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ABSTRACT 

Structural damage assessment (SDA) is a crucial activity during post-disaster response and reconstruction 

phases. Recent advances in photogrammetry and computer vision permit to obtain very dense 3D point 

cloud models from overlapping aerial multi-perspective images. Both 3D point clouds and multi-perspective 

imagery are rich sources of information for damage mapping. Multi-perspective aerial imagery is commonly 

obtained by Unmanned Aerial Vehicles (UAVs); however, these data can be scarce during crisis situations. 

An interesting alternative are post-disaster aerial video footages, but low resolution and redundancy of video 

frames hinders its utility. Exploration of video frames usability for 3D modelling, particularly regarding post-

disaster applications, is still lacking. In this research the quality of aerial video-generated 3D models was 

assessed from geometric/absolute and SDA application perspectives, and was compared with models 

derived from aerial still imagery for two different study areas. Particularly video blur-motion, resolution and 

frame redundancy influence on 3D model quality was determined. The analysis demonstrated that in general 

video data produce more noisy and imprecise 3D point clouds; however, the external and absolute accuracy 

is still comparable to the one of still imagery. Low resolution video was clearly hampered by sensor proximity 

to the ground, whereas frame redundancy was the main cause of noise. These quality parameters, however, 

were also related to higher point density and in most cases better representability of damage-related features. 

Consequently, it was demonstrated that video data are suitable for the generation of rich damage-related 

information 3D models. 
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1. INTRODUCTION 

1.1. Background 

 

Long-term studies show that the number of global disasters has risen during the last decades; on average 

over 200 million people have been affected by different kinds of disasters each year (Van Westen, 2012). A 

common way to understand, conceptualize and primarily manage disasters is through the Disaster 

Management Cycle (DMC) (Figure 1). A DMC is a chronologically classified representation of different pre 

and post-disaster stages and activities. Mitigation and preparation stages are included in the pre-disaster 

phase. For both, an array of activities is grouped with the common purpose to avoid or mitigate disaster 

effects. These stages are of high significance and look to enlarge the time between individual disasters and 

diminish their effects. When dealing with low frequency disasters a different perspective focused on the 

post-disaster phase is required. This is because low frequency disasters might have a low or even null 

predictability. In these cases, more emphasis is given to activities within the response and recovery stages. 

When facing a disaster, several activities are executed by emergency public, military, private and civil 

institutions. First aid and relief activities within the response stage, such as Search and Rescue (SAR) depend 

essentially on primary, general and reliable information about damage extend (Barrington et al., 2011; 

Kelman, 2004). Therefore, a rapid, but still reliable spatial damage estimation is crucial for best deploying 

emergency resources during the response stage. After the response stage, a transition to reconstruction stage 

takes place. At this point healing, repairing, demolition, and reconstruction activities are more significant. 

The duration of this stage can vary significantly depending on the effectivity of the activities performed 

through it; at this point, not only reliable but also detailed data about damage is relevant (Barrington et al., 

2011; J. Fernandez, Kerle, & Gerke, 2015). Henceforth first reliability and then precision of structural or 

physical damage estimations are essential components for the effective accomplishment of post-disaster 

phase activities. 

 

 

 

Figure 1. Disaster Management Cycle and activities (based on: 
Kelman (2004) and Van Westen (2012)) 
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1.1.1. Structural Damage assessment (SDA) 

 

Currently there are several methods to estimate structural damage; however, traditional ground surveying 

classification is still the preferred choice. Ground-based SDA based on the European Macroseismic Scale 

1998 (EMS-98) is so far, the most common method for a detailed and accurate classification of damage 

stages at different scales. For a rapid SDA, the reliability and detailed criteria used in this approach is very 

high, but it is not as efficient as it is required (Kerle, 2010). This approach, as other ground-based damage 

estimation methods, is time and resource demanding; besides, it is also limited by its slow accessibility (Gerke 

& Kerle, 2011). Alternatively, there are other practical methods to assess structural damage in the remote 

sensing field. These methods deal with all the limitations of ground-based SDA, but their reliability and 

precision (i.e. level of detail) have become their major issues, and have limited their application. Moreover, 

remote sensing approaches based on image analysis for automated classification of damage stages are very 

unbiased and rigid due to aspects unlinked to traditional classification schemes such as the EMS-98 which 

are based on subjectivity and flexibility (J. Fernandez et al., 2015; Saedi, 2015; Schweier & Markus, 2006) 

 

1.1.2. Remote sensing-based SDA 

 

During the last century, intensive researches have shown the potential of using Remote Sensing on post-

disaster SDA. Many approaches were developed to extract and analyse damage patterns and perform SDA. 

For instance, feature change detection has been used to quantify damage when pre-existing data about a 

disaster is available (Dekker, 2011). Nevertheless, in most of cases pre-event data is not available and only 

post-disaster data can be analysed; in such a case, other approaches are implemented. Automated single 

image-based damage estimation methods are also focused on the identification of damage features, however  

they rely on semantic reasoning techniques (Fernandez Galarreta, Kerle, & Gerke, 2015; Ogawa & 

Yamazaki, 2000; Zhang, Wang, Liu, & Zhang, 2010). Semantic reasoning involves a deep and cognitive 

description of objects in a 2D environment using distinctive parameters. These parameters can be: scale, 

shape, compactness, spectral and textural characteristics of a certain object or segment, which is then   used 

to define a damage related-feature. The idea behind this approach is to emulate ground surveyors’ perception 

and knowledge on damage estimation and classification (Zhang et al., 2010). 

 

In parallel to the approach chosen, SDA can also be differentiated according to the data source nature. 

Different aerial platforms and sensors were tested for  assessing physical damage, such as air and space-

borne optical Very high resolution (VHR) cameras (Ehrlich, Guo, Molch, Ma, & Pesaresi, 2009; Ogawa & 

Yamazaki, 2000), space-borne Radio detection and ranging(RADAR) sensors (Dell’Acqua & Polli, 2011), 

air-borne Light detection and ranging (LiDAR) (Khoshelham, Elberink, & Xu, 2013) and combined-

approaches (e.g. air-borne VHR with LiDAR) (Hussain, Ural, Kim, Fu, & Shan, 2011).  

In relation to aerial optical data, resolution becomes a major parameter to consider. Commonly available 

satellite imagery is usually not suitable to detect building details which are in the order of centimetres, then 

VHR satellite imagery or aerial photographs must be used. However, these kind of VHR data is hardly 

available during critical post-disaster stages, due to many financial and technical reasons (Ehrlich et al., 2009). 

Moreover, most of these traditional platforms acquire data from vertical angles (i.e. at-nadir perspective). 

This represents a main limitation for the identification of damage-related feature, since an oblique 

perspective (i.e. opposite to at-nadir, Figure 2) allows the identification of important damage features, such 

as total building inclination, collapse of low stories (pancake collapse), overhanging elements and cracks at 

building façades, and others (Kerle & Stekelenburg, 2004; Schweier & Markus, 2006). Early researches using 

Pictometry oblique aerial images demonstrated a big improvement in classification using oblique data. 

However this approach also presented some geometrical limitations, since only few view perspectives were 

used and it is still performed based on a 2D space (Gerke & Kerle, 2011) 
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Recent studies have been focused on Unmanned Aerial Vehicles (UAVs) as data source for detailed and 

reliable SDA due to multiple reasons. First,  multi-rotor models present a big potential in this subject due 

to their multi-perspective characteristic which allows to identify damage features at building façades. Second, 

UAV data is highly available and accessible, besides their relative low costs and ease manoeuvrability. Third, 

UAVs  data is of very high spatial resolution (order of centimetres), which enables detail feature-related 

damage identification (Adams, Friedland, & Levitan, 2010; Boccardo, Chiabrando, Dutto, Tonolo, & 

Lingua, 2015; J. Fernandez et al., 2015; Nex & Remondino, 2014). Finally, UAV data can be easily processed 

through Image Based Modelling (IBM) to obtain very dense 3D point clouds for damage scene 

reconstruction and detailed SDA; this kind of product is even denser than LiDAR sensors and includes 

valuable spectral (colour) information (Nex & Remondino, 2014; Remondino, Spera, Nocerino, Menna, & 

Nex, 2014). SDA through this multi-perspective and high quality data source may certainly attain the 

accuracy only possible for ground-surveying methods.  

 

1.1.3. 3D Image Based Modelling (IBM) 

 

3D scene reconstruction or Image based Modelling (IMB), either by overlapping image sequences or video 

frames, is now feasible thanks to advances in computer vision and photogrammetry fields (Remondino et 

al., 2014). For instance, computer vision algorithms for feature identification, tracking and description; 

developments in photogrammetry for robust estimations of the relative orientation of two overlapping 

images; or a set of steps to generate sparse 3D point clouds from a sequence of images of a static scene 

called Structure from Motion (SfM) (Gerke, 2014). All these advances led to the development of accessible 

user-friendly automated methods for dense 3D point cloud generation, based on dense image matching or 

SfM algorithms (Gerke, 2014; Tian, Vosselman, & Zhu, 2011). Two main data types that can be processed 

by IBM, still imagery and video frames, this suggest two different modelling approaches. In the case of video 

frames, image matching is relatively straight forward, because the corresponding features are hardly moving 

between two adjacent frames (Alsadik, Vosselman, & Gerke, 2015). However, this kind of data also 

represents a problem in the estimation of the 3D model geometry and quality due to the relative shorter 

base-lines (i.e. distance between two subsequent images) and low resolution (Alsadik et al., 2015; Gerke, 

2014). In the case of still cameras, they generate images with larger base-lines, and their corresponding 

features require other techniques based on the identification and description of invariant features among 

adjacent images (feature matching). Feature matching  is not that affected by the previously mentioned video 

data-related problems (Gerke, 2014).  

 

Figure 2. Nadir and oblique perspectives (Geomares, 2014) 
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IBM has many applications such as mapping, mining, forensics, agriculture, construction (Building 

Information Models BIM and inspection) and others (Pix4d, 2016b). SDA domain could be treated 

separately, but it is also closely related to mapping and construction applications. First, terrain 3D models 

such as Digital Surface Models (DSM) are of high importance in SDA; this type of information can be 

complemented with spectral information to identify collapsed or severely damaged buildings for rapid 

damage estimation (Gerke & Kerle, 2011). Second, construction application such as BIMs and inspection 

are based on very dense 3D point clouds with radiometric information suitable for a detail scene 

reconstructions of buildings, which are rich and precise in damage-related semantic information and 

therefore very relevant for SDA (Pix4d, 2016b; Xiong, Adan, Akinci, & Huber, 2013).  

   

3D model quality can be assessed from two different perspectives. The first is an absolute or geometric 

validation, where the obtained 3D point cloud is compared in different ways against another model of the 

same area with a known high accuracy. This high accuracy model is ideally a ground-based collection of 

measurements or Terrestrial Laser Scanning (TLS) (Khoshelham, 2012). The second is associated to the 

model representability of damage-related features and how cognitive and semantic methods can identify and 

extract these features from this model (Dekker, 2011; Kerle & Stekelenburg, 2004; Zhang et al., 2010). The 

latter is considered a more complex approach since there is not a standard method to assess this aspect, and 

there are many inconsistencies when comparing damaged scores at building level  with field scores (See also 

1.1.1)(Saedi, 2015).  

 

Different kinds of parameters can affect 3D model quality and its application accuracy. Parameters can 

broadly be grouped in data acquisition and pre-processing stages (Figure 3). Data acquisition parameters (e.g. 

