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ABSTRACT 

Soil moisture (SM) is an essential environmental and climate variable, which influences energy and water 
exchanges between the soil and atmosphere. Thus, the estimation of SM is important and yet it is the 
challenge as well. Satellite remote sensing offers a window of opportunity to provide spatial SM maps. The 
microwave remote sensing instruments, such as SMAP, SMOS and ASCAT, are widely used to retrieve the 
SM over a global range. However, most of the microwave products have a relatively coarse resolution 
(tens of kilometers), which limits their use in regional hydrologic modelling and hazard prediction. 
Therefore, in this study, a sub-grid SM variability downscaling method was used to downscale SMAP, 
SMOS and ASCAT products to 1km resolution.  

The SM spatial variability is mainly affected by the soil texture heterogeneity, which can be used as a proxy 
for downscaling. A high-resolution soil map from the Soil Grids was used to provide soil texture 
information for downscaling. A relationship between the SM variability and the mean SM as a function of 
the mean and standard deviation of Van Genuchten-Mualem (VGM) model hydraulic parameters was 
then established. This relationship was used in downscaling. The original and downscaled SM products 
were validated using both point measurements and areal Cosmic-Ray Neutron Probe (CRNP) estimated 
SM data over Maasai Mara in Kenya.  

Triple collocation was applied to assess the random error among three satellite SM products. SMAP 
showed the least error followed by ASCAT and SMOS. These three satellite SM products perform 
differently because of four main factors: sensor, orbit, algorithm and auxiliary data. Moreover, the SMAP 
and SMOS SM products showed similar SM patterns whilst the ASCAT SM product is mainly dependant 
on the porosity data. A convex relationship was seen between the mean SM and SM variability and this 
trend is mainly controlled by the pore size distribution factor of the soil. However, since the study area is 
relatively homogeneous, SM variability was noted to be very small. Causing the similar SM value between 
downscaled result and original products. Therefore, the quality of original products has a decisive effect 
on the downscaled result. 

Compared with the point data, the CRNP SM shows wetter trend because its measurement depth is more 
than 10cm. For original products, the validation result indicates that all three satellites cannot meet the 
required accuracy of 0.04 cm3 cm-3. ASCAT shows the best performance (ubRMSE=0.061) followed by 
SMAP (ubRMSE=0.069), and the last one is SMOS (ubRMSE=0.103). In addition, ASCAT performs 
better over dense vegetation area. While SMAP has less error in the moderate vegetation land cover and 
bare land. The downscaled result gives better or at least the same performance as original products, but 
with clearly soil property pattern. Therefore, satellite-based SM products can be downscaled by predicting 
the sub-grid SM variability within the coarse resolution pixels.  

Keywords: Soil moisture, SMAP, SMOS, ASCAT, Soil Grids, soil moisture variability, downscaling 
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1. INTRODUCTION  

1.1. Background  
Soil moisture (SM) is an essential variable of the environment, which influences the energy and water 
exchange between ground and atmosphere (Mccoll et al., 2017; Robinson et al., 2008). Although soil water 
content only occupies a small part of total water in the earth, it plays an essential role in hydraulic, 
meteorological, agricultural and water balance application (Ren et al., 2010; Vereecken et al., 2016). SM can 
be retrieved from point measurement, model assimilation, remote sensing and real measurement from 
cosmic ray neutron probes (Ahlmer et al., 2018; Montzka et al., 2017; Nasta et al., 2018; Ren et al., 2010). 
Nowadays, remote sensing instruments, especially microwave remote sensing sensors, are widely used to 
produce global scaled SM pattern, such as Soil Moisture Active Passive (SMAP) (Colliander et al., 2017), 
Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2012) and Advanced SCATterometer (ASCAT) ( 
Wagner et al., 2010).   

Each satellite has its own algorithm and quality, understanding and evaluation of these algorithm and 
quality are needed before their use. SMAP and SMOS, L-band microwave sensors, primarily measure the 
brightness temperature (TB) of the land surface. The TB is then converted into soil water content 
(Miernecki et al., 2014). The lower frequency microwave (1.4GHz) has strong penetrative power which 
can reduce the effect of vegetation and increase sensitivity of sensor to deeper soil layer (Lannoy et al., 
2013). ASCAT uses a C-band (5.7GHz) scatterometer, an active microwave system, to retrieve SM 
(Fascetti et al., 2016). Evidence shows ASCAT is sensitive to the vegetation dynamics, which may affect its 
performance (Al-Yaari et al., 2014).  Many researches have validated the accuracy of these three satellite 
products using in-situ measurement network around the world (Colliander et al., 2017; Djamai et al., 2015; 
Griesfeller et al., 2016). These authors stated that the performance of these satellites has an acceptable 
result compared to accuracy requirement (0.04 cm3 cm-3). However, the performance may vary with time 
and place in term of different season, soil texture and land cover. 

Currently, most of the satellite SM products have a relatively coarse resolution (tens of kilometer). At this 
resolution, the products are difficult to use in the regional hydrological model and hazard prediction like 
flood and drought detection (Peng et al., 2017). Applying a downscaling method to generate high-
resolution SM map can be an efficient solution to this challenge. Combining the coarse resolution 
microwave products with high-resolution mapping sensor, such as synthetic aperture radar (SAR) and 
optical/thermal microwave is commonly used during downscaling (Srivastava et al., 2013; Velde et al., 
2014). Also, some researchers used model-based or geoinformation-based method to downscale coarse 
SM products. (Kaheil et al., 2008; Mascaro et al., 2010; Ranney et al., 2015). To understand and evaluate 
the SM variance within the coarse pixels is the essential part for downscaling.  

Nowadays, a new downscaling method was developed, which uses high-resolution soil characteristics 
mapping like soil texture to retrieve the SM variability. It is a function of standard deviation and mean SM 
based on hydrological model(Montzka et al., 2018). Researches shown that soil texture is a dominant 
factor of SM spatial change (Lawrence & Hornberger, 2007; Wang et al., 2015). Most papers elaborated 
that the relationship between mean SM and SM variability should be convex. This means the lower SM 
variability occurs under relatively wet and dry (Vereecken et al., 2007; Qu et al., 2015). Other research 
indicated this situation only occurs when the soil texture is fine (Hupet & Vanclooster, 2002). Also, some 
shown different results, such as that SM variability will increase with the mean SM (Martinez et al., 2013). 
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In order to disaggregate the SM products to finer resolution based on the SM variability, higher resolution 
proxy map is needed, such as field capacity, radar backscatter and land surface temperature. (Im et al., 
2016; Peng et al., 2015).  

Validation of satellite products faces the challenge of scale mismatch, which requires a high density of 
ground-based measurement network to provide large-scale SM (Crow et al., 2012). To obtain continuous 
and accurate SM data, Time Domain Reflectometry (TDR) and Frequency Domain Reflectometry (FDR) 
are most frequently used to detect the soil water content (Lekshmi et al, 2014).  However, these SM 
sensors can only measure a small volume of soil. So, it is difficult to represent the surrounding area 
especially in the heterogeneous case. This will reduce reliability when relating point-based data to satellite 
data during validation. Finding the new technique to reduce the scaling gap between satellites and point 
measurement could be an efficient way to solve this problem.  

The Cosmic-Ray Neutron Probe (CRNP) can be used to monitor field-scale average SM, which can then 
be used for validating satellite SM products (Montzka et al., 2017). This CRNP receives the low-energy 
neutrons within the soil; the neutrons significantly reduce when meeting hydrogen atoms. Because the 
most hydrogen atoms are from the water within the ground, the number of neutrons is inversely related to 
soil water content. Based on this concept the SM can be retrieved from neutron counts(Desilets & Zreda, 
2003; Dong et al., 2014; Zreda et al., 2012). However, CRNP is affected by air pressure, air humidity and 
incoming cosmic-ray flux. To reduce these environmental influences, calibrating the original cosmic-ray 
counts is required.  

The footprint of CRNP is around several hundred meters and up to one meter in the soil, which depends 
on soil water content (Köhli et al., 2015; Schrön et al., 2017). Compared to point measurements, CRNP 
provides a relatively larger area of average SM value. Therefore, using CRNP data to validate satellite SM 
is an efficient way to fill the spatial gap between point measurement and coarse resolution satellite-based 
SM products (Montzka et al., 2017). However, the measurement depth may not match the satellites 
products, since CRNP received the neutrons up to one meter. Both point data and CRNP data have their 
own advantages and disadvantages in this case.  

In this study, a method based on soil texture is used to downscale the satellite products from coarse 
resolution to fine resolution (1 km); then CRNP and point measurement data from Maasai Mara region in 
Kenya is used to validate both the original and downscaled SM satellite products.  

1.2. Research problem  
The first problem is based on the performance of satellite SM products used in this research. To evaluate 
the SM products reliability is the primary challenge before its application. The algorithm and auxiliary data 
used for each satellite should be clarified in order to understand the mechanism for different satellite SM 
products. The point SM measurement data is widely used to validate the satellite SM products. However, it 
can only represent a small volume of water, which is not suitable for an area with high heterogeneity. 
Therefore, using the field-scaled SM to validate satellite SM products becomes a more efficient way. 
Instead of point data, CRNP records the average SM over several hundred meters of radius, which can fill 
the gap between point measurement and satellite pixel-based SM. 

Another issue related to the satellite products is that SM retrieved from satellites provide large spatial 
resolution (tens of kilometers), which makes it difficult to use for catchment scale application. 
Downscaling the coarse scale SM products to finer resolution is thus a better solution. The essential 
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concept for downscaling is to understand what the SM variability within the coarse resolution SM pixels. 
Evidences show that the SM variability mainly depend on the soil texture (Gwak & Kim, 2017; Wang et 
al., 2015). According to this, soil texture can be investigated as the basis of a spatial downscaling approach 
for coarse resolution SM products. 

1.3. Objective  
The main objective of this study is to downscale different satellite SM products (SMAP, SMOS, ASCAT) 
to fine resolutions (1km) and to validate both original and downscaled satellite products with cosmic-ray 
neutron probe (CRNP) and point measurement stations. 

Specific objectives are: 
i. To do the inter-comparison among SMAP, SMOS and ASCAT SM products; 
ii. To analyze the relationship between sub-grid SM variability and mean SM; 
iii. To downscale different satellite SM products, using sub-grid SM variability; 
iv. To validate the original and downscaled satellite SM with CRNP and SM point measurements; 

1.4. Research questions  
i. Why three SM satellite products have different performances? 
ii. What is the relationship between SM variability and mean SM? 
iii. What is the effect on the downscaled result when using sub-grid SM variability downscaling 

method? 
iv. What is the performance for each satellite product when compared with ground measurement data?  

1.5. Innovation  
SM variability is considered to downscale the satellite SM products over Maasai Mara region in Kenya 
based on Soil Grids dataset. 

1.6. Thesis structure  
This thesis contains seven chapters. The first chapter illustrates background, research problem, objective 
and research questions for the thesis and literature review delivered in chapter two. The third chapter gave 
information about the study area and dataset. Next chapter pointed to the methodology used in this 
research and followed by the result and discussion part. Chapter six gives the conclusion of this study.  
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2. LITERATURE REVIEW  

Although microwave sensors are suitable for SM detection, the coarse resolution limits the use of SM 
products under specific aspects, such as small watershed hydrological and agricultural models. 
Downscaling is an effective way to improve the spatial resolution of the coarse resolution SM products. 
Based on the previous review by Peng et al. (2017), the downscaling methods can be divided into three 
classes, first class is that of satellite-based methods; the second one is model-based method, and the last 
one is the geoinformation-based methods.  

