
September 18th, 2020
University of Twente

Enschede

Improving the Effectiveness

of Phishing Detection

Using Lexical Semantics
A Machine-Learning based approach

By:

Kylian Rijnbergen

Supervisors:

Abhishta, Abhishta

van Capelleveen, Guido

Bachelor Thesis Industrial Engineering and Management

UNIVERSITY OF TWENTE

This page is intentionally left blank.

i

Acknowledgements

A great part of the past half-year has been devoted to conducting research and writing

my thesis. Despite spending hours upon hours in isolation to code, gather knowledge, or

write, I could not have done it alone.

First of all, I would like to thank my supervisors, Abhishita Abhishta and Guido van

Capelleveen, for their enthusiastic guidance and valuable feedback.

In the era of COVID-19, social interaction is not to be taken for granted. Interacting with

my friends and family has changed. But not with my housemates. Thank you for being

here with me every single day.

I would like to thank my closest friends. Whether it be playing games, working out, or

having a good conversation, spending time with you is an absolute delight.

Last but not least, I would like to express my deepest gratitude to my family for their

invaluable support. You have been of great value in both my personal and professional

life.

ii

Abstract

Many share the opinion that phishing emails should automatically be detected, such that

these emails can be filtered out and do not end up in our inbox. However, a method that

perfectly does this has not yet been found. Prior research describes several methods that

attempt to identify phishing emails based on structural properties, but to our knowledge, a

better alternative does not yet exist. In this thesis, we propose a method that allows us to

filter out these emails based on lexical semantics. We make use of machine learning-based

algorithms in combination with a technique that carries the name of word embeddings,

to design a method that can be used in automatic email classification. By implementing

this method, we can let our computers automatically filter emails by making a judgement

based on the contents of the emails, just like how they are presented to us as human

beings.

Contents iii

Contents

1 Introduction 1
1.1 Problem Area . 1
1.2 Core Problem . 1
1.3 Research Questions . 1
1.4 Methodology: Design Science . 2
1.5 Outline . 4

2 Background 5
2.1 Introduction to AI and Machine Learning 5

2.1.1 Example: RoboCup . 5
2.1.1.1 Artificial Intelligence . 6
2.1.1.2 Machine Learning . 6

2.2 Machine Learning Concepts . 6
2.2.1 The Classification Problem . 6
2.2.2 Classification Algorithms . 6

2.2.2.1 The Support Vector Machine 7
2.2.2.2 Random Forests . 7
2.2.2.3 Logistic Regression . 7
2.2.2.4 Neural Networks and the Multilayer Perceptron 7
2.2.2.5 Adaptive Boosting . 8

2.2.3 Features in Email Classification 8
2.2.3.1 Descriptive Features . 9
2.2.3.2 Semantic Features . 9

2.3 Related Work . 11
2.4 Contribution to the Scientific Database 12

3 Research Approach 13
3.1 Research Methodology . 13
3.2 Python and Scikit-Learn for Machine Learning 14
3.3 The Data Set . 14
3.4 Data Pre-Processing . 14
3.5 Labelling . 15
3.6 Operationalisation and Performance Metrics 15

4 Solution Design 16
4.1 Data Augmentation . 19

4.1.1 Approach One: Increasing the Number of Samples 20
4.1.2 Approach Two: Increasing Data Diversity 20

4.2 Designing Experiments . 22
4.3 Comparing Algorithms and Configurations 22

4.3.1 Comparison of Algorithms and the Effect of Augmentation 23
4.3.2 The Five Best Models . 26

4.4 Hyper-Parameter Optimisation . 27

5 Experiments 29
5.1 Performance of the Best Classifier . 29

iv Contents

5.1.1 Accuracy, Precision, Recall, and F1-Score 29
5.1.2 Confusion Matrices . 30
5.1.3 Precision-Recall Curves . 31
5.1.4 Receiver Operating Characteristics 33

6 Discussion 35
6.1 Interpretation . 35
6.2 Generalisable Theory . 36
6.3 Limitations . 36
6.4 Relation to Prior Research . 37

7 Conclusions 38
7.1 Research Questions Revisited . 38

7.1.1 Main Research Question . 39
7.2 Implications . 39
7.3 Recommendations . 40

References 41

Appendix 43
A1 Grid-Search Parameter Space . 43
A2 Second Grid-Search Parameter Space . 44
A3 Initial Highest Scoring Configurations . 45
A4 Labelling Policy . 47

A4.1 Definition of the Research Question 47
A4.2 Inclusion and Exclusion Criteria 47

A4.2.1 Inclusion Criteria . 47
A4.2.2 Exclusion Criteria . 47

A4.3 Used Databases . 47
A4.4 Search Terms and Used Strategy 47
A4.5 Found Articles . 48
A4.6 Conceptual Matrix . 49
A4.7 Integration of Theory . 50

A4.7.1 Definition of Phishing 50
A4.7.2 Labelling Policy . 51

A4.8 Some Final Notes on Labelling 52
A5 Performance Metrics . 53

A5.1 Accuracy . 53
A5.2 Precision . 54
A5.3 Recall . 54
A5.4 Fβ-Score . 54

A5.4.1 F1-Score . 55
A5.5 Precision-Recall and ROC Curves 55

A5.5.1 Precision-Recall Curves 55
A5.5.2 Receiver Operating Characteristics 56

List of Figures v

List of Figures
4.1 Comparison of Accuracy for all Algorithms 24
4.2 Comparison of Precision for all Algorithms 24
4.3 Comparison of Recall for all Algorithms 25
4.4 Comparison of F1-Score for all Algorithms 25
4.5 Effects of Parameters C and Kernel on F1-Score 27
4.6 Optimisation of C and Augmentation Factor for SVM, Kernel = RBF . . 28
5.1 Precision-Recall Curve for Best Random State 31
5.2 Precision-Recall Curve for Worst Random State 32
5.3 Receiver Operating Characteristic for Best Random State 33
5.4 Receiver Operating Characteristic for Worst Random State 34
A5.1 Example of a Precision-Recall Curve . 56
A5.2 Example of a Receiver Operating Characteristic Curve 57

vi List of Tables

List of Tables
1.1 Stakeholder Analysis . 3
2.1 Fruits and their Features . 9
3.1 Design Science Research Guidelines . 13
3.2 Performance Metrics . 15
4.1 Bag-of-Word Representations of Sample Texts 16
4.2 Bag-of-Word Representations of Sample Texts - Normalised 17
4.3 Comparison of Sample Texts . 18
4.4 Word Embeddings . 18
4.5 Synthetic Email Greetings . 20
4.6 Vectorising Texts and Similar Texts . 21
4.7 Creating Synthetic Vectors . 22
4.8 Best Scoring Configuration for each Algorithm Over Ten Random States 23
4.9 Best Scoring Configurations Over Ten Random States 26
5.1 Model Performance . 29
5.2 Best, Worst, and Average Random State Performance for Top Configuration 30
5.3 Confusion Matrix for Best Random State 30
5.4 Confusion Matrix for Worst Random State 30
A1.1 Grid-Search Parameter Space . 43
A2.1 Second Grid-search Parameter Space . 44
A3.1 Best Configurations for the Support Vector Machine 45
A3.2 Best Configurations for the Random Forests Algorithm 45
A3.3 Best Configurations for Logistic Regression 45
A3.4 Best Configurations for the Multilayer Perceptron 46
A3.5 Best Configurations for Adaptive Boosting 46
A4.1 Search Matrix . 48
A4.2 Found Articles . 48
A4.3 Articles Used in Defining Phishing . 49
A4.4 Conceptual Matrix . 49
A4.5 Overview of Concepts . 50
A4.6 Labelling Policy for Phishing Emails . 51
A5.1 Confusion Matrix . 53

1

1 Introduction

Due to technological developments in the last few decades, valuable information is stored

and processed online. While this has very significant benefits, there are some downsides

to this digitalization. Online criminals, more commonly known as cybercriminals, have

succeeded in performing their criminal activities online, in a wide variety of fields. Some

fields are relevant for individuals, some for businesses and some are relevant for both.

1.1 Problem Area

Phishing, sometimes referred to as spoofing, is one of those fields. In phishing,

cybercriminals attempt to bypass security measures such as passwords by "fishing" for

information. Cybercriminals interact with users, usually pretending to be part of a trusted

instance. During their interaction, they try to obtain valuable information such as login

credentials, credit card numbers, and social security numbers, among others (Lastdrager,

2018).

1.2 Core Problem

Most of the current email filtering methods do not specifically filter for phishing emails.

Instead, they attempt to make a distinction between spam emails and regular emails, the

latter also going by the name of ham emails (Schryen, 2007). In this study, we focus on

improving the effectiveness of detecting phishing emails in specific.

1.3 Research Questions

As mentioned, this study specifically targets phishing emails. To do this, we explore

machine learning methods. We use these methods to classify phishing emails from benign

spam (i.e. all spam emails that are not phishing emails). In this section, we present a

set of questions that we will answer to achieve our goal of improving the effectiveness of

phishing detection. To answer the main question in a systematic manner, we break it

down into three sub-questions.

2 1.4 Methodology: Design Science

In addition to the main question and related sub-questions, we formulate a question that

is used to review our contributions to the scientific database and impact on the field of

email filtering.

Our main research question is as follows:

Which machine learning methods can be used to effectively detect phishing emails?

This question has been broken down into the following sub-questions:

SQ1. How can we prepare our data for further analysis?

SQ2. What are the most effective classification algorithms for our problem?

SQ3. How can we optimize hyper-parameters in our model to attain high performance?

After answering these questions, we review our research by answering the following review

question:

How do our found methods contribute to the field of email filtering and text classification?

Throughout the report, we will answer our sub-questions. SQ1 is answered in Chapter 3,

and SQ2 and SQ3 are answered in Chapter 4. We answer our main question as well as

our review question in Chapters 6.2 and 7.

1.4 Methodology: Design Science

The problem of email filtering and phishing detection is a type of problem methodologically

known as a design problem. Design problems are problems that require an analysis of a

situation in the real world in the form of a stakeholder analysis. Satisfying these stakeholder

goals is the main objective of a solution to a design problem. It is important to note that,

unlike in knowledge problems, a wide variety of solutions can coexist (Wieringa, 2014).

As design problems are fundamentally different from knowledge problems (a knowledge

problem is a problem that asks for knowledge as it is), we need to take a different approach

to solving these types of problems. The approach we will be taking is known as design

science. In design science, we design an artifact to improve a problem context, in our case,

phishing detection. This artifact is designed with the objective of satisfying stakeholder

needs. As different stakeholders may have different needs, a single best answer does not

exist in most cases (Wieringa, 2014).

