
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADVISOR: 

S. Ghaffarian, PhD Candidate 

UNDERSTANDING POST DISASTER 

RECOVERY THROUGH 

ASSESSMENT OF LAND COVER 

AND LAND USE CHANGES USING 

REMOTE SENSING 

 

MOHAMMADREZA SHEYKHMOUSA  

February, 2018 

 

SUPERVISORS: 

Prof. Dr. N. Kerle  

Dr. M. Kuffer 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPERVISORS: 

Prof. Dr. N. Kerle  

Dr. M. Kuffer 

 

ADVISOR: 

S. Ghaffarian, PhD Candidate 

 

THESIS ASSESSMENT BOARD: 

Prof. Dr. V. Jetten (Chair) 

Dr. Maik Netzband (External Examiner, University of Wuerzburg) 

 

 

  

MOHAMMADREZA SHEYKHMOUSA  

Enschede, The Netherlands, February, 2018 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information 

Science and Earth Observation. 

Specialization: Applied Earth Sciences 
 

UNDERSTANDING POST DISASTER 

RECOVERY THROUGH 

ASSESSMENT OF LAND COVER 

AND LAND USE CHANGES USING 

REMOTE SENSING 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 

 



i 

ABSTRACT 

Post-disaster recovery is a complex phenomenon, and distinct from physical reconstruction (physical 

recovery) in that it includes relevant processes such as economic and social (functional recovery). The 

recovery is reported to be the least understood phase of disaster cycle, where existing literature mostly 

focus on physical recovery, neglecting functional recovery. Disasters introduce changes to the affected 

land and in subsequent post-disaster activities through land cover and land use change (LCLUC). LCLU 

information extracted from satellite imagery is widely used in the RS disciplines. However, the value of 

this information in the recovery context has not yet been explored. 

The main purpose of this study was to support the recovery assessment through LCLUC analysis 

using RS and specifically to investigate the value of LCLU information in the recovery assessment. 

Tacloban city in the Philippines was selected as a test area. On 8 November 2013, Tacloban city was 

devastated by super typhoon Haiyan, the strongest typhoon on record to make landfall. Despite the 

crippling damage, the local government tried to coordinate recovery efforts towards a more resilient city. 

The available data were 3 WV2 images from 8 months before, right after, and 4 years after typhoon 

Haiyan. First, a methodology was developed based on a generic, action-oriented, forward-looking 

conceptual framework (CF), comprised of transition patterns (TPs) to characterize different recovery 

statuses. Here it is understood that recovery information is a geographic phenomenon and related TPs are 

geographic objects. Moreover, it is found that some TPs can specifically characterize short- and some 

long-term recovery. Second, for classification purposes support vector machine (SVM) was employed, and 

a detailed comparison of the performance of linear- and RBF-based SVM relying on the various settings 

of hand-crafted features was conducted. The best combination of SVM with image features 

(SVM+GLCM+NDVI2, SVM+LBP+NDVI2; LC and LU tasks respectively) were applied in 3 time-span 

images to produce LCLU maps. The result showed (OA: 89.4%, 82.2%, 90.8%; 76.3%, 69.9%, 77.8%; LC 

and LU respectively) that well designed hand-crafted features could show competitive performance in a 

complex task involving classes from simple and small to abstract and big regarding complexity and size, 

respectively. However, more investigation is needed when it comes to vegetation related classes in “use” 

level. 

Lastly, The LCLU maps were stacked and, based on the developed CF, different TPs from the 

stacked LC and LU maps were extracted. The final products are LC- and LU-based recovery maps which 

were further up-scaled to a region level. It was found that the characteristic of the post-Haiyan recovery in 

Tacloban city can be explained through the LCLUC information. Results of this study showed that 168 ha 

of the area had positively recovered by the time of the most recent image, while 69 ha showed negative 

recovery in both LC- and LU-based recovery maps. Positive recovery was mainly related to the recovery 

projects and was in part effective to build back the damaged area and build impervious surfaces back 

better. However, the recovery project fails where slum areas were rebuilt again along the coastline, where 

study suggests considering slum areas in the readjustment projects. Additionally, it is concluded that the 

general understanding of the recovery could be provided by LC information and LU information can be 

used, where LC information cannot provide useful recovery evidence (area of uncertainty). The other 

finding was that due to the different recovery rate of regions and practicality issues, an adaptive approach 

should be considered for the timing of the imagery. Meaning that while a 3-time-based framework 

provides an initial recovery (assessment) insight of a region, a 5-time-based framework can be used as a 

normal framework which can give an overall assessment of the area, when the timing of the imagery 

should be well adjusted with different recovery rate of specific activities (adaptive approach). Another 

important purpose of this research was to establish the relation between the existing recovery indicators 
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and advanced RS methods. The study provides 3 tables, where all relevant indicators are grouped based on 

their utilities ranging from low and medium to high; micro, meso, and macro indicators, respectively. 

The overall findings emphasis that the LC-based recovery map contributes to the general recovery 

understanding, while detailed functional recovery is revealed by LU-based recovery map. 

THESIS IN ONE SENTENCE: LCLU-based information is useful in the most aspects of recovery 

measurement, while also providing (from a basic to a deep) understanding of recovery assessment. 
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1. INTRODUCTION 

1.1. Background  

A disaster is “a serious disruption of the functioning of a community or a society involving 

widespread human, material, economic or environmental losses and impacts, which exceeds the ability of 

the affected community or society to cope using its own resources” (UNISDR, 2009, p. 9). A disaster 

occurs when a hazardous event hits a vulnerable society or community, and the negative consequence of it 

surpasses the capacity of the society or community to cope with its own resources, including information 

and finance (UNISDR, 2015a). Disaster events, in Disaster Risk Management (DRM) perspective, are 

based on four distinct elements: mitigation, preparedness, response, and recovery  (Figure 1-1). Post-

disaster recovery - in short, “recovery” - can be seen from three different and in parallel interconnected 

aspects; goal, phase, and process. Recovery phase begins with the emergency response activities, and it is 

finished when recovery reaches its goals; i.e., restoring before disaster state. Recovery is the process by 

which societies rebuild what has been lost during a disaster and return to a functional condition (Coppola, 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

After large disasters, a considerable amount of money from donors and governments tends to finance 

the recovery process (Brown et al., 2009) to reach the recovery goals (Lindell, 2013). Although it is 

important for all stakeholders to monitor and assess the recovery process towards its goals systematically, 

it has been described as the least understood phase of disaster management in natural hazards literature. 

There are no comprehensive models to measure the complexity of recovery over time ( Haas et al., 1977; 

Miles & Chang, 2006). Thus, recovery assessment is vital for policyholders and donors. Supporting their 

needs of obtaining reliable and useful indicators can ideally represent the entire recovery process. These 

indicators should be cost-effective, measurable, reproducible, sensitive to change over time, and helpful 

for decision making on a different dimension of recovery; i.e., policy, executing agency and research 

(Horney et al., 2016). In addition, they need a method that allows them to make quick and right decisions 

and to give the alarm when the recovery process does not work as planned (Brown et al., 2010). Current 

recovery assessment methods comprise of ground-based techniques such as household survey and social 

audit, which cannot cover all aspects of integrated recovery (physical and functional recovery), specifically 

over large areas, while also are time- and money-consuming (Platt et al., 2016). However, to monitor 

Figure 1-1 Disaster risk management cycle (Coppola, 2015) 
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recovery, conventional methods such as ground survey and social audit can also be combined with satellite 

imagery analysis. Remote sensing (RS) allows to quantify and assess recovery over large areas, and the 

qualitative methods allow to get details from the ground for small areas. 

In the RS-based recovery assessment, most of the developed methods have traditionally been focused 

on the reconstruction part of recovery. However, there have been changes in this trend towards a more 

holistic recovery process (sustainable recovery), taking other parts of recovery into account (Joyce et al., 

2009b). Brown et al. (2010) used indicator-based methods based on very high resolution (VHR) imagery 

combined with the social audit for recovery assessment. However, this work uses a rather conventional 

method which has been criticized in recent publications of been not very suitable for VHR imagery (Lu & 

Weng, 2007a).  

Disasters and their subsequent recovery processes influence land cover (LC) and land use (LU) 

(Banba & Shaw, 2017; Platt et al., 2016). Therefore, land cover and land use change (LCLUC) detection 

can be used as an important and reliable as well as practical indicator to monitor and assess the recovery 

process. It can reveal functional changes (land use) on the ground beside general physical changes (land 

cover). Furthermore, out of all possible LCLUCs, some specific changes tend to occur within the 

recovery, which can characterize the process. LCLUC, moreover, are two robust indicators with high 

explanatory power across the recovery process and over time, which also can be used to assess how well 

the affected area is recovered (Banba & Shaw, 2017). In addition, LCLUC can help stakeholders to shift 

from expensive recovery assessment to a more sensible one.  

The increasing availability of VHR datasets before and after the event, allow the use of change 

detection (CD) in recovery assessment (Pitts & So, 2017). Change detection based on remotely sensed 

data is an established method in other domains (Joyce et al., 2009b). RS-based change detection  is an 

ever-growing topic with the most focus on LC and less on LU classification. A large number of RS based 

CD methods have been established using conventional pixel-based and object-based approaches (Hussain 

et al., 2013).  

Machine learning (ML) algorithms are popular in the field of RS where they have demonstrated their 

capability in different learning tasks with different data types and potentially are robust enough to handle 

high-dimension data (e.g., VHR and high-spectral data) (Hussain et al., 2013). Among ML methods, 

support vector machine (SVM) is a non-parametric classifier, which can handle complex learning task with 

the small amount of training datasets that produce competitive results (Mboga et al., 2017), while also is 

capable of handling high dimensional data (Persello & Bruzzone, 2016).  

1.2. Research Motivation 

Disaster events tend to receive huge financial and technological supports, which mostly flow from 

donors towards executing agencies, within the recovery process. Yet, there is no comprehensive model to 

assess and monitor the integrated recovery process, and as a result, the recovery output is not clear 

(quantifiable). For example, conventional recovery assessment methods are expensive, time-consuming, 

prone to subjectivity, and hard to communicate among stakeholders, while also lacking accuracy, 

transparency, and reliability (Brown et al., 2010). One of the motivations of this study is to help 

stakeholders involved in the recovery process to avoid an expensive recovery assessment and provide a 

more quantifiable recovery assessment, which also covers physical and functional recovery. This can be 

done with the help of a recovery (assessment) map based on tracking some trajectories of LCLU changes 

(transition patterns). For instance, a disaster and corresponding recovery process affect some special types 

of LCs and LUs - not all change patterns are related to the recovery - within the affected area. In the 

recovering community, moreover, there are some RS-based recovery assessment indicators (e.g., Brown et 

al., 2010) with different levels of practicality, which are also based on visual interpretation. For instance, 
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local type indicators such as “clean and neat swimming pool” with low practicality to assess recovery. 

Thus, there is a need to group them and further link them with more advanced RS methods. 

In a recent study, researchers from the recovering community highlighted RS-based recovery 

assessment “requires specialized software and trained staff” (Platt et al., 2016, p. 459), which clearly shows 

a gap of robust and advanced approaches in RS-based recovery assessment. For instance, the commonly 

employed RS methods for recovery assessment are rather dated, not suitable for VHR imagery and do not 

use latest developments of the RS community (e.g., machine learning). Besides, in the urban RS 

community, there are established methods using abovementioned ML methods coupled with feature 

texture for LCLU classification, which potentially can be adapted in this research. However, the use of 

LCLUC to understand/characterize recovery has not been sufficiently investigated in an urban-rural 

context using VHR satellite imagery. Therefore, there is a need to develop an RS-based methodology 

which suits the special properties of the recovery process and VHR data characteristics by a multi-step 

approach based on some trajectories of changes. 

Moreover, although in studies on recovery assessment there are a few examples of using LC, they are 

either limited to a local area or applied to a subcategory of the recovery process  (e.g., Khan et al., 2014). 

Therefore, this study aims to provide a more holistic understanding of the recovery process through 

investigating the value of LCLUC, considering physical and functional recovery, spatially over large areas. 

1.3. Research Identification 

The research focuses on investigating the utility of LCLUC with RS methods in the post-disaster 

recovery assessment, aiming to understand and characterize it over large areas (including rural and urban 

areas), using VHR satellite imagery. This study uses Worldview 2 images (3 time-span), acquired over the 

Tacloban city 8 months before (pre), 3 days after (event), and 4 years after typhoon Haiyan (post), in the 

Philippines. Considering the research problem, the study is broken down into main objective and three 

sub-objectives and related research questions. 

1.4. Objectives and Research Questions 

1.4.1. Main Objective 

To investigate the value of land cover and land use changes (LCLUCs) in the post-disaster recovery 

assessment, using remote sensing. 

1.4.2. Specific Objectives and Research Questions 

Specific objectives and related research questions are: 

➢ To develop a conceptual framework for the recovery assessment using land cover and land 

use changes. 

1. How to translate observable, theoretical and potential LCLUC in the post-disaster 

recovery process into a conceptual framework? How to implement such a framework 

in the study area? 

2. Which LCLU classes are the most meaningful to understand the recovery process 

and why? 

3. How far can recovery be understood by LC information? What is the contribution of 

LU information? 

➢ To investigate the significance of land cover and land use change to understand the recovery. 

4. Which advanced urban RS based method is appropriate for LCLU classification for 

Tacloban city? 

5. Which image features are suitable for the LCLU classification? 
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6. How is Tacloban city recovering in terms of LCLU? How many images are 

appropriate to assess recovery process in Tacloban city and why? 

➢ To develop a practical guide from existing recovery indicators. 

7. How can the conceptualization in existing urban-recovery literature (e.g., Brown et 

al., 2010 indicators) be linked with RS methods? 

8. How well can existing indicators be used in practice? Which indicators from this 

thesis or other disciplines can be used in the recovery assessment? 

1.5. Thesis Structure 

This study is organized into seven chapters. A concise outline explaining the content of each chapter 

is given below: 

Chapter1 

The general background and motivation of this study are provided. Then the research problem is 

introduced followed by objectives and research questions.  

Chapter 2 

In chapter 2, a deep literature review is conducted to understand the recovery aspects, land cover and land 

use and their relations with land functions, and methods used to assess recovery and LCLU, where the 

focus is given to RS-based methods. 

Chapter 3 

A brief background about study area and typhoon Haiyan is given together with an overview of the 

relevant data set for the purpose of the study. 

Chapter 4 

This chapter starts by introducing the conceptual framework followed by a class definition and 

implementation of the CF in the study area. Next, the methodology is described to carry out the 

experiments, to produce recovery maps. In the end, existing RS-based indicators in recovery field are 

investigated in terms of practicality and a guide is provided to link them with advanced RS methods. 

Chapter 5 

This chapter provides the results obtained through the applied methodology. 

Chapter 6 

A comprehensive discussion is presented in this chapter, including a critical analysis of the data used, 

results obtained, and limitations. 

Chapter 7 

Lastly, conclusions drawn from the study and recommendations for future research opportunities are 

presented in this Chapter. 

