
Profiling encryption algorithms using
ARM-based cache eviction attacks

Jan-Jaap Korpershoek
jjkorpershoek96@gmail.com

September 14, 2020

In a forensic setting breaking the encryption of Android phones of suspects
is very relevant to obtain evidence. Cache eviction attacks are a method that
can be used for this. Those attacks can be used to profile an application, i.e.
obtain information on timings within the execution. These timings could
be used as the basis for further attacks, such as fault-injection attacks or
to obtain information about the execution flow of the victim program. We
show Flush+Reload profiling on OpenSSL AES, and Prime+Probe pro-
filing on the RSA implementation used to verify ARM TrustZone applications
(trustlets). These attacks are executed in a bare-metal environment, which
leads to reliable results due to the lack of operating system interference. In
addition to the attacks we provide an overview of the state of the art of ARM
cache side-channel attacks.

1. Acknowledgements
I would like to thank Jeffrey Rongen and Nico van Heijningen from Nether-
lands Forensic Institute for their advice during this project and for the initial
bare-metal implementation. Lipp et al. [1] for the practical code samples and
the libflush library. Tang et al. [2] for the clear documentation of the reverse
engineering work on the TrustZone RSA implementation, and the provided
github repository [3].

1



Contents
1. Acknowledgements 1

2. Introduction 5
2.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Background 7
3.1. CPU cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. ARM architecture . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1. ARM cache . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2. TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3. Cache attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4. AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1. T-Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5. Differential fault analysis of AES using a Single Fault . . . . 14
3.6. Motorola Nexus 6 XT1100 . . . . . . . . . . . . . . . . . . . . 14

3.6.1. Snapdragon 805 Processor . . . . . . . . . . . . . . . . 14

4. Related work 15
4.1. Last-Level Cache Side-Channel Attacks are Practical . . . . . 15
4.2. Armageddon . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1. Virtual to physical address conversion . . . . . . . . . 16
4.2.2. Cross-core eviction . . . . . . . . . . . . . . . . . . . . 16
4.2.3. Accurate Timing . . . . . . . . . . . . . . . . . . . . . 16
4.2.4. Covert channels . . . . . . . . . . . . . . . . . . . . . . 16
4.2.5. Shared library attack . . . . . . . . . . . . . . . . . . . 16
4.2.6. AES T-Table attack . . . . . . . . . . . . . . . . . . . 17
4.2.7. TrustZone attack . . . . . . . . . . . . . . . . . . . . . 17

4.3. TruSpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1. Finding congruent memory addresses . . . . . . . . . . 18
4.3.2. Accurate timing . . . . . . . . . . . . . . . . . . . . . 18

4.4. Return-Oriented Flush-Reload Side Channels on ARM and
Their Implications for Android Devices . . . . . . . . . . . . . 19
4.4.1. Detecting inclusive L2 caches . . . . . . . . . . . . . . 19

4.5. AutoLock: Why Cache Attacks on ARM Are Harder Than
You Think . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.1. Detection . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.2. Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6. Navigating the Samsung TrustZone and Cache-Attacks on the
Keymaster Trustlet . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6.1. Kinibi OS . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6.2. Attacking the Keymaster trustlet . . . . . . . . . . . . 21

2



4.7. Cache-Attacks on the ARM TrustZone implementations of
AES-256 and AES-256-GCM via GPU-based analysis [4] . . . 22

4.8. Prime+Count: Novel Cross-world Covert Channels on ARM
TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.9. CLKscrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9.1. Dynamic voltage and frequency scaling . . . . . . . . . 23
4.9.2. AES attack . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9.3. RSA attack . . . . . . . . . . . . . . . . . . . . . . . . 23

4.10. VoltJockey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.10.1. RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.11. Speculative execution attacks . . . . . . . . . . . . . . . . . . 24
4.11.1. Speculative execution . . . . . . . . . . . . . . . . . . 24
4.11.2. Spectre . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11.3. Meltdown . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11.4. Foreshadow . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11.5. RIDL: Rogue In-flight Data Load . . . . . . . . . . . . 26
4.11.6. ZombieLoad: Cross-Privilege-Boundary Data Sampling 27
4.11.7. Fallout: Leaking Data on Meltdown-resistant CPUs . 27

5. Bare-metal environment 28
5.1. Multi-core support . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. Enabling caching . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3. Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4. Performance counters . . . . . . . . . . . . . . . . . . . . . . 30

6. Attack primitives 30
6.1. Eviction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2. Flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4. Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5. Test cache-attack methods . . . . . . . . . . . . . . . . . . . . 32

6.5.1. Flush+Reload . . . . . . . . . . . . . . . . . . . . . 34
6.5.2. Prime+Probe . . . . . . . . . . . . . . . . . . . . . . 35

7. AES attacks 37
7.1. Textbook AES . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2. OpenSSL AES . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2.1. Execution time . . . . . . . . . . . . . . . . . . . . . . 38
7.2.2. Flush+Reload profiling . . . . . . . . . . . . . . . . 39
7.2.3. Prime+Probe profiling . . . . . . . . . . . . . . . . . 40
7.2.4. Locating the T-Tables and round key . . . . . . . . . 41
7.2.5. TrustZone AES . . . . . . . . . . . . . . . . . . . . . . 41

3



8. RSA attacks 42
8.1. Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.2. RSA TrustZone attack . . . . . . . . . . . . . . . . . . . . . . 43

8.2.1. Instrumentation . . . . . . . . . . . . . . . . . . . . . 47

9. Discussion 50
9.1. Bare metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2. L2 cache inclusiveness to instructions . . . . . . . . . . . . . . 51
9.3. AES attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.4. RSA attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.5. Cross-core vs. scheduling . . . . . . . . . . . . . . . . . . . . 52

10.Conclusion 53

11.Future work 53

12.References 55

13.Acronyms 60

A. Code snippets 62

4



2. Introduction
Android smartphones have supported full-disk encryption (FDE) from ver-
sion 4.4, which was released in 2014 and have supported file-based encryp-
tion (FBE) from android 7.0 which was released in 2016 [5]. As a result,
nowadays, many devices of criminal suspects are encrypted. Therefore, at-
tacks that can break the encryption of smartphones are very useful in a
forensic setting as decrypted phones lead to more evidence.

Cache eviction attacks are a useful method for this. A multitude of cache
attacks have been published for the x86 platform [6, 7, 8, 9, 10, 11]. For ARM
several attacks have been published as well [12, 1, 13, 14, 15, 16, 17, 2, 18].
Lyu and Mishra [19] have provided a survey of cache side-channel attacks
and Ge et al. [20] have provided a survey of micro-architectural attacks.
This work, in contrast to the previous surveys, aims to provide in-depth
summaries of several ARM cache attacks.

Tang et al. [2] describe the CLKscrew attack, which can be used to obtain
an AES secret key used within TrustZone. They do not use runtime profiling
to find in which state the implementation it is at the moment of attack, since
the timings of their textbook implementation can be predicted. To attack a
more complex AES implementation, it could be profiled to find the timings
of different states in the program in order to induce a fault at the right time.

Tang et al. [2] also execute a CLKscrew attack on RSA. For that at-
tack they profile the implementation using instruction-based cache attacks.
However, the profiling implementation of Tang et al. is not published.

We show methods to profile an AES implementation at runtime in order
to find the exact timing to use in a fault-injection attack. In addition, we
describe a TrustZone RSA side-channel. Our experiments are run in a bare-
metal environment, which means that we run without any kernel or user space
interference, which minimizes the amount of noise in the measurements. The
experiments are performed on the Motorola Nexus 6 XT1100 (codename
shamu) with firmware version ngi77b [21].

Threat model We can choose a strong adversary because we are modelling
a forensic setting where the attacker can use any means to break the security
of the device. The adversary has full access to the device and can execute
a custom kernel. The adversary does not have access to TrustZone keys, so
cannot run code in TrustZone except by using an exploit.

5



2.1. Contributions
The contributions of this work are:

• Providing a survey of cache-based attacks in general and specifically on
ARM (section 3).

• Profiling an OpenSSL AES implementation using Flush+Reload (sec-
tion 7.2).

• Reproducing the TrustZone RSA profiling of Tang et al. [2] (section 8.2).
This has also been reproduced by Qiu et al. [18], but both their de-
scriptions are very minimal. We reproduce part of their profiling and
highlight difficulties and unknowns.

• Performing cache side-channel attacks in a bare-metal environment,
which to our knowledge has not been done in previous research. Green
et al. [15] perform tests in a bare-metal environment, but no actual
attack.

• Providing plain bare-metal implementations of several features of the
kernel for the Nexus 6, such as enabling the memory management
unit (MMU), symmetric multiprocessing (SMP) and obtaining hard-
ware randomness [22].

• Showing different results for the L2 (level 2) inclusiveness test by X. Zhang
et al. [14] (section 6.5.2).

• Providing practical implementations of profiling using cache side-channels
[22].

• Providing information about the caching behaviour of the APQ8084
processor of the Nexus 6 (section 3.6).

2.2. Outline
In sections 3 and 4 we describe the background and related work. In section 5
we describe the bare-metal environment which we use for the experiments.
In section 6 we describe and test primitives necessary to perform our side-
channel attacks. In sections 7 and 8 we describe our AES and RSA profiling
attacks. We finalize in sections 9 to 11 with our discussion, conclusion and
future work.

6



CPU Core

L1-DL1-I

CPU Core

L1-DL1-I

CPU Core

L1-DL1-I

CPU Core

L1-DL1-I

L2 Cache Unified

Main memory

(a) CPU cache architecture (b) Cache addressing [13]

Figure 1: Cache architecture and addressing

3. Background
3.1. CPU cache
CPU caches are a system used for speeding up memory I/O. If an address has
to be read from memory, first the cache is queried, when the cache contains
the desired address, it can be used without doing the slower memory lookup.
When the address is not in the cache, it is first loaded from memory into the
cache (replacing an existing entry chosen by the replacement algorithm) and
the value is used by the CPU after that. The next time the same address
is looked up, it is returned faster since it can be obtained from the cache.
For writing to memory there are different policies, write-through and write-
back. With write-through, the data is written to the cache and the storage
simultaneously, while with write-back the data is written to the cache first,
and to the storage later, e.g. when the address is evicted. Usually caches are
arranged in multiple layers of increasingly larger, but slower caches, typically
there are two or three layers. The lower-level caches are faster, smaller and
closer to the processor core. The cache layers are typically named L1 (level
1), L2 (level 2), etc, where a lower number indicates a lower level. The
highest cache level is often called the last-level cache (LLC) and is often
shared between CPUs. The L1 cache is sometimes split into a data cache
(L1-D) and an instruction cache (L1-I). An example of a cache hierarchy can
be seen in fig. 1a.

Caches today are usually set-associative, i.e. organized as S sets of W lines
each, called a W -way set-associative cache. A specific cache line number
across all sets is called a cache way. A cache line address has three parts.
The offset (the lower bits of the address) locates the value inside a cached
block. The index (the middle bits of the address) locates the used cache set.

7



The tag (the higher bits of the address) is matched against the tag of the W
lines in the set to identify if one of the cache lines is a cache hit [12].

Inclusiveness If all cache lines from lower levels are also stored in a higher-
level cache, the higher-level cache is called inclusive. If a cache line can
only reside in one of the cache levels at any point in time, the caches are
called exclusive. If the cache is neither inclusive nor exclusive, it is called
non-inclusive. Inclusiveness of a cache can be different for data values or
instruction values.

Cache coherence protocols Different cores make sure their caches contain
the same values for the same memory blocks using cache coherence proto-
cols. The cores communicate by messages over a shared bus or by using a
directory to determine which core to ask for the desired data. Using cache
coherence protocols, a core can obtain a value from a different core with a
much smaller latency than main memory. For more information on cache
coherence protocols see [23].

Eviction If an entry is removed from the cache, this is called eviction. Evic-
tion can happen by performing a cache flush or by loading other values into
the same cache set. A flush instruction will invalidate a specified part of the
cache, i.e. a line, a set or the whole cache. Values in the same cache set
compete for space, so if new values are cached in the same set, older values
are removed based on the effective replacement policy. These two methods
are called Flush and Evict and are used to build cache side channels.

3.2. ARM architecture
ARM uses two different sets of instructions, the 32-bit (or 64-bit) ARM
instructions and the 16-bit (or 32-bit) Thumb instructions. The processor
can switch between the instruction sets by setting the T-bit in the current
program status register (CPSR), this bit is set based on the least-significant
bit of the program counter (PC) [24].

3.2.1. ARM cache

According to Lipp et al. [1] except for ARMv8-A CPUs, ARM processors do
not support a flush instruction. In addition, most LLCs are not inclusive on
ARM.

The caches of the Krait 450 cores of the Nexus 6 are data-inclusive and
instruction-inclusive however [14]. On the Nexus 6 and many other ARM
devices, the LLC is the L2 cache.

