mainly developed for rainfall-runoff
simulation.

1.2. Study Relevance

Wabi watershed is intensively agriculture area in Omo Gibe basin. The limited meteorological gauge
measurement triggered the determination of runoff response and water balance closure analysis of the
watershed. However, nowadays, the development and application of geo-information and earth
observation increasingly overcome challenges in limited gauge meteorological measurements. The
scientific relevance of this study is to use satellite-based meteorological rainfall and potential evaporation
products to data to date, water resources planning and management in Wabe watershed. Also, the study is
vital for the catchment community in the sense of producing seasonal variability of rainfall to guide the
agricultural production and water resource management in a changing climate. Most studies focus on Blue
Nile basin for example (Bhatti et al., 2016; Habib et al., 2014; Haile et al., 2009; Haile et al., 2013), Awash
basin (Likasa, 2013) but none has focused in Omo Gibe basin at the catchment scale.

1.3. Problem Statement

Understanding and quantification of the catchment response to rainfall are essential for water resources
planning, management, and evaluation. To achieve this availability of reliable and sufficient meteorological
rainfall and potential evaporation data is most critical. The Wabe watershed constituted one of a poorly
gauged areas in the Omo Gibe basin in the southern part of Ethiopia. Lack of adequate spatio-temporal
rainfall and potential evaporation information was a challenge for water resources planning and
management in Wabi watershed.

1"
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Different scholars for example Rientjes et al., (2013) Artan et al.,, (2007), Habib et al., (2012), Pan et al.,
(2010), Wagner et al., (2009), Sendama, (2015) stated that satellite-based rainfall and potential evaporation
products serve as an alternative source of data for poorly gauged watersheds. Besides nonexistence of
meteorological forcing, hydrological rainfall-runoff models were not applied in the watershed to simulate
catchment streamflow and to assess water balance closute. But rainfall-runoff models with satellite rainfall
and potential evaporation input, used in different catchments (Abebe et al., 2010; Deckers et al., 2010;
Habib et al., 2014; Radchenko et al., 2014; Rientjes et al., 2011; Sendama, 2015) shown teasonable result in
simulating catchment streamflow and water balance components. Therefore, motivated by the existing gap
and the use of satellite rainfall estimates, this study uses the alternative soutce of satellite-based rainfall and
potential evaporation estimates to address the formulated problem.

1.4. Objective, Research Questions, and Hypothesis

1.4.1. General Objective
The primaty objective of this study is to evaluate performance of bias corrected satellite rainfall and
potential evaporation products at daily time step to simulate streamflow and assess water balance

components applying HBV Light.

1.4.2. Specific Objective
i. To evaluate the performance of CMORPH, ARC2 and CHRIPS satellite rainfall products following
the point to pixel approach
ii. ~ To assess the effect of seasonality on CMORPH, ARC2 and CHRIPS rainfall estimates
iii.  Apply and evaluate selected bias correction schemes for satellite rainfall products
iv.  To assess differences in calibrated HBV light model parameters when gauged and bias-corrected
satellite rainfall products serve for model forcing

v.  To evaluate the change in streamflow response when in-situ based potential evaporation is replaced
by satellite-based potential evaporation

vi.  To assess how water balance closure is affected by selected satellite and in-situ based model forcing
terms.

1.4.3. Research questions
i. What is the performance of CMORPH, ARC2 and CHRIPS SRE’s in capturing point rainfall in

Wabi watershed?

il. Do CMORPH, ARC2 and CHRIPS SRE’s captute rainfall distribution concerning gauge?

fii.  Which bias correction scheme performs well in Wabe watershed?

iv.  To what magnitude do bias corrected CMORPH, ARC2 and CHRIPS SRE’s affect the
performance of the rainfall-runoff model in simulating streamflow in Wabi watershed?
V. How is water balance closure affected when using SRE’s and satellite-based potential evaporation
instead of in-situ measurements in Wabi catchment?
This study hypothesizes that bias-corrected African Rainfall Climatology version two results in improved
streamflow simulation and water balance closure in Wabi watershed.

12



Satellite-based rainfall and potential evaporation for streamflow simulation and water balance assessment

2. STUDY AREA AND DATASETS

2.1. Study Area

2.1.1. Geographic location and Topography

Figure 2-1 shows the location map and elevation of Wabe watershed, Omo Giber River basin, and the
discharge gauge location at the basin outlet. The study area Wabi watershed with area 1846 km? is one of
the largest tributaries of Omo-Gibe basin located in the south-western region of Ethiopia. Omo Gibe
river basin is the second largest river basin with area 79000 km? in Ethiopia next to the Blue Nile. The
watershed is located between 8°500” to 8°40° 00" latitude and 37°45°00” to 38°40°00” longitude. The Wabe
river flows to the Omo-Gibe river that subsequently discharges into Lake Turkana at the Ethiopia-Kenya
border. The river originates from Gurage zone mountains. Based on SRTM 30m the clevation of Wabe
watershed ranges from 1672 to 3600m above mean sea level with the lowest elevation in the discharge
outlet and highest elevation upstream Gurage zone mountains. The catchment is selected for this study,
due to most intensively used agricultural in the basin and its complex topography In Figure 2-1 the light
green filled is Ethiopia boundary inside Africa continent, Omo Gibe river basin inside Ethiopia boundary
(bottom right edge) and in the northeastern part of Omo Gibe river basin boundary, Wabe watershed is
located (small red boundary).
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Figure 2-1 Location of Wabi watershed, Ethiopia
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2.1.2. Climate, soil, slope and Land cover

Figure 2-2 shows soil type (A) and slope variation (B) in Wabe watershed. Preprocessing of 2007 to 2016
meteorological stations data collected from NMAE inside and around study area shows that the
temperature ranges minimum of 8 °C in the mountainous area during the wet season (August) and a
maximum of 37 °C during the dry season (March) with an average temperature of 18 °C. The basin
receives an average annual rainfall of 1200 to 1300mm from 2007-2016 (NMAE). For the same petiod,
the average yearly potential evaporation is 1631 mm. According to FAO, (1974) soil classification the
dominant soil is, plinthic Luvisols and Vertisols whereas Nitosols cover some area in southwestern and
northeastern part of the Wabe watershed sea Figure 2-2. According to FAOCLASST classification
(LPq=Plinthic Luvisols, LVx = Vertic Luvisols, NTu= Nitosols, and VRe= Vertisols). As shown in
Figure 2-2 (B) the variation in slope [%] ranges from 0 to 62.1.
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Figure 2-2 Wabe soil type and slope variation

Figure 2-3 Shows the landcover map of Omo Gibe river basin and the study area. The landcover map was
collected from MoWIE for Omo Gibe river basin and masked to Wabe watershed. Focusing on the study
area, there are five land cover types. As seen in Figure 2-2 (A) the areas covered with the two dominant
soil types are covered by cultivation and medium cultivation Figure 2-3, showing the suitability of soil type
for agriculture. Nevertheless, the coverage of forest and open water were different from what were visited
during fieldwork duration. In addition to that, the northeast concave patt which is covered by Wolkite
city, but not seen from the map. The other issue is, the open water is shown in southwest, center, north,
and northeast (light orange color) which is not currently happening in the study area, besides the
occutrence of the wetland during the wet season in the northeast part. Presumably, the mismatch of
landcover in the ground and collected from MoWIE office could be, the collected data is too old.
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Figure 2-3 Omo Gibe and Wabe watershed land cover map collected from MoWIE

Based on fieldwork visit the landcover of the study area is classified as a cereal crop, enset, chat, built up,

grassland, forest, bushland, and eucalyptus (fieldwork visit). However, the catchment is dominated by

cereal crop, enset, and forest. Enset is the leading home garden food crop in Wabe watershed. As depicted

in
Figure 2-4 it looks like a large, single-stemmed banana plant with

an underground corm, a collection of

leaf sheaths and large broad leaves. Enset is larger than banana with up to 10m height and 2m width (field

work). It has a multipurpose crop with all patts utilized for the different putpose, i.e., human food,

construction materials, animal forage, and cultural practices.

V ¥ | S

Figure 2-4 Enset plant in the garden of local buildings
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2.2 In-situ data (collected from offices)

2.2.1. Meteorological measurements

Figure 2-5 shows the location and distribution of meteorological gauge station in and around Wabe
watershed collected. As stated in section 1.3 meteorological measurements are poorly distributed for the
watershed, and this is evidenced in Figure 2-5. Patticulatly, there are no gauge measurements inside and
northeast high elevated mountainous regions of Wabe. The location and available data for each station are
indicated in

Table 2-1 Summary meteorological data collected from NMAE during fieldwork

| 4 [ ] wabe watershed
k -

World Imagery

Figure 2-5 Indicates the 11 meteorological stations in and around Wabe watershed.

Based on NMAE classification out of eleven stations five are first class measurements, i.e., Sekoru, Woliso,
Butajira, Bui and Hossana. The distribution of gauge location is mostly in the border of watershed even

some of them are far away (southwestern part).
Table 2-1 Summary meteorological data collected from NMAE during fieldwork

depicts meteorological data collected during the fieldwork time window. Stations which are written in bold

are located inside and nearest to study area.

Table 2-1 Summary meteorological data collected from NMAE during fieldwork

Coordinate of station Type of meteorological data
# Station name  Lat Long Elevation Rainfall Tmax Tmin WS SH RH
[’s] FE] mas]  [mm/day]  [FC] PCl /s [ [%]
1 Sekoru 7.93 37.42 1926 A A A A A A
2 Woliso 8.55 37.98 2158 A A A A A A
3 Hossana 7.57 37.85 2307 A A A A A A
4 Bui 8.33 38.55 2054 A A A A A A
5 Imdibir 8.12 37.94 2081 A A A X X X
6 Wolkite 8.28 37.77 2000 A A A X X X
7 Fato 8.46 38.25 2520 A A A x X x
8 Agena 8.13 38.00 2310 A A A x X x
9 Butajira 8.13 38.37 2000 A A A X X X
10 Gibe farm 8.23 37.58 1092 A X X X X X
11 Gubire 8.19 37.80 1892 A X X X X X
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Where: Tmax and Tmin is maximum and minimum temperature respectively, WS is wind speed, SH is
sunshine hour, RH is relative humidity, X is not available data, and A is available data

2.2.2. Observed Discharge

Table 2-2 depicts observed discharge data (2007-2016) collected from MoWIE. During the fieldwork
duration, the study catchment was visited, and some representatives were selected for an interview. Mr.
Teka Moshag (see Figure 2-6 B) in the middle was working as Wabe river water level recorder since 1994
(more than 30 years). As per his work experience indicated the occurrence of runoff mostly depends on
the upstream rainfall event. He also pointed out that the river is perennial with having base flow
throughout the season. The problem he notices is there is a high volume of sediment driven to
downstream particularly during wet season due to the high elevation vatiation, and upstream agricultural
areas border the Wabe river. The water level stage is in a wide and flat cross-section part of the river near
the upstream of Wabe old bridge. There is a sediment deposition during the wet season and affects the
station stage-discharge curve. This sediment deposition causes the river bed channel to silt up with
sediments and thus affects the reliability of the streamflow discharge estimated by water level
measurements (Figure 2-6 A). Perhaps this may increase the discharge volume since there was no
sediment flushing carried out around water level banks.

Table 2-2 Observed discharge collected from MoWIE during fieldwork

Station name Elevation Location Data availability Area
Wabe near Wolkite [m.a.s] Lat Lon from to [km?]
1672 8.23 37.98 1/1/2007 31/12/2016 1846

Figure 2-6 shows pictures taken at Wabe outlet location during fieldwork. As shown in Figure 2-6 A and

C the color of the water is different. C is taken during a rainy day, and A is taken two day after rainy day.

Figure 2-6 Pictures showing water level location (A), discussion with Mr. Teka Moshag (B) and downstream flow of
Wabe river from the top of the new bridge (C)

2.2.3. Satellite rainfall estimation products
Three satellite rainfall products are selected and used in this study. There are common and individual
selection criteria. The common criteria are 1) their high spatial and temporal resolution, 2) freely available
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time series data for study time domain, and 3) their wide range of application in different regions of the

wortld. Individual selection criteria are discussed in each section.

2.2.3.1. Climate Prediction Center MORPHing rainfall product

As Joyce et al,, (2004) climate prediction center MORPHing rainfall is based on the approach where PMW
derived precipitation and IR brightness temperature are blended to retrieve global rainfall (Latitude: 60N
- 60°S and Longitude: 180°W-180°E). For this study Version, two was used. More detail description about
input data, algorithm, and methodology for CMORPH is accessible from (Joyce., 2004; Maathuis and
Mannaerts, 2013). The selection of product is due to its high spatial and temporal resolution (see Table
2-3). And also, its applicability if evaluated for different regions. For example, Habib et al., (2014, 2012)
and Haile et al., (2013) evaluated the performance on streamflow simulation in the Gilgel Abay basin
(Ethiopia), Gumindoga et al., (20106) assessed the performance in Zambezi river basin (Zambia).
CMORPH was retrieved from freely accessible online source

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH V1.0/CRT/0.25deg-DLY 00Z/.

2.2.3.2.  African Rainfall climatology version 2 (ARC2)

The African rainfall climatology Version 2 (ARC2) of the famine early warning system was launched by
the climate prediction center of united states agency for international development (USAID) (Novella and
Thiaw, 2013). The two main input sources for ARC2 are three hourly geostationary IR data centered over
Africa from EUMETSAT and quality controlled GTS 24-h gauge rainfall accumulations over Africa
(Novella and Thiaw, 2013). The selection of this rainfall product is due to, its catchment scale coverage
helps to assess the impact of rainfall on water resources management in poorly gauged Wabe watershed, it
was not tested in Ethiopia and patticulatly in Wabi watershed, minimal reseatch effort done for ARC2,
but it is with approximately same spatial and temporal resolution with CMORPH (see Table 2-3).
Detailed information about ARC2 is found in (Novella and Thiaw, 2013). ARC2 was retrieved from freely
accessible from ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/ online climate prediction center’s ftp
server.

2.2.3.3. CHRIPS rainfall product

As Funk et al,, (2014) and Funk et al., (2015) the Climate Hazards group InfraRed Precipitation with
Stations(CHRIPS) gets its main input data from CHPClim, quasi-global IR geostationary satellite
observations from CPC and NDC, TRMM 3B42 product from NASA and gauge precipitation from
different sources. This satellite rainfall product is selected due to its very high spatial and temporal

resolution as well as its application in global and local scale. CHRIPS rainfall was retrieved from
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ CHIRPS-2.0/africa_daily/tifs /p05/.

Table 2-3 Summary of satellite rainfall products used in this study with data existence, time window, temporal and
spatial resolution

Satellite . Spatial and . .

. Spatial Temporal . . Time window .
rainfall . . temporal resolution ~ Data existence Data provider

resolution resolution used

product used
CMORPH 0.07°x0.07° 30-min 0.050x0.05¢/Daily 1998-present 2012-2016 NOAA-CPC
ARC2 0.10x0.1° Daily 0.05°x0.05¢/Daily 1983-present 2012-2016 NOAA-CPC
CHRIPS 0.05°x0.05° Daily 0.05°x0.05¢/Daily 1981-present 2012-2016 CHG, USGS
Reference (Joyce et al., 2004), (Novella and Thiaw, 2013) and (Funk et al., 2015) for CMORPH, ARC2 and CHRIPS

respectively
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2.2.4. Satellite Potential evaporation estimation products

Compared to satellite rainfall products there are only few satellite potential evaporation products. In the
last decades, only FEWSNET product is tested in different regions because of the freely available time
series of data. Table 2-4 shows a comparison of currently available potential evaporation estimates
temporal domain. From the indicated three products, LSA METREF is available from 2016 onwards.
Therefore, it is not included in the selection. Different authors validation shows that MODIS16A3
product only suitable for global application(Alvarado and Orozco, 2017) and also applicable to limited
temperate and dry regions for example African Savana (Ramoclo et al., 2014), North West China (Zhigang
et al., 2007) and Mexico Yucatan Peninsula (Alvarado and Orozco, 2017).

Table 2-4 Available satellite potential evaporation products with time domain.

# PET Products Time domain Reference

1 LSA METREF 2016 to present (LSA LISA Team, 2010)

2 FEWSNET 2001 to Present http://eatlywarning.usgs.gov/fews/
3 MODIS16A3 2000 to Present (Steven et al., 2017)

2.2.4.1. FEWSNET potential evaporation product
Thetefore, for this study FEWSNET PET is selected due to its time series availability. It calculation is based
on the Penman-Monteith equation which was applied in many hydrological studies (Allen et al, 1998).

