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ABSTRACT 

Hyperspectral imaging spectroscopy has successfully been used in geologic and alteration mineral mapping 
at a broad range of scales using an airborne, field and laboratory-based spectrometers. Many studies have 
been conducted to highlight effects of mainly, spectral and limited, spatial resolutions on mineral 
identification and quantification on the hyperspectral images acquired by spaceborne and airborne sensors 
but not at laboratory level.  The research aims to inspect the effects of spatial resolution on mineral 
identification and quantification using laboratory imaging spectroscopy. “What are the influential parameters of 
the mineral that cause the differences in mineral classification and quantification?” is a fundamental and motivational 
question in the research. 
Hyperspectral images of 26 rock samples collected from the test site, the Ann Mason porphyry copper 
deposit, were acquired in the shortwave infrared wavelength range using two different spectrometers at a 
26µm and 400µm spatial resolutions. Representative, SWIR active mineral endmembers were extracted 
using the Spatial Spectral Endmember Extraction (SSEE) algorithm.  The Spectral Angle Mapper (SAM) 
and the Iterative Spectral Mixture Analysis (ISMA) algorithms were used to quantify mineral abundances 
in the rock samples at a pixel and a sub-pixel level, respectively.  
Comparisons of mineral proportion estimated by SAM and ISMA were made between the two spatial 
resolutions. Results show that average SWIR reflectance of the mineral (bright vs. dark minerals) is the 
main influential parameter that causes some differences in mineral quantification. Thus, endmembers in 
the SWIR range were divided into two groups for further comparative analysis, namely a high reflectance-
brighter minerals (illite, muscovite, kaolinite, epidote) and low reflectance-dark minerals (actinolite, 
chlorite, tourmaline). Subsequent correlational analysis of mineral abundances between scales and also two 
quantification methods based on the two group minerals revealed that mineral abundance of brighter 
minerals increases on the coarser spatial resolution whereas the mineral proportion of low reflectance 
mineral decreases. This finding implies that high reflectance mineral’s possibilities to be detected on the 
coarser resolution image are relatively high compared to low reflectance mineral. Results of mineral 
quantification by the SAM and ISMA showed relatively good correlation at the same spatial resolution 
thus these two methods can be selected based on the purposes as mineral classification or unmixing. 
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1. Introduction 

1.1. Research Background 

Porphyry copper deposits are formed as a result of the hydrothermally altered, intermediate to felsic 
porphyry intrusion interaction with country rock and accumulating high tonnage, greater than 100 million 
tones and low to moderate grade ores, 0.3-2.0 percent of copper (John et al., 2010). Hydrothermally 
altered fluid intrusion generates several, distinct zoned alteration and mineralisation patterns upward and 
outward from the source (Sillitoe, 2010). Generally, following hydrothermal alteration patterns are 
developed namely: high-temperature, proximal, alkali-rich mineral assemblages - potassic, sodic, sodic-
calcic; and distal, pyrite-rich acidic mineral assemblages - advanced argillic, sericitic, and propylitic.  
 
These alteration mineral assemblages in potassic, advanced argillic, sericitic and propylitic zones such as 
phyllosilicates, carbonates, sulphates, iron oxides and hydroxides have distinct spectral absorption features 
in the visible-near infrared (VNIR) and the shortwave infrared (SWIR) wavelength regions due to 
electronic and vibrational processes (Bakker, 2004). While, non-OH -bearing silicates such as quartz, 
feldspar, garnet and pyroxene have characteristic features in thermal infrared (TIR) range due to the 
Reststrahlen band (Vaughan et al., 2003)caused by the silicate framework in their chemical structure.  
 
Porphyry copper deposits are supplying almost three-quarters of copper, and half of the molybdenum 
(Sillitoe, 2010) and are being a main target of investors and explorationists due to its huge size of ore and 
economic value for long-term mining. High grade, economically potential copper mineralisation is hosted 
mainly in potassic and phyllic (sericitic) alteration zones (Hosseinjani Zadeh et al., 2014). Thus, 
identification and targeting of these alteration zones are important for an early stage of the exploration.  
 
An alteration mineral map has been a guiding tool for every stage of the discovery process for porphyry 
copper deposit due to its zoned distribution of alteration minerals. Creating a good quality alteration 
mineral map through conventional mapping methodologies requires a significant amount of time and 
investment. Techniques such as reconnaissance fieldwork, petrography (thin section analysis), mineralogy, 
and geochemistry have to be integrated for alteration mapping and furthermore, a successful exploration 
program (Ramakrishnan & Bharti, 2015). Identification and characterisation of alteration minerals have 
been accomplished studying characteristics and structure of minerals through petrographic microscopy on 
a thin section of rock samples. The mineralogical information extracted from microscopy analysis 
becomes a basis for delineation of hydrothermal alteration zones. The polarising microscope is utilised in 
recognition of individual minerals, its abundance, grain size and texture in the rock using plane-polarised 
and cross-polarised light (Barker, 2013). Thin section analysis is a time consuming, requires extended long 
time and effort for sample preparation, more labour force and human intervention.  
 
An introduction of multispectral sensors such as Landsat, ASTER with a spatial resolution of around 15-
30m, in regional lithological mapping and mineral exploration sector enabled surface compositional 
mapping more rapidly and efficiently covering vast extent of the area. Multispectral sensors were not able 
to achieve detailed information on the mineral composition and relative abundance of mineral 
constituents due to its poor spectral and spatial resolution.  However, it utilised in porphyry copper 
exploration efficiently to highlight prospective areas affected by hydrothermal alterations.  On the 
contrary, airborne hyperspectral sensors like AVIRIS, HyMAp with a spatial resolution of approximately 
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5m and have hundreds of adjacent channels in the wavelength range producing high quality, almost 
laboratory-like spectrum for per pixel of the image and allows to determine the composition of surface 
material quantitatively (Ramakrishnan & Bharti, 2015).  
 
Field-based, portable shortwave infrared spectrometers have been introduced in the mineral sector since 
the mid-1990’s (Mathieu et al., 2017) and used in mineral identification as a ground true validation tool for 
the remotely identified minerals using airborne or spaceborne sensors.  
Even though field or lab-based spectrometers have the ability to discriminate hydrothermal alteration 
minerals in a shorter time with limited sample preparation compared to thin section analysis; it has some 
limitation, for instance, the field of view for sample analysis is limited, only a few square centimetres. The 
penetration depth usually varies between 30 and 100μm pertaining to the wavelength range (Mathieu et al., 
2017). More recent development, HyLoggingTM, an automated drill core line-profiling system was 
introduced to speed up drill core characterisation and mineralogical logging process. The spectrometer 
collects hyperspectral reflectance data in VNIR, SWIR and TIR wavelength ranges and equipped with an 
automatic mineralogical interpretation software (Schodlok et al., 2016). 
 
Rapid, mineral mapping system, laboratory hyperspectral scanning were established in the late-2000s and 
had hundreds of contiguous channels in the wavelength range producing high-quality spectra for per pixel 
of the image that has X and Y spatial dimensions and an electromagnetic spectral dimension Z. It has 
enabled to scan and investigate drill core samples at a much higher spatial resolution and larger field of 
view. This technique has bridged the gap between point measurement by the spectrometers and the image. 
In the beginning, the technique was mainly used for drill core analysis. 
 
Several studies have highlighted the use of laboratory-based hyperspectral images of hand sample and drill 
core in mainly SWIR wavelength range for mineralogical identification and quantification. Mathieu et al.( 
2017) mapped alteration minerals and petrographic textures like bedding, foliation and veins on drill core 
samples from unconformity-related uranium deposit and utilised petrography as a validation tool. 
Greenberger et al.( 2015) used hyperspectral imaging of hand rock sample along with chemical and 
mineralogical analysis to characterise aqueous history of basaltic rock. A limited number of studies were 
carried out using  LWIR imaging spectrometry for mineral mapping.  Kuosmanen et al. (2015) used 
SisuROCK instrument for LWIR image acquisition of the hand rock sample and drilling powder and 
analysed the images for determination of ore types, host rock classification and alteration mineral 
identification. 
 
Previous studies have demonstrated that enhanced mineralogical information can be extracted using 
laboratory imaging spectrometers which can operate at different scales from microscopic to core box scale 
depending on the purpose and produces hyperspectral images with different pixel sizes. A good quality 
hyperspectral images can be acquired at higher spatial resolution however it results in the number of pixels 
in the image and the amount of data subsequently extended time for the image processing. It is necessary 
to understand trade-off of information needed and time required to process, also the cost in order to 
make a selection of the spatial resolution for the research. 
 
 
 
 
 



EVALUATING EFFECTS OF SPATIAL RESOLUTION ON ESTIMATION OF MINERAL ABUNDANCE USING PROXIMAL IMAGING SPECTROSCOPY 

3 

1.2. Research Problem 

Many studies have been concentrated mainly on the discrimination ability and the effect of the spectral 
resolution of the hyperspectral sensors on the outcome. A limited number of studies have highlighted the 
impact of the spatial resolution on mineral mapping using airborne and spaceborne sensors (Kruse et al., 
2011), but none on the spectral resolution of laboratory hyperspectral images. It has already proven that a 
different number of mineral assemblages is obtained when studied by various hyperspectral imaging 
analysis according to their spectral and spatial resolution. E.A Cloutis (1996) predicted that an 
improvement in spatial resolution provides more pure pixels in terms of mineralogy and consequently 
affects the spectral quantification results.  
 
Laboratory hyperspectral imaging spectrometry has been offering an improved opportunity to map 
mineralogy of rock samples in great detail regarding spatial resolution. The technique has been mainly 
used in the VSWIR, and limited in LWIR wavelength range individually. However, no research has 
conducted yet to demonstrate the effect of spatial resolution. Improved understanding of spatial 
resolution effect on the mineral identification by the laboratory hyperspectral imaging system is essential 
for potential customers or researchers to make a selection of appropriate equipment for the desired 
outcome within the timeframe.  
 
This research will study the effects of two selected spatial resolutions (micro-scale of 26µm pixels and 
mesoscale of 400µm pixels) on mineral identification and quantification in the SWIR wavelength range. 
Ann Mason porphyry copper deposit was selected as a test study area due to its broad hydrothermal 
alteration zone and infrared active mineral composition.  

1.3. Research Objective 

1.3.1. Main Objective 

The main purpose of this research is to compare classification and unmixing results on the laboratory 
hyperspectral images of the rock samples in the SWIR range at the different spatial resolutions to 
investigate the effect of spatial resolution on the identification and quantification of hydrothermal 
alteration minerals. 

1.3.2. Specific Objectives 

 To determine shortwave infrared active minerals on the laboratory hyperspectral images of rock 
samples collected from the Ann Mason copper deposit 

 To classify hyperspectral images of the rock samples into mineral spectral classes and quantify 
mineral abundances in the rock samples 

 To investigate which influential parameters (for example, albedo, grain size) of minerals 
contribute to the differences defined in the classification results at different spatial resolutions  

 To determine which longwave infrared minerals can be identified on hyperspectral images from 
the study area and quantify mineral abundance in the rock sample 

1.4. Research Questions 

1. Which infrared active minerals can be recognized on hyperspectral images of rock sample from 
the study area at both a 26µm and 400µm spatial resolutions in the SWIR range?  

2. Is the spatial distribution of mineral patterns consistent with each other at the two different 
spatial resolutions by classification and or unmixing?  

3. What are the influential parameters of the mineral that cause the differences in mineral 
classification and quantification? 
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4. How does the spatial resolution of the hyperspectral image influence the mineral identification 
and quantification in SWIR wavelength range?  

5. Which rock-forming minerals can be identified on hyperspectral images of rock sample from the 
study area in the LWIR wavelength range?  

6. What are the advantages and drawbacks of laboratory hyperspectral imagery on mineral mapping 
compared to thin section analysis? 

1.5. Hypothesis 

 A larger number of shortwave infrared active minerals will be identified at a 26µm spatial 
resolution than 400µm spatial resolution 

 Mineral patterns on the hyperspectral image of the rock sample at 26µm spatial resolution are 
expected to be similar in shape but more detailed than 400µm spatial resolution as the result of 
classification. 

 Fractional abundance of the minerals estimated by the ISMA at a 26µm spatial will be more 
reliable than at a 400µm spatial resolution 

1.6. Test study area  

The test study area, the Ann-Mason porphyry copper deposit is located in the Yerington district, Nevada 
(Figure 1). This district is host to several porphyry copper-molybdenum, copper skarn, iron oxide and 
copper sulfide ores. The study area is dominated by the north-south trending Singatse range with broad 
outcrop coverage and low vegetation cover (Cudahy et al., 2001) 

1.6.1. Geological setting  

The Ann-Mason porphyry copper deposit is hosted within granite porphyry dyke swarm of middle 
Jurassic Yerington batholiths. Hydrothermal alteration assemblages are pervasively developed including 
outer prophylitic; potassic alteration associated with main copper mineralization and late-stage chloritic, 
sodic and sericitic alterations.  
The oldest exposed rock in the district, McConnell Canyon volcanic is Late Triassic, a 1300m thick 
sequence, composed of andesite, rhyolite and are overlain approximately, a 1800m thick Late Triassic to 
Middle Jurassic volcaniclastic, carbonate and sedimentary rocks-gypsum and aeolian quartzite (Figure 1).  
 
Main volcanic, plutonic and deformation events in the Yerington district were occurred in Middle Jurassic 
(170-165Ma) when the magmatic arc formed along the western margin of North America as result of the 
subduction to the west. Magmatism started with the eruption of Artesia Lake intermediate to silicic 
volcanics and was subsequently followed by cogenetic Yerington batholiths at around 168Ma. Mesozoic 
rocks are overlain unconformably by Oligocene silicic ignimbrites and Miocene andesite flows.  
 