The satellite-based method uses the high-resolution image such as SAR and MODIS to merge with coarse 
resolution SM products (Chakrabarti et al., 2015; Das et al., 2015; Djamai et al., 2016; Hajj et al., 2018; Xu 
et al., 2018). The model-based method focuses on the statistical model calculation method, and hydrological 
model assimilation, but in-situ data and bias correction may need in this case (Kaheil et al., 2008; Mascaro 
et al., 2010). The last way based on the geoinformation like photography and vegetation cover, this method 
is quite simple, but lots of input data is required to establish the relationship with SM (Ranney et al., 2015).  

Recently, the downscaling method still based on the previous concept but with some improvements. High-
resolution images from satellites are prevalently used to downscale the coarse resolution products like the 
Sentinel-1 and MODIS products. Li et al. (2018) provide a model to reduce the effect of vegetation when 
using SAR data to downscale the SMOS products. More researchers using machine learning (like Markov 
model, Random forest, Ensemble learning method) and statistical method (like area to area regression 
kriging method) to combine both MODIS and topographic data in order to improve the performance of 
downscaled result (Abbaszadeh et al., 2018; Jin, Ge et al., 2018; Kwon et al., 2018; W. Zhao et al., 2018). 
Except for the satellite-based method, some static parameters also can be used in the SM downscaling. In 
this research, the soil texture map was used as proxy data to downscale both active and passive products 
based on Montzka et al., (2018). Other parameters like topographic and land cover are also widely used to 
downscale coarse resolution products but more plays as the additional factors in satellite-based or model-
based method (Fang et al., 2018; Mishra et al., 2018; Montzka et al., 2018).
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3. STUDY AREA AND DATASET  

3.1. Study area  
The study area is in Massai Mara National Park in the Kenya, Africa. The Maasai Mara covers around 
1510 square kilometers with the elevation range from 1500 to 2180 meters, which is a large wild animal 
reserve located in Narok County. It is the most northern part of Mara Serengeti ecosystem, which covers 
an approximate 25000 square kilometers. The Serengeti Park bounds mara Serengeti in Tanzania on the 
south and Siria cliff on the west.  Koyiaki and Olkinyei are pastorally located on the north part of this 
ecosystem while Siana pastoral on the east (Bhola et al., 2012). The temperature in this area changes from 
12 to 30 Celsius, while the average rainfall is 1000 mm per year. Rainy season is from November to May 
and there are two peaks during this period. The short-time rainfall from November to December and long 
duration rains stays within March until May. The dry season is from June to October (Ogutu et al., 2011). 
Considering the terrain type within the study area, almost all covered by the grassland.  

Figure 3.1 indicates the location of the study area. The left-upper corner shows the Kenya country 
boundary and Narok county location; the left-down corner shows the picture of CRNP in Maasai Mara 
park; the right-side map shows the Narok county map together with CRNP site. The country boundary 
map can be download from http://www.diva-gis.org/gdata.  

 
Figure 3.1 Location of Narok country and CRNP site in Kenya 
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3.2. In-situ SM data  
The satellite products were validated against the SM network being developed in the Maasai National 
Park. The work was began as part of the ongoing ITC Ph.D. research. The network consists of both point 
SM, soil temperature measurement as well as a Cosmic-Ray Neutron Probe (CRNP). Figure 3.2 shows the 
current layout of the network used in this thesis, with ten stations and a CRNP site within the study area.  

 

Figure 3.2 The study area of Maasai Mara park based on google earth map  

3.2.1. Point measurement data 
There are ten SM profile stations in the study area, one of the profiles is located (the light blue dot) just a 
few meters beside the CRNP; three of them (the yellow dots) have a similar working period with CRNP, 
and rest six (the pink dots) only have less than six months working period. At each station, SM 
measurements are done at five different depth, i.e: 5, 10, 20, 40 and 80 cm. Due to the penetration abilities 
of the microwave, only the top layer field data was used to validation the SM products (Owe & Van De 
Griend, 1998).  

The Decagon 5TM sensor was used to determine the SM in this study. It measures the dielectric constant 
using frequency domain technology then convert to volumetric SM. Table 3.1 gives the comparison 
information of ten points measurement stations. The Mara-main station has the longest working period 
together with CRNP site which was destroyed by warthogs for some period towards the end of 2017. 
Other three station (Kissinger, Ashnil and Mara-bridge) installed from December 2017. However, the 
Kissinger had a problem with logger, and warthogs also destroyed the other two stations from June to 
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July. The rest six stations installed from June 2018, only less than six months data obtained. Almost all 
stations covered by grassland except Kissinger and Olimisigoi, sparse trees can be found around these two 
sites.  
Table 3.1 Detail information about SM measurement stations. 

Name Latitude Longitude Period Land cover Data gap 

Mara-Main -1.49332 35.14918 Jul-17 to Dec-18 Grassland Sep-2017 to Dec-2017 

Talek -1.46117 35.18276 Jun-18 to Dec-18 Grassland  

V-section -1.46249 35.10616 Jun-18 to Dec-18 Grassland  

Upstream -1.52919 35.23824 Jun-18 to Dec-18 Grassland  

Kissinger -1.55889 35.23664 Dec-17 to Dec-18 Isolated shrubs & 
Grassland Mar-2018 to May-2108 

Helicopter -1.53042 35.17422 Jun-18 to Dec-18 Grassland  

Olimisigoi -1.50384 35.12008 Jun-18 to Dec-18 Shrubs and Grass  

Ashnil -1.45291 35.07215 Dec-17 to Dec-18 Grassland Jun-2108 to Jul-2108 

Nice-bridge -1.49519 35.19034 Jun-18 to Dec-18 Grassland  

Mara-Bridge -1.53833 35.03615 Dec-17 toDec-18 Grassland Jun-2108 to Jul-2108 
 

3.2.2. CRNP data  
The calibrated CRNP data for the period from June 2017 to December 2018 was used to validate the 
satellite SM products. The CRNP is located inside the ITC Mara Main Flux and Soil Moisture station. The 
coordinates for the CRNP is 01.49335 S and 35.14920 E, and land cover over the footprint of CRNP is 
largely grasslands. Figure 3.3 shows the ITC Mara Maim station (A) and the CRNP instrument (B).  

 
Figure 3.3 ITC Mara Main station (A) and CRNP instrument (B) 

The CRNP used a CRS-1000B by HydroInnova. It has a single tube for cosmic-ray sensing. The CRNP is 
also linked with rain gauge and three SM sensors. The left-top part of Figure 3.3 (B) is a CS215 
temperature and relative humidity sensor, in the middle is the satellite antenna. The CRNP powered by a 
solar panel connected with the eddy covariance tower.  
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3.3. Spatial products  

3.3.1. SMAP 
SMAP is one of the first earth observation satellite launched on 31 January 2015 by the National 
Aeronautics and Space Administration (NASA), which provide different resolution products (36km, 9km, 
and 3km). SMAP mission combines active radar and passive radiometer using L-band observation to 
provides a high accuracy of global SM and freeze/thaw state mapping, which can be applied in weather 
forecasting, hydrological cycle and agriculture (Entekhabi et al., 2010). The low frequencies provide a 
batch of benefits. Firstly, it will not affect by cloud, providing all-weather sensing; secondly, there is 
almost no effect from sparse and moderate vegetation land when retrieving the SM because of the high 
penetrate ability for microwave; thirdly, the property of independent of solar illumination makes it 
possible to provide observation for both day and night. 

In this research, SMAP Enhanced L3 Radiometer global 9 km Equal-Area Scalable Earth Grid (EASE-
Grid) SM Product (L3_SMP_E) is used to provide soil water content. This product is available from 
March 2015 to present, and it can freely be accessed via the National Snow and Ice Data Center (NSIDC) 
website (https://nsidc.org/data/smap/smap-data.html).  The basic algorithm for level 2 and level 3 
SMAP SM products is same by using Single channel algorithm (SCA-V) to convert brightness temperature 
to SM (Entekhabi, Das, & Njoku, 2014). However, for SMAP L3 enhanced products, Backus-Gilbert 
interpolation method is needed, which can produce the 9 km EASE-grid instead of 36 km. The temporal 
resolution of L3_SMP_E is one day, with 6:00 am descending and 6:00 pm ascending half-orbit passes. 
Typically, the product uses input data from 6:00 am in the morning, which helps to reduce the error of 
output Because of the less temperature difference between vegetation and soil also the thermal 
difference among land cover types reaches the minimum (Sm, Sm, & Neill, 2012).   

3.3.2. SMOS  
Soil Moisture and Ocean Salinity (SMOS) is part of ESA’S earth explore project, which was launched on 2 
November 2009. The same as SMAP, SMOS uses L-band microwave observation to receive brightness 
temperature then convert it to SM, which requires an accuracy of 0.04 m3 m-3 (Al-Yaari et al., 2014). 
There are two main components for SMOS L3 products. Firstly, state-of-the-art LMEB (L-band 
microwave emission of the biosphere) model is used as the forward model, which provide the result of 
microwave emission of varies land covers. The TB calculation based on the forcing auxiliary data and 
physical parameters. Secondly, the iterative approach used to minimize the cost function between 
measured and modeled brightness temperature data under a variety of incidence angles. So, except the SM, 
vegetation parameters also retrieved by finding the best-suited set (Kerr, et al., 2012).  

The L3_SM product has an approximate spatial resolution of 25 km with different temporal resolution 
(daily, 3-day, 10-days and monthly). Daily Level 3 SM product is used in this research. SMOS L3 products 
used the same physical model as L2, but global products provided instead of swath-based products. The 
data is freely available through https://smos-diss.eo.esa.int/socat/SMOS_Open. The ascending overpass 
time for SMOS is 6:00 am and 6:00 pm for descending pass time (Al-Yaari et al., 2014).  

3.3.3. ASCAT  
ASCAT is a C-band active microwave remote sensing instrument carried by Meteorological Operational 
(METOP) satellite, which is operated by the European Organization for the Exploitation of 
Meteorological Satellites (EUMETSAT). ASCAT was designed for measuring wind vector field over the 
ocean at the beginning. However, evidence showed that it is also suitable for SM retrieval ( Wagner et al., 
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2013). The frequencies of C-band (5.7 GHz) belong to microwave frequencies, where the dielectric 
constant for soil and water has a distinguishable difference. For the vegetation-soil condition, the SM 
retrieval affected by vegetation contents. Therefore, the vegetation correction is arranged before the SM 
index retrieving. There are also others benefits from ASCAT, for example, it has three different azimuth 
angles and two separate incidences angle observation system for each pixel, making it possible to correct 
the effect from vegetation (Wen & Su, 2003).  

In this research, the Level 2 SM product is used to obtain SM and can be freely downloaded from 
https://land.copernicus.vgt.vito.be. It has two different spatial resolution of 50 km (grid spacing 25 km) 
and 25 km (grid spacing 12.5 km), while 12.5 km spatial sampling product was used in this study. A 
change detection method developed by Vienna University of Technology (TU-Wien) was used to retrieve 
the soil water index of the topsoil layer, ranging between 0 (dry) and 100 (wet). The concept for this 
method is from the ERS mission, then transferred to ASCAT (Brocca et al., 2017). There are some 
assumptions for ASCAT, firstly, a linear relationship between backscattering coefficient ( ) and SM 
contents and the  depends on the incidence angle; then, surface roughness and land cover are stable 
over the time and finally, vegetation has a seasonal influence where the correction is needed.  