2.2.4.2. PET-20km potential evaporation product

The PET-20km satellite potential evaporation data currently not freely available on the online database.
This data was collected from Dr.ir. CM.M. Mannaerts (Chris) department of Water resoutces ITC-WRS).
This data source comes from NASA Global Modelling and Assimilation Office and GEOS-5 Goddard
Earth Observation System Model v.5 and DAS data Assimilation System.

PET-20km information available at https://gmao.gsfc.nasa.gov/weather_prediction/.

Table 2-5 Summary of satellite potential evaporation products used in this study with data existence, time window,
temporal and spatial resolution

Satellite potential . Spatial and . .

- Spatial Temporal . Time window .
evaporation . . temporal Data existence Data provider

resolution resolution . used

product resolution used
FEWSNET lox1o Daily 0.20x0.2°/Daily 2001-present 2012-2016 NOAA-GDAS
RET/PET-20km  020x0.2°  Daily 0.20x0.20/Daily  not free 2012-2016 NASA-GEOS-5
Reference http://gmao.gsfc.nasa.gov/ forPET-20km and

https://eatlywarning.usgs.gov/fews/datadownloads/Global /PET for FEWSNET

2.2.5. Digital Elevation Model (DEM)

The delineation of watershed boundaries and the extraction of topographic information requires digital
elevation model data. Khan et al., (2014) stated that DEM is a primary requirement for hydrological
modelling. However, Kenward, (2000) and Thomas et al., (2014) show that the horizontal resolution and
vertical accuracy of digital elevation model do affect the modelling outcome. According to these studies
the decision of DEM to be used for specific study based on two approaches. The first is the study domain
area and purpose second, the vertical accuracy which is tested through error statistics such as root mean
square error, mean error and standard deviation against ground truth points. Different researchers used
90m SRTM DEM for rainfall-runoff modelling (Lyimo, 2015; Omondi, 2017; Radchenko et al., 2014;
Haile et al., 2011; Rientjes et al., 2011) for catchment area ranges between 1655 to 70,000 km? whereas

19



Satellite-based rainfall and potential evaporation for streamflow simulation and water balance assessment

Nauditt et al., (2017) used 30m SRTM for the catchment area of 814 km?2. The role of DEM in this study
is first to delineate and extract watershed boundary, second to partition the entire watershed to sub-basins,
third and to redistribute the limited measured meteorological forcing data to the whole subcatchments
based on elevation slicing. To achieve this SRTM 30m global elevation data the product of NASA (Farr et
al., 2007) is used. It is offered and distributed free of charge by NASA/USGS through earth explorer with
geographic coverage of 60°N-57°S latitude and 180°E-180°E. The main criteria for selection of 30m
DEM is due to its high horizontal resolution, less vertical error ~16m with respect to datum as teported
by (Farr et al., 2007), free of charge, availability in different format and applicability for the same study
area size and taking consideration the processing time of model to be used. SRTM was retrieved from
https:/ /earthexplorer.usgs.gov/.

2.2.6. Landcover satellite imager data

Table 2-6 shows the description of Landsat 8 OLI-TIRS data used for landcover classification. The
selection of sensor and date is due to, freely availability cloud-free Landsat image and to evaluate classified
image by collected ground truth points respectively. The georeferenced Landsat imagery was downloaded
from freely available earth explorer archive https://earthexplorer.usgs.gov/.

Table 2-6 Landsat 8 image data used for land cover class classification

Product Landsat 8 Sensor_id OLI_TIRS

File date 2018-11-12 Date acquired 2018-05-12
Format Geotiff WRS_PATH and Row 169/54

Spacecraft id Landsat_8 Scene_center_time 07:45:37.4861350Z
Number of bands 11 Projection/unit UTM/Meter
Datum Wes84 Ellipsoid/ zone WGS84/37
Corner lat es 9.72935and 9.72139 Corner_lon_we 36.652 and 38.730

Figure 2-7 Shows ground control points collected during fieldwork visit. The global positioning system
GPS Garmin E-Trex 30 was used. The ground control land cover points was collected for clear sky day
with an accuracy of 3m. In total 258 ground control land cover points were collected. Individually for built

up 43 control points, forests 84 control points and cereal crop (including Enset) 131 control points.
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Figure 2-7 A ground truth land cover points
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3.  RESEARCH METHODOLOGY

3.1. Methodology applied

Figure 3-1 Shows the methodology employed to address the stated objectives systematically. The
flowchart begins with two main input data sources of gauge and satellite products. The first is in-situ
hydro-meteorological data collected from NMAE and MoWIE whereas; the second is satellite-based
rainfall estimate from ARC2, CHRIPS and CMORPH, satellite potential evaporation estimates from
FEWSNET and PET-20km, DEM from SRTM DEM and Landsat landcover data from Landsat archive.
Following this quality assessment, petformance analysis and bias correction (gauge to a pixel in daily
scale), watershed delineation and catchment partition, streamflow simulation and water balance

assessment shown in the flowchart.
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Figure 3-1 Methodology Flowchart
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3.2 Hydro-meteorological in-situ measurement pre-processing

In this section the consistency and completeness of the in-situ hydro-meteorological measurements were
checked and corrected for further analysis.

3.2.1. Selecting, screening and correcting rainfall measurement
The double mass curve (Searcy and Hardison, 1960) was used to see the consistency between individual
stations (see Appendix 1A . Reasonable consistency is seen at Sekoru, Woliso, Imdibir, Fato, and Agena
whereas poor consistency is observed at Butajira, and increasing measurement was observed at Gubire
station. In addition to DMC, the proximity of gauge station to the basin is considered as it captures
catchment condition see section 2.2.1 and Figure 2-5.

Agena

Fato

Gubire

Woliso

Wolkite

Indibir

1/2007 5/15/2008 9/27 /2009 2/9/2011 6/23/2012 11/5/2013 3/20/2015 8/1/2016

Figure 3-2 Available rainfall data for reference station (2007-2016)

Table 3-1 Analysis of gauge precipitation showing data gap and availability

Station Elevation Location Data availability Missing data
Name [m.a.s.]] Lat Long From To % #
Imdibir 2081 8.12 37.94 1/6/2002 31/12/2022 8.01 439
Agena 2310 8.13 38.00 1/3/2009 31/12/2016 21.19 1161
Fato 2520 8.46 38.25 1/2/2002 31/12/2018 15.44 846
Gubire 1892 8.19 37.80 1/3/2002 31/12/2019 6.31 346
Woliso 2158 8.55 37.98 1/4/2002 31/12/2020 3.28 180
Wolkite 2000 8.28 37.77 1/5/2002 31/12/2021 11.81 647

3.2.2. Filling missed rainfall data
The analysis in Table 3-1 shows the met-gauge station measurements was having missed values of highest
21.19% and lowest 11.81% at Agena and Woliso station respectively. On the other hand, these gauge
measurements are considered as ground truth to compare and to correct the bias of satellite rainfall
products. Therefore, infilling the rainfall measurement should reflect the catchment characteristics. As
such multiple linear regression model in equation (3.1) and (32) is selected to fill the missed data based on
neighboring gauge stations. The method is used after (Michael L, 1996; T. H. M. Rientjes, 2016).
Pe=Po+ BiPr+ B P+ PP+ PnbFy 51

N
B = B +Zﬁipi+ e
=0

Where: Py is the dependent variable (rainfall station in question), Pi., is the independent variables (neighboring
rainfall stations), Bo is the intercept, Bi.n is the regression coefficients for N gauge station, and e is the etror term.
This plot is an indication to ignore non-correlated station to prevent the issue of redundancy. Appendix 1B shows
how the station in question (Gubire) is correlated with neighborhood stations. It has a weak correlation which
underestimates the predicted rainfall. This step was done for all other five stations in question. Where the blue color
depicts the ground measurement at astation whereas orange is predicted value by the model. In addition to the
correlation scatter plots, the goodness of the model is characterized by regression statistics (RS) such that Coefficient
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of determination (R?), multiple regression (R) and adjusted coefficient of determination (R%q; in all three RS cases
value closer to 1 tells the model is reasonably fitted. The model is used to infill the missed in-situ meteorological

forcing with RS between 0.7 to 0.87 except for Gubire station.

Figure 3-3 shows a double mass curve (Eris and Agiralioglu, 2012) for selected rainfall gauge stations for further
analysis. As shown from DMC analysis the slope keeps constant for five-gauge station except at Gubire. At a Gubire
station there is two slopes. This is due to the increased ground measurements from 2012 onwards.
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Figure 3-3 Double mass curve showing precipitation consistency check. Test station at abscissa and the
cumulative mean of other reference station at ordinate Wabe watershed 2007-2016

Figure 3-4 shows annual rainfall of reference meteorological gauge (2007-2016). The red dotted line
between the clustered column separates forcing data used for model warm up, and validation (left side)
and satellite rainfall estimates performance and calibration (right side). The analysis demonstrates there is
a consistent accumulated rainfall pattern for six stations from 2007 to 2011 with relatively higher rainfall
accumulation in 2010. Whereas, increased rainfall accumulation is observed for Gubire station from 2012-
2016 and relatively decreased rainfall accumulation was seen at Wolkite station in 2015 and 2016 even if
both stations are located at similar elevation range (see

Table 2-1 Summary meteorological data collected from NMAE during fieldwork
).
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Figure 3-4 Annual rainfall of the reference meteorological station from (2007-2016)

Further analysis of the measured reference rainfall forcing from 6-gauge stations in mean monthly and
mean annual bases in terms of standard deviation (STDEV) and coefficient of variation (CV) is shown
below. This subsequent mean monthly and yearly based analysis aids to look at the trends of rainfall and
to ensure they are free from anomalies for further analysis. Firstly, Figure 3-5 A, B and C depict the mean
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monthly based average, standard deviation and coefficient of variation for the reference gauge stations
from 2007-2016. From this analysis (see Figure 3-5A) the dry and wet seasons is shown. Accordingly,
June, July and August (inside red dotted line) is the major three rainy season showing similar rainfall
pattern except for increase at Gubire. September is the end of the rainy season whereas May is the
beginning of the rainy season. Furthermore, the rainfall trend for the dry season of November to February
shows similar patterns for all stations. According to NMAE major categorization September to May is the
dry season. However, April, May and September showing more accumulation compare to other dry

se€asons.
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Figure 3-5 Mean monthly rainfall(a), mean monthly standard deviations (B) and mean monthly coefficient of
variation(C)of the reference meteorological station from (2007-2016)

The mean monthly rainfall in the wet season is up to 8.5mm and 8mm for Agena and Fato stations
respectively located in highest elevation compared to others. The monthly average at Gubire stations
reaches 13 mm in July and showing a different trend Figure 3-5A. Figure 2-6 A, B and C shows mean
annual average, standard deviation and coefficient of variation for the reference meteorological gauge
station from the 2007-2016-time window. Generally, the average rainfall of 2009, 2012 and 2015 ranges
~3mm whereas 2010 ranges ~4.2mm. This trend in all other years shows ~3.8mm besides the suppressed

range of 5.7mm at Gubire station in 2013. The mean annual CV is ~2.
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Figure 3-6 Mean annual coefficient of variation (A), standard deviation (B) and coefficient of variation (C) of rainfall
from 2007-2016

3.2.3. Potential Evapotranspiration

Determination of daily potential evaporation is mainly dependent on available in-situ PET variables
(Djaman et al., 2015; Gao et al., 2017; Hargreaves and Allen, 2003). For this study maximum and
minimum temperature is collected from five-gauge location Figure 3-7 (A) whereas RH, SH and WS are
available only at Woliso station Figure 3-7 (B) with more than 70% of missed data. Also, it is evidenced in
Table 3-2 Agena has more missed temperatutre data (32.9%) and 77% missed sunshine duration at Woliso
station. In one hand, only one station (Woliso) have PET variables of RH, SH, WS even with more than
77% missed sunshine hour. On the other hand, even without missed data of all PET variables one station
is not representative fo this study area due to a limited network. Therefore, due to this shortcoming, the
commonly applied Penman-Monteith method is not applied.

Due to the paucity of in-situ PET variables and to reduce error propagation in modelling phase the
empirical radiation-based method, (Hargreaves, 1985; Hargreaves et al., 2003) were used to calculate in-
situ potential evaporation. They evaluated the performance of Hargreaves in Haiti, Bangladesh, Australia,
and the United States with modified Penman-Monteith concerning lysimeter measurement and concluded
Hargreaves matches teasonably with in-situ. However, the method has a limitation with the area when the
maximum and minimum temperature ate relatively constant but, is not the issue in this study area.

Maximum, minimum and average temperature are shown in Appendix 1C .
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Figure 3-7 Available potential evaporation parameter: (A) temperature and (B) Windspeed, Relative humidity and
Sunshine duration (2007-2016)

Table 3-2 Data gap analysis of in-situ potential evaporation variables

Stati Elevation Location Data gaps [%]

tation . . .

Name [m.a.s.]] Lat Long Temperature Sunshine Relatl.Vfi Wind
hour Humidity speed

Agena 2310 8.13 38.00 329

Fato 2520 8.46 38.25 28.9

Wolkite 2000 8.28 37.77 17.4

Imdibir 2081 8.12 37.94 17.5

Woliso 2158 8.55 37.98 5.0 77 47 28

Daily potential evaporation was determined using the Hargreaves method (5.5) which is extensively used
for limited weather data condition based on maximum and minimum temperature. The data gaps in
temperature were assessed and completed using neighbourhood gauge stations. Extra-terrestrial radiation
(Ra) for each day of the year and different latitudes can be estimated from solar constant, solar declination
and time of the year. Ra is computed in [MJM-2day-1] then converted in to [mm/day] by multiplying a
conversion factor the inverse of latent heat of vaporization (1/2) is 0.408.

ET0 = 0.0023 (T mean + 17.8) * (T max — T min)®S * Ra 53

Where ETo is Potential evaporation in [mm/day], Timean is average temperature, Tma and Trin ate daily
maximum, and minimum temperature in [°C] and Ra is extra-terrestrial radiation in [mm/day]. All the
necessary equations of Hargreaves ETo are based on FAO 56 documentation. Hargreaves ETo may
underpredict or overpredict under high wind speed (U2>3m/s) and high relative humidity respectively
(Allen and Smith, 1998).

Figure 3-2 showed potential evaporation parameters at Woliso station for 2013 in Wabe watershed and
calculated ETo based on Penman-Monteith (orange) and Hargreaves (blue). To evaluate the applicability
of the Hargreaves method in Wabe watershed Woliso station year 2013 with all available PET in-situ
parameters are selected. After that, Hargreaves and Penman-Monteith models are prepared in a
spreadsheet to determine in-situ potential evaporation. The detailed formulation of the Penman-Monteith
method is based on (Allen et al., 1998) and latitude and elevation of Woliso station were used.
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3.3. Comparison of FAO-56 Penman-Monteith and Hargreaves ETo methods

Statistics presented in Table 3-3 and scatter plots in

Figure 3-9 were used to compare the accuracy of Penman-Monteith and Hargreaves method. It is noted
that in this study, Hargreaves were used as discussed above section 3.2.3. Hargreaves method does not
reflect the seasonal vatiation by producing ETo between 3 to 5 [mm/day] Figure 3-8D. On the other
hand, Penman-Monteith reproduces ETo ranging 1.9 (wet season) to 7.2 (dty season) [mm/day] Figure
3-8D. This result is consistent with (Yates and Strzepek, 1994) who evaluates the sensitivity of ETo
determination method in 4 basins (Blue Nile, Vistula, East River, and Mulberry) with different spatial scale
and climatological behavior.
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Figure 3-8 Potential evaporation parameters for Woliso station 2013. A is Maximum and minimum temperature, B is
Relative humidity, C is Sunshine duration, D is Windspeed and E is potential evaporation from two model

Table 3-3 Statistics to compare Hargreaves and Penman-Monteith ETo method in Wabe watershed
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Statistics Hargreaves ETo Penman-Monteith ETo 8

Sum 1596 1508 g7 »

Max 5.76 7.45 g 64 Rl

Min 2.82 1.92 j 5

Diff/Ratio 88 1.06 : 4 - !

Avr 4.37 413 = 5

STDEV 0.57 1.24 £, | oo

cv 0.13 0.30 & S N DO S S N

CC 0.60 1 2 3 4 5 6 7 8
Hargreaves [mm/day]

Figure 3-9 Scatter plot comparison of Hargreaves and Penman-Monteith ETo method

The Hargreaves method was used due to the paucity of in situ ETo variables. This potential evaporation is
used to evaluate the satellite PET as a benchmark. Qualitative and quantitative assessments were used to
select which satellite PET captures well the catchment condition. In this manner, visual inspection, scatter
plots, cumulative plots and evaluation metrics of root mean squate etror (s4), correlation coefficient (.5)
and mean bias (3¢) are used to select reasonably performed satellite potential evaporation.