8



Addressing L2 caches are usually physically indexed, physically tagged
(PIPT) [1]. Programs, however run in virtual address space. When the
processor needs to fetch a value in memory, it passes the virtual address
to the memory management unit (MMU). The MMU first attempts to re-
trieve the virtual address to physical address translation from the translation
lookaside buffer (TLB). If there is no hit, the MMU parses the page table
for the translation and places it inside the TLB. Parsing of the page table is
often referred to as a page walk. Once the physical address is obtained, the
MMU goes through the system memory hierarchy to retrieve the value at
that address. fig. 1b illustrates the process of retrieving data from memory.

AutoLock AutoLock is an undocumented feature of ARM processors that
has been described in detail by Green et al. [15]. AutoLock is a performance
enhancement that inhibits cross-core LLC evictions. It is only defined in
an inclusive-cache setting and works by setting an inclusion bit on L2 cache
lines if the lines are allocated in the L1 cache. If this bit is set, the cache
line cannot be evicted. If all lower-level copies of the cache-line have been
evicted, the inclusion bit is reset, and the L2 cache line can also be evicted.

Trying to evict a cache set from the L2 cache will thus not always work, so
the effect of AutoLock is similar to that of a non-inclusive cache. However,
cache maintenance operations, such as a flush instruction, override AutoLock.

AutoLock is not implemented on the Krait 450 cores of the Nexus 6.

3.2.2. TrustZone

ARM TrustZone is a hardware-based security technology built into ARM
CPUs to provide a secure execution environment without using a separate
CPU. This trusted execution environment (secure world) is isolated from the
normal world using hardware support. TrustZone is used, e.g., as a hardware-
backed credential store, to emulate secure elements for payment applications,
digital rights management as well as verified boot and kernel integrity mea-
surements. Such services are provided by so-called trustlets, i.e., applications
that run in the secure world. The world that the processor operates in is in-
dicated by the 33rd processor bit, also known as the non-secure bit, which
value can be read as the first bit of the secure configuration register (SCR)
[25]. On some (older) devices the cache is flushed when entering or leaving
the secure world [1]. On newer devices a non-secure bit is used to indicate
which cache lines are used by TrustZone and which are used by normal code
[13]. So, the secure world does not use the cache lines of the normal world
and vice versa. With the old system, where a cache flush is used, cache
attacks on TrustZone are not very different from cache attacks on normal
code [1]. With the new system however, novel techniques are required to
leak information. Since the cache is no longer flushed on a world switch, the

9



Secure firmwareApp

Normal world Secure world

App App App

No EL2 in Secure 
world

EL0

EL1

EL3

EL2

Guest OS Guest OS

Trusted kernel
 (operates at EL3)

Hypervisor

Secure monitor

Figure 2: ARMv8 Exception levels [26]

cache lines of the normal world and secure world can evict each other (cache
contention). N. Zhang et al. [13] have shown that this can be exploited.

The normal world can communicate with the secure world via privileged
secure monitor call (SMC) instructions. These instructions are handled by
the secure monitor that runs on a higher exception level than both the normal
world and the secure world OSes, see fig. 2 for an overview of the exception
levels. Exceptions and interrupts can also be handled by the secure moni-
tor. The separation of memory in normal world memory and secure world
memory is done by the TrustZone address space controller (TZASC) and the
TrustZone memory adapter (TZMA), this ensures that the secure world can
access normal world memory, but not the other way around. The TZASC
and TZMA are optional components in the TrustZone specification and hence
may not exist on all system on chip (SoC) implementations. TrustZone tech-
nology also allows for devices to be restricted to secure world or normal
world, through the TrustZone protection controller (TZPC), which is also an
optional component [25].

3.3. Cache attacks
Cache attacks can be divided in the following three categories of increasing
attacker capabilities [27].
Time-driven The attacker uses the overall encryption time to leak the secret

key. This is very general, but does not reduce the key space much [28].
Trace-driven The attacker can notice when the victim has a cache hit or

miss.
Access-driven The attacker can notice which cache sets the victim is access-

ing.

10



The attacks described below are examples of access-driven attacks, except
for Prime+Count, which is trace-driven.

Flush+Reload
1. Choose an address to monitor.
2. Flush the cache line corresponding to the address.
3. Schedule the victim program.
4. Measure the time it takes to access the address.
5. A short access time indicates that the cache set was used by the victim.

This is a fast and fine-grained attack, but it requires shared memory with
the victim program.

Evict+Reload Same as Flush+Reload, but replacing the flush by a se-
ries of evictions. This is useful for systems where a flush instruction is not
available.

Prime+Probe
1. Occupy specific cache sets.
2. Run victim program.
3. Measure the time it takes to reload (probe) the addresses of the eviction

set.
4. A long probe time indicates that the cache set was used by the victim.

This attack is slower than Flush+Reload but it does not require shared
memory. Therefore, this attack can be used to attack a victim in TrustZone
or across memory boundaries.

Prime+Count [17] Similar to Prime+Probe but instead of determining
which cache sets are occupied it only determines how many cache sets are
occupied. The benefit of this coarser-grained attack is that it is less sensitive
to cache noise. A drawback is that more measurements are necessary to get
accurate information.

Flush+Flush [29] Flush+Flush works similar to a Flush+Reload at-
tack, but instead of reloading the cache line, it is flushed again. Benefits of
this attack are that it is faster than a Prime+Probe or Flush+Reload
attack and that it is more stealthy because no memory is accessed by the at-
tacker. Similar to Flush+Reload, Flush+Flush requires shared-memory.
If the timing of the flush instruction depends on whether the cache line is in
use or not, this difference can be measured by the attacker to determine if
the victim accessed the cache line. A long flush duration indicates that the
cache set was used by the victim.

11



Evict+Time [30]
1. Measure execution time of victim program.
2. Evict a specific cache set.
3. Measure execution time of victim program again.
4. A short execution time indicates that the cache set was used by the

victim.

Flush The flush operation is used to clean and invalidate a specific part of
a cache. There are several methods to perform a flush. Firstly, on x86 there
is a dedicated flush instruction called CLFLUSH which flushes an address from
all caches. This is a very fast method because only a single instruction is
needed. On ARM there is no such flush instruction [1]. Secondly, there are
several coprocessor registers, like data cache clean and invalidate by set/way
(DCCISW) that can be used to clean and invalidate (flush) a specified part
of the cache. These registers are only accessible from kernel space. This
method is slower than a dedicated instruction because some code is necessary
to flush all the required cache lines. Finally, there is the clearcache system
call. This system call uses the coprocessor registers, but allows calls from
user space. This has the drawbacks that it does not invalidate the cache on
all devices and that because it is a system call, it has overhead which makes
it slower than using the coprocessor registers directly.

Eviction strategies On processors that use a least recently used (LRU) re-
placement policy, accessing one set-congruent address per cache line is enough
to evict a cache set. However, ARM processors use a pseudo-random replace-
ment policy. Therefore, more complicated patterns of memory accesses are
necessary to evict a cache set with high probability. This is called an eviction
strategy. The algorithm of sliding window eviction (algorithm 1) is used for
this purpose. It uses three parameters:
N The number of windows
A The number of repetitions per window
D The number of addresses per window
The algorithm accesses D set-congruent addresses A times for N windows.

12



Algorithm 1: Sliding window eviction by Gruss et al. [31, p. 305]
Data: C: A list of set-congruent addresses

1 for i = 0..N-1 do
2 for j = 0..A-1 do
3 for k = 0..D-1 do
4 access(C[i+k]);
5 end
6 end
7 end

3.4. AES
AES is a commonly used symmetric encryption algorithm designed by Dae-
men and Rijmen [32]. The algorithm looks as shown in algorithm 2. It
contains the following functions

KeyExpansion Expand the initial key into the necessary number of round
keys.

SubBytes Substitute the bytes of the current plaintext using S-Boxes.
ShiftRows Shift the rows of the input matrix cyclically to the left by a

specified offset.
MixColumns Perform a linear transformation on the columns of the input

matrix.
AddRoundKey Add the current round key to the current input.

Algorithm 2: AES cipher
Data: N: number of rounds, 9 for 128-bit, 11 for 192-bit, 13 for

256-bit.
1 KeyExpansion()
2 AddRoundKey()
3 for i = 0..N-1 do
4 SubBytes()
5 ShiftRows()
6 MixColumns()
7 AddRoundKey()
8 end
9 SubBytes()

10 ShiftRows()
11 AddRoundKey()

13



3.4.1. T-Tables

Some AES implementations like the OpenSSL implementation [33] use T-
Tables to speed up the calculations. T-Tables contain precomputed AES
round transformations, which can be looked up based on the bytes of the
current state. This reduces the encryption and decryption calculations to
simple XORs and table lookups. If the used T-Table is detected, this can
be used to infer information on the key bytes that were used, since the state
used for the lookup is based on an XOR between the previous state and the
key bytes.

3.5. Differential fault analysis of AES using a Single Fault
Tunstall et al. [34] have conducted a differential fault analysis (DFA) on
AES. They target an AES implementation which uses a loop for the rounds
(iterative) in contrast to an unrolled version. A one-byte random fault is
introduced in the state matrix that is the input to the 8th round of a 10-round
AES encryption. The fault propagates through the state as the encryption
continues. From the difference between the faulty ciphertext and the correct
ciphertext equations can be derived for the relation between certain key-bytes
and the fault. By guessing values for the fault in the state after the 9th
round ShiftRow operation, candidates for the key-bytes can be obtained.
There are four sets of equations that each yield hypotheses for 4 key-bytes.
Each set yields on average 1 fitting hypothesis for each candidate for the
fault. This results in 256 unique hypotheses per set of equations, so in total
2564 = 232 different key hypotheses. These hypotheses can be subjected
to a second test, which examines the relation between the fault after the
8th round MixColumn and the difference between the correct and faulty
ciphertexts. This yields another 4 sets of equations. The probability that a
hypothesis satisfies these equations for a specific fault value is ( 1

28
)4 = 1

232
.

Therefore, since there are 256 different fault values, the total probability that
a hypothesis satisfies the equations is 256 · 1

232
= 1

224
. So, after the second

test there are 232

224
= 28 hypotheses left.

The attack is based on the assumption that we know the location of the
fault, i.e. which byte was faulted. If we do not know the location, the
analysis has to be performed for each of the 16 bytes of the state. This
results in 16 · 28 = 212 key hypotheses and an analysis time that is 16 times
as high.

3.6. Motorola Nexus 6 XT1100
3.6.1. Snapdragon 805 Processor

The Snapdragon 805 (APQ8084) [35] has four Krait 450 cores. It has an
ARMv7 instruction set architecture (ISA) (32-bit) and a Thumb-2 ISA (16-

14



bit).

Cache layout Per core, the APQ8084 has a 16 KiB 4-way L1-D (level 1
data) and a 16 KiB 4-way L1-I (level 1 instruction) cache, with a cache line
size of 64 bytes. The number of sets for the L1-D cache is 64. In addition,
it has a 2 MiB 8-way unified L2 cache, with a line size of 128 bytes, which
is inclusive to L1-D and L1-I [14]. The number of sets for the L2 cache is
2048. All measurements about cache size, associativity and cache line size
have been obtained by interpreting the CCSIDR register. AutoLock is not
implemented on the APQ8084 [15].

4. Related work
4.1. Last-Level Cache Side-Channel Attacks are Practical
Liu et al. [12] have executed Prime+Probe attacks on the LLC in a cross-
core scenario. This was done on Intel processors. Instead of probing the
whole LLC, first cache sets relevant to security-critical victim code and data
are determined. This is done by monitoring one cache set at a time and
looking for temporal access patterns to this cache set that are consistent
with the victim performing security-critical accesses. The attacks are shown
to work with secret-dependent instructions as well as secret-dependent data.

Large pages are used for the virtual to physical address translation. If a
page is large enough (i.e. 2 MiB on the hardware of Liu et al.), the index
bits of the cache line are within the page offset and thus are the same for the
virtual and physical address. This removes the need for address translation,
since the cache set can be determined directly from the virtual address. Due
to the hash-based indexing on some Intel processors, Liu et al. have to take
some additional steps in order to find an eviction set. This is not necessary
on ARM.

An attack is shown on a square-and-multiply algorithm used in ElGamal
encryption, which uses secret-dependent instructions. All lines in the LLC
are monitored for a time in order to find which cache line corresponds to the
square-and-multiply algorithm. This is the one that shows pulses of usage,
where each pulse is a square operation. Once this line is found, the bits of
the exponent (secret key) can be found by observing the intervals between
squares, a long interval indicating a 1, a short interval a 0.

4.2. Armageddon
Lipp et al. [1] show that Prime+Probe, Flush+Reload,
Evict+Reload, and Flush+Flush work on non-rooted ARM-based
devices without any privileges. Among other attacks, an attack on a
T-Table based AES implementation is done using Prime+Probe. This is

15



done in a cross-core setting where the attacker triggers the execution of the
victim process (synchronous).

Lipp et al. use several devices, but not the Nexus 6 that is used in this
work.

4.2.1. Virtual to physical address conversion

To obtain the correct cache set for an address, Lipp et al. use the pagemap
file (/proc/<pid>/pagemap), which contains mappings for virtual to physical
addresses. If the physical address is known, obtaining the cache set is trivial.
According to Lipp et al., the pagemap file can be accessed by an unprivileged
app.