The Yerington batholiths consist of three significant intrusions from oldest to youngest McLeod Hill 
quartz monzodiorite, Bear intrusion and the Luhr Hill intrusion.  Early McLeod Hill quartz monzodiorite 
dyke-like bodies composed of hornblende and biotite intruded into overlying volcanic and produced 
endoskarn and metasedimentary hornfels in the contact aureole. The second, Bear intrusion composed of 
fine-grained granite as a roof and hornblende quartz monzonite at the border intruded into the McLeod 
Hill body and the volcanics locally and was created hydrothermal alteration-weak potassium silicate and 
sericitic alteration with pyrite mineralisation. These early two intrusions McLeodHill and Bear constitute 
almost 95 percent of exposed the Yerington batholiths. However, no known copper mineralisation related 
to these intrusions were identified (Dilles & Einaudi, 1992). The youngest unit, Luhr Hill intrusion is 
composed of a deeply emplaced, medium to coarse-grained K feldspar megacryst bearing hornblende-
biotite granite.  
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A series of granite porphyry dykes striking North West 70º and dipping to north 45º (Figure 1), co-
genetically associated with Luhr Hill intrusion is responsible for copper mineralisation at the Ann Mason 
deposit. The composition of the dykes is 50% plagioclase phenocryst, quartz, biotite, hornblende and 1cm 
long, K feldspar in an aplitic groundmass.  
 
During the Oligocene and early Miocene, approximately 0.5-2km thick ignimbrites and lava flows covered 
the Yerington district and overlain by middle Miocene aged andesitic lava. Closely spaced normal faults 
dipping to the east were formed during the Miocene andesitic magmatism and cut by two sets of east-
dipping normal faults. As a result of down-to-the-east normal faulting, Mesozoic rocks hosting the copper 
mineralisation were tilted nearly 60º to 90º westward thus at present exposures represent a complete 
vertical cross section of Jurassic hydrothermal system, from 1 to 6km in paleodepth (Dilles et al., 2000).  

 
Figure 1. The map is showing the location of test study area, Ann Mason porphyry copper deposit,  its simplified 
geology (Dilles, 1987) and location of samples that were analysed in the research. 

1.6.2. Alteration and Mineralization 

Two different types of fluid sources were present namely a magmatic fluid and sedimentary brine 
(formation water).  The fluids differ each other by its point source, time, temperature and flow path 
positions. Magmatic fluids are genetically related to the youngest intrusion, the Luhr Hill granite of the 
Yerington batholiths and are responsible for early, high-temperature potassic alteration and low sulphur 
copper-iron sulphides. The fluid flows were upward and outward from the porphyry. Non-magmatic 
sedimentary brine was associated with trapped water within the evaporate-bearing Jurassic-Triassic 
sedimentary sequence, heated by the Yerington batholiths and caused the late, low-temperature sericitic 
alteration and formation of pyrite-rich sulphide assemblage. The flow paths directions were inward to the 
batholiths and upward (Dilles et al., 2000). 
Hydrothermal alteration patterns at the Ann-Mason deposit are divided into broad categories based on 
crosscutting relations between veins and relative age: pre-main-stage, main-stage, and late-stage alteration.  
Pre-main-stage salite and garnet endoskarn usually occur at contacts of quartz monzodiorite and 
metasedimentary wall rock. The main-stage is composed of prophylitic albite+epidote+actinolite+chlorite, 
sodic-calcic (oligoclase+actinolite+sphene) and potassic (K-feldspar+biotite) alterations. Late-stage 
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alteration includes later tourmaline breccias and sericitic, and earlier sodic and chloritic alterations (Dilles 
& Einaudi, 1992). Alteration mineral patterns at the Ann-Mason deposit are illustrated in Figure 2.  
 
Pre-Main Stage Alteration 
Endoskarn alteration consists of hydrothermal garnet, calcic plagioclase and clinopyroxene (McLeod Hill). 
Two types of endoskarn assemblages are present: garnet endoskarn and salite endoskarn. Mineral 
composition of garnet endoskarn is very similar to the typical endoskarn and hosted in breccia spatially 
near Triassic limestone (Figure 1 and Figure 2). Salite endoskarn is characterised by an alteration of 
feldspar to milky plagioclase and mafic minerals to salitic clinopyroxene and sphene. Salite endoskarn 
occur in quartz monzodiorite and randomly in granite porphyry dykes. 

 
Figure 2. The map is showing an alteration mineral map of Ann-Mason study area and location of samples that were 
analysed in the research. (Dilles & Einaudi, 1992) 

Main Stage Alteration 
Propylitic alteration 
Propylitic is most widely distributed alteration and extends up to 4km in paleodepth. The main mineral 
composition is actinolite-chlorite, characterised by hornblende partially replaced by actinolite, biotite by 
chlorite+rutile and plagioclase altered to the albite+epidote+sericite assemblage. Potassium feldspar and 
sphene are intact in the zone. 
Sodic-calcic alteration 
Main characteristics of sodic-calcic alteration are bleached appearance, replacement of K feldspar by Na 
plagioclase and epidote; hornblende and biotite replaced by actinolite and higher sphene content. The 
alteration occurs along the granite porphyry dykes and near the contact of Luhr Hill granite cupola. The 
alteration is classified into several groups based on distinctive mineral assemblages and structural control: 
S2-oligoclase-actinolite; weak sodic-calcic: a transition between prophylitic and more intense sodic-calcic 
alteration and fringe sodic-calcic assemblage in porphyry dykes (Dilles & Einaudi, 1992)(Figure 2).  
Potassic alteration 
Potassic alteration is genetically and spatially associated with Luhr Hill granite cupola and granite porphyry 
dyke swarms. It extends from the Tertiary to 6km in paleodepth. The main characteristic mineral is 
hydrothermal biotite, replaced hornblende and locally plagioclase replaced by K feldspar.  Potassic 
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alteration shows the zoned pattern from the fringe areas to central ore zone: weak biotite (WB), biotite (B) 
and biotite- K feldspar (Figure 2).  
 
Late Stage Alteration 
Late stage alterations at Ann Mason deposit are earlier sodic and chloritic alteration, sericitic and 
tourmaline breccias that marks the end of hydrothermal evolution at the Ann Mason deposit.  
Sodic and chloritic alteration 
Dominant characteristic alterations include: K feldspar is converted to sodic plagioclase +quartz and 
biotite and hornblende are replaced by biotite-vermiculate, chlorite and or sericite.  Albite-sericite (A2) 
represents late, intense sodic alteration spatially centred on dyke intrusion.  
 
Sericitic alteration and tourmaline breccias 
Sericite and quartz are replaced the igneous rocks along the faults. Tourmaline breccias and sericitic 
alterations are spatially associated. Breccia groundmass consists of quartz+tourmaline+1%pyrite +trace 
rutile. Clasts are composed of sericitic, sodic assemblages of the Yerington batholiths. 
  
Mineralization 
The Ann Mason deposit contains 495 million tons of hypogene, sulphide ore body.  Average grade of the 
ore is 0.4 wt % copper and 100ppm molybdenum. The ore in hypogene Cu-Fe sulphides and quartz veins 
are zoned and characterised by >2% copper. Central zone is composed of chalcopyrite > bornite > 
molybdenite (1 vol % sulphide). Outwardly chalcopyrite zone and outermost is pyrite zone (Dilles & 
Einaudi, 1992). 

1.7. Thesis Structure 

This thesis is divided into five chapters. 
Chapter 1, Introduction outlines research background and defines research problems, research objectives, 
research questions. In the end, test study area is briefly described in terms of geology, alteration and 
mineralisation.  
Chapter 2, Datasets and Methodology, introduces main datasets used in the research and explains how 
the research carried out using specific methods commencing from pre-processing hyperspectral images, 
next representative minerals collection and finally mineral mapping and quantification.  
Chapter 3, Results, demonstrates all achievements extracted as result of the research. 
Chapter 4, Discussion, considers main findings in results chapter answering research questions.  
Chapter 5, Conclusions and Recommendations, provides a summary of the research and gives a final 
comment. 
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2. Datasets and Methodology 

2.1. Datasets and equipment 

Several types of equipment and software were served as a primary power throughout the research.  

2.1.1. Sample 

A total of 26 rock samples (off-blocks) were selected for this study that was initially collected from Ann-
Mason porphyry copper deposit during Dilles 1980’s exploration work (Figure 2). Majority of the samples, 
20 out of 26 from prophylitic and the rest of them were collected from sericitic and sodic alteration zones 
(Figure 2) developed as result of several intermediate to acidic intrusions of Yerington batholiths. 
Therefore, these off-blocks were previously analysed by petrology using optical microscopy during the 
previous exploration, and its descriptions were utilised to validate the result of mineral fractional 
abundance estimation and classification of hyperspectral images for an accuracy assessment.  

2.1.2. Equipment 

Two different spectrometers, Spectral camera SWIR and SisuRock hyperspectral imaging scanners were 
utilised for the image acquisition of the rock samples in the SWIR and LWIR wavelength ranges. The 
imaging spectrometers characteristics are depicted in Table 1. 
 

Specifications Spectral camera 
SWIR  

Spectral SWIR  
camera 

AISA OWL LWIR 

laboratory location ITC BGR 
spectral range 1000-2500nm 986-2500nm 7.5-12.5µm 
spectral resolution FWHM 12nm 12nm 100nm 
spectral sampling 5.6nm 5.7nm 48nm 

number of pixels 384 pixels 384 pixels 384 pixels 
signal-to-noise ratio (peak) 900 : 1 1050 : 1 ~200-500 
lens OLES Macro OLES 15 
focal length 73.3mm 15mm 
F number F/4 F/2 
FOV 7.5º 32.3º 

Table 1. Hyperspectral imaging spectrometers specifications are listed. 

The spatial resolution defines the discriminating ability of the spectrometer that can be directly linked to  
The field-of-view (FOV) calculated from lens focal length, and slit length (spatial dimension) and 
measurement distance (the height) (Hyvärinen). 
The Spectral SWIR camera on a SisuChema scanner at ITC has an OLES MACRO lens, a limited distance 
to sample, narrow field of view and produces an image with high spatial resolution (26 µm). On the other 
hand, the spectral SWIR camera on the SisuRock scanner at BGR was equipped (in this case) with an 
OLES15 lens for the acquisition of coarser spatial resolution of 400µm. 
In the SWIR wavelength range, spectral resolution and spectral sampling of the two spectrometers were 
same as depicted in Table 1.  
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2.1.3. Software 

 HypPy3, Hyperspectral Python for pre-processing of hyperspectral images and wavelength 
mapping 

 ENVI version 5.3.1  for image processing, endmember library compilation, classification and 
statistical analysis 

 SSEEu, an IDL-based script  provided by Derek Rogge for endmember collection across several 
“flight lines” (or sample scans) 

 EnMAP-Box software for spectral unmixing - mineral fractional abundance estimation 
 ArcGIS Desktop application 10.5 for region of interest file creation  and various map compilation 
 Microsoft Office Suite- Microsoft Word and Excel for reporting and graphical chart creation 

2.2. Laboratory imaging spectroscopy 

 
Hyperspectral images of the rock sample were acquired at two different spatial resolutions in the SWIR 
range. For the spatial resolution of 26µm, hyperspectral images were collected only in the SWIR while for 
a spatial resolution of 400µm, hyperspectral images were extracted both in the SWIR and LWIR ranges.   

2.2.1. Image acquisition at ITC 

Hyperspectral image of the rock sample at a 26µm spatial resolution was collected using the SWIR 
Spectral Camera in the ITC GeoScience Laboratory, Enschede, Netherlands (Figure 3). It is a push-broom 
imaging spectrometer and acquires a full range shortwave infrared spectrum, with a spectral sampling 
interval of 5.7nm between 1000 and 2500nm, in 288 spectral bands for 384 columns (Table 1). The 
measurement setup is integrated with the white reference target and dark current signal. Each sample was 
placed in the box filled with sand to create a horizontal surface (Figure 4). The spectrometer’s entrance slit 
is 30µm, and minimum working distance is 10cm for the macro lens used. The spectrometer’s field of 
view angle is 7.5º and imaged line is relatively narrow. Thus, each sample was measured in three strips. 
Mineral patterns all over the measured three strips were similar for all samples thus the middle strip was 
selected for further pre-processing and processing steps to simplify and speed up image processing. 
 

 
 

 
 

Figure 3. SWIR Spectral Camera at the 
ITC 

Figure 4. Sample block placed in 
the box for the measurement 

2.2.2. Image acquisition at BGR 

Hyperspectral images of the rock samples at a 400µm spatial resolution were acquired in the Federal 
Institute for Geosciences and Natural Resources (BGR), Hannover, Germany using the SisuRock, push-
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broom type, high-speed hyperspectral imaging scanner with the exchangeable front lens. It is equipped 
with spectral VNIR-SWIR (380-2500nm) and AISA Owl-LWIR (7.7-12.5µm) cameras. In this research, 
images acquired only in the SWIR and LWIR wavelength ranges were utilised.  
The SWIR and LWIR spectrometers were placed parallel in the laboratory and detected the reflected light 
from the sample simultaneously. The lens selected for the SiSuROCK spectrometer in this research had a 
larger field of view (32.3º) compared to ITC’s spectrometer, and thus, 8 to 10 samples were set together 
on the wooden board and measured simultaneously. Stamped clay and a presser were utilised to make all 
sample surfaces horizontally equal on the wooden board as shown in Figure 6. 
Specim’s AISA Owl, the first compact hyperspectral imager in the LWIR range was used to acquire 
hyperspectral images of rock samples in wavelength ranges from 7704nm to 12571nm in reflectance, with 
a 48nm spectral resolution.  
 