3.4
RMSE = E?]=1 (Ps,i - Pg,i)z
N
TENL (P ~PS)(Pys — PY) +
CC(r) = .
ME = 2?:1 (Ps,i - Pg,i) 36

N

Where N is the total number of data elements, Py and Py are satellite and gauge PET, 0.0, is the standard
deviation of satellite and gauge PET, P4 Py are mean of satellite and gauge. These statistics were

serving to perceive daily average difference, their distribution and association respectively.

3.3.1. Screening and correcting observed discharge data

Figure 3-10 depicts observed rainfall and discharge time series for 2007-2016 of Wabe watershed at the
outlet of the basin. By visual inspection, it is evident that some records are suspicious as indicated in red
and yellow doted circles. Observed discharge from MoWIE in the year 2010 and 2014 shows zero
measurements (for four days); since there is no neighboring discharge measurement; data from the first
and next day of incorrectly measured record were lineatly interpolated to fill in the discharge. Although, in
2010 and 2013 the observed discharge shows an outlier, this is not the case in rainfall (indicated in purple
dotted circles). Perhaps, this inconsistency between the observed discharge and rainfall may be due to
spatial interpolation of rainfall, errors in rain gauge and in stage-discharge rating curve relation. Therefore,
further analysis using Double mass curve(Eris and Agiralioglu, 2012; Gao et al., 2017; Seatcy and
Hardison, 1960) and incremental difference method ((Rientjes et al., 2011) were done to perceive the
consistency of rainfall and observed discharge.
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Figure 3-10 Rainfall and observed discharge in daily time serious (2007-2016)

For the hydrological year (start month 6 and ends 5% month) annual runoff coefficient was determined
using equation (57). As shown in Figure 3-11 (A1) most of the rainfall results in a runoff in the basin.
Notably, in the year 2008 and 2010 different sort of runoff is visualized. Extremely very high runoff
coefficient (0.9) is shown in 2010.

On the other hand, the lowest runoff coefficient (0.55) shown in 2008. In hydrological perception, this
situation is not common as the rainwater infiltrate, evaporate and intercept before going to direct runoff.
The catchment groundwater resource evident there is considerable flow during dry and wet seasons this
results in a baseflow throughout the year. Overall, the generated runoff depicts the majority of rainfall in
the watershed directly converted to flow. As discussed in section 2.2.2 the watershed water level recorder
indicated the influence of sediment during the winter season. Mr. Teka Moshag said during rainy season
due to sediment load water level increases causes in overestimated daily water level. Perhaps, the runoff
coefficient results evidence the sediment effect. Therefore, further investigation is required to identify
inconsistently, and outlier observed discharge during rainy season regarding gauge rainfall.

The incremental difference method is adopted (after Rientjes, et al., 2011). The idea in this method is to
propetly adjust an outlier (mostly during high rainy season) from the observed discharge concerning
measured rainfall. Equation (s5) and (s.9) shows the determination of incremental difference of discharge
and precipitation respectively. The procedure is following three steps. Fitst, for the hydrological year
increment of precipitation and discharge for each time step were calculated. Second, subsequently,
absolute value AP and AQ are obtained. Then thirdly, the ratio of absolute precipitation difference with
observed discharge difference (y-axis) and the reverse are plotted against time domain (x-axis) Figure 3-11
(A and B). The ratio of IAPI / AQ and the cumulative rainfall against observed dischatge Figure 3-11 (A2-
green dotted box) cleatly shows that there is overestimated dischatge in the year 2010. Although of IAPI /
AQ Figure 3-11 (A) and IAQI / AP Figure 3-11 (B) plot shown As such, this outlier and unteliable

measurements were observed, inspected reference to precipitation and appropriately corrected.

R cient = annual measured streamflow [mm] 37
unof f coef ficient = annual rainfall [mm]
AQ = Q¢ — Qr— 38
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AP =P, —P,_,

39

Where AP is the incremental difference in precipitation, AQ is incremental difference in dischatge, P, Py
and Q, Q.1 is initial and final time step for precipitation and observed discharge respectively.

The incremental difference method analysis result in Figure 3-11A shows that most of the IAPl/ AQ and
value lies close to zero. However, some appear largest distance from zero as outlier particularly in 2010.
The outliers were properly adjusted by linearly inerpolating based on pervious and next day gauge rainfall

measurement.
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Figure 3-11 Rainfall-discharge relation by runoff coefficient (A1), by double mass cutve (A2), the ratio of
the incremental difference of IAPI and AQ (A) and Ratio of IAQI / AP (B)

Figure 3-12 shows appropriately adjusted rainfall, discharge, and potential evaporation. The consistent
pattern is shown in both wet and dry season. However, some rainy days on the onset of wet (2010,2016)
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and end of the wet period (2013,2014) is not observed from observed discharge. Also, it is shown that
there is always baseflow indicating a perennial river.
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Figure 3-12 Corrected obsetved streamflow, rainfall and Hargreaves ETo (2007-2016). PET refers to Hargreaves
potential evaporation

34. Spatial representativeness of the in-situ meteorological data

The conceptual semi-distributed rainfall-runoff model HBV Light version requires a time series of the
meteorological forcing for each sub-basin. As shown in Figure 3-13 the distribution of meteorological
gauge station is poorly distributed in Wabe basin particularly the mountainous region of north eastern
part. Limited gauge measutements wete spatially interpolating to sub-basin as well as the whole basin. In
hydrology, there are several interpolation techniques which are suitable for different catchment
characteristics. Based on studies from (Omondi, 2017) and (De Silva and Ratnasiri, 2007) Thyssen
polygon spatial interpolation method (Thyssen, 1911) was adopted in this study (5.10). Omondi, (2017) was
tested commonly used inverse distance weighting and Thyssen polygon method for the Kabompo river
basin in Zambia and selected Thyssen method based on statistics root mean square error, mean absolute
error and Pearson’s correlation coefficient. The Thiessen method formula and naming are directly used
after (De Silva et al., 2007) as follows. The weights of rain gauges are determined by their relative areas,
from the Thyssen polygon network. Although, average weighted (global value) elevation of respective

gauge station were assigned for precipitation and temperature were used in catchment setting.
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Figure 3-13 Reference met-gauge distribution Wabe watershed

— Z?]:l[(Aj - Ai)Pi] 3-10
* Zliv=1(Aj _Ai)

Where Aj and Ai is Thiessen polygon area when a station with missing value is excluded and included
respectively, Pi is precipitation of surrounding station, Px is precipitation to be estimated and

Iivzl(Aj - Ai) is Thiessen polygon area for the station with missing values.

3.5. Satellite rainfall and potential evaporation products preprocessing

In this study satellite-based rainfall (except CMORPH/ downloaded 2 houtly) and potential evaporation
products at the daily base were downloaded from their respective archive via GeoNETCAST ISOD
toolbox in ILWIS385x version. The ILWIS softwate is effective remote sensing and GIS application and
freely available from https://www.itc.nl/ilwis. Satellite rainfall products from ARC2, CMORPH and
CHRIPS, and potential evaporation products from FEWSNET and PET-20km were downloaded and
processed for time window (2012-2016). The time window selection is based on the available rainfall and
observed discharge data. The CMORPH raw data for one day contains 48 rain rate maps for each %2 h
time step in [mm/hr]. Scripts were written in customized ILWIS softwate to subsequently get aggregated
rainfall in mm/day see Figure 3-14. Three ILWIS script is coded to get a daily aggregated value of V2
houtly rainfall [ mm/day]. After that, the products are subset to AOI Wabe watershed, and map lists were
created. Finally, the point map of reference gauge location was crossed with the satellite products to
retrieve rainfall values for each location then exported to MS Excel worksheet for further analysis.

Figure 3-14 shows processing steps for satellite rainfall and potential evaporation estimates.

The satellite products were exported to MS Excel worksheet in daily temporal resolution and their original
spatial resolution. As stated in section 3.4 pixel scale satellite rainfall and PET estimates were interpolated
to sub-basin as well as the whole basin using Thiessen method (Thyssen, 1911).

( GeoNETCAST ISOD toolbox in ILWIS385x >
< CMORPH_archives O ( ARC2 and CHRIPS O < FEWSNET archives and O
archives PET-20km
Batch_CMORPH_8km_30min_monthly Download daily 10km ARC2 Download daily 1 degree
In Geo tiff format and 5km CHRIPS FEWSNET-PET
N
Mirror rotate, subset, geo-reference and glue
Import rainfall maps to ILWIS Import PET maps to ILWIS
Use GDAL to import to ILWIS raster format raster format and subset to raster format and subset to
T AOI AOI
"2 h rain raster map in [mm/hr] i i
Subset to AOI and_create map list for each Create maplist and cross with Create maplist and cross with
day in a month . A X h
* gauge location point map PET location point map
’ ‘ Aggregate the %2 h map list to daily ‘ ‘ ’ ‘
h 4
Divide the sum by value 2 to get daily rainfall
in [nm/day]
A y

Create maplist and cross with gauge location Export rainfall and PET values to MS Excel for
point map subsequent analysis [mm/day]

Figure 3-14 Processing sequence for satellite rainfall and potential evaporation estimates

32



Satellite-based rainfall and potential evaporation for streamflow simulation and water balance assessment

3.6. Performance of SRE from CMORPH, ARC2, and CHRIPS

The inter-comparison is based on point to pixel approach. Reference meteorological gauge stations were
used for the performance analysis. The performance of satellite rainfall estimate has been compared using
scatter plots, Taylor diagram (Taylor, 2001), double mass curve analysis and statistical criteria. The scatter
plots and statistical evaluations are made on a daily basis to see how the uncorrected satellite rainfall
estimates perform concerning gauge measurements. The performance of CMORPH, ARC2, and CHRIPS
are evaluated by using different statistics as there is no one statistical parameter summarizes the ability of
an algorithm with respect to the ground measurements(Ebert, 2007; Jobard and Roca, 2011; Mashingia
and Bruen, 2014; Thiemigsss et al, 2012). The standatd statistical measures adopted in this study includes
root mean square error (s.11), Mean error (s.12), Relative Bias (5.15) and Pearson’s correlation coefficient (5.14).
In addition to this statistics average, standard deviation, total, maximum and coefficient of variation were
analyzed.

3-11

Z{'V:l (Ps,i _Pg,i)z
N

RMSE =

Measures magnitude of accumulated errors and spatial variation. Range: 0 to infinity. Perfect score: 0

Z?]:l (Ps,i _Pg D) 3-12
Bias = ZZL 220 91
ias N
Measure a systematic difference. Range minus infinity to infinity. Perfect score:0
N (P — Py 313
Rbigs = ==L x5t 9L o
Z?I:l (P g.i)
Measure a systematic difference. Range minus infinity to infinity. Perfect score:0
1 _ —
v 2n-1 (Psi = Ps)(Pg; —Pg) o
N &n-1 Usi g,
cc(r) =
() 020,

A measure of association (to evaluate agreement between SRE with gauge). Ranges between -1 (negative
strong correlation) to +1 (positive strong correlation).

Where N is the total number of data elements, P and Pg are satellite and gauge rainfall at day i, os and oy is
a standard deviation of satellite and gauge PET, P ana T—’gi are mean of satellite and gauge rainfall values
The statistics ate commonly applied by authors Haile et al., 2013; Liu et al., 2011; Tian et al., 2009;
Zotarelli and Dukes, 2010).

3.7. Bias decomposition and detection capability of satellite rainfall estimates

The bias components and detection capability of CMORPH, ARC2, and CHRIPS were assessed following
two steps. First, the total bias in each product is decomposed into three components i.e. hit bias, missed
bias and false bias events following methods in (Habib et al., 2012; Wilks, 2006). The three components
are calculated based on the equation (515) as follows.

3-15

N
HE = Z(PS—F;,),L'f(Ps > 0andP, > 0)
i=1
N
FE = Z P, ,if (P, > OandP, = 0)

i=1

N
ME = ) P,,if (P, = 0andP, > 0)0
=1

i

Where HE =hit events, FE = false events, ME = missed events, Ps and P, are satellite and gauge rainfall.
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Secondly, the ability of each product to detect rainfall is evaluated using categorical measures based on
Table 3-4 for the verification of satellite estimates concerning the in-situ, i.e., POD, FAR and CSI see
equation (316). In both steps, the analysis was done for satellite rainfall estimates overlaying 6-gauge
stations in daily bases (2012-2016). As defined by Montero-Martinez et al, (2012) this categorical statistics
for satellite rainfall forecasting verification has two probabilities (they are dichotomous) with 0% petfect
for FAR or 100% for POD and CSI.

Table 3-4 contingency table used to define categorical measures

Gauges rain Gauges no rain
Satellite rain HE FE
Satellite no rain ME ?
POD = —%_ indicates correctly detected rainfall. Ranges 0 to 1 316
HE+ME )
E T . .
FAR = -—— indicates the proportion of falsely detected rainfall. Ranges 0 to 1
HE . . . .
CSI = —————— measures the fraction of correctly identified rainfall. Range 0 to 1
HE+ME+FE

The best score for POD and CSI is 1 whereas for FAR is 0.

3.8. Rainfall distribution and effect of seasonal variability in CMORPH, ARC2, and CHRIPS
The satellite rainfall performance differs from catchment to catchment in detecting rainfall distribution
and capturing seasonal dynamics. Classification of rainfall intensity varies with the desired objective, for
instance, Chaemiso et al., (2016) uses four class 1) small intensity (<4mm/hr), 2) moderate intensity (4-
8mm/hr), 3) high intensity (8-12mm/hr) and 4) very high intensity (>12mm/hr) with the objective of
seasonal variation of rainfall characteristics over Peninsular Malaysia. The other unpublished MSc research
study was done by Omondi, (2017) uses 6 rain classes to analyze the performance and rainfall distribution
detection capacity of TRMM, CMORPH, and CHRIPS in Zambia, Kabompo basin. To evaluate the
performance of SRE’s products in detecting different rainfall depth, rain rates are partitioned in to 6 rain
classes. Similatly, to assess the seasonal dynamics, grouping into wet and dry seasons was done (Table

3-5).

Table 3-5 Two seasons and rainfall distribution clustering in Wabe watershed

Rainfall 0-1, 1-2.5, 2.5-5, 5-10, 10-20 and >20 (Gumindoga et al, 2016;
distribution Omondi, 2017)

Seasonal Wet June, July, and August (Awulachew et al., 2007; Chaemiso
dynamics Dry January, February, March, April, May, 2l 2016; Habib ctal,, 20142)

September-December

3.9. Satellite rainfall estimates bias correction

Satellite-based precipitation measurements served as a secondary source of data for many hydrological
applications. However, as an indirect source of measurements, they are exposed to errors. As argued by
authors Tian et al., (2009), Vila et al., (2009), Habib et al., (2012) and Gumindoga et al., (2016) these
errors need to be understood, indicated, partitioned and corrected. Studies of Habib et al., (2014) and
Artan et al,, (2007) shows that models could increase or suppress precipitation systematic etrors to larger
or smaller simulated discharge depending on the response mode of the hydrological model.
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In this study, four bias correction methods are evaluated. For each method, the bias cotrection factor was
calculated, and the raw satellite rainfall is multiplied by the bias factor to get the corrected SRE. The best
performed bias scheme was selected and used for streamflow simulation and water balance assessments.

3.9.1. Distribution transformation bias scheme
This method is modified and applied after (Gumindoga et al., 2016). The method is based on the
formulation of two bias factors which corrects for both mean and variation. The first bias correction
factor for the mean (3.17) and a second correction factor for variance (5-1s) is established. Here five-day
window is used for determination of both mean and variation bias factor. Different days 3,4, 5, 6 are
tested for the DT scheme in matching with gauge measurements. The selected evaluation scheme result
shows five days analysis reasonably matches the bias corrected SRE’s with gauge measurements. Then
subsequently, the two formulated bias factors were used to correct the systematic error in satellite-based
rainfall (3,19).

DT# - ?_llj 3-17
Where DTy is the bias correction factor for the mean, Su and Dy are 5 days mean value of individual
satellite pixel and gauge location rainfall estimate

Dt '
DT, = 318

TSt

Where: DTt is the bias cotrection factor for the vatiation which is calculated from the quotient of the
standard deviation, St, and Dr, for satellite and gauge.