1.4 Methodology: Design Science 3

As not all stakeholders have the same needs, not all stakeholders will benefit equally from

a certain solution. Despite this, solutions need to be evaluated. In design science, this is

done based on their utility. Utility, in turn, is dependent on stakeholder goals. In order to

design a good solution, we will thus have to identify who our stakeholders are. In Table

1.1 below, we identify our stakeholders. We also provide brief explanations on what their

needs are.

Table 1.1: Stakeholder Analysis

Stakeholder Needs
1. Other researchers in the field of phishing
detection, email filtering, and natural
language processing

Other researchers in the field will want
a solution that provides insights into the
performance of our artifact. They are
interested in how the artifact performs,
why this is the case, and how we can apply
the practices in our research to various
fields in order to improve related problem
contexts.

2. Policy makers for email filtering Policy makers for email filtering are mainly
interested in solutions that perform well.
They want solutions that can correctly
identify the vast majority of phishing
emails without falsely identifying a regular
email as being a phishing email. In
addition to this, policy makers for email
filtering also want insights on how our
artifact can be tuned to such that they can
make a trade-off between detection rates
and false positive rates.

3. Email users Although not as predominant, email users
can also be seen as stakeholders in our
research. By conducting this research,
we potentially affect email users as our
studies may influence beforementioned
policy makers.

We identify other researchers to be our most important stakeholders. For our artifact, this

means our solution is to be designed with the goal of finding new methods and approaches

to solving our problem. We aim to retrieve generalisable knowledge that can be used in

future research, as well as in solutions to current real-world problems.

Designing and improving this artifact is done based on seven guidelines. These guidelines,

as well as how our research applies these guidelines, are found in Section 3.1.

4 1.5 Outline

1.5 Outline

We start off the next section (Chapter 2) by presenting the basic concepts related to

artificial intelligence and machine learning. Following this, we dive deeper into the theory

related to our type of problem. After presenting related theory, we discuss prior research

and our own contributions to the field. In Chapter 3, we discuss our research approach

and methodology. We also explain how we retrieved our data set, as well as the role of

the data set in our study. Solution design is covered in Chapter 4, after which we evaluate

our solution in Chapter 5 and discuss our research in 6. Finally, we conclude in Chapter

7, where we provide a short recap of our research and discuss future work.

5

2 Background

As humans, we do not like spending our time on uninspiring tasks, such as doing the dishes

or washing our dirty clothes. A lot of these labour-intensive tasks can be partially or

fully automated. Automatons (not to be confused with automation) like dishwashers and

washing machines allow us to automate these tasks, meaning we have more time we can

use to do other things. Some tasks, such as driving, however, require cognitive abilities,

and this is where automation starts to get tricky. Automatons cannot think, reason, judge,

or make decisions, meaning we have to find a different method of automating these tasks.

This is where artificial intelligence comes into play. In artificial intelligence, from now on

referred to as AI, we attempt to develop computers and machines to ’think’ and act in a

similar way to humans.

2.1 Introduction to AI and Machine Learning

Some fields, such as languages or emotions, are very hard for computers to understand.

We as humans have learned to understand and apply these fields though numerous years

of evolution. In artificial intelligence, we provide machines with the resources needed

to imitate human cognitive functions. We program these machines to solve problems

and perform tasks that require some form of reasoning. In machine learning, a subset of

artificial intelligence, we take a different approach. Instead of programming the machine

how to solve problems or make decisions, we teach it how to get better at performing

tasks and making decisions through experience (Sheldon, 2019). In essence, we learn it

how to learn.

2.1.1 Example: RoboCup

We demonstrate the difference using RoboCup as an example. RoboCup, which is short

for Robot Soccer World Cup, is an annual soccer competition played by robots. The

competition has several leagues with different restrictions. Examples of restrictions are

size, to prevent very large robots that can block the goal entirely, and movement type,

being either movement by driving, using wheels or caterpillars, or movement by walking

using legs (the humanoid type) (Kitano et al., 1995).

6 2.2 Machine Learning Concepts

2.1.1.1 Artificial Intelligence

In case we were to develop an AI for this competition, we would program our robots to

use certain tactics and strategies by a set of rules. Examples of these rules are: always

moving to open space when your team has control of the ball, never standing still, or

always attempting to score a point if close to the opposing team’s goal. In short, we

program robots to do human-like things.

2.1.1.2 Machine Learning

In machine learning, we do none of these things. Instead of providing our robots with

rules, we let them perform random actions and provide them with a performance indicator,

such as goals scored. Over time, these robots will learn which actions are good in which

situations, and how these actions can be combined into a winning strategy. To summarize,

we do not program the robots to perform any specific actions. They will learn what to do,

when to do it, and how to do it, all by themselves.

2.2 Machine Learning Concepts

Now that we know what machine learning is, let us define the basic concepts related to

machine learning. In this section, we will introduce machine learning approaches related

to our problem and related theories, as well as performance metrics.

2.2.1 The Classification Problem

In our problem, we make a distinction between benign spam emails and phishing emails.

In other words, we classify our emails into two predetermined categories. These types of

problems are known as classification problems.

2.2.2 Classification Algorithms

A wide variety of classification algorithms exists. Widely researched algorithms for email

classification are the Support Vector Machine, Random Forests, Logistic Regression and

Neural Networks (Abu-Nimeh et al., 2007). We use these algorithms as a basis for our

research. In addition, we will evaluate the performance of the adaptive boosting algorithm,

2.2 Machine Learning Concepts 7

also known as AdaBoost. We provide brief explanations for each of these algorithms in

the following five sections.

2.2.2.1 The Support Vector Machine

The Support Vector Machine (SVM) is one of the most popular classifying algorithms. This

algorithm tries to separate our data points in space. This is done by fitting the hyperplane

which maximizes the margin (distance from the points to the plane). Points that are on the

boundaries of the margins are known as support vectors. While SVMs generally perform

very well, their computation is intensive, and they are prone to overfitting (Abu-Nimeh

et al., 2007). Overfitting is a modelling error that occurs when a model fails to make a

distinction between significant features and residual variation (e.g. noise).

2.2.2.2 Random Forests

The Random Forests classifier (RF) is a classifier that makes use of decision trees. It

generates a large number of decision trees, each tree using a random numer of samples

and features from our data set. If classifiable data are input, the classifier returns the

label that was decided on by the largest number of decision trees (Tin Kam Ho, 1995).

2.2.2.3 Logistic Regression

Logistic Regression (LogReg) is a well-established statistical model for classifying data. It

binarily classifies data by fitting the data points to a logistic function. The classifier is

very powerful for simple, linearly separable data, but its performance starts to decline for

data with complex relationships between variables (Abu-Nimeh et al., 2007).

2.2.2.4 Neural Networks and the Multilayer Perceptron

Neural Networks are a type of classifier that attempt to mimic the biological brain. The

network consists of connected layers of so-called nodes, which resemble neurons as we

know them in biology. While neurons cannot do much by themselves, introducing a proper

amount of connected neurons allows for evaluation of complex functions. Some of the

simplest, though very useful structures can emulate logic gates (Obumneme Dukor, 2018).

Slightly more complex networks are capable of classifying linearly separable data, but

clever manipulation of input features (i.e. by the use of kernel functions) allows us to

8 2.2 Machine Learning Concepts

circumvent even this constraint (Freund and Schapire, 1999). Neural networks are highly

configurable by setting hyper-parameters such as the number of hidden layers, number

of neurons per layer and the optimization algorithm. Configuring the hyper-parameters

of neural networks is a nontrivial task that generally requires a lot of experience and

knowledge, though we can often initialize the model by making some educated guesses

and improve from there (Alto, 2019).

Though many different types of neural networks exist, our research focuses on the Multilayer

Perceptron (MLP), which is a type of feed-forward neural network. In feed-forward neural

networks, nodes do not form a cycle, meaning neurons only output to the next layer

of neurons. The Multilayer Perceptron is one of the most basic versions of the neural

network, consisting of only an input layer, a configurable number of hidden layers and an

output layer (Bishop, 2013).

2.2.2.5 Adaptive Boosting

Adaptive Boosting, also known as AdaBoost, is a machine-learning algorithm that combines

a set of weaker classifiers into a stronger one. The classifier selects a "team" of other,

simple, classifiers, such as the SVM (2.2.2.1) and Random Forests (2.2.2.2), and assigns a

weight to each classifier. These individual classifiers will solve the problem separately, and

vote on a decision based on their prediction. The AdaBoost algorithm then evaluates their

performance and re-assigns the individual classifiers a weight based on used metrics. This

process is repeated until the stopping criteria are met. The most effective combination of

classifiers, along with their weights, will act as our final classifier. (Freund and Schapire,

1995) (Rojas, 2009).

2.2.3 Features in Email Classification

In classification problems, items are classified based on their properties. These properties,

also known as explanatory variables or features, describe aspects of the classifiable item.

An example for fruits is provided in table 2.1 below.

2.2 Machine Learning Concepts 9

Table 2.1: Fruits and their Features

Fruit Shape Colour
Banana Curved Yellow
Lemon Round Yellow
Persimmon Round Orange
Clementine Round Orange

Now, if we were to classify a box of fruits, all items being either lemons or bananas, we can

do this by looking at their shape. In case the box also contains persimmons, we also need

to look at their colours. If we also add clementines, however, we run into a problem. The

properties shape and colour, are not enough to distinguish clementines from persimmons.

We need at least one additional feature to be able to tell these two items apart. In other

words, the items "clementine" and "persimmon" are insufficiently described.

In addition to insufficiently describing items, it is also possible to provide too much

information. In a box full of only bananas and lemons, the feature: colour, does not

contribute to our decision. Non-contributory variables are known as insignificant variables.

Part of the art of properly classifying data lies in feature selection. We need enough

unique features to make a distinction between all classes. We also want the number of

features to be as low as possible, as adding insignificant features increases complexity

without necessity. In our problem of email classification, there are two types of features

we can use.

2.2.3.1 Descriptive Features

The first type of features are features we will refer to as "descriptive features". Descriptive

features are generic features that describe the email based on its format, or certain aspects

of its contents or structure. Commonly used descriptive features in email classification

include, but are not limited to, presence of HTML, presence of hyperlinks, number of

attachments, and number of words in the email (Martin et al., 2005).

2.2.3.2 Semantic Features

Features that reflect the meanings of words, or so-called semantic features, are the second

feature type we can use to solve our problem. Instead of making a decision based on when

10 2.2 Machine Learning Concepts

an email is sent, to many people it is sent, or how it is constructed, we try to understand

what the contents of the email mean.

In most cases, one will read the body of an email after opening it. Ham emails are read

and answered without any trouble. Oftentimes, junk emails will have something that is a

little off. An obnoxious advertisement, lots of images or poor grammar are not uncommon.