 

 

 

 

 

  



UNDERSTANDING POST DISASTER RECOVERY THROUGH ASSESSMENT OF LAND COVER AND LAND USE CHANGES USING REMOTE SENSING  

5 

2. UNDERSTANDING POST DISASTER RECOVERY  

2.1. Post Disaster Recovery 

Definitions of recovery vary in the literature. The term is generally used as the process of returning to 

a normal condition after a period of difficulty (Chang, 2010).  Recently, recovery has been described as a 

complex and arduous process, which in minor cases can be evaluated in months, years and in extreme 

cases in decades (Lindell, 2013). That is mainly because recovery is a multi-layer process. Several 

researchers have portrayed different aspects of recovery. Early studies conceptualized long-term recovery 

as a foreseeable process which happens sequentially (Haas et al., 1977) with the focus on the 

reconstruction aspect of recovery (physical recovery). Subsequent criticisms have contested the logic 

claimed in this study (Rodríguez et al., 2007). Rather, recovery has later been described as an ambiguous 

process, which can be influenced by decision making, social disparities and available resources (Bolin, 

1994). Along with this definition, Rodríguez et al. (2007) described the recovery as a complex and 

uncertain process which different factors such as race, class, past disaster experience, power, and access to 

resources, can influence the process, ranging from individual to community level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A holistic view of the recovery is introduced by CDEM (2005) (Figure 2-1). In this framework, 

community recovery consists of four distinct aspects which partially overlap: social, natural, economic, and 

built environment, and they will be referred as recovery sector, which each sector contains some other 

subdomains. Lindell (2013) stresses temporal differentiation among different phases in the recovery 

process and divides it into four phases; disaster assessment, short-term recovery, long-term recovery, and recovery 

management, which can happen either sequentially or simultaneously. Short-term recovery focuses on starting 

the recovery process for businesses and households as well as immediate relief activities; i.e., providing 

Figure 2-1 Different sectors in community recovery (CDEM, 2005) 
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shelters and debris removal among others. Among short-term recovery activities, providing temporary 

shelter is a challenge specifically after large disasters, in parallel with restoring critical infrastructure. 

Long-term recovery or reconstruction phase includes the reconstruction of the affected area and manages 

social, psychological, demographic, economic and political impacts due to a disaster. Successful long-term 

recovery requires a good planning strategy, a substantial amount of coordination and employment of 

policies (Coppola, 2011). Nowadays, the recovery process is generally accepted beyond reconstruction. It 

is a multi-dimensional, nonlinear and complex process. It concerns changing from physical recovery to 

rebuilding of people’s lives and livelihoods (functional recovery)(Brown et al., 2010). Thus, disaster 

recovery can be described as “the differential process of restoring, rebuilding, and reshaping the physical, 

social, economic, and natural environment through pre-event planning and post-event actions” (Rodríguez 

et al., 2007, p. 237). Moreover, Olshansky et al. (2012) argue that the fundamental difference between 

post-disaster situation and the normal condition is “time compression”. The post-disaster environment 

consists of a compression of urban development activities in time and in a limited space (Olshansky et al., 

2012). 

2.2. Physical vs. Functional Recovery 

The definition of urban functions varies depending on author and research goal (Foerstnow, 2017). 

The urban function can be characterized based on the land use type such as commercial, residential and 

industrial among others, which inherently are related to the corresponding land cover. While land cover 

represents physical aspect of the earth surface, land use signifies how the landscape is used and is “about 

the functional aspect of land” that differs by the level of human actions (Food and Agriculture 

Organization of the United Nations (FAO), 2009). Although urban function can be related to an 

operational aspect of land; i.e., if a barely damaged hospital is functioning after the disaster, it can also 

relate to the use of land (FAO, 2009). The focus of this study is more based on FAO definition of land 

use and functions. The relation between land cover, land use, and land functions is further discussed in 

section 2.8.1. 

Disasters cause socio-economic and physical damages in urban systems. Accordingly, disaster 

recovery includes not only physical reconstruction (physical recovery) but also the more challenging re-

establishment of the whole damaged socio-economic system (functional recovery) in the affected area. 

Functional recovery of the affected area may be much more complicated to be attained than physical 

recovery (Dong, 2012). Sustainable recovery requires not only to look at the physical recovery but also 

functional recovery and provides an opportunity to improve the pre-disaster vulnerability (Passerini, 

2000).  

2.3. Importance of Recovery Assessment 

Many people and societies suffer from (large) natural disasters’ impacts, such as social and physical 

impacts (for more background on disasters' impacts see Lindell, 2013). For example, between 2005 and 

2014, 169 million people were affected on average by disasters on a yearly basis (CRED, 2014). 

Accordingly, the annual average damage (due to disaster) to economy and assets -in the past 50 years- 

jumped from US$10bn to US$100bn. Although large-scale natural disasters extremely damage the affected 

area, many researchers have also shown that disasters and subsequent recovery processes can bring 

specific opportunities for disaster-stricken communities. For example, to solve pre-existing vulnerabilities 

and to further advance remarkable changes and betterment which is well known as the “windows of 

opportunity that opens following a natural disaster” (Olshansky, 2006). When stakeholders are ambitious 

to restore the damage and disruption and further to maximize the benefits, it is vital to know how long 

would the process take for a society to recover (Platt et al., 2016). Moreover, how well it would be (Saito 

et al., 2009) or how much have been reached so far and what should be done next (Brown et al., 2008). 
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Post-disaster recovery creates the opportunity for mitigation to reshape the community in a way that 

can either improve or hinder sustainability. A careless recovery process can lead to numerous negative 

impacts on the community including losing jobs, shoddy reconstruction, missing mitigation opportunities, 

and losing people’s trust among others (Johnson, 2012) as well as making unpractical decisions (Dong, 

2012). Conversely, successful recovery introduces a significant window of opportunity for mitigation 

(Nakabayashi, 2014) and to rebuild a stronger structure compare to the pre-disaster situation, alter land-

use plan with the focus on risk reduction and meaningfully reshape the current socio-political and 

economic landscape (Rodríguez et al., 2007). Moreover, the recovery process is important for people’s 

safety, well-being and is the main subject of long-term planning for the affected area. Recovery assessment 

improves aid policy, transparency of the process, the capability of executing agency for on-going works 

and provides liability (Brown et al., 2009). Comprehensive knowledge of recovery (especially over large 

areas) helps stakeholders to act quicker, more efficient, and better for both short- and long-term recovery. 

A better understanding of recovery also helps post-disaster actions, increase societies resilience rather than 

regain pre-disaster stage (Miles & Chang, 2007). 

2.4. Link between Recovery, Rehabilitation, Reconstruction, and Resilience 

Terms recovery, rehabilitation, and reconstruction are often confused. Rehabilitation is a short-term 

process and refers to an elementary restoration of facilities and services in a way that the affected 

community can continue functioning (UNDP, 1993). The focus should be on helping victims to 

(temporarily) repair physical damages to prevent secondary damage in a disaster situation such as 

explosion due to gas leakage. Reconstruction, however, is a long-term process and refers to the rebuilding 

of all damaged physical structures and restoration of facilities, services, and livelihoods which are needed 

for the full functioning of an affected community in a timely and efficient manner (UNISDR, 2015a) 

(Figure 2-2). Moreover, in the reconstruction phase, it is important to take many issues into account: i.e., 

building codes and program standards (technical construction assistance to disaster-stricken community), 

regulations (land use control) as well as social policies (for more background see EPC, 2004), equity and 

relocation (EPC, 2004). However, displaced people mostly care about the availability of services to meet 

their basic needs, before returning to the before disaster place. Reconstruction can also be seen as a basis 

for functional recovery. Rehabilitation and reconstruction collectively are referred as recovery (Chang, 

2010).  

The recovery process, moreover, is in a close relationship with the resiliency of a society. The concept 

of resilience has been imprecise in the disaster-related literature (Platt et al., 2016). According to UNISDR 

(2015), resilience is “the ability to “resile from” or “spring back from” a shock. Measuring resilience is a 

complex issue, or as Cutter (2016) has described “is messy and increasingly hard to navigate”. Next to 

Cutter, Alexander (2013) in an etymological study described resilience comprises a community’s capacity 

to bounce back after a disaster, its preparedness level, and capability to recover quickly. Additionally, the 

social aspect of resilience comprises of coping capacity (i.e., to cope with and overcome hardship), 

adaptive capacity (i.e., ability to transfer past experience), and transformative capacity (i.e., the ability to 

foster people) (Keck & Sakdapolrak 2013). Resilience is recently being used in the land use planning 

Figure 2-2 Recovery vs. Rehabilitation vs. Reconstruction (Ghaffarian, 2016) 
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framework called ‘resilience planning’ which is often confused with sustainability (Saunders & Becker, 

2015). To analyze resilience, Fiksel (2003) adopted a simple graphic from thermodynamic systems to 

describe different types of resilience. Cities can be seen as (complicated) systems which have their own 

stable state (i.e., normal state) and resources.  While system 1 is resistant to a small shock but unable to 

cope with a larger event, system 2, shows a better resiliency to disturbances, and ultimately, system 3 

offers even a greater resilience in the case of a significant disturbance (Figure 2-3). 

 

 

 

 

 

 

 

 

 

 

 

The quality and the speed of the recovery process can be used as indicators of the resilience of an 

affected area (Platt et al., 2016). Lin & Wang (2017) argue that the resilience of a community can be 

assessed by its residual functionality after a disaster (robustness) and by the speed of functional recovery 

to a normal situation; i.e., pre-disaster norm or a new equilibrium. 

2.5. Recovery Assessment 

Post-disaster recovery assessment is an important issue in terms of providing accountability, 

enhancing aid policies, helping decision makers and executing agencies with reliable information from on-

going work on the ground and to further check whether they are in the right track or not (Saito et al., 

2009). This assessment requires valid data from different involved sectors in the process such as physical, 

social, economic and environmental sectors. In addition, the level of analysis (i.e., individual, households, 

neighborhoods, community, city or regions) plays an important role in the assessment. Besides, 

understanding the recovery is essential for assessing and reaching to community resilience (Lin & Wang, 

2017).  

Recovery assessment necessitates robust methods and reliable data (Brown et al., 2008). This requires 

a “comprehensive understanding of post-disaster circumstances and conditions, including damage and 

serviceability of buildings and lifelines, their interactions with social and economic systems, availability of 

human and financial resources for recovery activities, and decisions made by relevant stakeholders”(Lin & 

Wang, 2017, p. 96) at each stage of the recovery process. Many techniques and methods and data are 

available in the literature; satellite imagery analysis, volunteered geographic information (VGI), official 

publications and statistics, social audit (key informant interviews and focus groups), ground survey and 

observation, household surveys, and insurance data (Platt et al., 2016). These methods and data-types can 

be categorized into two main groups: direct observation; i.e., remote sensing, and social audit; i.e., ground-

based surveys (Brown et al., 2010). Since the focus of these study is remote sensing based recovery, the 

recovery assessment is categorized into remote sensing based and in-situ based methods (here is called 

ground-based methods). The following sections provide examples from the literature on recovery 

assessment for both groups. 

2.5.1. Ground-Based Methods 

A growing body of literature from different disciplines has been directed towards assessing and 

monitoring recovery (Brown et al., 2009). Conventional studies in the post-disaster recovery assessment 

Figure 2-3 System trajectory (Fiksel, 2003) 
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focus on built-up environment and short-term evaluation of damaged buildings. However, recovery 

assessment is vastly related to the scale (i.e. individual, household, business, and community) and timespan 

(i.e., different recovery output is possible for the same place but different timeframe) being studied, as well 

as the perception of the evaluator (i.e., the result may vary per individual, aiding agency, and local people) 

(Brown et al., 2008). Some researchers have assessed recovery considering household and housing unit 

(Bolin & Bolton, 1983), while others focused on business recovery (Webb et al., 2000). Assessing recovery, 

moreover, at a community level has captured the attention of the scientific community (Rubin et al., 

1985), including various social audit methods (Brown et al., 2008) from ground survey (Dong, 2012), semi-

structured interviews to household surveys (Yi et al., 2015). Social audit is mainly used to collect and 

combine the data regarding the timing and the quality of the process, as well as people’s perception of the 

process. Additionally, published materials including official and statistical reports mainly from local 

governments, census data, and archived documents serve as sources of information for validating the 

extent and timing of different parts of the recovery process (Platt et al., 2016).  

Recently, social media such as Twitter has been recognized by researchers and practitioners as a key to 

communicate and coordinate the recovery process, especially in its early stage. In a new research, for 

example, Yan et al. (2017) discussed how geo-tagged social media data in Flicker, as VGI, can contribute 

to monitor and assess tourism recovery. However, alternative ways of communication and awareness 

raising such as mass media campaigns, should not be neglected (Khan & Sayem, 2013). In 2015, Takahashi 

et al. used Twitter within and after typhoon Haiyan in the Philippines where results showed social media 

mostly used to disseminate second-hand information, in coordinate with relief and recovery efforts. 

2.5.2. Remote Sensing-Based Methods 

Remote sensing has been proven as an ideal tool for spatial information and related utilities in case of 

natural disasters around the world (Kerle, 2016). However, there are different data types (e.g., radar, and 

optical) and techniques (i.e., different image processing techniques) regarding remote sensing, and 

different disaster types (e.g., volcanic activity, earthquake, and typhoon). In disaster risk management cycle 

perspective, disasters consist of four phases (Figure 1-1) where, the use of remote sensing to support or 

monitor recovery is the least developed application of this technology (Joyce et al., 2009). However, 

remote sensing can greatly contribute to monitor and assess the recovery process through facilitating time-

series analysis over large areas and at short intervals.  

In RS-based recovery assessment, most of the developed methods and data-types have traditionally 

been focused on the reconstruction part of recovery. However, there have been changes towards a more 

holistic recovery process (sustainable recovery), taking other parts of recovery into account (Joyce et al., 

2009b). Curtis et al. (2010), for instance, used video dataset in recovery assessment analyzing accessibility 

problems of remote places. In an extensive study, Brown et al. (2010) used indicator-based methods based 

on VHR imagery combined with the social audit for recovery assessment. Their indicators were mostly 

local-types indicators, which were expensive and time-consuming to collect while also lacking practicality. 

For instance, they used “clean/dirty swimming pool” as an indication of the recovery. Although the 

indicator can be helpful to a limited extent, it does not reveal information about recovery on a practical 

scale, unless for one specific building which has a swimming pool. Besides, the image analysis technique 

used (maximum likelihood classification) is not appropriate for VHR imagery (Lu & Weng, 2007).  

2.5.3. Remote Sensing Based Indicators 

In the recovering community, there are remote sensing based indicators for recovery assessment. 

Indicators, in general, are informative tools, which can efficiently help recovery assessment. However, to 

address the recovery assessment, the indicators require some systematic level of standardization (Chang, 

2010). Some of the indicators include a range of environmental, physical, social and economic factors 

where together provide a more comprehensive view of the recovery process (Platt et al., 2016). Building 

and corresponding removal of medium to long-term emergency shelters, commencement, and completion 
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of new infrastructures such as roads, bridges and buildings, and vegetation regrowth among others are 

examples of these indicators for recovery assessment (Joyce et al., 2009). 

Built-up and infrastructure sectors and corresponding indicators are more physical recovery-related 

indicators which are normally visible from satellite imagery. For example, the spatial location of recovery 

and the development-stage of it, debris removal, and roads are of large-scale indicators (macro indicators). 

Change in building morphology is an important indicator of living condition, and debris removal is an 

indicator of the speed of the recovery process in a time-series analysis (Brown et al., 2010). Although there 

are few researches using indicators for functional recovery, e.g., infrastructure-related indicators 

(accessibility and vehicle counts) to assess functional recovery (Foerstnow, 2017). 

Economic related indicators and related factors are different (Brown et al., 2010) in different contexts. 