4.2.2. Cross-core eviction

Since most ARM caches are not inclusive and often cores do not share a cache,
coherence protocols and L1-to-L2 transfers are exploited to make cross-core
attacks work. All devices used by Lipp et al. have a shared L2 cache and
employ a cache coherence protocol between cores. By choosing an efficient
eviction strategy the amount of transfers between L1 and L2 cache is maxi-
mized in order to evict the caches of the other cores.

4.2.3. Accurate Timing

A good timing source is the cycle counter from the performance monitoring
unit. However, this is not accessible without privileges, so other timing
sources have to be used. Three options are given: an unprivileged system
call, a POSIX function and a dedicated thread timer (a loop that increments
a variable in another thread). Despite the delays and noise cache hits and
misses can clearly be distinguished with all methods.

4.2.4. Covert channels

Lipp et al. develop high-performance covert channels using Evict+Reload,
Flush+Reload and Flush+Flush. They test these covert channels by
running two unprivileged applications in the background of a Samsung
Galaxy S6 running Android, while the phone was mostly idle and an un-
related app is running in the foreground. Their Flush+Reload covert
channel can achieve a speed of about 1 Mbit per second at an error rate of
1.10% in a cross-core scenario. Their other covert channels are slower, but
still order of magnitude faster than previously existing covert channels.

4.2.5. Shared library attack

An attack is executed on the libinput.so library. First a template of
cache usage is determined by performing an event while simultaneously

16



measuring the number of cache hits that occur on a set of addresses using
Prime+Probe. These templates are created for several events, like a press
of the power button, long touch events, swipe events, short touch events and
text input events. Using these template matrices Lipp et al. are able to dis-
tinguish between these events using Flush+Reload and Evict+Reload
side channels.

4.2.6. AES T-Table attack

An attack on the AES implementation of the Bouncy Castle crypto library
is conducted. This is done in a cross-core and synchronized setting, i.e. the
attacker starts the victim. The attack follows the strategy described by Osvik
et al. [30]. Only a first-round attack is performed, so only part of the key is
recovered, however, full-key recovery is possible with the same techniques by
targeting different rounds. The addresses of the first T-Table are monitored
using Flush+Reload or Evict+Reload for each of the 256 values for the
first plaintext byte and a key that is fixed to 0, while the remaining plaintext
bytes are random. They observe a clear correlation between the used address
of the T-Table and the plaintext byte value. This information reveals the
upper 4 key bits of the first key byte. The attack can be extended in several
ways to reduce the key space more.

If no shared memory on the T-Tables can be achieved, Flush+Reload
and Evict+Reload are not sufficient. Lipp et al. perform the same attack
using Prime+Probe.

4.2.7. TrustZone attack

A Prime+Probe attack is executed on a TrustZone implementation that
flushes the cache on context switch but uses the same cache lines for the
normal world and the secure world. Lipp et al. only perform a simple attack,
since the source code of the TrustZone OS is not available. They observe
a clear difference between the cache sets used for a correct key and for an
incorrect key. This is in contrast with the implementation used in TruSpy
(section 4.3).

4.3. TruSpy
N. Zhang et al. [13] perform a Prime+Probe attack on T-Table based AES
implementation of OpenSSL. According to N. Zhang et al., attacks on Trust-
Zone had not yet been shown in detail. They also, to our knowledge, show
the first attack on a TrustZone implementation that uses an NS-bit (Non-
Secure) to indicate which cache lines are used by TrustZone and which by
the normal world. Since the cache lines are independent of each other, there
is no need to flush the caches on a switch between normal and secure world.
The lingering cache content can be exploited since normal and secure world

17



cache lines can evict each other (cache contention). TruSpy is performed
on a single core, so further research is necessary to extend it to a cross-core
attack.

N. Zhang et al. perform two attacks. The first is done from the OS-level,
i.e. as a kernel module with full permissions. The second is done from an
Android app without any permissions. The attack follows five steps.

1. Identify the memory that will be used for cache priming, for this, set-
congruent addresses have to be found, i.e. addresses that use the same
cache set as the victim program.

2. Prime the cache.
3. Trigger execution of the victim process.
4. Probe the cache.
5. Analyse collected information to recover the secret information (e.g.

cryptographic keys).
The attack was executed on a development board without a secure-world

OS [16].

4.3.1. Finding congruent memory addresses

Set-congruent addresses are found by observing cache pollution for different
pages, unlike previous research which used the pagemap table. This table is
not available in user space. Cache pollution of a memory location means that
the victim process leaves traces in the L1 cache of access to that part of the
memory. If a page has significantly more pollution than average, this page
is likely congruent with the encryption operation. This technique is called
statistical matching by N. Zhang et al..

4.3.2. Accurate timing

In the OS-level attack, the cycle counter from the performance monitoring
unit can be used. However, it is not available to an Android app without
permissions, so a less accurate timing source has to be used. For this, system
calls are used to obtain the cycle counter. This is less accurate, so it is more
difficult to distinguish an L1 cache access from an L2 cache access. A suitable
threshold is chosen and the variance is reduced by running the attack many
times. This seems to contrast with Armageddon (section 4.2.3) where Lipp
et al. [1] describe that hits and misses can clearly be distinguished. This is
probably because in Armageddon, Lipp et al. [1] are referring to distinguish-
ing a hit (cache access) from a miss (memory access), while N. Zhang et al.
try to distinguish an L1 hit from an L2 hit.

18



4.4. Return-Oriented Flush-Reload Side Channels on ARM and
Their Implications for Android Devices
X. Zhang et al. [14] show a novel Flush+Reload attack on ARM de-
vices. In contrast to previously shown Flush+Reload attacks this one
works on instruction caches instead of on data caches. The benefit over the
Prime+Probe attacks shown by Lipp et al. [1] is that this attack does not
need virtual to physical address conversion, so it does not need access to
/proc/<pid>/pagemaps. A drawback is that it needs shared memory with
the victim to work. Also, not all ARM devices have the ability to flush the
cache. X. Zhang et al. use the clearcache system call as the flush instruc-
tion. This system call however, does not flush the cache on all devices, for
example on the Krait 450 cores (used by the Nexus 6) it only cleans the cache
(write dirty data to a lower cache or main memory), but does not invalidate
it.

The attack is executed by an Android app which runs on a different CPU
core than the victim application. The basic idea of the attack is to find shared
library calls in the victim application that are correlated with the event that
the attacker wants to monitor. While the victim application is running,
the attacker continually flushes and reloads the cache lines corresponding
to these functions. The functions are reloaded by executing them in the
attacker context. If the function executes faster than the threshold, the
attacker knows that the victim accessed it and hence that an event occurred.

Since executing the complete functions as the attacker takes much time
and therefore leads to noise, X. Zhang et al. use a technique that is similar
to return oriented programming (ROP). They find ROP gadgets in the
functions that they want to monitor and jump to each of those gadgets and
return to the attacker program quickly after that. This way they only execute
several parts of the functions instead of the full functions.

X. Zhang et al. use the technique to detect touchscreen inputs, detect when
a credit-card is scanned in a specific app and detect several features on the
display such as notifications and number of characters in password field.

4.4.1. Detecting inclusive L2 caches

In addition to the above attack X. Zhang et al. describe a way to test whether
the L2 cache is inclusive to the L1-D or L1-I cache. To detect if the L2 cache
is inclusive to the L1-D cache, they measure the difference in the average time
it takes to load a dummy function with and without evicting the cache. They
evict the L2 cache without polluting the L1-D cache by accessing instructions.
Thereby the L1-I cache and L2 cache are cleared, but the L1-D cache is still
filled. Then, if the average execution time after eviction is slower than before
eviction, apparently the L1-D cache was evicted due to inclusiveness of the
L2 cache.

19



A similar technique is used to test for inclusiveness to the L1-I cache. In
that case the L2 cache is evicted by accessing data, so the L1-D cache and
L2 cache are evicted, while the L1-I cache is still filled. Then, if the average
execution time after eviction is slower than before eviction, apparently the
L1-I cache was evicted due to inclusiveness of the L2 cache.

Using these techniques X. Zhang et al. determine that the L2 cache of the
Nexus 6 is inclusive to both the L1-D and the L1-I cache.

4.5. AutoLock: Why Cache Attacks on ARM Are Harder Than
You Think
Many attacks depend on LLC inclusiveness, i.e. that an eviction from the
LLC also evicts the corresponding cache lines from the higher caches. Due
to AutoLock (see section 3.2.1) this is not always the case, since higher cache
lines can be locked so that a lower cache line cannot be evicted. Green et al.
[15] show what AutoLock is, how it can be detected and how devices with
AutoLock can still be attacked.

4.5.1. Detection

Multiple tests should be used as each test has different requirements and
reliability. The tests are based on the methodology of determining the success
of a cross-core eviction strategy that is known to succeed in the same-core
scenario.

4.5.2. Attack

To attack a device equipped with AutoLock several methods can be used.
One can try to achieve a same-core scenario, trigger self-evictions (make the
victim perform the evictions) or increase the probability of an eviction oc-
curring. This probability can be increased by increasing system load, waiting
longer or targeting large data structures. These methods also enable cross-
core eviction attacks on non-inclusive caches since a cache with AutoLock
essentially behaves like a non-inclusive cache.

Green et al. reproduced an attack on a T-Table based AES implementation
in a cross-core Evict+Reload scenario.

4.6. Navigating the Samsung TrustZone and Cache-Attacks on
the Keymaster Trustlet
Lapid and Wool [16] perform the first attack on ARM TrustZone on a stan-
dard device, the Samsung Galaxy S6, which has a 64-bit ARMv8 ISA and
uses AutoLock.

The ARMv8 ISA has several exception layers (ELs). The most privileged
mode is the Secure Monitor which runs in EL3. The secure world and normal

20



world OSes run in EL1 and the secure world and normal world user spaces
run in EL0. An optional Normal-world hypervisor may run in EL2.

The normal world can communicate with the secure world in two ways.
Firstly through world shared memory, which allows memory pages to be
accessible by both the normal world and secure world. Secondly through
SMC calls, that are similar to system calls, but the SMC calls are made from
a kernel in EL1 or EL2 to the EL3 Secure Monitor instead of from user space
in EL0 to a kernel in EL1, like system calls. See fig. 2 for an overview of the
exception levels.

4.6.1. Kinibi OS

Trustonic’s Kinibi OS is the secure world OS of the Samsung Galaxy S6. It
runs in Thumb (32-bit) mode even though the platform has a 64-bit pro-
cessor. It is protected by the TrustZone architecture, but internally does
not protect itself very well, for instance address space layout randomiza-
tion (ASLR), non-executable stack and stack canaries are not implemented.

4.6.2. Attacking the Keymaster trustlet

A synchronous Prime+Probe attack - where the cache set candidates are
first primed, then the AES encryption operation in the trustlet is run, then
the cache sets are probed - turns out to be too slow which results in too
much noise. Also the asynchronous attack - where the Prime+Probe attack
runs on a separate thread - fails because it does not present activity that is
expected of a T-Table. According to Lapid and Wool this is due to the effects
of AutoLock.

The world shared memory can be used to extract information about when
in the SMC call the encryption operation takes place. This is done by moni-
toring specific parts of the world shared memory, namely, the trustlet connec-
tor interface (TCI) memory, which contains the request identifier and returns
the response, the input and the output buffer. The monitoring is done with
Flush+Reload. The time between the access to the input buffer and the
output buffer is the time when the AES implementation is executed.

The final attack consists of four threads. The first makes Keymaster re-
quests in a loop from a different core than the Kinibi OS. The second runs
on the same core as the Kinibi OS and conducts a Prime+Probe attack on
the T-Table cache sets. The third runs a Flush+Reload attack to select
only the measurements from the second thread that fall within the AES ex-
ecution. The fourth thread creates as many normal world interruptions as
possible to increase the likelihood of interrupting the secure execution and
allowing the second thread to make a useful measurement.

21



4.7. Cache-Attacks on the ARM TrustZone implementations of
AES-256 and AES-256-GCM via GPU-based analysis [4]
Continuing on their previous paper [16] Lapid and Wool describe how they
cracked assembly AES-256 implementations running in Samsung’s Keymas-
ter trustlet. They use a divide-and-conquer strategy to smartly calculate
the most likely keys based on the observed side-channel traces. They do
so by leveraging the parallelism of the GPU on a laptop. With 7 minutes
of data collection and under a minute of processing they were able to re-
trieve the full AES-256 key. The Keymaster trustlet however, uses AES-256
in Galois counter mode (GCM) mode. GCM makes side-channel attacks
harder because it uses the block encryption function twice during the ini-
tialization phase, creating substantial cache-access noise. Furthermore, sub-
sequent block function invocations made by GCM are called with a counter
variable as the last 4 bytes. This means that an attacker has limited con-
trol over the input to the block function. Yet Lapid and Wool were able
to retrieve the full key of AES-256 in GCM mode with 40 minutes of data
collection and 30 minutes of processing.