Ground Sampling Distance, Area of interest, etc.) are related to mission planning and data acquisition 

process. Thus, they must be wisely defined since there is no way to modify them farther. Data pre- and post-

processing parameters (e.g. Image selection, Ground Control Points, etc.) are more flexible and can be used 

to solve errors caused during the data acquisition process (e.g. The use of accurate GCPs in IBM would lead 

to a better stabilization of the 3D model geometry) (Nex & Remondino, 2014; Remondino et al., 2014). 

IBM errors in image matching processes are mainly related to data quality (e.g. resolution, blurriness, etc.) 

and scene characteristics (e.g. smooth textural objects, transparent objects, etc.). In the case of SfM models, 

IBM errors are considered more as a black box, since they can be related to bundle adjustment divergences 

or geometric deformations in the process (Remondino et al., 2012). Data acquisition parameters are relevant, 

since although some data quality pre- and processing parameters can be modified, some of them such as 

resolution cannot. Hence, the priority must be given to an appropriate selection of data acquisition 

parameters to impede error propagations on pre- and processing steps. 
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1.2. Problem Statement  

 

Image-based SDA has been carried out using a diverse array of data sources mainly air and space borne 

VHR sensors. Recent studies have been focused on VHR multi-perspective oblique cameras, improving 

quality on aerial-based damage assessment. However, practically all of them have been based on still imagery 

which is often unavailable or highly expensive. Video data, on the contrary, present a big advantage related 

to these aspects especially during post-disaster situations, since it is the first type of data produced and 

uploaded on the web. First aid providers, such as fire fighters, police, red cross and local media usually 

collect this information from aerial vehicles such as helicopters, and currently by Unmanned Aerial Vehicles, 

and make it public even hours after the disaster occurred (Kerle & Stekelenburg, 2004). Additionally, video 

data quality has improved substantially in the last decades due to technological efforts to increase resolution 

and reduce common data artifacts. It has been stated that this kind of data are in general less adequate for 

IBM due to low resolution, redundancy, blur-motion effects, and lack of geolocation information. 

Nonetheless, questions regarding how these quality parameters can influence 3D model absolute quality and 

how suitable they are for SDA, have not been addressed.  

This research aims at analysing the influence of data quality parameters on 3D model absolute quality and 

suitability for SDA. This is complemented with the study of one main activity during post-disaster stages, 

debris volume estimation. The results then will allow to determine what is the usability of video data on 

SDA. 

1.3. Research objectives 

1.3.1. General Objective 

 

To determine video data usability for 3D scene-based SDA in comparison to still imagery. 

 

Figure 3. Image Based Modelling quality parameters (modified 
from: Nex & Remondino (2014)) 
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1.3.2. Specific objectives 

 

 To determine how video data artifacts and quality parameters (resolution and frame rate selection) 

influence absolute 3D model accuracy 

 To determine how suitable video-based 3D models are for extracting damage-related features for 

posterior Structural Damage Assessment. 

 To determine how scene distinctive conditions and characteristics of two different study areas can 

influence on 3D model quality and SDA.  

 To evaluate how feasible is it to perform relevant activities such as debris volume estimations with 

video-based 3D models in comparison with still imagery ones.  

1.4. Research questions 

 

1. How do video data artifacts (e.g. motion-blur) and inherent characteristics (e.g. resolution and 

image redundancy) influence absolute accuracy of video-based 3D models? 

2. How do video data artifacts (e.g. motion-blur) and inherent characteristics (e.g. resolution and 

image redundancy) influence damage-related features identification and extraction from 3D scene 

models for SDA? 

3. How useful are video data in comparison to at-nadir and/or oblique still imagery for SDA, based 

on the identification and extraction of damage-related features from 3D models? 

4. How distinctive characteristics of the area under study can affect video-based generated 3D 

models?  

5. How suitable are video and still imagery-based 3D models for other relevant post-disaster 

activities, apart from SDA? 
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2. LITERATURE REVIEW 

2.1. Advances on aerial-based SDA 

 

Remote sensing from aerial and space platforms has been considered a potential tool for damage assessment 

since it provides a more general sight of the scene in a relative shorter time (J. Fernandez et al., 2015). 

George Lawrence was one of the pioneers in using aerial data to study fire and earthquake damage extend 

in the city of San Francisco, in 1906; since then, many other advances in this field have been achieved 

(Baumann, 2014). A traditional approach is visual inspection of aerial or space imagery, which allows a broad 

perspective of the area. Ogawa & Yamazaki (2000) for example applied photo interpretation of aerial 

photographs taken after Kobe earthquake stroke in Japan (1995), and classified buildings under different 

categories according to their damage state. Likewise, when pre- and post-disaster VHR imagery is available, 

a semi-automatic approach for the identification of damage features based on change detection can be 

performed for SDA as demonstrated by Zhang et al. (2010). A main limitation of this approach however is 

that pre-disaster VHR data is scarce. Furthermore, Ogawa & Yamazaki (2000) also stated that due to the 

camera angle for VHR imagery acquisition, mainly vertical to the ground, there is an important limitation 

on the identification of minor damage-related features at building walls and columns. A possible alternative 

is Pictometry data, which is obtained from five different perspectives, and could solve this lack of 

obliqueness of traditional platforms. However, it is still not enough to have a complete scene representation 

and recognize damage at façade level (Gerke & Kerle, 2011). Additionally VHR data can be also considerably 

expensive, specially imagery obtained from air-borne sensors (Adams et al., 2010). 

 

Radar and LiDAR sensors demonstrated to be better alternatives compared to VHR optical data for several 

reasons. In the case of Radar, because of its particular double bouncing response reduction from damaged 

buildings, the rough-surface scattering form debris, and also because of its cloud cover independence 

(Dekker, 2011; Dell’Acqua & Polli, 2011; Ehrlich et al., 2009). In LiDAR in turn, mainly for detecting 

relevant damage geometric features with a great precision and allowing a more oblique perspective analysis 

(Khoshelham, 2012; Schweier & Markus, 2006). However, processing and analysis of the data derived from 

these sensors is resource demanding; and availability is highly limited, in particular for LiDAR data 

(Arciniegas, Bijker, Kerle, & Tolpekin, 2007). 

 

In recent years, some sensor-fusion approaches have been tested using space and air platforms. For example, 

Hussain et al. (2011) used Lidar and Geoeye-1 data for detecting earthquake damages in Port-au-Prince, 

Haiti. Likewise Ehrlich et al. (2009) used VHR aerial and satellite imagery in combination to SAR data for 

damage classification, indicating the effective recognition of damage features at building level  using VHR 

airborne data and also the advantage of using SAR, where cloud cover hinders satellite or airborne based 

damage feature recognition.  

 

The use of these aforementioned aerial hybrid approaches, highlight the limitations and advantages of 

different data sources. At the present, UAVs represent the most accessible and complete platform which 

combines obliqueness of ground-based imagery, resolution of VHR imagery and breath of satellite imagery 

(Adams et al., 2010). Furthermore, especially on damage scenarios, UAVs present high manoeuvrability and 

can fly through very limited-access zones (Jorge Fernandez, 2014).  
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2.2. Semantic and cognitive SDA approaches 

 

Due to the scarcity of pre-disaster information SDA was mainly done by visual interpretation, which is not 

the most practical approach due to its high demand of time and effort. In recent years different semantic 

and cognitive methods for the automatic identification of damage-related features were tested. Zhang et al. 

(2010) tested a semantic process based on object recognition and identification, complemented with 

segment-based image characterization for the classification of a rural damaged area, showing accurate results 

and a possible general cognitive model of knowledge and rules which may be reused in other cases. Similarly 

Hussain et al. (2011) used an object-oriented analysis for land cover classification, which then was used to 

extract buildings and rubble from VHR aerial imagery and LiDAR data for damage mapping. While land 

cover classification accuracy was acceptable, the author stated the difficulties of characterizing densely 

structured neighbourhoods and rubble, and detection of some damage types such as “pancake” damaged 

buildings.  

 

In recent studies this kind of analysis was done using UAV imagery. Fernandez et al (2015) developed a 

SDA method using semantic reasoning for the identification and extraction of damage-related features using 

object-oriented analysis. Nevertheless, due to problems in the aggregation of the damage information at 

building level, not clear damage classes were accurately classified. In a similar approach, (Vetrivel, Gerke, 

Kerle, & Vosselman, 2015) building gap identification and classification was performed using UAV VHR 

imagery and radiometric descriptors as damage indicators; these were able to discriminate damage-related 

gaps due to the distinctive textural patterns of surrounding features such as debris and spalling.  However, 

the author stated that in case this evidence is missing, damage-related gaps will not be discriminated in a 

proper way, therefore, semantic information (e.g. gap predictable position) together with geometrical 

uniformity descriptors would be needed. This kind of framework then can be applied to analyse other 

damage-related features, such as inclined walls, cracks, etc.  

 

Interest on using semantic features for SDA is evident, since most of traditional SDA classification 

approaches (e.g. EMS-98) are based on cognitive interpretation of damage-related features on affected 

buildings. Nonetheless, there is not yet a broad automated approach which allows the conceptualization and 

aggregation of all the domain specific semantics for building level SDA. Traditionally SDA approaches holds 

subjectivity which cannot be transformed to a consistent set of rules for an automated SDA methodology. 

Additionally, some aerial based radiometric and geometric information is unused since it cannot be 

aggregated to the these traditional SDA schemes (Saedi, 2015). 

2.3. 3D  scene-based SDA 

 

The combination of multiple 3D measurements, referred as 3D point cloud, makes a 3D scene 

reconstruction. A conventional measurement of these points is through laser scanning or LiDAR. Based on 

the reflection properties of a laser beam, distance measurements to different surfaces are taken. Depending 

on the sensor, an individual point can be accurate to a few centimetres. Airborne Laser Scanning (ALS) was 

the main source used in SDA due to the fast collection of data. The advantage of using ALS in SDA is the 

identification of geometrical surfaces with high precision. In the field of SDA, Schweier & Markus (2006) 

proposed a new catalogue based on geometrical damage features which can be derived with change detection 

techniques, however, as mentioned before, the main limitation is pre-disaster data. Later Hussain et al. (2011) 

processed 3D point cloud data for buildings delimitation and rubble mapping together with object-oriented 

classification of VHR imagery. The author found LiDAR elevation information valuable for determining 

damage in the building geometry, although, he also states limitations on the detection of other subtle damage 

features and “pancake type” damage. In a similar approach Khoshelham et al. (2013) performed a basic 
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classification of building roof damage from extracted features of planar surfaces. In this case the author 

used uniquely 3D geometry for damage estimation based on a large range of features to detect. This range 

was too large in comparison to the training samples taken, affecting classification accuracy. Moreover, only 

two categories (i.e. damaged and undamaged) were analysed which might not be enough in rehabilitation 

and reconstruction phases, where more detailed damage estimations are needed. At present ALS limitations 

are related to the relative limited density of 3D points, big occlusion zones (i.e. areas not reach by the laser 

beams), and lack of spectral information. Therefore, derivation of a semantic rich 3D models such as BIMs 

for reliable and detailed SDA is still not feasible with this kind of data. 

 

Another approach to obtain 3D point clouds can be done through IBM. IBM is a technique based on the 

definition of the fundamental matrix (F-matrix), which defines the model coplanarity constrain and the 

relative orientation of two subsequent images. The F-matrix can be estimated with SfM algorithms and/or 

robust dense feature matching techniques (see also 1.1.3 3D Image Based Modelling (IBM)). 3D point 

clouds derivation by IBM represents many advantages for SDA. First, point clouds generated are very dense; 

while LiDAR sensors can acquire on average 1 to 25 points per square-meter, IBM techniques can in theory 

measure 100 points per m2 using conventional aerial imagery (10 cm GSD), and even 10,000 points per m2 

with higher spatial resolution imagery (1 cm GSD), considering every pixel will result in a new 3D point. 