  
Figure 5. SisuROCK hyperspectral imaging scanner at the 

BGR 
Figure 6. Horizontally equalised samples placed on 

the wooden board 

2.2.3. Image pre-processing 

Hyperspectral images in the SWIR range were converted to reflectance calibrating with its own white and 
dark reference. The same pre-processing steps, namely spectral and spatial subset, de-striping and filtering 
were performed on both hyperspectral images at different spatial resolutions to improve image quality.  
Statistics, masking pixels with calibration issue with “not-a-number” and visual inspections were 
performed to highlight noisy bands, line striping and random noise. The following pre-processing steps 
were done per sample in SWIR: 
 
A spectral subset was used to deduct bands in the shorter wavelength than 1200nm and the bands in the 
longer wavelength than 2450 nm due to their higher standard deviation and reflectance drops.  Therefore, 
in those wavelength ranges, mineral spectra have a lower reflectance, and that might affect further mineral 
classification and fractional abundance estimation. Previous studies confirmed that most matching and 
classification algorithms, for instance, Spectral Angle Mapper is highly affected by the overall general 
shape of the spectra (Hecker et al., 2008). Finally, the hyperspectral image at a 26µm spatial resolution has 
224 bands covering the wavelength range from 1198.37 nm to 2451.14nm. While at a spatial resolution of 
400µm, the hyperspectral image of the rock sample has 222 bands between 1203.10nm and 2450.47nm. 
 
Resize function in ENVI dedicated for the creation of a new image of any size was used for middle strips 
of the hyperspectral image at a 26µm spatial resolution to exclude irregular edges at the top and bottom 
parts of the rock sample with the aid of rectangular shaped spatial subset in the function. The 
hyperspectral image at a 400 spatial resolution in the SWIR range was not spatially subset, and the full 
image was pre-processed. 
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De-striping filter algorithm in HypPy3 software package was utilised to replace or adjust bad or dead 
pixels caused by small miscalibration that were revealed by visual inspection. The algorithm was run twice. 
The first run was done to list bad pixels using default values 0.1, and 0.05 for “Max mean differences” and 
“Max standard deviation of differences” respectively and meanwhile in an attempt to gather overall 
estimate on the image quality, and also bias. The second run of the de-striping filter, “replace bad pixels” 
checkbox was activated, and all NANs (Not-a-Number) were replaced by the mean value of its 
neighbouring eight pixels.  
 
Finally, Mean 1+5+1 neighbourhood filtering in HypPy3 software was applied to the hyperspectral images 
to get rid of the small noise on the spectrum. 
 
Hyperspectral image of the rock samples in the LWIR range was spectrally subset from 8000 to 12000nm 
in the wavelength region due to most abundant rock-forming minerals display characteristic features 
within this range. Since the emissivity of the sample surface was measured in reflectance, it needed a 
conversion to get ready for endmember collection that was assisted with a reference library in emissivity. 
Reflectance images were converted to emissivity using Kirchoff’s Law (Kuenzer & Dech, 2013) even it is 
not directly applicable - spectral emittance at a certain wavelength is equivalent to its absorbance at the 
same wavelength. Equation used for the conversion is: Emittance=1-Reflectance 
 

2.2.4. Region of interest file creation 

 
In preparation for a proper comparison between two different spatial resolutions, it was required to 
generate a region of interest file that illustrates the identical area on the sample in both hyperspectral 
images. So, the hyperspectral image of the rock sample at a 26µm spatial resolution was spatially 
georeferenced on the hyperspectral image at a 400µm spatial resolution using a non coordinate system in 
ArcGIS Desktop application 10.5. A colour stretching was applied to both images to facilitate visualisation 
of mineral patterns for smooth georeferencing as shown in Figure 7. Following the georeferencing, a 
polygon shapefile delineating a hyperspectral image at a 26µm spatial resolution on 400µm spatial 
resolution image was created.  
Start corner coordinates of the image for ArcGIS and ENVI applications are different. A corner X, Y 
coordinate for ArcGIS starts from the lower left corner, on the other hand, ENVI starts from the upper 
left corner. In that case, it was not possible to directly import the polygon file generated in ArcGIS into 
ENVI. Corner points of the polygon file were automatically extracted using Add X Y coordinates 
algorithm in ArcToolbox application (Figure 7). In the end, a region of interest file was generated in 
ENVI using the corner coordinates converted to the ENVI system. 

 
Figure 7. On the left, 
Sample Y681’s 
georeferenced image 
at a 26µm resolution 
is overlain on the 
image at a 400µm 
scale.  On the right, 
the image at a 400µm 
spatial resolution is 
shown alone.  Colour 
stretching was applied 
for clarity. 
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2.3. Image processing and mapping methods 

Main purpose of this step was to process hyperspectral images with two different spatial resolutions using 
same methodologies to extract qualitative and semi-quantitative mineral maps. Mineral maps were utilised 
to evaluate the effect of the spatial resolution on mineral identification and furthermore to determine 
affecting mechanical parameters. Several processing methods were utilised including endmember 
collection, wavelength mapping and the Spectral Angle Mapper for mineral classification and an iterative 
spectral mixture analysis (ISMA) for obtaining mineral fractions. Following subsections will describe these 
processing techniques.  

2.3.1. Endmember collection 

Endmember extraction was accomplished both in the SWIR and LWIR wavelength ranges respectively. 
Since the rock samples used in the research was collected from the geologically same setting, the Ann 
Mason porphyry copper deposit, it was decided to compile a spectral library in the SWIR range and 
classify or unmix all the samples. To accomplish this purpose, the spatial-spectral endmember extraction 
algorithm (SSEE) (Rogge et al. 2007) was selected due to its ability to obtain a full understanding of 
spectral diversity from multiple data sets and provides a merged endmember library. SSEE uses spatial 
characteristics of the pixel to increase the spectral contrast between spectrally similar, but spatially 
independent endmember. It is less time-consuming tool compared to the other endmember selection 
methodologies such as manual endmember selection and pixel purity index which requires human 
intervention from an experienced user.  
 
Three main steps are carried out in the algorithm to extract endmembers including: firstly, image division 
into same sized, non-overlapping subsets and compute eigenvectors demonstrating spectral variance for 
the given subset by Singular Value Decomposition (SVD). Secondly, project full image onto compiled 
local eigenvectors and keep the pixels that lie at either extreme of the vectors as candidate, lastly, spectrally 
similar candidate pixels within a given window are averaged based on spectral angle (Rogge et al., 2014).  
 
For shortwave infrared wavelength range, only higher spatial resolution images at a 26µm were utilised in 
the endmember collection presuming that it contains fewer mineral mixtures than coarser spatial 
resolution image of 400µm. An endmember library extracted by SSEEu using higher spatial resolution 
image were used for further mineral classification and fractional abundance analysis on hyperspectral 
images of rock samples at both 26µm and 400µm spatial resolutions. 
 
For the SWIR range, whole wavelength range with 224 bands between 1198.37nm and 2451.14nm was 
used as input. Parameters for SSEEu include minimum subset size, defined by the square root of the 
number of the bands in the image. The recommended size was minimum subset size multiply by 2.  Thus, 
window size was set to 30.    
SVD defines spectral variability of image subsets, the default threshold value was set to 0.99 means 99 
percent of total spectral variance is kept and collected into one vector file. Spectral angle or root mean 
square error that is used to select spectrally similar endmembers within subset window was set to 1.0 
degree. No spatial averaging was applied.  
  
Extracted global and vector libraries are containing local high contrast endmembers per sample were 
merged using the default value of 1 for a number of endmembers to retain extreme and 100 for a number 
of eigenvectors to project each iteration.  A merged endmember library with 177 endmembers was 
extracted and sorted by main absorption wavelength to ease manual endmember screening process. 
Multiple duplicates for each endmember, mineral mixture spectra and therefore, spectra that do not have 
diagnostic features in SWIR range were removed in the manual screening. The attempt was made to select 
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the most spectrally pure spectrum for each mineral. After screening, seven endmembers were extracted in 
the SWIR range.  
 
Extracted endmembers spectra in SWIR were compared with USGS Spectral Library for mineral 
identification and naming. The spectral interpretation field manual G-MEX (Pontual et al. 1997) was used 
as a guide for mineral identification. The endmembers in the SWIR wavelength range was divided into two 
groups based on their reflectance for further analysis of the spatial resolution. 
 
Actinolite endmember spectrum extracted by SSEEu was not a pure spectrum; very noisy and had a 
relatively low reflectance compared to other endmembers. Thus, extracted noisy, low reflectance actinolite 
endmember was compared with reference spectra in the USGS spectral library, and the most matching 
actinolite (actinol4) was selected from the USGS library for subsequent processing steps.  
 
For the longwave infrared wavelength range, the hyperspectral image at a 400µm spatial resolution and 
contiguous 84 spectral bands from 7996.4nm to 12036.4nm were used to extract endmember minerals 
using the same setting as the SWIR endmember extraction for SSEEu except for subset window size of 10 
due to its less number of bands.  A merged endmember library with 24 candidate endmembers was 
extracted. Manual endmember screening was also performed in the LWIR range to remove duplicates and 
mixed spectra. 
 
It was tricky to collect a spectrally pure endmember using hyperspectral emissivity images at a 400µm 
spatial resolution in LWIR range due to their broader spatial resolution. In particular, endmember 
microcline, potassium-rich alkali feldspar has the very similar spectrum to albite, a sodium endmember of 
the plagioclase series. Several attempts were made to extract spectrally pure microcline endmember by 
SSEEu as well as by handpicking using wavelength maps (see below). Both techniques were unsuccessful. 
So spectrally pure, the most representative microcline (Microcline BUR-3460) endmember was selected 
from the ASU Thermal Emission Spectroscopy Laboratory library which was used as a reference for 
mineral identification and naming in the LWIR range. Finally, most representative five mineral 
endmembers were left in the LWIR range. 
 

2.3.2. Wavelength mapping 

Wavelength maps were created mainly in purpose to validate the spatial patterns of the specific mineral 
group as well as to assist endmember extraction, especially in the LWIR wavelength range. Wavelength 
mapping was run on hyperspectral images of the rock sample at two different resolutions in the SWIR 
range, and at a 400µm spatial resolution in the LWIR range to determine dominant minerals in each pixel 
and mineral patterns in the rock sample. A wavelength map illustrates the wavelength position of the 
deepest absorption feature in colour and its depth in intensity for each pixel of the image.  Spectral 
characteristics of absorption feature such as wavelength position, shape, depth and width are caused by 
the particular crystal structure of chemical bond in the mineral, while absorption depth is related to the 
mineral abundance causing the absorption (Van Ruitenbeek et al., 2014). 
 
The Hyperspectral Python (HypPy3) software was used for the wavelength mapping. Wavelengths of 
Minimum maps were calculated using specific wavelength ranges for the SWIR and LWIR to estimate the 
wavelength of the minimum value of the spectra to establish wavelength position and depth of the certain 
minerals in that range. Wavelength region between 2100nm and 2400nm in the SWIR wavelength range 
was selected because of dominating mineral groups such as sulphates, carbonates and phyllosilicates have 
characteristic absorption features within this range (Roger et al.1990).  For the LWIR, from 8000 to 
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12000nm in the wavelength range was selected for the wavelength of minimum mapping since anhydrous 
silicates like quartz, feldspars could be sensed
Wavelength maps were assisted in an interpretation of mineral pattern distribution in 
support of the mineral pattern interpreta
interpolated depth image was applied on the interpolated depth of absorption features to enhance 
saturation to demonstrate them clearly (
 

 

2.3.3. Mineral classification 

Spectral Angle Mapper (SAM), a hard classification method was selected
minerals in each pixel of the image
percentages in the rock sample. 
The SAM utilises the spectral similarity between reference spectra from 
unknown image pixel spectra (test spec
space equals to a number of the bands 
similarity using the equation in Figure 
and a test spectrum (t) from two band data as two points on a 2
with different illumination are demonstrated
projected through the line. The angle between the spectra with different illuminations remains the same
means that the SAM is insensitive to illumination 

 

 

Figure 8. Example of wavelength maps from 2101 to 2216 in the wavelength range illustrating spatial patterns of 
muscovite (pink) and illite (green) endmembers on
spatial resolution.   A- An automatic depth

F SPATIAL RESOLUTION ON ESTIMATION OF MINERAL ABUNDANCE USING PROXIMAL IMAGING SPE

range was selected for the wavelength of minimum mapping since anhydrous 
be sensed within this range. 

in an interpretation of mineral pattern distribution in the 
mineral pattern interpretation, stretching defined by analysing a histogram of the 

was applied on the interpolated depth of absorption features to enhance 
saturation to demonstrate them clearly (Figure 8). 

 

Spectral Angle Mapper (SAM), a hard classification method was selected to discern the
ge, illustrate their spatial distribution and quantify overall mineral 

the spectral similarity between reference spectra from the spectral library and individual 
(test spectrum). The SAM treats two spectra as vectors in

of the bands and calculates the angle between the vectors as a measure of 
Figure 9-B.  A simple illustration in Figure 9-A is showing

a test spectrum (t) from two band data as two points on a 2-dimensional space. The same 
demonstrated by vectors connecting origin and actual spectra as do

The angle between the spectra with different illuminations remains the same
insensitive to illumination (Kruse et al. 1993). 