The output of SMI needs to be converted to volumetric SM unit (cm3 cm-3) by multiplying with global 
porosity database (Wagner et al., 2010). Figure 3.4 gives the porosity map used for ASCAT within the 
study area. This map was downloaded from the ESA CCI website for the global range with a spatial 
resolution of 0.25 degree, then resampled to the same spatial resolution as ASCAT products.  

 
Figure 3.4 Porosity map used in the study area 
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Table 3.2 Comparison of three satellites 

Products SMAP  SMOS ASCAT 
Platform SMAP SMOS METOP 
Lifetime   2015-3-31 to present  2009-11 to present  2016-1-1 to present  
Channel 1.4 GHz 1.4 GHz 5.2 GHz 
Sensor  SMAP L-band radiometer  SMOS L-band radiometer Microwave radar  

Equatorial crossing 
time Descending Ascending  Descending 

Spatial resolution  9 km  25 km 12.5 km 
Temporal resolution  Daily  Daily  Daily  

 
Figure 3.5 illustrates the location of three satellite pixels and the point measurement. All the points located 
inside one SMOS pixel (pick box) which has the biggest spatial resolution of 25km compare with the other 
two satellites. The yellow and green boxes are coarse pixel for ASCAT (12.5 km) and SMAP (9km) 
respectively. And the red box is the study area of this research. 

 
Figure 3.5 Points measurement and satellite pixel locations in Maasai Mara Park; the red box is the study area. 

3.3.4. Soil Grids 
Gridded soil data can be used to understand the SM properties over an area and the International Soil 
Reference and Information Centre (ISRIC) provides two versions of Soil Grids, which can be freely 
downloaded from http://data.isric.org/. The first version has a resolution of 1 km and 250 m for the 
second one; both versions products provide soil profile dataset over six different depths from 0 to 200 cm 
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(Jin et al., 2018). The gridded soil dataset contains different soil properties like soil texture (%), bulk 
density (kg m-3), sand and clay fractions (%), soil pH, soil organic carbon (g kg-1), cation exchange 
capacity (cmol/kg-1) and depth to bedrock (cm) (Hengl et al., 2014). In this research, five factors (clay, silt 
and sand fraction, bulk density and soil organic carbon) of 1 km spatial resolution were used to estimate 
the hydraulic parameters of the VGM model (show in Figure 3.6).  

 
Figure 3.6 Soil grids maps 
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4. RESEARCH METHODOLOGY  

4.1. Overall methodology flowchart  
Figure 4.1 summarizes the main idea of the methodology used in this study. Soil information map is 
download from ISRIC website which contains the clay, silt and sand fraction, bulk density value, soil 
organic carbon content. Hydraulic parameters for VGM model are derived from SM information and then 
used to obtain the relationship between mean SM and SM variability based on the closed-form expression. 
Next, SM variability of each coarse scale pixel can be calculated. Then, field capacity at 1km spatial 
resolution can be used as proxy data for downscaling. The last procedure is to validate different satellite 
SM products using CRNP and point measurement SM data.   
 

 
Figure 4.1 Flowchart for methodology followed in this study 

4.2. Pre-processing for SM retrieved from CRNP counts 
In this research, the calibrated CRNP data is used. The calibration part has a short description as below, 
which indicates the N0 method for retrieving the SM from CRNP counts.  
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4.2.1. Correction of CRNP counts  
The CRNP counts are affected by air pressure, air humidity and incoming cosmic-ray flux. It is necessary to 
correct the raw counts data before retrieving the SM. Different influence factors are used to correct initial 
counts (Desilets & Zreda, 2003; Zreda et al., 2012).  

 4-1 

Where  is the original neutron counts (cph);  is the corrected neutron counts;  is the incoming 
cosmic-ray flux correction factor;  is the air pressure correction factor;  is the atmosphere water vapor 
corrector factor.   

The incoming ray correction factor was calculated based on the Neutron data recorded in Namibia, Africa 
albeit most corrections being with neutron monitor data from JUNG (jungfraujoch). This was done because 
Namiba was considered to closer to the Mara and Cut-off Rigidity of the site was closer to that of the site. 
Absolute humidity was calculated from 2 metre relative humidity data from a CS215 sensor that is part of 
the Cosmic Ray system. 

4.2.2. SM retrieved from CRNP counts using N0 method 
There is a simplified method to convert CRNP counts to SM based on shape-defining function from 
MCNPX model (Desilets et al., 2010). The raw CRNP counts data can be seen in Figure 4.2. 

 4-2 

 
Where θ (N) is gravimetric water content (kg kg-1); N is corrected CRNP counts (cph); N0 is the counting 
rate over dry soil under the same condition (cph); αi are fitting parameters. These parameters can be 
determined as 0.0808, 0.372 and 0.115 respectively for a genetic silica soil matrix.  

 
 

4-3 

Where  is the gravimetric water content (kg kg-1) and  is the organic water content (kg kg-1).   

 
Figure 4.2 CRNP calibrated counts time series plot 

Gravimetric soil moisture was obtained 144 core rings sampled around the CRNP. The samples were 
taken using four concentric rings around the CRNP at distances of: 10, 25, 75, and 175 metres, and at the 
following degree angles: 0, 60, 120, 180, and 240. Six (6) samples were collected at each sampling point, 
over the 0-30 cm depth region. Samples were taken for each 5 cm region of the sampling depth. Because 
the CRNP has been shown to have varying spatial sensitivities, the calibration was done using both depth 
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and distance weighting (Köhli et al., 2015; Schrön et al., 2017). Samples further away had a lesser weight 
than those closer to the cosmic ray. 
 
Considering that the CRNP is sensitive to all hydrogen pools in the sampling volume (Desilets et al., 
2010), there is need to account for other hydrogen pools that do not ‘evaporate’ at 105 degree Celsius 
used in the gravimetric soil moisture method. Thus, soil organic matter and root biomass had to be 
accounted for. They were accounted for as in other work on CNRP calibration (Hawdon, 2014; 
International Atomic Energy Agency., 2017; Baatz et al., 2007). Lab measured Total Organic Carbon 
(TOC) at each sampling point was first converted to Soil Organic Matter (SOM) using the often-used 
coefficient of 1.724, although there is debate around the validity of this conversion coefficient. The SOM 
was then scaled to the volume of the soil in the sampling ring because it was lab determined as grammes 
of TOC per 100 grammes of soil. The SOM was then converted to the water equivalent using the standard 
conversion factor of 0.556 (Hawdon, 2014; Baatz et al., 2014). The water equivalent due to SOM and Root 
Biomass as added to the gravimetric soil moisture in the calibration process. Other calibration approaches 
are being investigated, but here data from this No method was used. 

4.3. Soil texture 
The soil texture triangle is used to define different soil types based on clay, silt and sand content in the 
study area. The soil information for different in-situ points can be obtained from Soil Grids website. 
Based on the Soil Grids information, ten measurement points belongs to sandy clay loam and clay loam. 
Figure 4.3 illustrating the difference in soil texture within the study area. Left one shows the different soil 
types of the whole study area with the resolution of 1km; right one gives the ten stations information. 

 
Figure 4.3 Soil texture triangles for the whole study are and station sites 

4.4. Pedotransfer function for VGM model 
The water retention curve (WRC) is an important input for the hydraulic model, but it is difficult to 
measure. There are some empirical equations, which can be used to present the WRC, such as Brooks-
Corey or Gardner-Russo model. In this research, the Van Genuchten-Mualem model (VGM) is used, 
which shows a better result compared with other models (Schaap & van Genuchten, 2006; Zhao et al., 
2018). The pedotransfer function (PTFs) is often used to transfer soil survey information such as sand, 
silt, clay percentage and bulk density to soil hydraulic parameters. In this study the VGM model is used to 
predict the WRC and hydraulic conductivity curve (HCC), so parameters in this model (  
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need to be solved based on PTF. There are several well-known PTFs (Rawls & Brakensiek, 1985; 
Vereencken, 1988; Wösten et al., 1999), based on statistical analysis by Wagner et al (2001) the PTF 
developed by Wösten shows better proformance, which is used in this study. 

 

 

4-4 

 

 4-5 

 

 

4-6 

 

 

4-7 

 

 

4-8 

Where C is the percentage of clay (%); S is the percentage of silt (%); OM is the percentage organic matter 
(%); BD is the bulk density (g/cm2); topsoil is qualitative variable has the value of 1 (depth 0-30 cm) or 0 
(depth >30 cm);  is the saturated water content (cm3 cm-3);  is the residual water content (cm3 cm-3); 

 is air entry parameter (cm-1);  is the saturated hydraulic conductivity (cm d-1) and  (-) is the pore 
size distribution parameter. 

4.5. Estimation of SM variability 
The concept for this method is to describe how SM variability depends on mean SM using stochastic 
analysis based on VGM model (Qu et al., 2015). From the VGM model, water retention curve (WRC) can 
be written as: 

 
 

4-9 

 
 4-10 

 
 

4-11 

Where  is the effective saturation (-);   is the pressure head (cm);  is the residual water content (cm3 
cm-3);  is the saturated water content (cm3 cm-3);  is the actual SM (cm3 cm-3);  is air entry 
parameter (cm-1) and  (-) is the pore size distribution parameter.  

And the hydraulic conductivity curve (HCC): 
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 4-12 

Where  is the saturated hydraulic conductivity (cm d-1);  is the hydraulic conductivity (cm d-1);  is the 
pore connectivity parameter.  

The method proposed by Qu et al., (2015) is based on a stochastic analysis of steady-state unsaturated 
flow proposed by Zhang et al., (1998). Zhang et al., (1998)  described the constitutive relationship of both 
Brooks-Corey and Gardner-Russo model to derive the relationship between SM and hydraulic head. Based 
on this, Qu et al. applied VGM model to establish the relationship between mean SM and SM variability as 
a function of the hydraulic parameters. From the beginning, a second-order stationary stochastic process 
assumed by different variables and hydraulic parameters and these parameters can be decomposed into the 
mean and perturbations. Based on this, the mean and perturbation of SM can be written as a function of 
all VGM parameters and a linear relationship can be found between SM perturbation and the perturbation 
of VGM parameters. After calculating the covariance between different parameters and assuming the 
VGM parameters are not correlated, which can significantly simplify the intermediate computing process. 
The final relationship between SM variability and VGM parameters obtained by substituting the 
covariance of pressure head and hydraulic parameters. Equations are shown below.  
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Where  is the vertical correlation length of the respective parameters;   coefficients are obtained 
from the mean value of different parameters. 
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This closed-form expression established a relationship between SM variability and mean SM, mean 
hydraulic parameters, the standard deviation of hydraulic parameters and the vertical correlation length for 
the VGM model. The relationship between average pressure head and mean SM value show as below.  

 4-23 

The coarse scale parameter   are obtained by fitting the minimum sum of square of all sub-
grids’ pixel value within the coarse pixel.  