Only when we realise this, we start looking at some descriptive features such as the

presence of hyperlinks or attachments.

Oftentimes, phishing emails are designed to resemble ham emails. A personal greeting

is included, the email has no attachments, and the email is well structured. Everything

seems perfectly normal until your bank asks for your credit card details.

In using semantic features, we attempt to filter out exactly these emails. If the contents

of the mail boil down to: "Provide me with your credit card details.", there is a high

chance this email is a phishing email.

Unlike humans, computers do not memorize words by their meaning. Instead, computers

memorize the characters in a word. For a computer, the word "cat" is more similar to the

word "car" than it is to the word "dog", while most people would argue that the word

"cat" is more similar to the word "dog".

Over the last two decades, a technique that goes by the names "word embeddings" and

"word vectors", has been developed. This technique maps words to high-dimensional

vectors of real numbers, such that words that have similar semantics are close in space

(Pennington et al., 2014a) (Alkhereyf and Rambow, 2020). Using these vectors allows

us to compare words, usually done by evaluating their cosine similarity (Karani, 2018),

find lexical relationships between words by adding and subtracting vectors (Vylomova

et al., 2015), and extract other linguistic properties. Popular word embedding models are

GloVe, developed by Stanford University, Word2Vec by Google and fastText by FaceBook

(Agrawal, 2019). In our research, as well as in most related work, the GloVe model is used.

More on GloVe can be found here: (Pennington et al., 2014b).

2.3 Related Work 11

2.3 Related Work

Email filtering is a concept that has been around for a long time, yet it is still not perfect.

Both spam filtering and phishing detection techniques have been developed over the years,

most of these techniques making use of what we refer to as descriptive features (2.2.3.1).

Fette et al. (2007) use ten features, all being either continuous or binary, along with the

Random Forests algorithm (2.2.2.2) to detect phishing emails. Toolan and Carthy (2010)

take a similar approach in performing multinomial classification to make a distinction

between spam, ham, and phishing emails.

We have found two prior studies that specifically target phishing emails. In one study, this

filtering has been done using structural properties of the emails. These properties include

23 style marker attributes (e.g. the total number of words), two structural attributes (e.g.

structure of email subject line), and 18 keywords (e.g. "account"). Emails are classified

by an algorithm known as the support vector machine (Chandrasekaran and Narayanan,

2006). More information on the support vector machine can be found in 2.2.2.1.

The second study proposes a method given the name PILFER. This method uses ten

features for detecting phishing emails. All these features are either binary features

or continuous numeric features. Some examples of these features are the inclusion of

JavaScript and the output of the spam filter SpamAssassin. Emails are classified using

the Random Forests classifier. Some other classfiers are also evaluated. These classifiers

yielded similar performance (Fette et al., 2007). More information on the Random Forests

classifier can be found in 2.2.2.2.

Closest related to our research is that of Alkhereyf and Rambow (2020). They make use

of the GloVe model for word embeddings (Pennington et al., 2014b), along with both the

support vector machine (2.2.2.1) and the Extra-Trees algorithm (Geurts et al., 2006), to

classify personal and business email.

12 2.4 Contribution to the Scientific Database

2.4 Contribution to the Scientific Database

Our research focuses on making a distinction between phishing emails and benign spam

by making use of the GloVe model for word embeddings (Pennington et al., 2014b) along

with the most popular models for email classification, being the support vector machine

as well as the Random Forests algorithm. In addition, we evaluate the performance of

logistic regression, the multilayer perceptron and adaptive boosting (2.2.2). We conduct

this research to gain a better insight into the performance and implementation of various

machine learning algorithms in natural language processing for email classification.

13

3 Research Approach

In chapter 2, we discussed the current state of email classification. We also provided a

brief outline of our research goal and design. In this chapter, we provide an in-depth

description of our problem-solving approach.

3.1 Research Methodology

Our research has been conducted using the guidelines of the design science research

methodology. In design science research, we design a so-called artifact; in our case, our

model, which is iteratively improved upon. The methodology is based on seven guidelines

(Hevner et al., 2004). These guidelines, as well as how they were applied in our research,

are found in Table 3.1 below.

Table 3.1: Design Science Research Guidelines

Guideline Implementation
1. Design as an Artifact We have developed a machine learning model for

email classification. Instead of taking a more
standard approach by using descriptive features, we
use semantic features as described in Section 2.2.3.2.
We also implement a method that reduces modelling
errors such as overfitting. More information on this
method is found in Section: 4.1.

2. Problem Relevance Research in Section 2.3, as well as in Appendix A4.3
shows that phishing detection is still a problem for
many email users. Phishing emails end up in their
inboxes, often leading to financial, emotional, or
reputational damage, as well as a loss of personal
information such as social security numbers, leading
to identity fraud.

3. Design Evaluation We have evaluated the performance of our model
through the use of performance metrics in Chapter 5.
More on performance metrics is found in Appendix
A5.

4. Research Contributions Research contributions are covered in Chapters 2, 6,
and 7

.

5. Research Rigor Research methods are covered in Chapter 2 and
Chapter 4.

6. Design as a Search Process We have used peer-reviewed articles, books, papers
and documentation, among other sources.

7. Communication of Research Our research is presented both in this report and
during the colloquium.

14 3.2 Python and Scikit-Learn for Machine Learning

3.2 Python and Scikit-Learn for Machine Learning

Our study is conducted using Python, a high-level, general-purpose programming language.

Python is widely considered to be the preferred language for machine learning purposes

(Raschka et al., 2020). Python is an open-source programming language that offers

a wide range of data processing libraries, such as NumPy, Pandas and Scikit-Learn

(Python Software Foundation, 2020). Our research uses Scikit-Learn as its main library for

machine learning. Scikit-Learn offers a wide variety of algorithms, performance metrics,

and optimization methods (Hao and Ho, 2019), (Pedregosa et al., 2011).

3.3 The Data Set

Data for our research have been retrieved from the Anti-Phishing Working Group. The

data set contains a large number of spam emails, some of which are benign and some

of which are phishing emails. Data in our data set have not been labelled, although

labels are, in fact, mandatory for our research. We labelled the emails ourselves, more

information on this is found in Section 3.5 and in Appendix A4.

3.4 Data Pre-Processing

The data set, as we retrieved it from the APWG, is not in a workable format. We

preprocess our data set so that we can assign labels to individual emails. In addition, we

perform some preprocessing steps, such that we can use the data, along with its assigned

labels, as an input for our machine learning study.

Preprocessing of the data set for labelling purposes is fairly simple. We extract the

following features: sender email, subject of the email, and the raw body (i.e. contents) of

the email. We use these features in labelling our emails, more on this in the next section.

As explained in 2.2.3.2, our study makes use of semantic features of our email. We have

chosen to use the body of the email to perform classification. Unlike in labelling, however,

readability is not important. As readability is no longer important, we further process our

data. We remove all stop words, convert everything to lower case, remove some HTML

tags, and discard all words that are not in the GloVe model.

3.5 Labelling 15

None of these aspects contribute to the meaning of the emails, so we remove them to

reduce noise in our models.

3.5 Labelling

Labelling the emails in our data set is not a trivial task. While most have a decent

understanding of the differences between phishing emails and benign spam, there is a lot

of grey area. In Appendix A4, we define phishing, and we create a policy table that is

used in assigning labels to our emails. Using this policy, we annotated 604 emails, 303

of which were deemed to be phishing emails, with the remaining 301 being benign spam.

For the sake of clarity, the definition used in our research is provided below.

"Phishing is a type of computer attack that communicates socially engineered messages

to humans via electronic communication channels in order to persuade them to perform

certain actions for the attacker’s benefit." (Khonji et al., 2013).

3.6 Operationalisation and Performance Metrics

In order to compare and evaluate the performance of our solutions, we use a set of

performance metrics. Using these performance metrics, we can identify the best option

available for our situation.

We use a set of four performance metrics as a basis for our decision-making. These

performance metrics, along with a brief explanation, are provided in Table 3.2 below. A

more in-depth explanation, as well as the mathematical representation of these metrics, is

found in Appendix A5.

Table 3.2: Performance Metrics

Metric Explanation
Accuracy Number of correct predictions as a fraction of total predictions.
Precision Number of correct positives as a fraction of all predicted positives.
Recall Number of correct positives as a fraction of all positives.
F1-Score Harmonic mean between precision and recall.

16

4 Solution Design

First, we represent our emails by using the bag-of-words model. In this model, texts are

represented by a set consisting of their words, along with the frequency in which they

occur. Grammar and word order are not taken into account. We provide some examples

in Table 4.1 below.

Table 4.1: Bag-of-Word Representations of Sample Texts

Text Words
Banana Lemon Clementine

Banana 1 0 0
Lemon 0 1 0
Clementine 0 0 1
Banana Banana 2 0 0
Banana Lemon 1 1 0
Lemon Banana 1 1 0
Banana Banana Banana Banana Lemon 4 1 0

In principle, we could use this bag-of-words model as an input for our machine-learning

algorithms. Using the model, we have successfully represented our texts as vectors. We

can use vector operations to analyse, compare, and even classify texts. We can add the

vector belonging to "Banana" to itself to get the vector "Banana Banana". We can

also add the vectors "Banana" and "Lemon", which yields the vector belonging to both

"Banana Lemon" and "Lemon Banana". While this may not sound all that useful, we

can use some basic deductive reasoning to assist in our classification. Without the use of

this model, letting a computer compare the texts "Banana Lemon" and "Lemon Banana",

will yield no similarity. Using the bag-of-words model, we can tell our computers that

these texts, are, in fact, similar.

There are two problems to this approach. The first problem has to do with the number

of words in the texts. When given the text "Banana", which is more similar: "Banana

Banana" or "Banana Lemon"? Intuitively, "Banana Banana" is the right answer. Using

vector operations, however, this is debatable, as the addition of either the vector for

"Banana" or the vector for "Lemon" will yield an answer. To solve this problem, we

slightly change our approach. Instead of counting the actual number of occurrences of a

word, we express its occurrence proportional to the total number of words in the text (i.e.

17

we normalise each row). In essence, we take the weighted average of the words in the text.

The normalised table is found in Table 4.2 below.

Table 4.2: Bag-of-Word Representations of Sample Texts - Normalised

Text Words
Banana Lemon Clementine

Banana 1 0 0
Lemon 0 1 0
Clementine 0 0 1
Banana Banana 1 0 0
Banana Lemon 0.5 0.5 0
Lemon Banana 0.5 0.5 0
Banana Banana Banana Banana Lemon 0.8 0.2 0

Normalisation of the table has both advantages and disadvantages. In normalising the

table, we lost information. The vector belonging to "Banana" is now identical to that of

"Banana Banana", while it previously was not. In our problem of email classification, this

is a good thing. While the texts are not identical, they communicate similar information.