 

 

avelength maps from 2101 to 2216 in the wavelength range illustrating spatial patterns of 
muscovite (pink) and illite (green) endmembers on the hyperspectral image of the rock sample

depth stretching was applied. B- Manual depth stretching (0-18)

PROXIMAL IMAGING SPECTROSCOPY 

range was selected for the wavelength of minimum mapping since anhydrous 

the SWIR range. In 
a histogram of the 

was applied on the interpolated depth of absorption features to enhance 

to discern the most dominant 
quantify overall mineral 

spectral library and individual 
SAM treats two spectra as vectors in N-dimensional 

and calculates the angle between the vectors as a measure of 
is showing a reference (r) 

The same materials 
ecting origin and actual spectra as dot 

The angle between the spectra with different illuminations remains the same, 

avelength maps from 2101 to 2216 in the wavelength range illustrating spatial patterns of 
image of the rock sample Y680B at a 26um 

18) was applied. 
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A 
Figure 9. The SAM, simplified illustration: 
image. B. an equation for the calculation of similarity between spectra
spectra (Kruse et al. 1993)  

Hyperspectral images at two different spatial resolutions 
previously indicated and the spectral 
the SAM classification. Two different threshold 
at both spatial resolutions including 0.1 radians
best fitting pixels classified) and 0.2 radians threshold for the result validation purpose
(most pixels classified). 
 
Class distributions illustrating an endmember percentage per sample were extracted for both 
images at different spatial resolutions
region of the interest file (2.2.4
resolution for class distribution calculation.

2.3.4. Iterative Spectral Mixture 

To determine subpixel abundances of each endmember within a pixel and furthermore, to quantify
overall abundance of specific mineral
algorithm was chosen for unmixing
analysis; a mixture can be modelled 
equation used to extract fractional abundances of its constituent endmember spectra 
shown in below where Rb is a pixel 
endmember i reflectance at band b, n
 
   
 
 
The main reason to choose the ISMA algorithm was 
for per-pixel of the image from the image endmember library for all samples and generate fractional 
abundance images for each endmember accurately. In doing so, it provided the opportunity to estimate 
the fractional abundance of the minerals in the rock sample more 
less time compared to similar approaches such as 
due to its less computational intensity even
number of the endmembers in the image library.
The spectral library extracted by SSEEu in both SWIR and LWIR wavelength ranges and the
spectrum hyperspectral images were as inputs for the algorithm. 
fraction) or uniform reflectance 
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B 
The SAM, simplified illustration: A. A reference spectrum and a test spectrum

B. an equation for the calculation of similarity between spectra- taking arccosine of the dot product of the 

at two different spatial resolutions per sample were 
previously indicated and the spectral endmember library extracted by the SSEEu

Two different threshold angle values were used to classify the hyperspectral images 
at both spatial resolutions including 0.1 radians threshold for an evaluation of the spatial resolution 

nd 0.2 radians threshold for the result validation purpose

Class distributions illustrating an endmember percentage per sample were extracted for both 
at different spatial resolutions to analyse the effect of the spatial resolution. Previously generated a 

2.2.4) was used to spatially subset hyperspectral ima
resolution for class distribution calculation. 

ixture Analysis  

abundances of each endmember within a pixel and furthermore, to quantify
l abundance of specific mineral within rock samples, the Iterative spectral mixture analysis 

unmixing (Rogge et al. 2006). The ISMA is based on linear spectra
mixture can be modelled utilizing a collection of linearly independent endmember spectra. 

fractional abundances of its constituent endmember spectra 
is a pixel reflectance at band b, Fi is endmember i - fractional abundance, S

reflectance at band b, n-number of endmembers, Eb –error of the fit at band b.

The main reason to choose the ISMA algorithm was it's the ability to select most correct endmember set 
pixel of the image from the image endmember library for all samples and generate fractional 

abundance images for each endmember accurately. In doing so, it provided the opportunity to estimate 
ance of the minerals in the rock sample more realistically. Also, the technique takes 

less time compared to similar approaches such as multiple endmember spectral mixture analysis (
intensity even the time required to accomplish unmixing is dep

in the image library. 
The spectral library extracted by SSEEu in both SWIR and LWIR wavelength ranges and the

rspectral images were as inputs for the algorithm. ISMA automat
fraction) or uniform reflectance endmember in the library that can be used as a multiplicative scaling 
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test spectrum are plotted on a two-band 
taking arccosine of the dot product of the 

 a full spectral range as 
SSEEu was used as inputs for 

y the hyperspectral images 
threshold for an evaluation of the spatial resolution (only 

nd 0.2 radians threshold for the result validation purpose with ISMA results 

Class distributions illustrating an endmember percentage per sample were extracted for both hyperspectral 
lyse the effect of the spatial resolution. Previously generated a 

) was used to spatially subset hyperspectral image at a 400µm spatial 

abundances of each endmember within a pixel and furthermore, to quantify the 
within rock samples, the Iterative spectral mixture analysis – ISMA  

on linear spectral mixture 
a collection of linearly independent endmember spectra. The 

fractional abundances of its constituent endmember spectra from the spectrum is 
fractional abundance, Sib – 

error of the fit at band b. 

select most correct endmember set 
pixel of the image from the image endmember library for all samples and generate fractional 

abundance images for each endmember accurately. In doing so, it provided the opportunity to estimate 
. Also, the technique takes 

multiple endmember spectral mixture analysis (MESMA) 
accomplish unmixing is depending on the 

The spectral library extracted by SSEEu in both SWIR and LWIR wavelength ranges and the full 
ISMA automatically adds a shade (dark 

as a multiplicative scaling 
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factor. The ISMA defines best possible endmember set using two techniques: firstly, the lowest abundance 
endmember (exception: shade endmember) is removed by an iterative unconstrained unmixing and 
secondly through analysing a change in root-mean-square-errors (rmse) as a tool to define critical iteration 
that determines optimal endmember set per pixel. Critical iteration search process starts from the last 
iteration to prevent the process to be stopped accidentally due to a number of actual endmembers to 
unmix the pixel is fewer.  

 
Figure 10.  RMSE-Profile as an illustration of ISMA using 16 endmembers on the hyperspectral image (Tobergte & 
Curtis, 2013). 

Following parameters were set for ISMA run including RMS-threshold; the default value of 0.5 was used. 
It means that to be selected as critical iteration, the increase in rmse between two subsequent iterations 
must be more than 50 % of rmseit (Figure 10). A number of successive iterations that fulfil the threshold 
were set to 2.  
 
To compute fractional abundance of each endmember per sample, statistics algorithm in ENVI was run 
using fractional abundance maps.  The region of interest file was incorporated for fractional abundance 
map at a 400µm spatial resolution to spatially limit and extract statistics on the same area as the 
hyperspectral image at a 26µm spatial resolution. The abundance of the dark fraction was also included in 
the statistics file. Thus the normalisation was performed to exclude since it is not part of the mixture and 
to obtain real mineral abundance percentage per sample.   

2.3.5. Statistics and plots 

Once the statistics extracted an abundance of minerals within the rock samples estimated by the ISMA 
and the SAM, several scatter plots were created in order to determine the difference in quantitative 
mineral abundances between two different spatial resolutions by the same methodology and also, to the 
cross-validate performance of methodologies to estimate minerals abundances at sample spatial 
resolutions respectively. The scatter plots (3.6) were generated in the Microsoft Excel application and 1:1 
line was added for a clarification of the correlation analysis. 
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3.  Results 

3.1. Image acquisition 

As result of the measurement at ITC, hyperspectral images 
wavelength range was acquired
subsequent processing steps. Example hyperspectral image is shown in 
was chosen mostly as an illustration throughout the results and discussion chapter
heterogeneity and texture for a better 
chosen to highlight Al-OH, Fe
Hyperspectral images at a 400
wavelength regions (Figure 11
highlight epidote, quartz and albite characteristic features in

 

 

SWIR 26µm 
RGB: 2205:2255:2350nm 

Figure 11. Hyperspectral images of rock sample Y
(middle strip);  images at a 400µm 

3.2. Endmember collection

Mineral endmember collection was undertaken in the SWIR and LWIR wavelength range
using the SSEE algorithm, and
ranges.  The SSEE algorithm details 
 

3.2.1. Endmember collection in SWIR

Mineral endmembers in the SWIR wavelength range
26µm spatial resolution. Following mineral endmembers were 
including muscovite, kaolinite, illite, tourmaline, epidote, chlo
are illustrated in Figure 12, and
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the measurement at ITC, hyperspectral images at a 26µm spatial resolution in the SWIR 
acquired for all 26 samples. A middle strip for each sample 

. Example hyperspectral image is shown in Figure 11
en mostly as an illustration throughout the results and discussion chapter

and texture for a better demonstration. RGB (2205:2255:2350) 
OH, Fe-OH and Mg-OH absorption features in SWIR range. 

Hyperspectral images at a 400µm spatial resolution were acquired at BGR in 
11- B, C). A colour composite RGB: 10430:9164:9651

highlight epidote, quartz and albite characteristic features in the LWIR wavelength range.

  
SWIR 400µm 

RGB: 2204:2254:2349nm 
LWIR 400

RGB:10430:9164:9651
. Hyperspectral images of rock sample Y681: A- hyperspectral image at a 26µm spatial resolution in SWIR

m spatial resolution: B- in SWIR; C- in LWIR  

collection 

ndmember collection was undertaken in the SWIR and LWIR wavelength range
and a different set of endmembers was collected 

algorithm details were described in subsection 2.3.1.  

Endmember collection in SWIR 

n the SWIR wavelength range were extracted using only 
Following mineral endmembers were extracted in the 

including muscovite, kaolinite, illite, tourmaline, epidote, chlorite and actinolite. 
and a list of the endmembers is shown in Table 2. 
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spatial resolution in the SWIR 
iddle strip for each sample was selected for 

11-A. Rock sample, Y681 
en mostly as an illustration throughout the results and discussion chapters due to its mineral 

RGB (2205:2255:2350) band combination was 
range.   

at BGR in both SWIR and LWIR 
A colour composite RGB: 10430:9164:9651 was selected to 

LWIR wavelength range. 

LWIR 400µm 
RGB:10430:9164:9651 

m spatial resolution in SWIR 

ndmember collection was undertaken in the SWIR and LWIR wavelength ranges respectively 
 for both the wavelength 

only hyperspectral images at a 
the SWIR wavelength range 

 The endmember spectra 
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Endmembers Mineral group Chemical formula 

Illite clay (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 

kaolinite 

phyllosilicate 

Al2Si2O5(OH)4 

muscovite KAl2(AlSi3O10)(OH)2 

chlorite (Mg, Fe)3(Si, Al)4O10(OH)2(Mg, Fe)3(OH)6 

actinolite inosilicate Ca2(Mg, Fe)5(Si8O22)(OH)2 

tourmaline cyclosilicate (Na, Ca)(Li, Mg, Al)(Al, Fe, Mn)6(BO3)3(Si6O18)(OH)4 

epidote sorosilicate Ca2(Al, Fe)Al2O(SiO4)(Si2O7)(OH) 

 
Table 2. A list of the endmembers extracted in the SWIR range. 

A B 
Figure 12. Endmember spectra in SWIR: A- muscovite, kaolinite, illite and epidote; B-tourmaline, actinolite and 
chlorite. 

3.2.2. Endmember collection in LWIR 

As result of endmember collection in LWIR wavelength range, following endmembers including albite, 
microcline, quartz, epidote and actinolite were extracted. The endmember spectra are shown in Figure 13 
and its chemical details are listed in Table 3. 
 

Endmembers Mineral group Chemical formula 

albite 

tectosilicate 

NaAlSi3O8 

microcline KAlSi3O8 

quartz SiO2 

epidote sorosilicate Ca2(Al, Fe)Al2O(SiO4)(Si2O7)(OH) 

actinolite inosilicate  Ca2(Mg, Fe)5(Si8O22)(OH)2 

Table 3. A list of endmembers extracted in the LWIR wavelength range. 
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A 
Figure 13. Endmembers spectra in LWIR: A

3.3. Wavelength mapping 

In wavelength map, wavelength position of 
depth of characteristic absorption feature representing
by the intensity. Example wavelength maps of the rock sample Y681 are shown in 
spatial distribution patterns of Al
400µm spatial resolutions respectively
In Figure 14-A, B the deepest
patterns that correspond to muscovite and illite
chlorite and epidote are represented by blue
near 2.3µm wavelengths. 