For example, shops and mini scale businesses in the developing countries should reopen quickly. Some 

remote sensing-based indicators of economic recovery are; the presence of large-scale industries, cooling 

towers, the presence of heavy vehicles, railroads, pipelines, roof color and material, and warehouses. Post-

disaster reconstruction, in addition, highlights opportunities for manufacturers to move to a safer area 

based on the recovery plan which also has direct and unavoidable impacts on the transportation system 

(Hagelman et al., 2012). Social-type recovery indicators can also be extracted by RS methods. Built-up 

related activities impact social recovery, and consequently physical related indicators can be employed to 

assess social recovery (Carpenter, 2012). Temporary transition camps, the longevity of camps and local 

amenities are examples of physical-based social indicators, which can be detected and monitored in a 

timely manner to assess social recovery. 

2.6. Recovery Outcome 

It is difficult to define a precise goal for recovery and further to check whether the process was 

successful or not (Platt et al., 2016). There are different states described as recovery goals in the recovering 

community, aiming at different angels and dimensions of recovery. However, in general, the recovery 

process should achieve two goals; to replace lost housing stock (Brown et al., 2008) and to return to the 

pre-disaster level of economic function and finish the physical reconstruction; like infrastructure, housing, 

and public facilities. The ultimate recovery goal is to reach to long-term reconstruction to make the new 

permanent city with regards to a sustainable development plan (Olshansky, 2006).  

 The UNDP describes the aim of disaster recovery as “restore the capacity of national institutions and 

communities to recover from conflict or a natural disaster, enter transition or ‘build back better’, and 

avoid relapses” (UNOCHA, 2008, p. 28). Achieving to a sustainable recovery goes beyond restoring and 

reconstruction of the physical landscape, but it contributes similarly to risk and vulnerability reduction 

(Rodríguez et al., 2007). Sustainable recovery confirms that future generation will not suffer from the 

recovery process. Besides, recovery process should leave room for technological advancement and 

increase of awareness. Recovery, moreover, should boost mobility, accessibility and ensure building 

liveability (UNDP, 2013). Recovery outcomes are different based on their contexts; for example, the US 

government aims to return buildings to their previous state and avoid people profiting from the disaster. 

In a way, the government makes sure that there is no need for repeated construction. Other countries like 

Japanese and EU administrations aims to return to normality over a regional-scale when assessing 

recovery (Zorn & Shamseldin, 2015). Moreover, the goal of a non-physical aspect of recovery is to 

promote security and safety, health care, wellbeing, and engage psychological support for the people 

affected (Chang, 2010). Resilience is also one of the outcomes of the recovery process from policymakers 

and experts perspectives (Woolf et al., 2016). 

2.7. Stakeholders in the Recovery Process 

One of the important challenges in coordinating the recovery process is the large number of 

stakeholders (Brown et al., 2012). The potential users of the recovery process differ by level and context 
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of disaster. For example, scientists and researchers from universities, institutes and research companies, 

planners from government and coordinating agencies, and NGOs can benefit from recovery information. 

Planners are involved throughout all the phases of the recovery process and are in charge of the decision 

making and support within and after recovery phases, where they require to act quickly and get together to 

make recovery plans and fund necessary resources. Besides, scientists can use the outcome of the decision 

making to explain the event and to provide further insight on the event. Additionally, NGOs need to 

access information about the transport, infrastructure, residential, etc. in their areas of interest and to 

inform the community (Brown et al., 2010). 

2.8. Urban-rural Dynamics and Existing Literature 

An effective post-disaster disaster recovery requires taking complexity of urban-rural components into 

account. In the previous sections, an overview of the recovery process was given. This section covers 

physical and functional aspects of the recovery process in an urban-rural setting through land cover, land 

use, and land functions and tries to explore their relations.  

2.8.1. Relation Between Land Cover, Land Use, and Land Functions  

The urban-rural setting can be divided into separate land covers, and their associated land uses. For 

example, bare soil can represent a dirt road, fallow land (agricultural land), and recreational area. Each of 

abovementioned examples has its own function; road, for instance, functions as a network. Definition of 

LCLU varies in the literature, mostly by the purpose of studies. However, in a broad term, LC refers to 

physical characteristics of the Earth surface (e.g., vegetation and concrete), whereas LU is attributed to the 

purpose of those characteristics or how they transformed by human activities (e.g., agriculture for 

vegetation), including land management practice. LC and LU are tightly related, but the relations are 

complex (nonlinear). Their changes are driven by natural activities and by human developments motivated 

by economic goals. (Verburg et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land cover as a physical characteristic of the land surface is directly observable; either in the field or 

from remote sensing imagery. Land use, however, is more difficult to observe and may be inferred by 

observable activities; like grazing (Verburg et al., 2009), or by using appropriate image based features 

(Kuffer et al., 2016) in the remote sensing field. Monitoring and assessment of land function are often 

impossible based on LC data only (Pontius et al., 2008), and additional socio-economic data is needed. 

Mapping land functions are complicated. Taking spatio-contextual and ability to provide goods and 

services of land into account, common approaches for land cover mapping may not be used for land 

Figure 2-4 Relation between LC, LU and land function, and possible methods to 
collect spatial data (Verburg et al., 2009) 
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functions analysis; i.e., land functions may frequently change while the land cover remains the same and 

vice versa. Verburg et al. (2009) asserted that there is no one-to-one relation between land cover and 

functionality. Thus, land cover is not a comprehensive indicator for land functions quantification. For 

instance, the non-linear relation between grassland and its function (e.g., grazing or natural grassland) 

exemplifies the limitation on information derived from land cover data provided by satellite imagery. 

However, land functions assessment is often restricted to land cover-based (change) map (Metzger et al., 

2006) or an inconsistent mixture of LC and LU classes (Jansen & Gregorio, 2002).  Alternative methods to 

map land functions could be using observable and/or modeled proxies (For more detail see Chan et al., 

2006).  

2.8.2. Urban Remote Sensing and Existing Literature 

The availability of VHR datasets before and after the event in one hand, and a growing image records, 

on the other hand, allow the use of change detection in recovery assessment in a complex setting such as 

urban-rural areas. Change detection based on remotely sensed data is an established method in other 

domains (Joyce et al., 2009); however, it is mostly related to land cover change classification.  

RS-based CD is an ever-growing topic with the most focus on LC and less on LU classification 

(Hussain et al., 2013). A large number of RS-based CD methods have been established, using pixel-based 

and object-based approaches. The pixel-based method compares corresponding pixels, while the object-

based method compares related objects, both in time series images (Hussain et al., 2013). Both methods 

point to find different types of changes and associated locations, quantification, and accuracy. The 

conventional pixel-based change detection (PBCD) methods mostly focus on the spectral value of pixels 

and more recently exploit the spatial context of an image (Hussain et al., 2013). In contrast, the focus of 

object-based change detection (OBCD) is mostly on spatial correlation between neighboring pixels and 

tries to find changes within-objects (spectral changes) and in the objects (geometric changes) (Tewkesbury 

et al., 2015). Giving merit to one of the OBCD or PBCD is a controversial issue in the RS literature and 

demands considering many different aspects ranging from the purpose of the study to data types 

(Tewkesbury et al., 2015). In a comprehensive study, Duro et al. (2012) concluded there is no significant 

difference in statistical accuracy between these two approaches when the same machine learning methods 

are employed. Among many techniques for CD such as image differencing, image rationing, regression 

analysis, vegetation index analysis, multi-date direct analysis, and post-classification comparison, the latter 

is widely used due to reducing the need of image pre-processing. The accuracy of post classification image 

is dependent on the classification accuracy of the individual result (Hussain et al., 2013). 

 The result of OBIA is dependent to the accuracy of segmentation, and also it has problems with 

searching objects, which spatially correlated in time-series images as well as expert knowledge requirement 

for defining rule sets (Tewkesbury et al., 2015). On the other hand, image-pixels have been considered the 

basic unit of image processing and its spectral characteristics are used to provide thematic maps, mostly 

neglecting the spatial context of the image (Hussain et al., 2013). However, there have been changes in 

pixel-based approach to using texture features as an effective method in different image analysis 

disciplines to overcome context-related problems, ranging from urban disaster analysis (Tomowski et al., 

2011) to land cover and land use change detection (Gevaert et al., 2016). These examples highlight the 

benefit of adding contextual information to pixel-based approaches. According to Clarke et al. (2014), 

pixel-based analysis works better for urban LCC, whereas in urban LUC it is recommended to use image 

context, pattern, and texture.  

ML algorithms are a hot topic in the urban and other fields of RS. These algorithms have shown their 

robustness in different contexts and data types like, optical, radar, and UAV data (Ali et al., 2015). They 

are potentially capable of handling complex spectral measurement space, large volume data and high-

dimensional data, while also they reduce computational time in comparison with conventional classifiers, 

such as maximum likelihood (Persello, 2017). Although these algorithms need many ground truth datasets, 

they are flexible and can be applied to any learning tasks, like image classification (Ali et al., 2015). Kuffer 
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et al. (2016), in a review study ascertained among different approaches, machine learning methods 

obtained the “highest mean accuracy” and can handle learning tasks with very high-resolution imagery in 

complex urban, whereas “the variance of the performance of OBIA is rather large” and performs well for 

differentiating objects (e.g., roads) on neighbourhood scale.  

In urban remote sensing discipline, non-parametric classifiers such as neural networks (Mboga et al., 

2017), random forest (RF) (Stumpf & Kerle, 2011) and support vector machines (SVM) (Mathur & Foody, 

2008) are of interest among machine learning methods. However, the methods are based on image-pixel 

and cannot exploit the potential of very high-resolution images (Kuffer et al., 2016), that might also be 

influenced by the impact of mixed pixel problem (Lu & Weng, 2007). Thus, contextual information of 

neighboring pixels is needed as well as image-based proxies; such as image-based features (Pelizari et al., 

2017). However, the choice of image features is highly important, and sometimes a careless use of textural 

features reduce the overall accuracy (Vetrivel et al., 2016). 

Artificial Neural Network (ANN) and more recent Convolutional Neural Network (CNN) has the 

ability to retrieve complex patterns from the data (Ali et al., 2015) and even “learning features” from the 

data. CNN has shown advantages over other ML methods (Vetrivel et al., 2016); however, its hidden layer 

is a “black box,” and the overall accuracy is highly dependent on the amount of training data while also 

the user has no control on the process “except providing large input data” (Hussain et al., 2013). 

Moreover, CNN is not easy to use and computationally is extensive, that normally needs special hardware 

to handle the process. On the other hand, recent studies prove the classification result of the ML methods 

is highly dependent on the data characteristics (Foody & Mathur, 2004; Vetrivel et al., 2016). For instance, 

the performance of SVM is very well for complex datasets; such as urban-rural setting in developing 

countries, where the performance of random forest (RF) is highly data dependent and only performs well 

for “non-complex” datasets. Vertivel et al. (2016) concluded that “the SVM-based, supervised models 

were more reliable and mostly showed better generalization performance than RF, particularly for the 

complex datasets”. Although SVM models have difficulty in kernel selection and computational time for 

optimization, they can handle learning tasks with a small amount of training dataset (unlike CNN), which 

show competitive results. Moreover, SVM has demonstrated to be very effective in solving nonlinear 

classification problems while also is capable of handling high dimensional data (Bruzzone & Persello, 

2009). Comparative studies have shown more accurate results by an SVM in combination with texture 

features than conventional ML methods or comparable result with  CNN (Gevaert et al., 2016b; Mathur & 

Foody, 2008; Mboga et al., 2017; Tewkesbury et al., 2015) Other advantages of SVM are; higher 

generalization capability and robustness to high dimensionality phenomenon and lower struggle needed 

for model selection in the learning stage as well as “optimality of the solution obtained by the learning 

algorithm” compare to conventional ML methods (Bruzzone & Persello, 2009).  

To summarize, a deep literature review was conducted to develop an understanding of recovery 

process and the ways to assess it. The relation between LC and LU and land functions was discussed, and 

in the end, RS methods to measure LCLU were reviewed. There is a substantial amount of literature 

regarding image classification and CD in the remote sensing community under pixel and object-based 

categories. Numerous classification methods have been established, where post classification CD is a 

popular method. Moreover, ML methods provide more consistent results compared to other image 

analysis methods. ML methods are capable of dealing with very high-resolution imagery where more 

accurate and consistent results are achieved by CNN and SVM. SVM coupled with texture features 

approaches have the potential to solve the learning tasks especially when it comes to complex urban-rural 

setting. In next chapter concise information regarding study area, data used, and typhoon Haiyan will be 

given.  
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3.  TEST AREA AND DATA   

In this chapter, a description of typhoon Haiyan, the study area, and raw data used is provided. 

3.1. Test Area and Datasets  

Tacloban city in the Philippines has been chosen to test LCLUCs methods for post-disaster recovery 

assessment which in this case is post-Haiyan recovery. The city stretches from 11º15´- 11º12´N to 

124º59´- 125º17´E. The total land area of Tacloban is about 200 km2. The city was hit by super typhoon 

Haiyan on November 8, 2013. The eye of the typhoon passed through Tacloban city directly causing 

massive destruction. Based on official news, just in the city itself, 2678 people died (45% of the total 

number of fatalities in the country), and approximately 40,000 homes, representing 88% of all households, 

were demolished or damaged (Mejri et al., 2017) with the majority of informal coastal communities (Maly, 

2017). While based on the unofficial news, number of fatalities is more than 15,000. Besides, in 2014, 

typhoon Rubi struck. It was less significant than typhoon Haiyan and “the worst affected areas from Rubi 

were outside of Typhoon Haiyan affected areas” (the Philippines, 2014). As a result of the typhoon and – 

short-term and long-term - recovery process a wide range of changes occurred in terms of LC and LU. 

For example, there were changes due to short-term recovery in reconstruction, trading, and agricultural 

sectors as well as changes in medium to long-term recovery in industrial development, tourism, economic, 

and infrastructure development (Tacloban Recovery and Sustainable Development Group, 2014). Besides, 

the rate of recovery has been diverse in different parts of the city (Evangelista, 2015). All above mentioned 

making this area suitable to study recovery assessment in terms of LCLUC. Below there is a list of 

available dataset and its description related to the study area: 

 

 

The dataset for this study was consist of five multispectral WV2&3 imagery. Selection is made based 

on the time of imagery, cloud-free scenes, and coverage. Among selected images (Figure 3-2), some area in 

the event time is hazy. However, since haze reduction is not necessary for LCLU classification at the level 

of 2-meter image resolution, when also spectral information of all bands are normalized (which is the case 

in this study), haze reduction did not apply (Lin et al., 2015). Figure 3-1(A) shows the track of typhoon 

Haiyan across the Philippines and (B) shows the selected of the study area for this study. Moreover, Figure 

3-2 shows the imagery used in this study (~25 km2), as T0 shows pre-Haiyan, T1 shows event time, and 

T2 shows post-Haiyan situations. 

ID 
Acquired 

Date 
Timeline Satellite 

MS 
Resolution 

Description 

1 3/17/2013 
8 months before disaster 

(T0) Worldview-2, 
8bands {C, B, 
G, Y, R, RE, 
NIR1, NIR2} 

2 m 
Tacloban city, in 
the Philippines, 
Area~26 sq.km 

2 11/11/2013 3 days after disaster (T1) 

3 3/18/2017 4 years after disaster (T2) 
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Figure 3-2 three satellite images of the study area; red rectangles show the statuses of the slum areas which were 
heavily devastated by the typhoon Haiyan 

Figure 3-1 (A) Track of typhoon Haiyan (Maly, 2017). (B) The location of study area 

Pre disaster (T0) Event (T1) Post disaster (T2)
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4. METHODOLOGY  

The first section of this chapter describes the developed conceptual framework. It is constructed 

based on a comprehensive literature review and understanding gained from this study, which is an original 

contribution to recovery studies. It serves both as a result and methodology, as the remaining 

methodology is developed based on it. Therefore, the conceptual framework becomes the first output and 

necessary part of the methodology. In the second section, the classification method is selected based on 

both a deep literature review from remote sensing studies as well as preliminary experiments carried out 

within the study. Then, employed image features and spectral indices are described followed by the 

approach of creating recovery maps. The third section describes the development trajectory of a practical 

guide. Throughout this study, typhoon Haiyan in Tacloban city is referred to as “(the) typhoon”. 