Spr = DTt (St — S,) + DT, S, 319
Where SDr is corrected satellite rainfall estimate
3.9.2. Spatio-temporal bias correction

3.9.2.1. Space-time variant (TvSv)
The first approach in the method is determining the bias factor (s.20). The bias is corrected for individual
satellite pixels that ovetlay rain gauge stations. Correction is at daily time step. The multiplicative BF for a
specific satellite pixel at a selected day (d) and gauge (g) with respect to reference gauge formulated in (3-
18). The formulation of bias factors considers three assumptions

» Minimum accumulated gauge rainfall depth for the specified time window

» Minimum number of rainy days for the specified time window

» If one or both conditions are not true what should be the bias factor
This bias factor formulation assumption differs from catchment to catchment as stated by different
authors, for instance, Bhatti et al., (2016) and Habib et al., (2014) used 7-day sequential window and
Gumindoga et al., (2016) used a 10-day sequential window. In this study the bias factor is calculated based
on 6-day’s sequential window, minimum of 5mm rainfall accumulation and at least three rainy days within
the selected rain-day window is recorded. The adequacy of six-day window in removing bias from
uncorrected SRE’s products is evaluated by RMSE, CC and accumulated rainfall amount. This analysis is
consistent with (Bhatti et al., 2016) who evaluated window size ranges between 3 to 35 at Gilgel Abay
catchment (Ethiopia) and stated systematic errors in SRE,s do not increase window size above 7.

Yi=d-lG (i,t) 3-20

BFTVSV - —d— .
EZals (0,0
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BF. _ TETRIEIG (D) 322
TESE T ST 3i=n 5 (i,1)

Where: S and G are daily satellite and gauge rainfall estimates respectively, I stands for the length of the
time window for bias estimation, d refer to certain day, i and t refer to gauge location and Julian day
number respectively.

3.9.2.2. Space-fixed-time variant (TvSr)

This study follows the approach of Habib et al., (2014) who tested TvSr (5.21) and TrSr (322) to “assess

implication for accounting and ignoring of the variability of bias.” The second spatio-temporal bias

scheme is called time variant space fixed which corrects at daily time step for every pixel.

BFrysp = E—gzg_l Zt:? AL i
e N (9]

3.9.2.3. Time and space fixed (T'¥Sg)

In this approach, the bias factor is obtained for the entire domain and over the total duration of the
sample. The bias factor formulation is based on equation (s21). The uncorrected satellite estimate is
multiplied by BFrrsr to get a bias cotrected estimate in spatially and temporally lumped scheme. This
means one bias factor applies for entire time series.

3.10.  Catchment Partitioning
The main reason to partition the Wabe watershed is because of its significant elevation variation (see

section 2.2.5 and Figure 2-1); variation in soil types, due to the large catchment area (1846 km? and, to use
the spatially distributed data from SRE’s products. Rientjes, (2015) indicates the partitions are made when
the catchment is geographically or climatologically heterogeneous. There are different approaches to
partition a watershed into sub-basins like the availability of gauge station outlet in each sub-basin, similar
land cover, and similar soil type etc. For this case; stream discharge outlets with no gauging stations except
the Wabe main outlet collected during ficldwork from MoWIE of Ethiopia were used for sub-basin
partition. The main inputs for catchment partitioning are shuttle radar topographic model (SRTM 30m
DEM), watershed outlet and sub-basin outlets. All the three inputs are used to delineate and extract Wabe
watershed boundaty, pattition the entite Wabe basin to sub-basins and extract the entire basin and sub-
basin area.

Table 3-6 shows data and tools used in DEM hydro-processing. The procedure is based on (Merwade and
Rajib, 2014). The ArcSWAT software requires input DEM in UTM projection. Therefore, the DEM tiles
were projected in UTM zone 37N with WGS84, 1984 datum and ellipsoid respectively. As shown in
Figure 3-15 the downloaded elevation data are mosaiced, masked to the area of interest after that fill the
sink to remove depression, flow direction, and flow accumulation to find the drainage pattern was done.
Following this step, the main outlet of the whole basin used to delineate the watershed. Subsequently, sub-
basin outlets where used to partition the whole watershed into five sub-basins.

Table 3-6 Data and tools used for watershed delineation and sub-catchment partition

# Input Format/# Result Tools used

1 SRTM DEM 30m Tiff/1 Analysis of catchment ArcSWAT 2012.10_5.21 and
2 Catchment outlet Point/1 Wabe basin ArcGIS_10.5.1

3 Sub-basin outlet Point/4 Wabe sub-Bains

The software is freely accessible from https://swat.tamu.edu/software/arcswat/
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Figure 3-15 Steps followed in ArcSWAT for catchment partitioning

Figure 3-16 shows Wabe watershed boundary, outlets used for partitioning sub-basins (green boxes), five

partitioned sub-basin and area for each sub-basin in m?Table 3-7. Numbers from 1 to 5 indicates the

outlet of each sub-basin. Among this outlet points, the whole basin water level is located at outlet 4

(observed discharge of the whole watershed is measuted) and 1 through 5 is planned to install water level
measurement by MoWIE of Ethiopia.
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400000 410000

420000 430000

Wabe sub-basins
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940000

930000
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910000
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Figure 3-16 Outlet points used to partition sub-basins (green filled small boxes) with numbers 1 to 5 indicating sub-
basin number Pattitioned sub-basins, and area for each sub-basin.

Table 3-7 Wabe outlets location and area of sub-basins

. Location Area of sub-basin
Outlets ID Subbasin
X Y Area [m?| Area [km?|

1 SB_1 405755.3 926299.9 344620727.24 345

2 SB_2 392860.6 921464.8 504235691.18 504

3 SB_3 386791.7 916836.2 246490456.51 246

4 SB_4 363537.4 912147.7 297785953.48 298

5 SB_5 387214.1 909758.6 452806995.13 453

The total area of Wabe watershed 1845939822 1846
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3.11. Hydrological Modelling HBV Light version approach

In this study a modified version of Hydrologiska Byrans Vattenbalansavdelning (HBV) light model by
(Seibert and Vis, 2012) was used for streamflow simulation. The selection of the model is due to: originally
developed for runoff simulation, simple structure to understand, and apply, is less complexity, and it has
been extensively evaluated in different regions of the globe (Seibert and Vis, 2012). The main principle of
the model is based on the general water balance equation to simulate the hydrological process on surface
and subsurface zones.

The HBV Light model has four routines; snow and rain routine, soil moisture routine, response function
routine, and routing routine. But in the Wabi watershed, the temperature is higher than the threshold
value as such, the snow routine was ignored, and precipitation is only in the form of rainfall. The model
has different structures. In depth details and descriptions about the model routines, model structures,
model variants and model parameter overview is refered to (Seibert and Vis, 2012). In this study the
standard model structure with basic model variant was used. The main inputs to the model are
meteorological forcing of rainfall and potential evaporation [mm/day], temperature [0¢], elevation and
vegetation zones, and catchment file. The main outputs are actual evapotranspiration [mm/day], simulated
streamflow [mm/day], amount of water in soil box [mm], storage in upper and lower groundwater box in

[mm].

Figure 3-17 shows the input data and processing of HBV Light version rainfall-runoff modelling.

Meteorological
forcing Wa})e sub- SRTM Land
basin raster cover

i map DEM map
[ ) |

Gauge rainfall SDT bias scheme
and Hargreaves SRE from CMORPH,
ETo ARC2 and CHRIPS
and PET-20km

Sliced
elevation
(10 zones)

Screened
and
corrected
Observed
discharge

Gauge rainfall
and Hargreaves

s

Cros 7/ Cross

J ETo v
PTQ.txt EIevati(_)n-
EVAI

/ PTQ.txt zones

EVAP.txt

Sub-

catchment

txt Calibration (Condition

HBV Light 1 and 2) and sensitivity
» rainfall-runoff —» analysis (condition1) —» Condition 3
modeling i hydrological
process

Figure 3-17 Flowchart showing HBV Light rainfall-runoff model input parameters and processing

HBYV Light model catchment Setting

The catchment setting needs more attention and should follow real catchment characteristics (Rientjes,
2015; Seibert, 1997; Seibert and Vis, 2012). In this step, three main catchment conditions were set up. 1) a
number of elevation zones, 2) a number of vegetation zones and 3) height incremental variables of rainfall
and temperature. For the first condition the model allows up to 20 elevation zones (Seibert and Vis, 2012)
but for Wabe watershed 10 elevation zones were used as elevation varies from ~1700m to 3600m above
sea level. In this manner, the elevation was partitioned within 200m interval. And mean elevation (e.g. for
range from (700-800) 600m is characteristic elevation was assigned for each zone.

Figure 3-18 depicts the sliced elevation zones of Wabe watershed with sub-basins. ILWIS software is used
for slicing. First domain for each elevation zone is created and subsequently, ILWIS image processing
slicing operation was used to portioning the elevation.
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Figure 3-18 Sliced elevation zones of Wabe watershed with a 200m range based on SRTM DEM 30m

Vegetation Zones
Assumption: The change in land cover for study time window is insignificant.

For this study landcover map collected from MoWIE is not used. The reason is the data is too old and
could not represent the current catchment characteristics as discussed in section 2.1.2 and Figure 2-3.
ERDAS IMAGINE 2016 version software is used for classification. The procedure is based on (Hall et al,
2004; Islam et al, 2018) method Figure 3-19. The downloaded map is imported to the software, stacked
and sub-setted to an area of interest. Subsequently; the signature editor is used to collect samples to
classify the map. Thereinafter, the maximum likelihood parametric rule is used to classify the map. The
advantage of this method is; first, it considers variability within a cluster, and secondly consider the shape,

Landsat 8 OLLTIRS the size, and orientation of the clusters. There are more than
v three land cover classes in the study area evidenced from
Stack and subset to Wabe AOI g | fieldwork duration. Howevert, the HBV model allows only 3
Visual ime‘rpremﬁon 2| landcover class and lake property. Therefore, to incorporate with
- - o . . .
Signature editor E the rainfall-runoff model the landcover classes are classified into
Supervised classification —§ three dominant classes of cereal crop, fotest and built up as there
(Maximum Likelihood Algorithm) g ismo visible lake body. To quantify the accuracy of land cover
classification commonly applied confusion matrix and kappa
Accumcy assessment .
(Error matrix) ] coefficient(Congalton and Green, 2009) were used. Kappa
v statistic reflects the difference between the actual agreement and
( Land cover map )
the agreement expected by chance.

Figure 3-19 Flowchart showing landcover classification

Height increment variables

This section defines how precipitation and elevation values should be corrected with elevation. It can be
specified, either a global value for the whole basin or each of the individual sub-catchments. The
initialization of the model was very sensitive when using height increment variables (gradients) of
precipitation per sub-catchment based on gauge contribution. Therefore, further investigation of
precipitation lapse rate is as follows.
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Inventory on change of precipitation with the lapse rate
In the study area, elevation of meteorological gauge station varies from minimum at Wolkite 2000 m.a.s.l, to maximum
at Fato 2520 m.a.s.] and average elevation of 2214 m.a.s.1 (see

Table 2-1 Summary meteorological data collected from NMAE during fieldwork

). Whereas, the variation of elevation in the Wabe watershed is 1700 in the outlet of the whole basin to
~3600m in the upstream with a difference of 1900m see Error! Reference source not found.. This
indicates there is a significant variation of elevation in the study area. As such further investigation carried
out to perceive a change in rainfall with elevation using gauge and two SRE products (CHRIPS and
ARC2). The analysis was done for the rainy months of June 2014 and 2015.

3.12. Model calibration, sensitivity analysis, and validation

Any rainfall-runoff model must be proven for its reliability, accuracy and predictive ability as it affected by
all the entered input data (modified after Rientjes, 2016). The model was initialized, calibrated and
validated using in-situ measurements (2007-2016). The input data were split into three periods warm up
(2007 -2008), calibration (2012-2016) and validation (2009 and 2011). The simulation is started at the end
of the dry season since the catchment is in steady-state mode with low but stable streamflow discharge.

The calibration is through Trial and Error parameter optimization where model sensitive parameters are
optimized following a selected optimization procedure. Firstly, the baseflow recession was fitted.
Secondly, the peak flows of observed and simulated discharge are matched. Subsequently, rising and
falling limb, and timing of the peak flows were matched. After that, the overall volume and shape of
simulated and observed hydrograph were closely matched. The model has been validated for independent
data set using the optimized parameter (2012-2016).

Selection of Objective Functions

The selection of objectives functions depends on the desired purpose, for instance, Madsen, (2000) argued
that mainly four objectives are considered to evaluate the performance of the calibrated rainfall-runoff
model. These objectives are water balance volume agreement, overall agreement of the hydrograph shape,
good agreement of high and low flows. Table 3-8 presents a summary of studies which used different
objective functions to evaluate HBV model performance. Monte Carlo refers to an automated parameter
optimization method in HBV model. The performance of the model was evaluated qualitatively by visual
inspection and quantitatively by NSE (Nash and Sutcliffe, 1970), RVE (Janssen and Heuberger, 1995) and
Qbias (Habib et al., 2014a) following equation (5.23), (3-24) and (3-25) respectively.

Table 3-8 Summary of objective functions used in previous studies for HBV calibration process

# Objective function Method Reference This study
t NSE, Qbias Monte Carlo (Habib et al., 2014a) Based on these
2 NSE, RVE Monte Catlo (T. H. M. Rientjes, Perera, et al., references for this
2011a) study NSE, RVE,
3 NSE, NSEiog Monte Carlo (Radchenko et al., 2014) and Y were used
4 NSE, RVE, NSEy, NSE;, Monte Catlo (Deckers et al., 2010)
5 NSE, RMSE, Bias Monte Catlo (Abebe et al., 2010a)
6 NSE, LnNSE Monte Carlo (Nauditt et al., 2017)
7 NSE, MeanDiff, RVE Manual Trial and Error (Sendama, 2015)
8 RVE, NSE Manual Trial and Error (Likasa, 2013)
9 NSE, RVE Manual Trial and Error (Lyimo, 2015)
NSE = 1 — Z?:l (Qsim(i) - ans(z‘))2 3-23

Z?=1 (ans(i) - @bs(z))z
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Range: minus infinity to 1. Best = 1, Accept >0.6

RVE = Z?:l Qsim(i) - Z?=1 Qobs(i) +100% 3-24
Z?:l Qobs(i)
Range: minus infinity to infinity. Best = 0%, Accept between 5%
?:1 Qsim 3-25
Qbias = ~n A
i=1 Qobs

Quias value of 1 indicates bias-free simulated streamflow, a value larger than indicates overestimation of
streamflow whereas a value less than 1 reflects underestimation of simulated streamflow.

Where iis time step, n is a total number of the time step. Qobsis observed discharge, Qsim is simulated
streamflow, Qobs with top overbar stands for average observed discharge, NSE is Nash and Sutcliffe
efficiency and RVE is a relative volumetric errot.

Sensitivity analysis

To quantify on the uncertainty of the calibrated model and to see how the model is sensitive to certain
changes in input data sensitivity analysis is a crucial step in modelling (modified after Rientjes, 2015).
The sensitivity of the model parameters in affecting the simulated streamflow was carried out. The
sensitivity analysis was done by changing one parameter at a time while keeping others fixed. In this
procedure, the first focus was on the match between the simulated and observed baseflow. Then, fitting
the peak flows, rising and falling limb, and the time gap between the simulated and observed flow were
analyzed. In this manner, the effect of parameters on simulated streamflow was checked by changing its
value * (10-60%). The model was run for each parameter, and subsequently, objective functions are
calculated to understand and analyze the most sensitive parameter in the watershed. Finally, the objective
functions (NSE and RVE) for each result were calculated and graphed for assessment.

3.13. Water balance closure analysis

According to Rientjes, (2015) water balance closure for a closed basin implies that rainfall input will be
equal to streamflow and ETa over a multi annual time period. This means the difference is equal to zero
or change in storage over the assessment period is zero. Water balance closure analysis is done based on
the main principle (5.).

3-26
P —ETa— Q = ms
Where: P is precipitation [mm/day], ETa is actual evapotranspiration [mm/day], Q is a streamflow

[mm/day] and d/d(t) S is change in water storage [mm/day]

Comparison of streamflow and water balance closure

The modelling result of this study is partitioned into two conditions.

Condition 1: First, the model is calibrated and validated based on gauge rainfall and observed streamflow.
Second, to assess how the systematic errors in satellite rainfall estimates propagate in streamflow
simulation results, the optimized set of parameters by the use of in-situ rainfall to force the model is used
to simulate uncorrected and corrected satellite rainfall forcing. Third, the influence of satellite potential
evaporation in simulating streamflow is evaluated by replacing in-situ Hargreaves ETo with satellite-based
potential evaporation. Then after, the simulated streamflow-based satellite PET, uncorrected and
cotrected SRE products are compared with obsetved discharge.