A-26µm  B-400µm
Figure 14. Wavelength maps of rock sample Y681: A & B: Wavelength range between 2204
400µm resolutions, highlighting Al
is illustrated in E; C & D: Wavelength r
and epidote. Chlorite pattern is represented by green colour and epidote by cyan colour due to its absorption feature 
around 2345µm. 
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B 
spectra in LWIR: A- albite, microcline and quartz; B-epidote and actinolite

wavelength position of deepest absorption feature is demonstrated
depth of characteristic absorption feature representing the amount of the mineral

Example wavelength maps of the rock sample Y681 are shown in 
of Al-OH (A-B) and Fe-OH, Mg-OH (C-D) mineral

respectively. 
deepest diagnostic feature around 2.2µm produced the 

muscovite and illite represented by yellow to pink colours
chlorite and epidote are represented by blue and cyan colours due to their diagnostic absorption features

µm  C-26µm  D- 400µm  
Wavelength maps of rock sample Y681: A & B: Wavelength range between 2204

400µm resolutions, highlighting Al-OH minerals-muscovite and illite represented by yellow to red colours. Its legend 
in E; C & D: Wavelength range between 2338-2360, highlighting Fe-OH and Mg

and epidote. Chlorite pattern is represented by green colour and epidote by cyan colour due to its absorption feature 
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epidote and actinolite 

demonstrated by colour, and 
amount of the mineral that contains illustrated 

Example wavelength maps of the rock sample Y681 are shown in Figure 14. emphasising 
) mineral groups at a 26µm and 

the most apparent spatial 
represented by yellow to pink colours. Spatial patterns of 

due to their diagnostic absorption features 

F  
Wavelength maps of rock sample Y681: A & B: Wavelength range between 2204-2218nm at a 26µm and 

muscovite and illite represented by yellow to red colours. Its legend 
OH and Mg-OH minerals -chlorite 

and epidote. Chlorite pattern is represented by green colour and epidote by cyan colour due to its absorption feature 

E 
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A wavelength map of the rock sample Y692B is shown
of the Si-O mineral group. In the map, 
represented by orange to red colour 
illustrated by blue to green and pink colours

Y692B - LWIR- 400µm  

 

Figure 15. A wavelength map is showing for
to red colour due to its deepest feature at around 9651nm
colours due to its various Reststrahlen features

3.4. Mineral classification 

In order to make an appropriate comparison between 
resolutions, maximum angle threshold between endmember spectrum and each pixel of the image 
spectrum was fixed to the default value 
so, only pixels containing pure minerals 
Several rock samples have a clear mineral mixture which 
mineral mixtures were left unclassified
proportion is high. To classify full images of the rock samples
These almost entirely classified results allow comparison
both spatial resolutions.  
 

Figure 16 illustrates the SAM classified images of 
angles at 26µm and 400µm spatial resolutions
the sample Y681 were muscovite, illite, chlorite, epidote as well as 
epidote+chlorite+sericite that was left unclassified 
B). However, using 0.2 radians classification 
as the closest matching endmember spectrum (
 
It can be seen from the Figure 16  that
rock sample are preserved on both hyperspectral images at
Nevertheless, there is considerable loss of detail 
compared to the 26µm (Figure 16 and 
The bottom parts of the Figure 16 C and D 
and chlorites were identified at a 26µm resolution but were
image by the SAM. 
The proportion of the minerals in 
radians is shown in Figure 18 for both 26µm and 400µm spatial resolutions.
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of the rock sample Y692B is shown in Figure 15, showing spatial distr
mineral group. In the map, spatial patterns of plagioclase and sodium feldspar, albite 

range to red colour due to its deepest feature at around 9651nm; 
colours regarding its various Reststrahlen features. 

is showing for a range between 9530nm and 9700nm. Albite is represented by orange 
feature at around 9651nm and microcline is illustrated by blue to 

Reststrahlen features.  

comparison between hyperspectral images at two 
maximum angle threshold between endmember spectrum and each pixel of the image 

to the default value of 0.1 radians for the Spectral Angle Mapper algorithm.
so, only pixels containing pure minerals (i.e. close fit with endmember spectra) will be classified
Several rock samples have a clear mineral mixture which is distributed dominantly in the roc

unclassified using a 0.1 threshold angle. In some samples, unclassified pixel 
To classify full images of the rock samples, a 0.2 radians threshold were 

sults allow comparison and validation between two chosen methods at 

classified images of the rock sample Y681 using a 0.1 and 0.2
spatial resolutions in SWIR wavelength range.  Main minerals 

were muscovite, illite, chlorite, epidote as well as a mineral mixture composed of 
left unclassified using a 0.1 radians classification threshold 

radians classification threshold, previously unclassified pixels were 
spectrum (Figure 16 C, D). 

that mineralogy and overall spatial distribution of the mi
n both hyperspectral images at a 26µm and 400µm spatial 

there is considerable loss of detail in terms of the mineral pattern at the 400 µm resolution 
and Figure 17). 
C and D are zoomed in Figure 17 wherein small particles of muscovite 
26µm resolution but were not detected at a 400µm spatial resolution 

 the rock sample, Y681 estimated by the SAM using 0.2 threshold 
for both 26µm and 400µm spatial resolutions. Full images 
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distribution patterns 
sodium feldspar, albite is 

 and microcline is 
 

Albite is represented by orange 
and microcline is illustrated by blue to green and pink 

two different spatial 
maximum angle threshold between endmember spectrum and each pixel of the image 

Spectral Angle Mapper algorithm. In using 
be classified.  

in the rock. Those 
In some samples, unclassified pixel 

were implemented. 
between two chosen methods at 

Y681 using a 0.1 and 0.2 threshold 
Main minerals recognised on 

a mineral mixture composed of 
classification threshold (Figure 16A, 

unclassified pixels were now classified 

spatial distribution of the minerals in the 
µm and 400µm spatial resolutions. 

the mineral pattern at the 400 µm resolution 

small particles of muscovite 
m spatial resolution 

using 0.2 threshold 
Full images were classified 



EVALUATING EFFECTS OF SPATIAL RESO

into the minerals, and a sum of the mineral percentage is 100 percent at both scales. Using 0.1 threshold 
radians, almost half of the image left unclassified.
 

A-26µm  B-400

 
A- 26µm 

Figure 17. The map illustrates zoomed
the mineral pattern. 

 

Figure 18. The chart presents the percentage of the minerals in the rock sample Y681 by 
radians at a 26µm and 400µm spatial resolutions.
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sum of the mineral percentage is 100 percent at both scales. Using 0.1 threshold 
ost half of the image left unclassified. 

400µm  C-26µm  D- 400
 

Figure 16. Classified images
a 26 µm and 400
B- using 0.1 threshold radians and B, C
using a 0.2 threshold radians

 
B- 400µm 

zoomed in bottom part of Figure 15 C and D’s,  highlighting

 
presents the percentage of the minerals in the rock sample Y681 by the 

at a 26µm and 400µm spatial resolutions. 

26µm

400µm
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sum of the mineral percentage is 100 percent at both scales. Using 0.1 threshold 

400µm  

lassified images by the SAM at 
and 400µm spatial resolutions: A, 

threshold radians and B, C- 
threshold radians 

highlighting the loss of the detail in 

the SAM with 0.2 threshold 
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3.5. Iterative Spectral Mixture Analysis

As result of spectral unmixing using the ISMA, 
obtained at 26µm and 400µm spatial resolutions in SWIR and only at 400
subsections will illustrate example mineral fractional abundance maps in SWIR and LWIR range 
respectively. 

3.5.1. ISMA - SWIR 

Mineral fractional abundance maps in the SWIR range for
and 400µm spatial resolutions respectively in 
than grey and dark grey pixels. 
It can be seen from the mineral fractional abundance map
classification map by the SAM (Figure 

 

A-26µm B-400µm  C-26µm  

illite muscovite
Figure 19. Mineral fractional abundance maps for 
spatial resolutions respectively.  Images are in relative scale and brighter values representing higher pixel fraction.
& B-illite; C & D-muscovite; E&F-chlorite; G&H
dashed rectangular on the 400µm image; Yellow circle is highlighting mineral patterns with low 

Minerals with lower fractional abundance identified at 
at a 400µm resolution. An example is highlighted
middle part of the sample, illite and epidote with lower fractional abundance were detected at a 26µm scale 
but not at a 400µm spatial resolution.

3.5.2. ISMA – LWIR 

Mineral fractional maps extracted in the LWIR range 
Overall, spatial patterns of minerals are visually and spectrally consiste
the spatial pattern of the microcline and albite are overlapping at some locations
the mixture of two minerals and spectral similarity. The spectral sampling of the LWIR scanner was broad, 
48µm and that might be influenced the unmixing. 
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pectral Mixture Analysis 

As result of spectral unmixing using the ISMA, mineral fractional abundances per pixel of the image 
m spatial resolutions in SWIR and only at 400µm scale in LWIR ranges.

subsections will illustrate example mineral fractional abundance maps in SWIR and LWIR range 

in the SWIR range for the rock sample Y681 are illustrated
patial resolutions respectively in Figure 19. Brighter pixels indicate high fractional abundance 

fractional abundance maps that they are consistent with the mineral 
Figure 16) regarding mineral spatial distributions. 

D-400µm  E-26µm  F-400µm  G-26µm  

muscovite chlorite epidote
. Mineral fractional abundance maps for the rock sample Y681 in the SWIR range at a

Images are in relative scale and brighter values representing higher pixel fraction.
lorite; G&H-epidote; (outline of the 26µm image was represented by red

image; Yellow circle is highlighting mineral patterns with low abundance

Minerals with lower fractional abundance identified at a 26µm spatial resolution tend to fail to 
is highlighted by a yellow circle on the Figure 19 A-
epidote with lower fractional abundance were detected at a 26µm scale 
. 

in the LWIR range as result of the unmixing are depicted
Overall, spatial patterns of minerals are visually and spectrally consistent with the original image however 

pattern of the microcline and albite are overlapping at some locations (Figure 
the mixture of two minerals and spectral similarity. The spectral sampling of the LWIR scanner was broad, 

the unmixing.  

PROXIMAL IMAGING SPECTROSCOPY 

per pixel of the image were 
m scale in LWIR ranges. Below 

subsections will illustrate example mineral fractional abundance maps in SWIR and LWIR range 

illustrated at a 26µm 
er pixels indicate high fractional abundance 

they are consistent with the mineral 

H-400µm  

epidote 
at a 26µm and 400µm 

Images are in relative scale and brighter values representing higher pixel fraction. A 
26µm image was represented by red, 

abundance).  

tend to fail to be detected 
-B and G-H. In the 

epidote with lower fractional abundance were detected at a 26µm scale 

are depicted in Figure 20. 
nt with the original image however 

Figure 20-C, D) due to 
the mixture of two minerals and spectral similarity. The spectral sampling of the LWIR scanner was broad, 
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A- epidote  
Figure 20. Mineral fractional abundance maps for the rock sample Y681 in the 
resolution.  Images are in relative scale and brighter values representing higher pixel fraction.
microcline, and D-albite 

3.6. Comparison of the spatial resolution

To investigate the effect of the spatial resolution on the l
and visual interpretation were made
results of mineral classification and mineral fractional abundance individually. 
An experimental assumption was
per sample classified or unmixed at a 26µm tend to increase at a scale of 400µm
get even more dominant with increasing pixel size)
confirmed by endmember chlorite
endmember decreases at a 400
rock sample Y889. 
The chlorite has relatively low 
endmember, it can be interpreted that reflectance might have
identification and mapping on 
The endmembers extracted by SSEEu in 
on their reflectance to confirm the previous assumption related to mineral albedo. Minerals with
albedo, brighter in colour together made a group 
contrast, darker minerals with 
chlorite. 
 

Figure 21. Graph showing the percentage of chlorite by 
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B- quartz  C-microcline  D
Mineral fractional abundance maps for the rock sample Y681 in the LWIR

resolution.  Images are in relative scale and brighter values representing higher pixel fraction.

of the spatial resolutions 

investigate the effect of the spatial resolution on the laboratory hyperspectral images
were made between the 26µm and 400µm spatial resolutions per

classification and mineral fractional abundance individually.  
was made from the comparison plot that percentage of 

per sample classified or unmixed at a 26µm tend to increase at a scale of 400µm
get even more dominant with increasing pixel size). The assumption was not correct
confirmed by endmember chlorite. The bar chart on Figure 21 confirms that the percentage of chlorite 
endmember decreases at a 400µm for all the samples even where chlorite was the dominant mineral for 

hlorite has relatively low albedo (reflectance) dark mineral.  So from the
endmember, it can be interpreted that reflectance might have a certain level of influence

 the laboratory hyperspectral images.  
extracted by SSEEu in the SWIR wavelength range was divided into two groups based 

on their reflectance to confirm the previous assumption related to mineral albedo. Minerals with
together made a group including muscovite, illite, kaolinite

darker minerals with a lower albedo made another group including actinolite, tourmaline and 

Graph showing the percentage of chlorite by the SAM at a 26µm and 400µm scale
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D-albite  
LWIR range at a 400µm spatial 

resolution.  Images are in relative scale and brighter values representing higher pixel fraction. A-epidote, B-quartz, C-

aboratory hyperspectral images, a comparison 
resolutions per sample using the 

percentage of dominant minerals 
per sample classified or unmixed at a 26µm tend to increase at a scale of 400µm (i.e. dominant minerals 

correct for all samples was 
confirms that the percentage of chlorite 

chlorite was the dominant mineral for 

the example of the chlorite 
level of influence on mineral 

divided into two groups based 
on their reflectance to confirm the previous assumption related to mineral albedo. Minerals with a higher 

kaolinite and epidote. In 
group including actinolite, tourmaline and 

 
400µm scales for all 26 samples 

26µm

400µm
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Several comparative scatter plots were created using quantitative outcomes of the SAM and the ISMA for 
all 26 samples and two spatial resolutions (26µm and 400µm). High reflective minerals and low reflective 
minerals were separated into two different graphs.  
 
In Figure 22, a scatter plot displays a relationship between the percentage of mineral fractional abundance 
that was estimated by the ISMA at two different scales 26µm and 400µm individually for the mineral 
group with high reflectance. High reflectance minerals in the group are represented by different shape and 
colours, for example, a red rectangle for illite and green triangle for epidote. X and Y axis of the scatter 
plot was set to 20 percent in Figure 22-B to visualise appearance of minerals with lower fractional 
abundance better.  
 