4.6. Downscaling satellite products from sub-grid SM variability 
The  function can be used to retrieve the SM variability at each grid cell. In addition, to downscale 
the coarse resolution satellite SM products, proxy data such as surface temperature and radar backscatter 
can be used (Hajj et al., 2018; Xu et al., 2018). The proxy data has a higher resolution, which need to be 
normalized before using. Then, the result combined with the SM variability is used to downscale coarse 
SM products (Montzka et al., 2018). The disaggregation method can be performed as below.

 4-24 

Where  stands for SM value at the fine scale resolution;   is the average value within the coarse pixel; 
 is the soil variability at the specific mean SM condition;  is the proxy data at fine resolution grid, 

which also shows the location of this fine sub-grid;  is the mean value of proxy date;  representative 
the standard deviation of the proxy. The resolution of proxy date is similar with the sub-grid soil 
properties which are used to retrieve SM variability. 

4.7. Quantification of errors  

4.7.1. Standard validation  
The downscaled satellite SM products were validated against cosmic-ray neutron probe and SM station 
data to evaluate the performance. The mean bias, root mean square error (RMSE), unbiased root mean 
square error (ubRMSE) and Pearson correlation coefficient (R) were computed. 

The bias ( ) measures the average difference between satellite and in-situ data. However, the 
negative and positive error may offset in this case. RMSE (0~  )shows the spatial variance of SM 
difference between two datasets while ubRMSE (0~  ) indicated the unbiased spatial variance of SM 
difference. R (-1~1) illustrates the linear correlation between two datasets.  

 
4-25 
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Where  (cm3/cm3) stands the satellites data;  (cm3/cm3) means the in-situ measurement data; N is 
the number of datasets.  

4.7.2. Triple collocation (TC)  
The triple collocation (TC) method was used here to understand the random error of these SM satellites 
products. This method was invented by Stoffelen (1998), and initially used as wind speed error estimation. 
Subsequently, it successfully applied to analyze the random error and uncertainty among SM products 
without the true dataset (Chen et al., 2018; Scipal et al., 2010). Assuming the linear relationship between 
SM and observation dataset: ,  stands for the true SM value while 

indicates the triplets;   are additive and multiplicative bias;  represents the zero-mean 
random error of each triplets (Gruber et al., 2016). In this study, TC analysis was done among SMAP (X), 
SMOS (Y) and ASCAT (Z) products, and taking SMAP as the reference dataset, which means the =0 
and  =1. The error variance can be presents as:  

  

 
4-29  

 

Where  are data variance;  are data covariance;  are error 
variance. Another performance metrics used is the signal-to-noise ratio (SNR). It measures the ratio 
between signal power and noise power. The SNR was formulated as:  

  

 
4-30 

 

 

 

This is a logarithmic measure and returns the unit of decibel (dB). When SNR is equal to 0, it means the 
signal variance is equal to the noise variance. And each ±3 dB indicate twice or half signal variance of 
noise variance.  
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5. RESULT AND DISCUSSION 

5.1. Inter-comparison of satellite products  

5.1.1. Descriptive inter-comparison    
It is considered that radiometer brightness temperature and radar backscatter linked in some aspects, for 
example, both are sensitive to the land cover and surface roughness change (Pierdicca et al., 2013). Many 
factors influence the quality of the SM products and these parameters can be classified. Some parameters 
change through the time, for example, the land surface temperature, soil ice fraction and vegetation water 
content; some may change through the spatial distribution like DEM. Furthermore, parameters can 
change through both temporally and spatially such as the land cover condition. Based on the Dorigo et al. 
(2017) research, four main factors (sensor, orbit, algorithm and environmenral) may cause the error of 
satellite products for both active and passive. These factors can be used to do the inter-comparison among 
three satellite products. Table 5.1 gives an overall summary of these factors. For the environmental aspect, 
only some critical elements were chosen here based on the real situation in Kenya. 

Table 5.1 Main factors affect the quality of three satellite SM products 

Comparison between active and passive SM products  

Category  Factor  Effect on SM  Comparison between active and 
passive SM products  

Sensor 

Observation 
wavelength  

The penetration depth highly 
linked with wavelength. The 
shorter wavelength is more 

sensitive to vegetation, which 
produces a higher error when 

retrieving the SM 

The wavelength used by passive is L-band 
while C-band for active. Therefore, 

SMAP and SMOS may have less effect by 
surface roughness than ASCAT  

Instrument Directly affects the SM retrieval Radiometer and SCATterometer are used 
for passive and active products 

Incident angle 
and azimuth 

angle   

Affect the received signal 
strength, then impact the SM 

retrieval  

Both brightness temperature and 
backscatter received from different land 
cover and surface roughness condition, 
having a close link with incidence angle.  

Orbit  Passing time  

The surface temperature and 
vegetation water content will 
change within one day, which 
affect the SM but was not fully 

considered into the retrieval 
model 

If only considering the three satellites 
used in this study, 6:00 AM is passing 

time for passive products and 9:30 AM 
for active. The former one is more 

suitable for SM retrieval (Se et al.,2012) 

Environmental Vegetation 
cover  

Reduce the signal from the soil 
while increase emission by 
itself, which cause more 
uncertainty during SM 

retrieving process 

Vegetation cover has a significant effect 
on both active and passive products. The 

active sensor maybe more sensitive to 
vegetation because of the lower 
penetration capacity by C-band 

wavelength  
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LST  LST directly affect the SM 
retrieval 

LST mainly influences the surface 
emissivity that impacts on the observed 

brightness temperature and used to derive 
the surface state flag (SSF) for ASCAT 

(active) product 

RFI  

Abnormal increase of 
brightness temperature by RFI, 

resulting in the SM value 
decrease 

Only affect the passive products because 
passive products are based on direct 

emissions from the surface  

Topography  

Affect the signal strength of 
both backscatter and brightness 

temperature, and causing the 
heterogeneous SM within pixel 

size  

Complex topography produces a 
geometric error for both active and 

passive products  

Comparison of three satellites  

Products  Main 
algorithm  Advantage Disadvantage  

SMAP 

Single channel 
algorithm 
(current 
baseline) 

Compared with other 
algorithms (DCA and LPRM), 

the SCA has the best 
performance (Miernecki et al., 

2014) 

Need to calibrate the relationship between 
optical depth and vegetation index 

(Miernecki et al., 2014) 

SMOS 
L-MEB model, 

Iterative 
approach  

Depending on the multi-angle 
system and iterative approach, 

the best fit for multiple 
parameters can be found 

instead of only SM.  

The high-resolution auxiliary map will 
cause the heterogeneity inside the pixel, 

which influence the SM retrieval process; 
time-consuming because of each view 

angle need to be applied by the antenna 
patterns (Fernandez-Moran et al., 2017) 

ASCAT 
Change 

detection 
method  

Moving time window 
calculation method improved 
the stability of the SM result  

The porosity data needed to transfer SMI 
to volumetric SM. There is no accurate 
porosity map in the global range, which 

cause the error (Brocca et al., 2011) 

5.1.2. Auxiliary data comparison  
To retrieve the SM, a set of ancillary data are needed for each product. These data can be separated into 
two groups, static and dynamic data.  Static data does not change over time e.g. DEM, permanent open 
water fraction, permanent masks (land/water/urban/forest/mountain) and soil properties. Dynamic data 
need an update from seasonally to daily, such as soil temperature, precipitation, land cover, vegetation 
parameters and surface roughness. All these data with different resolutions are pre-mapped to the same 
resolution of each satellite before using, and the table below shows a comparison of ancillary data used in 
three different satellites. 

Table 5.2 Auxiliary data used for SMAP, SMOS and ASCAT 

Parameters SMAP SMOS ASCAT 

Static auxiliary data 

Open water fraction MODIS44W 250m ECOCLIMAP  GLWD (2004) and 
GSHHS data 

Urban/rural mask Global Rural-Urban Mapping 
Project (GRUMP) dataset  - -  

DEM GMTED-2010  

GETASSE30 DEM 
(SRTM30 DEM, ACE 
DEM, and Mean Sea 
Surface (MSS) data 

composite) 

GTOPO30 
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Soil texture  

 FAO (Food & Agriculture 
Organization), HWSD 

(Harmonized World Soil 
Database), STATSGO (State 

Soil Geographic— US), NSDC 
(National Soil Database Canada), 

and ASRIS (Australian Soil 
Resources Information System) 

soil databases.  

FAO FAO, HWSD 

Permanent ice MODIS IGBP ECOCLIMAP  ERA40 data 
Max annual LAI  - ECOCLIMAP  -  

Porosity   -  - HWSD 

Dynamic auxiliary data 

Land cover MODIS IGPB ECOCLIMAP, IGBP, 
ESL -  

Surface roughness  Land cover lookup table Land cover lookup table Land cover lookup table 

Precipitation  ECMWF ECMWF ECMWF 

Vegetation parameters  Land cover lookup table ECMWF Land cover lookup table 

Crop type 
Combination of USDA cropland 

data layer, AAFC-Canada, 
ECOCLIMAP-Europe, FAO 

 - -  

Soil temperature GSFC GMAO ECMWF ERA-interim 

Surface air temperature  GSFC GMAO ECMWF ECMWF 

Vegetation water 
content  MODIS NDVI ECMWF -  

Frozen land surface 
fraction  -  -  ECMWF ERA-40 

Snow  IMS-NOAA ECMWF SSM/I 
LAI -  MODIS  - 
RFI  - SMOS L2  - 

Sea ice cover   - ECMWF  - 
 

5.1.3. The relationship between auxiliary data and retrieved SM for three satellites  

5.1.3.1. Spatial distribution of main auxiliary data and SM  
a. Soil texture  

The same soil texture map was used as static auxiliary data for three satellites. The soil map is from the 
Food and Agriculture Organization of the United Nations (FAO) website, which contains 26 different 
kinds of world classes of soil type. There are five classes within the study area. East part of the study area 
is cambisols (blue and red part). The middle part is vertisols soil type which is very common in Kenya, 
consists of expansive clay minerals. The green area is lithosols soil type, it is a kind of shallow soils 
generally due to the steep slope, also can be confirmed from the slope map. The other two small areas are 
ferrasols (white area) and nitosols (duck blue area) respectively, both these two types of soil occur in 
tropical areas with lush vegetation. 
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Figure 5.1 Soil texture auxiliary map from FAO within the study area 

b. DEM  
SMAP uses GMTED2010 dataset with three different spatial resolution of 30, 15 and 7.5 arc-seconds. 
The Global Earth Topography and Sea Surface Elevation at 30 arc-second resolution (GETASSE30 
DEM) dataset is used as SMOS auxiliary elevation data, and it is a composite dataset from SRTM30 
dataset, ACE dataset, Mean Sea Surface (MSS) data and EGM96 ellipsoid. For ASCAT, the 30-arc 
resolution (around 1km) GTOPO30 dataset is adopted. The comparison of three DEM maps show as 
below. All three DEM maps have a similar trend, with a lower value in the center of the study area and 
relatively high value in the east part and north-west area. However, compare with the ASCAT DEM map, 
SMAP and SMOS have almost the same spatial distribution. The elevation change within the study area is 
around 1000 meters, but mainly concentrate in the east part. All the points are in the lower ground, so the 
elevation difference among these sites is not significant.  