Condition 2: The optimized parameter set by means of in-situ based rainfall are recalibrated using the
bias corrected SRE products from CMORPH, ARC2, and CHRIPS. The optimized parameters and model
performance are presented in tabular form. Simulated streamflow from the recalibrated bias corrected
satellite rainfall was compared with observed and simulated streamflow with in-situ based gauged rainfall
(conditionl).
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4. RESULTS AND DISCUSSION

This chapter describes and discussed the results obtained in daily bases.

4.1. Landcover map

Figure 4-1 shows Wabe landcover map with three classes. Cereal crop is the dominant 1491 km? (80.76%)
of a watershed, the second Forest with an area of 348 km? (18.84%) and the last is built up 7km? covering
0.4% of the Wabe watershed. Note that, ceteal crop is merged from different signatures such that Inset,
Maize, Barley, Teff, Sorghum and Beans whereas, Forest is merged with Chat and deciduous and

evergreen forests.
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Figure 4-1 Wabe classified land cover map

Table 4-1 depicts the accuracy assessment result of land cover classification. The results of landcover for
period 2018 in Table 4-1 showed 74.46 and 0.63 of overall classification accuracy and Kappa statistics
respectively which is in substantial range (Rwanga and Ndambuki, 2017). Based on the accuracy result for
each class built up and forest pixels were effectively sampled into the ground landcover classes with 1 and
0.96 Kappa statistics respectively. The kappa statistics for cereal crop is 0.46. Perhaps, this lower statistic is
due to positional errors in reference (accuracy of GPS) data and errors in a classified map. For example, in
Table 4-1, 32 Built up, and 19 Forest pixels are erroneously included (commission etror) to cereal crop
evidenced with producer’s accuracy (omission error) of 25.38 and 77.38 respectively. Similarly, some
classes not spectrally separable inset (cereal crop) and forest, traditional built-up area and Forest see
section 2.1.2 Figure 2-4.

Table 4-1 Accuracy assessment result for landcover classification

Kappa statistics
Reference data Accuracy totals Accuracy [%] PP

(K]
Cereal Forest Buile Reference  Classified Number Producers Users Overall Overall
crop u Correct
Cereal 45 19 32 131 180 129 98.47 72
crop 80
Forest 2 65 0 84 67 65 77.38 97 0.63
Builtup 0 0 1 43 1 1 25.38 100
Total 131 84 43 258 258 205
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Figure 4-3 Scatter plots for daily PET-20km, FEWSNET PET and Hargreaves PET (left side) and cumulative plot
(right side) (2012-2016)
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Table 4-2 Evaluation of PET-20km and FEWSNET PET with reference to Hargreaves (2012-2016)

FAO-56  PET-  owoNET m PET-20km ETo = FEWSNET ETo
Performance  Hargreaves 20km ET 2
ETo ETo °

Sum 6665 5983 1 l
Diff 1481 2162 5 - [ .
ME 8146 081 -1.18 . l

CcC 0.70 0.55

RMSE 1.09 1.46 =

ME cC RMSE

4.3. Performance of satellite rainfall estimates from CMORPH, ARC2, and CHRIPS

The point to pixel comparison of uncorrected SRE products from CMORPH, ARC2, and CHRIPS is
shown by scatter plot (Figure 4-4), Taylor diagram (Figure 4-5), accumulated rainfall (Figure 4-6) and
mean annual rainfall Figure 4-7.

The performance comparison of all six stations is shown in Figure 4-4. The legends for six-gauge stations
is the same as in first station (Imdibir). The three SRE products represent spatial rainfall distribution
reasonably well with some differences among this product at a station. CHRIPS shows rainfall depth up-
to 60mm for all station while the lower value is shown at the gauge location. There is no substantial
difference between ARC2 and CHRIPS at Gubire and Woliso station. However, all products show rainfall
estimates far away from 1 to 1 line. Here satellite rainfall detection is visualized from the scatter plots. At
ordinate satellite, retrieval shows > 0 but gauge =0 whereas at abscissa rain gauge >0 but satellite rate is 0
and this is happening at 6 stations.
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Figure 4-4 Scatter plots at abscissa rain gauge and at ordinate satellite showing the performance of uncorrected
satellite rainfall estimates from CMORPH, ARC2, and CHRIPS in Wabe watershed for the 6-gauge station in daily
bases (2012-2016). The solid lines are linear fits to the data; the 3 small dotted lines depict each product.

Figure 4-5 shows Taylor diagram showing a concise statistical summary of the performance of raw
CMORPH, ARC2 and CHRIPS with gauge rainfall in terms of standard deviation, a coefficient of
cotrelation and root mean square error. In the diagram A =gauge, B=CMORPH, C= ARC2, and D =
CHRIPS for the study period 2012-2016. The position of CBD represents how the SRE products match
with the reference in-terms of standard deviation (drawn at abscissa and ordinate), correlation coefficient
(in the azimuthal line) and RMSE (the cantered curved line). As shown, the correlation coefficient lies
between 0.2 to 0.43 indicating weak agreement between SRE products against the reference. ARC2 and
CMORPH show a lower correlation at higher elevation but, CHRIPS shows poor CC (Fato station) and
good correlation at lower elevation (Woliso station). This result is consistent with (Yang and Luo, 2014)
who evaluates performance of CMORPH (in China) found that, SRE are affected by terrain factors.
However, they Yang and Luo, (2014) that CMORPH overestimates rainfall depth which contrast with this
study. CMORPH and ARC2 have a consistent standard deviation for all gauge locations except at Gubire.
The mismatch at Gubite station presumably is due to poor gauging with error of the ground observation
data (see section 3.2.1). Although, at all gauge station CHRIPS has the largest distance by standard
deviation from the reference. ARC2 has the lowest STDEV followed by CMORPH. To summarize,
ARC2 outperforms CMORPH and CHRIPS at higher elevation (Fato) with CC =0.3, STDEV=5.2 and
RMSE =7.4 (also see

Appendix 2A).
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Figure 4-5 Taylor diagram showing a statistical comparison of reference gauge against CMORPH, ARC2 and
CHRIPS from (2012-2016)

The Taylor diagram was drawn using the MATLAB code (https://stackoverflow.com/questions /24999338 /+-
taylor-diagram-plotting). As such, the range for standard deviation (STDEV), correlation coefficient (CC),
and root mean square error/difference (RMSE/RMSD) is automatically assigned. The STDEV and
RMSE ranges for Imdibir, Fato, Woliso, and Wolkite are 8. While station Gubire and Agena reaches up to
10. Overall, in terms of the accumulated error and CC, CMORPH performs well in all stations except
Woliso (medium elevation) and Fato (high elevation). CHRIPS and ARC2 follow.

Figure 4-6 shows the double mass curve accumulated rainfall comparison CMORPH, ARC2, and
CHRIPS for Wabe watershed 2012-2016. As shown in Figure 4-6 the uncorrected rainfall accumulation
matches with in-situ at gauge location Wolkite (5122mm) with relatively slight overestimation by CHRIPS
(5958mm), ARC2(5142mm) and CMORPH (5532mm) located in lower elevation. Probably, the
overestimation at Wolkite could be a quality issue of the gauge observation (slightly smaller annual rainfall
compared Woliso at nearest location) see 3.2.1 At higher elevation (Fato station) the most
underestimation is observed by ARC2 (3713mm) followed by CMORPH (4105mm) and CHRIPS
(5059mm). This result is consistent with the study of (Dinku et al., 2018; Funk et al., 2014; Gumindoga et
al., 2016) who concludes similar underestimation by SRE’s at higher elevation but for different basins. As
discussed in the methodology section 3.2.2 there is high mean annual rainfall at Gubire station (see Figure
3-4). That issue is depicted from this comparison for Gubire station. ARC2 and CMORPH show the
overall underestimation for stations Imdibir, Agena, Fato, Gubire, and Woliso respectively. CHRIPS
shows good match in terms of accumulated rainfall at Imdibir, Agena and Woliso.
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Figure 4-6 Double mass curve showing the accumulated amount of rainfall of the gauge against uncorrected satellite
rainfall estimates from CMORPH, ARC2 and CHRIPS in Wabe basin in daily bases (2012-2016)
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Figure 4-7 shows the mean annual (2012-2016) rainfall of CMORPH, ARC2, CHRIPS, gauge and the elevation of 6-
gauge stations. The result shows that three SRE products underestimate mean annual rainfall at six stations. The
most underestimation is seen at the two-gauge stations (Fato and Agena). However, compate to gauge CHRIPS
matches annual rainfall depth followed by CMORPH and ARC2.
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Figure 4-7 Mean annual rainfall of gauge, uncorrected CMORPH, ARC2 and CHRIPS with gauge elevation (2012-
2016)

4.4, Evaluation of seasonality effect and bias decomposition

Lumped means the analysis is done for entire time series (2012-2016), wet season means the analysis is
done for three most rainy months (June, July, and August) and dry season all other months except wet
period.

Figure 4-8 shows the total and average bias of the three satellite rainfall products in the entire time seties,
wet and dry season (2012-2016). The total and average bias value in Y-axis is multiplied by 100 (as shown
’00). The accumulated bias means the sum of hits bias, missed bias, and false bias. For the lumped analysis
CHRIPS indicates the highest accumulated bias for all gauge locations which is followed by ARC2 and
CMORPH. To understand the satellite products in retrieving rainfall depth in wet and dry seasons the
same procedure is applied. In the wet season the total bias in CMORPH increases up-to 2500mm (at
Woliso) compared with 1500mm in dry season (at Fato). In average for lumped, wet and dry season the
three SRE’s follow the same pattern with the lowest bias of CMORPH followed by ARC2 and CHRIPS.
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Figure 4-8 Total and average bias of uncorrected CMORPH, ARC2, and CHRIPS satellite rainfall
products in Wabe watershed 2012-2016. Top (lumped), middle (wet season) and bottom (dry season), Avr

refers to average

The total bias analysis does not give a clear indication for a source of error in satellite rainfall estimates. In
other words, there is no clear indication of seasonal variability. Therefore, the total bias is decomposed to

three bias as shown below.

Figure 4-9 shows the total bias decomposed to hit bias, missed bias and false bias for daily rain depth. The
calculation is based on section 3.7. The top clustered column shows the decomposition considering the
entire time series. As shown in this assessment the main source of error for CHRIPS and ARC2 is missed
rainfall except at Gubire (red box) showing slight hit bias. On the other hand, there is no one clear source
of error shown for CMORPH. The founding reveals that the bias in each of the three estimates depends
on the season and elevation. This is consistent with (Romilly and Gebremichael, 2011) who evaluates
CMORPH, PERSIAN and TMPA in Ethiopia for different climatic basins.
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Figure 4-9 Bias decomposition of CMORPH, ARC2 and CHRIPS rainfall estimates at 6-gauge stations for the entire
study period on a daily basis (2012-2016)

The clear indication of the influence of seasonality on satellite rainfall estimate is shown from Figure 4-9.
False bias predominates during the wet season for all stations whereas missed rain prevails during a dry
period. CMORPH has a negative hit bias during the dry period for all six gauges. The issue of hit bias with

(out) considering seasonal variation is more visible in highest elevated station Fato.

4.5. Evaluation of detection capability of satellite rainfall estimates

Figure 4-10 shows the categorical measutes of selected satellite rainfall estimates from CMORPH, ARC2
and CHRIPS in entire time series (top), wet (middle) and dry (bottom) season against gauge observations
(2012-2016). As shown the highest detection capability is seen during wet season compared to dry season
by three SRE’s. The probability of detection indicates how the product is reliable in retrieving the rainfall
depth. As shown in Figutre 4-8 for the lumped analysis the fraction of rain events which were correctly
captured by CMORPH is within a range of 50 (Fato) to 78% (Woliso). ARC2 and CHRIPS have a
consistent pattern of POD with a range of 30 (Fato) to 42% (Woliso) with a slight increase by CHRIPS.
Note that Fato is located in highest elevation whereas Woliso is in the lowest elevation. This result
conforms with the study of Gumindoga et al., (2016) who evaluate performance of CMORPH in Zambezi
river basin. Also, it is consistent with Ward et al, (2011) who evaluates the performance of TRMM and
PERSIAN in complex mountainous terrain of Baker river basin in Argentina Patagonia. And also
conforms with Scheel et al, (2011) who assesses the performance of TRMM in the central Andes region.
This three authors concludes satellite rainfall estimates underestimate in the mountainous region and slight

match to overestimation at lower elevation.

49



Satellite-based rainfall and potential evaporation for streamflow simulation and water balance assessment

1.0

s Lumped B CMORPH ™ARC2 mCHRIPS

0.6 1
0.4 1
0.2 4
0.0 -

1.0
Wet season
0.8 -
0.6
0.4 -
0.2 -
0.0 -

Dry season
10 =

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1
POD| FAR | CSI | POD| FAR | CSI | POD| FAR | CSI | POD| FAR | CSI | POD| FAR | CSI | POD | FAR | CSI

Indibir Agena Fato Gubire Woliso Wolkite

Figure 4-10 Detection skill score of CMORPH, ARC2 and CHRIPS rainfall estimates at 6 gauge stations
for lumped (top), wet season (middle) and dry season) on a daily bases (2012-2010)

However, the POD of all satellite performs well duting the wet season. The falsely detected rainfall in wet
and dry season varies between 63-79% (Wolkite-Fato) and 18-45% (Agena-Wolkite) respectively. This
result corresponds to the seasonal dependency of satellite error source by Ward et al., (2011) and Scheel,
(2011). CMORPH detects the fraction of correctly identified rainfall in both seasons.

In summary, a POD of CMORPH performs with (out) season variation in all station, FAR of CHRIPS be
more than in all station except Woliso (three of them are similar FAR%) and highest performance of
CMORPH in-terms of CSI was seen in Wabe watershed. Compared to ARC2 and CHRIPS, CMORPH
performance well in-terms of CSI and POD presumably, due to its high spatial (8km) and temporal
resolution of 30 minute. This, results with reasonable detection score and fraction of correctly identified
rainfall depth.

In summary, the uncorrected SRE’s from CMORPH and ARC2 underestimates mean, maximum and
accumulated rainfall at the five-gauge location. CHRIPS underestimates mean and accumulated rainfall at
five locations but detects the maximum rainfall slightly higher than Insitu at Agena, Fato and Woliso
station. However, the three SRE’s overestimates maximum and mean rainfall at Wolkite station (see
Appendix 2A . The reason for overestimation at Wolkite station could be quality of gauge measured data
for this station since the mean annual gauge rainfall is smaller compared to other stations (see section 3.2.1
and Figure 3-4).
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4.6. Evaluation of satellite rainfall bias correction

Figure 4-11 shows the evaluation statistics of RMSE, CV and CC for gauge, uncorrected and bias
corrected SRE products (2012-2016). Appendix 1A shows accumulated sum, mean annual average, ratio,
and the standard deviation. The accumulated error in uncorrected ARC2 ranges between 6.8 to 7.6
[mm/day], CMORPH ranges between 7.2 to 7.6 [mm/day] and in CHRIPS ranges between 7.6 to 8.8
[mm/day] besides Gubite station. Initially, uncorrected estimates from ARC2, CMORPH, and CHRIPS
respectively perform well in-terms of RMSE. Afterward, from four applied bias correction scheme
distribution transformation shows outstanding performance in successfully reducing the accumulated
error for MORPH, ARC2, and CHRIPS at all gauge station.

This result conforms with (Fang et al, 2015; Gumindoga et al., 2016; Teng et al., 2015) who concludes the
distribution transformation based bias correction scheme reduces the accumulated error. As shown in
Figure 4-11 (A) the introduction of accumulated error after spatio-temporal bias scheme particularly with
time and space variable is observed. As discussed in section 3.9 subsection 3.9.2.1 there is no clear
common rule for the selection of time window, accumulated rain depth and number of rainy days to
determine the bias factor. Consequently, this bias scheme supptesses the accumulated error compared to
the uncorrected estimate and SD'T method.

Appendix 2A shows the overall statistical findings of bias correction scheme. As noted, from the table
there is no clear pattern of bias schemes in correcting the mean value of satellite rainfall estimates. The
spatio-temporal bias scheme (TVSV, TVSF, and TFSF) shows poor in matching the standard deviation
with gauge observation as well as uncorrected products. TVSV shows well performance in matching the
accumulated rainfall. There is an additional introduction of error by TVSF bias correction scheme.

As shown in Figure 4-11(B) distribution transformation bias scheme shows well performance with a
coefficient of variation range between 1.8 to 2.0 with respect to gauge (ranges between 1.7 to 2.0). On the
other hand, the spatio-temporal bias correction schemes lie far away from the gauge in-terms of a
coefficient of variation for instance, TVSV ranges 2.4 to 2.7 at the lowest and highest elevation. The CV
of TFSF, TVSF, and TVSV respectively shows reasonable performance next to SDT. In summation, at
high elevated gauge location of Fato SDT reasonably performs wheteas the three bias schemes purely
match with gauge.