Moreover, every point also stores spectral information, relevant for semantic reasoning approaches for SDA. 

Considering these advantages, some studies were done to test IBM in SDA. A semantic reasoning approach 

was applied by Fernandez et al. (2015) to classify damage states of buildings using UAV multi-perspective 

imagery. The method was focused on the identification of geometric damage-related features for high 

damage categories, and an object-oriented scheme applied to the oblique images to detect features 

corresponding to lower ones. Although the method rested mainly on 2D space analysis, it could successfully 

classify highly damaged buildings. A main limitation is the difficulty to aggregate information at building 

level, but this can be managed by working directly on the 3D information. Besides, Vetrivel et al. (2015) 

developed a method to accurately delineate buildings using IBM 3D models generated from UAV still 

imagery. The main outcome of this research however was to identify damage-related gaps using image 

radiometric damage indicators and aggregate this information for at building level SDA. The latter did not 

reach the expected accuracy and even this accuracy decreased when applied to another geographic location 

and when using other training sample. The author recommends the use of additional information coming 

from semantic-rich image-based 3D models (e.g. BIM), which can be analysed by ontological (e.g. rule set) 

approaches to characterize additional damage features and classify SDA at-building level. 

2.4. Video-based 3D IBM/SDA 

 

Oblique aerial images can also be obtained with video footages. The main advantage of this kind of data is 

their fast production and availability (Kerle & Stekelenburg, 2004); their main disadvantages are their low 

resolution, blur-motion effect, and image redundancy. Recently the efficiency of using this kind of data on 

cultural heritage modelling was studied by Alsadik et al. (2015), who additionally presented a methodology 

to process these in order to avoid problems caused by their inherent characteristics. The author 

demonstrated that in spite of losing the level of details, this kind of data is still valid for mid-range 

applications using the framework proposed, at least in cultural heritage domain. In disaster management 

studies, video-data was mainly used for change detection and motion tracking applications, where mounted 

video cameras can be used for disaster surveillance in order to determine interior and exterior damage 

(Kanda, Miyamoto, Kondo, & Oshio, 2005; Sahin, Kabar, Saglam, & Tek, 2011). These studies determined 

how a cheap alternative can be implemented for real-time damage estimations, but also revealed some 

problems using these systems, such as sun light and weather dependency, and more important, its local 

nature.  
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Therefore, some primary researches showed the possibility of using these data for roughly determine damage 

zones in a widespread range. For example, Mitomi, Saita, Matsuoka, & Yamazaki (2001) analysed thought 

multi-level slice method, distinctive spectral damage features on video-extracted fames, and used maximum 

likelihood classifier for damage classification. Later Ozisik & Kerle (2004) tested how video data are able to 

improve structural damage estimations once integrated to moderate satellite imagery. Hence it was 

demonstrated that even though video data requires substantial work to be processed, orientated, and 

integrated, it can be a relevant source of damage-related information, mainly from horizontal perspectives 

for analysing building façade characteristics. A similar, but more elaborated approach was presented by 

Kerle & Stekelenburg (2004), by creating 3D environment from orientated improved video frames. In this 

research the automated classification results were poor, revealing main limitations of using video data, such 

as low image quality and lack of geographical position. By that time however, video data was collected in 

low resolution and there were limited resources for image based modelling. Nowadays, technological 

advances allow obtaining very high resolution videos and create very precise 3D scenes from video scenes 

(Alsadik et al., 2015). 

2.5. 3D Point cloud quality assessment 

 
Errors in 3DPCs can have their origin from many sources. In general, two categories of errors can be 

differentiated, systematic and random errors. Systematic errors are related to data collection or processing 

deficiencies, which for image-based modelling can be due to flawed camera calibration or orientation, 

inconsistencies in image matching, or registration using imprecise 3D GCPs. Random errors are linked to 

the characteristics of the objects under observation, and the medium between them and the sensor. In the 

case of IBM, there is long list of possible random errors, the most common are: object texture and surface 

homogeneity, reflectivity, light conditions (e.g. shadows), dust or smoke, humidity, among others. Common 

error tracking is a difficult task for the robustness of algorithms used in IBM, such as bundle block 

adjustment, where divergence and geometric deformations can be experimented. However, error budget 

estimations and nature can be identified using accuracy assessment of generated 3DPCs (Nex, 2016; 

Remondino et al., 2014). 

 

Even though 3DPC accuracy was used in principle to determine absolute quality of models generated by 

range sensors, the same approaches are applied to Image-based models. Model accuracy can be measured  

theoretically and empirically (Nex, 2016). The former implies the estimation of expected model errors based 

on the mathematical relations of model parameters, which as a result indicate sources of systematic error. 

Some examples are Khoshelham (2012) and Soudarissanane, Lindenbergh, Menenti, & Teunissen (2009). 

However, this accuracy estimation needs to be confirmed later by an empirical accuracy assessment, which 

is focused on the model geometric or absolute truthfulness. Empirical accuracy is composed by internal and 

external assessments (Jarzabek-Rychard & Karpina, 2016; Nex, 2016). Internal accuracy assessment infers 

model precision by the use of error metrics. This can give some indication of discrepancy on object 

registration coordinates or point cloud density and noise. Examples of internal accuracy can be found in 

Jarzabek-Rychard & Karpina (2016); S Soudarissanane et al. (2009) and Sylvie Soudarissanane, Lindenbergh, 

& Gorte (2005). External accuracy uses a reference model (e.g. calibration field, accurate 3DPCs or 3D 

object model), and by a comparison to the generated one, it determines what is the overall 3DPC or model 

geometric correctness. This approach is the one with larger application, and there are a variety of examples 

where close-range photogrammetry, ALS, TLS data and calibration fields, were used as benchmark models 

(Abbas et al., 2017; Alsadik et al., 2015; Kersten & Lindstaedt, 2012; Lichti, 2007).  
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2.6. Conclusions  

 
Post-disaster SDA is an important activity for response and recovery disaster phases. Remote sensing 

technologies have been exploited on the SDA field as a source of fast and reliable information. However, 

the lack of obliqueness of most traditional platforms have hindered their coverage advantages, indicated by 

lower damage estimation accuracies. On the contrary, multi-perspective (i.e. also oblique) imagery 

demonstrated to be a rich source of direct and semantic damage-related information based on radiometric 

characterization. In the same way, 3DPCs application was tested on SDA field, especially for the extraction 

of geometric damage-related features. 3D IBM is in both aspects (i.e. radiometric and geometric) a promising 

approach for the extraction of all kinds of damage-related information. However, information extraction 

has not been yet achieved; one of the main reasons for that are the several inconsistencies between traditional 

ground-based SDA schemes, which are subjective and detail-less. Moreover, a potential source of image-

based 3DPCs are video frames. According to literature there are main video quality parameters to consider 

when using this kind of data on IBM, these parameters are: resolution, redundancy and blurriness. However, 

in practice it is still not well studied, and even less on the field of SDA. The present research aims (1) to 

empirically determine video-based 3D modelling quality and compare it with IBM one, analysing in parallel 

the influence of the previously mentioned quality parameters, (2) to test the representability of the different 

damage-related features on the 3DPC. Finally, (3) an application on relevant post-disaster activities will be 

studied. 
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3. METHODOLOGY 

3.1. Study area 

 

Two study areas were selected based on the data availability of recent earthquake events occurred in these 

areas. Additional criteria used were the particular damage settings of each area, which allows a more 

comprehensive and general understanding. 

 

a) Tainan - Taiwan 

 

On February 6th, 2016, a 6.4M earthquake struck Taiwan causing a widespread damage and 117 deaths. 

This was the second deadliest event in Taiwan and the main reason of this high amount of deaths was the 

collapse of a 17-storey building located in the city of Tainan. This concrete-based building known as 

Weiguan Jinglong was the centre of discussion basically because presumably the weak architecture design 

and materials were the cause of its collapse (University of California, 2016). A clear sign of this was the 

general damage setting, since it was the unique collapsed building in the area showing that even some old 

structures could stand despite the earthquake magnitude (Figure 4). An important point to mention about 

the present study area is its scene complexity that could affect Image-based 3D point cloud extraction, such 

as smoke, people and moving elements. 

 

b) Pescara del Tronto – Italy 

 

A more recent earthquake event occurred on August 24th, 2016 when a 6.1M earthquake struck in Italy, 

affecting severely towns located around the central Apennines in the north-eastern part of Italy where many 

faults are active, and some other earthquakes occurred in the past (e.g. L’Aquila or Norcia). The earthquakes 

which occur in this zone are structurally complex and shallow, and are relatively not that large in the global 

context, but due to the presence of many historical and vulnerable buildings can cause severe damages. One 

of the affected towns located in this region is the town of Pescara del Tronto, which is a historical town in 

the hill top of a mountain range (Figure 5). This town is mainly characterized by steep slopes and very ancient 

stone houses built in the Middle Ages. During the August 24th earthquake, many of these buildings were 

totally and partially collapsed, showing a different damage setting than Tainan.  

Figure 4. First study area, Tainan (Taiwan). Left: Tainan localization, centre: Pre-disaster situation, right: disaster 
situation. Delimited in white: Weiguan Jinglong collapsed building 
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3.2. Data 

 

The data used in this research is presented in Table 1 and explained in the following subsections, more 

detailed information about acquisition is presented in Table 2. 

 

 Table 1. Data general descriptions 

Data Sensor and Source Relevant parameters Description 

Tainan, Taiwan (Weiguan Jinglong building) 

High Quality 
aerial still imagery 

Multirotor UAV  
Camera: Phantom DJI 
FC300S  
(MSc. Jyun-Ping Jhan, 
Institute of 
Photogrammetry-
University of Stuttgart) 

4000x3000p (12MP) 
Daily basis (Feb. 07, 10, 11, 12, 
13, 14 and 15, 2016), multi-
perspective imagery of the entire 
area around Weiguan Jinlong 
building  

Oblique and at-nadir 
perspective 

Includes EXIF file 
(geolocalization) 

shutter speed = 1/1099 sec 

High Quality 
Aerial Video 
footage 

Probably Multirotor 
UAV Phantom 
(Youtube) 

1080p (1920x1080pix FHD, 
2.1 MP) 

Aerial video footage from the 
top and surroundings of the 
Weiguan Jinglong building 
moments after the earthquake 
(Feb. 06, 2016) 

Frame rate = 29 fps 

Duration = 234 sec = 6786 
frames 

GCPs 

MSc. Jyun-Ping Jhan, 
Institute of 
Photogrammetry-
University of Stuttgart 

Well distributed (horizontally) 25 well distributed GCPs in the 
area surrounding Weiguan 
Building. All of them are taken at 
the same elevation. 

TWD97 / TM2 zone 121 

Pescara del Tronto, Italy 

High Quality 
aerial still imagery 

Probably Fixed-wing 
UAV  
Camera: Canon 
PowerShot S110 
(Dr. Filiberto Chiabrando 
Politecnico di Torino, 
Italy) 

4000x3000p (12MP) 

Aerial at-nadir imagery acquired 
from the top of the old part of 
the town. Some images are 
blurry. 