How about "Banana Banana Banana Banana Lemon"? Is it more similar to "Banana",

or is it more similar to "Banana Lemon"? One can find valid arguments for both answers.

In our approach, we favour the answer "Banana". While the text is about both bananas

and lemons, we consider "Banana" to be sufficiently dominant to conclude the text is

mainly about bananas, instead of being about bananas and lemons.

But how dominant is sufficiently dominant? Intuitively speaking, this is a difficult question

to answer. Mathematically speaking, answering this question is a fairly straightforward

task. We can use the mean squared error metric to decide which text is most similar to

the text of interest. As seen in Table 4.3 below, the text is most similar to "Banana", as

the MSE is smallest for this vector pair.

18

Table 4.3: Comparison of Sample Texts

Text Words MSE
Banana Lemon Clementine

Banana Banana Banana Banana Lemon 0.8 0.2 0
Banana 1 0 0

Difference -0.2 0.2 0 0.08
Banana Banana Banana Banana Lemon 0.8 0.2 0
Banana Lemon 0.5 0.5 0

Difference 0.3 -0.3 0 0.18

The second problem to this approach is related to the meanings of the words in our text.

While we are able to compare pieces of text based on which words they contain, and how

often these words occur, there is still some texts we cannot compare. How does the word

"Lemon" compare to the word "Clementine"?

As mentioned in Section 2.2.3.2, we make use of word embeddings in our classification

process. We use the pre-trained GloVe model to represent our emails by a vector. This

model is trained on the Common Crawl, having 840 billion tokens. The model features 2.2

million entries, all of which are represented in a 300-dimensional vector. Some examples

of what these word embeddings look like are provided in Table 4.4 below.

Table 4.4: Word Embeddings

Word Dimension
1 2 3 ... 298 299 300

Banana 0.22937 -0.071676 -0.080207 ... -0.83732 -0.14226 0.38125
Lemon -0.26118 0.6852 -0.32639 ... -0.58266 0.092507 0.20233
Persimmon -0.034397 0.14763 -0.11865 ... -0.004818 -0.12312 0.1458
Clementine -0.2617 0.069294 -0.34449 ... -0.21177 -0.096107 -0.36148

We combine the main ideas of these two methods to vectorise our emails. Emails will be

represented by a weighted average of its word vectors after removal of stop words, words

that are not in the GloVe model, some HTML tags, and conversion to lower case.

4.1 Data Augmentation 19

4.1 Data Augmentation

Just like humans, machine learning algorithms cannot learn everything about an object or

the class it belongs to just by seeing an object once. Instead of memorising every detail

about a certain type of car (e.g. the diameter of the wheels or the colour), we learn to

recognise the most basic properties first. Most cars have four wheels, they have a shape

that looks a bit like a box, and a steering wheel is in the front of the car. This system of

learning general aspects is very convenient in classification. Firstly, we can recognize a

car as being a car, even is we have never seen that type of car before. Secondly, we do

not waste our time and energy on memorising irrelevant properties of every single car we

have ever seen. Unless you are a car expert or hobbyist, the volume of the exhaust or the

weight of the wheels is irrelevant.

In order to properly recognize a car as being a car, however, we need to be exposed to a

fairly wide range of cars first. If you have only ever seen black cars with four seats, you

may think a red Formula 1 car is a whole different type of vehicle.

In training our algorithms, two things are important. Firstly, we need a lot of data.

Secondly, the samples need to have similar properties, but they should not be exact copies

of each other as this will cause us to learn about the irrelevant details instead of relevant,

general properties. When we learn the irrelevant details instead of relevant properties, we

speak of overfitting.

Collecting data is expensive, and labelling data costs a lot of time and effort. In our

research, we have labelled a little over 600 samples, 80% of which is used for training our

algorithms, and 20% of which is used for performance evaluation. This results in about

483 samples to train our algorithms and 121 samples to evaluate them. While 483 is quite

a bit, we would like to have more. We present two approaches to increase the size of our

data set without actually collecting and annotating new samples.

20 4.1 Data Augmentation

4.1.1 Approach One: Increasing the Number of Samples

The simplest approach to creating more training data is providing our data to the algorithm

multiple times. Instead of showing the emails once, we show them twenty times. This

method allows us to extract a lot of information about our training data, but it is very

prone to overfitting.

4.1.2 Approach Two: Increasing Data Diversity

In an attempt to combat overfitting, we need to increase the diversity of our data. Instead

of providing the algorithms with the same email twenty times, we can show it the original

email once and show a slightly different email twenty more times. These emails can

be generated by replacing some words with their synonyms. The label of these slightly

different emails is the same as that of the original, as the context of the email remains

unchanged. We provide some examples in Table 4.5 below. We will refer to our newly

generated data as synthetic data.

Table 4.5: Synthetic Email Greetings

Sample Text
Original Hello my friend,
Synthetic 1 Hi my friend,
Synthetic 2 Greetings my friend,
Synthetic 3 Hello my buddy,

Although we do not have to collect and label new data using this method, generating

this synthetic data is still quite a bit of work. Especially in larger texts, we will have to

replace multiple words with their synonyms, or their corresponding vector will not change

by a significant amount. In addition, the entire text will have to be vectorised again.

To better understand how we can overcome these two problems, we take a closer look at

what replacing words with their synonyms does. We go back to our example sentences

from Table 4.5 above. We study our original text, as well as the first synthetic text to

get a better idea of what is happening. We first vectorise all words in these sentences

individually. These word vectors can be found in Table 4.6 below. As explained in Section

3.4, we convert all of our words to lower case before vectorising.

4.1 Data Augmentation 21

Table 4.6: Vectorising Texts and Similar Texts

Text Dimension
1 2 3 ... 298 299 300

"hello" 0.25233 0.10176 -0.67485 ... 0.17869 -0.51917 0.33591
"hi" 0.028796 0.41306 -0.4669 ... -0.053029 -0.33494 0.36282
"my" 0.08649 0.14503 -0.4902 ... 0.25909 -0.18599 0.0085633
"friend" 0.07781 0.17561 -0.59164 ... -0.076056 -0.12362 0.16777
Original 0.13887667 0.1408 -0.58556333 ... 0.120575 -0.27626 0.170748
Synthetic 0.0643653 0.244567 -0.516247 ... 0.043335 -0.21485 0.179718

As we can see, our original and synthetic texts have different vectors. The more words we

replace by other words, the greater the difference between the new vector and the original

vector will be. This difference is directly proportional to the semantic difference between

the original word and its replacement. From this we deduce that, the more semantically

similar two texts are, the more numerically similar their vectors will be.

We use this information to generate more input data for our study. Instead of generating

new data by modifying our samples and then vectorising them, we can vectorise our

samples and then modify them. This has three advantages. Firstly, modifying vectors

requires fewer resources than modifying emails. Moreover, we do not have to spend any

resources on finding synonyms for a large number of words present in our emails. Lastly,

we have more control over the degree to which a sample is modified.

We modify our vectors by slightly altering each of their dimensions. We do this by taking

the inner product between the original vector and our augmentation vector, denoted by
−−→aug. −−→aug is a 300-dimensional vector containing independent and identically distributed

random numbers according to the normal distribution X ∼ N (µ, σ2). We use µ = 1 as

this causes the average modification to equal zero. We initially estimate σ, which we will

refer to as the augmentation factor, to be optimal in the range of [0, 0.05]. In 4.4, this

parameter is optimised. In Table 4.7 below, we create a new sample using this method.

The new sample is derived from our example text: "Hello my friend".

22 4.2 Designing Experiments

Table 4.7: Creating Synthetic Vectors

Vector Dimension
1 2 3 ... 298 299 300

Original 0.25233 0.10176 -0.67485 ... 0.17869 -0.51917 0.33591
−−→aug, σ = 0.05 0.952702 0.962165 1.07088 ... 0.816022 1.0046 0.962946
Synthetic 0.240395 0.0979099 -0.722686 ... 0.145815 -0.521557 0.323463

This approach is used on each of our training samples to create 20 synthetic samples.

Testing samples are not augmented using this method as this reduces internal validity.

4.2 Designing Experiments

In order to get an idea of which classifiers are possibly suitable for our problem, we have

performed a wide grid-search, evaluating the performance of our classifiers and different

hyper-parameter settings. Grid-search parameter space can be found in Table A1.1. All

classifiers were evaluated using the same train-test split.

For each classifier, we then select the ten top-performing configurations, based on their

F1-Score. These configurations, along with their F1-Scores, can be found in Appendix A3.

Despite evaluating the performance of our configurations using the performance metrics

accuracy, precision, recall, and F1-Score, we choose to only use F1-Score in order to

identify our best configurations. This is done as F1-Score allows us to make a trade-off

between precision and recall, which are two of our other metrics. Accuracy is not used as

we are not sure whether the samples in the test split are balanced (i.e. both classes are

equally present).

4.3 Comparing Algorithms and Configurations

After identifying the ten top-performing configurations for each classifier, we perform yet

another grid-search. This time, we evaluate their performance over ten different train-test

splits. We do this to reduce the effects of randomness on our outcome. Grid-search is

conducted for all hyper-parameter settings that were part of a top-performing configuration

in our previous grid-search. This means we also test configurations that were not part of

our top ten.

4.3 Comparing Algorithms and Configurations 23

This grid-search returns the optimal configurations we have tested so far. These

configurations, along with their average F1-Score, are found in Table 4.8 below.

Table 4.8: Best Scoring Configuration for each Algorithm Over Ten Random States

Algorithm Parameters F1-Score
Support Vector Machine C = 0.15 Average: 0.88872

Kernel = rbf Worst: 0.84956
Gamma = scale Best: 0.91667
Augmentation = 0.025 Spread: 0.06711

Random Forests #Trees = 250 Average: 0.88713
Max Depth = 50 Worst: 0.84211
Augmentation = 0.035 Best: 0.92913

Spread: 0.08702
Multilayer Perceptron Solver = lbfgs Average: 0.88332

Alpha = 0.1 Worst: 0.85938
Layers: 2 (100, 10) Best: 0.91729
Augmentation = 0.035 Spread: 0.07518

Logistic Regression C = 0.4 Average: 0.88412
Augmentation = 0.02 Worst: 0.82883

Best: 0.91057
Spread: 0.08174

AdaBoost Estimators = 50 Average: 0.88511
Learning Rate = 0.6 Worst: 0.84211
Augmentation = 0.025 Best: 0.92683

Spread: 0.08472

4.3.1 Comparison of Algorithms and the Effect of Augmentation

Now that we identified the top-performing configuration for each of our algorithms, we

visualise the performance of each of our algorithms using these configurations. We display

the performance using the configurations as shown in Table 4.8, as well as the performance

for the same configuration without augmentation (meaning only the original training data

are used). A figure for each of our metrics is provided below. Accuracy is shown in Figure

4.1, precision is depicted in Figure 4.2, recall is in Figure 4.3, and F1-Score is displayed in

Figure 4.4.