4.8. Prime+Count: Novel Cross-world Covert Channels on ARM
TrustZone
Cho et al. [17] have designed a new type of cache-based covert channel,
Prime+Count. The goal of this channel is to work even when security
solutions like SeCReT or strong monitors are deployed. SeCReT aims to
restrict access to communication channels and secure world resources from
the normal world based on access control lists (ACL). Strong monitors use
techniques from intrusion detection or deep packet inspection to detect ille-
gitimate use of the communication channels. An additional reason to develop
this technique is that Prime+Probe is not noise resistant enough, and can
thus not achieve a practical bandwidth, according to Cho et al..

Before priming the cache, all lines in all sets are invalidated using the
DCCISW instruction, which can invalidate a specific line in a specific
set. They count the number of cache lines that were updated using the
performance monitoring unit (PMU) feature L1/L2 Cache Refill Event. Ac-
cessing either of the DCCISW or the PMU has to be done from kernel space.
To circumvent the problem of data prefetching, the instruction synchronisa-
tion barrier (ISB) instruction is used, this instruction flushes the pipeline of
a core and the prefetcher buffer.

Cho et al. have compared implementations using set-counting, which
counts the number of sets that were accessed, to implementations using line-
counting, which counts the number of lines that were accessed across all sets.
They conclude that set-counting is able to achieve a higher bandwidth even
though the amount of bits transmitted per message is lower. This is because

22



only one cache way needs to be primed which decreases the duration.
A limitation according to Cho et al. is that because of the coarseness of

Prime+Count it will be very difficult to use it to spy on a victim program
or to extract cryptographic keys from another address space. On the Nexus
6 we were unable to read the cache refill events. This in combination with
the limitation mentioned by Cho et al. leads us to not use Prime+Count
in this work.

4.9. CLKscrew
CLKscrew is an attack, performed by Tang et al. [2], that uses dynamic
voltage and frequency scaling (DVFS) to raise the clock speed of another
core in order to cause errors. If this error occurs at exactly the right time,
for example during the 7th round of an AES encryption, this can be used
to obtain the secret key from the output of the encryption using differential
fault analysis (section 3.5). Since CLKscrew applies at core-level, it does
not matter if the core is running a trustlet (TrustZone program) or normal
code. CLKscrew can also be used to run untrusted code in TrustZone by
breaking the RSA signature chain verification routine.

4.9.1. Dynamic voltage and frequency scaling

DVFS is a system for energy management of processors. It enables kernel-
level programs to adjust the voltage and frequency of a processor core. This
can be done from untrusted code, but has impact also on code running inside
ARM TrustZone. This is the key enabler of the CLKscrew attack since it
enables the attacker to overclock the processor from software to induce a
fault in code running inside ARM TrustZone.

4.9.2. AES attack

Tang et al. attack a textbook AES decryption implementation that they load
into TrustZone using the Trustnone exploit [36]. They measure the execution
time of the AES decryption to find when to inject the fault. Then they use
DVFS for delivering the fault during the seventh AES round in order to
perform DFA and retrieve the secret key (section 3.5).

4.9.3. RSA attack

The RSA implementation in the TrustZone kernel is an interesting attack
target since breaking the signature verification enables an attacker to load
arbitrary trustlets, i.e. achieve arbitrary code execution. Tang et al. have
profiled this implementation in order to find a timing anchor for their fault
injection attack. The goal is to find when the FlipEndianness function
is executed with the RSA modulus as input. During the execution of this

23



function, the fault can be injected by overclocking the processor using DVFS.
The fault leads to a corrupted RSA modulus which can be factored. The
factorized modulus can be used to forge a signature on a custom trustlet.
During the verification of this custom trustlet with forged signature, the
exact same fault has to be introduced in order to use the same modules N
as for the forged signature. If the custom trustlet is loaded, arbitrary code
execution in TrustZone is achieved.

Tang et al. use instruction-based Prime+Probe since they found that
this is more reliable than data-based Prime+Probe. They track the du-
ration between subsequent evictions and plot those eviction gap duration
values (fig. 18). Using this plot they are able to pinpoint the time at which
FlipEndianness runs. Using the fault-injection attack they are able to load
the Widevine trustlet with their own signature with a probability of 1

65 .

4.10. VoltJockey
Qiu et al. [18] reproduce and expand on the research of Tang et al. [2]. In
contrast to CLKscrew, they focus on using DVFS to manipulate the voltage
instead of the clock speed because clock speed changes are easy to detect
and prevent. Qiu et al. perform an attack on AES as well as on RSA. Both
attacks are executed on the normal world as well as on the secure world.

4.10.1. RSA

Similar to Tang et al. [2] Qiu et al. perform an instruction-based
Prime+Probe attack on the RSA implementation in TrustZone. They per-
form the attack in a cross-core scenario, with the attacker code and the
RSA_Decoding function running in parallel on different cores.

4.11. Speculative execution attacks
In this section we describe a series of microarchitectural side-channel attacks.
Most of these are not directly applicable to ARM, but we consider them
relevant because they are recent advances in side-channel attacks and similar
attacks could also be applied to ARM in the future. In addition, several
techniques described in these works can be used on ARM. Some attacks, like
Spectre [6] and Meltdown [7] are readily applied to ARM. Spectre has been
shown to work on ARM by Kocher et al. [6] and a “toy example” of Meltdown
is shown to work by Lipp et al. [7].

4.11.1. Speculative execution

In order to gain more performance during instructions that have a long dura-
tion, such as memory reads or I/O operations, modern processors use specu-
lative execution. Speculative execution executes ahead while the processor is

24



waiting for a value, thereby guessing the outcome of conditional branches or
indirect branches (jumps). If the guess was correct, the speculative execution
can be committed, if it was not correct, the execution is discarded. However,
even if the results are discarded, traces of the speculative execution are still
left in the microarchitectural components of the processor. These traces are
the basis of several speculative execution-based microarchitectural attacks,
as described in the remainder of this section.

4.11.2. Spectre

In a Spectre attack [6], the attacker mistrains the branch predictor to execute
a wrong branch or jump to an attacker-specified code segment. The wrong
speculative execution leaves traces in the caches which are extracted using a
covert channel. This way, the attacker can access memory for which it does
not have authorization, but the victim does. For mistraining conditional
branches, the attacker executes the victim program (or a similar program)
with values such that the chosen branch is executed. Later when the victim
program is executed with the normal arguments, the branch is mispredicted
and speculatively executed. For mistraining indirect branches, the attacker
makes several jumps to the desired address, thereby training the branch-
target buffer (BTB). When the victim program is executed, it will also
speculatively jump to the attacker-chosen address. This attack is similar to
ROP, since the victim jumps to a gadget in its own address space. The main
difference is that in Spectre, the jumps are executed speculatively, while
in ROP they are executed in the normal application flow. Also, correctly
written programs are still vulnerable to Spectre attacks. Spectre has been
successfully executed on ARM devices [6].

4.11.3. Meltdown

Using Meltdown [7], an attacker process can read from memory it should
not otherwise be able to access, such as from the kernel, another virtual
machine or another application. The memory should be in the attacker’s
address space, which is not a big limitation since modern operating systems
often map the entire kernel memory into every user process. This memory
is protected from access through a permission bit. If a user process accesses
memory that it is not allowed to access, an exception is raised. Due to out-of-
order execution, there is a small time window between the illegal access and
the raising of the exception. This out-of-order execution is called a transient
instruction sequence. The transient instruction sequence acts as the sending
end of a covert channel such as Flush+Reload. The receiving end can
determine which address was accessed and hence the secret cache contents.

The attack consists of three steps

25



1. The content of an attacker-chosen memory location, which is inaccessi-
ble to the attacker, is loaded into a register.

2. A transient instruction accesses a cache line based on the secret content
of the register.

3. The attacker uses Flush+Reload to determine the accessed cache line
and hence the secret stored at the chosen memory location.

Lipp et al. have not been able to make it work on ARM yet, but their
“toy example” works, which indicates that it is probably possible to do the
exploit on ARM.

4.11.4. Foreshadow

Foreshadow [8] can leak secrets from Intel’s secure guard extensions (SGX)
enclaves. It is similar to Meltdown in that it uses the same vulnerability. The
difference is that while Meltdown targets kernel memory, Foreshadow targets
SGX enclaves. The attack can be executed by an unprivileged adversary, i.e.
without root access to the victim machine. It does not exploit any software
vulnerability or rely on knowledge of the victim enclave’s source code. Before
the attack, the attacker allocates a buffer of 256 · 4 KiB, this is called the
oracle buffer. The attack consists of three phases. In Phase I, the secret
data is cached in the L1 cache by running the victim enclave. In Phase
II, a transitive execution sequence accesses an oracle buffer entry dependent
on the value of the secret byte, thus caching the corresponding address. In
Phase III, the secret is extracted by the receiving end of the Flush+Reload
channel. Van Bulck et al. also show that an adversary with root permissions
can read the entire memory of the victim enclave, without any dependence
on the enclave code itself. This is done by evicting and reloading each page
of the enclave memory in the L1 cache and extracting the contents using the
Foreshadow attack.

4.11.5. RIDL: Rogue In-flight Data Load

RIDL [10] is a new class of attacks after Spectre-type, Meltdown and Fore-
shadow. It works even with the mitigations for Spectre, Meltdown and Fore-
shadow in place and is harder to mitigate than those attacks. While existing
attacks target information at specific address, RIDL operates akin to a pas-
sive sniffer by eavesdropping in-flight data in microarchitectural buffers such
as the line fill buffer (LFB), load ports or store buffers (SBs). When the vic-
tim code loads or stores data, the CPU performs the operation via internal
buffers like the ones mentioned above. Then, when the attacker also per-
forms a load, the processor speculatively uses in-flight data from the LFBs
rather than valid data. This speculatively loaded data can be extracted us-
ing a covert channel such as Flush+Reload. The attack can be executed
without any privileges and from high-level code such as JavaScript.

26



4.11.6. ZombieLoad: Cross-Privilege-Boundary Data Sampling

Load instructions that have to be re-issued internally may compute on stale
value belonging to previous computations on the current CPU core. Zom-
bieLoad [9] exploits this to reveal recent data values without adhering to
any explicit address-based selectors. It is the first attack that can leak data
on an Intel CPU that is reportedly resistant against all known Meltdown,
Foreshadow, and microarchitectural data sampling (MDS) variants. It is not
possible to select the value to leak based on an attacker-specified address.
But the benefit of ZombieLoad is that it is possible to leak across any secu-
rity boundary, in contrast to the limitations of previous transient-execution
attacks.

When an L1-miss occurs, a fill-buffer entry is required to load the data.
When a store misses the L1 or is evicted from the L1 it is stored in a fill-
buffer entry as well. Now when a fault occurs during reading of the fill-buffer
the processor may first (transiently) read a stale value before the instruction
is reissued. This stale value can be leaked via cache side-channels such as
Flush+Reload.

Schwarz et al. demonstrate ZombieLoad’s effectiveness in a multitude of
practical attack scenarios across CPU privilege rings, OS processes, virtual
machines, and SGX enclaves.

4.11.7. Fallout: Leaking Data on Meltdown-resistant CPUs

Fallout [37] is similar to Meltdown in that it enables reading from memory
that the attacker is not allowed to access. However, the vulnerability that
it uses is more similar to RIDL and ZombieLoad. These attacks fall into
the category called MDS. Fallout differs from RIDL and ZombieLoad in
that it attacks the SB and store instructions instead of the LFB and load
ports. Fallout can also be used to read intermediate values from transactional
memory extension (TSX) transactions.

Store buffer This buffer handles store operations while the processor can
continue executing in the meantime. If a load from an address in the SB is
encountered, it is loaded from the SB instead of from main memory, this is
called store-to-load forwarding.

Write transient forwarding Write transient forwarding (WTF) is a shortcut
which incorrectly passes values from memory writes to subsequent faulting
load instructions. Namely, if the lower bits of the address of a faulting load
match, the processor assumes that the physical addresses match and thus
executes store-to-load forwarding. This has no architectural implications
since the faulting load instruction is not retired (committed), however, it
does leave microarchitectural side effects.

27



Reading from kernel The WTF shortcut can be used to read data from
kernel memory. A kernel module that performs a write is executed by the
attacker code. Afterwards the attacker code tries to read the value from the
SB. This succeeds with low probability, probably because the SB is already
empty once the attacker code runs. The success probability can be increased
to about 80% if the kernel code performs more than 10 arbitrary writes before
the targeted write.

Reading the AES key Using the WTF shortcut and a kernel module that
performs AES the last two round keys can be obtained, these can be used
to derive the master key. First the offset of the subkeys in kernel memory
have to be detected, this is done by using WTF on different offsets 128 bytes
apart so that at least one of the offsets hits the subkeys. The frequency of
leaked bytes is detected for each of the offsets and results in a clear peak for
the correct offset. Then WTF is used again to read the key from that offset.