At-nadir perspective 

Includes EXIF file 
(geolocalization) 

shutter speed = 1/60sec 

High Quality 
Aerial Video 
footage 

Probably Multirotor 
UAV Phantom 
(Youtube) 

1080p (1920x1080pix FHD, 
2.1 MP) Video shot from different angles 

but not in an specific order, 
Frame rate = 25fps 

Figure 5. Second study area, Pescara del Tronto (Italy). Left: Pescara del Tronto localization, centre: Pre-disaster situation 
and right: disaster situation.  



3D SCENE RECONSTRUCTION AND STRUCTURAL DAMAGE ASSESSMENT WITH AERIAL VIDEO FRAMES AND DRONE STILL IMAGERY 

14 

Duration = 118 sec = 3422 
frames 

shows also the old part of the 
town. 

GCPs 
Dr. Filiberto Chiabrando, 
Politecnico di Torino, 
Italy 

Well distributed 
22 GCPs distributed in different 
points of the town.  WGS84 zone33 

 
Table 2. Data acquisition details divided on study area and data type 

Study area Tainan Pescara del Tronto 

Data type 
Still imagery 

at-nadir 
Still imagery  

oblique 
Video 
frames 

Still imagery 
at-nadir 

Video 
frames 

Area covered (km2) 0.4 0.1673 0.1712 0.2 0.02 

Approximate flight height (m) 87 42 50 166 18 

Average GSD (cm) 11.64 3.56 7.66 5.91 3.8 

GSD: Ground sampling distance 

 

3.2.1. Aerial still camera imagery 

 

In case on Tainan UAV still images were collected on a daily basis frequency after the earthquake. Two 

perspectives and flight paths were used for UAV data collection. The first kind of data was obtained at-

nadir perspective, using a regular grid or corridor pattern over a large area at high elevation (Table 2). The 

second type of data was obtained by using an oblique perspective camera, at lower flight height and focused 

on the Weiguan Jinglong building.  The same data collection procedure was done for following days after 

the earthquake, the first acquisition date is February 7th, then data was collected from February the 10th 

until the 15th. 

 

Data from Pescara del Tronto was obtained only at-nadir perspective in a grid or corridor pattern from a 

higher altitude (Table 2). Date of acquisition in this case is unknown but presumably is on the fourth week 

after the earthquake. Related to quality, it is important to mention that the shutter speed is quite low here, 

which implies more light and blur effects in images from Pescara. 

 

3.2.2. Aerial video footages 

 

This kind of data was downloaded straight from Youtube and presumably was recorded the same day of the 

earthquake for both study areas. To avoid problems with watermarks and irrelevant footage parts, both 

videos were pre-processed (e.i. edited), but their quality and resolution remained the same. Video footages 

were made from lower elevations and covering smaller areas (Table 2). 

 

3.2.3. 3D Ground Control Points 

 

Precise 3D GCPs were obtained from both study areas, although in the case of Tainan they were mainly 

measured using street marks at the same plane, while in Pescara del Tronto different reference points at 

different elevations were chosen as control marks.  
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3.3. Research approach and flowchart 

 

This research is focused on two recent earthquake events that struck two different areas. The first one was 

a 6.4M earthquake in Taiwan on February 6th, 2016, and it was the second deadliest event in the country’s 

history. The second is a lower magnitude 6.1M earthquake occurring in Italy on August 24th, 2016, which 

also caused severe damage in towns located around the central Apennines in the north-eastern part of Italy. 

These cases were chosen based on data availability and especially on the distinctive damage spatial patterns 

they present. In case of Taiwan a very localized damage pattern can be evidenced from aerial imagery; 

particularly a big complex-17-storey collapsed building known as Weiguan Jinglong situated in the centre of 

Tainan city. In the case of Italy, the damage pattern is more spread, and images from Pescara del Tronto 

city show only few standing buildings. This intensity differences are mainly due to the building characteristics 

of each area. In Tainan, buildings are reinforced, tall and made of concrete. In Pescara del Tronto buildings 

are one or two stories-masonry buildings. Having different data types, video footages and still imagery from 

these two study areas together with the described contrasting settings, will give a broader understanding on 

how accurate video-produced 3D models are and what is these models usability for SDA in comparison 

with still imagery.  

 

The analysis of video and still camera datasets from Pescara and Tainan areas, and the 3D models obtained 

from them, can be divided in two different aspects (Table 3). The first one encompasses different activities 

to assess data quality influence on model quality and SDA. This includes a direct estimation of data quality 

for all datasets used on this research, complemented by an absolute accuracy assessment, which refers to 

the model geometry accuracy itself, and supported by a damage-related feature representability analysis, 

based on the identification of these features on every model generated. Finally, a more practical activity aims 

to assess video data application on debris volume estimation as a relevant post-disaster application. 
  



3D SCENE RECONSTRUCTION AND STRUCTURAL DAMAGE ASSESSMENT WITH AERIAL VIDEO FRAMES AND DRONE STILL IMAGERY 

16 

Table 3. Research approach followed and the individual experiments performed  

Aspect to analyze Tainan (TW) 
Pescara del Tronto 

(IT) 
Approach Scale 

Experiment Activity 
Measurement 

parameter Still imagery Video 
Still 

imagery Video 

Im
ag

e 
q
u
al

it
y 

in
fl

u
en

ce
 

Direct image 
quality assessment 

Blurriness 
assessment 

Vertical 
imagery Video 

dataset 
Vertical 
imagery 

Video 
dataset 

Blur metric 
algorithm 
application 

 
Oblique 
imagery 

E
ff

ec
t 

o
f 

d
at

a 
p

ar
am

et
er

s 

G
eo

m
et

ri
c/

ab
so

lu
te

 a
cc

u
ra

cy
 Planar fitting 

Oblique 
3DPC  Video 

3DPCs 
    

Difference to an 
theoretical flat 
surface (plane) 

Flat 
surface 
subset 

Oblique and 
vertical 3DPC  

External 
accuracy 

Oblique  
3DPC 

Video 
3DPCs  

    

Comparison with 
a highly accurate 
model (refined 
3DPC) 

A large 
subset of 
the model 

Oblique and 
vertical  
3DPC 

Oblique and 
vertical 3DPC 
(refined) 

Completeness 

Oblique 
3DPC Video 

3DPCs 
Vertical  
3DPC  

Video 
3DPCs 

Calculation of 3D 
point density and 
gap percentages 

A large 
subset of 
the model 

Oblique and 
vertical 3DPC 

D
am

ag
e 

fe
at

u
re

s 

re
p

re
se

n
ta

b
ili

ty
  

as
se

ss
m

en
t Recognition of 

direct and 
semantic 
damage-related 
features 

Oblique 
3DPC 

Video 
3DPCs 

Vertical  
3DPC  

Video 
3DPCs 

Recognition and 
characterization 
of identified 
damage-related 
features 

Subsets of 
identified 
damage-
related 
features 

Oblique and 
vertical 3DPC 

3
D

 m
o

d
el

 

ap
p

lic
at

io
n

 p
o

st
 

d
is

as
te

r 
ac

ti
v
it

ie
s 

D
eb

ri
s 

C
h

an
ge

 

an
al

ys
is

 Multi-
temporal 
Volume 
estimation 

Oblique and 
vertical  
3DPC (daily   
x5 and 
refined)  

      

Obtain 
differences in 
volume 
estimations from 
video and still 
imagery-
generated models 

Weiguan 
Jinglong 
buildiing, 
Tainan 
(TW) 

3DPC: 3D Pont Cloud 

 

The flowchart implemented for this research is shown in Figure 6. In broad, the research can be divided in 

three main stages: 3D modelling, quality assessment and 3D model application analysis. As a first step 

however video data was processed to generate multi-perspective imagery for 3D modelling. Then these data 

processing is grouped inside the 3D modelling stage; here both data types are processed using different 

quality parameters. From this procedure, many 3D point clouds will be generated, their quality characteristic 

will depend on the data type (i.e. video or still images), study area, and the quality parameter used. Also 

during this stage a benchmark 3DPC will be generated using a refining procedure with the Tainan still 

imagery and default parameters. Hereafter all the 3DPCs generated will pass through a quality assessment 

phase, in which all of them will be tested by different means in relation to their geometric or absolute quality, 

their capability to represent damage features for SDA and a direct image quality index using blur and texture 

metrics. Once finished this process the usability of Video data for 3D modelling and SDA can be determined 

during a general objective results interpretation procedure. 
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3.3.1. 3D modelling 

 

This research is focused on the analysis of the influence of four data parameters: Sensor or data type, 

sensor perspective, resolution, and frame selection method. Sensor type will be simply analysed by 

comparing video and still imagery-generated 3DPCs. While the other parameters will be analysed based on 

the applying different data preparation and processing settings during the 3DPCs generation (Table 4). 

Processing 3DPCs is detailed in the next subsection according to the data type. 
  

 
Table 4. Parameter under analysis for every data/sensor type 

. 

 
  

Sensor type Sensor perspective Resolution Frame selection 

Still camera 

Oblique Original1 

  
At-nadir Medium 

Oblique and at-nadir1 
Low 

Coarse 

Video camera   

Original1 Radom1 

Medium Wise selection 

Low 
  

Coarse 

1. Used as default parameter when it is not under analysis 

Figure 6. Research flowchart describing the main three stages: 3D modelling, Quality assessment and Application analysis 
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a) Still Imagery 

 

Numerous post-disaster data were generated for both study areas, but mainly for Tainan case. This allowed 

processing still imagery in different ways and get diverse 3DPCs for the posterior analysis. Still imagery from 

both study areas were processed in a similar way, however more alternatives and the generation of an 

accurate model (i.e. benchmark) was only possible using Tainan data. 

 

In case of Tainan still imagery was first processed using Pix4d (2016) workflow. The first 3DPC generated 

was the one used as benchmark. In this case, all data were used, oblique and at-nadir images were considered 

for a first relative orientation step. Then, despite the relative orientation was able to give a good 

approximation of the scene orientation, 3D GCPs were used to adjust the model and obtain a precise 

geographical position and scale. Only three 3D GCPs were discarded because they were either out of the 

study area or were invisible in the image. Once the model was accurately orientated, a refining step was 

applied to improve precision of matching points. In this step, some Manual Tie Points (MTPs) were 

identified in the images. MTPs are user-determined corresponding points in two or more images which are 

used to adjust the initial matching results. Finally, a dense 3D point cloud was created with this MTPs, the 

original images size, and all 3D GCPS (see Appendix 2). 

  

A similar procedure was follow to generate other 3DPCs, parameters and datasets were altered in order to 

test their effect on the final products. In a first test, only oblique images were selected for the matching and 

3DPC generation. In a second test, image size and resolution were degraded to three levels (i.e. medium, 

low and coarse resolution), obtaining three different 3DPCs. Besides, since post-disaster multi-date data was 

available, a single 3DPC for each day was generated from the study area.  

 

For Pescara de Tronto the generation of 3DPCs was more limited due to the reduced amount of data. Only 

at-nadir perspective was tested, and no benchmark was produced. Nevertheless, image size and resolution 

were degraded in order to analyse the influence of these quality parameters. Since 3DPCs are available in 

this area, a precise geo-localization of the generated 3DPCs was possible. Because of the different damage 

settings of this study area, in comparison to Tainan, an interesting analysis on internal accuracy and 

completeness was applied. 

 

In general, every time a new parameter was tested a default setting was applied to the remaining ones (i.e. 

oblique and at-nadir images and original image size, Table 1). Thus, several 3DPCs were generated using 

different settings and aerial still imagery from both study areas, one was refined to be used as benchmark, 

and six were produced using daily-base post-disaster images to be used in the 3D model application analysis. 