24 4.3 Comparing Algorithms and Configurations

Figure 4.1: Comparison of Accuracy for all Algorithms

Figure 4.2: Comparison of Precision for all Algorithms

4.3 Comparing Algorithms and Configurations 25

Figure 4.3: Comparison of Recall for all Algorithms

Figure 4.4: Comparison of F1-Score for all Algorithms

Looking at these figures, two main things stand out. Firstly, the use of augmentation

yields better performance for all of our algorithms. Secondly, the SVM scores the lowest

on all metrics when augmentation is not used, while it performs best on two out of four

metrics when augmentation is used. In our runs, the random forests algorithm attained a

higher accuracy than the SVM, both random forests and adaptive boosting algorithms

attained a higher precision score than the SVM, and the highest recall score is returned

by the logistic regression algorithm.

26 4.3 Comparing Algorithms and Configurations

4.3.2 The Five Best Models

As mentioned before, we select the best classifiers based on their F1-Scores. In Table 4.9

below, our five top-performing classifiers are shown.

Table 4.9: Best Scoring Configurations Over Ten Random States

Configuration Parameters Average F1-Score
1. Support Vector Machine C = 0.15 0.88872

Kernel = rbf
Gamma = scale
Augmentation = 0.025

2. Support Vector Machine C = 0.15 0.887891
Kernel = rbf
Gamma = scale
Augmentation = 0.045

3. Support Vector Machine C = 0.15 0.887831
Kernel = rbf
Gamma = scale
Augmentation = 0.02

4. Support Vector Machine C = 0.15 0.887831
Kernel = rbf
Gamma = scale
Augmentation = 0.03

5. Support Vector Machine C = 0.15 0.887831
Kernel = rbf
Gamma = scale
Augmentation = 0.035

As can be seen in this table, the five best scoring configurations were all support vector

machines with parameters Kernel = rbf and C = 0.15. We provide a plot that shows

the effects of the parameters C and Kernel in Figure 4.5 below. The experiments have

been conducted using an augmentation factor of 0.025 as this is the best value we found

so far. We investigate more values of the augmentation factor in the next section.

4.4 Hyper-Parameter Optimisation 27

Figure 4.5: Effects of Parameters C and Kernel on F1-Score

4.4 Hyper-Parameter Optimisation

As shown in Table 4.9, the Support Vector Machine with Kernel = rbf , and C = 0.15

yielded the best results. To get the most out of the algorithm, we optimise its hyper-

parameters. The main parameters to optimize are C, and our augmentation factor. We

estimated the optimal value for C to be about 0.15. According to our prior experiments,

the optimal augmentation factor is in the range of [0.02, 0.045]. Performing a final grid-

search returned the optimal configuration of C = 0.1725. We provide the results for the

final grid-search in Figure 4.6 below. Running the same experiments yielded the optimal

augmentation factor to be 0.0225.

28 4.4 Hyper-Parameter Optimisation

Figure 4.6: Optimisation of C and Augmentation Factor for SVM, Kernel = RBF

29

5 Experiments

In this chapter, we present the performance of our optimal solution to the problem of

phishing detection. We evaluate accuracy, precision, recall, and F1-Score of the model.

For the best and the worst random states, we also provide the confusion matrix, and

precision-recall and receiver operating characteristic curves for various thresholds.

5.1 Performance of the Best Classifier

We trained and tested our optimal classifier over ten random states. After training and

testing our classifier, we evaluate its performance by using our performance metrics as

explained in Section 3.6 and Appendix A5. In the following sections, we provide our

results along with a brief explanation on what these results mean. A more in-depth

discussion is found in Chapter 6.

5.1.1 Accuracy, Precision, Recall, and F1-Score

We start off by presenting the accuracy, precision, recall, and F1-Score of our model. As

mentioned, we evaluated performance of the model over ten random states. Results for

all of these random states can be found in Table 5.1 below. In the following table, Table

5.2, we provide a summary of the ten runs. In this summary, we show the performance

for the best random state, the worst random state, and lastly, the average performance

over all ten random states.

Table 5.1: Model Performance

Random State Accuracy Precision Recall F1-Score
30 0.9256 0.9677 0.8955 0.9302
31 0.9091 0.9180 0.9032 0.9132
32 0.9091 0.9455 0.8667 0.9043
33 0.8512 0.8507 0.8769 0.8636
34 0.9091 0.8983 0.9138 0.9060
35 0.8843 0.9000 0.9000 0.9000
36 0.9008 0.9138 0.8833 0.8983
37 0.8760 0.8689 0.8833 0.8760
38 0.9339 0.9459 0.9459 0.9459
39 0.9256 0.9000 0.9474 0.9231

30 5.1 Performance of the Best Classifier

Table 5.2: Best, Worst, and Average Random State Performance for Top Configuration

Case Accuracy Precision Recall F1-Score
Best 0.9339 0.9459 0.9459 0.9459
Worst 0.8512 0.8507 0.8769 0.8636
Average 0.9025 0.9109 0.9016 0.9058

5.1.2 Confusion Matrices

Mathematically, these numbers are very useful. We can easily compare the performance of

our model over different runs by simply comparing the values of these metrics. Intuitively,

though, these numbers do not provide us with much information. To get an idea of how

our model performs, we make use of confusion matrices. In these confusion matrices, we

can see how the algorithm makes its predictions. Four our optimal classifier, we provide

the confusion matrices for both the best and worst random state we tested. In Table 5.3,

results for the best random state are shown. In Table 5.4, we do the same thing for the

worst random state.

Table 5.3: Confusion Matrix for Best Random State

Predicted
Positive (1) Negative (0)

Actual Positive (1) 43 4
Negative (0) 4 70

As can be seen in Table 5.3 above, our classifier correctly identified 43 phishing emails as

phishing emails. 70 benign emails were correctly classified as being benign emails. As for

the incorrect predictions, it classified 4 benign emails as phishing emails and vice-versa.

Table 5.4: Confusion Matrix for Worst Random State

Predicted
Positive (1) Negative (0)

Actual Positive (1) 46 10
Negative (0) 8 57

In Table 5.4 above, we can see that, for our worst random state, the model correctly

identified 46 phishing emails as being phishing emails. 57 benign spam emails were also

correctly labelled. We can see that, for this random state, the model also made 18 incorrect

5.1 Performance of the Best Classifier 31

predictions. Out of these 18 emails, 8 were benign emails the model identified as phishing

emails, and 10 phishing emails were classified as benign spam.

5.1.3 Precision-Recall Curves

Precision-Recall curves are where it starts to become interesting. In Precision-Recall

curves, we evaluate performance of the model for various threshold values. We start of

with a very high threshold value, meaning the model only assigns the label "phishing" to

emails that are almost certainly phishing emails. In doing so, precision is very high, as

all emails it identifies as phishing emails will likely be phishing emails. As we lower the

threshold value, two things happen. Firstly, Recall starts going up. As more emails are

classified as being phishing emails, we are certain that a greater portion of the phishing

emails are identified. Secondly, overall precision values start declining, though some

increases in between may be present. These small increases occur when samples that score

close to the threshold are miss-classified for high threshold values, while a lower value

yields correct predictions.

In Figure 5.1 below, the Precision-Recall curve for the best random state is shown. In the

following figure, Figure 5.2, we do the same for our worst random state.

Figure 5.1: Precision-Recall Curve for Best Random State

32 5.1 Performance of the Best Classifier

In Figure 5.1 above, we can see that, for the best random state, our model is able to get a

fairly high recall of about 0.75, after which lowering the threshold will gradually result in

decreasing overall precision values (again, some small increases are present). At recall =

1, the threshold is set to such a value that precision is a little higher than 0.75.

Figure 5.2: Precision-Recall Curve for Worst Random State

In Figure 5.2 above, we can see that, for the worst random state, just like for the best

random state, the classifier can get a fairly high recall of 0.75 at precision = 1. Once we

start further lowering the threshold values, however, the model experiences a rapid decline

in performance. Some small increases in precision are present but very small. For the

worst random state, precision is about 0.55 at recall = 1.

5.1 Performance of the Best Classifier 33

5.1.4 Receiver Operating Characteristics

Just like we provided Precision-Recall curves for our model, we provide Receiver Operating

Characteristic curves. The curve for our best random state is found in Figure 5.3 below.

The figure for our worst random state is found in Figure 5.4.

Figure 5.3: Receiver Operating Characteristic for Best Random State

In Figure 5.3 above, we can see the trade-off between true positive rate and false positive

rate for various threshold values. We see how an increase in true positive rate leads to an

increase in false positives. Overall, for true positive rates between about 0.75 and 0.95, an

increase in true positives causes an approximately equal increase in false positive rates.

34 5.1 Performance of the Best Classifier

Figure 5.4: Receiver Operating Characteristic for Worst Random State

In Figure 5.4 above, the same curve is shown for our worst random state. Here, we see

that increasing the true positive rate will result in major increases in false positive rates.

35

6 Discussion

We collected and annotated about 600 emails which we used to design, optimise, and

evaluate our classification model. In this chapter, we interpret the results of our research,

discuss generalisable theory and limitations, and compare our study to prior studies.

6.1 Interpretation

Our research shows that lexical features can serve as an effective input for machine learning

algorithms in the problem of distinguishing phishing emails from benign spam. Using

support vector machines along with pre-trained word embeddings to vectorise our emails,

we create a model that can classify phishing emails from benign spam emails with good

performance.

From our precision-recall curves in Section 5.1.3 follows that, up to a certain threshold,

we can successfully identify a fair portion (having the value of our maximum recall at

precision = 1, or about 3
4
for both the best and worst scoring random states) of our

phishing emails from the dataset without incorrectly classifying a benign spam email as

being a phishing email. Attempting to identify a greater proportion of phishing emails

(i.e. increasing our recall), however, will start returning false positives (i.e. a benign spam

email labelled as a phishing email). Manually setting the threshold to a value such that

recall = 1, meaning all phishing emails are identified as phishing emails, will return many

false positives, whereas setting the value such that precision = 1 will result in many false

negatives. We make a trade-off between precision and recall by using the performance

metric of F1-Score. Using the F1-Score, also known as balanced F1-Score, will always set

this threshold to a value such that precision and recall are approximately equal if such a

value exists.

Receiver operating characteristic curves confirm this interpretation to be correct. We see

that we can retrieve about 75% of phishing emails whilst still having a false positive rate

of zero. Attempting to also retrieve phishing emails that are more similar to benign spam

emails, causes a significant increase in false-positive rate.