 
Figure 5.2 DEM auxiliary map comparison among three satellites within the study area 
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After converting the DEM to slope in ArcGIS, the more dynamic change can be seen from SMOS and 
SMAP compared with ASCAT within the whole study area. However, almost the same slope (around 
zero) appears in the centre area base on Figure 5.3. 

 
Figure 5.3 Slope auxiliary map comparison among three satellites within the study area 

c. Land cover  
For SMAP and SMOS, the land cover map is not static auxiliary data, it changes each year. However, 
within this research period of one and a half years, it was considered to be static. There are two global land 
cover-map with fine resolution. One is the International Geosphere-Biosphere Programme (IGBP) 
defined surface classifications and the other one is the University of Maryland (UMD) global land cover. 
The land cover map used by SMAP is MODIS IGBP with 17 classes and 500m resolution. SMOS uses 
ECOCLIMAP map which has 1km resolution. The ECOCLIMAP mainly used the UMD global land 
cover map except for permanent ice and open water area, which keep the same with IGBP (Champeaux et 
al., 2005). For both SMAP and SMOS, the land cover map was resampled to the same as the footprint of 
satellites before using as the input auxiliary data.  

The MODIS IGBP map from Figure 5.4 shows that around 90 percent of the study area covered by 
grassland. According to the information collected by Donald T. Rwasoka, almost all the point 
measurement stations covered by grassland, which matches the IGBP map. Moreover, the SMOS auxiliary 
land cover map is more complex. It contains eight different kinds of land cover type. There are three main 
types (grassland, savanna and grass with sparse shrubs), although these three land cover types have similar 
properties, the denser vegetation can be seen from ECOCLIMAP compared with IGBP.  

 
Figure 5.4 Land cover map comparison, left is MODIS IGBP map and right is ECOCLIMAP land cover map  
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For ASCAT, the land cover map is obtained from the Harmonized World Soil Database (HWSD). It 
completes and updates the FAO and International Institute for Applied Systems Analysis (IIASA) soil 
map by combing existing regional and national soil information. Then created seven land use land cover 
(LULC) results. Three LULC map (grass, forest and total cultivated map) were used in study area. This 
result agrees with SMAP land cover auxiliary map, most of the area covered by grassland, while in the 
south-west part shows a difference. In the ASCAT land cover map, the forest land cover can be seen in 
the left down corner.  

Therefore, if only consider the land cover situation over ten in-situ measurement stations, SMAP and 
ASCAT auxiliary land cover maps provide a better result, which can match the real condition.  

 
Figure 5.5 ASCAT auxiliary land cover maps from HWSD 

d. Precipitation  
ECMWF precipitation is used by the three satellites as the primary precipitation data, it shows a better 
performance after validation using in-situ data (Entekhabi et al., 2014). Monthly average maps are 
prepared to show the relationship between SM and precipitation within the study area. Dry, moderate and 
wet season were selected in this case, for September, January and April respectively. A clear difference can 
be seen from these three precipitation maps.  

 
Figure 5.6 ECMWF monthly averaged precipitation map 

e. Surface temperature 
The surface temperature auxiliary data used for SMAP, SMOS and ASCAT is different. MERRA dataset 
with hourly temporal resolution is for SMAP. For SMOS and ASCAT, the same ECMWF reanalysis data 
is used (Entekhabi et al., 2014). The result shown that MERRA and ECMWF surface temperature during 
September have a similar spatial distribution, however, the MERRA dataset has a relatively higher dynamic 
change. During January and April, there are slight differences between these two datasets. While linking 
ECMWF surface temperature map with the precipitation map, we can see more precipitation cause lower 
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surface temperature. The range for the surface temperature change is quite small, only from 290k to 297k. 
Nevertheless, this only represents these three specific months, not for other time periods.  

 
Figure 5.7 MERRA and ECMWF monthly average surface temperature map 

f. Monthly SM patterns  
The monthly averaged SM map is used here to compare the spatial SM distribution between the three 
satellites. In order to link with the dynamic auxiliary data, the same months were chosen here (January, 
April and September indicate the median, wet and dry month). In general, SMAP and SMOS show a 
similar spatial pattern, which has a strong link with precipitation map especially during wet and dry season. 
From April and September precipitation maps, more rainfall appeared in the north-west part of the study 
area, which can match the higher SM value occurs in the same region. However, the ASCAT has a 
different SM pattern; a higher SM value occurs in the south-east area. Compared with these three months, 
a similar distribution can be seen from the ASCAT SM map with relatively higher value occurs in the 
south-east part and lower SM appears in the west part. Considering the ASCAT used the same 
precipitation and temperature data as SMOS, this difference may be caused by the porosity data, which 
used to convert the SMI to SM by ASCAT.  

Except for the dynamic auxiliary data influence, the similar spatial distribution between SMAP and SMOS 
is more linked with the algorithm used by passive products. This also linked with the precipitation map 
distribution. While it is difficult to identify the relationship from ASCAT. Moreover, these maps are based 
on the monthly averaged SM value, which cannot represent the specific daily change.  
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Figure 5.8 SM monthly average spatial distribution maps for three satellites 

5.1.3.2. Temporal change between dynamic auxiliary data and SM  
The monthly averaged dynamic map was used to compare the spatial pattern of SM distribution. To 
clearly show the relationship between SM and precipitation/temperature, the monthly means was 
calculated and inter-compared in this subsection.  

Figure 5.9 indicated the precipitation change from June 2017 to December 2018 together with the SM 
change. All these three satellites have a good response to the rainfall event. The SMAP has a higher mean 
SM value especially during the rainy season from March to May. While ASCAT shows a relatively lower 
SM trend during the dry season. Besides, SMAP and SMOS SM change have almost the same trend within 
the whole year. However, the difference between these two satellites is bigger during the rainy season and 
smaller during the dry period. One reasonable explanation is that two passive products have different 
response to the rainfall event, and another reason is the effect of vegetation cover. During the wet season, 
dense vegetation occurs while causing uncertainty for the SM retrieval.  

Different from the precipitation auxiliary data, the surface temperature data used by SMAP is different 
from SMOS and ASCAT. From Figure 5.10, a lower surface temperature trend can be seen from MERRA 
dataset (used by SMAP) compared with ECMWF (used by SMOS and ASCAT). This may be one of 
reasons causing SMAP being of higher SM than the other two satellites. Generally, the SM value and 
surface temperature have the opposite trend. However, this relationship did not exactly happen during 
each month. For example, in January, a relatively higher temperature and SM value occurs, which means 
the surface temperature may not be the dominant factor to control the SM change.  
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Figure 5.9 Monthly mean precipitation and SM for three satellites 

 
Figure 5.10 Monthly mean surface temperature and SM for three satellites 

The microwave sensor was proved with higher penetration depth and it is more sensitive to the SM 
change (Lannoy et al., 2013; Miernecki et al., 2014). All these products are influenced by the vegetation 
and surface roughness. The inter-comparison mainly compared the algorithm and auxiliary data used for 
the three satellites. There are similarities between SMAP and SMOS. ASCAT used the C-band 
scatterometer to retrieve the SM. The change detection method can only get the SMI instead of SM value, 
which may induce extra uncertainties and errors. For the auxiliary data part, the big difference happened 
for the land cover map used by the three satellites. As mentioned before, vegetation has a strong effect on 
the retrieved SM. Therefore, the accuracy of the land cover map is significantly important for getting SM 
estimates correct.  
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5.2. SM variability result  

5.2.1. The relationship between SM variability and soil texture  
The hydraulic parameters are obtained from PTF based on soil grids map. Then Levenberg-Marquardt 
(LM) algorithm was applied to calculate the best fit of these parameters within each coarse pixel for 
different satellite products. The standard deviation of these parameters also calculated. Because of the 
homogeneity of the study area, the soil information dynamic change like clay, silt and sand content is not 
significant. After calculating the upscaled coarse pixel soil information, there are two main types within the 
study area: clay loam (CL) and sandy clay loam (SCL). Soil texture result can be seen in Figure 5.11. 

 
Figure 5.11 Soil type within coarse resolution satellite products. From left to right are SMAP, SMOS and ASCAT 
respectively. 

The PTF result for different satellites can be separated into two parts, CL and SCL. Table 5.3 indicates 
that the hydraulic parameters have similar result for each soil type.  

Table 5.3 Mean and standard deviation of VGM parameters obtained by Wösten et al. (1999) PTF method 

Soil texture  
Hydraulic parameters 

 
(cm-1) n (-) f (cm d-1)  (cm3 

cm-3)  (-)  (-)  (-)  (-) 

CL_SMAP 0.050 1.108 3.607 0.442 0.004 0.008 0.210 0.008 
CL_SMOS 0.050 1.110 3.626 0.442 0.005 0.009 0.264 0.010 

CL_ASCAT 0.049 1.108 3.576 0.442 0.004 0.008 0.216 0.008 
CL_average  0.050 1.109 3.603 0.442 0.004 0.008 0.230 0.009 
SCL_SMAP 0.057 1.122 3.895 0.434 0.003 0.009 0.180 0.010 
SCL_SMOS 0.004 1.114 3.700 0.432 0.004 0.010 0.268 0.015 

SCL_ASCAT 0.057 1.121 3.850 0.432 0.004 0.009 0.194 0.010 
SCL_average 0.039 1.119 3.815 0.433 0.004 0.009 0.214 0.012 

 
To analyze the relationship between soil type and SM variability, the average SM variability was calculated 
for two main soil types based on the same mean SM condition. Eight mean SM values from 0.05 to 0.4 
(0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4) was used to evaluate the SM variability for CL and SCL of 
different products. It is worth noting that this result cannot represent the true variability for these two 
different soil types, since the soil type may change after counting the mean value. But, it can give some 
sense of how the SM variability change under different conditions. Figure 5.12 illustrates the SM variability 
under different mean SM condition for three products.  
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Figure 5.12 Diagram of SM variability change under CL and SCL soil type 

The result shows that the SM variability has the same convex trend for these two soil types, which 
calculated based on coarse pixel of each satellite. The biggest SM variability occurs under 0.15 to 0.2 (cm3 
cm-3) mean SM condition. The average result for CL and SCL indicated that the similar SM variability 
happened within the whole study area. Compared with three satellite products, SMOS has the biggest SM 
variability. According to Qu et al. (2015) research, the SM variability is mostly linked with the standard 
deviation of parameter , here, a slightly bigger result of this value also occurs for SMOS which is 
consistent with previous research.  

5.2.2. SM variability based on selected grids point   
As reported in the previous part, the SM variability has the relationship with mean SM. For different 
satellite products with different spatial resolutions, the SM variability within each coarse pixel has been 
calculated. Because the soil texture within the study area is quite similar, only one specific pixel that 
contains the CRNP site is used to compare the SM variability change for the three products. The result 
was shown in Figure 5.13. 

 
Figure 5.13 Relationship between SM variability and mean SM for SMAP, SMOS and ASCAT within a coarse pixel. 

When the mean SM is smaller than 0.4 cm3 cm-3, all these curves showed a similar convex trend. So, low 
SM variability appears under dry condition; then it increases with the mean SM peaked in 0.17cm3 cm-3 
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followed by the decrease. Although three SM products share a similar trend, the SMOS has the most 
significant variability under the same situation whereas SMAP has the smallest change. Considering the 
same soil texture for these three satellite pixels. A possible explanation for this result may be the spatial 
resolution difference among three satellites, where SMOS has the largest resolution and SMAP is the 
smallest one. The peak of SM variability for SMOS is around 0.15, for SMAP and ASCAT are 0.1 and 0.13 
respectively. Compared with the research by Montzka (2018), who analyzed the SM variability over the 
global range, the result is quite similar in this area. When the mean SM is bigger than 0.4 cm3 cm-3, the 
soil water content is almost reaching the saturated value and a sharp rise in the variability can be seen for 
SMOS and SMAP. 