 

a) Video frames 

 

Since video was directly obtained from YouTube, a preliminary editing task was needed to erase irrelevant 

parts, such as video introductions and credits. Once video data was clean, processing for both data sets was 

performed. 
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Current versions of Pix4D have video input tools which allow frame extraction following a certain user-

defined range (e.g. 1 image every frame, default value). For Tainan, a random value of 45 was chosen (i.e. 

extract 1 frames every 45, 176 frames), extracting 176 frames from the video data. This random selection 

certainly does not consider blur-motion effects or image redundancy. Hence, another dataset was selected 

using Zephyr 3D (3D Flow, 2016) software (Figure 7). An image quality index, related to image textural 

richness and sharpness, together with similarity indices were computed by the software. By this  low quality 

and redundant video frames are filtered out from the previous random selection, and a wise selection of 

frames can be obtained. Henceforth, two 3DPCs were obtained, one using the random frame selection (i.e. 

RFS) and the other using 3D Zephyr tools for a more logical selection of frames (i.e. Wise frame selection, 

WFS. Figure 7). In case of Pescara the same procedure was performed, however since the video duration is 

shorter,  a value of 25 was chosen for the RFS (i.e. 1 frame every 25, 118 frames).  

 

 

Additionally, image resolution of video frames was also degraded in the three  levels of still imagery. Since 

video resolution is already low, the idea is to analyse how even coarser resolutions will affect 3DPC quality. 

 

Geolocalization of all the video-based generated 3DPCs was based on the use of correspondent 3D points 

from the still-based generated benchmark 3DPC. Additionally, one video-based 3DPC was generated using 

all default parameters for the 3D model application phase. 

 

3.3.2. Quality analysis 

 

a) Direct image quality assessment 

 

For this analysis, unprocessed data (i.e. still images and extracted video frames) were analysed using a quality 

index developed by 3D Flow (2017). This index allows to measure blurriness and texture homogeneity of 

every single image, and also displays a map to check what parts of the image may present problems in 3D 

IBM (Figure 8). Still images were directly used; whereas for video data, a subset was generated using RFS, 

explained in the previous section. This analysis is very practical and by statistical means describes roughly 

data quality for 3D modelling of all the datasets used. Quality index is a unit-less value, with no maximum 

or minimum boundaries. When images below a quality index value of 0.5 should be filtered out, since usually 

they are too blurred and do not have texture information. This index represents still images and video frames 

characteristics by a single image-based examination, based on a multiscale approach with frequency analysis. 

This index is also able to generate a graphical representation of low and good quality maps (3D Flow, 2017).  

Figure 7. Flowchart for Wise Frame Selection approach for video frames extraction using Zephyr image 
quality and similarity indices. 
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In total five datasets were analysed. Three from Tainan: 176 randomly selected video frames, the complete 

still camera dataset and the still camera oblique imagery. And two from Pescara del Tronto: the randomly 

selected video frames and the at-nadir still images. 

  

b) Geometric or absolute quality assessment 

 

At this stage, all 3DPC obtained passed through a first quality assessment branch. Geometric or absolute 

quality assessment was based on different geometric measurements of each generated model. These are: 

planar fitting, completeness, and external model fitting. The former two indicate the model internal accuracy, 

while the last one is related to the external accuracy. Internal accuracy is an empirical indication of the model 

precision, which can be described by the model consistency and completeness; it can give indications of 

feature matching errors mainly. External accuracy instead is in fact related to the model accuracy, so how 

the model fits a high accuracy model or geometric object (i.e. benchmark). Therefore, to determine absolute 

or geometrical accuracy of every 3DPC a combination of both is necessary. In case of Tianan, the large 

amount of data allows to process, in theory, a high accuracy 3DPC, applying eventually a refining procedure. 

However, the limited data of Pescara del Tronto does not allow this kind of product, and only internal 

accuracy will be analysed for this dataset. 

 

First planar fitting was applied to the different generated 3DPCs models. This measurement reflects 3DPCs 

distribution and noise, it is based on the analysis of objects that should be flat, therefore by fitting a plane 

from the 3DPC, the distribution of every single 3D point along this plane can be analysed (Figure 9). Plane 

objects were first identified for every study area. In this research house roofs were used as reference plane 

surfaces, since also at-nadir imagery precision will be tested at this analysis, subsets from every 3DPCs were 

extracted based on this planar objects. A plane section was created using Cloud Compare software 

(CC)(Girardeau-Montaut, 2017) along the extracted 3DPC subset. In theory, the 3D points will fit this plane 

in case the model is precise, but in reality, a refined model should have some deviated points (i.e. model 

noise). Therefore, some statistical indicators (e.g. mean distance to the plane and standard deviation) of how 

each generated 3DPC fits this theoretical plan will be computed and analysed to determine model precision. 

 

Figure 8. Image quality index tool in 3D Zephyr user interphase. Left: Image quality calculation, 
right: image quality map 
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An additional test to determine 3DPC internal accuracy is a model completeness analysis. This was done 

using also CC software, and similarly a subset of every 3DPC was clipped and then projected in a raster grid 

of 1 m2 cell size. The projection was made from vertical and horizontal perspective; therefore, two raster 

maps were created for each 3DPC. Every cell value in these raster maps represents the total number of 3D 

points they content, correspondent to the 3DPC density per cell or square-meter. The mean of 3DPC 

density of every 3DPC was then computed to indicate it as first completeness indicator. Complementary to 

this, these raster maps cell value (i.e. 3DPC density) distribution was also analysed using box plots and 

visually on classified maps. Finally, also the proportions of empty cells were used as a last indicator of 

completeness, or in this case incompleteness.    

 

As a complement for the absolute or geometric quality analysis, an external quality test was performed for 

Tainan generated 3DPCs. CC software was used to clip the same area from all generated 3DPCs, then a 

point to point distance was computed using the subset of the refined model and the one of the 3DPC under 

analysis.  

 

c) Damage features representability analysis 

 

A second perspective to analyse model quality and posterior usability, is evaluating the 3DPC capability to 

retrieve damage related features. For this quality assessment branch, a procedure based on the visual 

inspection and geometrical analysis of damage-related features was performed in the produced 3DPC 

models. Owning indications of the absolute quality of every 3DPC, and in order to optimize the workload, 

only the most relevant models from both datasets and datatypes were analysed at this phase. 

 

This analysis started with the inventory of possible recognizable damage related features (Table 5). These 

features were divided into the direct detectable ones and those that can be retrieved by semantic methods. 

The latter belong to a more complex field in which damage can be identified and estimated based on the 

scene context indicators of damage analysed mainly in a 2D environment; in general, they are of high 

importance for automated SDA approaches. For every study area, the inspection was made in a specific 

3DPC subset clipped using CC software.  
 
 
 
 

Figure 9. Planar fitting analysis example. Left: subset of a plane surface, Right: distances from 
point clouds to a theoretical flat surface (fit plane). 
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Table 5. Damage-related features inventory with the main research focus for an effective visual SDA 

Indicator type Damage feature Focus 

Directly related 

Cracks Mainly thin ones (hair-line) 

Structural failures 

Detached building elements 
(structural gaps) 

Inclined walls 

Semantic 
Debris 

Mainly small pieces (plaster 
and stones) 

Spalling Building Façades  

 

Damage-related features defined mainly by radiometric characteristic (i.e. cracks and spalling), were analysed 

by visual inspection on mesh models created from the different 3DPCs. For the geometrically defined ones 

(i.e. structural failures and debris) also a mesh was created, but additionally metrics on object geometry were 

analysed. Mesh models were created using Delaunay 2.5D (best fit plane) triangulation for regular shapes 

and Poisson Surface Reconstruction (plugin) for the irregular ones (Cloud Compare, 2015a; Kazhdan, 2015). 

 

Starting with the directly damage-related features, cracks were analysed using base a model mesh of the 

identified Façade. Every mesh then was visually inspected to verify in weather the crack feature was still 

recognizable or not. Additionally, a measurement of the crack width was made using the original 3DPC for 

reference. Besides, for structural features the analysis were more case-specific. In Pescara a 3DPC 

comparison was made between the generated models to analyse damage-related building gaps recognition; 

whereas In Tainan the mesh model of a building block was used to visually inspect unusual damage-related 

features (e.g. pancake effects and deformed structures). Additionally, an inclined wall was also analysed in 

Tainan by a similar approach of the planar fitting analysis, but using instead a meshed model of the reference 

3DPC as a reference plane. Complementary to this, the inclination degree of all models was computed and 

compared with one obtained using the reference model.  

 

Within the semantic damage-related features, spalling representability analysis approach was similar to cracks 

one. Visual inspection was applied in other to determine this damage feature recognition on every mesh 

model generated. For debris features, a representative area was first subset and the roughness index was 

estimated using CC software (Cloud Compare, 2015b). Thus, first a comparison roughness means of every 

debris area was made, and it was complemented by visual inspection of the correspondent mesh model to 

determine this feature representability. 
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3.3.3. 3D model application analysis (debris volume change analysis) 

 

With the availability of post-disaster daily-based still imagery data, several 3DPCs were generated during the 

3D modelling stage (Figure 10). These then were used to perform a temporal analysis of change on debris 

volumes for Tainan study area. 3D models along with their respective STMs and one polygon to delimit 

computational area, were used to estimate debris volume for every model and every day (e.i. February 7, 10, 

11, 12 ,13 and 14th, 2016) in Pix4d software (Pix4d, 2016a). In parallel an additional 3D model was generated 

from video RFS frames to make a valid comparison of results. The exact date when the aerial footage was 

executed is unknown, but most likely it was recorded the same day of the earthquake (February 6th, 2016); 

the scene present a lot of smoke, and there is a lot of movement of SAR teams working on the buildings 

searching for victims. Therefore, the estimations obtained with these data should be correspondent with the 

still imagery ones of the first collecting date (February 7th, 2016). It is also important to mention that with 

the aim making a consistent analysis, the same 3D vector was at the ground level used in all calculations. 

Finally, these estimations were plotted and analysed. 

  

Figure 10. Debris volume calculation at different time steps. Green areas represent the base of the calculation polygon, 
red are the volumes calculated. 
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4. RESULTS AND DISCUSSIONS 

4.1. 3D Modelling  

 

Twenty-one 3DPCs were generated in total in this research, twelve for Tainan and nine for Pescara del 

Tronto data set (Table 6). Already at this stage by visual comparison it is possible to identify some quality 

and completeness differences between video frames-generated models and still imagery ones. In case of 

Tainan clearly the reference model (i.e. still imagery-based, refined) presents high density and clarity 

compared to a blurred 3DPC generated using video frames (RFS). On the other hand, for Pescara del Tronto 

still imagery models are similar to the video frames (RFS) generated ones; both present many gaps at specific 

area, although in general still imagery 3DPC seems more complete (Figure 11). 