Although we made use of a balanced data set (i.e. both classes have approximately the

36 6.2 Generalisable Theory

same number of samples), it is interesting to note that our best random state returned

an imbalanced testing set when compared to that of our worst random state. The best

state contained 47 phishing emails and 74 benign spam emails (or about 38.8% phishing),

whereas the worst state contained 56 phishing emails and 65 benign spam emails (or about

46.3% phishing). Both of these sets contain a greater portion of benign spam and a lesser

portion of phishing emails, meaning the training sets for these states contained a greater

portion of phishing emails than benign spam emails. Though our sample size is not large

enough to make any meaningful statements, we hypothesise that our classifier requires a

greater amount of benign spam emails than phishing emails in order to attain maximum

performance. From this hypothesis, we also hypothesise that benign spam emails have

a greater lexical spread than phishing emails do (i.e. the average difference in meaning

between two randomly selected benign spam emails is greater than that of two randomly

selected phishing emails).

6.2 Generalisable Theory

We get back to our review question of:

How do our found methods contribute to the field of email filtering and text classification?

Our research has two main findings that are relevant to the field of email filtering and

text classification. Firstly, we have shown that lexical features can be used for effectively

detecting phishing emails through the use of word embeddings. We also proposed an

approach to increasing sample size without the need to collect new data. This approach also

reduces the impact of overfitting, which is a very significant problem for most classification

algorithms, especially for the widely used support vector machine.

6.3 Limitations

There are some limitations related to our the labelling of our data set. Firstly, due to time

constraints, we were unable to annotate a large enough set of emails. This is indicated

by the fact that there is a significant difference in model performance between different

training and testing splits. Secondly, despite the use of our labelling policy, we expect

the internal consistency of our research is negatively affected by the fact that all of our

samples have only been reviewed and annotated by a single individual. This problem can

6.4 Relation to Prior Research 37

be solved by letting a greater number of individuals label the same set of samples, after

which we can evaluate the internal consistency by using Cronbach’s Alpha or similar tests

on reliability. Furthermore, our research does not cover the complete set of spam emails.

This is due to the fact that we did not annotate emails which we could not review for any

reason. This includes emails which could not be decoded and emails that are not written

in English. In addition, some types of emails are not accounted for by our model, as they

may not be present in our data set.

Another approach to verifying the validity of our model is the evaluation of its performance

on a different data set. We are interested in the performance of our model on other email

filtering problems.

6.4 Relation to Prior Research

As stated in Chapter 2.3, our work is most closely related to "Work hard, play hard" by

Alkhereyf and Rambow (2020), where word embeddings are used in combination with both

the support vector machine and the extra-trees algorithm to make a distinction between

business emails and personal emails. Just like in our research, the support vector machine

yielded best performance in classifying emails. It is interesting to note that Alkhereyf and

Rambow made use of network features and meta-info in addition to lexical features. In

their research, the addition of these features was able to improve the performance of the

models in email classification, and as our problem was similar to theirs, we hypothesise

the use of these features will be beneficial in our case as well.

The comparison starts to become interesting when we look back at Chapter 4.3.1, where

we compared the performance of various algorithms, both in cases where augmentation

was used and where it was not used. As we stated, the performance of the support vector

machine is greatly enhanced by the use of data augmentation, which reduces overfitting by

increasing data diversity and sample size. Comparing our approach to that of Alkhereyf

and Rambow, we can see that, despite the fact that we only label about 600 emails,

whereas their paper annotates over 5300, comparable results can be achieved. This shows

the implementation of data augmentation is able to boost performance of the support

vector machine in a similar way as annotating more samples does, which is great as

collecting and annotating data is very costly.

38

7 Conclusions

To conclude, we provide a brief recap of the results of our studies. We provide a short

summary of the answers to our research questions, after which we discuss implications of

our research. Furthermore, we propose some ideas for further work.

7.1 Research Questions Revisited

In this section, we revisit our research questions. For clarity, we first provide our main

question. Then, our sub-questions are provided and answered, after which we use these

answers to formulate an answer to our main question. Our review question is answered in

the next section: Implications.

First, our main question:

Which machine learning methods can be used to effectively detect phishing emails?

Now, our three sub-questions:

SQ1: How can we prepare our data for further analysis?

As discussed in Section 3.4, we can further analyse our data after the object of interest is

extracted and preprocessed. In our case, the main object of interest was the body of the

email. After extraction of the body, we vectorise the data using the GloVe model for

word embeddings as described in Chapter 4. These vectors can be used as an input for

our model. In addition to using the vectors that vectorisation of our data yields, we use

new data that we create from these vectors. This is done using a method we call data

augmentation. The method is explained in detail in Section 4.1.

SQ2: What are the most effective classification algorithms for our problem?

Our research uses lexical features in the form of word embeddings. For this approach,

the support vector machine yields the best overall performance, based on F1-Score. The

highest recall was returned by the logistic regression algorithm, while the random forests

algorithm yielded the highest precision. The support vector machine was not the best

classifier on either precision or recall, but it finds a good balance between these two.

Overall, the support vector machine is the most effective algorithm.

7.2 Implications 39

SQ3: How can we optimise hyper-parameters in our model to attain high performance?

Hyper-parameters in our models are heavily interdependent, meaning we cannot optimise

them one by one. Instead, we evaluate the performance of a wide range of hyper-parameter

settings using grid-search. An analysis of the results of this grid-search provides us with

an indication of which hyper-parameters are important, and what their values should

approximately be. Using this information, we can repeat this process for values that are

close to the optimal solution. Once we are close to the optimal solution, the improvement in

performance will no longer be significant. At this point, we consider the hyper-parameters

to be set optimally.

Two things are important to note. First, using this method may not lead to the absolute

best solution we can find. Instead, it leads us to a local optimum, meaning we either found

the best solution (i.e. the global optimum), or we found the best solution contained by

our parameter space and the global optimum uses parameter values we did not evaluate.

Second, optimising beyond the point where performance improvement is very small might

seem attractive, but this does not improve the model in any way, shape, or form. While a

0.1% improvement sounds good, tuning the parameters by very small amounts will likely

only result in a better fit to the training and testing data used while performance of the

model on new data will not be affected by this change.

7.1.1 Main Research Question

We go back to our main research question: Which machine learning methods can be used

to effectively detect phishing emails?.

Combining the answers to our three sub-questions, we come to the conclusion that we can

effectively detect phishing emails using word embeddings in combination with the support

vector machine. To do this, we extract the body of the email, then vectorise it using word

embeddings, and lastly, use the support vector machine to classify the emails based on

this corresponding vector.

7.2 Implications

To present the implications of our research, we answer our review question: How do our

found methods contribute to the field of email filtering and text classification?.

40 7.3 Recommendations

Our research has two important implications. Firstly, we can successfully classify emails

based on lexical semantics by using word embeddings. Secondly, generating new samples

from our actual samples is very effective in improving model performance without collecting

and annotating new data.

7.3 Recommendations

Although we have demonstrated the use of word vectors for phishing detection is effective,

the approach has not been polished. In further research, the performance of different sets

of word vectors needs to be evaluated as our used model may not be optimal. Experiments

on the number of dimensions and experiments on the size of the training data should be

evaluated. In addition to the GloVe model, the fastText and Word2Vec models can be

evaluated.

Another route is exploring the effects of adding more features to our input space. Like

in "Work hard, play hard" (Alkhereyf and Rambow, 2020), taking a hybrid approach

(i.e. combining lexical and descriptive features) may have positive effects. In addition,

synthesising new features from our current features may be possible. Examples of features

that may have positive effects on model performance are the angle between email vectors

and the unit vector, and the magnitude of our email vector.

Furthermore, experimentation on inclusion and exclusion of certain word types may yield

positive results. By using named entity recognition and part of speech tagging to assign

different weights to different word types in vectorising our emails, we can more accurately

represent the way language is meant to be processed. We hypothesise that nouns and

verbs are highly important, while conjunctions are likely of lesser relevance.

References 41

References
Abu-Nimeh, S., Nappa, D., Wang, X., and Nair, S. (2007). A comparison of machine

learning techniques for phishing detection. In ACM International Conference Proceeding
Series, volume 269, pages 60–69.

Agrawal, S. (2019). What the heck is Word Embedding.

Alkhereyf, S. and Rambow, O. (2020). Work hard, play hard: Email classification on
the avocado and enron corpora. In Proceedings of TextGraphs@ACL 2017: The 11th
Workshop on Graph-Based Methods for Natural Language Processing, pages 57–65.

Alto, V. (2019). Neural Networks: parameters, hyperparameters and optimization
strategies.

Bishop, C. M. (2013). Pattern Recognition and Machine Learning. Information science
and statistics. Springer (India) Private Limited.

Chandrasekaran, M. and Narayanan, K. (2006). Detection based on structural properties.

Cooke, A., Smith, D., and Booth, A. (2012). Beyond PICO: The SPIDER tool for
qualitative evidence synthesis. Qualitative Health Research, 22(10):1435–1443.

Fette, I., Sadeh, N., and Tomasic, A. (2007). Learning to detect phishing emails. In 16th
International World Wide Web Conference, WWW2007, pages 649–656.

Freund, Y. and Schapire, R. (1995). A decision-theoretic generalization of on-line learning
and an application to boosting, volume 904.

Freund, Y. and Schapire, R. E. (1999). Large Margin Classification Using the Perceptron
Algorithm. Machine Learning, 37(3):277–296.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63(1):3–42.

Hao, J. and Ho, T. (2019). Machine Learning Made Easy: A Review of Scikit-learn
Package in Python Programming Language. Journal of Educational and Behavioral
Statistics, 44(3):348–361.

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly: Management Information Systems, 28(1):75–105.

Huilgol, P. (2019). Accuracy vs. F1-Score.

Karani, D. (2018). Introduction to Word Embedding and Word2Vec.

Kelley, C., Hong, K., Mayhorn, C., and Murphy-Hill, E. (2012). Something smells phishy:
Exploring definitions, consequences, and reactions to phishing. In Proceedings of the
Human Factors and Ergonomics Society, pages 2108–2112.

Khonji, M., Iraqi, Y., and Jones, A. (2013). Phishing detection: A literature survey. IEEE
Communications Surveys and Tutorials, 15(4):2091–2121.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1995). Robocup: The
robot world cup initiative.

42 References

Lastdrager, E. (2018). From fishing to phishing. PhD thesis, University of Twente,
Netherlands.

Martin, S., Nelson, B., Sewani, A., Chen, K., and Joseph, A. D. (2005). Analyzing
behavioral features for email classification. In CEAS.

Obumneme Dukor, S. (2018). Neural Representation of AND, OR, NOT, XOR and XNOR
Logic Gates (Perceptron Algorithm).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Pennington, J., Socher, R., and Manning, C. (2014a). GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association
for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. D. (2014b). Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543.