Overall, there is a reasonable correlation in the percentage of mineral fractional abundance by ISMA 
between the two spatial resolutions. However, fractional abundance of minerals in high reflectance group 
tend to increase at a 400µm spatial resolution. Majority of the samples are plotted above the 1:1 line and 
have a higher concentration at the 400µm scale than at 26µm. Additionally, illite shows that at high 
percentages it is above 1:1 line and at low percentages, it is below 1:1 line as dominating mineral gets more 
dominating, while small quantities get even smaller (Figure 22-A, B).  

   

 
A B 

Figure 22. ISMA high reflective: Scatter plot is showing mineral fractional abundance in percentage extracted by the 
IMSA at a 26µm versus at a 400µm for the mineral group with high reflectance. A-Full plot; B-the plot in A is limited 
by 20 percent for clarification. Red dashed box indicates zoomed-in section of sub graph B. Black line is the 1:1 line 
(muscovite, n=13; illite, n=26; epidote, n=14; kaolinite, n=7) 

In contrast, a correlation analysis of fractional abundance defined by the ISMA at two different scales for 
the minerals with low reflectance is illustrated in Figure 23. There is very weak positive correlation in the 
fractional abundance of the minerals at the two different scales however almost all sample’s mineral 
fractional abundance is below 1:1 line indicating a clear decrease at the coarser resolution. 
 
It can be interpreted from the scatter plot below that there is a good correlation in the mineral abundance 
of chlorite especially when its concentration is high. Fractional abundance of actinolite is the most poorly 
correlated (Figure 23).  
 
 

0

20

40

60

80

100

0 20 40 60 80 100

40
0µ

m

26µmmuscovite illite epidote kaolinite

0

4

8

12

16

20

0 5 10 15 20

40
0µ

m

26µm



EVALUATING EFFECTS OF SPATIAL RESOLUTION ON ESTIMATION OF MINERAL ABUNDANCE USING PROXIMAL IMAGING SPECTROSCOPY 

25 

  
A B 

Figure 23. ISMA low reflective: Scatter plot is showing mineral fractional abundance in percentage extracted by the 
IMSA at a 26µm versus at a 400µm scale for the mineral group with low reflectance. A-Full plot; B-the plot in A is 
limited by 20 percent for clarification. Red dashed box indicates zoomed-in section of subgraph B. Black line is the 
1:1 line (chlorite, n=17; actinolite, n=25; tourmaline, n=5) 

The result of the correlation analysis between 400µm and 26µm scales by the proportion of the minerals 
classified by the SAM is presented in Figure 24. In general, there is weak, positive correlation between the 
mineral percentage at two different spatial resolutions and the percentage increment of high albedo 
minerals on the coarser resolution, observed in ISMA scatter plot (Figure 22) is also present even though 
more scattered, further away from 1:1 line. 
It can be interpreted from the scatter plots (Figure 22, Figure 24) that illite is the most dominant mineral 
in the rock samples and have high concentration followed by muscovite and epidote.  
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Figure 24. SAM high reflective: Scatter plot is showing mineral proportion extracted by the SAM at a 26µm versus 
at a 400µm for the mineral group with high reflectance. A-Full plot; B-the plot in A is limited by 20 percent for 
clarification. Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line (muscovite, n=13; 
illite, n=23; epidote, n=8; kaolinite, n=1) 

Figure 25 plots percentages of low albedo minerals classified by the SAM at a 26µm versus 400µm spatial 
resolutions. The proportions of the minerals are plotted below 1:1 line and decreased at 400µm spatial 
resolution.  Higher concentration of chlorite shows better correlation than lower concentration.  
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Figure 25. SAM low reflective: Scatter plot is showing mineral proportion extracted by the SAM at a 26µm versus at 
a 400µm scale for the mineral group with low reflectance.A-full plot; B-the plot in A is limited by 20 percent for 
clarification. Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line (chlorite, n=19; 
actinolite, n=2; tourmaline, n=2) 

3.6.1. Comparison of the methodologies: SAM versus ISMA 

More of comparison was made between results of the SAM and IMSA at a 26µm and 400µm scales 
individually per group minerals for relative validation against each other. 
A correlation analysis of mineral proportion in high reflectance group estimated by the SAM and ISMA 
on the hyperspectral images of the rock sample at a 26 µm spatial resolution is shown in Figure 26 and at a 
400µm scale in Figure 27 respectively.  
 
The proportion of dominating minerals estimated by the SAM is a little bit higher than mineral abundance 
by IMSA at both spatial resolutions. There is a scattering of low abundance minerals at both side of 1:1 
line at a 26µm scale, and it is a lot worse at a 400µm spatial resolution. 
There is a strong, positive linear correlation in illite proportions estimated by SAM and ISMA at both 
spatial resolutions. It followed by muscovite, kaolinite at both scales. Epidote amount calculated by SAM 
is quite higher than ISMA, plotted further far from the 1:1 line shows the poor correlation at both spatial 
resolutions. 
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Figure 26. SAM versus ISMA-high reflective: Scatter plot is showing mineral proportion extracted by the SAM 
versus ISMA at a 26µm scale for the mineral group with high reflectance. A-full plot; B-the plot in A is limited by 20 
percent for clarification. Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line 
(muscovite, n=16; illite, n=26; epidote, n=20; kaolinite, n=2) 
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Figure 27. SAM versus ISMA-high reflective: Scatter plot is showing mineral proportion extracted by the SAM 
versus ISMA at a 400µm scale for the mineral group with high reflectance. A-full plot; B-the plot in A is limited by 
20 percent for clarification Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line 
(muscovite, n=17; illite, n=25; epidote, n=20; kaolinite, n=7) 

Figure 28 and Figure 29 compare proportions of minerals with low reflectance extracted by the SAM and 
the ISMA at a 26µm and 400µm spatial resolutions.  It can be seen from the plots that high concentration 
of the chlorite, constituent percent is higher than 15 percent shows strong, positive correlation while the 
lower concentration of chlorite up to 15% detected by SAM but not by the ISMA at both scales.  
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Figure 28. SAM versus ISMA-low reflective: Scatter plot is showing mineral proportion extracted by the SAM 
versus ISMA at a 26µm scale for the mineral group with low reflectance. A-Full plot; B-the plot in A is limited by 20 
percent for clarification. Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line 
(chlorite, n=21; actinolite, n=25; tourmaline, n=5) 
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A 
Figure 29. SAM versus ISMA-low reflective:
versus ISMA at a 400µm scale for the minera
20 percent for clarification. Red dashed box indicates zoomed
(chlorite, n=15; actinolite, n=21; tourmaline, n=1)

On the other hand, results of actinolite
methods at both spatial resolutions. Fractional abundance of the actinolite estimated by the ISMA 
spatial resolutions is high whereas, by
up to or higher than 1 percent at a 26
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Classification map of actinolite and chlorite by SAM using 0.1 radians threshold 
In this case, an estimation of the actinolite fractional ab
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Figure 30. ISMA and SAM result maps of the rock sample Y685: A
2015:1757:1599nm; B-Fractional abundance map of actinolite. Brighter values representing higher pixel fraction; C
SAM classes using 0.2 radians threshold: yellow
yellow-chlorite, pink-actinolite; D-Fractional abundance map of chlorite.
of actinolite by the ISMA and chlorite by the SAM.
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low reflective: Scatter plot is showing mineral proportion extracted by the SAM 
versus ISMA at a 400µm scale for the mineral group with low reflectance. A-Full plot; B-the plot in A is limited by 

Red dashed box indicates zoomed-in section of subgraph B. Black line is the 1:1 line
(chlorite, n=15; actinolite, n=21; tourmaline, n=1) 

actinolite show a reversed plot to the chlorite, no correlation between two 
Fractional abundance of the actinolite estimated by the ISMA 

by the SAM, actinolite was detected and estimated on only five samples 
at a 26µm spatial resolution and only one at a 400µm scale.
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of actinolite on fractional abundance map is corresponding to the chlorit

using 0.2 threshold radians; examples are highlighted by red circles
reliable comparison between ISMA and SAM, a full image of the rock 

classified using 0.2 thresholds and percentage of the chlorite was overestimated.  
Classification map of actinolite and chlorite by SAM using 0.1 radians threshold is shown
In this case, an estimation of the actinolite fractional abundance by ISMA is more reliable

was verified spectrally.  

C D 
ISMA and SAM result maps of the rock sample Y685: A-hyperspectral image at a 26µm, RGB

Fractional abundance map of actinolite. Brighter values representing higher pixel fraction; C
SAM classes using 0.2 radians threshold: yellow-chlorite, pink-actinolite; C-SAM classes using 0.1 radians threshold: 

onal abundance map of chlorite. Red circles are depicting common patterns 
of actinolite by the ISMA and chlorite by the SAM. 
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and the highest reaches 95 percent. Thus the amount of alteration minerals such as illite, muscovite, 
epidote, chlorite, actinolite in thin section description is relatively low, not directly comparable with 
mineral abundance results of the SAM and ISMA.  
To ensure consistency of the methodologies, plots were created comparing mineral percentages described 
by petrology on thin section versus the mineral abundance extracted by the ISMA and the SAM at a 26µm 
spatial resolution. Figure 31 shows a comparison between mineral percentage described in thin section 
description and mineral fractional abundance by ISMA for minerals in high reflectance group. The 
amount of epidote defined by those methods is weakly correlated. When the amount of the epidote is low, 
up to the 20% (Figure 31-B) and it shows weak correlation, plotted near to the 1:1 line. The fractional 
abundance of illite defined by the ISMA is relatively high, and there is no correlation between two 
methods.   

  
A B 

Figure 31. ISMA versus Thin section-high reflective:  Scatter plot is showing mineral fractional abundance 
extracted by ISMA versus thin section description at a 26µm scale for the mineral group with high reflectance. A-Full 
plot; B-the plot in A is limited by 20 percent for clarification (muscovite, n=20; illite, n=8; epidote, n=22;) 

Same correlation is demonstrated in Figure 32 for the chlorite. Samples which have a low abundance of 
the chlorite up to 5% show stronger correlation (Figure 32B). On the other hand, samples with high 
concentration of chlorite show no correlation.  The results of actinolite and tourmaline by two methods 
are weakly correlated. 
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Figure 32. ISMA versus Thin section-low reflective: Scatter plot is illustrating mineral fractional abundance 
extracted by ISMA versus thin section description at a 26µm scale for the mineral group with low reflectance. A-Full 
plot; B-the plot in A is limited by 20 percent for clarification (chlorite, n=20; actinolite, n=14; tourmaline, n=4) 
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3.6.3. Comparison of the methodologies: Thin section versus SAM 

Mineral proportion extracted by the SAM using 0.1 threshold radians were compared with results of thin 
section description. Comparison plots are shown in Figure 33 for minerals with high reflectance and 
Figure 34 for minerals with low reflectance. Overall, the SAM classification results are higher than the thin 
section analysis results. Results of illite show no correlation due to its high percentage classified by the 
SAM whereas minerals with the low proportion, muscovite and epidote showed a weak correlation (Figure 
33-B).  
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Figure 33. SAM versus Thin section-high reflective:  Scatter plot is showing mineral proportion extracted by 
SAM using 0.1 radians threshold versus thin section description at a 26µm scale for the mineral group with high 
reflectance. A-Full plot; B-the plot in A is limited by 20 percent for clarification (muscovite, n=20; illite, n=8; 
epidote, n=22 ;)  

Tourmaline proportion defined by the SAM is highly correlated to the percent defined by thin section 
analysis. Only one rock sample, Y680B has a higher concentration of tourmaline about 10 percent, and 
results of two methods provide a reasonable match (Figure 34A-B). A low proportion of the chlorite tends 
to correlate more than high concentration. 
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Figure 34. SAM versus Thin section-low reflective:  Scatter plot is depicting mineral proportion extracted by SAM 
using 0.1 radians threshold versus thin section description at a 26µm scale for the mineral group with low reflectance. 
A-Full plot; B-the plot in A is limited by 20 percent for clarification (chlorite, n=20; actinolite, n=14; tourmaline, 
n=4) 
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By petrology analysis, seven rock samples 
The groundmass of a rock sample is fine
other minerals are embedded. The
description of the thin section but not the exact or approximate amount. 
groundmass can be spectrally 
estimated by the ISMA and the SAM. 
ISMA on rock sample Y46. In this 
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Figure 35. ISMA and SAM result maps of the rock sample Y46: A
2015:1757:1599nm, B-Fractional abundance map of epidote,
values representing higher pixel fraction
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By petrology analysis, seven rock samples were described to contain approximately 50
sample is fine-grained material in which larger, prominent 

The estimated composition of the groundmass was briefly 
section but not the exact or approximate amount. 

spectrally identified by imaging spectroscopy and its mineral abundance can be 
estimated by the ISMA and the SAM.  Figure 35 illustrates an example of the groundmass that unmixed by 
ISMA on rock sample Y46. In this sample, the groundmass was the mixture of epidote, chlorite and illite.

B C 
ISMA and SAM result maps of the rock sample Y46: A-hyperspectral

tional abundance map of epidote, C- Fractional abundance map of 
values representing higher pixel fraction; 
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approximately 50-60% groundmass.  
in which larger, prominent crystals or grains of 

was briefly mentioned in the 
section but not the exact or approximate amount. In contrast, fine-grained 

by imaging spectroscopy and its mineral abundance can be 
of the groundmass that unmixed by 

the groundmass was the mixture of epidote, chlorite and illite. 

 image at a 26µm, RGB-
Fractional abundance map of chlorite, Brighter 
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4. Discussion  

1. Which infrared active minerals can be recognized on hyperspectral images of rock sample from the 
study area at both a 26µm and 400µm spatial resolutions in the SWIR range?  