 
Table 6. 3D Point Clouds inventory 

No 
Tainan (TW) 
still imagery 

Details No 
Pescara del 

Tronto (IT) still 
imagery 

Details 

1 
Normal 
resolution 
(original Size) 

Using oblique and at-nadir still 
imagery, not refined, 3D GCPs for 
geolocalization 

13 
Normal resolution 
(original Size) 

At-nadir still imagery, not refined, 
3D GCPs for geolocalization 

2 
Medium 
resolution (half 
image size) 

Using oblique and at-nadir still 
imagery, medium resolution, not 
refined, 3D GCPs for 
geolocalization 

14 
Medium 
resolution (half 
image size) 

At-nadir still imagery, medium 
resolution, not refined, 3D GCPs for 
geolocalization 

3 
Low resolution 
(quarter image 
size) 

Using oblique and at-nadir still 
imagery, low resolution, not refined, 
3D GCPs for geolocalization 

15 
Low resolution 
(quarter image 
size) 

At-nadir still imagery, low resolution, 
not refined, 3D GCPs for 
geolocalization 

4 
Coarse resolution 
(eight image size) 

Using oblique and at-nadir still 
imagery, coarse resolution, not 
refined, 3D GCPs for 
geolocalization 

16 
Coarse resolution 
(eight image size) 

At-nadir still imagery, coarse 
resolution, not refined, 3D GCPs for 
geolocalization 

5 Oblique  
Using oblique imagery, not refined, 
3D GCPs for geolocalization 

    
  

6 At-nadir 
Using at-nadir still imagery, not 
refined, 3D GCPs for 
geolocalization 

  
    

7 Reference model 
Using oblique and at-nadir still 
imagery, refined with MTP, 3D 
GCPs for geolocalization 

  

    

No 
Tainan (TW) 

video data 
Details No 

Pescara del 
Tronto (IT) 
video data 

Details 

8 
Random frame 
selection 

Random frame selection, reference 
model 3D points for geolocalization 

17 
Random Frame 
selection 

Random frame selection, Normal 
resolution still imagery model for 
geolocalization 

9 
Medium 
Resolution 

Random frame selection, medium 
resolution, reference model 3D 
points for geolocalization 

18 
Medium 
Resolution 

Random frame selection, medium 
resolution, Normal resolution still 
imagery model for geolocalization 

10 
Low resolution 
(Quarter image 
size) 

Random frame selection, low 
resolution, reference model 3D 
points for geolocalization 

19 
Low resolution 
(Quarter image 
size) 

Random frame selection, low 
resolution, Normal resolution still 
imagery model for geolocalization 

11 
Coarse resolution 
(eight image size) 

Random frame selection, coarse 
resolution, reference model 3D 
points for geolocalization 

20 
Coarse resolution 
(Quarter image 
size) 

Random frame selection, medium 
resolution, Normal resolution still 
imagery model for geolocalization 

12 
Wise Frame 
selection 

Wise frame selection, normal 
resolution, reference model 3D 
points for geolocalization 

21 
Wise Frame 
selection 

Wise frame selection, Normal 
resolution still imagery model for 
geolocalization 
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There are three remarks related to quality to denote from this process already. First, a lot of noise is produce 

for the video RFS model; this is clearly sign of smoke perturbation, which is instead removed in video WFS 

one (see also Appendix 1). Second, without refining 3DPCs of Tainan still imagery presented a clear 

displacement of features, or a sort of duplication (Figure 12). Second, for WFS approach proposed using 

Zephyr3D software tools did not give appropriate results; too many frames were filtered out and initial 

identification of key points was not satisfactory or even not possible (Figure 13). In the first case, it may be 

that the absolute orientation of the model was not accurate, since all 3D GCPs used were uniquely identified 

on the at-nadir images and they were almost at the same plane; there are only 2 m of elevation difference 

between all Tainan 3D GCPs. This is supported by the fact that also the 3DPC generated with oblique 

imagery presented a similar displacement, which was then corrected using 3DCPs form the reference model. 

Besides, in case of WFS approach, the proposed procedure using Zephyr did not succeed. Many thresholds 

were tested for image quality and similarity index, however most of relevant sections were lost and initial 

image matching was not possible to make or resulted in a very poor 3D key point structure. Therefore this 

approached was modified and only image quality index was used as a guide to manually select video frames 

from the rayCloud of a rough 3DPC created using a random selection of video frames (Figure 14); the same 

values of RFS approach were used here (45 for Tainan and 25 for Pescara del Tronto). RayCloud was 

analysed by sections and frames were manually selected considering two aspects: Not having to many 

overlapping images per section and keeping the minimal number of overlapping images to cover a section.  

Figure 12. Duplication effects due to displacement caused by wrong model orientation using 
the complete still imagery dataset (not refined) 

Figure 11. General visualization of some 3DPCs generated for Tainan (up) and Pescara del Tronto (down). Datasets 
used: Video Wise Frame Selection (WFS), Random Frame Selection (RFS) and Still imagery. Some noise on Video 

(RFS) due to smoke. 
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4.2. Quality assessment 

4.2.1. Direct image quality assessment 

 

Results showed some logical aspects about image quality in all the studied datasets.  In case of Tainan 

datasets, all kinds of still imagery present high quality scores above the maximum obtained by RFS video 

frames; the latter in turn presents highly variable quality (Figure 15). Besides, it is observable that the 

subtraction of low quality and redundant frames using the WFS approach did not increase quality of frames, 

but instead reduced variability, clearly removing inadequate frames of the first quartile and rising the min 

value to 1.5. For Pescara del Tronto datasets, the difference between data type qualities is less evident. Still 

at-nadir imagery presents a very high variability, but the median value is still high. Video imagery in this case 

Figure 14. WFS: Wise Frame Selection modified approach using rayCloud of the Rough 3DOC and image quality 
index as guide. 

Figure 13. Unsatisfactory Wise Frame Selection (WFS) model using Zephyr similarity index tool, 
lack of frames for some sections in the 3DPC. Still some similar overlapping frames are selected. 
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is more stable than the other data type, and WFS approach instead here did increased image quality rising 

the 75% of the dataset to values above 2.3. 

 

Besides, trying to determine whether Tainan or Pescara del Tronto data set present more quality is a more 

complex issue. Although Tainan still imagery have a higher score than Pescara del Tronto data set, video 

frames are of low quality. There are some considerations to take into account and clarify these results. First, 

acquisition flight path of still imagery in Pescara del Tronto presents a very irregular pattern and higher 

elevation above ground (i.e. higher GSD) compared to Tainan; these aspects are related to the higher 

variability and lower quality index scores respectively. An additional element to take into account here is 

that shutter speed is higher for Tainan; even not having information about flight speed this parameter 

represents a higher probability of having motion-blur effects on the obtained images. On the other hand in 

relation to video frames, Pescara del Tronto footage was on the contrary achieved closer to the ground than 

the one of  Tainan, which increases the level of details and also GSD. Additionally, Tainan video is largely 

affected by smoke, while Pescara del Tronto one has no perturbation at all and frames present high texture-

rich parts. 

 

To analyse more all these aspects and image quality distribution, datasets were plotted in a series by video 

frame and still image (Figure 16 and Figure 17). Tainan series clearly show the features described above, 

descending dips precisely indicate frames and images with some kind of perturbation, in this study area 

specially smoke. For Pescara del Tronto instead, these dips represent blurred frames and images with texture 

less zones; however this is less evident than in Tainan, since low quality zones (i.e. red areas) do not indicate 

if they are related to texture less and blurriness causes (3D Flow, 2017). However, observing at the image 

closely a generalized motion-blur pattern can be recognised.  

 

Image quality index is a very useful tool, especially for treating video frames and use them later for 3D 

modelling. However, this index is simply a reference value that shows how suitable a certain image is for 

3D IBM proposes. According to 3D Flow (2017) this index, and mainly the range of values is sensitive to 

resolution, therefore comparing datasets of different resolutions might give some biased indications. What 

is certain instead is the comparison of equal resolution datasets (e.g. video-video datasets from every study 

area). Therefore, the results obtained on this first stage of analysis were used as reference and judged on the 

following assessments. 

 

Figure 15. Image quality index distribution boxplots 
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Figure 16. Image quality index series plot and maps for Tainan (TW). In maps red represent areas of low quality. Dips 
are caused due to smoke (red areas in imager quality maps) in most cases. 

Figure 17. Image quality index series plot and maps for Pescara del Tronto (IT). In maps red represent areas of low quality. 
Dips are caused due general image blurriness and textural homogenous areas (red areas in image quality maps). 
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4.2.2. Geometric or absolute quality assessment 

 

a) Planar fitting assessment (internal accuracy) 

 

Some arguable results were obtained by this assessment in relation to the study area under analysis. In case 

of Tainan, a high mean distance to the plane was calculated for still imagery models, with exception of at-

nadir and oblique datasets, which were also analysed individually (Figure 18). Moreover, in relation to 

resolution an inverse direct relation between resolution and mean distance to the plane can be observed; so 

more precision when having a lower resolution. On the other hand, opposite and more evident results were 

observed for Pescara del Tronto data sets (Figure 19). First, in this case still imagery present lower mean 

distance to the plane than video data. Second, resolution more reasonably decreases abreast of mean distance 

to the plane. 

Figure 18. Mean distance (m) to fit plane for Tianan. Distances represent 3DPC 
precision and standard deviation dispersion. Different resolutions are tested for still 

imagery complete and video Random Frame Selection (RFS) data sets. 

Figure 19. Mean distance (m) to fit plane for Pescara del Tronto. Distances represent 
3DPC precision and standard deviation dispersion. Different resolutions are tested for 

still imagery complete and video Random Frame Selection (RFS) data sets 
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Two observations on Tainan results deserve more analysis at this stage: The high mean distances of the 

models generated using Tainan still imagery (i.e. unrefined) and the unexpected inverse relation between 

resolution and mean distance to the plane. Regarding the first observation, the low precision of still imagery 

was caused by the displacement or duplication effect, also discussed in the above subchapter (4.1 3D 

Modelling, Figure 13). Tainan still imagery-generated 3DPCs are characterized by noise due to several 

duplicated objects; this was negatively influencing during the planar fitting assessment and varies according 

to the image resolution. In relation to the resolution issue, this trend may require a deeper analysis and even 

some extra tests to confirm this particular behaviour; by testing other areas the same characteristic were 

found, confirming this relation between resolution and 3DPC noise. A probable explanation for this is that 

at lower resolutions, less 3D points key points are generated, and most of the noise is removed. In case of 

video data this trend is less significant, although the same could be expected in areas where noise is produced 

by smoke. An additional test performed shows that precision could tent to increase with resolution as 

Pescara del Tronto case for video-generated model, however still imagery keeps the same unexpected pattern 

(Figure 20). Another remark is the low standard deviation of still imagery when is acquired form one 

perspective (i.e. at-nadir or oblique), which reflects its precision in comparison to video data. Within these 

single-perspective data sets, however oblique still imagery generates noisier 3DPCs compared at-nadir 

images, expressed by their standard deviation. 

 

 

This analysis demonstrated that in general still imagery data is more precise than video one, except when 

the two perspectives are used simultaneously without any refining procedure. Additionally, it also showed 

that resolution degradation can decrease model precision, excepting parts where noise exists; at this parts 

the relation is instead opposite (see Appendix 4 and plane surface used in Appendix 3). 

 

b) Completeness analysis 

 

Two perspectives, vertical and horizontal, display point cloud density for both study areas and dataset types. 

Tainan results show that oblique still imagery generated denser 3DPCs in comparison to video and at-nadir 

data sets, even from the vertical perspective observation (Figure 21). However, it is largely lower that the one 

generated using the reference model. Higher resolution compared to video data and higher GSD in 

comparison to at-nadir dataset are the main causes of higher point cloud density in this case. This is 

confirmed with Pescara del Tronto observations, that also show denser 3DPCs produced with video data 

Figure 20. Mean distance (m) to fit plane for Tainan (second test). Distance to plane 
reduces with resolution (more precision). A more logical trend is presented for video models 
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sets compared to at-nadir still imagery considering both perspectives (Figure 22). This is related to the same 

aspects of Tainan and especially has to do with the limitation of at-nadir still imagery: high elevation above 

the ground and lack of vertical information. The same patterns can be seen for both study areas, excluding 

Tainan video WFS, which instead was not able to generate highly dense 3DPCs as the other data sets. 