5. Bare-metal environment
In this project a bare-metal environment is used for the experiments. The
bare-metal environment runs directly after the primary bootloader (PBL),
secondary bootloader (SBL) and Android bootloader (ABoot), it is a very
bare-bones replacement for the Linux kernel, written specifically for the
Nexus 6. The environment has no scheduling, and thus no programs running
in the background. This has benefits for cache side channels as the operat-
ing system noise is minimized, as stated by Green et al. [15]. In addition,
we have direct access to physical addresses which makes determining the
cache set belonging to an address trivial. Support for communication with
TrustZone was built into the bare-metal environment before this project.

The bare-metal kernel initially did not support multiple cores or caching.
These parts have been implemented in the early stages of this project and
are described below. Multi-core support is necessary for this project since it
enables running the attacker code and the victim code concurrently.

The source code for the bare-metal environment has been published [22].

5.1. Multi-core support
When the bare-metal environment is booted, only CPU 0 is enabled. A
second CPU can be enabled by the following steps. First the boot ad-
dress is set using an SCM_SVC_BOOT secure monitor call (SMC) with the
SCM_BOOT_ADDR command. Then the values 0x21,0x20,0x00,0x80 are writ-
ten successively to the power control register of the CPU, located at
0xf9088000 + (cpu_id ∗ 0x10000) + 4. When powered up, the CPU jumps
to the boot address, where it sets the stack pointer (SP) and waits for a
function to execute.

28



When a function should be executed, the function pointer and arguments
are written to a predefined location. The CPU detects that a function is
ready to be executed and calls it with the given arguments before returning
to the waiting state.

5.2. Enabling caching
When the bare-metal environment is booted, the memory management unit
(MMU) is disabled, and thus all memory is used as strongly ordered memory.
Strongly ordered memory means that all previous memory operations have
to be finished before the next one can be started and that the addresses in
the strongly ordered region are not held in cache [38]. To enable the MMU,
first a page table is created, then the address of the page table is written
to the translation table base register (TTBR), finally the MMU and caching
are enabled in the system control register (SCTLR). The entries in the
page table that correspond to the memory that is used for the cache attacks
should be cacheable as indicated by the TEX, B and C bits in the translation
table entry description. We have chosen the attributes write-through and no
write-allocate, which means that data is written to the cache and storage
simultaneously, but that no cache line is allocated for a cache miss on write.
We first tried to enable a write-allocate policy, but from our experiments it
seems that that combination of settings is not supported. The consequence
of this policy for our experiments is that data has to be read before it is
cached. Before enabling the MMU, the translation lookaside buffers (TLBs),
branch-target buffer (BTB) and instruction caches should be invalidated to
prevent old entries from being loaded. A TLB acts as a cache for the page
table, it saves a previously created virtual-to-physical translation. A BTB is
used for branch prediction based on previously executed branches. Further
details about enabling the MMU can be found in the ARM reference manual
[38].

For this project a one-to-one virtual-to-physical mapping is used to ease
virtual-to-physical address conversion. Since Linux uses a 3-level page table,
a page walk (TLB miss) on Linux will cost more time than in our bare-metal
environment.

5.3. Randomness
In order to access randomness, the hardware pseudo-random number gener-
ator (PRNG) of the Krait 450 CPU is used. This PRNG is accessed using
the I/O (input/output) memory at 0xf9bff000. In order to access it, the
APCS_CLOCK_BRANCH_ENA_VOTE clock is enabled.

29



5.4. Performance counters
To have more information on cache usage, the hardware performance counters
of the Krait 450 CPU can be used. Using these counters several events can
be counted, among which are events for L1-D (level 1 data) cache, L1-I (level
1 instruction) cache and L2 (level 2) cache usage.

To enable these we first enable performance counters by writing to the
performance monitors control register (PMCR). Then we select one of
the counters using the performance monitors event counter selection reg-
ister (PMSELR) and set the desired event using the performance monitors
event type select register (PMXEVTYPER). After that, the desired counter
can be enabled by writing to the performance monitors count enable set
register (PMCNTENSET). Finally, the counters are reset using the PMCR.

After these steps, we were able to read several architectural events as
described in [38]. However, reading microarchitectural events like the cache
events results in reading 0 always. We have not been able to find the cause
for this behaviour.

Even after adding some Krait-specific initializations, we are unable to read
the microarchitectural events. The full implementation can be seen in [22].

6. Attack primitives
This section describes the primitives necessary to perform a cache side-
channel attacks.

6.1. Eviction
The Krait 450 cores of the APQ8084 of the Nexus 6 use a random replace-
ment policy just like most ARM processors [1]. Therefore, a simple least
recently used (LRU) eviction where an address is accessed for each cache line
in a set, does not evict the set with high probability. To achieve eviction
with high probability, sliding window eviction is used (see section 3.3). The
eviction_strategy_evaluator program [39] by Lipp et al. [1] is used to
evaluate all combinations of N ∈ [8, 50], A ∈ [1, 10] and D ∈ [1, 10]. The
combination N = 16, A = 6, D = 1 has the best compromise between evic-
tion rate and number of clock cycles on Android (table 1a). It also performs
better than N = 50, A = 1, D = 1 used by Green et al. [15].

On bare-metal a similar experiment is performed with N ∈ [8, 16] + [50],
A ∈ [1, 6] and D = 1. The results are shown in table 1b. We include 50 here
because Green et al. [15] use a strategy with N = 50.

There is a clear difference between the two tables, this is probably due to
the lack of background processes on bare-metal.

The best eviction strategy is not necessarily the best strategy for
Prime+Probe. A strategy that is optimal for eviction could for example

30



(a) Android (with eviction rate > 90%)

N A D Rate Cycles
16 6 1 96.5 2591
28 5 1 96.6 4370
31 4 2 92.9 4736
21 6 3 90.4 5355
25 4 3 96.1 6522
25 3 8 94.9 6974
38 2 5 95.5 10870
32 4 3 95.2 11224
41 4 5 94.7 12140
40 5 4 97.3 12240

(b) Bare metal

N A D Rate Cycles
12 1 1 100.0 1274
10 2 1 100.0 1358
9 3 1 100.0 1640
13 1 1 100.0 1652
11 2 1 100.0 1653
14 1 1 100.0 1729
12 2 1 100.0 1779
15 1 1 100.0 1825
13 2 1 100.0 1871
10 3 1 100.0 1889

Table 1: Eviction strategies sorted by eviction time

N A D Rate Cycles
8 5 1 99.9 1071.42
8 6 1 99.9 1082.489
9 6 1 99.9 1204.027
10 3 1 99.9 1554.902
12 2 1 99.9 1712.398
11 2 1 99.6 1749.726
10 6 1 99.55 1559.683
9 4 1 96.55 1294.523
7 3 1 95.45 945.655
7 5 1 95.35 946.337

Table 2: Strategies for Prime+Probe (bare metal)

31



evict addresses used earlier in the eviction strategy, then during probing, also
the evicted address would be probed, resulting in a cache miss and diminish-
ing the accuracy. Therefore, we also tested the strategies for Prime+Probe,
the results of which are shown in table 2. It is not surprising that the optimal
number of addresses for Prime+Probe is the amount of lines per cache set.

6.2. Flush
ARMv7 does not have a flush instruction, as stated by Lipp et al. [1], however,
the coprocessor (cp15) does have some cache maintenance operations which
are only accessible from kernel level, including the data cache clean and
invalidate by set/way (DCCISW) operation. This operation can be used in
a loop over all lines in a cache set in order to flush a cache set. This is much
faster than the most optimal eviction strategy (595 clock cycles vs 1274 clock
cycles, see table 1b).

A proof of concept Flush+Flush attack was attempted, but no difference
in timing between flushing a cached set and an uncached set was observed.
So probably the DCCISW instruction is not dependent on whether addresses
are cached.

6.3. Timing
As the timing source for measurements, the cycle count register (PMCCNTR)
is used. This register can be read from the cp15 coprocessor using an MRC
(move to ARM register from coprocessor) instruction. Since our attacker
model permits kernel-level access, reading this timer is not a problem, unlike
previous work by Lipp et al. [1].

6.4. Delays
In order to wait for a given amount of clock cycles a function is used that takes
as input the amount to wait and executes a number of loop iterations. Each
loop contains a single no operation (NOP) instruction. The optimal num-
ber of loop iterations is experimentally determined to be the input amount
divided by 24. This results in a linear mapping, which is shown in fig. 3.

6.5. Test cache-attack methods
To verify our attack primitives, tests were conducted to see if accessing a
cache-set results in a measurable difference for the attacker. An experiment
is conducted for Flush+Reload and Prime+Probe, both on data and
on instructions. In each experiment, first n attacks are executed where the
monitored cache-set is not accessed during the measurement, and after that
n attacks where it is accessed. If there is a significant difference, we know
that the attack primitive works. In our experiments n = 1000.

32



Figure 3: Cycle count for values from 0 to 5000

33



Algorithm 3: Data-based Flush+Reload where address is accessed
by the victim
target: address to monitor

1 procedure test
2 index = getIndex(target); /* Cache set */
3 flush(index); /* Attacker flushes the cache set */
4 access(target); /* Victim accesses the address */
5 start = getTiming(); /* Attacker measures timing */
6 access(target);
7 stop = getTiming();
8 return stop-start;
9 end

10 procedure getTiming
11 ISB;
12 DSB;
13 value = read(PMCCNTR);
14 ISB;
15 DSB;
16 return value;
17 end
The pseudo code for a data-based Flush+Reload where the address is
accessed before measurement is shown in algorithm 3. For the data-based
tests the cache-set is accessed by executing an LDR (load register) instruction
on the targeted address (the access function in algorithm 3). For instruction-
based tests target is a function that does a NOP and it is executed instead
of accessed.

For Prime+Probe the algorithm is similar to algorithm 3 but instead
of flush, prime is executed, and instead of the access on line 6, probe is
executed.

Before and after every access of the timing source, an ISB (instruction syn-
chronisation barrier) and DSB (data synchronization barrier) are performed
to make sure that the instructions are not reordered and that the memory
accesses during the Probe/Reload step are done during the measurement.

6.5.1. Flush+Reload

The results of the data-based and instruction-based tests for
Flush+Reload are shown in fig. 4. In the data-based test there is
a significant difference between the hit (address was cached) and the miss
(address was not cached). However, for the instruction-based test, there is
no difference.

34



200 300 400 500
Time (clockcycles)

0

200

400

600

#m
ea

su
re

m
en

ts

hit
miss

(a) Data-based

200 250
Time (clockcycles)

0

100

200

300

400

500

600

#m
ea

su
re

m
en

ts

hit
miss

(b) Instruction-based

Figure 4: Flush+Reload Test

6.5.2. Prime+Probe

The results of the data-based and instruction-based tests for Prime+Probe
are shown in fig. 5. Aside from the higher number of clock cycles, the
results are very similar to those for Flush+Reload. Again, similar to
Flush+Reload there is a difference for the data-based test, but no differ-
ence for the instruction-based test.

Test L2 instruction-inclusiveness According to X. Zhang et al. [14], the L2
cache of the Nexus 6 is inclusive to the L1-D cache as well as the L1-I cache.
They tested this using the method described in section 4.4.1.

Our instruction-based experiments in sections 6.5.1 and 6.5.2 are similar
to the experiment of X. Zhang et al., we also measure the difference in execu-
tion time of a dummy function with and without first evicting the L2 cache
with data. However, in our experiments there is no difference between the
execution time without eviction and the execution time after eviction, this
would indicate that the L2 cache is not inclusive to instructions.

To further verify this conclusion we perform the instruction-based
Flush+Reload test (section 6.5.1) but in addition to flushing the L2 cache,
we also flush the L1-I cache. The results are shown in fig. 6 this does result in
a significant difference, indicating that the L1-I cache was not evicted before.

A cause for the different results could be the difference in length between
our dummy function which is a single NOP instruction and the dummy func-
tion of X. Zhang et al., which is 1 KB of mov r0, r0 instructions. To verify

35



1000 1200 1400 1600 1800
Time (clockcycles)

0

200

400

600

800

#m
ea

su
re

m
en

ts

hit
miss

(a) Data-based

1000 1100 1200
Time (clockcycles)

0

100

200

300

400

#m
ea

su
re

m
en

ts

hit
miss

(b) Instruction-based

Figure 5: Prime+Probe Test

200 300 400 500
Time (clockcycles)

0

200

400

600

#m
ea

su
re

m
en

ts

hit
miss

Figure 6: Instruction-based Flush+Reload when flushing the instruction cache

36



650 700 750
Time (clockcycles)

0

100

200

300

400

500

#m
ea

su
re

m
en

ts

hit
miss

(a) Flush+Reload

1050 1100 1150 1200
Time (clockcycles)

0

100

200

300

400

500

#m
ea

su
re

m
en

ts

hit
miss

(b) Prime+Probe

Figure 7: Instruction tests with 1000 KB mov r0, r0 instructions

this, the dummy instruction was changed to have 1 KB of mov r0, r0 in-
structions and the experiment was repeated. The results are shown in fig. 7.
We conclude that this does not cause a difference in the results.