 
The first question in the research sought which infrared active minerals can be recognized from the rock 
samples collected from the test study area, the Ann Mason porphyry copper deposit. Endmember 
collection was carried out using hyperspectral images only at the higher spatial resolution avoiding mineral 
mixture at a coarser resolution. The SSEEu algorithm successfully selected the most representative, 
shortwave active endmembers except for actinolite endmember including illite, muscovite, kaolinite, 
epidote, chlorite, and tourmaline (Table 2 and Figure 12). 
Due to its low reflectance and noise on the candidate actinolite spectra, the closest endmember was 
selected from the USGS spectral library. It should be noted that even the hyperspectral image of the rock 
sample at a higher spatial resolution was utilised in endmember collection, extracted endmember was not 
spectrally pure mineral endmember. For example, pure epidote spectrum does not have absorption feature 
around 1900nm in the wavelength range, however, extracted, most representative epidote endmember 
spectrum by the SSEEu has some sort of mixing with other minerals most probably chlorite (Figure 12-
A).  
 
2. Is the spatial distribution of mineral patterns consistent with each other at the two different spatial 

resolutions by classification and or unmixing?  
 

With respect to the second research question, in general, the spatial distribution of mineral patterns in the 
rock sample was consistent at both scales by the SAM and ISMA (Figure 16 and Figure 19) supporting the 
related hypothesis. However, due to the coarse spatial resolution of 400µm, there was a loss of detail in 
mineral pattern compared to the 26µm scale, and small particles of minerals were disappeared (Figure 17).  
Mineral patterns classified as the result of the SAM were highly dependent on the chosen threshold value 
and matching of image pixel spectrum in general shape with the endmember spectrum in the library. The 
main drawback of the SAM algorithm is that it does not account for a secondary mineral mixture. Pixels 
containing more than one mineral were left unclassified when using a more aggressive threshold value of 
0.1 as shown in Figure 16A, B. Using more flexible threshold value, these pixels were classified into the 
most similarity endmember in the library. As a consequence,  it increases the endmember constituent 
percentage in the rock sample. 

By visual interpretation, fractional abundance maps of mineral as resulted from the ISMA using 
hyperspectral images at the two different spatial resolution gave a very similar mineral pattern however 
minerals with low fractional abundance detected on a higher resolution image were not identified on the 
image at a coarser resolution. An example of this is illustrated in Figure 19. Main controlling parameters of 
the ISMA algorithm are a critical iteration and number of successive iteration fulfilling the first condition. 
The critical iteration is determined by evaluation of change in the root mean square error (RMSE). It can 
be interpreted with the caution that mineral with low fractional abundance had less influence on the 
RMSE and removed before the critical iteration at a coarser spatial resolution.  
 
3. What are the influential parameters of the mineral that cause the differences in mineral classification 

and quantification? 
4. How does the spatial resolution of the hyperspectral image influence the mineral identification and 

quantification in SWIR wavelength range?  
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Regarding to third and fourth questions above, the quantitative results of the SAM and the ISMA  were 
analysed (Figure 21) and revealed that mineral albedo has some sort of influence on mineral identification 
and quantification. So mineral endmembers were divided into two groups based on their reflectance. 
Minerals with high reflectance including illite, muscovite, epidote and kaolinite were compiled into a group 
while minerals with low albedo were created another group – tourmaline, chlorite, and actinolite.  Mineral 
group interpretations were made by correlational analysis between two different spatial resolutions for 
each method. Similar correlations were resulted by the SAM and ISMA for each group. Fractional 
abundance of the minerals with high reflectance was increased at the coarser spatial resolution whereas the 
proportion of the minerals with low albedo was decreased at the coarser resolution (Figure 22-Figure 25). 
These findings suggest that mineral reflectance is the reason and or the main influencing parameter that 
causes the difference in quantification result of mineral classification and or unmixing.  
 
5. Which rock-forming minerals can be identified on hyperspectral images of rock sample from the 

study area in the LWIR wavelength range?  
 

Endmember collection in the LWIR wavelength range was difficult due to its broad spectral sampling 
(48nm) and spatial resolution of the spectrometer. Especially, endmembers like albite and microcline 
which have very similar characteristic features. Several attempts were made to extract microcline 
endmember including wavelength mapping highlighting mineral patterns (Figure 15) however, spectrally 
pure endmember was not found. Thus, spectrally pure, microcline endmember was selected from the ASU 
Thermal Emission Spectroscopy Laboratory library. 
Following rock-forming minerals which have diagnostic features in the LWIR were identified from the 
hyperspectral image of the rock samples by the SSEEu: albite, quartz; actinolite and also epidote (Figure 
13). 
 
6. What are the advantages and drawbacks of laboratory hyperspectral imagery on mineral mapping 

compared to thin section analysis? 
 
The advantage of the laboratory imaging spectroscopy is its ability to identify and quantify minerals 
regardless of their transparency and grain size compared to thin section analysis. Opaque minerals such as 
iron oxides and sulphides, and also very fine-grained minerals cannot be detected or described by thin 
section analysis whereas the imaging spectroscopy is able to detect those minerals furthermore to estimate 
mineral abundances.  
The downside of the laboratory imaging spectroscopy is wavelength dependent, for instance, SWIR 
spectral camera is not able to detect silicates which are featureless in the SWIR range. Also, qualitative and 
quantitative outcomes of the hyperspectral image processing algorithms are highly dependent on the 
endmember spectra thus special care should be taken for mineral endmember selection. 
 
Except for the research questions, below-mentioned findings should be discussed:  
 
Validation plots were created using results of the SAM and ISMA at a same spatial resolution whether to 
confirm each method gave a reliable estimate of minerals in the rock sample. Majority of the minerals 
estimation extracted by the SAM and ISMA were positively correlated each other at both spatial 
resolutions in the SWIR wavelength range except for actinolite (Figure 26-Figure 29). Quantitative results 
of actinolite defined by ISMA and SAM were showed no correlation at both scales. Its fractional 
abundance estimated by the ISMA was quite high up to 45 percent at a 26µm and 30 percent at a 400µm 
respectively for several samples. The SAM did not identify actinolite almost at all. However, the 
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percentage of chlorite was high at both spatial resolutions. Visual inspection of the spectra and spatial 
patterns found out that spatial patterns of actinolite by ISMA and chlorite by SAM was matching on the 
rock sample Y685 (Figure 30).  Apparently, the SAM has not taken account of main absorption features of 
the actinolite at around 2311nm and 2389nm in the wavelength ranges. Instead, the general shape of the 
spectra was overpowered and was in agreement with Hecker et al.(2007) findings, and actinolite was 
classified as chlorite which has more similar general shape. The fractional abundance of actinolite 
estimated by ISMA was more reliable than the SAM, and it was confirmed spectrally on the image.  
 
Another important finding was that quantitative results obtained by the SAM and ISMA confirm that the 
amount of chlorite, actinolite, and epidote were relatively high in 20 out of 26 samples that were collected 
from main-stage prophylitic alteration zone (Figure 2; Appendix 1.A and Appendix 2.A). On the other 
hand, amount of illite was relatively high in six samples that were from sodic and sericitic alteration zones 
compared to the samples from the prophylitic zone. These quantitative findings suggest that laboratory 
imaging spectroscopy can be used as main equipment for the alteration mapping. Therefore, alteration 
map can be created for the whole system using imaging spectroscopy if a sufficient number of the samples 
were collected from the study area covering all hydrothermal alteration zones. 
 
Multi phase, the Yerington batholith was the main source for hydrothermal alteration and mineralization 
of the Ann-Mason porphyry copper deposit. Most of the rock samples analysed in the research, 16 out of 
26 samples were collected from the early-phase, the McLeod Hill quartz monzodiorite, three samples from 
the Bear intrusion composed of fine-grained granite and hornblende quartz monzodiorite. Seven samples 
were collected from granite porphyry dykes associated with late-stage the Luhr Hill intrusion, host for 
copper mineralization (Figure 1). The composition of most rocks is intermediate to felsic and mineral 
fractional abundance results of the ISMA show that quartz content varies from 1 to 27 percent for all 
samples. Samples Y690B, Y691A-B, and Y692A-B were collected from granite porphyry dyke have a 
higher concentration of microcline up to 80 percent (Appendix 1-C) which are also visually can be seen 
from the rock sample (Appendix 4). The results of the ISMA support the study by Feng et al. (2011) that 
images of rock samples in the LWIR wavelength range can be used for the rock classification. 
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5. Conclusions and Recommendations 

5.1. Conclusion 

The effects of spatial resolution on the estimation of mineral abundance in the rock sample were 
investigated using the proximal imaging spectroscopy. Hyperspectral images of rock samples were 
acquired using SWIR spectrometers at a 26µm and 400µm scales. Mineral endmembers were extracted by 
SSEE while mineral quantifications were obtained as result of mineral classification and mineral unmixing 
at both spatial resolutions using the SAM and the ISMA.  
Following conclusions can be drawn from the study doing the correlational analysis between scales: 
 

 Reflectance (albedo) of mineral is the main influential parameter that causes a difference in 
mineral quantification 

 Low albedo minerals such as tourmaline, actinolite and chlorite tend to reduce in abundance with 
increasing pixel size means that possibilities to be detected is relatively lower compared to high 
albedo minerals 

 High albedo minerals like illite, muscovite, kaolinite and epidote tend to increase in abundance 
with increasing pixel size wherein degree of identification for the brighter mineral is much higher 
than darker minerals. For example, fractional abundance of the illite by ISMA shows that 
dominating minerals get more dominating at coarser resolution while the small fractional 
abundance of mineral reduces at bigger pixel size. 
 

Comparison between methods concluded following outcomes: 
 

 The investigation of mineral abundances extracted by the SAM and ISMA at same spatial 
resolution showed that these two methods could produce a similar result, highly correlated;  
depending on the purpose, classification or unmixing, one can be nominated as a method for the 
similar study of scale.  

 By the two methods, scattering was a bit intense at the coarser spatial resolution than higher 
spatial resolution. 

 There were some errors in mineral classification and quantification by the SAM due to its 
drawback, dependency of the overall shape of mineral spectra, not specific absorption feature.  It 
was demonstrated by misclassification of the actinolite to chlorite due to overpowering of the 
general shape over the specific absorption features in SWIR range.   

The benefits of the proximal imaging spectroscopy over thin section analysis are its ability to identify very 
fine-grained minerals and also, opaque minerals. Many of the thin sections contained up to 60% 
groundmass. The samples were able to be classified into 100% fractions by the spectral analysis that the 
human eye cannot classify under a microscope. Therefore, relatively less amount of time is required for 
image acquisition and interpretation. 
 
The major drawback of the imaging spectroscopy is the wavelength dependent. To identify all minerals in 
the rock sample including alteration, rock-forming and oxides several spectrometers should be embedded 
such as SisuRock application. 
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5.2. Recommendation 

 
This research is one of the first attempts to evaluate the influence of spatial resolution on mineral 
abundance using the laboratory hyperspectral spectrometers. The investigation has concentrated on 
hyperspectral images with only two different spatial resolutions that have a significant variation between 
them.  Thus following recommendations are listed: 

 Further research should be undertaken using hyperspectral images at several simulated or real 
scales to explore how much difference in spatial resolution cause a noticeable change in mineral 
abundance estimation. 

 Findings of this study suggest that researchers should concentrate on the target mineral 
characteristics, particularly reflectance to make a selection of the spectrometer as an instrument 
for their study.   

 Due to the mineral mixture, special care should be taken to the endmember selection since 
minerals endmembers play major role in qualitative and quantitative outcomes of the mineral 
classification and unmixing. 

 Further investigation might explore the same minerals at different grain sizes in the rock sample 
to verify whether there is any effect on mineral quantification. 

 Alterative, best practice classification or unmixing algorithms can be chosen as a validation tool to 
the SAM and the ISMA in the similar type of research to evaluate the impact of spatial resolution 
in mineral quantification. 
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APPENDIX 

Appendix 1. Normalized results of the iterative Spectral Mixture Analysis (ISMA) 

A. Mineral fractional abundance (%) estimated by ISMA at a 26µm spatial resolution in the SWIR 
wavelength range. (normalized) 

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 32.47   0.01 51.57 1.83 6.20 6.83 
Y48 21.34   4.43 68.78 1.14 3.75 0.34 
Y311 47.46 0.29 1.69 15.64 0.05 30.65 2.80 
Y320 49.89 0.05 0.28 3.86 0.02 44.81 1.02 

Y321 67.47   0.77 2.52 0.04 25.35 3.75 
Y323A 83.06 0.02 0.55 1.11 0.04 14.80 0.31 
Y323B 67.45   0.96 0.23   30.37 0.97 
Y651 52.28   1.75 0.22 0.02 45.71   
Y660 77.68   0.09 0.48 0.40 21.20 0.01 
Y665 64.01 0.07 0.51 2.64 0.07 31.41 1.00 

Y680B 59.82 0.06 3.82 1.55 21.12 12.89 0.74 
Y681 27.06 0.02 22.49 34.93 0.71 3.47 10.72 
Y684 16.41 0.02 9.03 61.59 0.25 0.17 12.51 
Y685 62.22 0.03 0.64 0.95 0.21 35.71 0.12 
Y689 53.43 0.01 1.49 3.04 0.08 35.23 6.24 
Y690 51.94 2.96 13.10 0.03 26.45 5.34 

Y690B 72.72 0.02 0.51 0.60 0.07 25.99 0.09 
Y691A 89.82 0.07 0.24 0.48 0.01 9.35 0.03 
Y691B 56.96 0.29 3.94 0.59   12.27 25.82 
Y692B 85.15 0.61 0.38 0.02   13.84 
Y692D 90.56 2.05 0.45     6.94 
Y693A 82.10   0.19 4.12 0.05 9.91 3.62 

Y700 84.65 0.03 0.24 1.55 0.01 13.04 0.49 
762B 32.68 0.68 16.72 32.95 0.19 11.44 4.60 
Y787 58.60   0.13 1.56 1.38 36.81 0.51 
Y889 6.36   18.91 69.52 2.76 1.56 0.65 
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B. Mineral fractional abundance (%) estimated by ISMA at a 400µm spatial resolution in the SWIR 
wavelength range. 
 