4.1. Conceptual Framework 

This section addresses the first research objective and the related research questions, as described in 

chapter one. It aims to demonstrate a comprehensive conceptual framework as a guide for the second 

objective. In the first part, a generic conceptual framework is developed, and the related transition patterns 

are defined. Then, to implement the conceptual framework in relation to the study area, different LCLU 

classes are identified. In the last part, the conceptual framework is implemented in the post-Haiyan 

recovery context considering the Comprehensive Land use Plan (CLP) of Tacloban city.  

4.1.1. LCLU-based Conceptual Framework 

The conceptual framework is based on the LCs and LUs and their inherent relation to physical and 

functional aspects of recovery, which potentially can cover an integrated recovery model. The CF is 

generic, meaning that it is neither disaster- nor country-specific. It is based on Transition Patterns (TP), 

which is grounded in multitemporal image analysis. TPs are the trajectories of change related to an 

identical pixel in an “n” time-span imagery (n is at least 3 and relates to the number of imagery, here is 3). 

These trajectories of change describe the state of identical pixels in each time; e.g., in T0, T1, and T2. It is 

evident that the state of pixels is defined by LCLU classes. Thus, TPs traces the state of pixels which 

implies a change; i.e., at least there are two different classes in a transition pattern.   

TPs are restricted to the disaster-stricken area and normally happen within a certain time frame, with 

respect to recovery goals. These TPs are normally different from normal changes such as phenology. For 

example, one of the well-known TPs with respect to LC and conventional recovery definition, build back, 

is building (T0) - rubble (T1) - building (T2). Where, T0 corresponds to pre-disaster situation and imagery 

(here 8 months before disaster) which also serves as a basis for the concept of “Build Back (BB)” and 

“Build Back Better (BBB)” in the Sendai framework (UNISDR, 2015b), T1 corresponds to after the 

disaster situation (here an imagery 3 day after disaster), and T2 is related to the post-disaster recovery 

situation (here 4 years after disaster). 

Figure 4-1 illustrates a simplified interaction between post-disaster recovery and LCLUC based on BB. 

The time-difference between satellite imageries T0 and T1 should be as low as possible, and it is better to 

be defined based on the resilience of the area and data availability. Post-disaster recovery happens between 

T1 and T2, here the red color represents short-term recovery, and the other colors represent a medium- to 

long-term recovery. The suitable timing between T1 and T2 imageries should be defined based on the 

purpose of the study, fund, policies, former experience of natural disasters in the affected area, and data 

availability among others. The higher the number of imagery is, the more detail information can be 



UNDERSTANDING POST DISASTER RECOVERY THROUGH ASSESSMENT OF LAND COVER AND LAND USE CHANGES USING REMOTE SENSING  

17 

extracted from the recovery process. However, the number of imagery is a function of the purpose of the 

study, where each of post-disaster images can characterize different recovery outputs. 

 

 

 

 

 

 

 
 

Figure 4-2 provides detailed insights on the role of LC and LU separately in the post-disaster recovery 

process with respect to multi-temporal image analysis. The hypothesis here is that an LC-based recovery 

map; reveals physical aspects of recovery, while an LU-based recovery map reveals functional aspects of 

the recovery. In essence, the developed recovery maps are a special type of change maps providing 

meaningful recovery information.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two simplistic recovery statuses in the conventional perspective of recovery in literature; 

positive and negative recovery. Positive recovery is when the damaged class is rebuilt to the pre-disaster 

level, whereas negative recovery is when it does not. Nevertheless, as mentioned in chapter 2, the recovery 

process is more complicated than a simple positive or negative recovery. It needs a more comprehensive 

framework to cover the process. Therefore, this study provides a basis for a more nuanced interpretation 

of recovery by introducing six recovery classes: 

1. Negative recovery (N)  

2. Slightly negative recovery (SN) 

3. Neutral recovery (NT) 

4. Slightly positive recovery (SP) 

5. Positive recovery (P) 

6. Other transitions (OT) 

The definition of these classes is based on the most relevant LC-based and LU-based TPs within three 

time-span; e.g., building-rubble-building and are based on the land use plan of the study area (Annex 3) 

Figure 4-1 Interaction between post disaster recovery and LCLUC 

Figure 4-2 Relation between LC and LU recovery, and physical and 
functional recovery 
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and the BBB perspective. Class NT (Figure 4-3) refers to those TPs that are not informative enough, as 

the classes have the same parent class (Figure 4-4). For example, the TP “building-building-impervious 

surface” represents a change from building to impervious surface from T1 to T2 which both classes have 

the same parent class (built-up). Negative recovery (N) and positive recovery (P) refer to those TPs, where 

the state of the class at the time of the event (T1) remains the same as before the disaster (T0), while it 

faces changes in the post-disaster time (T2). These changes, therefore, determine if the pattern is negative 

or positive based on the land use plan of the study area (CLP, 2016). Moreover, this definition is based on 

an assumption that if a class can retain its state at the time of event; i.e., T1 is the same as T0, and survive 

the disaster, it will not be vulnerable to that specific disaster; meaning that the class is either located in the 

safe zone or is well-adapted to that specific disaster. For example, in this study, patterns “building-

building-bare land” and “grassland-grassland-impervious surface” represent N and P respectively. Classes 

SN and SP are the middle-level classes between negative and positive recovery with inherent uncertainty. 

More information such as additional satellite images, (multi)hazard map of the area, and in-situ data is 

required for SN and SP to be further precisely defined as N and or S. However, in the absence of such 

information, class SN tends to be negative, and SP tends to be positive. For instance, patterns “building-

rubble-bare land” and “building-rubble-building” exemplify the SN and SP respectively. The last class, 

“other transition” (OT) comprises of either minor and/or rare TPs (e.g., “building-building-open water”) 

or no change TPs (e.g., “building-building-building”). However, one exception exists in this class such as 

slum-slum-slum. This TP is always considered as negative recovery. The reason is that from BBB 

perspective, the rebuilding of IBA always weakens urban resilience (Ahmed, 2014). 

One of the potential uncertainties with this framework that might arise is that how to characterize 

those patterns which are difficult to interpret. For instance, pattern “tree-flattened tree-non-tree 

vegetation” could be NT (same root), SP (rebuild), and P (alternative crop instead of palm tree). The 

uncertainty will be mitigated by introducing more relevant and detailed information; i.e., LU information 

of the area. For LC level, such TP is characterized as NT, and further, in LU level, they will be assigned to 

the correct class. This is one of the limitations of LC-based recovery assessment, which will be solved by 

LU information. Figure 4-3 illustrates the TPs in a color scheme which has been chosen to depict TP 

variation. 

4.1.2. Class Definition 

Defining relevant classes is the basis for implementing the conceptual framework and further 

classification and producing recovery maps. Based on the main objective of this study and image data 

characteristics, the most relevant classes are selected and categorized into three parent groups; built-up, 

vegetation, and water. Land cover and land use classes are defined based on the parent groups 

hierarchically (Figure 4-4). 

Although class definition should signify the whole thematic structures in the scene of interest, there 

should be a balance between the generalized and detailed definition of classes in a specific study. While the 

former may result in a “too homogeneous” representation of landscape (may fail to detect important 

features), the latter may lead to a loss of relevant features in heterogeneous data (Herold et al., 2014). In 

terms of the number of classes, it is reported (Herold et al., 2014) that the overall accuracy usually 

decreases as the number of classes increase. Besides, a successful class definition should take into account 

the thematic definition of classes according to the objective of the study, and spectral and spatial 

resolution of the mapping sensor (Herold et al., 2003) as well as number of images for multi-temporal 

analysis. Furthermore, in a taxonomic class definition, a large similarity among classes would predict vague 

classes that will be more prone to confusion and hence, image misclassification (Giri, 2012). Mixed classes 

do not follow standard principles and very often increase the ambiguity of classification tasks (Giri, 2012). 
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However, some urban-related classes such as slum areas, need an abstract semantic class definition, 

making it hard to be automatically discriminated from the image (Mboga, 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the literature and comprehensive visual observation (multi-source data; e.g., Google Earth, 

OSM, etc.) of Tacloban city as well as field data gathered by the supervision team, among many potential 

classes the following seven LC classes are selected: building, impervious surface, bare land (built-up 

category), tree and non-tree (vegetation category), inland water and open water (water category). However, 

not all classes are equally important. A detailed description of the LC classes and their importance in this 

study is given in Table 4-1. Generally, the importance of LCLU and damage classes are ranked in a 

qualitative manner and range from high (H) to medium (M) and low (L). In the next paragraph, the 

importance of the classes for LC and LU and damage is explained which addresses research question 2. 

Figure 4-4 Hierarchy definition of LCLU classes 

Pattern 1

N

Pattern 2

SN

Pattern 3
NT

Pattern 4

SP

Transition patterns
recovery

status

Pattern 5

P

T0 T1 T2

Parent level LC level LU level

Figure 4-3 LCLU-based recovery conceptual framework 
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Class building and its states across the time frame is one of the important indicators of long-term 

recovery. A big portion of the money is normally invested in rebuilding by aid agencies, which as a result 

runs many businesses. The permeability of surfaces is an important indication of the degree of 

urbanization and environmental quality. Impervious surfaces can both positively and/or negatively 

contribute to the long-term recovery process and its goals (for more detail see: Weng, 2012). Bare land can 

represent a temporary transition stage of development (i.e., plantation, re-vegetation, and building 

development) or a permanent stage (i.e., abandoned area and no-build zone). Furthermore, the class tree 

represents natural and economic sectors in the holistic recovery view and includes palm, banana, fruit and 

natural trees (Mas et al., 2015). The class non-tree vegetation represents all vegetation types of the study 

area except the class tree. However, vegetation related classes in LC level are not highly informative 

regarding the recovery process. The class inland water comprises of lakes, aquacultures, and rivers while 

the class open water represents the ocean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although LC classes can represent some aspects of recovery, there are other aspects to be explored. 

For example, the class building is a general class that can directly reveal physical recovery but is unable to 

reveal the functional recovery directly, thus, LU classes are defined towards the main objective of this 

study (Table 4-2). Based on Figure 4-4, the “building” category is divided into 3 finer classes namely; large-

scale industry (LSI), informal built-up area (IBA), and formal built-up area (FBA) in the land use level. The 

class LSI represents the economic activity of the area comprising of institutional, light-industries and 

commercial buildings (Journal of Philippine Statistics, 2012). Although IBA is not included in the CLP, 

the majority of 30,000 destroyed houses were from IBA. Based on Maly (2017), most vulnerable residents 

live in IBA, which are located mostly along the coastline. Accordingly, the status of IBA and FBA are 

informative to understand the post-Haiyan recovery. The region is the top national producer of coconut 

where the palm tree is the main source of income and economic activity for the majority of people. 

Around 60% of the population is directly engaged in palm production or indirectly in palm processing, 

which makes the palm production and processing the main industry in the area (Mayans, 2014; Yi et al., 

2015b). Therefore, it is vital to differentiate palm trees from other trees. In addition, typhoon Haiyan 

destroyed almost all recreational facilities (CLP, 2016). Creating new green spaces such as recreational 

areas in high-risk zones can reduce the risk of the disaster (Coppola, 2011; Mader et al., 1980) and 

ID

Inland Water

Land covered by building

Pavements that are covered by impenetrable materials such as 

asphalt, concrete, and compacted soil (not building)

Urban fabric, discontinuous urban areas, bare rocks, bare soil

Any of the inland waters such as lakes, aquacultures, rivers, 

and swamps

4M

Class name Class description

Building

Impervious surface

Bare Land

1

2

3

Importance

H

H

M

5 Mixed trees (i.e. palm, banana, fruit tree)

Mixed group of (non-tree) vegetation such as crop, pasture, 

grass

Sea/ocean water

Tree

Non-Tree Vegetation

Open Water

6

7

M

M

L

Table 4-1 LC class definition (H: high, M: medium, and L: low) 
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improve social recovery by the involvement of people in sports or recreation activities (Townshend et al., 

2015). Besides, grassland is an important class for this study as it can potentially be targeted for 

reconstruction purposes within the recovery process. Agricultural crop and related cropland are also 

important to this study as they are other sources of income in addition to palm plantation. Moreover, it is 

relevant to mention that typhoon Haiyan destroyed almost all palm trees in Tacloban city, either uproot or 

make it fruitless. This resulted in a very low yield in the succeeding year (CLP, 2016) of the disaster. 

Therefore, coconut owners need to access innovative livelihood alternatives such as rice (Mayans, 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to LCLU classes, it is necessary to study damage classes for the situation right after the 

typhoon. If the LCLU classes from pre- and post-typhoon (T0 and T2) are considered as “normal” 

situations, the classes for typhoon situation (T1) are not 

considered as “normal”.  That is because natural forces; i.e., 

heavy wind and storm surge, heavily destroyed existing urban 

elements (almost all structures were washed away along the 

coastline). Therefore, there is a need to characterize the damage 

classes related to the typhoon (Table 4-3). Regarding buildings, 

mainly two damage classes can be assigned; rubble and debris as 

shown in Figure 4-5. However, at the city scale and with the 

spatial resolution of 2m, it is not possible to distinguish debris from the rubble, both spatially and 

spectrally, specifically in the typhoon Haiyan setting. Therefore, these two classes were merged into one 

class as rubble. There are two other damage classes: inundated land and flattened trees (Figure 4-7). 

 

Table 4-2 LU class definition (H: high, M: medium, and L: low) 

Figure 4-5 Damage classes for a 
single building, (Vertivel et al., 2016) 

ID

Inland water

Bare land

Impervious surface

Open water

H

H

H

H

M

M

H

M

M

M

H

L

Any of the waters such as lakes, canals, rivers, and 

swamps

Urban fabric, discontinuous urban areas, bare rocks, 

bare soil

Pavements that are covered by impenetrable materials 

such as asphalt, concrete, and compacted soil

Sea/ocean water

9

10

11

12

Class name Class description

Large-scale Industry (LSI) 1 Land covered by large building (size>1000      )

Importance

Palm tree 4 Palm tree

Other tree 5 Mixed trees (i.e. banana, mangroves)

Informal built-up area (IBA) 2 Area covered by small, clustered buildings with no or 

little vegetation mostly located in hazardous zones

Formal built-up area (FBA) 3 Land covered by larger building, arranged in a regular 

spatial pattern and vegetation

Green public spacess in the city such as parks, soccer 

fields

Crop land 7 Agricultural crop such as rice, irrigated lands

Grass land 8

Recreation  area 6

Areas covered mainly by low vegetation, mainly 

different types of grass
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Figures 4-6, 4-7 and 4-8 show land cover, damage, and land use classes, respectively. These photos 

have been taken from the study area and provide an insight of the classes showing ground- and satellite-

based views.  