Another cause for the difference could be the difference in platform, we run
on bare-metal, while X. Zhang et al. run on Android. Our initialization of
the MMU and the caching behaviour may deviate from the Android kernel,
however, we have not been able to find the differences.

7. AES attacks
This section describes attacks on several AES implementations.

7.1. Textbook AES
A 128-bit textbook AES implementation [40] is attacked using a
Flush+Reload attack. The AES code is initialized by the attacker and
then executed on the second CPU with the attacker controlled buffer con-
taining the input, roundkey buffer and key as a parameter.

The attacker’s goal is to profile the execution of the victim’s AES imple-
mentation, i.e. to know at what stage the victim is in the execution at any
point in time. Since the attacker shares the memory of the round key buffer
with the victim, he can monitor that buffer in order to find when the victim
executes the AddRoundKey method of AES, indicating that a new AES round
has been started. Since the Krait 450 uses a 128 byte line size, the 172 bytes

37



round key buffer will reside in two different cache sets. To this end two ad-
dresses within the round key are selected that will reside in different cache
sets. The cache set that an address belongs to can be calculated based on
the physical address. Concurrently with the execution the attacker performs
a Flush+Reload on the two selected addresses. The is as shown in fig. 8.

The 11 accesses of the round key of the 128-bit AES implementation can
be distinguished. One initial AddRoundKey, 9 rounds and the final round (see
section 7). 8 Round keys are in the first cache line (8 · 16 bytes = 128 bytes)
and the other 3 round keys are in the second cache line.

0 20 40 60 80 100 120 140
Time in execution (measurement index)

cached

not cached

First cache line
Second cache line

Figure 8: Flush+Reload attack on textbook AES implementation

7.2. OpenSSL AES
The OpenSSL AES implementation [33] uses T-Tables to speed up the oper-
ation. The faster code makes it harder to profile since fewer measurements
can be done during a run of the algorithm. While a Flush+Reload attack
on the textbook AES can do about 140 measurements, the same attack on
the OpenSSL implementation can do only about 8 measurements.

7.2.1. Execution time

In order to have a reference of the time within the execution, the expected
total execution time is measured. This is done by repeatedly executing an
AES operation on a second CPU core and measuring the time it takes from
the attacker core. The results can be seen in fig. 9. On the primary CPU we
see that the results are spread around a single value, however for the second
CPU, we see three peaks, with about 200 clock cycles difference from each
other. Since the second CPU busy-waits for a function to execute, one more
iteration of the waiting loop could explain the difference [22].

38



20000 20500 21000

Execution time (clock cycles)

0

100

200

300

400

500

600
#E

xe
cu

tio
ns

(a) Second CPU

13000 13500 14000

Execution time (clock cycles)

0

250

500

750

1000

1250

1500

#E
xe

cu
tio

ns
(b) Primary CPU

Figure 9: Execution time of AES over 10000 runs

7.2.2. Flush+Reload profiling

The experiment described in section 7.1 was repeated on the OpenSSL AES
implementation. To improve the accuracy of the measurements the results
of multiple AES executions are combined. Two arrays are created, for the
two cache lines of the round key. The indexes of the arrays correspond to
intervals within the AES execution time. Several AES runs are performed
sequentially on a second core. During each run, a series of Flush+Reload
measurements are performed on the two cache lines of the round key. We save
the value of the PMCCNTR at the start of the AES execution. The number of
clock cycles from the start of the AES execution to the measurement indicates
the index in the array that the measurement belongs to. The corresponding
value is incremented if the measurement indicated that the address was used
by the AES execution. The start of the measurements (on the attacker core)
is delayed a random period after the start of the AES operation on the victim
core. This delay results in an even spread of the measurements over the time
intervals. Accumulating the results over multiple measurements in this way
results in a greater resolution than a single measurement would give.

The output of this experiment can be seen in fig. 10. Based on the location
of the round key in the memory we know that 8 round keys are in the first
cache line and 3 round keys are in the second. Since we observe 7 round key
accesses in the first line and 3 in the second, we know that the first round
key access was not measured. We presume that this may be caused by the
time the attack core needs between starting AES on the second core and

39



0 20 40 60 80 100
Time in execution (measurement index)

0

50

100

150
#a

cc
es

se
d

First cache line
Second cache line

Figure 10: OpenSSL profiling, 100 sample points and 1000 AES executions

starting the first measurement. During that time the AES execution has
already started.

A smaller spike on the second cache line can be seen at the start of the
measurements, this is because the number of AES rounds to perform is stored
after the round key, so this variable shares the cache line with the second
part of the round key. The number of rounds to perform is accessed at the
start of the AES execution. We verified this by hardcoding the number of
rounds in the AES implementation, we observed that this eliminated the first
spike on the second cache line.

7.2.3. Prime+Probe profiling

Since the round key is no longer in shared memory when the AES process
is running in TrustZone, Flush+Reload cannot be used in that situa-
tion. Therefore, Prime+Probe could be used to perform the same attack.
The same experiment as described in section 7.2.2 has been performed using
Prime+Probe, however, due to the longer probing time, all timing measure-
ments are above the threshold, so averaging cannot increase the resolution.

A possible solution to find the correct round even with this low resolution
would be to attack a round key with a specific division between the cache
lines such that round keys 1-6 are in the first cache line and 7-11 are in the
second cache line. In that situation, only the second cache line is monitored,
and the first measured access of that cache line is the start of the 7th round.
This, however, depends on the attacker being able to obtain such an offset
for the round key.

Another solution would be to change the relative clock speed of the cores
so the attacker core runs faster than the victim core, resulting in more mea-

40



surements during a single run. In this work we did not verify this in order
to have enough time to perform our other attacks.

7.2.4. Locating the T-Tables and round key

In the previously described Flush+Reload attack, the round key is used
to leak the state of the AES operation. This round key is available since the
invocation used an attacker-supplied key. In practice however, the attacker
does not have access to the key, so he has to find another way to find its
cache location in order to profile it.

This can be done using a technique based on the statistical matching tech-
nique described by N. Zhang et al. [13]. Each cache set is primed before an
AES invocation and probed afterwards, this indicates which cache lines were
used during the AES invocation. The same Prime+Probe measurement is
performed with a NOP loop instead of the AES invocation in order to have a
baseline profile of cache usage. These results are subtracted to find the cache
sets that are used by the AES implementation. This heat map is shown in
fig. 11.

A line of 32 consecutive used cache lines can be seen. This amounts to
32 · 128 = 4096 Bytes = 4 KB of memory, which is exactly the amount of
memory used by the encryption T-Tables. This was verified by dumping
the memory locations of the T-Tables from the AES implementation and
checking that the addresses matches the cache set indices in fig. 11.

In the same way we verified that the two consecutive used cache sets on
row 8 correspond to the round key. We have not been able to find the cause
of the used cache sets on row 9.

Since the Prime+Probe technique does not rely on shared memory, only
on a shared cache, it can also be applied to an AES implementation running
within TrustZone.

7.2.5. TrustZone AES

An interesting AES implementation to attack would be the one located in
the Keymaster trustlet. As discussed in section 4.6 Lapid and Wool [16]
perform cache attacks on the AES implementation running in Samsung’s
Keymaster trustlet. In this project we have decided not to attack the ARM
implementation in Qualcomm’s Keymaster trustlet running on the Nexus
6 due to the following difficulties. Firstly, we were unable to determine
if Qualcomm’s Keymaster trustlet uses a software implementation of AES,
like Samsung’s Keymaster trustlet does. If the AES implementation uses
dedicated hardware (i.e. the crypto engine) a cache-based attack would not
work. Secondly, due to the low resolution of the Prime+Probe profiling
attack it is unlikely that it would succeed on the Keymaster implementation.
Due to these reasons we deemed it more useful to look at profiling RSA in

41



Round key

T-Tables

Figure 11: Amount of times each cache set was used out of 10 evocations of AES, ob-
tained using Prime+Probe. Cache set = x+ y · 64

TrustZone.

8. RSA attacks
As described in sections 4.9.3 and 4.10.1, Tang et al. [2] and Qiu et al.
[18] have profiled the RSA implementation used for verifying trustlets using
instruction-based Prime+Probe. We want to reproduce their research, and
provide a practical implementation, since no public implementation of their
profiling attack is available.

8.1. Execution time
To have a reference for how long an RSA encryption takes, we measure the
execution time of the OpenSSL RSA implementation [41]. For the primary
CPU the times range from 3.515 · 107 to 3.535 · 107 (not considering the
outliers) which is a variation of 2 · 105 clock cycles. While for the second
CPU, it ranges from 5.626 · 107 to 5.647 · 107 (not considering the outliers)
which is a variation of 2.1·105 clock cycles. Even though the variation in clock
cycles is not much different, we see that again, similar to AES, the execution
time on the second CPU has more than one peak. For RSA, however, there is
also no single peak for the primary CPU, there is considerable spread besides
the main peak. A reason for this might be that due to the longer execution
time, there is more room for variation to stack up. Variation can occur for
several reasons, among which are the data cache, instruction cache and BTB.

RSA is several orders of magnitude slower than AES, (3.5 ·107 vs 1.3 ·104),
therefore profiling it with Prime+Probe does not suffer from resolution

42



5.63 5.64 5.65

Execution time (clock cycles)
×107

0

10

20

30

40

50
#E

xe
cu

tio
ns

(a) Second CPU

3.52 3.53 3.54

Execution time (clock cycles)
×107

0

20

40

60

80

100

#E
xe

cu
tio

ns

(b) Primary CPU

Figure 12: Execution time of OpenSSL RSA over 1000 runs

problems like for AES.

8.2. RSA TrustZone attack
Tang et al. [2] provided pseudo-code and memory locations for the RSA func-
tion (they call it DecryptSig). The pseudo code is shown in algorithm 5.

The attack setup is as follows. On one core, the Keymaster trustlet is
loaded into TrustZone. During the loading of this trustlet, on another core, a
Prime+Probe attack is executed on a single cache set. The attack primes
the cache set, then measures the time taken to probe the cache set and
stores in an array whether the time difference was greater than the threshold,
indicating that the address was used by the victim.

This attack is performed for each of the 2048 cache sets in the L2 cache.
The results of some cache sets are shown in fig. 13.

A relevant cache set to look at is the one belonging to an address of the
FlipEndianness function, which is located at 0xfe868494 in firmware ver-
sion ngi77b [21]. We found this using the pointers Tang et al. [2] provided for
another firmware version. See algorithm 6 for the pseudo code of this func-
tion. The address 0xfe8684a6 is located inside the inner loop in FlipEndi-
anness and is thus accessed multiple times during the execution of FlipEn-
dianness. The L2 cache set that this address belongs to is 1289 (calculated
using algorithm 4). The result for this set is shown in fig. 13a.

The traces for each of the cache sets have at least the same peaks that are
shown in fig. 13a. Some cache sets are used more, such as fig. 13b. The cache
sets that were used significantly more are 2, 102, 493, 968, 969, 1280, 1312, 2046.
We show the results for 1280 as an example of the differences with other cache

43



0 50000 100000
Time in execution

(measurement index)

cached

not cached

(a) Cache set 1289

0 50000
Time in execution

(measurement index)

cached

not cached

(b) Cache set 1280

0 50000
Time in execution

(measurement index)

cached

not cached

(c) Cache set 298

Figure 13: Prime+Probe attack on a single cache set during loading of Keymaster

sets fig. 13b. We were not able to correlate the cache sets that were used
more to relevant places in the RSA code.

Another relevant cache set to look at is the one which is used by the mem-
ory location where the RSA modulus N is stored. N is stored at 0xfc8952c,
which belongs to cache set 298. We found this address, again, using pointers
from Tang et al. [2]. The trace for this cache line is shown in fig. 13c. This
trace again has the same features as the other traces, so we cannot deduce
much information from it.

A flush operation could explain that all cache sets are evicted at the same
time. By examining the TrustZone binary, we see at least some cache flushes
(using DCCISW) are executed. However, it is unlikely that these flush op-
erations are executed this often (about 1400 times).

Since during a single trustlet load, the RSA function is executed four
times, for each of the certificates [2], we can corrupt the first signature that
is stored in the Keymaster binary, to make sure that RSA is only executed
once. Instead of hardcoding the eviction threshold, we plot the actual timing
values in order to have more information available. The results are shown in

44



0 1000 2000
Time in execution

(measurement index)

1100
1200
1300
1400
1500
1600

Pr
ob

e 
tim

e

(a) Cache set 1289

0 1000 2000
Time in execution

(measurement index)

1500

2000

2500

Pr
ob

e 
tim

e

(b) Cache set 1280

0 1000
Time in execution

(measurement index)

1100

1200

1300

1400

1500

1600

Pr
ob

e 
tim

e

(c) Cache set 298

Figure 14: Prime+Probe attack on a single cache set during loading of corrupted Key-
master

fig. 14. Again, we see the same pattern occurring in all cache sets.
To verify that we are actually measuring a side channel, we replace the

SMC to load the trustlet by a call to a dummy function that performs NOPs
for a similar amount of time. These results are shown in fig. 15. The peak
at the start is probably due to the fact that the attacking code has not
been cached yet. Corrupting the Keymaster certificates resulted in a much
shorter trace. Therefore we know that the majority of the trace of fig. 13
was measured during the TrustZone execution. Since figs. 15a and 15c are
consistently low, we know that it makes a difference whether we execute the
code to load the trustlet or not.