Additionally, Figure 4-11 (C) shows the CC of gauge, uncorrected and corrected SRE’s products. The
uncorrected satellite rainfall estimates CC ranges between 0.2 to 0.4. Both CMORPH and CHRIPS have
low correlation coefficient of 0.2 at Fato station compared to ARC2 having a CC of 0.3. As shown in the
same figure SDT effectively improves a positive relationship with gauge up to 0.64. Next to SDT, TVSF
bias scheme has an improved value of CC.

The distribution transformation which reasonably performs in all stations in-terms of CC and RMSE
diminishes its performance at Fato station with an increased accumulated error up to ~20% and decreased
correlation by ~20%. The maximum daily rainfall depth in the watershed are underestimated by both
uncorrected CMORPH and ARC2 in all stations. On the other hand, the spatio-temporal bias correction
scheme suppresses the maximum rainfall depth with reference to gauge measurement (at Fato

gauge=48.5, TVSV = 99.3, TVSF = 121.3) (see Appendix 2A).

Further assessment of the accumulated difference of rainfall depth from gauge, uncorrected and bias
corrected satellite rainfall for entire time series, wet and dry season (2012-2016) is shown in Appendix 2B.
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Figure 4-11 Evaluation statistics for uncorrected and bias corrected CMORPH, ARC2 and CHRIPS. RMSE (A), CV

(B) and CC (C)

Figure 4-12 shows the bias and relative bias of uncorrected and four bias correction schemes for Wabe
watershed. The calculation of bias and relative bias is based on performance analysis section 3.6. The
result shows at Gubire station the largest negative bias and relative bias. This is due to the quality issue in
the gauge observation. As shown, the most bias is shown by uncorrected ARC2 (-1.3 at Imdibir and Fato
station -1.2) and CMORPH 1.0 in the same station. Except for the high elevated station of Fato TVSV
shows decreased bias in all station with slight under and overestimation. The distribution transformation
bias scheme performs next to the TVSV scheme. SDT has not underestimated in all gauge location for
three satellite rainfall retrievals. Except for Wolkite station the relative bias of uncorrected SRE ranges
from -0.1 to -0.3. Although, TVSV and SDT show similar pattern in-terms of relative bias.

To summarize, TVSF has the most negative bias and relative bias like uncorrected SRE’s. Except for DT
all other has a negative bias and relative bias at high elevated Fato station. There is no consistent pattern
with the TFSF bias cotrection scheme. TVSV shows lowest bias (~0.1) followed by DT (0.15).
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Error! Not a valid bookmark self-reference. shows the percentage of days belonging to six rainfall

intensities for Wabe watershed for gauge, uncorrected and four bias corrected satellite rainfall estimates.

SRE CMORPH ARC2 CHRIPS
RE-Intensity [ 0-1 125 255 510 1020 >25| 0-1 1.25 255 510 1020 >25 [ 0-1 125 255 510 1020 >25
Raw | 68 88 66 77 59 33|79 06 31 79 66 30|78 01 19 68 91 44
Gauge| 64 67 90 85 75 43| 64 67 90 85 75 43| 64 67 90 85 75 43
§ BFnsy | 67 79 68 72 61 45| 79 04 30 66 63 49| 78 01 21 62 86 54
E |BFnsr| 65 54 70 108 84 32| 8 16 30 67 65 19| 8 16 26 60 54 36
BFrsr | 66 72 66 79 69 50| 79 01 18 57 79 57| 78 01 10 55 98 60
Sor | 55 107 108 115 82 37| 61 64 88 97 85 51| 62 55 78 103 95 45
Raw | 70 74 74 68 57 32|80 06 32 78 61 27| 8 01 13 55 82 55
Gauge| 60 89 80 106 84 44| 60 89 80 106 84 44| 60 89 80 106 84 44
g |BFns| 69 69 64 64 60 55| 8 04 24 50 63 62| 8 01 14 55 63 72
2 |BFnsr| 68 59 61 97 66 42| 81 14 27 66 55 25| 8 11 20 53 57 33
BFsr| 68 68 66 76 62 49| 8 02 14 59 76 53| 8 00 08 50 80 66
sor | 54 100 117 108 101 37| 60 67 78 114 94 49| 61 50 73 113 106 44
Raw | 74 62 61 61 55 24| 8 08 28 68 61 22| 8 01 29 57 74 4l
Gauge| 70 38 47 71 109 39| 70 38 47 71 109 39| 70 38 47 71 109 39
o |BFmw| 73 60 58 61 51 38 | 81 07 24 61 58 36| 8 01 26 49 79 48
S IBEne| 72 49 56 85 57 33| 8 11 20 43 62 39| 82 12 23 53 46 43
BFmsr | 73 50 61 57 63 42 1 04 15 43 79 45| 8 01 19 55 75 54
Sor | 59 73 93 109 91 45| 66 44 67 82 94 49| 68 43 56 92 85 48
Raw | 67 79 66 87 66 36| 77 09 26 72 81 37|76 02 22 80 84 49
Gauge| 64 1.8 29 80 146 83 | 64 18 29 80 146 83 | 64 18 29 80 146 83
£ |BFns| 66 72 68 80 67 49| 77 08 27 63 74 54|76 02 22 73 80 60
& |BFnsr| 65 51 74 105 80 43| 79 16 35 62 68 28| 8 15 33 67 52 37
BFrr | 65 68 67 84 69 61| 77 03 14 48 87 73| 76 02 15 70 88 63
Sor | 51 7.0 84 123 129 8/ | 57 39 58 100 128 106| 59 41 54 96 116 105
Raw | 69 70 70 74 67 28| 78 09 33 73 76 33| 77 01 20 74 100 39
Gauge| 65 7.1 72 98 70 37|65 71 72 98 70 37|65 71 72 98 70 37
2 |BFns| 69 66 62 74 66 42| 78 08 27 66 74 47| 77 01 23 77 85 48
£ |BEnsr| 67 57 53 89 78 51| 8 17 23 51 70 43| 79 15 27 58 64 48
BFrr | 68 59 65 73 79 46| 78 03 18 55 82 66| 77 00 14 65 100 55
Sor | 58 97 85 129 77 34 | 63 60 76 106 88 45| 62 61 74 112 93 37
Raw | 67 76 66 82 70 37| 77 07 36 71 80 34| 76 02 20 84 91 44
, |Gauge| 66 37 96 110 80 21| 6 37 96 110 80 21| 66 37 96 110 80 21
E |BFnw| 67 72 70 72 68 48| 77 07 32 66 73 51| 76 03 22 78 90 48
£ |BFnss| 64 61 66 103 86 44| 79 15 34 66 66 32| 79 13 29 70 60 34
BFmsr| 66 60 66 78 79 57| 77 05 16 54 84 71| 76 00 14 71 97 58
sor | 55 102 125 120 75 24 | 59 55 114 125 86 27| 59 78 86 129 84 30

The uncorrected and corrected pixel rain rates from three satellite products are compared in terms of

capturing the percentage of rain rate with reference to six-gauge rainfall station. The uncorrected SRE
from CMORPH and ARC2 overestimates the dominant light showers and underestimating (except at

Wolkite station) the maximum rain rates. Perhaps, this underestimation of the dominant light showers at
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Wolkite station could be consistent with the lowest observed rainfall from the gauge. The CHRIPS
product overestimates the maximum rain rates (>25mm) in a five-gauge location except for Gubire. The
dominant rain rate (<1mm) from ARC2 and CHRIPS is effectively captured with distribution
transformation bias scheme with reference to gauge measurement. This is consistent with the study of
(Gumindoga et al., 2016) who use five rainfall intensity classes with light showers <2.5mm and he
concludes SDT is the best bias correction scheme in the Zambezi basin.

Figure 4-13 shows percentage of rain rates based on gauge measurements. Based on gauge observations
the average percentage of rain rates in the watershed are 65, 6, 8, 9, 8 and 4 for 0-1, 1-2.5, 2.5-5, 5-10, 10-
20 and >25 respectively. This evidence, the dominant rainfall in the watershed is light showers (<1mm)
and the lowest is heavy rainfall (>25mm). The rainfall intensity analysis result for Gubire gauge station
(bold) shows differences compared to 5 other gauge stations even it is nearer to Wolkite station.
Particularly, Gubire station showing lower and the highest percentage of measured rainfall of 1 to 5mm

and 5 to >25mm respectively. This probably is due to the quality of ground observation (see section
3.2.1).
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Figure 4-13 Percentage of rain rates in the study area based on gauge measurement

All in all, the bias correction result in Wabe basin shows the performance of the selected scheme varies
with respect to evaluation metrics. Also, the result reveals that there is no perfect bias correction scheme
which matches the gauge observation. However, there is some definite improvement of correcting satellite
rainfall estimate. In this manner, the distribution transformation bias scheme outstands the spatio-
temporal in-terms of the reasonable match between daily maximum rainfall depth, standard deviation, a
cocfficient of variation, a coefficient of correlation and root mean square error. The reasonably successful
performance of SDT bias scheme is shown using Taylor diagram (see

Appendix 2C).

In terms of matching the mean, ratio and accumulated rainfall the time and space-variant spatio-temporal
bias scheme shows good petformance. From this study, the two first and second bias correction schemes
are SDT and TVSV respectively followed by TVSF and TESF. Therefore, SDT corrected satellite rainfall
estimate are used for the streamflow simulation and water balance assessment.

Appendix 2Cshows double mass curve of the accumulated amount of rainfall of the gauge against
distribution transformation bias scheme in Wabe basin in daily base 2012-2016. The consistency of
cotrected satellite rainfall estimates follows with slightly increased rainfall depth by SDT.
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47. HBV-Light rainfall runoff modelling result

4.7.1.

Elevation influence on HBV Light model simulation

Figure 4-14 table (middle) and clustered column(bottom) and Figure 4-15 depicts the inventory result for change in

precipitation with elevation for the period June 2014 and 2015. In the figure (top) location and elevation variation for

met-gauged station is shown (also see Table 2-1
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Figure 4-14 Inventory of rainfall variation with elevation

Table 2-1 Summary meteorological data
collected from NMAE during fieldwork
)- The selection of month June and Year
2014, 2015 out of study time window
(2012-2016) is due to rainy month, good

quality and  non-missed  gauge
observation. In mountainous areas
elevation significantly affects

precipitation rate. The result from both
gauge Figure 4-14 and satellite rainfall
products Figure 4-15, it is evident that
there is no clear consistent increase in
precipitation with elevation in the Wabe
watershed. For instance, gauge inventory
in 2014 reveals good indication with
respect to average rainfall in high
elevated Fato station but this is not the
case with maximum rainfall and average
rainfall in both years. The same analysis
from ARC2 and CHRIPS signals shows
there is no significant consistent pattern
of rainfall increase with elevation in the
basin. Similar sort of analysis but for
longer window and different rainfall
spatial scale were made in China by Xu,
(2018) and Chen, (2015) shows there is
no significant change of precipitation
small
temporal and spatial scale is tested was

with  elevation. Presumably,
not shown the lapse rate pattern. As
stated by (Seibert and Vis, 2012) but for
different catchment and preliminary
analysis from this study catchment
setting was adopted.
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4.8. Model sensitivity analysis, calibration and validation result

4.8.1. Model initialization and sensitivity analysis
Table 4-3 Shows parameter values used in the initialization of the model (2007-2008). Virtually, the model
well-simulated baseflow at the end of wet season while there is mismatch of baseflow at onset of wet

period. The timing of simulated peak flows, rising and the model well captures recession limbs.

Table 4-3 Parameter value used during initialization of the model

Para  FC LP BETA PERC UZL KO K1 K2 MAXBAS
meter  [mm] - [mm At  [mm]  [I/Aq  [1/A]  [1/A]  [Aq
Value  (145,13545)  (0.75,0.65,0.55)  (0.6,0.350.45)  0.45 65 018 0.00087 00067 1.23

Figure 4-18 shows the sensitivity analysis of the model to changes in nine catchment and vegetation
parameters. The effect of each parameter in simulated streamflow is virtually visualized and evaluated with
NSE and RVE. The result shows that the most sensitive parameters in Wabe watershed are LP, PERC,
BETA and KO are four most sensitive parameters followed by FC and K1. The remaining three
parameters those controls groundwater contribution (K2), the threshold parameter (UZL) and the
transformation weighting parameter (MAXBAS) are less sensitive but has their effect in the simulated
streamflow. This result is consistent with Mohamed et al., (2010) who applied HBV in Gilgel Abay
Ethiopia, and revealed that the most sensitive parameters are FC, PERC, BETA, K1 and K2. Abebe et al.,
(2010Db) assess a parameter sensitivity of HBV Light in United States catchment and found that MAXBAS,
PERC, FC, BETA, LP and K1 are sensitive parameters. Furthermore, Lidén and Harlin, (2000) evaluated
HBV-96 model in four different climate zones (Turkey, Zimbabwe, Tanzania and Bolivia) and found out
that MAXBAS, KO and K1 are sensitive while FC and PERC are insensitive.

Discussion on the effect of model parameters in simulated streamflow

FC: The storage of soil zone (FC) mainly affects actual evapotranspiration and amount of water in soil
box. Decreasing FC from the optimized value sharply decreases the amount of water in soil box and
actual evapotranspiration by increasing simulated streamflow with RVE =3. While, increasing FC
decreases the simulated streamflow by RVE= -8.4. The decrease in streamflow by increased FC is due to
its inverse relation to the recharge with UGB.

LP: The soil moisture value above which ETa reaches PET parameter affects the simulated streamflow as
shown in Figure 4-18. The smaller value of LP simulates too little streamflow with RVE = -26.3. Also, it is
observed that ETa and amount of water in soil box increases during the wet season following rainfall
pattern, and during peak rainfall events ETa reaches PET. Increase in LP decreases model simulated ETa.
BETA: A parameter that determines the relative contribution of runoff from rain. Lower and larger
BETA value increases and decreases simulated streamflow respectively. For instance, BETA = 0.1 reduces
AET, an abrupt change in rising limbs and peak flows, and less effect on LGB. The decrease in simulated
streamflow by an increase in BETA indicates soil moisture is less than the maximum water holding
capacity FC.

PERC: Percolation rate occurring when water is available. It mainly affects the base flow, upper
groundwater box (UGB) and lower groundwater box (LGB). The effect of PERC is not captured by the
performance analysis of RVE and NSE. For instance, at PERC = 0.1 and 0.6 RVE is (-2.65, -2.54)
whereas NSE is (0.7, 0.71). Results of further analysis of the effect of PERC on baseflow, UGB and LGB
is shown in Figure 4-17 and Figure 4-16 respectively. Lowering PERC increases storage in UGB by
reducing in LGB and vice versa. This is because PERC controls flow from UGB to LGB. In summary,
increased PERC, results in an increase in delayed runoff and decreased peak flows.
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Figure 4-17 shows the effect of PERC in simulated baseflow. Ten PERC values are selected between 0.1
and 6. There is no best fit with observed streamflow for selected value range. The PERC value above 0.4
increases the simulated baseflow while the value below 0.4 deviates the baseflow with reference to

observed streamflow. This is shown by the zoomed part of Figure 4-17 (B).
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Figure 4-17 Effect of PERC parameter on simulated baseflow. A (2012-2016) and B (2015, Jan-Mar)

In the HBV Light version model, PERC value ranges from 0 to infinity (Seibert and Vis, 2012), while it
was 0.1 to 2.5 in previous HBV version (Deckers et al., 2010). In this study area PERC,> than 1.5 does

not show the hydrograph pattern of simulated streamflow.
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Figure 4-18 Sensitivity of parameters and their effect on model performance
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UZL: Varying UZL between 5, 60 and 100 significantly affects the upper and lower groundwater box (

). Uniform storage is seen for LGB for the dry and wet season at UZL = 60 and 100. However, there is an
abrupt change in UGB at UZL =60 and 100. For instance, at UZL =60 and 100, the UGB matches for
the beginning dry months (Jan, Feb and March of 2012 up to the beginning rainy month (June).
Afterward, UGB increases in entire time seties (2013-2016) for both dry and wet seasons at UZL =100.
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Figure 4-19 The effect of UZL parameter on upper and lower groundwater box

KO0: Changing recession coefficient Ko between 0.0075 to 0.6 highly effects the overall volume and shape
of the simulated hydrograph. For example, a smaller value of KO = 0.0075 virtually does not show rising
limbs, recession limbs, and peak flows while showing a straight line with RVE = -10.35 and NSE = 0.01.
On the other hand, KO value >0.15 effects peaks, rising and recession limbs. Ko has no visible effect on
base flow and ETa. Besides underestimated volume at KO =0.0075. KO mainly affects the overall shape
of the hydrograph with NSE ranges between 0.01 to 0.072. Most sensitive in peak flow.