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 32.96 0.03   48.79 0.27 3.43 14.25 
Y48 15.06 0.05 14.18 70.34   0.18 0.18 
Y311 53.49 1.22 6.47 7.32   24.86 5.95 

Y320 77.31 0.57 0.31 1.08   16.45 4.28 
Y321 90.24   0.05 0.35   5.43 3.80 
Y323A 96.12 0.16 0.48 0.59   2.55 0.10 
Y323B 84.84 1.08 11.08     1.63 1.37 
Y651 90.38 1.61 2.21     3.66 2.15 
Y660 86.44 0.01 0.01 0.02 0.01 13.51   

Y665 89.91 0.12 0.42 0.39   7.59 1.57 
Y680B 63.94 0.01 4.24 1.21 12.78 17.69 0.13 
Y681 21.95 0.31 37.37 25.81   2.25 12.30 
Y684 5.61 3.84 11.99 47.50   0.02 31.05 
Y685 81.10 0.39 0.09 0.04   18.38   
Y689 59.48 0.43 3.08 0.40   26.44 9.98 

Y690 53.27 0.01 17.04 1.72   23.35 4.62 
Y690B 91.11 0.07 0.03     8.79   
Y691A 99.16 0.28   0.17   0.39   
Y691B 82.56 1.10 9.83 0.12   2.54 3.85 
Y692B 98.75 0.31 0.54     0.40   
Y692D 97.02 2.91 0.05     0.02   

Y693A 92.58 0.04 0.20 1.16   1.47 4.55 
Y700 97.51 0.10   0.89   1.50   
762B 18.57 1.73 39.90 19.13   12.15 8.52 
Y787 67.68   0.12 1.10 0.09 30.59 0.20 
Y889 0.39   29.86 67.83 0.43 1.42 0.07 
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C. Mineral fractional abundance (%) estimated by ISMA at a 400µm spatial resolution in the LWIR 
wavelength range.  
 

Sample ID actinolite epidote quartz albite microline 

Y46 0.00 17.06 2.51 73.55 6.89 
Y48 0.02 4.84 1.32 82.11 11.09 

Y311 7.92 12.78 6.75 17.93 53.42 
Y320 2.22 45.34 3.24 23.23 25.98 
Y321 0.25 38.66 3.51 29.59 28.01 
Y323A 0.02 17.12 10.24 41.87 30.64 
Y323B 0.00 4.45 0.26 3.46 91.73 
Y651 0.00 67.32 3.47 14.39 14.04 

Y660 0.44 18.16 27.12 10.65 38.41 
Y665 0.45 19.34 5.67 28.22 46.14 
Y680B 0.00 41.59 12.76 42.27 3.37 
Y681 0.01 19.61 5.59 50.98 23.82 
Y684 0.00 28.06 16.18 50.77 4.98 
Y685 0.33 16.56 4.75 19.50 58.48 

Y689 3.27 24.80 5.45 32.02 34.46 
Y690 16.86 2.48 72.73 6.81 
Y690B 7.50 2.61 38.25 51.18 
Y691A 0.04 13.28 10.63 12.98 62.23 
Y691B 0.61 16.36 3.16 15.63 64.06 
Y692B 1.75 1.40 22.65 74.09 

Y692D 7.59 6.84 4.72 80.29 
Y693A 10.34 2.11 55.21 31.48 
Y700 0.22 17.96 7.86 53.24 20.19 
762B 0.08 11.65 12.11 22.11 53.27 
Y787 0.02 20.07 16.66 21.68 41.58 
Y889 0.15 11.78 7.73 61.74 18.59 
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Appendix 2. Mineral proportion estimation results of the Spectral Angle Mapper (SAM) 

A. Mineral proportion (%) extracted by SAM using 0.1 radians threshold at a 26µm spatial resolution 
in the SWIR wavelength range. 
 

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 25.36     37.15 0.20 0.02 8.85 

Y48 0.01   0.82 57.73 0.02 0.03 0.07 
Y311 15.31   1.03 8.61   0.37 0.60 
Y320 2.46     5.78   0.49 0.00 
Y321 51.46   0.01 3.28   0.75 0.26 
Y323A 78.81   0.16 1.90   0.03 0.08 
Y323B 19.66   0.02 0.22   0.20 

Y651 4.78     1.47   0.47   
Y660 24.93     2.72 0.14 0.89   
Y665 44.09   0.05 3.31   0.50 0.15 
Y680B 42.97   2.36 2.26 11.28 1.90 0.04 
Y681 11.03   19.15 14.63     15.90 
Y684     1.08 39.51     37.54 

Y685 40.01     3.60   0.92   
Y689 12.87   0.57 8.82   0.72 1.04 
Y690 19.12   4.04 5.09   0.12 0.61 
Y690B 73.88   0.57 0.08       
Y691A 86.92   0.01 0.04   0.01   
Y691B 58.70   7.25 0.10     0.03 

Y692B 95.34   0.68         
Y692D 97.49 1.28 0.23         
Y693A 80.53   0.35 1.20   0.03 2.50 
Y700 85.48     0.41   0.02   
762B 9.53   16.71 21.01     8.34 
Y787 9.25   0.01 5.75 0.37 1.03 0.07 

Y889 0.35   6.40 64.20 0.78 0.05 0.45 
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B. Mineral proportion (%) extracted by SAM using 0.2 radians threshold at a 26µm spatial resolution 
in the SWIR wavelength range. 
 

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 14.56     44.78 0.47 0.03 40.16 
Y48 1.72   3.73 78.08 0.03 0.04 16.40 
Y311 48.11   7.00 17.55   0.42 26.91 
Y320 61.66     22.19   0.66 15.43 
Y321 81.41   3.39 5.87   0.95 8.37 
Y323A 92.77     4.39   0.04 2.26 
Y323B 85.76   8.50     0.01 4.87 
Y651 51.44   10.84 14.14   0.66 22.92 
Y660 89.69     8.44   1.01   
Y665 78.76   1.73 9.26   0.73 9.52 
Y680B 63.37   2.83 14.28 14.55 4.08   
Y681 18.69   27.33 19.49     34.49 
Y684 0.40   2.59 42.74     54.26 
Y685 76.78     15.22   1.10 6.26 
Y689 66.45   1.75 18.41   0.93 12.47 
Y690 50.06   10.90 12.84   0.16 26.03 
Y690B 97.39   1.24         
Y691A 97.98         0.01   
Y691B 75.38   15.49 1.45     7.68 
Y692B 98.65   1.30         
Y692D 98.40 1.28           
Y693A 90.04     2.18   0.06 7.10 
Y700 95.27     1.99   0.06 2.32 
762B 16.03 0.00 31.10 24.17     28.71 
Y787 77.20     18.18 0.37 1.11 2.82 
Y889 0.86   11.90 71.32 0.90 0.05 14.97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

45 

C. Mineral proportion (%) extracted by SAM using 0.1 radians threshold at a 400µm spatial 
resolution in the SWIR wavelength range. 

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 25.52     20.65     13.04 
Y48     1.27 34.25     0.32 
Y311 19.96   4.43 1.39     1.32 
Y320 43.08             
Y321 83.55     0.29     0.26 
Y323A 93.76   0.26 0.19     0.19 

Y323B 81.18   9.09         
Y651 42.57   1.18         
Y660 66.49     0.38       
Y665 67.39   0.37         
Y680B 45.23   2.88 0.99 4.77 1.25 0.04 
Y681 8.61   24.27 5.08     13.63 

Y684   1.16 13.35     52.60 
Y685 60.81             
Y689 28.89   1.10 0.93     1.48 
Y690 23.89   10.88 0.25     0.58 
Y690B 95.29   0.41         
Y691A 97.06   0.07         

Y691B 67.98   16.55         
Y692B 97.14   0.28         
Y692D 97.89 1.46 0.04         
Y693A 86.32   0.15       2.52 
Y700 96.43           
762B 5.65   27.09 6.03     12.16 

Y787 37.06     2.34     0.03 
Y889     7.98 47.98 0.08   0.28 
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D. Mineral proportion (%) extracted by SAM using 0.2 radians threshold at a 400µm spatial 
resolution in the SWIR wavelength range.  

Sample ID illite kaolinite muscovite chlorite tourmaline actinolite epidote 

Y46 13.84     27.34     58.36 
Y48 0.35   9.26 57.02     33.36 
Y311 46.73   31.97 2.42     18.87 
Y320 77.36   12.74 1.20     8.70 
Y321 93.59   2.75       2.82 
Y323A 97.51   1.07       1.03 
Y323B 83.18   16.21       0.61 
Y651 64.28   35.10       0.63 
Y660 96.24     3.39       
Y665 92.40   4.77       2.39 
Y680B 65.16   3.52 17.96 6.74 5.54 1.07 
Y681 14.09   40.77 8.65     36.48 
Y684 0.00   4.42 16.39     79.18 
Y685 92.32   2.99 1.41     3.29 
Y689 75.52   7.60 3.37     13.50 
Y690 49.04   37.86 0.56     12.54 
Y690B 99.54             
Y691A 99.22             
Y691B 74.45   25.55         
Y692B 99.52             
Y692D 98.42 1.55           
Y693A 97.01           2.83 
Y700 98.60             
762B 8.43   51.57 7.77     32.23 
Y787 87.25     8.79     3.48 
Y889     16.25 62.50     21.04 
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Appendix 3. Mineral proportion estimated by thin section analysis (%) 

Sample ID Lithology alteration quartz plagioclase K feldspar epidote chlorite actinolite kaolinite
sericite 

(muscovite)
clay      

(illite)
tourmaline

Y46
quartz 
monzodiorite

0.25 25 0 11 5 0.5

Y48
granite porphyry 
dyke

oli chl rt ep 
(py)

0 23 0 8 13 3 3

Y311 Jpqmj weak clay 15 50 12 3 4 13 0.5
Y320 Jqmp weak sericitic 9 50 9 5 5 12 2
Y321 Jqmp weak potassic 10 55 12 1 2 5

Y323A Jqmp
weak 
potassic/ 
ep+chl

29 26 29 2 1 1 1

Y323B
quartz 
monzodiorite

1 65 0 6 10

Y651 QMP 5 50 16 12

Y660 Jbqmt
weak chl-py-
ser /superg 
clay

30 30 30 1.5 0.5 1.5 0.5 1.5

Y665 Jbqm chl-ser 10 40 8 6 3 22 1

Y680B
border qz 
monozonite

weak Kfsp-
clay-ep

1 24 0 1 0.25 0.25 8 10

Y681
quartz 
monzodiorite

weak sodic-
calcic

5 21 7 4 5 1 5 0.25

Y684
quartz 
monzodiorite

Na-Ca 0.5 8 0 17 7 4

Y685
quartz 
monzodiorite

weak Na-Ca 20 35 28 1 7

Y689
Border granite of 
Bear intrusion

prophylitic 12 45 9 5 2 13 1

Y690
quartz 
monzodiorite

weak 
prophylitic

7 42 12 11 7 5 8

Y690B
granite porphyry 
dyke

Phlogo-Chl-
Ep

30 27 27 7 3 5 0.25

Y691A
quartz 
monzodiorite

Act / Ep 30 22 32 3 0.5 2 3

Y691B
quartz 
monzodiorite

weak 
endoskarn

6 55 6 7 16 5

Y692B
Border granite of 
Bear intrusion

weak 
prophylitic

32 27 36 5

Y692D Andesite dyke 32 21 27 4 5
Y693A Jqmp 22 32 31 2 2 2 3
Y700 Jdqmt Qz-Tm-Ser 35 20 33 0.5 5 3

762B
border qz 
monozonite

weak ep chl 
Bt

0.5 35 6 7 6 1

Y787 Jmd Q S Chl py 30 35 27 0.5 0.25 0.25 1

Y889
granite porphyry 
dyke

Bt ep and 
then chl ep

3 30 3 5 3 3 4
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Appendix 4. Images of rock samples that were analysed in the research 
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 Appendix 5. Methodology flowchart 

Main steps carried out in the research are shown in the flowchart. Hyperspectral images were acquired at 
two different spatial resolutions in the SWIR and only at 400µm in the LWIR wavelength ranges. The 
Images were undergone several pre-processing steps to get rid of the noise and bad pixels. Endmember 
collection was performed with only the images at 26µm spatial resolution in the SWIR range to avoid the 
mineral mixture at the coarser spatial resolution. Extracted endmember library was utilized for the 
classification and unmixing of the images at both scales. Wavelength mapping was assisted the 
endmember collection in the LWIR range and also a validation of the spatial pattern distribution of the 
minerals in the rock sample in both wavelength ranges. Mineral classification and fractional abundance 
maps were created as result of the SAM and the ISMA at each scale and used for the statistics to extract 
mineral quantification. Correlational analysis of mineral quantification was made between the two scales 
and also two selected methods-SAM and ISMA to evaluate the effect of spatial resolution and to cross 
validate the methods. 
 