Tang et al. [2] use the time since the previous value above the probe thresh-
old (gap values) as the metric to determine the time at which FlipEndian-
ness is called on N , their plot is shown in fig. 18. They count the time using
a counter that is implemented in a loop. We also measure gap values, but
instead of using a counter, we measure the amount of clock cycles since the
last measurement above the probe threshold (1200), this is shown in fig. 16.

45



0 1000 2000
Time in execution

(measurement index)

1200

1400

1600

Pr
ob

e 
tim

e

(a) Cache set 1289

0 1000 2000
Time in execution

(measurement index)

1100

1150

1200

1250

1300

1350

Pr
ob

e 
tim

e

(b) Cache set 1280

0 1000 2000
Time in execution

(measurement index)

1100

1200

1300

1400

Pr
ob

e 
tim

e

(c) Cache set 298

Figure 15: Prime+Probe attack on a single cache set during execution of a dummy
function

46



Tang et al. [2] describe that each certificate verification is preceded by a
large spike into the 75000 on their counter, followed by a smaller spike of
around 180, see fig. 18. We observe the same behaviour, each large spike
(around 7 · 107 clock cycles) is followed by a smaller spike, see fig. 17.

There are some differences between our plots and those of Tang et al.
[2], namely, our plots contain more small spikes (< 100000), this indicates
that we probably measure more often than Tang et al.. Furthermore, our
y-scale is different, this is due to the fact that we measure clock cycles, while
Tang et al. measure counter increments, which is much slower. Besides these
differences, the behaviour is much the same, so it seems that we measure the
same side channel. To verify this completely, we need more information on
specifics of the of Tang et al. [2]. Tang et al. experimentally determine that
FlipEndianness runs after the last spike, however, it is unclear to us, what
experiments they performed. Furthermore, we do not know whether they
also observed that the results for all cache sets are very similar.

We have had email contact with Tang et al. [2]. In response to our questions
they provided more information about the AES implementation that was
used. However, we did not receive a response to our later questions regarding
the details about their RSA profiling.

8.2.1. Instrumentation

To obtain more information on what the Prime+Probe measurements in-
dicate, we attempted to instrument the RSA function. Beniamini [42] has
written an exploit which could be used to gain code execution in TrustZone.
This exploit works for firmware version lmy48m [43]. We planned to over-
write parts of the RSA function with a jump to our shellcode, then let that
shellcode write timing information to a shared buffer before jumping back.
This shared buffer could then be read from the normal world to obtain a
trace of the RSA execution.

Before writing the full exploit, a test shellcode was written, which aims to
overwrite the first 8 bytes of the FlipEndianness in the TrustZone kernel.
After overwriting the function, the first 20 bytes are copied into the shared
buffer. This shared buffer is then printed in user space.

We observe that the first 8 bytes that are read exactly correspond to what
we had overwritten and the remaining bytes exactly match the function. So
it seems that the function is overwritten. However, when we execute a second
shellcode which only reads the bytes of the function, we find that the original
data is there.

Beniamini [42] describes that due to XPU (external protection unit) mem-
ory protection the majority of the TrustZone kernel is not writable. To test
whether this is the cause of the behaviour we observe, we try to overwrite
an address in a region of the TrustZone kernel that is unprotected according
to Beniamini, namely the range from 0xfe806000 to 0xfe810000. Values

47



0 500 1000 1500
Time in execution

(measurement index)

0

2

4

6

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

1e7

(a) Cache set 1289

0 500 1000 1500
Time in execution

(measurement index)

0

2

4

6

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

1e7

(b) Cache set 1280

0 500 1000 1500 2000
Time in execution

(measurement index)

0

2

4

6

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

1e7

(c) Cache set 298

Figure 16: Gap values for Prime+Probe attack on a single cache set during loading of
Keymaster

48



1300 1400 1500
Time in execution

(measurement index)

0

100000

200000

300000

400000

500000

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

(a) Cache set 1289

1300 1400 1500
Time in execution

(measurement index)

0

100000

200000

300000

400000

500000

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

(b) Cache set 1280

1300 1400 1500
Time in execution

(measurement index)

0

100000

200000

300000

400000

500000

Ti
m

e 
sin

ce
 la

st
 e

vi
ct

io
n

(c
lo

ck
 c

yc
le

s)

(c) Cache set 298

Figure 17: Gap values for Prime+Probe attack on a single cache set during loading of
Keymaster (Validation of the 4th certificate)

49



Figure 18: Profiling by Tang et al. [2] during loading of Keymaster

written in that range actually persist to the second shellcode, so we conclude
that the XPU protection is indeed the cause of the behaviour we observe.

The reason that we could actually read the written data even though the
area is write-protected could be because of caching or reading from micro-
architectural buffers.

Since we cannot write to the relevant part of the TrustZone Kernel, we are
unable to use this method of instrumentation.

9. Discussion
9.1. Bare metal
In this work we have used a bare-metal environment. As stated before,
this eliminates noise sources like scheduling and the operating system. The
advantages of this noise reduction can be seen in table 1. The measurements
on Android have a lower eviction rate, longer eviction time and need more
addresses and iterations in the eviction strategy. The drawbacks of using our
bare-metal environment is that several initializations, which are normally
handled by the Linux kernel, now have to be implemented in bare-metal.
Since little is document about the drivers for the APQ8084, most of the
implementation details have to be obtained by studying the Linux kernel.
The driver implementations in Linux use many frameworks, which makes it
hard to extract the relevant code. As a result, the initializations in the bare-

50



metal environment may behave differently from the initializations in Linux,
which interferes with reproducing existing research. Also, since most research
is done on Android, using existing implementations is harder, because those
implementations are not necessarily compatible with an environment without
libc or system calls.

9.2. L2 cache inclusiveness to instructions
We tested the inclusiveness of the L2 cache with respect to the L1-D and
L1-I caches. We found, contrary to the work of X. Zhang et al. [14], that
the L2 cache is not inclusive to the L1-I cache. The main difference between
our work and the work by X. Zhang et al. [14] is that we use a bare-metal
environment in which we configured the MMU, while X. Zhang et al. perform
the experiments on Android. Other works [2, 18] also successfully perform
instruction-based side-channel attacks on the Nexus 6. This suggests that
our work is the one deviating. So, either there is a problem in our testing
methodology or implementation, or the kernel configuration may have an
influence on the L2 inclusiveness.

9.3. AES attacks
Flush+Reload profiling attacks were performed on two normal-world AES
implementations [40, 33]. The boundaries between the different rounds could
be observed. In a real-world scenario, Flush+Reload cannot be used to
profile based on the round key, since that requires shared memory on the
round keys. However, these attacks demonstrate a profiling method that can
be used with other side-channels that do not have this requirement.

The resolution of our Prime+Probe attack on OpenSSL is too low to be
useful for profiling, however there are some methods to increase this resolu-
tion, such as different core speeds for the attacker and victim, or attacking
a specific alignment of the round keys. In future work these methods could
be attempted. A Prime+Probe attack could be used to attack a software
AES implementation in TrustZone.

In addition to the profiling attacks, a method to detect the location of AES
T-Tables using Prime+Probe was shown (section 7.2.4). This method is
similar to how Liu et al. [12] find the relevant cache sets for their attack
on ElGamal. The difference is that they measure a complete trace of each
cache set while we only check after the AES execution whether the line was
used. This results in an attack of lower granularity, since we cannot see
temporal patterns. However, we have shown that it is clear enough to detect
the T-Tables and also the round keys of the AES implementation.

51



9.4. RSA attacks
Since RSA is much slower than AES, using Prime+Probe for profiling RSA
results in a resolution that is high enough to get a relevant trace. We were
able to perform over 100000 measurements during a single RSA execution,
while for OpenSSL AES we could perform only two measurements in a single
execution. For our attack on the RSA implementation used to verify trustlet
certificates, we created traces for each cache set. All traces show usage in the
same five locations, while the parts between those five locations usually have
no cache usage by the victim. We have discussed the possibility for flushes
to be the cause of those slower probe times, but we deem that unlikely
considering the vast number of flushes that would be required. Some traces,
like for cache set 1280, show usage outside of the five hot spots. By examining
the TrustZone kernel, we determined that the deviating cache sets do not
correspond to locations within the TrustZone RSA implementation.

Another possible explanation for the similarity in traces for all cache sets
is that we might be measuring the effects of another side channel. Note that
we measure the length of performing the probe step of Prime+Probe. It
might be the case that the probing time is longer for reasons other than cache
misses, such as scheduling of the secure world. This would explain that all
traces have higher probe timings at the same temporal location.

We verified that the Prime+Probe measurements are a side channel into
TrustZone, by observing a difference in execution length with a corrupted
Keymaster binary and by checking that we do not measure cache usage when
the victim executes NOP instructions. So, we are sure that the higher probe
timings are caused by the TrustZone execution.

Even though we do not know the exact cause for the higher probe timings,
we can use it as a side channel to profile TrustZone. Our gap value plots
match the descriptions given by Tang et al. [2] and our plots of the validation
of the 4th certificate show the same pattern as the plot by Tang et al. [2]
(fig. 18). To know for sure that the results match, experiments have to be
conducted to see if FlipEndianness indeed runs right after the smaller spike
that we observe in fig. 17.

9.5. Cross-core vs. scheduling
The AES and RSA attacks mentioned above were executed in a cross-core
scenario. Either scheduling or execution on a second core had to be imple-
mented in the bare-metal environment to have the attacker and victim run
simultaneously. The drawback of using scheduling is that it does not work
when profiling a TrustZone execution, since after executing an SMC call, the
normal world has to wait for the secure world to be done executing. Another
drawback is that a self-implemented scheduler would work different from the
Linux scheduler, which results in more differences with previous research.

52



Executing code on a second core is supported by the hardware, therefore the
differences with Linux are minimized. In addition, while an SMC call is run-
ning on a second core, the first core can continue executing. So, a profiling
attack on TrustZone requires executing code on a second core.

10. Conclusion
We have provided an overview of the state-of-the art of ARM cache attacks.
Several attacks have been described in detail to enable the reader to obtain
a good understanding of the subject before reading the individual papers. In
addition to the attacks on the ARM platform, several speculative execution
attacks have been described [6, 7, 8, 10, 37, 9]. These attacks are not directly
applicable to ARM, but similar attacks could be possible, either currently or
in the future. For example, Spectre ([6]) has already successfully been applied
to ARM devices and Meltdown ([7]) could theoretically work on ARM.

We have shown Flush+Reload profiling attacks on two AES implemen-
tations [40, 33]. The boundaries between the different rounds can be observed
for both of the implementations.

We have shown a Prime+Probe side channel on an RSA implementation
running in TrustZone. Our results seem to match the results by Tang et al.
[2], however, more research is necessary to verify this.

All our attacks were executed in a bare-metal environment, which reduces
noise since no operating system is running in the background. Our work on
this environment leads to more public insight in how the Nexus 6 hardware
works, notably, symmetric multiprocessing (SMP), MMU initialization and
accessing the hardware PRNG.

The attacks that have been shown could be used as a method to determine
a timing anchor for fault-channel attacks, similar to work by Tang et al. [2]
and Qiu et al. [18]. Or the attacks could be used to obtain more information
about execution flow in TrustZone.

In a forensic setting, practical and reproducible attacks are important,
this research can be a starting point for fault-injection attacks with runtime
profiling in a bare-metal environment. This hopefully makes such attacks
more reliable and reproducible.

11. Future work
This section describes steps that could be taken following this work.

Perform Prime+Probe profiling on AES Our Flush+Reload attack on
AES could be used as the basis for a Prime+Probe profiling attack. The
resolution could be increased by using a different core speed for the attacker
and the victim so more measurements can be done during a single execution.

53



If only a specific round has to be found, i.e. the 7th round, a specific division
of the round keys over the cache lines could make it possible to detect the 7th
round as the first access to the second cache line as described in section 7.2.3.

Verify that our Prime+Probe measurements match the results of Tang
et al. [2] Experiments could be performed to detect if FlipEndianness
runs right after the smaller spike in fig. 17. Tang et al. [2] performed such
experiments but we could not find a description of them.

Find the exact cause of the difference in L2 instruction-inclusiveness com-
pared to previous research by X. Zhang et al. [14] We suspect that a dif-
ferent MMU initialization results in our deviating results, however it could
also be a methodology or implementation error.

Perform a fault-injection attack based on this runtime profiling infor-
mation, possibly from bare-metal Since we provide an implementation of
runtime profiling, this can be used in subsequent work to perform attacks to
determine secret keys or to load arbitrary trustlets.

Determine whether there is a software AES implementation in Qual-
comm’s TrustZone We were unable to find a software AES implementation
in Qualcomm’s TrustZone, however, we have not done an exhaustive review.
Future work could examine the Keymaster trustlet and the TrustZone kernel
to find exactly how the used AES implementations work, i.e. if they use the
crypto engine or are implemented in software. The work by Lapid and Wool
[16] could be used as a starting point.