K1: No effect on ETa and minor underestimation on overall volume. Varying recession coefficient K1
value within the range of 0.00015 to 0.15 affects NSE from 0.72 to 0.68 and RVE -2.6 to -2.7. K1 mainly
affects the intermediate rising and recession limbs. Larger k1 increase LGB and highly decreases UGB,
abrupted peak value and poor hydrograph shape.

K2: Virtually there is no visible change on baseflow, peak flow, rising and falling limb. Also, this is
evidenced with no change in RVE and NSE value with changing K2 range between 0.0015 to 0.4.
Howevert, at a smaller value of K2 lower groundwater box increases and larger value LGB decreases.
MAXBAS: Length of triangular weighting function (MAXBAS) value changes between range 1 to 10
results without significant difference in NSE and RVE. At a smaller and larger value of MAXBAS
constant value of NSE and RVE are observed in Figure 4-18.  On the contrary, at larger value of
MAXBAS virtually there is a shift in rising limbs, recession limbs, and peak flows.
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4.8.2. Model calibration result

Figure 4-20 shows comparison of observed and simulated streamflow (2012-2016). The optimized
parameter sets are shown in Table 4-4. As the peaks are too low also baseflows is not fitted. The
mismatch of baseflow is checked for different values of PERC in sensitivity analysis section 4.8.1 (see
Figure 4-17). The simulated streamflow shows consistent pattern with rainfall at the onset of each wet

season (red dotted double arrow) showing reasonable model performance with NSE =0.72 and RVE = (-
2.6%).

Compared to the observed streamflow (high peaks marked by red dotted boxes) the model continuously
underestimates the peak flows for the entire time series exceptionally with a slight match in 2013.
Likewise, the pattern of rising and recession limbs are not matched at the onset and end of the wet season
in 2013 and 2014. This result is consistent with (Chaemiso et al., 2016) who forces the SWAT2005 model
with eight-year (1988-1995) gauge-based data in the same river basin (whole Omo Gibe river basin see
section 2.1) which results in too high base flow and too low peak flows. In the study of Chaemiso et al.,
(2016) the gap between (timing) simulated streamflow and obsetved discharge is too high with the model
performance of NSE= 0.626. This study is consistent with Mohamed et al., (2010) who assess catchment
behaviour with catchment modelling in Koga catchment (Ethiopia) with model performance of NSE
=0.64. He found that the mismatch of low flow and high flow were affected by observed data quality.
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Figure 4-20 Calibration result for Wabe watershed (Jan.2012-Dec.2016)

Focusing on baseflow the calibration results for different catchment characteristics but, for same HBV
model structute is compared with this study result. For instance, (Rientjes et al,2011) in their lake level
simulation for nine gauged catchment used PERC = ranges between 1.02 to 2.32 (Ethiopia), (Deckers et
al., 2010) used PERC=0.64 in their regionalization study for catchment variability (England), (Mohamed
et al, 2010) used PERC =1.7 in their study of analysing catchment modelling (Ethiopia) and (Aguirre et al.,
2013) used PERC=0.03 in their study on sensitivity and uncertainty of HBV model (Mississippi). In their
study, they pointed out that PERC parameter mostly affects simulated baseflow while the model
performance ranges between 0.43 to 0.86 with NSE. In this study, different values of PERC is tested and
0.4 is used as an optimized value see section 4.8.1 and Figure 4-17).

In practice, it is assumed that recorded values of observed discharge are accurate to compare the model
simulation. However, as discussed in section 2.2.2 the shallow nature of the catchment and, the increase in
water level during the wet season was noticed. Finally, and perhaps most importantly, the continuous
mismatch in-terms of baseflow, peaks, rising limbs (onset of rainy season) could be due to, rating curve

may not properly capture the stage-discharge relationship (which changes over multi annual cycle) see
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section 3.3.1, the given network of rainfall stations may not capture spatial variability of rainfall (see Figure

2-5 and Table 2-1), spatial interpolation errors, model structure and considered landcover map effect.

Table 4-4 shows the optimized parameter values when the model is forced by gauge observation
(conditionl) and bias corrected SRE’s (condition2). The three parameter values assigned for FC, LP and
BETA represent parameter value at each of three vegetation zones. The first is for cereal crop second,
Forest and the third is for Built up. For each independent forcing, the sensitive parameters are adjusted
until baseflow, rising limb, recession limb, peak flow matches, and the difference between the simulated
and observed streamflow is minimized. From the result in Table 4-4, it is understood that the optimized
parameters are inevitably related to calibration forcing. The different sort of optimized parameters shows
that calibrated parameters are data dependent. The comparable analysis was made by (Abebe et al., 2010b)
who explains the change in patameter depend on model forcing data used and unsteadiness in dominant
watershed process.

Table 4-4 Optimized model parameters of Wabe watershed. Condition 1 (calibration based on gauge
rainfall) and condition 2 (calibration based on bias corrected SRE from CMORPH, ARC2, and CHRIPS
2012-2016.

Calibration
Range Condition 1 Condition 2 (Corrected-SRE)
Parameter . Default
Min  Max (Gauge) CMORPH ARC2 CHRIPS
FC [mm)] 0 inf 200 (150,125,50) (250,150,70) (265, 185, 100)  (295,155,85)
LP [4] 0 1 1 (0.95,0.85,0.75)  (0.85,0.2,0.55)  (0.55,0.45,0.35)  (0.75,0.25,0.15)
BETA [ 0 inf 1 (0.5,0.95,0.5) (0.7,0.55,0.5) (0.65,0.77,0.45)  (0.68,0.47,0.045)
ZE}]{C mm inf 1 0.4 035 0.205 0.108
UZL [mm] 0 inf 20 60 56 77 69
KO [1/Aq] 0 1 0.2 0.15 0.13557 0.15 0.125
K1 [1/Aq] 0 1 0.1 0.00075 0.0075 0.0085 0.00775
K2 [1/Aq 0 1 0.05 0.0055 0.00055 0.0005 0.00577
MAXBAS [Af] 1 100 1 1 1.11 1 1.2
Model performance
Qbias 0.974 1.017 0.997 0.994
NSE 0.72 0.63 0.66 0.65
RVE -2.6 1.74 -0.3 -0.58
Validation
Qbias 1.07 NSE 0.77 RVE 6.78
4.8.3. Validation result

Figure 4-21 shows validation hydrograph result (2009 and 2011). The analysis is based on the optimized
parameter used to calibrate low flows and peak flow from gauge observation. The baseflow is well
simulated by the model from the end of wet season onwards. High peaks are not well captured by the
model. However, the model well simulated the patterns of rising limb high flows compared to calibration
result (except in high peaks in rainy season). Baseflow is underestimated in the dry season of 2009
(January, June, and March) and becomes higher afterwatrd (Sep 2009-Dec 2011). Perhaps, the
underestimated baseflow could be due to infiltration of most rainfall from the forest and cereal crop
(Enset) landcover types. And, the higher baseflows onwards could be the contribution from each land use
type. Improved model performance is obsetved with NSE of 0.77 compared to 0.72 obtained during
calibration. This is consistent with the study of (Mohammed et al, 2010) who validated HBV model with
five-year time seties(199-2000) in Koga (Ethiopia) and (Chaemiso et al., 2016) who validated SWAT2005
with four-year time series (1992-1994) in Omo Gibe (Ethiopia), and found out that increased model
performance during validation. And also, (Rientjes et al., 2011) validated lake level simulation for six
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catchments and obtained best NSE for four catchment compared to their calibration result (for example,
NSE= 0.78/ calibration and NSE=0.87 /validation for Ribb catchment).

In this study, the reason for better model simulation performance during validation (NSE=0.77)
compared to calibration (NSE=0.72), is likely to be better data quality of the validation period (less missed
data). However, the RVE (6.78%) and Quias (1.07) deteriorates compared to calibration result (see Table
4-4). Although, as marked with red dotted box small peak flows in the onset of the rainy period is not
simulated by the model. The qualitative and quantitative assessment reveals two principles of the model
(Rientjes, 2015; Seibert and Vis, 2012) rubbish in much more rubbish out and good thinking and simple
logic help. This is evidenced in this validation analysis result. Initially, the time period of 2009, 2010 and
2011 was used as validation time window and giving very poor hydrograph pattern of simulated

streamflow as shown in

This is presumably due to the poor quality of observed discharge in 2010 also described in section 3.3.1.
After removing 2010-year data the model performance reveals reasonable result with reference to

observed discharge from 2009 and 2010.
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Figure 4-21 Validation result (2009 and 2011). Two vertical dotted lines indicate removed data (2010)

4.8.4. The effect of satellite potential evaporation on streamflow simulation

Figure 4-22 shows the comparison between observed, gauge simulated and simulated streamflow when in-
situ potential evaporation is replaced by satellite PET. It is noticed that thetre are continuous high peaks in
observed discharge during the wet season. Comparing the simulated streamflow from in-situ and satellite
potential evaporation two differences were observed. The first is, increased peaks flows with satellite PET
and second, delay in runoff transformation with in-situ PET. Perhaps, the highest peaks in streamflow
during the wet season when using satellite PET could be, due to its underestimation of potential
evaporation for the same season (see section 4.2). However, the slightly increased satellite PET retrieval
for three years (2012,2013,2015) does not propagate in the streamflow result.

Furthermore, the actual evapotranspiration result from the model when forced with Insitu ETo and
satellite PET has shown in Appendix 8A. Virtually ETa from satellite PET shows higher for entire 2016
up to dry season (June, July, and Match in 2013) then it matches with Insitu (Aug 2013-Sep 2015) and
afterward diminishes (Oct 2015-Dec 2016). Although, the seasonal pattern is seen from the same result.
There is slightly increased bias in simulated streamflow when forced with satellite PET (Qbias=1.02)
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compared with Hargreaves (Quias =0.974). Probably, the increased bias from satellite PET in consecutive
time step could be, due to a smaller outflow term (actual evapotranspiration).
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Figure 4-22 Compatison between observed, gauge simulated and satellite PET simulated hydrograph
2012-2016 (A) and zoomed to dry season of 2015 (B). The red dotted row shows zoomed data.

4.8.5. Comparing streamflow simulation with uncorrected and bias corrected SRE

Figure 4-23 A, B and C shows a comparison of simulated streamflow from uncorrected and bias corrected
SRE’s from CMORPH, ARC2 and CHRIPS respectively. Firstly, the result Figure 4-21 shows that all the
uncorrected CMORPH, ARC2 and CHRIPS underestimates the simulated streamflow. There is a poor
overall match in observed and simulated streamflow from uncorrected SRE. However, comparatively
uncorrected CHRIPS shows less underestimation with RVE -3.8. The most underestimation is seen by
ARC2 with RVE -25.2 followed by CMORPH with RVE -19.4. This indicates how the systematic error in
satellite rainfall estimates propagates in runoff prediction. Similarly, poorly matched hydrograph
characteristics are evidenced with NSE 0.63, 0.6 and 0.43 for CHRIPS, CMORPH, and ARC2 respectively
as shown in Table 4-5. Uncorrected CMOPH (Figure 4-23 A) and ARC2 (Figure 4-23 B) fails to
simulated peak flows in the entire time domain while uncorrected CHRIPS overestimates peak flows on
onset of wet season in 2014 and 2016 ( see Figure 4-23 C). In summary, in-terms of RVE, NSE, and Qbias
CHRIPS shows the highest performance followed by CMORPH and ARC2 (see Table 4-5).

Secondly, the effect of bias correction in CMORPH, ARC2 and CHRIPS streamflow simulation were
evaluated. Particularly, substantial improvement in simulated hydrograph after bias correction was seen for
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ARC2 and CMORPH those underestimated overall volumes of the hydrograph. This result is consistent
with (Habib et al., 2014a) who apply TVSV bias correction for CMORPH and get an improved result
(Gilgel Abay). Besides the improvement, after bias correction overestimation by three products were
observed with RVE in Table 4-5. Unlike, in uncorrected case, the three SRE simulates high flows in the
wet season and base flows in dry season reasonably well compared to observed as well as gauge simulated
(see Appendix6

). Also, the rising and falling limbs are slightly matched than the uncorrected case. Perhaps, this could
indicate the data dependency of calibration in modelling. This means the optimized set of parameters by
gauge rainfall may not reproduce streamflow with different forcing term. For the corrected SRE products,
in terms of accumulated error and fitting hydrograph shape in order CHRIPS, ARC2 and CMORPH
perform well respectively.
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Figure 4-23 Comparison of simulated to observed streamflow by model forcing with uncorrected and bias

corrected SRE’s 2012-2016.

4.8.6. Calibration result for SDT scheme SRE (Condition 2)

Figure 4-24 shows stream flow comparison of observed with forcing the model by gauge and bias
corrected SRE (2012-2016). Calibrating bias corrected SRE forcing results in less bias in simulating
streamflow compared to gauge forcing. Calibrating the model with bias corrected satellite products

reproduces the overall volume and fits most hydrograph characteristics compared with forcing the model

with gauge observation (see Table 4-5). Also, the individual comparison with observed discharge and

corrected SRE’s products are depicted in Appendix7.
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Figure 4-24 Comparison of observed and simulated streamflow by gauged rainfall and SDT bias corrected SRE

Compared to gauge-based simulation, the bias corrected ARC2, and CHRIPS shows reduced bias in
simulating streamflow with Qbias=0.997 and 0.994 respectively, compared with gauge (Qbi,s=0.974). In
contrast, fine tuning bias corrected CMORPH results in increased bias (Qpiss = 1.017) compared with
gauge simulation but, reduced bias compared to uncorrected (Quis=0.81). However, the overall shape of
simulated hydrograph is well captured with gauge based fine tuning (NSE=0.72) compared to bias
corrected SRE products (NSE=0.63 for CMORPH, 0.66 for ARC2, 0.65 for CHRIPS) see Table 4-5. The
simulated streamflow volume is well matched with the observed counterpart by fine-tuning the model
with bias corrected ARC2 (Qbi=0.997 and RVE = -0.3) (see Table 4-4). This result conforms with (Habib
et al, 2014) who forced the HBV model with time and space-variant bias corrected CMORPH forcing in
Gilgel Abay basin (Ethiopia) results in reduced bias in simulated streamflow.

Comparing streamflow simulation using simulated streamflow from gauge forcing

Note that, the comparison is based on optimized parameters based on gauge observation. Appendix 7A and
B shows a comparison of simulated streamflow based gauged rainfall, uncorrected, and SDT bias corrected
CMORPH, ARC2, and CHRIPS (2012-2016). The comparison is an attempt to split up the impact of rainfall
and rating curve (stage-discharge relationship error) from the uncertainty of model parameter on model

streamflow simulation.

Comparison of accumulated rainfall and model simulated ETa (2012-2016)

Appendix 8A shows a comparison of streamflow (left side) and accumulated actual evapotranspiration
(right side) from gauge forcing, a gauge with sat-PET, corrected and uncorrected SRE’s products, and
corrected and calibrated SRE’s products. The accumulated streamflow from gauge forcing and gauge with
satellite-PET matches with observed streamflow. Uncorrected CHRIPS matches with observed
streamflow whereas CMORPH and ARC2 underestimate (Q1-left side). Bias corrected estimates of
CMORPH, and ARC2 matches; however the introduction of error observed in corrected CHRIPS ((QQ2-
left side). Fine tuning the model with bias corrected CMORPH, ARC2 and CHRIPS reproduce the
accumulated simulated streamflow correctly compare to observed discharge (Q3-left side).
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5. CONCLUSION AND RECOMMENDATION

5.1. Conclusion

HBYV Light version model was applied to simulate streamflow, quantify water balance components and
closure error analysis with satisfactory result. In this study, three daily satellite rainfall estimates from
CMORPH~8km, ARC2~10km, CHRIPS~5km was envaulted against daily rain gauge records in and
around Wabe watershed over five-years, 01/01/2012-31/12/2016. Although, satellite-based potential
evaporation estimates from FEWSNET~111km and PET~20km were evaluated against Hargreaves ETo.

The inter compatison result shows that three SRE’s underestimate means and accumulated rainfall at the
four-gauge location. The most underestimation was seen by ARC2. However, CHRIPS shows a slight
overestimation of the maximum rainfall depth at four-gauge location (Agena, Fato, Wolkite, and Woliso).
The coefficient of correlation of three uncorrected SRE’s varies in the range between 0.2 to 0.4 for all
gauge location. However, at higher elevation (Fato) ARC2 outperforms CMORPH and CHRIPS by CC
(0.3), RMSE (7.4) and STDEV (5.2).