5.2.3. Sensitivity analysis of hydraulic parameters  
The VGM hydraulic parameters were calculated based on the PTF provided by Wösten et al. (1999). 
There are four parameters in the VGM model used to obtain the SM variability: , ,  and .  
is saturated water content (cm3 cm-3);  stands for saturated hydraulic conductivity (cm d-1);  and  are 
air entry parameter and pore size distribution parameters respectively. The mean VGM parameters were 
calculated for each satellite product at their original spatial resolutions.   

Since all three SM products has almost the same trend, only SMOS was used to do the sensitivity analysis 
in this research. The sensitivity analysis was based on the original dataset. Then change one parameter and 
keep others the same to evaluate different performances of these parameters. The original dataset shows 
as below: 

Table 5.4 SMOS specific pixel hydraulic parameters 
Soil texture PTF result 

Clay (%) Silt (%) Sand (%) (-) (-) (cm d-1) (cm3 cm-3) 
33.5 21.0 45.5 0.054 1.114 3.738 0.439 

Figure 5.14 indicates that parameter  is most sensitive to the SM variability change followed by , then 
 and the last one is . This result agrees with Vereecken et al. (2007) on the analysis of Brooks-Corey 

model, where λ was found the most sensitive parameter. Both  and λ control pore size distribution that is 
directly influencing the shape of WRC. The relationship between mean SM and SM variability changes 
mainly because of the  value. Under the lower  value condition, there tend to have a negative 
relationship between mean SM and SM variability, while it changes to positive under higher n value and 
the convex relationship can be seen in the medium condition. These results reflect those of Wang et al. 
(2015), who also found that the SM variability has positive link with mean SM under coarse soil texture. 
The SM variability has a similar trend with the changing  value. For the rest two parameters, almost no 
change can be detected with different mean SM conditions, especially for . The SM variability has a 
second increase after mean SM value of 0.4 cm3 cm-3. However, this result is questionable as the SM 
content at this area seldom reached the saturation.  
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Figure 5.14 Sensitivity analysis result for hydraulic parameters 

In this study, the accuracy of the soil map and PTF is crucial as the hydraulic parameters have a strong 
link with the SM variability especially for  value. A convex relationship obtained between mean SM and 
SM variability for CL and SCL, this finding was also reported by Qu et al (2015). However, as the study 
area is relatively homogeneity, the convex relationship as derived here may not represent the conditions 
with other soil types. The SM variability under different soil types has distinct performances according to 
Wang et al. (2015), which mainly depends on the soil water holding capacity. Besides, the environmental 
condition also plays an essential role in the SM variability change, which was not fully considered in this 
method.  
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5.3. Downscaling and comparison result  

5.3.1. SM downscaling result  
Field capacity (FC) was used as the proxy data to downscale different satellite products to 1km resolution.  
FC refers to the amount of water remaining in the soil after the excess water drained away and the 
downward rate of water has decreased. This state usually occurs 2 to 3 days after precipitation or irrigation 
in homogeneous soil. FC may be affected by soil texture, soil structure, organic matter content in the soil, 
land cover and so on. Even within the same type of soil, the FC may be different because of the distinct 
climate or land use. Figure 5.15 shows the FC spatial distribution within the study area. The range of value 
is from 0.25 to 0.40 (m3/m3), and the upper region shows a higher value compared with the lower part 
area.  

 
Figure 5.15 Field capacity map calculated from Soil Grids using PTF within study area 

Figure 5.16 illustrates the mean SM of original, downscaled and downscaled-interpolated result. In this 
figure, the first column is the original map, the second column is the downscaled result and the last one is 
the interpolated map. The SM pattern is difficult to identify on the coarse resolution SM map. Especially 
for SMOS with large spatial resolution. While the downscaled result shows detailed sub-grids SM pattern 
within the coarse pixels. However, because of the SM difference between neighbor pixels are very 
significant for the coarse resolution SM map. The apparent gap still can be seen from the high-resolution 
map after downscaling. Because of the average SM value was calculated within the whole period, this 
difference is not outstanding. If we check the Appendix A for daily SM map, the sharp difference between 
different pixels is much more significant, especially for SMOS. Therefore, the further method needs to be 
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used to smooth the sharp edges at the coarse pixel border. A simple interpolation method applied here 
based on the SM variability change between the grid center.  

 5-1 

Where  and stand for the mean SM and SM variability between grid centers respectively.  
 
Compared with these three different mean SM maps, SMAP shows higher value compared with others. 
The SM had a gradually change from north-west to the south-east, from wet SM pattern to the relatively 
dry pattern. SMOS presents a similar SM spatial distribution as SMAP. However, a totally different spatial 
distribution and a drier trend can be found in the ASCAT SM map. When linked with the porosity map, 
the area with higher porosity gives a relatively higher SM value in this mean SM map. This means the 
porosity data plays a crucial role during the SM retrieval of ASCAT (also see SM maps for different month 
in Appendix A). In general, all these three satellite products can capture the seasonal change of SM in 
Kenya. The wet season appears around March and April, with the relatively high value of SM in April. 
And. During August and October, the SM value is much lower.  

 
Figure 5.16 Mean SM spatial distribution for original, downscaled and D/I result  
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5.3.2. Correlation coefficient between satellite products 
The Pearson correlation coefficient (R) was calculated for both original and downscaled result between 
two satellites. In Figure 5.17, the top three images are for original products while others are downscaled 
correlation result.  

Considering the R between original products, SMAP and ASCAT have the strongest link with each other. 
The R value between them is more than 0.65 within the whole study area. SMAP and SMOS also show 
good relationship, especially for the eastern part. When linked with the land cover map (Figure 5.4), more 
different land cover types appear in the west part of the SMOS. This situation cannot match with SMAP 
land cover map, maybe a reason causing the low correlation between SMAP and SMOS in the west part of 
the study area. ASCAT and SMOS are not correlated at all. Since the ASCAT SM has a tight link with 
porosity data, the relatively low relationship may be caused by inaccurate porosity data.  

For the relationship between the downscaled products, the correlation has the similar spatial pattern 
compared with original products. The value increased within the whole study area. For example, SMAP 
and SMOS are poorly correlated in the south-west part, but it becomes better after downscaling (the R 
improves from 0.2 to 0.4). This is also true for the ASCAT vs SMOS map. The same FC map used as the 
downscaling data may cause the similar SM changing trend for the sub-grid soil of three satellite products, 
causing higher R values among the three downscaled SM products. 

 
Figure 5.17 Correlation of coefficient map between two original and downscaled satellites  

5.3.3. Triple collocation analysis among three satellites  
Figure 5.18 shows the TC result for SMAP, SMOS and ASCAT. The upper images are error variance 
results for three satellite products and below are SNR result. Normally, TC method is used among 
satellite, modeling and in-situ measurement data. But here, considering three satellites used the different 
algorithms and input data, the TC analysis is also possible to be applied. TC result indicates that SMAP 
has the lowest error variance pattern among the three products with an average value around 0.03 (cm3 
cm-3). ASCAT shows poorer result than SMAP with the average error variance of 0.06 (cm3 cm-3). The 
error variance for both SMAP and ASCAT are better than SMOS within the whole study area.  
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For the SNR map, the value of zero means signal variance is equal to the noise variance. Each ±3 dB gives 
the twice or half ratio between signal variance and noise variance. As shown in the output map, all these 
three satellites tend to have a negative value of the SNR, it means the noise outweighs the signal. SMAP 
has a higher SNR value compared with SMOS and ASCAT. And, it is pretty much coinciding with its 
error variance map.  

The SNR map for SMOS has a relatively good performance in the east part of the study area and a 
significant low performance in the south-west corner. This phenomenon also appears in the R map. A 
very poor correlation finds in the same area with SMOS to the other two products. The specific reason for 
this result may be attributed to the land cover map used in SMOS. It is interesting to note that the SNR 
pattern of SMOS cannot match its error covariance map, especially in the northern part. Based on Gruber 
et al. (2016) research, the SNR may also be dominated by the sensitivity pattern. The higher sensitivity 
value indicates a stronger response to the SM change. In this case, probably SMOS is not sensitive to 
catch the SM dynamic, also more abnormal values cause the higher error variance in SMOS.  

 
Figure 5.18 TC result for original products 

To clarify the SM change for the downscaled SM, TC was also applied to the downscaled result. 
Compared with original products, the error variance for three products become smaller within the whole 
study area. SNR value also has slightly increased. Especially for the SMOS, some extremely worse values 
were reduced. Considering the spatial pattern between the error variance and SNR. Almost all downscaled 
products keep the same in both maps. It implicated that the downscaling leads a consistent spatial pattern 
of SM distribution for three products. 
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Figure 5.19 TC result for downscaled results 

The downscaled result indicates that sub-grid variability and FC porosity data can be used to disaggregate 
the SM products. From a coarse resolution to 1km resolution. For SMAP and SMOS, the similar SM 
spatial distribution happened in most cases. While ASCAT SM spatial distribution is more dependent on 
the porosity data. The correlation coefficient between different products become better after downscaling. 
Because the satellite products have a similar changing trend of the SM by using the FC proxy data. 
However, the SM retrieved value by SMOS on the bottom left corner may contain more abnormal values. 
Based on the TC analysis, downscaled result reduced the noise power. Because the VGM model used in 
this method has a relatively reasonable saturated SM. This concept helps to ignore some extremely high 
SM value when downscaling, causing the increase of SNR result, which is obvious for SMOS.  
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5.4. Validation result  

5.4.1. Validation against point measurement data   
The original products and downscaled result for three satellites were validated against point measurement. 
This used to analyze the performance of each satellite within the period from June 2017 to December 
2018. Table 5.5 shows the validation metrics of R, bias, RMSE and ubRMSE for three products against the 
in-situ measurements of ten stations. 

Table 5.5 Validation metrics of SMAP, SMOS and ASCAT products in ten stations. Orig is the original coarse 
products, D is the downscaled result, and D/I is the interpolated result. 

 
The Mara-main station has the longest measurement compared with others, which was used here to do the 
time series analysis. For other stations’ information please see Appendix B. Figure 5.20 illustrates the time 
series plot in Mara-main station for three different satellites together with their downscaled result. 
Compared with SMAP and SMOS, ASCAT catches the SM changing trend very well within the study 
period. This is because of the temporal resolution for SMAP and SMOS satellites are two or three days 
while the ASCAT has daily retrieved SM value.  