To better understand recovery, there is a need to go from a coarse to a finer level (e.g., LC to LU) in a 

hierarchical manner as shown in Figure 4-4. However, the hierarchical division should be fit with respect 

to the recovery goals and the characteristics of the study area. In addition, except built-up related classes, 

LC information is not informative enough to understand the recovery process. However, LC information, 

as it is easier to extract from RS imagery, gives a general and quick overview of the area in the immediate 

aftermath of a disaster and further in other phases of recovery. The reason is that in large natural disasters 

and a short-term recovery a general overview of the process is required and can be used as an auxiliary 

tool in order to effectively enhance other recovery-related activities in the ground (which can be 

represented by LC information). On the other hand, LU can be used to understand medium- to long-term 

recovery, especially for large natural disasters, where mostly land use plan is defined in relation to the 

recovery process. In long-term recovery, more detailed information is needed to characterize the process 

and to further check with LU plan to see if it is on track or not. Although LCLU collectively can help to 

characterize different parts of recovery, it cannot characterize all aspects of the recovery process such as 

accessibility analysis. However, in the recovery literature there are many local indicators which together 

with LCLU information can help to cover this gap.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3 Damage class definition (H: high, M: medium, and L: low) 

Figure 4-6 Illustration of land cover classes 

LC Non-Tree Tree Inland Water Open Water Building Impervious Surface Bare Land

Satellite View

Ground Based View

Importance

Flattened tree Lnad covered by fallen or toppled  tree  branches, 

 uprooting  of  smaller  trees

Class name Class description

Rubble Damage patterns corresponding to a mix wind- water-

borne  objects (rubble, debris, cars, building  fragments)

Inundated land Rising of a body of water and its overflowing onto 

normally dry land

H

H

H
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4.1.3. Framework Implementation 

To implement the CF in the Tacloban city, first, complete TPs for LC and LU, which might occur in 

the post-Haiyan recovery in the Tacloban city are listed (Annexes 1 and 2). The most relevant TPs are 

selected and illustrated in Table 4-4 (LC) and Table 4-5 (LU). The characterization of the TPs is based on 

the conceptual framework (section 4.1.1).  

 

 

 

 

 

 

Figure 4-7 Illustration of damage classes 

 

LU Grass Land Crop Land Palm Tree Other Trees Recreational Area IBA FBA LSI

Satellite View

Ground Based View

Figure 4-8 Illustration of land use classes; IBA: Informal Built-up Area, FBA: Formal Built-up Area, LSI: Large-
Scale Industry  

DM Derbis Rubble Inundated Land Flattened Trees

Satellite View

Ground Based View
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Table 4-4 LC- based conceptual framework for post- Haiyan recovery process in Tacloban city 

 

 

 

 

 

 

 

 

 

 

Table 4-5 LU- based conceptual framework for post- Haiyan recovery process in Tacloban city 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Land Cover and Land Use Analysis 

In this section to investigate the utility of LCLU in recovery assessment, image analysis is performed 

based on objective 2. This section addresses the research questions 4, 5, and 6.  

4.2.1. A Brief Review of SVM 

Based on the preliminary experiment carried out for a small subset of the area (Figure 4-9) and the 

literature review (2.8.2), SVM classifier is used for the classification task. SVM is a very effective technique, 

and it relies on both classification procedure and the elegance of the theoretical advances (Bruzzone & 

Persello, 2009). The classification strategy of SVMs exploits a margin-based “geometrical” principle rather 

than a purely “statistical” principle, meaning that it does not require an estimation of the statistical 

distribution of the classes for the classification task (non-parametric classifier). Rather, the classification is 

Transition 

ID
T0 T1 T2

Recovery 

Status

252 Informal built-up area Rubble Informal built-up area 

222 Informal built-up area Informal built-up area Informal built-up area 

844 Grass land Flattened tree Palm tree 

444 Palm tree Flattened tree Palm tree 

747 Crop land Flattened tree Crop land 

3510 Formal built-up area Rubble Bare land 

3511 Formal built-up area Rubble Impervious surface

3311 Formal built-up area Formal built-up area Impervious surface

544 Other tree Flattened tree Palm tree 

353 Formal built-up area Rubble Formal built-up area 

1153 Impervious surface Rubble Formal built-up area 

393 Formal built-up area Inundated land Formal built-up area 

756 Crop land Rubble Recreation  area 

253 Informal built-up area Rubble Formal built-up area 

2511 Large-Scale industry Rubble Large-Scale industry

N

SN

NT

SP

P

Transition 

ID
T0 T1 T2

Recovery 

Status

644 Non-tree vegetation Non-tree vegetation Inland water

554 Tree Flattened tree Inland water

285 Impervious surface Rubble Tree

185 Building Rubble Tree

556 Tree Flattened tree Non-tree vegetation

221 Impervious surface Impervious surface Building

181 Building Rubble Building

281 Impervious surface Rubble Building

282 Impervious surface Rubble Impervious surface

552 Non-tree vegetation Non-tree vegetation Impervious surface
P

N

SN

NT

SP
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based on the concept of margin maximization and structural risk minimization, minimizing the 

misclassification error on the training set. SVM seeks an optimal hyperplane as a decision function in high-

dimensional space which maximizes the margin between classes via a small number of training samples 

(support vectors) in feature space, which makes the SVM a suitable method to exploit the VHR imagery 

potential (Volpi et al., 2013).  

When classes are linearly separable (the simplest scenario), 

SVM finds the separating hyperplane in away the distance 

between the classes to the hyperplane (margin) is maximized. 

For linearly non-separable classes a “slack variable” is 

introduced. In this case, SVM seeks for the hyperplane that 

maximizes the margin, while minimizing a quantity proportional 

to the number of misclassification errors. The trade-off 

mentioned above is controlled by a positive regularization 

parameter C.  

Moreover, for nonlinear decision surfaces a kernel function 

is introduced by Vapnik (1995) where among different kernels, 

RBF is widely used in the RS literature. The RBF kernel maps 

sample into a higher dimensional space in a nonlinear way. The 

accuracy of SVM-based RBF kernel is dependent on parameters C and 𝛾. The constant parameter C 

controls the magnitude related to training data where lies in the wrong side of hyperplane and 𝛾 controls 

the width of the kernel. A large value of 𝛾 and/or C tends to over-fit the training data which may yield a 

low level of generalization ability which is unfavourable (Pal & Foody, 2010). There are some situations 

where the linear kernel performs better than RBF kernel; i.e., when the number of features is very large 

(Hsu et al., 2016). A detailed discussion on SVM and its mathematical background can be found in 

Bruzzone & Persello (2009). 

To make the best use of the performance of SVM, the RBF parameters (C and γ) should be optimized 

and tuned (Foody & Mathur, 2004). It is suggested a grid-search using a cross-validation approach as the 

most effective method to optimize RBF parameters (Hamedianfar & Shafri, 2015).  The goal is to identify 

the best parameter(s) so that the classifier can effectively predict previously unseen data (i.e., test data). 

The best value of parameters (C and γ) will differ in a different dataset. Hence the parameters need to be 

determined for each dataset (Richards & Jia, 2006) (Table 4-6).  

 

 

 

 

 

 

 

 

For the SVM, both linear and RBF kernel is adopted, and the one with higher accuracy is picked and 

presented. The best values for penalty (C) and kernel (γ) parameters of SVM are determined via grid 

search algorithm and 10-fold cross-validation (Hsu et al., 2016). With the help of a training set, the 

approach provides many learning models for a number of hyper-parameters. Each model is assessed using 

the cross-validation procedure. The best model then is selected as the final model with tuned parameters 

and further the performance is evaluated using a test set. To facilitate the procedure, R package ‘e1071’, 

Table 4-6 Definition of parameters and related methods used in the experiment 

Figure 4-9 Test area (500*500 pixel) 
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which was implemented in LIBSVM library by  Chang & Lin (2011) is employed. Exponentially growing 

sequences of C and γ are used to identify best parameters, which is a one- and two-dimensional parameter 

for linear and RBF kernel along 2𝑑, where d= {-5, -4, …} for γ and d= {5, 6, …} for C (Table 4-7). 

 

Table 4-7 Definition of grid search space for tuning the hyper-parameters SVM 

 

 

 

 

 

 

4.2.2. Utilization of Image Features and Spectral Indices  

Since in this study, some of the LU classes need a high semantic definition (e.g., informal built-up 

area) and also to decrease the spectral complexities of some similar classes (e.g., different types of 

impervious surface and bare land), texture feature and spectral indices are used to help the classification 

task. An example of the complexity is different road types in the study area: 1) concrete, 2) asphalt and 3) 

compact bare soil, which together with other classes such as building, bare land, and rubble create a highly 

complex scene. 

Pixels, in very high (spatial) resolution imagery, are commonly smaller than the object of interest and 

holds a small amount of contextual information to identify a class of interest accurately. The contextual 

information describes the information derived from a neighborhood (image features). Image features are 

hidden representation in data that help the learning and classification task by providing supplementary 

information about image properties (Mboga et al., 2017). They are used to characterize the tonal or grey-

level variations in an image. Many image feature extractions are used in the urban remote sensing 

literature. Image features such as those based on the calculation of the grey-level co-occurrence matrix 

(GLCM) and local binary pattern (LBP). The GLCM and LBP, due to their discriminative power and 

computational plainness are reported as the most useful for analyzing the content of VHR imagery for 

urban studies (Gevaert et al., 2016; Kuffer et al., 2016; Mboga et al., 2017). 

GLCM method computes the occurrence of pairs of grey-level value pixels in an image. The 

maximum grey value of a pixel determines the size of the GLCM. The association between the pixels in 

GLCM is determined by varying lag and direction (Rao et al., 2002). LBP features (Ojala et al., 2002) are 

rotationally-invariant (image-based) texture features, which identify uniform features, such as corners and 

edges, based on a well-defined number of neighboring pixels (P) at a distance (R) from the pixel located in 

the center. For more information about LBP, see Ojala et al. (2002). 

In this study, a code (in python) is used for LBP extraction using a variety combination of R= {2~4} 

and P= {6~12}. Moreover, ENVI software is used to extract texture features with different lag distances 

and windows sizes (e.g., 3*3, 5*5, 7*7, 9*9 and 3*3, 5*5, 7*7,15*15 for LC and LU tasks, respectively) 

(Table 4-8). Although there are eight types of GLCM features (mean, contrast, angular second moment, 

variance, dissimilarity, correlation, homogeneity, and entropy) which can be extracted from the image, not 

all of them are helpful, and some are highly correlated, resulting in redundancy (Graesser et al., 2012). In 

addition, 18 different types of spectral indices (Table 4-9) from the most recent literature (mostly using 

Worldview 2 imagery) are used in order to help classification task. 

  

Classifier Parameters Grid-search space Description

C

SVM

Regularization parameter which has a 

significant impact on the generalization 

performance of the classifier. 

Regularization parameter in RBF kernel 

with a great impact on the performance 

of the kernel.

logarithmically spaced

logarithmically spaced

𝛾

2     2  

2      2 
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Table 4-8 Extracted features from multispectral image 

 

 

 

 

 

 

 

 

 

Literature suggest that accuracy increases when combining textural and spectral features (Dhumal et 

al., 2015). To prevent redundancy and to increase the effectiveness of classification task a feature selection 

is employed. The feature selection reduces computational costs and avoids over-fitting the classifier. 

Hilbert – Schmidt independence criterion (HSIC) is one of the popular methods in the RS community 

(Song et al., 2012). HSIC is a nonparametric dependence measure, which takes not only into account 

linear correlation, but also all modes of dependence between the features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. Experiment Setup 

The main focus of the classification section is to employ the methodology that works well for both 

LC and LU classification in order to either achieve the acceptable accuracy or improve the classification 

accuracy for creating corresponding recovery maps. It is proposed that acceptable accuracy limits to LC 

classification are when OA is higher than 80% (Manandhar et al., 2009). Since the experiments are 

computationally intensive and due to hardware limitation, they are first applied in a small but 

representative area (Figure 4-9), and once the best setting of features is defined, they will be applied for 

the whole study area in order to produce the final results. The experiment setup is summarized as follow: 

1) Using only the spectral bands of the WorldView-2 images for LC and LU classification (test area). 

Type of Feature Features count Description

186

GLCM 256
GLCM textural measures calculated 

for multispectral bands

(b1:b8) reflectance values of 

multispectral image
Original bands 8

Spectral indicies

Local Binary Pattern 

18
spectral indices calculated based on 

the table …

                    

ID Spectral index

Coastal - NIR 2 / Coastal + NIR 2

NDVI 1
(Wolf, 2012)

15

16

14

17

18

 (Aguilar et al., 2016)

(Hamedianfar & Shafri, 2015)

(Shahi et al., 2015)

NHFD Rededge - Coastal / Rededge + Coastal

Green - NIR 2 / Green + NIR 2

NDVI NIR 1 - Red / NIR 1 + Red

NDSI Green - Yellow / Green + Yellow

Red - NIR 2 / Red + NIR 2  

  

NDWI 1

7

8

9

10

11

NDWI

12

13

1

2

3

4

5

6

R3 NIR 1 - Yellow / NIR 1 + Yellow

BSI Yellow - (2*NIR 1) / Yellow + (2*NIR 1) (Sameen & Pradhan, 2016)

(Elsharkawy et al., 2012)

R1 Red - NIR 1 / Red + NIR 1

R2 Coastal - Red / Coastal + Red

BAI Blue - NIR 2 / Blue + NIR 2 

REI NIR 2 - Blue / (NIR 2 + (Blue * NIR 2))

NDBC Blue - Coastal / Blue + Coastal

NDN2C NIR 2 - Coastal / NIR 2 + Coastal

NDRR Rededge - Red / Rededge + Red

NDGR Green - Rededge / Green + Rededge

Equation Reference

Blue - NIR 1 / Blue + NIR 1NDNB

NDVI 2 NIR 2 - Red / NIR + Red

Table 4-9 Spectral index description 
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2) Extract relevant spectral indices, then select the most informative ones and add them into spectral 

bands for LC and LU classification (test area). 

3) Calculate the GLCM measures (varying windows size with respect to LC and LU classes), then 

select the most informative ones and add them into spectral bands for LC and LU classification 

(test area). 

4) Calculate the LBP features (varying P and R for LU classification), then select the most informative 

ones and add them into spectral bands for LU classification (test area). 

5) Combine the relevant spectral and textural features, then select the most informative ones and add 

them into spectral bands for LC and LU classification (test area). 

6) Perform final LC and LU classification based on the most useful setting of spectral and textural 

features and produce the final LCLU maps (whole study area). 

4.2.4. Accuracy Assessment 

Accuracy assessment of classified map helps assign credibility to a map. The overall accuracy of the 

classification is calculated from the confusion matrix, which is widely accepted in the remote sensing 

works. As a derivative of confusion matrix, the global accuracy gives the proportion of correctly classified 

pixels, by comparing the classified pixel to the reference data. The user’s and producer’s accuracies (UA 

and PA rescpecitvely) of each class are calculated in order to show the error contribution of each class. 

User’s accuracy refers to the error of assigning an incorrect label to a specific class, and it is measured by 

dividing the total number of correct pixels in a category by the total number of pixels classified into that 

class. On the other hand, producer’s accuracy is the error of failing to assign a correct label to a specific 

class (Foody & Mathur, 2004). While the user’s accuracy is the degree of reliability of a classification, 

producer’s accuracy is the degree of the ability to classify a particular class (Congalton, 1991). Moreover, 

visual quality evaluation of the classified maps is carried out. 