The study findings show that the detection capability of satellite rainfall estimates is seasonal and elevation
dependent. Falsely detected rainfall depth in the wet season and missed bias in the dry season is the main
source of error. The comparison result show in wet season CMORPH outperforms ARC2 and CHRIPS
by detecting rainfall occurrence ranges between 60% at high elevated gauge location (Fato) to 80% at low
elevated gauge location (Imdibir). The result shows that three SRE’s fail to detect rainfall depth at highest
elevation gauge location (Fato) compared to lowest elevated (Wolkite). This was shown by CSI
(CMORPH=19% at Fato to 30% at Wolkite), ARC2 =17% at (Fato) to 20% at (Wolkite). The seasonal
evaluation shows CMORPH, ARC2, and CHRIPS respectively well performs in detecting rainfall depth.

The analysis of the percentage of days belongs to six rain rate classes shows that the most predominant
rain rate in the study atea is light showers less than 1 mmd-! which accounts for >than 65%. Although, the
percentage of rain rates belong to 1-2.5, 2.5-5, 5-10, 10-20 and >25 are 6, 8, 9, 8 and 4 respectively.
Intercomparison of satellite potential evaporation from PET-20km and FEWSNET shows that the
former reasonably matches with selected in-situ Hargreaves ETo. The potential evaporation from PET-
20km ranges between 1.5 to 5.9mmd! while FEWSNET ranges between 0.16 to 5.6 mmd-! compared to
Hargreaves which ranges between 3 to 5.9 mmd-1.

Bias cortection of SRE’s was conducted using four bias correction methods TVSV, TVSF, TESF, and DT.
The systematic errors in SRE’s are reduced after applying bias correction. However, there is an
introduction of error depending on the selected indicator. For in instance spatio-temporal bias scheme
(TVSV, TVSE, TESF) increases the standard deviation compared to in-situ and uncorrected estimates. DT
slightly overestimates accumulated rainfall compared to gauge station. This overestimation by DT bias
scheme is due to increased rain rates of between 1 to 10mm rain rate class and decreased rain rates of
<1mm compared to gauge reference. TVSF underestimates the accumulated rainfall at all gauge location
while overestimating the maximum rain rate. The largest negative bias was shown by TVSF. TVSV shows
the lowest daily bias followed by DT. The result shows DT has the most effective bias correction scheme
with the highest correlation coefficient, lowest standard deviation, a coefficient of variation and root mean
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square error. And hence, DT is selected for streamflow simulation. The result concludes the performance
of bias correction methods depends on the quality of in-situ measurements (e.g., poor quality at Gubire
station) and selected evaluation schemes.

The sensitivity analysis result showed that PERC, LP, BETA and Ko are the most sensitive parameters in
Wabe watershed. The model reproduces streamflow with an acceptable range for calibration (NSE=0.72)
and validation (NSE =0.77). The modelling result shows there is no perfect fit between the simulated and
observed base flow and peak flows by the respective gauge and SRE’s model forcing. The streamflow
simulation from satellite-based potential evaporation (PET-20km) results in high peaks, lower base flows,
and high recession limbs compared with Hargreaves based ETo. The higher peak flow and lower base
flow from satellite-based PET is presumably due to the products underestimation during wet season and
overestimation in a dry season respectively. On the other hand, delay in simulated streamflow and larger
base flow results from in-situ based ETo.

There is no petfect fit in water balance closure analysis (P-ET-Q#0) instead, water is taken out of the
system. Replacing in-situ potential evaporation with satellite-based PET resulted in more simulated
streamflow and hence, closure error (-19%) compatred with in-situ (-18%). This is probably due to less
simulated ET from satellite-based PET. The study results shows recalibrating the model by bias corrected

satellite rainfall forcing shows improved water balance closure error as low as -9% by CHRIPS followed
by ARC2 (-11%) and CMORPH (17%)).

5.2. Recommendation

The meteorological gauge location is limited and pootly distributed in the study area. For instance, there is
no met-gauge observation in the north-eastern mountainous part of Wabe watershed. This gauge station
could not adequately represent the spatial rainfall in the watershed and constrain to assess change of
precipitation with elevation. An increase in meteorological gauge station is recommended over the high
elevated mountainous region of Wabe watershed. Intercomparison of satellite-based rainfall estimates was

done following point to pixel approach, we recommend further study on sub-basin scale.

In this study time limits to test different HBV Light model structure, it is suggested to test different model
structures as it affects simulated streamflow. Although, it is suggested to replace the laborious trial and
error parameter optimization with an automated procedure. Inconsistencies in observed streamflow time
series affect the model simulated streamflow. This study suggests further analysis of the rating curve
(stage-discharge relation). That was not evaluated in this study (it was not collected during field work due
to data policy of MoWIE).
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7. APPENDICES

Appendix 1A
Double mass curve for collected precipitation data during fieldwork in daily bases in mm

(2007-2016)
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Appendix 1B

Correlation plot for fitted MLR model for Gubire station
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Appendix 1C

Maximum, minimum and Average temperature from four stations (Woliso, Wolkite,

Imdibir and Fato) used to determine Hargreaves potential evaporation in Wabe

watershed
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Appendix 2A
Statistical evaluations for uncorrected and bias corrected CMORPH, ARC2 and CHRIPS
with reference to gauge for 6 stations for Wabe watershed 2012-2016
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. Bias M CMORPH ARC2 CHRIPS
Station cthod | sym  Mean Max stdDev. CC CV  RMSE (S/G)| Sum Mean Max stdDev CC CV RMSE (S/G)| Sum Mean Max stdDev CC CV  RMSE (S/G)
R SRE| 5051 28 439 62 04 22 72 08 |4494 25 486 61 03 25 7.6 07580 32 512 72 03 23 80 10O
. Gauge | 6083 3.3 584 6.8 6083 33 584 6.8 6083 33 584 6.8
% BFpsy | 6127 34 814 83 04 25 84 1.0 5985 33 8.4 90 03 28 95 1.0 [6590 36 8.5 90 03 25 92 Il
§ BFrysr | 6080 33 969 72 06 22 66 10 3795 21 583 54 05 26 61 06 [455 25 1483 7.6 04 31 77 07
BFresr | 6582 36 572 81 04 22 82 1.1 |6338 35 685 85 03 25 091 1.0 | 6573 36 579 82 03 23 86 LI
Sor [6911 38 577 71 0.6 19 6.1 1.1 ] 7220 40 675 80 06 20 69 12 [708 39 765 7.7 06 20 66 12
R SRE|4731 26 475 60 04 23 72 07 4263 23 478 60 03 26 76 076031 33 718 81 03 25 88 09
Gauge | 6539 3.6 628 6.9 6539 3.6 628 69 6539 3.6 628 69
% BFrysy | 6636 3.6 974 94 04 26 93 1.0 |6747 37 904 103 04 28 100 1.0 [7112 39 8.5 103 03 26 104 1.1
iED BFryse | 5953 33 668 74 06 23 66 093970 22 925 63 05 29 70 06 |4229 23 737 68 04 3.0 75 06
BFyrgr | 6165 34 618 78 04 23 81 09 |6012 33 674 85 03 26 90 09 |e6811 37 8.1 92 03 25 95 10
Spr [ 7276 40 654 71 06 18 60 1.1 |7460 41 579 77 06 19 63 117520 41 660 77 06 1.9 70 12
R SRE| 4105 22 469 55 02 25 7.6 073713 20 392 52 03 26 74 06505 28 607 69 02 25 83 08
Gauge | 6020 3.3 485 6.6 6020 3.3 485 6.6 6020 33 485 6.6
c% BFrysy | 5002 2.7 993 74 03 27 86 08 |4525 25 8.4 70 03 28 82 08 |5749 31 985 84 02 27 94 10
R~ BFpsr | 4992 27 1213 73 04 27 77 08 |4774 26 813 78 03 3.0 84 08 [4829 26 813 81 03 31 87 08
BFpsp | 5349 29 611 72 02 25 85 09 [5236 29 552 74 03 26 86 09 ([5713 31 685 78 02 25 89 09
Spr | 7010 38 501 70 04 1.8 72 1.2 |6683 37 524 72 05 20 7.0 11 |6463 35 556 7.1 05 20 7.0 LI
R_SRE| 5570 3.0 439 67 03 22 95 065259 29 469 68 03 23 101 06 [5903 32 589 72 03 22 99 06
Gauge | 9468 52 670 9.0 9468 52  67.0 9.0 9468 52  67.0 9.0
% BFpsy | 6588 3.6 870 86 03 24 104 07 [6568 36 935 96 02 27 115 07 7040 39 976 98 03 26 114 07
5 BFrvsr | 6288 34 828 69 06 20 79 07 |4375 24 708 60 04 25 88 05487 26 1027 7.7 04 29 93 05
BFrpgp | 7258 40 572 87 03 22 103 08 | 7416 41 661 95 03 23 114 08 |6667 36 665 81 03 22 103 0.7
Sor [10500 57 621 94 06 1.6 83 1.1 |11217 61 79.1 104 05 1.7 95 12 [10628 58 8.5 102 05 1.8 93 11
R SRE|4903 27 579 61 03 23 72 09 |4749 26 477 61 04 23 68 08 [5740 3.1 515 69 04 22 76 10
Gauge | 5719 3.1 609 6.6 5719 3.1 609 6.6 5719 3.1 609 6.6
§ BFpygp | 5824 32 871 77 03 24 84 10 |5754 3.1 1042 83 04 26 84 10 [6222 34 939 83 03 24 87 11
§ BFpsr | 6741 37 874 83 05 22 78 12 |5145 28 683 75 05 27 72 09 (5943 33 1014 92 04 28 88 10
BFrrsr | 6389 3.5 754 79 03 23 83 11 |6698 37 673 85 04 23 83 12 |6483 35 581 7.8 04 22 81 1.1
Sor [ 6503 36 650 68 05 19 67 1.1 |6741 37 8.5 73 06 20 64 126451 35 8.7 68 05 19 69 11
R SRE| 5532 30 488 66 03 22 73 1.1 |5142 28 481 66 03 24 73 1.0 598 33 593 73 03 22 77 12
© Gauge | 5122 28 525 55 5122 28 525 55 5122 2.8 525 55
é BFpygp | 6427 35 1018 86 03 24 88 13 |6160 34 8.9 86 03 25 87 12 [6432 35 942 87 03 25 88 13
§ BFrsr | 6590 3.6 682 73 04 20 69 13 [4738 26 849 69 04 27 68 09 [4849 27 1006 7.6 04 29 74 09
BFrese | 7208 39 635 86 03 22 89 14 |7252 40 679 94 03 24 95 146729 37 669 82 03 22 85 13
Sor | 5968 33 612 58 05 1.8 54 126285 34 504 63 05 1.8 57 126312 35 698 65 05 19 58 12

Appendix 2B
Accumulated difference in gauge, uncorrected and bias corrected satellite rainfall
lumped, wet and dry season in Wabe watershed (2012-2016)
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Appendix 2C
Taylor diagram showing statistical comparison of reference gauge against distribution
transformation bias corrected satellite rainfall estimates from CMORPH, ARC2 and

CHRIPS from (2012-2016)

The naming is A=gauge reference data for each station, B=CMOPRH, C=ARC2, and D=CHRIPS for
uncorrected products whereas EGF stands for bias corrected CMORPH, ARC2, and CHRIPS

respectively.
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Appendix3A
HBYV Light model governing equations

#
1

Equations

d
P —ETa—Q = —(SP+SM + UZS + LZS + Lake)

SM BETA
R=IN|—
(7c)
ETa= ET,ifSM > (LP x FC)
SM
of = crLux » LM
= *
f FC
Qq — K1 * Uz(1+Alpha)
0, = k2 + L7

Qowy = K2SLZ + K1SUZ + Ko max(SUZ — UZL,0)

Definition

General water balance equation

Recharge

Actual evapotranspiration

Capillary rise

Quick flow

Slow/base flow
Computed runoff from response
routine as a2 summation of three

linear outflow equations
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9

10

Qsim(t) = 2B (i) Qy(t—i+1)

Appendix4
Validation result for Wabe watershed Jan.2009 to Dec.2011). This is to show overestimated
observed streamflow in 2010.
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Appendix 5A
Standard deviation of gauge, uncorrected and SDT bias scheme corrected CMORPH,

ARC2 and CHRIPS satellite rainfall estimates
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Appendix6
Comparing simulated streamflow result from gauge and SDT bias scheme CMORPH,
ARC2 and CHRIPS against observed discharge in Wabe watershed 2012-2016
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Appendix 7
Comparing fine-tuned SDT bias scheme CMORPH, ARC2 and CHRIPS with observed
discharge 2012-2016
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Appendix7A

Comparison of simulated streamflow by gauged rainfall and, uncorrected and SDT bias
corrected CMORPH, ARC2, and CHRIPS (2012-2016)

The motivation for this analysis is the reasonable virtually inspected pattern of simulated streamflow (from
gauge rainfall) in-terms of base flows, recession limbs, peak flows as well as overall volume. The idea is first
to replace observed streamflow by simulated streamflow based on gauged rainfall. Then, simulated
stteamflow based on satellite PET, uncorrected and corrected satellite rainfall, and from condition2 is
compared against simulated streamflow based in-situ based gauged rainfall.
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Appendix7B

Rainfall [mm]

Comparing simulated streamflow result for uncorrected and distribution transformation
bias scheme corrected CMORPH, ARC2 and CHRIPS against simulated discharge from

gauge rainfall in Wabe watershed 2012-2016
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Appendix 8A

Comparison of accumulated model simulated streamflow and ETa in Wabe watershed
2012-2016.

Where: Q stands for streamflow as such Q1 refers to comparison with uncorrected SRE, Q2 refers to corrected
SRE, Q3 refers to corrected and calibrated SRE and ET stands for model simulated actual evapotranspiration as
such ET1 refers to comparison with uncorrected SRE, ET2 refers to corrected SRE, ET3 refers to corrected and
calibrated SRE re CC stands for calibrated SRE after applying bias correction
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calibrated SRE’s products. The accumulated streamflow from gauge forcing and gauge with satellite-PET

matches with observed discharge. Uncorrected CHRIPS matches with observed discharge whereas
CMORPH and ARC2 underestimate (Q1-left side). Bias corrected estimates of CMORPH and ARC2
matches however introduction of etror observed in corrected CHRIPS (Q2 left side).

Surprisingly, fine tuning the model with bias corrected CMORPH, ARC2 and CHRIPS reproduce the
accumulated simulated streamflow perfectly compare to observed discharge (Q3-left side).

In the right side shows the contribution of actual evapotranspiration in modelled streamflow.
0.50

m2013 m2014 m2015 m2016 m Average

0.30 4
0.20 1
0.10 4
0.00

Gauge Sat-PET | CMORPH| ARC2 CHRIPS CMORPH, ARC2 CHRIPS CMORPH ARC2 CHRIPS

Mean annual RF [mm)]

In-situ Raw SRE Corrected SRE Corr. and calib.

Actual evapotranspiration coefficient (2012-2016) for the hydrological year
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Appendix 9

Parameters sensitivity and their effect on simulated streamflow

Discharge [m3s ] Discharge [m3s? ] Discharge [m3s ]

Discharge [m3s! ]

500 1

400 4

300

200 A

100 A

0 4
1/1/2012

700 1
600 A
500 A
400
300
200
100

0

—— Observed —— BETA =0.1 BETA =0.3
—— BETA =0.4 —— BETA=0.5 BETA =0.7
——BETA =0.9 —— BETA=1000

}

1/1/2013 1/1/2014 1/1/2015 1/1/2016

—— Observed ——K0=0.5 ——K0=0.1
——K0=0.15 —— K0=0.2 —— K0=0.3
K0=0.6 ——KO0=0

1/1/2012

700 1
600 1
500 A
400 A
300 A

200 A

400 1

300 1

200 1

100 -

0 -
1/1/2012

1/1/2013 1/1/2014 1/1/2015 1/1/2016

—— Observed ——K1=0.00075 —— K1=0.05
—K1=0.1 ——K1=0.15 K1=0.4

!
AT " ;

1/1/2013 1/1/2014 1/1/2015 1/1/2016

—— Observed —— MAXBAS=15 - MAXBAS=2
—— MAXBAS=2.5 —— MAXBAS=3 MAXBAS=50

—— MAXBAS=1

1/1/2013 1/1/2014 1/1/2015 1/1/2016
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