Extend the bare-metal environment to work on other devices than the
Nexus 6 The current implementation is tailored towards the Nexus 6 with
respect to the cache sizes and hardware initialization. This could be made
more general in order to run it on other devices.

54



12. References

References
[1] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and

Stefan Mangard. Armageddon: Cache attacks on mobile devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 549–564,
2016.

[2] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: exposing the perils of security-oblivious energy manage-
ment. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1057–1074, 2017.

[3] CLKscrew: Exposing the perils of security-oblivious energy man-
agement. https://github.com/0x0atang/clkscrew. Commit:
712f75dab260da9b81f9d95f3debf3460663d183.

[4] Ben Lapid and Avishai Wool. Cache-attacks on the arm trustzone imple-
mentations of aes-256 and aes-256-gcm via gpu-based analysis. In Inter-
national Conference on Selected Areas in Cryptography, pages 235–256.
Springer, 2018.

[5] Android full-disk encryption. https://source.android.com/
security/encryption/full-disk. Accessed: June 2020.

[6] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE,
2019.

[7] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), pages
973–990, 2018.

[8] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the In-
tel SGX kingdom with transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium. USENIX Association, August
2018. See also technical report Foreshadow-NG [44].

55

https://github.com/0x0atang/clkscrew
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/full-disk


[9] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
753–768, 2019.

[10] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, May 2019.

[11] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache
evictions. https://cacheoutattack.com/, 2020.

[12] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE sym-
posium on security and privacy, pages 605–622. IEEE, 2015.

[13] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas
Hou. Truspy: Cache side-channel information leakage from the secure
world on arm devices. IACR Cryptology ePrint Archive, 2016:980, 2016.

[14] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented flush-
reload side channels on arm and their implications for android devices.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 858–870, 2016.

[15] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui,
Johann Heyszl, and Thomas Eisenbarth. Autolock: Why cache attacks
on ARM are harder than you think. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1075–1091, 2017.

[16] Ben Lapid and Avishai Wool. Navigating the samsung trustzone and
cache-attacks on the keymaster trustlet. In European Symposium on
Research in Computer Security, pages 175–196. Springer, 2018.

[17] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-
Hoon Lee, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Prime+
count: Novel cross-world covert channels on arm trustzone. In Proceed-
ings of the 34th Annual Computer Security Applications Conference,
pages 441–452, 2018.

[18] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
Voltjockey: Breaching trustzone by software-controlled voltage manip-
ulation over multi-core frequencies. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
195–209, 2019.

56

https://cacheoutattack.com/


[19] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on
caches and countermeasures. Journal of Hardware and Systems Security,
2(1):33–50, 2018.

[20] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8(1):1–27, 2018.

[21] Nexus 6 firmware version ngi77b. https://dl.google.com/
dl/android/aosp/shamu-ngi77b-factory-5cd75e2a.zip. Accessed:
June 2020.

[22] Nexus 6 bare metal. https://github.com/JJK96/
nexus6-baremetal-cache-attacks.

[23] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor
cache attacks. In Proceedings of the 11th ACM on Asia conference on
computer and communications security, pages 353–364, 2016.

[24] Gal Beniamini. QSEE privilege escalation vulnerability and ex-
ploit (cve-2015-6639). http://bits-please.blogspot.com/2016/05/
qsee-privilege-escalation-vulnerability.html, 2016.

[25] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A com-
prehensive survey. ACM Computing Surveys (CSUR), 51(6):1–36, 2019.

[26] ARM cortex-a series programmer’s guide for ARMv8-a. https:
//developer.arm.com/documentation/den0024/latest/. Accessed:
April 2020.

[27] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on aes
(short paper). In International Conference on Information and Com-
munications Security, pages 112–121. Springer, 2006.

[28] Raphael Spreitzer and Benoît Gérard. Towards more practical time-
driven cache attacks. In IFIP International Workshop on Information
Security Theory and Practice, pages 24–39. Springer, 2014.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+ flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279–299. Springer, 2016.

[30] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers track at the RSA
conference, pages 1–20. Springer, 2006.

57

https://dl.google.com/dl/android/aosp/shamu-ngi77b-factory-5cd75e2a.zip
https://dl.google.com/dl/android/aosp/shamu-ngi77b-factory-5cd75e2a.zip
https://github.com/JJK96/nexus6-baremetal-cache-attacks
https://github.com/JJK96/nexus6-baremetal-cache-attacks
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://developer.arm.com/documentation/den0024/latest/
https://developer.arm.com/documentation/den0024/latest/


[31] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.
js: A remote software-induced fault attack in javascript. In International
conference on detection of intrusions and malware, and vulnerability
assessment, pages 300–321. Springer, 2016.

[32] Joan Daemen and Vincent Rijmen. The rijndael block cipher: Aes pro-
posal. In First candidate conference (AeS1), pages 343–348, 1999.

[33] OpenSSL AES core. https://github.com/openssl/
openssl/blob/master/crypto/aes/aes_core.c, . Commit:
c72fa2554f5adc03bcc3c6e4ebcd1929e70efed4.

[34] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differen-
tial fault analysis of the advanced encryption standard using a single
fault. In IFIP international workshop on information security theory
and practices, pages 224–233. Springer, 2011.

[35] https://www.qualcomm.com/products/snapdragon-processors-805.
Accessed: August 2020.

[36] Sean Beaupre. Trustnone: Signed comparison on unsigned user input
leading to arbitrary read/write capabilities of secure memory/registers
in the apq8084/snapdragon 805 trustzone kernel. http://theroot.
ninja/disclosures/TRUSTNONE_1.0-11282015.pdf, 2015.

[37] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, et al. Fallout: Leaking data on meltdown-resistant
cpus. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 769–784, 2019.

[38] ARM architecture reference manual. ARMv7-A and ARMv7-R edition,
2012.

[39] Eviction strategy evaluator. https://github.com/IAIK/
armageddon/tree/master/eviction_strategy_evaluator. Com-
mit: f9a96c388225e22f19f446be99f892b2f17619b6.

[40] Tiny AES in c. https://github.com/kokke/tiny-AES-c. Commit:
0677e48a4980cc3695bc0f4dab89bad8708d16ea.

[41] OpenSSL RSA. https://github.com/openssl/openssl/
blob/master/crypto/rsa/rsa_ossl.c, . Commit:
8a5cb59601fa9892e22e26337917cf513d57c473.

[42] Gal Beniamini. Extracting qualcomm’s keymaster keys - breaking an-
droid full disk encryption. http://bits-please.blogspot.com/2016/
06/extracting-qualcomms-keymaster-keys.html, 2016.

58

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://www.qualcomm.com/products/snapdragon-processors-805
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://github.com/IAIK/armageddon/tree/master/eviction_strategy_evaluator
https://github.com/IAIK/armageddon/tree/master/eviction_strategy_evaluator
https://github.com/kokke/tiny-AES-c
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_ossl.c
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_ossl.c
http://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
http://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html


[43] Nexus 6 firmware version lmy48m. https://dl.google.com/
dl/android/aosp/shamu-lmy48m-factory-25210911.zip. Accessed:
June 2020.

[44] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the virtual mem-
ory abstraction with transient out-of-order execution. Technical report,
2018. See also USENIX Security paper Foreshadow [8].

59

https://dl.google.com/dl/android/aosp/shamu-lmy48m-factory-25210911.zip
https://dl.google.com/dl/android/aosp/shamu-lmy48m-factory-25210911.zip


13. Acronyms
ABoot Android bootloader
ACL access control lists
ASLR address space layout randomization
BTB branch target buffer
BTB branch-target buffer
CPSR current program status register
DCCISW data cache clean and invalidate by set/way
DFA differential fault analysis
DSB data synchronization barrier
DVFS dynamic voltage and frequency scaling
EL exception layer
FBE file-based encryption
FDE full-disk encryption
GCM Galois counter mode
I/O input/output
ISA instruction set architecture
ISB instruction synchronisation barrier
L1-D level 1 data
L1-I level 1 instruction
L1 level 1
L2 level 2
LDR load register
LFB line fill buffer
LLC last-level cache
LRU least recently used
MDS microarchitectural data sampling
MMU memory management unit
MRC move to ARM register from coprocessor
NOP no operation
PBL primary bootloader
PC program counter
PIPT physically indexed, physically tagged
PMCCNTR cycle count register

60



PMCNTENSET performance monitors count enable set register
PMCR performance monitors control register
PMSELR performance monitors event counter selection register
PMU performance monitoring unit
PMXEVTYPER performance monitors event type select register
PRNG pseudo-random number generator
ROP return oriented programming
SBL secondary bootloader
SB store buffer
SCR secure configuration register
SCTLR system control register
SGX secure guard extensions
SMC secure monitor call
SMP symmetric multiprocessing
SoC system on chip
SP stack pointer
TCI trustlet connector interface
TLB translation lookaside buffer
TSX transactional memory extension
TTBR translation table base register
TZASC TrustZone address space controller
TZMA TrustZone memory adapter
TZPC TrustZone protection controller
WTF write transient forwarding
XPU external protection unit

61



A. Code snippets

Algorithm 4: Address to cache set
input: Address

1 (Address >> log2(CACHE_LINE_LENGTH)) %
NUM_CACHE_SETS

Algorithm 5: RSA decryption in TrustZone [2]
1 procedure DecryptSig(S, e, N)
2 r ← 22048;
3 R← r2modN ;
4 r−1 ← ModInverse(r,Nrev);
5 Nrev ← FlipEndianness(N);
6 found_first_one_bit ← false;
7 for i ∈ {bitlen(e)− 1..0} do
8 if found_first_one_bit then
9 x← MontMult(x, x,Nrev, r

−1);
10 if e[i] == 1 then
11 x← MontMult(x, a,Nrev, r

−1);
12 end
13 end
14 else if e[i] == 1 then
15 Srev ← FlipEndianness(S);
16 x← MontMult(Srev, R,Nrev, r

−1);
17 a← x;
18 found_first_one_bit ← true;
19 end
20 end
21 x← MontMult(x, 1, Nrev, r

−1);
22 H ← FlipEndianness(x);
23 return H;
24 end

62



Algorithm 6: Reverse the endianness of a memory buffer [2]
1 procedure FlipEndianness(src)
2 d← 0
3 dst← {0}
4 for i ∈ {0 .. len(src)/4 - 1} do
5 for j ∈ {0 .. 2} do
6 d← (src[i * 4 + j] | d)≪ 8
7 end
8 d← src[i * 4 + 3] | d
9 k ← len(src) - i * 4 - 4

10 dst[k .. k + 3]← d

11 end
12 return dst

13 end

63


	Acknowledgements
	Introduction
	Contributions
	Outline

	Background
	CPU cache
	ARM architecture
	ARM cache
	TrustZone

	Cache attacks
	AES
	T-Tables

	differential fault analysis of AES using a Single Fault
	Motorola Nexus 6 XT1100
	Snapdragon 805 Processor


	Related work
	Last-Level Cache Side-Channel Attacks are Practical
	Armageddon
	Virtual to physical address conversion
	Cross-core eviction
	Accurate Timing
	Covert channels
	Shared library attack
	AES T-Table attack
	TrustZone attack

	TruSpy
	Finding congruent memory addresses
	Accurate timing

	Return-Oriented Flush-Reload Side Channels on ARM and Their Implications for Android Devices
	Detecting inclusive L2 caches

	AutoLock: Why Cache Attacks on ARM Are Harder Than You Think
	Detection
	Attack

	Navigating the Samsung TrustZone and Cache-Attacks on the Keymaster Trustlet
	Kinibi OS
	Attacking the Keymaster trustlet

	Cache-Attacks on the ARM TrustZone implementations of AES-256 and AES-256-GCM via GPU-based analysis lapid2018cache
	Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone
	CLKscrew
	dynamic voltage and frequency scaling
	AES attack
	RSA attack

	VoltJockey
	RSA

	Speculative execution attacks
	Speculative execution
	Spectre
	Meltdown
	Foreshadow
	RIDL: Rogue In-flight Data Load
	ZombieLoad: Cross-Privilege-Boundary Data Sampling
	Fallout: Leaking Data on Meltdown-resistant CPUs


	Bare-metal environment
	Multi-core support
	Enabling caching
	Randomness
	Performance counters

	Attack primitives
	Eviction
	Flush
	Timing
	Delays
	Test cache-attack methods
	Flush+Reload
	Prime+Probe


	AES attacks
	Textbook AES
	OpenSSL AES
	Execution time
	Flush+Reload profiling
	Prime+Probe profiling
	Locating the T-Tables and round key
	TrustZone AES


	RSA attacks
	Execution time
	RSA TrustZone attack
	Instrumentation


	Discussion
	Bare metal
	L2 cache inclusiveness to instructions
	AES attacks
	RSA attacks
	Cross-core vs. scheduling

	Conclusion
	Future work
	References
	Acronyms
	Code snippets