A common strategy for sampling method is used; the dataset is separated into two parts, one part for 

training the classifier, and one (previously unseen) part of the study area for testing the accuracy of the 

classifier, using stratified random sampling method. Reference data is obtained using visual interpretation 

(Sliuzas, 2004). The prediction accuracy obtained from the previously unseen set more accurately reflects 

the performance on classifying an independent data set (Hsu et al., 2016). Seven LC and twelve LU classes 

were considered for accuracy assessment with the minimum of 500 sample pixels of each considered 

classes, which provide a representative basis for accuracy assessment (Foody, 2002). In the absence of 

fieldwork data, visual interpretation is used based on multi-source data such as Google Earth Pro (GE), 

Open Street Maps (OSM), Google street view, and panchromatic bands of WV2 imagery. 

4.2.5. Recovery Map 

In order to address the research question 6, there is a need to define a methodology to assess the 

recovery process after typhoon Haiyan. The recovery map is basically based on the implemented 

conceptual framework and LCLU classified maps. It is pertinent to mention that, like the classification 

approach, recovery maps are also pixel-based. To develop the recovery maps, first LC maps from three 

time-spans (T0, T1, and T2) are stacked and then, for each map, the state of identical pixels is investigated. 

For example, pixels “a”, “b” and “c” in Figure 4-10, represent the state of the identical pixels in LC 

classification maps in three time-spans, which collectively represent a TP (e.g., a-b-c). The same is done 

for all pixels in the maps, and all possible TPs are identified. In this study, a code in “R” is developed to 

identify all possible TPs and to further select TPs based on the implemented conceptual framework in 

section 4.1.1. The TPs are then illustrated in the output map. This map is referred as LC-based recovery 

map. The same procedure is done for LU maps to create LU-based recovery map. 
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4.3. Develop a Practical Guide 

There are many RS-based indicators in the recovery literature. Although these indicators are helpful 

for ground-based recovery analysis, their exploratory power and practicality in the RS perspective are not 

investigated so far. Moreover, as mentioned earlier in chapter 2 there are some concerns about the 

indicators; i.e., they are: expensive to collect, mostly local-type indicators and prone to subjectivity which 

also are difficult to collect in a disastrous situation. Remote sensing data and methods are appropriate 

alternatives to address those concerns. This section aims to address research questions 7 and 8, by 

categorizing the indicators in relation to the recovery understanding gained from this study. 

 The practical guide is more a summary of an evaluation of existing recovery indicators. The guide 

checks which ancillary data might help to detect the indicators by advance RS methods better, as currently, 

they are not operationally usable. In order to address user needs, besides, the indicators categorized based 

on their utility in the recovery assessment; i.e., macro, meso, micro indicators. The categorization method 

is described in next paragraphs. 

  Among recovery indicators, there are some standards and well-established indicators in the recovery 

discipline, which have already been used with conventional RS methods, such as visual interpretation, and 

NDVI analysis (Brown et al., 2010). These indicators have high utilities in the recovery process. Meaning 

that they extract recovery information spatially over large areas such as city scale. These indicators are 

grouped under “macro indicators”. Moreover, there are indicators with medium to high utilities in the 

recovery community. Although these indicators have the potential to reveal the recovery process spatially 

within the city level, they are not frequently used in practice. Moreover, some indicators have been used in 

other RS domains and have not yet been applied in recovery studies. Collectively, these indicators are 

gathered as “meso indicators.” Thirdly, there are other types of indicators, which are local-types and 

represent elementary units such as individual buildings within the recovery process. These indicators are 

hardly visible and/or not visible by RS means. These indicators have low utility in the recovery assessment 

and are grouped in “micro indicators.” In this study, a practical guide is developed in order to link meso 

and micro indicators to remote sensing. In addition, these indicators are analyzed with respect to the 

recovery process. 

Overall, this chapter introduced the methods used in this study in three main sections. It was started 

by introducing a generic LCLU-based CF which succeeded by LCLU analysis in the study area leading to 

create recovery maps. However, the CF was described in the methodology part (as one of the results of 

this study) which was needed for the remaining parts of this chapter, which is also mentioned in (Parsons 

et al., 2016). The last section introduced the logic behind the practical guide. The next chapter will show 

and analyze the result of methods employed.  

Figure 4-10 Description of the recovery map 
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5. RESULTS AND ANALYSIS  

This chapter provides the result of this study. The first section represents the results of experiments 

(method selection and parameter tuning) and their interpretations, and two recovery maps (LC- and LU-

based) are shown and interpreted. In the second section, a practical guide for existing indicators is 

developed.  

5.1. Land Cover and Land Use Analysis 

This study used SVM classifier for a multi-temporal classification task; i.e., pre-disaster (T0), event 

time (T1), and post-disaster (T2). In total, seven and twelve classes were identified (section 4.1.2) for LC 

and LU analysis, respectively. Since the LCLU classification maps are highly important for creating 

recovery maps, different experiments were conducted (section 4.2.3). A combined set of SVM, 

SVM+GLCM, and SVM+GLCM+indicies were used, and the one with the highest accuracy was selected, 

using both linear and RBF kernel. Feature selection was carried out based on HSIC method. Due to 

hardware limitation, feature selection was applied for a small but representative subset of the study area 

(Figure 4-9), and then the selected features in combination with original WV2 bands of the whole study 

area were used to create the final classified maps.  

5.1.1. Selected Features for Classification Task 

From 18 different spectral indices (Table 4-9), based on the HSIC, NDVI2 was selected as the most 

important spectral index. An experiment was carried out to select the most important GLCM measures 

while varying the window size. Here, the GLCM variance and contrast measures of the first five bands of 

WV2 imagery were selected as the most informative features for LC classification task (Table 5-1). 

Similarly, the GLCM experiment was carried out for the LU task, where the different setting of features -

compare to LC features- were selected (Table 5-2). GLCM contrast is a suitable measure to differentiate 

built-up areas such as building and impervious surface from the other classes. GLCM variance mainly 

represents building structures in formally developed areas which help to differentiate between buildings 

and impervious surface (Kuffer et al., 2016).  

An experiment to explore the effect of varying the window size of the extracted GLCM features on 

the LC and LU classification result was conducted. For the LC task, increasing the window size results in a 

corresponding decrease in the overall accuracy. For the LU task, some of the larger window sizes are 

selected in combination with 3*3 window size (Table 5-2). For LC classification a large window size such 

as 9*9 (324 m2 on the ground) implies that features extracted from a larger context are less informative 

than those extracted from a smaller context. This is sensible, as detection of simple LC classes does not 

require abstract definition like informal built-up area (Mboga et al., 2017). To differentiate non-built up 

areas from vegetation areas NDVI2 shows a good discriminative power which also helps to improve the 

classification accuracy as also mentioned in the Kuffer et al. (2016) study. 
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5.1.1.1. Utility Analysis of Image-Features in LC Classification 

The LC classification results from SVM, SVM+NDVI2, SVM+GLCM, SVM+GLCM+NDVI2 are 

compared in Table 5-3. The combination of SVM+GLCM+NDVI2, achieved the highest classification 

accuracy with an RBF kernel. Classifications relying on spectral bands alone result in lower classification 

accuracies. Addition of image-features causes an increase in the classification accuracy as shown for 

SVM+NDVI2, SVM+GLCM, and SVM+GLCM+NDVI2. As the SVM+GLCM+NDVI2 setting 

performs slightly better than (only 0.4%) SVM+GLCM using RBF kernel, this setting is selected to be 

applied to the whole study area in order to produce the final LC classification maps. 

Several insights can be drawn by comparing the performance of the different experiment setups. First, 

linear-based SVM consistently shown lower performances than RBF-based SVM for LC classifications. 

The classification accuracy of linear-based SVM, are 76.3%, 79.6.2%, 81.2%, and 83.4%, whereas the 

classification accuracy of RBF-based SVM, are 81.2%, 83.7%, 94.3%, and 94.7% for SVM, SVM+NDVI2, 

SVM+GLCM, SVM+GLCM+NDVI2 respectively. Moreover, Table 5-3 shows spectral information 

alone is insufficient to discriminate the land cover classes. However, adding image-features improve the 

classification accuracy. For example, by adding GLCM, there is an increase of 10.6%. 

5.1.1.2. Utility Analysis of Image-Features in LU Classification 

The LU classification results from SVM, SVM+GLCM, SVM+GLCM+NDVI2, SVM+LBP, 

SVM+LBP+GLCM, SVM+LBP+NDVI2 are compared in Table 5-4. The SVM+LBP+NDVI2 and 

SVM+LBP show the highest classification accuracies with RBF kernel. However, as the 

SVM+LBP+NDVI2 setting performs slightly better than (only 0.5%) SVM+LBP, this setting is selected 

to be applied to the whole study area in order to produce the final LU classification maps. Classification 

relying on spectral bands alone results in low classification accuracy. Addition of image features leads to an 

increase in the classification accuracy as shown in SVM+GLCM and SVM+LBP. For example, by adding 

GLCM, there is an increase of 20.1%. This value increased by 8.7% when LBP is added. The linear-based 

SVM shows a lower performance than the RBF-based SVM. Moreover, SVM+LBP performs better as 

compared to SVM+GLCM. Surprisingly, SVM+LBP+GLCM has led to a lower accuracy as compared to 

SVM+LBP.  

 

 

band feature window size

variance

contrast

variance

contrast

variance

contrast

variance

contrast

variance

contrast

3*3

Coastal
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Table 5-1 Selected GLCM features for LC 
classification 

Table 5-2 Selected GLCM features for LU 
classification 
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5.1.2. Accuracy Assessment 

The classification result of both LCLU maps is analyzed and discussed in this section. 

5.1.2.1. LC Accuracy Assessment 

For creating the LC classification maps, SVM+GLCM+NDVI2 was applied to the whole study area 

for the three-time span. In Table 5-5, UA and PA for three time-span (T0, T1, and T2) are presented. 

 

  

 

 

 

 

 

 

 

 

 

 

In general, SVM set has higher values for pre- and post-disaster as compared to the event time. The 

Overall Accuracy (OA) for T0 and T2 are 89.4% and 90.8% respectively, while the OA for T1 is 82.2%. 

This is sensible because of the disaster in the area, a new setting of spectral reflectance of the classes exist 

as compared to spectral reflectance of the classes in the normal situation. For instance, bare land in a 

normal situation does not hold water, whereas in the disaster situation (although visually the class in the 

imagery seems the same) bare land contains a higher amount of water, which leads to a variation in its 

SVM+LBP+NDVI_2 72.2 75.6

SVM+GLCM 62.6 66.4

SVM+GLCM+NDVI_2 61.1 68.3

OA%

SVM+LBP+GLCM 69.8 72.4

SVM+LBP 71.3 75.1

Experiment setup

SVM 45.6 46.3

RBFLinear

Table 5-3 Comparison of LC classification accuracies 
of test area 

Table 5-5 Comparison of LC classification accuracies for pre-, event, and post-disaster situation. Overall, user and 
producer accuracies and corresponding errors are computed across the whole study area by combining the confusion 

matrices of T0, T1, and T2. 

Table 5-4 Comparison of LU classification 
accuracies of test  area 

UA% PA% OA% Commission Omission UA% PA% OA% Commission Omission UA% PA% OA% Commission Omission

Building 95.5 83.8 4.5 16.2 68.0 55.0 32.0 45.0 82.2 94.2 17.8 5.8

Impervious 

Surface
83.8 96.3 16.2 3.7 82.0 68.8 18.0 31.2 84.3 99.5 15.7 0.5

Bare 88.0 83.4 12.0 16.6 76.9 50.2 23.1 49.8 98.0 62.3 2.0 37.7

Inland Water 87.3 90.3 12.7 9.7 95.2 94.2 4.8 5.8 98.8 99.9 1.2 0.1

(Flattened) 

Tree
77.9 88.9 22.1 11.1 83.1 96.1 16.9 3.9 96.5 92.9 3.5 7.1

Non_tree 

vegetation
93.5 85.2 6.5 14.8 89.5 61.0 10.5 39.0 92.7 90.9 7.3 9.1

Rubble *** *** *** *** 64.4 87.7 35.6 12.3 *** *** *** ***

Open 

Water
99.8 96.5 0.2 3.5 98.5 100.0 1.5 0.0 98.3 98.9 1.7 1.1

89.4 82.2 90.8

Class

Pre Disaster (T0) Event (T1) Post Disaster (T2)

Accuracy Error Accuracy Error Accuracy Error
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spectral reflectance (Figure 5-1 (A1)). This is also exemplified in the high value of omission error in the 

bare land class (49.8%). One possible solution for this is using another imagery from a time when holding 

water is evaporated. However, this could potentially lead to losing damage class information. The other 

reason for a lower OA for T1 is due to low PA and UA of the building, impervious surface, and rubble 

classes, see Figure 5-2 (T1). The UA of the classes building and rubble are 68.0% and 64.4%, respectively, 

which highlights the error of commission in these two classes and related uncertainty. This is sensible as 

they are spectrally similar, and the classifier confused these two classes, leading to the high amount of 

commission error. The problem potentially can be solved by introducing more useful information (data 

fusion) to classifier such as LIDAR data and or using pan-sharpened data. The former would differentiate 

the building from rubble due to the inherent height difference of these two classes, while the latter would 

potentially help to enhance the spatial discriminative power of the classifier. There is also confusion and 

relatively high amount of commission error for building and impervious class, ranging from 4.5% and 

16.2% in T0, and 32.0% and 18% in T1, to 17.8% and 15.7% in T2, respectively. This confusion is 

unavoidable due to the presence of concrete and asphalt roads, making it difficult to differentiate between 

asphalt roads, concrete roads, and other built-up classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Complex status of built-up-related classes in the three time-span 

Figure 5-1 A subset of WV2 imagery, (A) area of confusion between “crop” and “grass” in three 
time-span, (B) area of confusion between “palm tree” and “other tree” in three time-span and 

related multi spectral and panchromatic zooming window, (C) status of potential grass land 
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5.1.2.2. LU Accuracy Assessment 

SVM+LBP+NDVI2 is applied to the whole study area for a three-time span in order to create LU 

classification maps. Table 5-6 presents the UA and PA for three time-span.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The accuracies are computed for T0, T1, and T2. In general, higher accuracies are achieved for the 

pre- and post-disaster as compared to the event time. This highlights the complexity of the scene in the 

event time, as it is reflected in the LC result as well. Moreover, the OA of the LC 

classification consistently is higher than the OA of the LU classification. LU 

classes are rather heterogeneous and are more classes as compared to LC 

classification, as also mentioned in Herold et al. (2014, 2003). For example, LU 

classes range from palm tree to large-scale industry and informal settlements; 

from a very fine and simple class to a very large and abstract class in terms of the 

size and definition. Although such classes are needed from the recovery 

perspective, they make the image classification more complex as they cannot rely 

only on spectral information. Moreover, there is a confusion between the class 

“palm tree” and “other tree” (Figure 5-3), which is rooted in the high spectral 

similarity of the classes coupled with the low spatial resolution of WV2 imagery 

(2m) for such discrimination as shown in Figure 5-1 (B). The potential solution 

could be using higher spectral and spatial resolution imagery, including pan-

sharpening images (Santoso et al., 2016), where due to the inherent variation of 

the class “other tree” (like crop) range of subclasses can also be defined to solve 

the ambiguity. However, introducing subclasses can restrict the study to a local 

context, and would demand more data; e.g., hyperspectral and radar (Dhumal et 

al., 2015; Ozdogan et al., 2010). For instance, radar data allow detecting rice 

fields, especially where it is characterized by wide inter-field variability in addition 

to being fragmented by other LUs as mentioned in the work of Mansaray et al. 