Python Software Foundation (2020). About Python.

Raschka, S., Patterson, J., and Nolet, C. (2020). Machine learning in python: Main
developments and technology trends in data science, machine learning, and artificial
intelligence. Information (Switzerland), 11(4).

Rojas, R. (2009). AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction to
Adaptive Boosting.

Schryen, G. (2007). Anti-Spam Measures: Analysis and Design. Springer Berlin Heidelberg.

Sheldon, A. (2019). Artificial Intelligence Vs Machine Learning: What’s the difference?

Tin Kam Ho (1995). Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, volume 1, pages 278–282 vol.1.

Toolan, F. and Carthy, J. (2010). Feature selection for Spam and Phishing detection. In
General Members Meeting and eCrime Researchers Summit, eCrime 2010.

Vylomova, E., Rimell, L., Cohn, T., and Baldwin, T. (2015). Take and took, gaggle and
goose, book and read: Evaluating the utility of vector differences for lexical relation
learning.

Wieringa, R. (2014). Design Science Methodology for Information Systems and Software
Engineering. Computer science. Springer Berlin Heidelberg.

43

Appendix

A1 Grid-Search Parameter Space

Table A1.1: Grid-Search Parameter Space

Classifier Parameter Parameter Space
All Augmentation Factor 0 (No Augmentation), 0.01, 0.015, 0.02,

0.025, 0.03, 0.035, 0.04, 0.045, 0.05
SVM C 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15,

0.2, 0.25, 0.5, 0.75, 1, 1.1, 1.2, 1.25, 1.3,
1.4, 1.5, 1.75, 2, 2.5, 3, 4, 5, 7.5, 10

Kernel Linear, Rbf
Random Forests # Trees 100, 250, 500

Max Depth 10, 50, 100, 200
Multilayer Perceptron Alpha 0.1, 0.25, 0.5

Hidden Layers: 1 Layer Size: 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 150, 200, 250, 300, 350,
400, 450, 500

Hidden Layers: 2 Layer 1 Size: 50, 100, 250, 500

Layer 2 Size: 5, 10, 20, 50
Logistic Regression C 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75,

1
AdaBoost # Estimators 1, 5, 10, 20, 30, 40, 50, 75, 100

Learning Rate 0.001, 0.002, 0.003, 0.004, 0.005, 0.01,
0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2,
0.3, 0.4, 0.05, 0.6, 0.7, 0.8, 0.9, 1, 1.25,
1.5, 1.75, 2

44 A2 Second Grid-Search Parameter Space

A2 Second Grid-Search Parameter Space

Table A2.1: Second Grid-search Parameter Space

Classifier Parameter Parameter Space
SVM C 0.15, 0.5, 0.75, 1, 1.1

Kernel Linear, Rbf

Augmentation Factor 0 (No Augmentation), 0.02, 0.025, 0.04,
0.035, 0.045, 0.05

Random Forests # Trees 100, 250, 500

Max Depth 10, 50, 100, 200

Augmentation Factor 0 (No Augmentation), 0.01, 0.015,
0.035, 0.04

Multilayer Perceptron Alpha 0.1, 0.25, 0.5

Hidden Layers: 1 Layer Size: 10, 20, 40, 60

Hidden Layers: 2 Layer 1 Size: 50, 100, 250

Layer 2 Size: 10, 20

Augmentation Factor 0 (No Augmentation), 0.01, 0.03, 0.035,
0.04, 0.045, 0.05

Logistic Regression C 0.4, 0.5, 0.75, 1

Augmentation Factor 0.01, 0.015, 0.02
AdaBoost # Estimators 40, 50, 75, 100

Learning Rate 0.6, 0.7, 0.8, 1, 1.5

Augmentation Factor 0.02, 0.025, 0.03, 0.035

A3 Initial Highest Scoring Configurations 45

A3 Initial Highest Scoring Configurations

Table A3.1: Best Configurations for the Support Vector Machine

Configuration C Kernel Augmentation F1-Score
1 0.75 Rbf 0.02 0.9189
2 0.75 Rbf 0.03 0.9189
3 0.75 Rbf 0.035 0.9189
4 1 Rbf 0.035 0.9189
5 1 Rbf 0.045 0.9189
6 1.1 Rbf 0.045 0.9189
7 1 Rbf 0.05 0.9189
8 0.5 Rbf 0 0.9123
9 0.75 Rbf 0.025 0.9107
10 0.15 Linear 0.02 0.9091

Table A3.2: Best Configurations for the Random Forests Algorithm

Configuration # Trees Max Depth Augmentation F1-Score
1 100 10 0.04 0.8929
2 100 200 0.015 0.8909
3 100 50 0.035 0.8909
4 100 200 0 0.8909
5 100 100 0.01 0.8850
6 100 50 0.03 0.8950
7 100 50 0.01 0.8829
8 250 100 0.01 0.8829
9 500 50 0.01 0.8829
10 500 100 0.01 0.8829

Table A3.3: Best Configurations for Logistic Regression

Configuration C Augmentation F1-Score
1 0.4 0.01 0.8850
2 0.5 0.01 0.8850
3 0.75 0.01 0.8850
4 1 0.01 0.8850
5 0.4 0.015 0.8850
6 0.5 0.015 0.8850
7 0.75 0.015 0.8850
8 1 0.015 0.8850
9 0.4 0.02 0.8850
10 0.5 0.02 0.8850

46 A3 Initial Highest Scoring Configurations

Table A3.4: Best Configurations for the Multilayer Perceptron

Configuration Alpha HL1 Size HL2 Size Augmentation F1-Score
1 0.5 100 20 0 0.9159
2 0.25 50 10 0.03 0.9107
3 0.1 250 10 0.05 0.9107
4 0.25 20 0.01 0.9074
5 0.5 60 0.01 0.9074
6 0.5 100 10 0.01 0.9074
7 0.5 100 20 0.045 0.9074
8 0.5 10 0 0.9074
9 0.1 100 10 0.04 0.9027
10 0.5 40 0.035 0.9009

Table A3.5: Best Configurations for Adaptive Boosting

Configuration Estimators Learning Rate Augmentation F1-Score
1 50 1 0.025 0.9381
2 100 1 0.025 0.9381
3 75 1 0.025 0.9298
4 100 1.5 0.05 0.9286
5 50 1.5 0.03 0.9259
6 50 0.7 0.02 0.9217
7 40 1 0.025 0.9204
8 100 0.8 0.03 0.9204
9 40 0.7 0.035 0.9204
10 40 0.6 0.015 0.9123

A4 Labelling Policy 47

A4 Labelling Policy

In order to classify phishing emails from benign spam emails, our categories "phishing

emails" and "benign spam emails", need to be properly defined. In this section, we will

perform a systematic literature review, which will allow us to come to a clear set of

guidelines which we can use in labelling our data.

A4.1 Definition of the Research Question

The goal of this Systematic Literature Review is to come up with a clear policy we can

use to distinguish phishing emails from benign spam.

In order to come up with this policy, we provide our definition of phishing. Then, we

formulate a set of rules we can use to manually classify our emails.

A4.2 Inclusion and Exclusion Criteria

Not all available literature will be helpful in answering our research question. Therefore,

both inclusion and exclusion criteria are defined.

A4.2.1 Inclusion Criteria

An article must provide a clear definition of phishing emails and its characteristics.

A4.2.2 Exclusion Criteria

Phishing emails are occasionally seen a subset of the set: spam emails. Some sources may

use terms interchangeably, making no distinction. We will exclude any articles where this

is the case.

A4.3 Used Databases

Scopus was used as our main source of articles and publications on this topic.

A4.4 Search Terms and Used Strategy

A proper search strategy is needed in order to find relevant articles. In this review, we

will use the SPIDER strategy, which is a modified version of the commonly used PICO

48 A4 Labelling Policy

strategy (Cooke et al., 2012). The acronym SPIDER stands for: Sample, Phenomenon of

Interest, Design, Evaluation, and Research type.

Breaking down our research question using this framework yields the following:

1. Sample: Individual emails

2. Phenomenon of Interest: Phishing

3. Design: Comparison study

4. Evaluation: Correctness, accuracy

5. Research type: Qualitative

Our breakdown is used to create a search matrix. This matrix is found in Table A4.1

below.

Table A4.1: Search Matrix

Constructs Related Terms Broader Terms Narrower Terms
Phishing Email Junk Spear Phishing
Detection Filtering
Characteristics Properties, Features Aspects

A4.5 Found Articles

Terms in our search matrix were used to construct queries for searching our database.

Queries and the corresponding number of hits are found in Table A4.2.

Table A4.2: Found Articles

Search Query Number of Results
Phishing AND email AND detection 323
Phishing AND email AND detection 203
Phishing AND email AND definition 5
Phishing AND email AND filtering 91

These queries result in a set of articles which can aid us in answering our research question.

We merge our queries into the following query: "(Phishing AND email) AND (detection

OR features OR definition OR filtering)". This returns 419 results. From these 419 results,

A4 Labelling Policy 49

we select ten articles based on their title. These ten articles are then reviewed based on

their abstracts, introduction, and conclusion. We use three of those ten articles as the

basis for this literature review. Analysing these articles leads us to the article: "Phishing

E-Mail Detection Based on Structural Properties", which we also consider to be relevant.

This brings us to a total of four articles, which we use in defining phishing and coming up

with a labelling policy. An overview of used articles is provided in Table A4.3 below.

Table A4.3: Articles Used in Defining Phishing

Article Author(s)
Learning to detect phishing emails Fette et al.
Phishing detection: A literature survey Khonji et al.
Something smells phishy: Exploring definitions, Kelley et al.
consequences, and reactions to phishing
Phishing E-Mail Detection Chandrasekaran and Narayanan
Based on Structural Properties

A4.6 Conceptual Matrix

After thoroughly reading the selected articles, we extracted the main concepts from each

article. These main concepts, along with their presence in the articles, can be found in

Table A4.4 below. In Table A4.5, we explain the concepts in more detail.

Table A4.4: Conceptual Matrix

D
ec
ep
ti
ve

co
m
m
un

ic
at
io
n

Sp
oo

fin
g

G
en
er
al
iz
at
io
n

C
on

te
xt
ua

ll
ur
es

In
fo
rm

at
io
n
th
ef
t

P
er
su
as
io
n

Learning to detect phishing emails * *
Phishing detection: A literature survey * * * *
Something smells phishy: Exploring definitions,
consequences, and reactions to phishing * * *

Phishing E-Mail Detection
Based on Structural Properties * * * *

50 A4 Labelling Policy

Table A4.5: Overview of Concepts

Concept Explanation
Deceptive Communication Deceptive communication is communication in which the

victim is mislead, the truth is hidden, or a false concept is
promoted.