Focusing the original products performances in Table 5.5, SMAP shows the best correlation coefficient of 
0.807 which is followed by ASCAT (0.756), while SMOS is only 0.528 in this station. Considering the bias 
value for each satellite, a wet bias can be seen for all three satellites. There is higher bias for SMAP and 
SMOS with a value around 0.05 cm3 cm-3. For the ubRMSE result, all these three satellites cannot meet 
the accuracy requirement of 0.04 cm3 cm-3. However, SMAP and ASCAT have shown similar value 
around 0.07cm3 cm-3 while SMOS gave the most significant error. Some reasons causing the different 

Orig D D/I Orig D D/I Orig D D/I Orig D D/I
Mara-main 0.807 0.805 0.798 -0.056 -0.062 -0.051 0.092 0.095 0.090 0.073 0.073 0.074

Mara-bridge 0.860 0.859 0.866 -0.037 -0.041 -0.027 0.077 0.079 0.074 0.068 0.068 0.069
Ashnil 0.762 0.765 0.764 -0.108 -0.097 -0.090 0.134 0.124 0.117 0.078 0.077 0.075

Kissinger 0.735 0.735 0.734 -0.014 0.000 0.010 0.075 0.073 0.070 0.074 0.073 0.070
Upstream 0.729 0.726 0.709 -0.041 -0.026 -0.017 0.065 0.057 0.049 0.050 0.050 0.046
Olimisigol 0.691 0.690 0.690 0.014 0.023 0.033 0.056 0.059 0.062 0.054 0.055 0.052

Nice-bridge 0.467 0.467 0.466 -0.020 -0.024 -0.021 0.081 0.082 0.080 0.078 0.078 0.077
Helicopter 0.449 0.445 0.445 0.013 0.030 0.035 0.072 0.071 0.072 0.064 0.064 0.063

Talek 0.362 0.366 0.382 0.012 -0.009 -0.005 0.104 0.095 0.094 0.071 0.071 0.069
V-section 0.167 0.166 0.175 -0.112 -0.104 -0.095 0.138 0.132 0.123 0.080 0.081 0.078
Average 0.603 0.603 0.603 -0.035 -0.031 -0.023 0.089 0.087 0.083 0.069 0.069 0.067

Mara-main 0.528 0.530 0.664 -0.046 -0.040 -0.013 0.099 0.106 0.070 0.099 0.098 0.069
Mara-bridge 0.579 0.594 0.641 -0.021 -0.011 0.019 0.092 0.088 0.069 0.089 0.088 0.067

Ashnil 0.604 0.605 0.626 -0.087 -0.090 -0.068 0.132 0.134 0.107 0.099 0.099 0.083
Kissinger 0.533 0.533 0.545 -0.039 -0.029 0.017 0.107 0.105 0.083 0.100 0.100 0.082
Upstream 0.424 0.427 0.362 -0.070 -0.059 -0.017 0.117 0.110 0.070 0.093 0.093 0.068
Olimisigol 0.315 0.314 0.349 0.011 0.031 0.058 0.099 0.104 0.093 0.099 0.099 0.073

Nice-bridge 0.183 0.183 0.316 -0.033 -0.040 -0.004 0.125 0.127 0.093 0.120 0.120 0.093
Helicopter 0.144 0.145 0.294 -0.016 -0.003 0.031 0.104 0.104 0.072 0.103 0.103 0.065

Talek 0.090 0.094 0.244 -0.004 -0.033 -0.007 0.114 0.118 0.077 0.114 0.113 0.077
V-section 0.052 0.052 0.161 -0.117 -0.122 -0.103 0.113 0.164 0.130 0.110 0.110 0.080
Average 0.345 0.348 0.420 -0.042 -0.040 -0.009 0.110 0.116 0.087 0.103 0.103 0.075

Mara-main 0.756 0.762 0.746 -0.008 0.009 -0.024 0.064 0.064 0.075 0.064 0.063 0.072
Mara-bridge 0.855 0.855 0.852 -0.001 -0.001 -0.002 0.064 0.063 0.063 0.064 0.065 0.067

Ashnil 0.879 0.879 0.881 -0.043 -0.045 -0.065 0.066 0.067 0.084 0.050 0.050 0.053
Kissinger 0.795 0.795 0.798 -0.030 -0.026 -0.035 0.064 0.062 0.064 0.057 0.057 0.054
Upstream 0.461 0.463 0.450 -0.060 -0.055 -0.063 0.087 0.084 0.087 0.063 0.063 0.060
Olimisigol 0.657 0.659 0.655 0.021 0.032 0.031 0.065 0.069 0.068 0.061 0.061 0.060

Nice-bridge 0.743 0.743 0.748 0.008 0.013 -0.024 0.055 0.056 0.059 0.054 0.054 0.054
Helicopter 0.535 0.535 0.505 0.003 0.007 0.000 0.071 0.071 0.064 0.071 0.071 0.064

Talek 0.649 0.650 0.645 0.041 0.026 -0.004 0.069 0.062 0.058 0.055 0.056 0.058
V-section 0.424 0.427 0.497 -0.069 -0.073 -0.090 0.098 0.101 0.112 0.070 0.070 0.067
Average 0.675 0.677 0.678 -0.014 -0.011 -0.028 0.070 0.070 0.074 0.061 0.061 0.061

Bias RMSE ubRMSE

SMAP

SMOS

ASCAT

Product Station R
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performances for three satellites based on the inter-comparison analysis as before. For the ASCAT 
satellite, the error mainly obtained from inaccurate porosity data used when converting the SMI to SM. 
While for the passive sensor, the model and auxiliary data difference all have the contribution to the 
distinct errors.  

In Kenya, there are two rainy periods. The longer one occurs during April to June and short one is from 
October to December. This is also indicated from section 5.1, monthly precipitation time series plot. 
During the rainy season from March to June, SMAP has more error than the dry season and is 
concentrated in the time of rainfall event. This situation appeared for each station (see from Appendix B). 
It means SMAP tends to quickly respond to the rainfall and it is sensitive to the precipitation event. 
Besides, the biomass of vegetation increases during the wet season, which can significantly affect the SM 
result when using L-band microwave retrieval algorithms. Based on the tau-omega model used for SMAP, 
the vegetation will attenuate the signal from the soil. However, due to the huge amount of vegetation and 
the self-emission by itself. The microwave sensor will receive the signal from vegetation instead of the soil. 
In this case, the water content in the vegetation will count as the SM, resulting in the increase of SM value 
during rainfall period. This finding is consistent with that of Ma et al. (2017), which compared the active, 
passive and combined active passive SM performance over north-west part of China. They found the SM 
retrieval over bare soil has higher accuracy compared to dense vegetation land cover.  

The same issue happened in SMOS, a wet trend can be seen during the wet season caused by the same 
reason as SMAP. However, there is more noise shown in the SMOS time series plot. From April to May, 
higher dynamic changes of SMOS occurs, the retrieved SM cannot catch the in-situ measurement change. 
Besides the wet season, extremely large value also appears from June to December. This situation can 
match the TC analysis result in the previous section, as SMOS has relatively low SNR and high error 
variance. Evidence shows the SMOS may be affected by radio frequency interference (RFI). RFI will 
affect the brightness temperature, then to cause the lower SM retrieval result. But this situation mainly 
happened in Europe and Asia, which may not be the real reason in this study (Muñoz-Sabater et al., 2014). 
Another reasonable explanation is based on the algorithm used by SMOS. The L-MEB model used by 
SMOS divided the surface cover into sparse, medium and dense vegetation. And empirical parameters are 
expected. Therefore, optical thickness derived from vegetation cannot respond to the seasonal change, 
causing the error accumulation during the iterative algorithm and making higher dynamic change of SM 
(Schlenz et al., 2012).  

For ASCAT, a good correlation found from January to October. The ASCAT SM value has a very good 
match with in-situ measurement data and it also has a relatively small range change of SM value (from 0 to 
0.4 cm3 cm-3). However, if we see the relationship between ASCAT SM and in-situ data around each 
rainfall event. ASCAT tend to overestimate the SM value during wet season. This may be caused by both 
the wet soil condition and roughness surface of the land. While during the dry season, there are lots of 
underestimated cases, even some zero value appears mostly between October to December. This situation 
matches Figure 5.8, and the mean SM is very low in these months which cannot respond to rainfall event. 
The mechanism for this phenomenon is not clear. But if we check the Appendix B, this phenomenon did 
not appear in Kissinger and Upstream stations. And, a clear overestimation occurs in these two stations 
from June to October. As such, if linked back to the porosity map, we again concluded that the spatial SM 
distribution of ASCAT is mainly dependent on porosity data.  

In general, the passive satellites have a relatively poor performance during wet seasons because of the 
vegetation influence. ASCAT has the smallest dynamic change compared with SMAP and SMOS and it 
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can catch the temporal variability of in-situ measurement data. For SMOS, too much noise affect the 
accuracy of the original product.  

 
Figure 5.20 Time series plot for SMAP, SMOS and ASCAT against point data in the Mara-main station 

According to downscaled result in Table 5.5 the performance of SMAP keep the same ubRMSE as original 
product while SMOS and ASCAT had a slight increase. This difference is very small which can almost be 
neglectable. Thus, after downscaling, there is almost no change in the performance of each satellite 
product. It is encouraging to compare this figure with research by Montzka et al., (2018), who found that 
there is no remarkable difference among original, downscaled and downscaled interpolated results. 
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From the time series plot (Figure 5.20), SMAP and ASCAT satellites have a quite similar result with the 
original one. The original and downscaled time series plots are almost overlaying each other. While for 
SMOS, the downscaled result shows a clear gap with the original product mostly under wet SM condition 
while perform similar for the rest. This result can be linked with the SM variability analysis for SMOS, 
which has the biggest SM variability compared with SMAP and ASCAT. Also, when the SM is bigger than 
0.45, extremely higher SM variability happened to cause the distinct difference between the original 
product and the downscaled one.  

If we now turn to the interpolated result after downscaling, we see similar values for SMAP and ASCAT, 
while with a significant change for SMOS. A reasonable explanation is that SMOS has the biggest spatial 
resolution that causes larger gap between grid cells after downscaling, which can also be seen from 
Appendix A downscaled image results. The interpolated result is strongly influenced by the neighbor pixel 
value, which will lead to a large difference between the interpolated and original one. Also, for the 
statistical analysis output, SMOS ubRMSE has a significant decrease from 0.98 to 0.69 cm3 cm-3.  

These results indicate that the sub-grid downscaling method depends on the heterogeneity of the soil, if 
there has more dynamic change of the soil texture, more significant difference can be seen from the 
downscaled result. However, according to the homogeneous study area in this research, the downscaled 
result almost keeps the same value as the original products. Therefore, the quality of original products has 
a decisive effect on the downscaled result.  

5.4.2. Validation against CRNP SM data  
Table 5.6 gives the validation result for SMAP, SMOS and ASCAT against the CRNP SM and point 
measurement in Mara-main station. The clearest change between point and CRNP SM is that the bias 
convert from negative to positive for all products, it means the CRNP SM is much higher than the point 
measurement in this case. This situation also can be seen from Figure 5.21, although the CRNP SM has 
the similar trend with point measurement data within the year of 2018, there is a clear gap between the 
CRNP SM and point measurement data. Under the same condition, the SM retrieved from CRNP has 
much higher value compared with point measurement.  

Considering the ubRMSE difference, the satellites validation result become worse for ASCAT and SMOS, 
while for the SMAP, a slightly increase can be seen in this station. This is caused by the relatively higher 
trend of SMAP compared with the other two satellites. For the downscaled result, CRNP SM still keeps a 
similar result as original one. Because there is only one site measurement, this validation result does not 
have a good representation.  