(2017). Another uncertainty is the confusion within classes “crop”, “grass”, and “recreational area”. If 

UA% PA% OA% Commission Omission UA% PA% OA% Commission Omission UA% PA% OA% Commission Omission

Large Scale 

Industry
88.3 59.7 11.7 40.3 84.2 86.6 15.8 13.4 77.7 77.2 22.3 22.8

Large Scale 

Industry

Informal 

Built up  

Area

76.7 81 23.3 19.0 93.7 59.7 6.3 40.3 97.6 37.0 2.4 63.0

Informal 

Built up  

Area

Formal Built 

up  Area
53.7 90.8 46.3 9.2 69.8 72.7 30.2 27.3 68.3 39.1 31.7 60.9

Formal 

Built up  

Area

Palm Tree 66.1 93.4 33.9 6.6 58 56.6 42.0 43.4 84.6 83.5 15.4 16.5
Flattened 

Tree

Other Tree 64.4 42.1 35.6 57.9 75.3 82.8 24.7 17.2 38.3 86.5 61.7 13.5 Rubble

Recreation  

Area
91.8 68.8 8.2 31.2 97.2 73.8 2.8 26.2 64.4 19.1 35.6 80.9

Recreation  

Area

Crop Land 72.8 73.2 27.2 26.8 80.7 43.2 19.3 56.8 50.1 85.0 49.9 15.0 Crop Land

Grass Land 66.7 65.6 33.3 34.4 58.2 86.2 41.8 13.8 40.5 33.4 59.5 66.6 Grass Land

Inland Water 97.2 92.3 2.8 7.7 96.2 99.1 3.8 0.9 84.4 94.5 15.6 5.5
Inundated 

Land

Bare Land 95 75.1 5.0 24.9 94.5 73.7 5.5 26.3 87.4 45.9 12.6 54.1 Bare Land

Impervious 

Surface
79.5 82.7 20.5 17.3 62.6 95.7 37.4 4.3 74.5 69.6 25.5 30.4

Impervious 

Surface

Open Water 100 98.9 0.0 1.1 99.3 98.5 0.7 1.5 98.6 99.1 1.4 0.9
Open 

Water

T1 Class

76.3 77.8 69.9

Error Accuracy ErrorAccuracy ErrorT0, T2 Class

Pre Disaster (T0) Event (T1)Post Disaster (T2)

Accuracy

Figure 5-3 Complexity of 
the palm tree and other 
tree classes; palm trees 
are shown with red 
circles; drone imagery 

Table 5-6 Comparison of Land Use Classification Accuracies  



UNDERSTANDING POST DISASTER RECOVERY THROUGH ASSESSMENT OF LAND COVER AND LAND USE CHANGES USING REMOTE SENSING  

35 

“crop” is considered as an irrigated land, then a multi-temporal (phenology) analysis has a great potential 

to define cropland from the other two classes (Ozdogan et al., 2010).  For instance, by adding images from 

the time when a specific crop-type is matured and, adding another from the time when the crop-type is 

harvested (2 images of pre-disaster and other 2 of post-disaster), which can also solve the confusion 

related to bare land and harvested land.  

5.1.3. Visualization of Classified Maps 

From LC classified maps (Figure 5-4), it is observed that the boundary is much smoother in T0 and 

T2 over T1. Furthermore, T0 and T2 have less noisy classified maps than T1 map. For T1, there is a 

misclassification in the built-up area among the “bare land, “impervious surface, “building”, and “rubble” 

which is also reflected in the confusion matrix. This confusion is worse in the LU classification, (Figure 5-

5 and Figure 5-2), where the presence of the classes LSI, IBA, and FBA inherently add more confusion as 

they are spectrally similar. However, this misclassification is reduced in both T0 and T2 for both LC and 

LU maps. Zooming in at the raw image, it is clear that there is an open field in the South-East part of the 

area, which covered by “crops”, “grass”, “other trees”, and “palm tree” see Figure 5-1 (A). This could be 

an example of existential uncertainty, whereby there is some doubt on the presence of the grass class in a 

given area. The classification results show the SVM with data of a spatial resolution of 2m perform well in 

LC level, while it faces difficulty in LU level, as mentioned earlier. GLCM features work well in LC 

classification, while more information could improve the accuracy of LC classification.  

Figure 5-4 also shows the LC-related pie charts. The class building covers 15%, 8%, and 15% of the 

area in T0, T1, and T2 respectively. This implies that almost all buildings are reconstructed within 4 years 

after the typhoon, which also can be seen by visual interpretation of raw imagery. The above-mentioned 

rebuilding can be considered a positive sign of recovery. However, more information is needed to 

characterize that recovery status. Impervious surface shows an increase of 3% in T2 compared with T0. 

This also can be visually seen in the raw image, where, for instance, a national road that is constructed in 

T2 in the West part of the city (Figure 5-8 (F)). For the vegetation category, the area covered by tree 

decreased by 2% in T2 as opposed to T0, while conversely, the area of non-tree vegetation increased by 

2% in T2 against T0. Considering the damage classes in the disaster situation (T1), 37% of the area is 

occupied by rubble, while 8% of the land is inundated and 27% of the land is covered by flattened tree. 

The damage classes show huge destruction in Tacloban city leading to a massive human and property loss 

(Adriano et al., 2015; Yi et al., 2015). 

Figure 5-5, on the other hand, shows the LU related pie charts. In the sub-building category, the size 

of LSI is remained the same in T2 as like T0 (3%), though it shows a very slight decrease of about a mere 

1% to 2% in T1, which in general indicates a good sign of business recovery. The area covered by IBA cut 

half in the event time from 4% (T0) to 2% (T1). This is sensible as typhoon heavily destroyed the slum 

areas in Tacloban city (Mas et al., 2015). Although the IBA class increased by 1%, from 2% to 3% in 2017 

(T2), it is not a good sign of the recovery process. The FBA class showed a decrease of 5% in T2 as 

compared to T0. This is not very sensible and is mainly due to uncertainty in the classification of FBA in 

T2 as discussed earlier. The size of covered land by palm tree shows a decrease by 7%, from 18% in T0 to 

11% in T2, which is sensible due to both CLP and required time for growing of a palm tree (Yi et al., 

2015). With regards to subclasses of non-tree in LC level, in the recreational area increased by 1%, from 

3% in 2013 to 4% in 2017. Moreover, there is an approximate 3% growth in cropland in 2017, compared 

to T0 in 2013. The increase in recreational area is a good sign of recovery, as the size of the recreational 

area also planned to be increased in the CLP (2016). However, the growth of the size of cropland is not 

necessarily a good sign of recovery as the CLP (2016) planned to reduce the size of cropland. On the 

other hand, the palm farmers need to replace flattened palm trees by another crop type in order to live 
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(cash crop). However, more information would be required to investigate the role of cropland change in 

the recovery process. 

Overall, in both T0 and T2, the most significant changes in LC is the increase in the area covered by 

the impervious surface in T2, while the building is reconstructed almost to the size of the pre-disaster 

situation which initially can be seen as a good sign of recovery. However, LU information revealed that 

the rebuilding is a negative sign of recovery, where slum areas (IBA) are reconstructed in the same area in 

T2.  

  
Figure 5-4 LC Classification maps from SVM relying on GLCM features and NDVI2 for T0, T1, and T2 and 

corresponding pie charts 
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5.1.4. Errors Due to Uncertainty 

Existential and extensional uncertainties are two factors of accuracy assessment. Existential 

uncertainty relates to whether an object is existing in the geographical location it is said to be, while 

extensional uncertainty is related to lack of an exact definition of the boundary of a phenomenon (Kohli, 
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Figure 5-5 LU Classification maps from SVM relying on LBP features and NDVI2 for T0, T1, and T2 and 
related pie charts, LSI: Large Scale Industry, IBA: Informal Built up Area, FBA: Formal Built up Area 
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2015). In the context of understanding the recovery process through LC and LU from VHR, these 

concepts are important. First, in the absence of fieldwork, normally important for the creation of 

reference data, visual interpretation of Google Earth imagery (same time of the satellite images) was used 

to digitize the requisite classes. In this process, instances were encountered whether an area was the class 

supposed to be or not. For instance, the most doubtful classes were grass, crop, palm tree, other tree, and 

bare land, such as the presence of green space (potentially grassland) next to an open cropland (Figure 5-1 

(C)). Examples of existential uncertainties for palm tree and other tree are shown in Figure 5-1 (B), and 

for bare land in Figure 5-1 (A1). Second, defining the exact delineation between an area that is IFA, FBA, 

and rubble was a source of uncertainty (Figure 5-2). Uncertainty in the location and boundary of a 

phenomenon such as slum, probably will affect the accuracy of the reference data and the quality of the 

metrics calculated using it (Kohli, 2015). 

However, this study was aware of the above-mentioned uncertainties and tried to mitigate them by 

using a multi-source data ranging from Google Earth at the same time of the satellite images, open street 

maps data, panchromatic band of WV2, street view of GE, to LC map from Tacloban as the first input to 

the visual interpretation process. In addition, morphological characteristics based on literature and 

described in Kuffer et al. (2014) were used to identify FBA and IBA. It would be favorable to measure 

these uncertainties in future research.  

5.1.5. Recovery Maps  

Based on the developed conceptual framework for Tacloban city and LCLU classified maps, two 

recovery maps are developed (Figure 5-6). With regards to the LC-based recovery map (Figure 5-6 (A)), it 

is observed that the recovery class “slightly positive” (SP) is the dominant class (226 ha.), followed by 

classes “positive” (P) and “neutral” (NT), where the class “negative” (N) has the lowest portion by 12 ha 

as shown in Figure 5-7 (B). The reason why SP class is dominant is that the LC classes are mostly broad 

categories which can be divided into many subclasses. Therefore, most of the transition patterns need 

more information to be precisely characterized. For instance, slum areas are part of the “building” class in 

LC level, while it is “IBA” in the LU level. The transition pattern (TP) “building-rubble-building” in the 

LC-based recovery map, is the most responsible TP and is characterized as the class SP recovery. 

However, the TP mentioned above can be “IBA-rubble-IBA” in LU-based recovery map and is 

categorized as negative (N) recovery, see Figure 5-8 (A). Thereby, LU provides more effective information 

in some transitions, compared to LC information. Moreover, it seems LC information is enough to 

characterize some classes and related TPs. For instance, a new national road in the West part of the area is 

well-captured by LC-based recovery map, see Figure 5-8 (F). This is also exemplified in the Figure 5-8 (E), 

where a parking lot is added to a commercial building. Thereby, there is no need for more information to 

characterize P recovery in LC-based recovery map; i.e., land use information. A negative example of 

recovery, in LC level, is also shown in Figure 5-8 (C), where “non-tree” is turned to “inland water”. The 

NT recovery also covers a large area in LC-based recovery map. This is related to the broad definition of 

the LC classes, where there are more chances for TPs to be categorized as NT compared to LU-based 

recovery map. Figure 5-8 (D), moreover, shows a potential positive recovery TP which has not been 

captured by both recovery maps. This can highlight lack of image data from other times to track some 

specific TPs which cannot be grasped by only a 3-time based recovery map. Considering LU-based 

recovery map (Figure 5-6 (B)), it can be seen that the recovery classes are almost equally distributed in 

terms of area covered in ha. The class SN is the dominant class (area covered is 87 ha.), which closely 

followed by SP (74 ha.), see Figure 5-7 (C). This is sensible as in LU regulation after Haiyan it was decided 

to reduce the amount of crop and increase the amount of FBA by CLP (2016). However, since the 
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geographic location of the place where this reduction should be implemented is not defined in CLP 

(2016), it is characterized as SN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, in the Figure 5-7 (A), it is illustrated that the area covered by class “other transition” (OT), 

is almost equal for both LC- and LU-based recovery maps. More area is classified as SN and N in the LU-

based recovery map compared to the LC-based recovery map. Conversely, classes NT, SP, and P are more 

dominant in the LC-based recovery map as compared to LU-based recovery map. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-7 (A) A comparison between LC- and LU-based recovery map; (B) area per class for LC-
based recovery map; (C) area per class for LU-based recovery map 

Figure 5-6 (A) LC-based recovery map; (B) LU-based recovery map; data source: WV2 images (T0, T1, and T2); 
recovery map approach: based on a code developed in R; main Observation: striking difference between A and B is 
mainly due to 2 issues:1) class slightly positive recovery (SP) in A, where the area is mostly covered by TP “building-
rubble-building”, which this TP is changed to other TPs in B such as IBA-rubble-IBA (N: negative recovery) 2) due 

to different TPs used in A and B 
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In order to avoid noise introduced by isolated pixels a majority filter with the kernel size of 5*5 is 

applied to both recovery maps, see Figure 5-9. It is evident that more area in both maps are accounted for 

the class OT, and those which are not in the OT class are resilient enough to this aggregation. Although 

up-scaling of the map removes some information, the maps with majority filtering provide more efficient 

information for policymakers at city level. The reason for that is policymakers need more concise 

information than a detailed map full of information, while also an aggregate map is easier to communicate. 

A detailed map is appropriate for stakeholders at the neighbourhood level, where they can benefit from 

detailed recovery information for their needs at a local scale. Overall, an aggregated map is potentially 

useful in a city level while for a neighborhood level a detailed recovery map is more desirable.  

 

 

 

 

 

 

 

 

Figure 5-8 Visual examples of LC- LU-based recovery maps 
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5.2. Practical Guide 

An effective way to assess the recovery process and or to compare different events and related 

recovery processes is using indicators (Chang, 2010). In the recovery literature, there are some indicators 

with different levels of practicality. These indicators are categorized into 3 groups based on definitions 

given in section 4.3. Moreover, some indicators from other disciplines are included (with the potential to 

provide recovery information). Indicators are grouped as macro, meso, and micro indicators (Table 5-7, 

Table 5-8, and Table 5-9). 

The first group of the indicators “macro indicators” are those with a high utility in the recovery 

context, where already well-established RS method(s) exist. For example, nighttime lights can be well 

captured by visible infrared imaging radiometer suite (VIIRS). These indicators can easily reveal important 

information about the recovery process over a large scale; i.e., city scale, see Table 5-7. 

The second group of indicators are “meso indicators”, which in comparison with macro indicators are 

less practical and mostly are applicable within the city scale. Although these indicators have the potential 

to be used in the recovery context, they have not frequently been used so far. Thereby, there is a need for 

a guide to distinguish them in RS data and proposed which kind of data processing can be employed for 

their recognition. By using the provided practical guide, they can be used more frequently and effectively 

in the recovery context. The practical guide aims to best link these indicators to RS methods. Moreover, a 

short recovery analysis for these indicators is done in Table 5-8. This table first, checks which spatial 

resolution is suitable for the specific indicator for both visual interpretation and semi-automatic analysis. 

Then, lists, which auxiliary data type, time of the day (ToD), unit of analysis, RS method, field of view, and 

number of images, is required. Auxiliary data type provides a list of potential auxiliary data in addition to 

optical RS to help to best detect and analyze a specific indicator. The indicators are checked whether they 

are related to physical and or functional recovery and also if they are more useful in the short- or long-

term recovery. 

As already mentioned earlier in chapter 2, there are some local type indicators with a low utility in the 

recovery, which are hard or impossible to detect by RS. These indicators are categorized in “micro 

indicator” as they have low utility in the recovery context; i.e., they can be used at the neighbourhood level 

(Table 5-9). They either can be visually detected with spatial resolution of 1-10 cm by super resolution 

Figure 5-9 (A) Aggregated LC-based recovery map, (B) Aggregated LU-based recovery map 
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visible (SRV), or there is no existing RS method to detect them. Moreover, for those that visually are 

detectable, there is no existing semi-automatic method allowing for monitoring. 