Spoofing Spoofing is a practice in which the criminal disguises
him/herself as someone or something else. Disguising
oneself as a bank or other reputable company are very
common.

Generalization In generalization, communication is done in a non-personal
way. (i.e. they do not address you by name, or any other
personal property)

Contextual Lures In contextual lures, a false sense of urgency, a threat, or
any other concern is used to deceive the victim. Common
examples include lottery scams and the notorious Nigerian
prince email.

Information Theft Information theft is the practice where criminals send
emails in order to steal personal information.

Persuasion Persuasion is a process in which the criminal attempts to
get the victim to perform actions for the attacker’s benefit.

A4.7 Integration of Theory

The articles have been analysed, and a concept matrix has been made. Using these

concepts, we can formulate a proper definition of phishing. Using this definition of

phishing, we create a policy table for labelling our emails.

A4.7.1 Definition of Phishing

As can be seen in Table A4.4, all used articles mention deceptive communication. In

essence, this is what most phishing attempts are all about. In phishing, attackers often

portray themselves as well-intentioned instances or individuals. We make a distinction

between two main ways of doing this.

The first method we found is known as the spoofing attack. In spoofing attacks, the

attacker pretends to be part of a trusted instance, such as your bank, PayPal, or even

your credit card company. They will then try to obtain your personal information, which

they can then abuse for their own financial gain.

The second deceptive method is a method that makes use of the previously-defined

A4 Labelling Policy 51

contextual lures. In this method, the attacker often does not pretend to be part of an

instance your trust. Instead, they present themselves as trustworthy individuals, usually

being stuck in situations where they need your help in exchange for wealth, riches, or

well-being in some other way, shape, or form. Some examples of this type of phishing

attack are the notorious Nigerian prince scam, lottery scams, and overly promising business

offers.

In addition to blatant deception, contextual lures are often used in a type of phishing

attack we will give the name of "the blackmail". In blackmailing attacks, attackers

send coercive emails to their victims. In these emails, they threat to publish revealing

information about the victim, e.g. in the form of webcam recordings. Alternatively, they

may threaten to inflict harm to the victim or his or her relatives. After the context is

constructed, the attacker will offer to renounce the threat in exchange for compensation,

usually in the form of money.

From these concepts and methods, we conclude our definition of Phishing is very similar

to that in the article: Phishing detection: A literature survey. In this article, the following

definition is provided: "Phishing is a type of computer attack that communicates socially

engineered messages to humans via electronic communication channels in order to persuade

them to perform certain actions for the attacker’s benefit." (Khonji et al., 2013). We use

this definition, along with the methods described above, as a basis for our labelling policy.

A4.7.2 Labelling Policy

We designed a policy that is used in labelling our emails. Emails can only be assigned one

label. Our policy table is found in Table A4.6 below.

Table A4.6: Labelling Policy for Phishing Emails

Situation Label
A third party falsely claims to be part of a trusted institution Phishing
A third party uses contextual lures (e.g. lottery scams) Phishing
A third party attempts to persuade the receiver of the email Phishing
A third party threatens the receiver of the email Phishing
A third party attempts to obtain personal information Phishing
None of the above Benign spam

52 A4 Labelling Policy

A4.8 Some Final Notes on Labelling

Despite providing a clear definition of phishing, as well as a policy table that is used in

labelling our emails, we still encountered some situations in which our policy table falls

short, and we have to make a judgement based on our instinct. These situations include

some types of loan offers, some types of advertisements, as well as emails where tricks are

used to bypass some spam filters. An example of such a trick is to convert the text of the

email to an image or other object, which we decided not to open for the sake of our own

security. Additionally, some emails in our data set could not be decoded, are not written

in English, or could not be reviewed for any other reason. These emails, as well as the

emails where we could not make a decision based on our policy, have been skipped in the

labelling process. We further discuss skipping emails in Section 6.3.

A5 Performance Metrics 53

A5 Performance Metrics

Performance metrics are variables that we can use to express the performance of a system

in a real number. This is done so we can compare different systems and models, which

allows us to choose the best option available to use. Two widely used performance

metrics are accuracy and F1-Score. These two metrics are explained and compared in

this appendix. We use the article: “Accuracy vs. F1-Score” as a basis (Huilgol, 2019).

We make a distinction between four different situations, being the True Positive (TP),

False Positive (FP), False Negative (FN), and the True Negative (TN). “True” labels TP

and TN indicate a correct prediction, whereas “False” labels FP and FN indicate a false

prediction. “Positive” labels TP and FP indicate the model predicted the investigated

phenomenon to be present, whereas the “Negative” labels indicate absence. We provide a

matrix, known as a “Confusion Matrix” for clarification. This matrix is found in Table

A5.1 below.

Table A5.1: Confusion Matrix

Predicted
Positive (1) Negative (0)

Actual Positive (1) True Positive (TP) False Negative (FN)
Negative (0) False Positive (FP) True Negative (TN)

A5.1 Accuracy

Our first metric, accuracy, is the simplest metric available to us. It expresses the number

of correct predictions as a fraction of the total number of predictions. In other words, it

indicates the proportion of items the model got correct. It is evaluated by Equation (.1).

Accuracy serves as a good performance metric in cases where all instances are equally

important and classes are balanced (i.e. both classes are equally present in the data set).

Accuracy =
TP + TN

TP + FP + TN + FN
(.1)

54 A5 Performance Metrics

A5.2 Precision

A slightly more advanced performance metric is precision. Precision indicates the correct

positive cases as a fraction of all predicted positives. This metric only penalizes false

positives, meaning false negatives and true negatives have no effect. Precision is evaluated

by Equation (.2).

Precision =
TP

TP + FP
(.2)

A5.3 Recall

In addition to precision, we use a similar metric known as recall. Recall indicates the

correct positives as a fraction of all positive cases. This metric only penalizes false

negatives, meaning it is not affected by false positives and true negatives. Recall is

evaluated by Equation (.3).

Recall =
TP

TP + FN
(.3)

A5.4 Fβ-Score

We can make a trade-off between precision and recall by using the Fβ-Score metric. Fβ-

Score evaluates the weighted harmonic mean between precision and recall, such that recall

is β times as important as precision. This metric expresses performance as a real number

between 0 and 1, where a higher score indicates a better performance. In problems where

recall is more important than precision, a high value of β is used. Due to recall being β

times as important as precision, precision is 1
β
times as important as recall. Fβ-Score is

evaluated by Equation .4.

Fβ = (1 + β) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(.4)

A5 Performance Metrics 55

A5.4.1 F1-Score

The most traditional version of the Fβ-Score is the F1-Score. In the F1-Score, precision and

recall are equally important, meaning false positives and false negatives are assigned an

equal penalty. Substituting β = 1 in Equation .4 yields Equation (.5) after simplification.

F1− Score = 2 ∗ Precision ∗Recall
Precision+Recall

(.5)

Our research uses the F1-Score as opposed to the more general Fβ-Score as the β = 1

implementation of the Fβ-Score is most widely used, and we did not encounter a situation

where deviating from this standard was deemed necessary.

A5.5 Precision-Recall and ROC Curves

In classifying new samples, classification models express a sample as a single value. This

value is then compared to a tune-able parameter called threshold, denoted by λ. In cases

where the value of the sample is lower than the model threshold, the model classifies the

sample as belonging to class A. In cases where the value of the sample is greater than

or equal to the model threshold, the model returns class B for the sample. Tuning the

threshold of a model is essential in optimising the model as this allows us to influence

when the decision of our model changes.

A5.5.1 Precision-Recall Curves

Precision-recall curves show the tradeoff between precision and recall. This can be used

to gain insights into where our model starts to encounter difficulties during classification.

In addition to the curve itself, we can also use the area under the curve as a performance

metric. A high area under the curve represents both high recall and high precision, which

shows that the classifier is able to separate our classes very well.

An example of a precision-recall curve is found in Figure A5.1 below.

56 A5 Performance Metrics

Figure A5.1: Example of a Precision-Recall Curve

A5.5.2 Receiver Operating Characteristics

Receiver operating characteristic curves, commonly referred to as ROC curves, serve

a similar purpose as precision-recall curves. Whereas precision-recall curves show the

tradeoff between precision and recall, ROC curves show the tradeoff between true positive

rate and false positive rate. In addition to the curve itself, we can use the area under the

curve as a performance metric, where a high area under the curve represents a model that

can classify our samples well.

An example of a receiver operating characteristics curve is found in Figure A5.2 below.

A5 Performance Metrics 57

Figure A5.2: Example of a Receiver Operating Characteristic Curve

	Introduction
	Problem Area
	Core Problem
	Research Questions
	Methodology: Design Science
	Outline

	Background
	Introduction to AI and Machine Learning
	Example: RoboCup
	Artificial Intelligence
	Machine Learning

	Machine Learning Concepts
	The Classification Problem
	Classification Algorithms
	The Support Vector Machine
	Random Forests
	Logistic Regression
	Neural Networks and the Multilayer Perceptron
	Adaptive Boosting

	Features in Email Classification
	Descriptive Features
	Semantic Features

	Related Work
	Contribution to the Scientific Database

	Research Approach
	Research Methodology
	Python and Scikit-Learn for Machine Learning
	The Data Set
	Data Pre-Processing
	Labelling
	Operationalisation and Performance Metrics

	Solution Design
	Data Augmentation
	Approach One: Increasing the Number of Samples
	Approach Two: Increasing Data Diversity

	Designing Experiments
	Comparing Algorithms and Configurations
	Comparison of Algorithms and the Effect of Augmentation
	The Five Best Models

	Hyper-Parameter Optimisation

	Experiments
	Performance of the Best Classifier
	Accuracy, Precision, Recall, and F1-Score
	Confusion Matrices
	Precision-Recall Curves
	Receiver Operating Characteristics

	Discussion
	Interpretation
	Generalisable Theory
	Limitations
	Relation to Prior Research

	Conclusions
	Research Questions Revisited
	Main Research Question

	Implications
	Recommendations

	References
	Appendix
	Grid-Search Parameter Space
	Second Grid-Search Parameter Space
	Initial Highest Scoring Configurations
	Labelling Policy
	Definition of the Research Question
	Inclusion and Exclusion Criteria
	Inclusion Criteria
	Exclusion Criteria

	Used Databases
	Search Terms and Used Strategy
	Found Articles
	Conceptual Matrix
	Integration of Theory
	Definition of Phishing
	Labelling Policy

	Some Final Notes on Labelling

	Performance Metrics
	Accuracy
	Precision
	Recall
	F-Score
	F1-Score

	Precision-Recall and ROC Curves
	Precision-Recall Curves
	Receiver Operating Characteristics