  

 

 

For a broader analysis of model completeness, vertical and horizontal perspective 3D points density maps 

were created and analysed for the principal generated models (Figure 23 and Figure 24, more detail from 

Appendix 5 to Appendix 8 ). Likewise, box plots for point cloud density distribution were plotted from both 

perspectives and study areas (Figure 25). Lastly proportions of empty cells were also analysed. The latter two 

analysis were done in base of a vertical and horizontal mask polygons in order to filter out some not 

representative pixel information (e.i. Not Available values) which were wrongly associated to zero values 

(see Appendix 9); otherwise these values may represent an overestimation of empty cells or change mean 

point density calculations.  

 

 

 

 

 
  

Figure 21. 3D Point cloud density (points/m2) from vertical and horizontal perspective for Tainan (TW) 

Figure 22. 3D point cloud density (points/m2) from vertical and horizontal perspectives for Tainan 
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From the generated maps, some 3D point clusters and gaps can be identified. In case of Tainan, most highly 

dense pixels were found at similar building edges for all data sets. RFS video model is less dense than oblique 

and reference one, but points were generated where oblique imagery does not; this model point distribution 

is also comparable with at-nadir still imagery models, that practically produces a similar density distribution 

than the reference model but with lower 3DPC density. For Pescara del Tronto these clusters are also located 

mainly at building edges, however are less dense. Also for this study area apparently at-nadir still imagery 

generates less but better distributed 3D point clouds.  

 

 

 

 

 

 

Figure 23. 3D point cloud density maps (up: Tainan, down: Pescara del Tronto). RFS: Random Frame selection, 
WFS: Wise Frame Selection. 

Figure 24. 3D point cloud map (Tainan, horizontal perspective). RFS: Random Frame Selection. WFS: Wise 
Frame selection. 
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In case of point cloud distributions, they show the same patterns than analysed 3DPC density maps from 

either perspective. These distributions are generally skewed and the top twenty-five percent of the top data 

(forth quartile) is generally at very high ranges; this is associated to point cloud clusters in the raster (e.g. 

building edges). In case of Tainan, median values show the same pattern observed with the mean 3DPC 

density analysed above; higher medians are for the Reference and Oblique still imagery models. Likewise, 

boxes show a more uniform distribution for video-produced 3DPCs than oblique still camera ones. Video 

WFS-based 3DPCs, present in general less point cloud density, but density is uniformly distributed over the 

whole area, especially from the horizontal perspective; video RFS ones are more uniformly distributed on 

the vertical perspective than on the horizontal one. On the contrary for Pescara del Tronto video-based 

3DPCs present more uneven distributions, mainly form the vertical perspective; from the horizontal one 

video WFS model resembles at-nadir still imagery uniform distribution. To complement this, 3DPC 

incompleteness was measured by the percentage of empty cells in every model (Figure 26).  

Figure 25. Point density distribution boxplots. Maximum values are labelled for every 3DPC. Every data set is divided in 
four quartiles (Q) and the distribution of every quartile is presented by the box heights. 

Figure 26. Percentage of gaps from vertical and horizontal perspectives. From vertical perspectives oblique and video 
WFS (Wise Frame selection) models present more gaps, from the horizontal at-nadir and also WFS model 
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From this analysis Tainan video 3DPCs show high proportion of empty pixels specially for the horizontal 

perspective; while from the vertical video RFS model shows almost no gaps even compared to the reference 

model.  Besides, for Pescara del Tronto reasonably lower proportion of empty cells were found from the 

vertical perspective for at-nadir still imagery model; whereas by the horizontal perspective video-generated 

models presented less proportion of gaps, in particular the model generated using RFS video frames. For 

the last study area results are correspondent to the type of data, on the contrary Tainan results are more 

complex to interpret. From the vertical perspective, it has been seen in the generated maps and also by 

boxplots, how video RFS model presents a more uniform and more complete (i.e. less empty cells) 

distribution than oblique imagery one from the vertical perspective, which is alike Reference and at-nadir 

still imagery. On the other perspective however, video RFS model distribution is uneven and presents a 

large proportion of empty cells. WFS approach reduces the density distribution showing a more uniform 

patter from both perspectives, but has negative effects on empty cells proportion in the vertical perspective; 

RFS approach has no gaps on this perspective by applying WFS some gaps were created.     

 

Completeness was analysed in relation of 3D point density, distribution and gap percentage at this stage. It 

was observed that completeness is related to resolution, elevation and sensor perspective. For example, due 

to high elevation and only vertical perspective of at-nadir still imagery, 3D point density was low, even when 

resolution was considerably high. In general, it can be determined that the most complete 3DPCs are the 

ones generated from still oblique and video RFS data sets, for Tainan and Pescara del Tronto respectively. 

Video RFS in Tainan produced lower point density but better distributed 3DPCs than oblique imagery, at 

least from the vertical perspective; this can be also denoted in the density maps due to some occlusion zones 

that were not recognized with oblique imagery. Pescara de Tronto videos produced denser 3DPCs than in 

Tainan, and are also more complete from the horizontal perspective, however they present more gaps from 

the vertical one. This has to do with elevation and GSD on one hand, since Pescara del Tronto ones are 

closer to the ground (Table 2); on the other terrain surface is the cause of more gaps from the vertical 

perspective, since video platform only flew in front of the hill and could not make a footage of occluded 

parts between houses and hill side, especially in upper parts (see also point clouds density map, Figure 23).    

 

c) External accuracy analysis 

 

The analysis of external accuracy was done only using Tainan data and it shows consistent results regarding 

the previous assessments. In overall, oblique still imagery models show higher accuracy based on the mean 

distance to the reference model (Figure 27); which also matches with planar fitting and completeness 

accuracy. The combination of oblique and at-nadir still images are on the opposite the less accurate dataset, 

since this 3D model score shows a high distance to the reference, which additionally is largely deviated. As 

it was mentioned recurrently, this is caused due to displacement and duplication effects on the resulting 

3DPCs using this data set (Figure 12). Video distances are cause by occlusion zone in most cases, however 

also some large differences on point cloud accuracies were not related to the model quality itself, but to 

changes or perturbations on the area settings (e.g. presence of cranes or smoke respectively. Mainly related 

to video RFS model) (see Appendix 10, Appendix 11 and Appendix 12). 
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Accuracy of video frames derived 3DPCs is also consistent with observations of previous assessments. Both 

video models show larger mean distances with respect to the reference model and the same with their 

deviation, compared to those values obtained by still at-nadir and oblique imagery (Figure 28). This shows 

lower accuracy and precision for video data as it was also demonstrated using planar fitting assessment. A 

difference with planar fitting is the 3DPC standard deviation between WFS and RFS generated models. 

Since by planar fitting RFS indicated more precision, and instead in this assessment WFS shows less 

deviation; a possible cause of it is again smoke effects on RFS models, filtered out using WFS approach. 

Another reason for dispersion is frame redundancy, which was not corrected using WFS approach. 

 

Despite results here are evident, there are some aspects that should be also argued. First, applying this 

analysis to Pescara del Tronto, opposite results may arise due to the low point density of at-nadir imagery. 

Figure 27. Mean distance to the reference model (external accuracy). The closer to the reference 
the higher the accuracy, Still imagery complete (oblique and at-nadir) 3D model presents high 

deviation and the lowest accuracy due to model orientation errors 

Figure 28. Mean distance to the reference model (close up). Video 3D models achieved 7cm 
accuracy, not that far from still imagery ones, however precision is high due to noise generated 

from smoke and frame redundancy.  
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Also referring to completeness, it was also presented in that the 3DPC generated using oblique still imagery 

presented some gaps which were less evident in the 3DPC obtained using RFS or WFS video frames. Finally, 

although there is a difference it is of approximately three centimetres, the fact of considering quality of video 

data adequate or not will depend on the final propose of the 3D model reconstruction. The following 

sections analyse 3DPC usability and applicability on SDA activities in more detail. 

 

4.2.3. Damage features representability analysis 

 

a) Crack features analysis 

 

Based on the mesh models generated using the different 3DPCs derived from imagery and video data 

from both study areas, a preliminary visual inspection of the cracks was done. In the case of Tainan, the 

width of the crack was around four centimetres. The reference oblique model allowed to visualize a more 

defined crack compared to the video RFS mesh model (Figure 29). In the case of Pescara, the width of the 

crack was around five centimetres, and only video data was used to generate the mesh models due to the 

lack of façade information on the still imagery-generated model. The crack was easily detectable in the 

RFS video model compared with the WFS video model. Nevertheless, for RFS video model, only normal, 

and maybe medium resolutions could be used to identify cracks (Figure 30).   

 

 

 
  

Figure 29. Cracks recognition for Tainan. The crack can be identified in the oblique model, video (WFS Wise 
Frame Selection) model is not able to represent this feature 
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It is interesting to see that for Tainan, RFS video data is not useful to identify the cracks, but in the case of 

Pescara, RFS video data is the most useful source for crack identification, even for medium resolutions. 

This could be due to the higher resolution RFS video data has in Pescara compared to RFS video data in 

Tainan. For instance in Pescara the number of pixels per cell in the horizontal setting is around 16500 points 

per cell, while in Tainan, the density is lower, 12500 points per cell. The lack of oblique imagery does not 

allow a complete comparison between both study areas with respect to this kind of data. Further work is 

suggested in order to make a more complete quantitative analysis. For instance, it is suggested to digitalize 

the cracks based on the 3DPCs, and then to perform an accuracy assessment analysis between the identified 

crack and the different mesh models obtained from the image and video data settings. 

 

b) Structural failures analysis 

 

As part of structural failures, an analysis of gaps was performed. This analysis was done only for Pescara del 

Tronto since no gaps were found in Tainan. For Pescara, meshed models of a big building block were used 

for visual comparison. The results suggest that RFS video data allows a better identification of gaps 

compared with the at-nadir still imagery. As we can see in Figure 30, unlike RFS video data, 3DPCs from at-

nadir images capture less number of points. Figure 30 also shows the differences in distance between RFS 

video data and at-nadir images. As it can be seen, red and orange areas are points that are present in the 

video data but not in the at-nadir images. These points represent the potential depth that allows RFS video 

data to identify the gaps. This could be due to the fact that the density of points per cell is higher in the RFS 

video data (8781) than in at-nadir still imagery (516), but also the quality of the at-nadir still imagery has a 

less quality index than the RFS video data due to the emotion blur effect. 

 

 

 

 

Figure 30. Cracks recognition for Pescara del Tronto. The crack can be identified up to video RFS (Random 
Frame Selection) medium resolution and video WFS (Wise Frame Selection) original resolution models.  
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For the deformations analysis as part of structural failures, visual analysis was performed and was applied 

only in Tainan due to the different damage settings on both study areas. For instance in Tainan the debris 

after the earthquake event kept their original geometry (e.g. debris: blocks of walls) since the material of the 

building was pure concrete. In Pescara the debris was mainly composed of completely fragmented or 

shredded stone, so deformation was not possible to be analysed. As can be seen in Figure 32, when 

comparing the mesh models from the oblique still imagery and the WFS video data, it can be noticed that 

WFS video data allows a better representation of more detailed elements and deformations present in the 

building. 