Table 5.6 Validation metrics for SMAP, SMOS and ASCAT in Mara-main station with CRNP and point SM  

 
Figure 5.21 illustrates the time series plot of CRNP retrieved SM with different satellites products. 
Combined with the time series plot from previous section the only difference is that the CRNP SM data 
tend to be relative higher but with the similar trend.  

Orig D D/I Orig D D/I Orig D D/I Orig D D/I
CRNP 0.852 0.851 0.841 0.056 0.051 0.062 0.088 0.085 0.094 0.068 0.068 0.071
Point 0.864 0.863 0.859 -0.067 -0.073 -0.061 0.096 0.101 0.094 0.070 0.070 0.072

CRNP 0.226 0.202 0.499 0.040 0.049 0.093 0.146 0.146 0.137 0.140 0.138 0.101
Point 0.593 0.595 0.716 -0.060 -0.055 -0.024 0.112 0.109 0.071 0.095 0.095 0.067

CRNP 0.841 0.843 0.843 0.105 0.122 0.084 0.121 0.136 0.104 0.061 0.061 0.062
Point 0.858 0.860 0.852 -0.022 -0.004 -0.042 0.050 0.050 0.070 0.050 0.050 0.056

Measurem-
ent ways

R Bias RMSE ubRMSE
Product

SMAP

SMOS

ASCAT
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Figure 5.21 Time series plot for SMAP, SMOS and ASCAT against CRNP and point SM data over Mara-main station 

The reason behind this situation is that the CRNP is not only measuring the 5cm soil moisture as FDR, its 
measurement depth depends on the water content in the soil. Previous research by Zreda et al., (2008) 
found that the effective depth under dry soil is 70cm while 12cm under the wet soil. Based on Zreda et al., 
Franz et al., (2012) developed a function to quantify the effective depth of CRNP. Equation as: 

 5-2 

 
Where  stands for the effective depth under specific soil moisture condition;  stands for the retrieved 
SM from CRNP.  
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Based on this equation, the effective depth was calculated in the Mara-main station. An inversely 
relationship can be seen from Figure 5.22, and the smallest depth in this case is still bigger than 10 cm. 
The satellite penetration depth for ASCAT is around 2cm while for SMOS and SMAP is less than 5cm. 
Therefore, compared with the satellites, the “penetration depth” for CRNP is much larger causing 
mismatch with the remote sensing satellite products.  

 
Figure 5.22 Time series plot for CRNP SM and effective depth 

Besides the depth mismatch, some problems still need to be solved for CRNP. Most importantly, the 
detected water content by CRNP is not only existing in the soil moisture. Because the hydrogen atoms 
also can be found in lattice water, organic matter, water vapor and vegetation, which will influence the fast 
neutron spread (Zreda et al., 2008) . Although some of these effects can be eliminated by the field soil 
moisture correction, there is no quantitative formula to solve this problem, correction of these influence 
factors still stands for a key point for the CRNP application.   
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5.5. Overall discussion and limitation  

5.5.1. Discussion  
The sub-grid downscaling method is mainly depending on the SM variability within the footprint for each 
satellite based on the soil texture. According to Vereecken et al. (2007) who analyzed the SM variability 
under eleven soil classes, the pore size distribution strongly affects the SM variability and its relationship 
between soil water content. With the coarse soil texture, SM variability will continually increase with mean 
SM while it reached the maximum value under the moderate wetness condition for finer soil type. In this 
research, the results are in agreement with previous findings, as  parameter is the most sensitive 
parameter for the SM variability and it can control the shape of relationship curve between SM variability 
and mean SM. However, because of the homogeneity of the study area, this convex relationship obtained 
from this study area cannot represent other soil texture/types. 

Also, based on Vereecken et al. (2007), SM variability is not only affected by the soil texture, but also 
linked with the environmental conditions. Vereecken et al. (2007) pointed out that the precipitation can 
significantly influence the range of SM then lead to the different SM variability under the same soil texture 
condition. The environmental factors like vegetation, evapotranspiration or topography have an influence 
on the SM variability change (Gray, 2010; Teuling & Troch, 2005; Wang, 2014). The environmental 
conditions were also considered in this research, as soil-grids maps were obtained not only from soil 
profiles data but also from MODIS and SRTM (Hengl et al., 2014), which was used to derive hydraulic 
parameters by PTF.  

The coarse resolution SM products can be downscaled by sub-grids variability since the soil texture is a 
dominant factor to the SM variability change. The downscaling result mainly depends on the heterogeneity 
of the coarse pixel. The more dynamic change of soil texture within a coarse pixel the clearer downscaled 
effect can be seen. The downscaled result in this study is not clear as SM variability change within the 
whole study area is very small with a max value of 0.015cm3 cm-3, which lead to almost the same SM 
value obtained for the downscaled result. This result is in agreement with Montzka's (2018) findings which 
showed the SM variability tightly affected by the heterogeneities.   

This study also tries to understand why three SM satellite products have different performance? and what 
is the performance for each satellite product when compared with ground measurement data? There are 
many factors that cause the different performance for the three satellites (e.g., satellite 
sensors/instruments, algorithms and input data). It is too difficult to split them to do the analysis. Based 
on the correlation analysis, SMAP and ASCAT show higher similarities than that between SMAP and 
SMOS. This situation may be caused by inaccurate retrieved SM value of SMOS in the south-west area 
since the higher error variance also can be seen in the same region. It means more dynamic change of 
SMOS compared with SMAP and ASCAT. In addition, the land cover map used for SMOS and SMAP 
shows the significant difference which can also influence the inconsistent SM result for passive products. 
The former one used ECOCLIMAP which has 213 classes while latter one applied MODIS IGBP with 
only 17 classes. This hypothesis supports evidence from previous observation (Al-Yaari et al., 2017).  

For the TC analysis, SMAP shows the lowest error variance followed by ASCAT. While SMOS still has 
the worst performance within the whole area compared with other two satellites. Considering the TC 
result for ten measurement station, it can reflect part of the validation result. Since the SMAP and ASCAT 
have relatively better performance while SMOS shows poor result. The TC analysis can be an effective 
tool to evaluate the remote sensing SM dataset for large area.  
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Since SMAP and SMOS used L-band observation while ASCAT used the C-band, the passive products 
should be affected less by the vegetation because of the larger penetration capacity (Lannoy et al., 2013). 
However, the validation result shows an opposite situation. ASCAT has better performance under the 
dense vegetation condition while SMAP is suitable for moderate and bare land. Previous work also found 
the same result by comparing the radiometer and scatterometer system (Brocca et al., 2011; Rüdiger et al., 
2009; Rötzer et al., 2012). From Wagner et al. (2010), the higher difference of backscatter under dry and 
wet condition obtained from grassland and cropland, causing better SM estimate result, which accordant 
with the result in this research. Al-Yaari et al. (2014)explained the possible reason: firstly, the higher-order 
surface-vegetation interaction effect may increase the sensitivity of active products on the SM detection; 
secondly, ASCAT has good ability to catch the seasonal vegetation change.  

For the validation result in this research, it is difficult to say whether the CRNP or point measurement 
data is more reliable. However, considering their applications for validating the satellite products, the 
measurement depth is an essential point to pay attentions. For the FDR measurement, it directly gives 
5cm SM data, but CRNP SM depends on the soil moisture condition of the soil and even under the wet 
condition the effective depth is bigger than 10cm. Also, CRNP is affected by the environmental factors, 
causing the inaccurate estimate of the SM value (Zreda et al., 2008). More researchers working on the 
weighting function to quantify the contribution of different depths and horizontal samples in order to 
better understand the detail of the CRNP signal (Köhli et al., 2015; Schrön et al., 2017). 

Based on this research, ASCAT and SMAP have better performance than SMOS. In addition, SMAP and 
SMOS tend to have more error under dense vegetation condition while ASCAT underestimated the SM 
during the dry situation.  

5.5.2. Limitation  
Some limitations should be noted in this research. Firstly, the downscaling method strongly depends on 
soil-grids data. However, it is difficult to verify the accuracy of this data, which may cause an 
unpredictable error during downscaling. Secondly, the homogeneity of the study area and insufficient in-
situ data limit the validation activities.   
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6. CONCLUSION  

In this study, the method proposed by Qu et al. (2015) was used to predict the SM variability of SMAP, 
SMOS and ASCAT SM products within the Massai Mara region in Kenya. This method is based on the 
stochastic analysis of steady-state unsaturated flow provided by Zhang et al. (1998). Static field capacity 
map derived from soil map with 1km spatial resolution was used as proxy data to downscale the coarse 
SM products. Then, both original and downscaled products were validated against the FDR and CRNP 
SM data.  

Based on the inter-comparison analysis among three satellites, there are many factors that affect the quality 
of SM products (e.g. satellite sensor/instruments, algorithms and auxiliary data). The SMAP and SMOS 
have similar SM spatial distribution pattern while ASCAT product is dominated by the porosity data. 
From the TC analysis, SMAP has the best performance followed by ASCAT. While SMOS shown higher 
noise over south-west part of study area caused by the heterogeneity land cover map.  

A convex relationship obtained between mean SM and SM variability under both clay loam and sandy clay 
loam within the study area. Through sensitivity analysis, the pore size distribution parameter ( ) is the 
most sensitive to the change of SM variability. The highest variability occurs around 0.2 cm3 cm-3 mean 
SM condition with a relatively low value below 0.015 cm3 cm-3. By comparing the downscaled result with 
original products, detailed sub-grid SM pattern can be seen. However, the SM value did not change so 
much compared with original products because of the homogeneity of the study area.  

Validation result shows that these three original satellite products cannot meet the required accuracy of 
0.04 cm3 cm-3. ASCAT has the best performance with ubRMSE value of 0.061 cm3 cm-3 followed by 
SMAP with a similar result (0.069 cm3 cm-3), the SMOS has the worst performance with 0.103 cm3 cm-3 
ubRMSE. In addition, CRNP tend to retrieve the SM from deeper soil (more than 10cm), which cannot 
match the measurement depth from satellite SM products. For the downscaled result, slightly better or at 
least same result were obtained. Therefore, this sub-grid variability method can be used to downscale 
coarse microwave SM products and the accuracy of downscaled result still mainly depends on the quality 
of original products. 
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APPENDIX A 
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ASCAT  
 

 
Appendix  1 SM downscaling image result  
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APPENDIX B 
Talek station  
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Nice-bridge 

 

 

 
Appendix  2 Time series plot for each station  
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APPENDIX C 
Because of the same land cover used, it cannot be the dominant factor to show the difference between SM 
products. Based on the soil texture map from FAO, only Mara-bridge station belongs to vertisol soil texture, 
which contains more clay fraction. Therefore, Mara-bridge station was chosen here to do the comparison 
of the Main station.  

 
Appendix  3 Time series plot for SMAP, SMOS and ASCAT against point data in Mara-bridge station 

Appendix  3 indicates the time series plot for three satellites against in-situ measurement in station Mara-
bridge. The SM trend is similar to the Main station, with wetter value occurs during raining events for SMAP 
and SMOS and underestimated value for ASCAT. Even the in-situ measurement is similar to the Main 
station. It means the study area in this research is very homogeneity, the static parameters cannot be the 
significant influence factor for each station. After checking the Appendix B, for all the station time series 
plot, except V-section stations, other eight stations show similar in-situ SM dynamic change. Thus, the V-
section station may made mistake during the in-situ measurement.  
 
 
 
 