Figure 32. Structural failure recognition (Tainan). RFS: Random Frame Selection. WFS: Wise 
Frame Selection 

Figure 31. Left: Structural failure recognition (Pescara del Tronto). Right: Distance between Video 
Random Frame Selection (RFS) and at-nadir still imagery models (m). 
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This is contrasted with the quantitative results obtained, where it is shown that oblique still imagery have 

higher density of points than WFS video data, and also the number of empty cells in WFS video data is 

higher than oblique still imagery. It is also important to notice that this visual inspection based on the mesh 

models are highly dependent on how these models were generated. This suggest that oblique still imagery 

could be a more complete type of data than WFS video data to see deformations, but this needs a further 

analysis. This analysis could be for instance, an accuracy assessment of the two types of data (i.e. oblique 

still imagery and WFS video data) based on a geometric shape (e.g. rectangular prism) could give a better 

idea of how far the points have moved from their original shape (before the earthquake). 
 
Also as part of structural failures, debris feature representation was analysed. This analysis was done only in 
Tainan, for the same reasons as in the deformation analysis. Based on the external accuracy assessment 
performed between the reference plane (i.e. reference tiled wall), and the video and imagery data it was 
observed that the distances of the oblique imagery data points to the reference plane were lower compared 
to the distance of the video data points to the reference plane (Figure 33). Also, based on the different planes 
generated from the video and imagery data, it was observed that imagery data had the same inclination angle 
than the reference plane (Figure 34). Unlike video data, which their inclination angle was one degree higher 
than the reference plane. The results for video and imagery data are very similar with respect to this analysis. 

 

 

Figure 33. Left: Inclined wall representation and comparison of oblique and video model fitted planes. Right: 
mean distances to reference model plane 

Figure 34. Left: Inclined wall analysed. Right: Differences between inclined walls using 
oblique and video WFS (Wise Frame Selection) 3DPCs 



3D SCENE RECONSTRUCTION AND STRUCTURAL DAMAGE ASSESSMENT WITH AERIAL VIDEO FRAMES AND DRONE STILL IMAGERY 

40 

c) Debris features analysis 

 
Debris was analysed in two parts. The first is the analysis of roughness, and the second, the analysis by visual 

interpretation. For the analysis of roughness, the CC roughness index was used (Figure 35). This index 

compares changes in elevation in a point surroundings. This allows to determine whether the level of detail 

of every generated 3DPC is able to identify the particular irregularity of the features. In the case of Tainan, 

oblique still imagery generated 3DPCs with a higher roughness index in the debris areas compared to the 

other data types. In Pescara del Tronto, video data (RFS) presented a higher roughness index in the debris 

areas than the other type of data. These results suggest that roughness could be related to the density of 

points for imagery and video data. In Tainan, a higher density of points is observed (around 1970 points per 

cell) for still oblique imagery compared to video data and at nadir imagery. For Pescara, the density of points 

is also high for RFS video data (1670 points per cell) compared to the other data types. 

 

 

Visual inspection was only done in Pescara del Tronto because in Tainan the irregularity of the terrain did 

not allowed the generation of mesh models (Figure 36). For Pescara, video frames and still imagery were 

used to produce mesh models at normal and low resolutions. Video data is still preferred also for visual 

inspection.  

 

 

Figure 35. Roughness indices as an indicator for debris representatibility  
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d) Spalling features analysis 

 

Finally, spalling zones were analysed. For Tainan, one spalled wall was identified in every 3DPC (Figure 37) 

and different mesh models were created from these 3DPCs. This analysis was not performed for Pescara 

del Tronto, since no representative objects were identified due to the highly-fragmented structure of the 

debris. In most of the models it was difficult to recognize all spalling characteristics, with exception of the 

reference model. The noise present in Tainan data such as present of people, smoke, and other elements 

(e.g. cars) could influence in the definition of spalling zones. It could be worthy to select different scenarios 

of spalling walls and try to compare the models again, maybe better mesh models are obtained, which can 

allow a better comparison of video and imagery data. 

Figure 37. Spalling feature mesh models for visual recognition (Tainan). RFS: 
Random Frame Selection. WFS: Wise Frame Selection 

Figure 36. Mesh models of debris areas from different 3DPCs for visual analysis of debris features 
representability. Video RFS (Random Frame Selection) 3DPCs are able generate clear debris areas even at low 

resolutions.  
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4.3. 3D model application analysis (debris volume change analysis) 

 

For all debris volume estimations, still at-nadir and oblique imagery was used (without refining). The results 

show a coherent downwards trend on debris volumes which goes from 38,000 to 2 m2 for still imagery 3D 

reconstructions (Figure 38).  

 

 

In order to analyse if the same approach can be followed for video data set, debris volume was calculated 

for one date using the 3DPC generated from video RFS data set and included in this time series. 

Additionally, two other relevant 3DPCs were included in this analysis, oblique still imagery and the reference 

models (Figure 39).  

 

 

Figure 38. Debris volume change estimations for Tainan computed with the complete (oblique 
and at-nadir) still imagery-based models.  

Figure 39. Debris volume comparison analysis. video model volume estimation is 
closer to Reference volume than the other models.  
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Comparing volume estimations with the ones calculated using video 3DPCs there is a large difference of 

around 8,315 m2. This difference should not be that large, since video data presumably collected the same 

day of the earthquake, where Search and Rescue (SAR) activities were taken place, therefore no debris was 

removed. It was observed in previous analysis, that the complete still imagery data set of Tainan (oblique 

and at-nadir) tends to generate displacement and duplication effects on 3DPCs. This denotes an 

overestimation of volumes. Besides, comparing video model estimations and the ones form the reference 

model shows only 136 m3 of difference; this is also less than the difference between the reference and the 

oblique still imagery model, 486 m3.    

 

Some more detailed remarks are important for this analysis. First that during the volume assessments, trend 

was not matching with the downwards trending at the beginning; this trend indicated where the problem 

was, and it was related to a mistake on the collection date information. This shows this application potential 

even for solving this kind of systemically mistakes. Second, some overestimations were made due to the 

presence of trucks and cranes, which were inside the computational area (see Appendix 13). However, the 

primary propose of this analysis was to compare the applicability of fast processing models using either still 

imagery and extracted video frames, for also fast debris estimations. Correction of this overestimations or 

model refinement comprises resource demanding activities, such as digitalization and MTP identification.  

 

It was demonstrated that in general the realization of this activity is more effective using video data frames. 

Even considering video low resolution and noise due to smoke, volumes computed with the video frames-

generated model ware fairly close to the reference. 
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5. CONCLUSIONS AND RECOMENDATIONS 

In this research the influence of video data artifacts and other quality characteristics on the generation of 

image-based 3D models has been determined (RQ1); the same was done regarding the application of these 

3D models on post-disaster SDA (RQ2). For both analysis, also still imagery was tested for a valid 

comparison of data quality influences on IBM (RQ3). Two study areas were used for most of the analysis, 

therefore also the influence of distinctive characteristics of the study areas was examined (RQ4). 

Additionally, the feasibility of 3D model application on a relevant post-disaster activity, such as debris 

volume estimation, using still and video data sets was determined (RQ5).  

 

Results demonstrated that all 3DPCs generated from video frames are characterized by high dispersion and 

less precision, but accuracy was close to still imagery ones. From video quality parameters, resolution did 

not represent a relevant limitation, since highly dense 3DPCs were generated due to proximity to the ground 

(GSD). Besides, frame redundancy effects were not well determined, since even when video frames were 

appropriately selected by WFS approach, dispersion did not decrease. It can be that this quality element had 

not much relevance on the 3DPC absolute quality, because in most cases WFS video frames produced 

imprecise and incomplete models. Nevertheless, this is arguable due to the application of a unplanned 

methodology due to the unsatisfactory results obtained from the original WFS approach. Video artifacts, 

such as motion-blur effects instead were clearly identified during the direct quality assessment; unexpectedly 

in this case low quality indices were associated mainly to at-nadir still data set. In relation to external accuracy, 

video-based generated models were in average alike the ones obtained by oblique imagery; oblique imagery 

accuracy was 1 cm, and video frames (RFS) 7 cm, the relevance of these 6 cm of difference will depend on 

the application. Analysis on SDA application on one hand demonstrated favourable results for the analysis 

of debris, structural failures and cracks, with exception of Taiwan video, which has higher flight elevation 

and GSD (Table 2).  On the other hand, features like spalling and wall inclination were not properly 

characterized by video frames in the 3DPCs. In comparison to still camera more advantages were found in 

comparison to at-nadir imagery, oblique imagery performed better for inclined walls characterization, but 

neither could not distinguish spalling features.  

Quality of video and oblique video by the distinctive characteristics of study areas was influenced in two 

aspects. First, influence of smoke in Tainan did influence on image quality index values for video data, and 

consequently on video-generated 3Dmodel accuracy and precision. Second, topography also influenced on 

the gap percentage and model orientation. In Pescara, more gaps were produced even considering video 

frames lower elevation and GSD; this is due occlusion effects on the areas between hill sides and houses 

which where larger upwards. On the opposite, a better orientation of 3D models was obtained due to the 

variate localization of 3D GCPs on the Z axis (i.e. height); In Tainan this was more difficult due to the 

terrain flatness and effects were mainly reflected on displacement and duplication effects on the oblique and 

complete still imagery 3D models, respectively.  

 Debris volume change estimations were done uniquely using still imagery complete dataset. The results 

were found logical due to the downwards trend of debris change, however when compared to video based 

estimations a difference of almost 8,000 m3 was determined. Due to the know geometrical errors of the still 

imagery 3DPC, the reference and oblique 3D models were used for an additional analysis. It was thus 

determined a higher accuracy in this application for Video data which is 136 m3 below the estimated by the 

reference model; less even than the oblique imagery model which in turn overestimated 486 m3. 
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Likewise, some recommendation for further research were defined based on the main gaps and the 

conclusions reached in this research: 

 A deeper analysis on the usability for SDA could be done using more elaborated feature-specific 

techniques for damage feature representations. The results found here can be used as guide to 

focus on the ones can be at least visually detected on 3D models.  

 A synthetic experiment where even higher video resolutions (4K) and other data acquisition 

parameters are specifically tested could support conclusions arrived in this research. Thus also 

more data such as TLS or ground-based SDA classifications can be used as benchmark. 

 Another interesting parameter to analyse is geolocalization or 3DPC registration using 3D GCPs 

from open sources. Nonetheless, spatial limitations of current open geo-information sources for 

3DPC identification have to be considered. 

 Image quality index showed worthy results for frames selection, a more elaborated WFS approach 

using as complement efficient similarity filters could be tested developed. 
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APPENDIXES 

 
 

 
Appendix 1. Noise due to smoke in video-generated 3DPC 

 
Appendix 2. MTP selection for refining procedure (Befor and after refining) 
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Appendix 3. Plane surfaces used for planar fitting analysis 

 

 
Appendix 4. Noise reduction with resolution degradation (medium resolution) for still imagery model. Low resolution instead 

loses also essential information 
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Appendix 5. Horizontal point cloud density maps for Tianan datasets 
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Appendix 6. Horizontal point cloud density maps for Pescara del Tronto datasets 
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Appendix 7. Vertical point cloud density map for Tainan datasets 
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Appendix 8. Vertical point cloud density map for Pescara del Tronto dataset 

 

 
Appendix 9. Dots used as mask for point density distribution and empty cells proportion estimations 
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Appendix 10. Video main differences with reference model. Up: noise due to smoke perturbation. Down: Occlusion zones 

 
Appendix 11. Differences due to changes in scenario settings. A crane was mistakenly modelled only for one data set. 
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Appendix 12. Point cloud distance to the reference model for most video and still imagery generated models. Problems such as 

occlusion, changes in scenario settings and smoke perturbations, causes the main differences for video data. 
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Appendix 13. Volume calculation overestimation example, made by blue crane. 

 