 

 

 

Key for Tables 5-8 and 5-9 

Optical RS: MRV, moderate resolution visible (spatial resolution >10–30 m); HRV, high resolution visible (spatial 

resolution >2–10 m); VHRV, very high resolution visible (spatial resolution better than 2 m); SRV, super resolution 

visible (spatial resolution >1–10 cm);  

Auxiliary data type: Hyp, hyperspectral imagery; IR, infrared (typically a NIR band in optical sensors); VIIRS, Visible 

Infrared Imaging Radiometer Suite; Vin, vegetation index; BuI, built-up index; TF, texture feature; DF, data fusion;  

Unit of analysis: PB, pixel based; OB, object based; RB, region based;  

RS Method: ML, machine learning; DL, deep learning; LM, landscape metrics;  

FoV (field of view): V, vertical; Obl, oblique;        

Recovery analysis Type: Phs, physical; Fnc, functional;        

Recovery analysis Time: STR, short term recovery; LTR, long term recovery     

EM, existing method           

: from ecology discipline 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indicator Methods Reference

Change in urban morphology landscape metrics (Hagelman et al., 2012)

Night time light
Visible Infrared Imaging Radiometer 

Suite (VIIRS)
(Deville et al., 2014; Sutton et al., 2007)

Deforestation NDVI analysis

Impervious surface visual interpretation, maximum likelihood

Reconstruction of bridges and 

public transportation facilities
standard CD methods

Proportion of built up and 

vegetated area

NDVI analysis, standard CD methods 

combined with GIS
(Ebert et al., 2009)

Debris removal
visual interpretation, standard CD 

methods
(Hill et al., 2011)

Vegetation recovery 
NDVI analysis, visual interpretation, 

standards CD methods
(Wagner et al., 2012)

Reservoirs 
visual interpretation, NDVI analysis, 

maximum likelihood
(Harb et al., 2015)

Roads visual interpretation, maximum likelihood (Weng, 2012)

(Brown et al., 2010; Curtis et al., 2010)

Table 5-7 Macro indicators with high utilities in the recovery assessment 
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Overall, this chapter provided and analyzed the result of LCLU analysis and practical guide. In LCLU 

analysis the selected image features were illustrated and succeeded by accuracy assessment of LC and LU 

maps. Two recovery maps based on LC and LU were showed, and the results were analyzed. Moreover, in 

the practical guide, three tables regarding macro, meso, and micro indicators were showed and analyzed. 

In the coming chapter, the results will be discussed. 

  

VI V Obl Phs Fnc Mix STR LTR

Clean/dirty swimming pools * * * *

Indoor parking place * * * *

Proximity to services na *
Distribution and connectivity of 

water points 
na *

Tanks and towers (water towers) * * * * * *

Playground * * * * *

Chimneys * * * *

State of garden * * * *

Window flower pot na na * *

Construction of stable housing na na * *

Presence of trash bins * * * * *

Neat front yards * * * *

Pedestrian access * * * * * * (Song & Knaap, 2004)

Lifeline utility na na * * * (Ruiter, 2009)

Recovery analysis

Type Time
FoV

Indicator
EM

Reference

(Brown et al., 2010) 

(Curtis et al.,2010)

Table 5-9 Micro indicators with low to medium utilities in the recovery assessment 
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6. DISCUSSION 

This chapter discusses main findings of this research, considering and reflecting upon limitation of 

methods applied and experimental results. A comparison with existing research is made where applicable 

and, in some cases, possible future research items are mentioned. The main objective of this study was to 

understand and conceptualize post-disaster recovery through LCLU assessment using RS, and also 

investigate the value of LCLU information in the recovery assessment. 

6.1. Utility of the Conceptual Framework 

The developed conceptual framework was both a philosophical justification of recovery process 

within three time-span and one of the important outputs of this study which remainder outputs were 

sensitive to it. The conceptual framework is helpful to understand the recovery processes involved in each 

TP and to classify mapping approaches and further providing recovery maps. Thus, as Parsons et al. 

(2016) mentioned, the CF should be published before results. In the light of the CF, both physical and 

functional recovery were explored, leading to a more holistic understanding of recovery process. However, 

in order to increase the generalization capacity and to make a deeper understanding of recovery process, 

the conceptual framework could be refined from a theoretical viewpoint. One possibility would be to 

bring the population information of the affected area corresponds to each image which would improve 

the functional understanding of recovery. 

There is an uncertainty in the developed CF regarding TPs, specifically on the event (T1) and post-

disaster (T2) times. In the developed CF degree of damage and rebuilding are assumed to be discrete. 

Nevertheless, in reality, different levels of damage exist, ranging from complete collapse to cracks on the 

building roof or façades (Vetrivel et al., 2016) as well as different degrees of rebuilding (Coppola, 2011). If 

TPs are considered as “recovery vectors” (see Figure 6-1), disaster damage will imply a negative change 

(between T0 and T1), while rebuilding (between T1 and T2) will imply a positive change. Therefore, from 

conventional recovery perspective, at least three recovery vectors V1, V2, V3 can be anticipated which 

have corresponding damage depths; i.e., moderate, high, and total damaged d1, d2, and d3 respectively 

(Figure 6-1 (A)). Moreover, with respect to the concept of BBB, other 3 recovery vectors can be expected 

with different degrees of positive and negative changes as, e.g., V1, V2, and V3 as shown in Figure 6-1 (B). 

Clearly, such enhancements would claim substantially greater data than what is currently required. 

However, this new insight would provide valuable opportunities for deeper understanding regarding 

recovery. 
 

 

 

 

 

 

 

 

 

6.2. Utility of SVM Relying on GLCM and LBP Features 

The study area was a complex setting of both urban and rural, which makes the scene very 

heterogeneous. A low inter-class spectral variation and intra-class separability of the LCLU classes led to 

Figure 6-1 Recovery vectors (A) concept of build back (B) concept of build back better 

V1 V1

V2 V2

V3 V3

d1

d3
T0

v1

BA

T1 T2 T0 T1 T2

d2
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an inaccurate result when SVM performed solely on spectral bands of the WV2 images, and especially for 

the event time (T1). Utilizing image feature, inherent in the image, in the classification leads to an increase 

of class separability and accordingly improves the classification accuracy (Kuffer et al., 2016). In this study, 

several spectral and textural measures were extracted from the WV2 images and then employed in SVM. 

Results showed that such measures increase the overall classification accuracy. In LC classification, SVM 

relying on GLCM and NDVI2 improved the classification accuracy which corresponds with the finding of 

Kuffer et al., (2016) and Salehi et al., (2011). In LU classification, SVM relying on LBP and NDVI2 

provided the highest accuracy among different settings of SVM and image features which showed an 

agreement with the result of Mboga et al., (2017) and Ella & Wyk, (2008). Besides, the resulting LCLU 

classified maps were of good visual quality, meaning that hand-crafted features can give a competitive 

performance when carefully considered, although it is time-consuming. 

Some inaccuracies (uncertainty) in the classified maps were shown in Table 5-5 and Table 5-6. There 

are different reasons for incorrect classification. For instance, an area having spectral characteristics of 

grassland, which occurring within a cropland, an area with morphological appearance of informal built-up 

area (IBA) yet occurring within a formal built-up area (FBA), and low spatial resolution and high spectral 

similarity to differentiate palm from other trees make classification difficult. Some work on uncertainty 

analyzing for image interpretation of informal settlements has been done in Kohli et al. (2016). 

Nevertheless, the quantification of the extent and nature of these uncertainties could be assessed in future 

studies, where CNN-learned features from the image (especially over event image) can be used as an input 

into SVM as suggested in the work of Razavian et al., (2014). Overall, the utility of SVM combined with 

image features provide a good result in built-up related classes which agreed with the result of Mboga et al. 

(2017). Regarding vegetation-related classes, the result of SVM was correlated with the result of Ozdogan 

et al. (2010) over a large area, while it was not corresponding to the result of Mathur et al. (2008) over the 

local scale. Uncertainty due to mixed-unit classes in LU level is conditional upon the temporal and spatial 

variability of the spectral signature of the classes in question. Thus, a careful definition of mixed-unit 

classes in LU level would improve mapping of the heterogeneous scene as mentioned in the work of 

Herold et al. (2008). Moreover, appropriate images (pre-disaster) must be available for the temporal 

approach to providing a complete inventory of all irrigated fields in a study area (Ozdogan et al., 2010). 

Therefore, understanding vegetation-related classes change after a disaster requires an understanding of 

corresponding vegetation changes before the disaster. Meaning that a five time-span framework would be 

more informative than a three time-span framework in vegetation-related recovery assessment. 

6.3. Utility of LCLU and Recovery Maps 

In this study, the utility of LCLU and related changes were examined in Tacloban city with regards to 

the post-Haiyan recovery process. From LC maps (Figure 5-4), it is evident that there is an increase in the 

size of impervious surface within recovery process in 2017, which can be considered as a good sign of 

recovery (Brown et al., 2010). Moreover, in 2017, the area related to non-tree is increased, while the class 

“tree” is decreased as the same size. This is sensible and can be considered as a good sign of recovery due 

to huge damage in tree class and the required time for growing of a palm tree (4-7 years), which leads 

people to adjust their source of income from palm tree to other cash crops that is in an agreement with 

the work of Mayans (2014). However, the recovery status is different if the reduction in tree means that 

the area got abandoned. With regards to LU maps (Figure 5-5), it is observed that class large-scale industry 

remained the same which is a positive sign of recovery, as the CLP (2016) decided not to relocate large 

scale industries. Regarding the state of activity of LSI, a visual interpretation based on indicators was made 

in the image of 2017 for 10 samples. The indicator used were presence of truck, car, and storage 

containers in combination with Google street view. The result showed that the LSI samples were active in 
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2017. Decreasing in the size of IBA in 2017, moreover, is considered a good sign of recovery. However, 

the remaining part of IBA is still relatively high and is related to a region along the coastline. Thus, there is 

a need that the policymakers modify the comprehensive CLP and consider the situation of IBA to 

improve the area and become more disaster resilient. As mentioned earlier growth in cropland is clearly 

due to decrease in palm tree, while the overall increase in non-tree is attributed to both anthropogenic 

activities and typhoon Haiyan (Mayans, 2014). Furthermore, some uncertainties were related to the quality 

of data; for instance, uncertainties related to the damage classes and palm tree are functions of the spatial 

resolution of the image. Moreover, recreational area proved to be a meaningful class to assess social 

recovery (EPC, 2004).  

As mentioned earlier in chapter 2, CDEM (2005) is a well-accepted holistic recovery framework. The 

utility of LCLU, from the evolving understanding of recovery within this study, is investigated in different 

aspects of recovery process formed by CDEM (Figure 6-2). Utility of LCLU in each aspects of recovery in 

a colour-coded manner is shown in Figure 6-2, where LCLU has a low to high utility in CDEM recovery 

framework (almost seventy percent of different aspects of recovery) except health (social), biodiversity 

(natural), individual, infrastructure, government (economic), and lifeline (built-up). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6-2 Utility of LCLU in a holistic recovery, adopted from (CDEM) 
 

In this study, 7 LC and 12 LU classes were selected based on the context of Tacloban city and 

typhoon Haiyan. In LC level, classes building, and impervious surface proved to be important. In LU 

level, however, classes LSI, IBA, FBA, palm tree, and cropland were the most informative ones. LU 

classes showed high exploratory power more on a local scale, while LC classes were informative over a 

larger area. The other insight is that LCLU information can complement the recovery insight and smart 

use of LCLU information can produce a robust recovery map and consequently, provide a deeper 

2

3

Moderate to High LC Utility
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understanding of recovery process. Meaning that, as providing LC information is easier and probably 

cheaper than LU, LC can serve as a basis layer which can give sufficient vision as well as an accurate result 

over large areas. While LU-derived information can be effectively used in the area of uncertainty in 

“cover” level, where more detailed information is required within a city level.  

The “balancing point” for using different levels of information is a trade-off of the purpose of the 

study, data availability, and scale of study. However, from this study can be perceived that the LC-derived 

information can be sufficient to talk about built-up and vegetation recovery and specifically about the 

status of the impervious surface over city level. This study, moreover, proved the initial hypothesis and 

showed LC-derived information largely reveal physical aspects of recovery and LU information can 

expose functional recovery. Overall, LC information is helpful in a blanket classification over large areas, 

and LU information is more helpful in a focused target classification for some aspects of recovery such as 

economy recovery, while also LU can be best employed to detect long-term recovery activities. 

With regards to recovery maps developed in this study and related TPs, it is evident that some TPs 

can characterize short-term recovery such as impervious surface-rubble-impervious surface, while some 

characterize specifically long-term recovery such as grass-grass-impervious surface. Regarding LC-based 

recovery map, it is observed that the area belongs to the classes SP and SN are the areas of extensional 

uncertainty, where they ultimately need to be defined as N and or P by providing more relevant data. 

There was, moreover, a striking difference between LC- and LU-based recovery maps, where the former 

mostly was covered by class SP (green) and the latter was mostly covered by classes SN and N (red). This 

was sensible as in LC-based recovery map class SP was the dominant class (226 ha.), which mostly 

characterized by TP “building-rubble-building”. However, in LU-based recovery map, this TP was divided 

into other detailed TPs. These new TPs necessarily did not hold the same class-value as LC level due to a 

detailed level of information. Accordingly, these new TPs changed their class-values mostly from SP to 

SN and N from LC to LU level respectively. For instance, IBA-rubble-IBA (N: negative recovery). Thus 

LC-based recovery map is more useful for initial assessment of recovery over large areas, and LU-based 

recovery map is more useful to assess specific recovery activities, a certain process, and certain LU on a 

local scale. The aggregation level used in this study might not be applicable in other studies as the context 

of disasters and cities varies and could be a potential area of further research. However, it is observed that 

the bigger and the more consistent the classes are (in terms of size and connectedness), the more resilient 

to the aggregation (based on a majority filter) they are.  

Recovery information is specifically for a disaster-stricken area and is related to a certain period. From 

GIS perspective, thus, the recovery information is a geographic phenomenon that is made up of transition 

patterns (geographic objects) (Tolpekin & Stein, 2013), which potentially come in different “flavors”. 

Perhaps the most desirable recovery information comes in a “region-based” manner, where noises can 

also be avoided. This means that recovery information is not “everywhere” in the area of question. Thus, 

not all pixels hold recovery information. Thereby, those which hold relevant (recovery) information 

should be unified meaningfully. Transition patterns (geographic objects) should not be studied in isolation, 

but instead investigated in a collection of TPs. It is important to highlight that transition patterns -based 

on the law of  “mutual non-overlap” of geographic objects- do not occupy the same location in the scene 

(Tolpkein & Stein, 2013). It is sometimes useful to present TPs at a more aggregated level, where “pixel” 

is not the best unit for analyzing recovery map, and pixel-based recovery map is, thereby, perhaps 

somewhat difficult to grasp. For example, those moments that policymakers need approximate 

information (spatial analysis) to answer the questions like which part of the city is positively recovered? 

What is the shortest route of two area assigned as negative recovery? Thus, when the recovery information 

about coverage, capacity, and connectedness is needed in a city level, the recovery information can be 

aggregated. 
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It is also worthwhile to mention that, as there are many TPs which can be selected to create recovery 

maps, it potentially could be misused and be manipulated. For example, by emphasizing just on the 

positive side of recovery for larger areas, while highlighting negative recovery for a small subset of the area 

which potentially can be eliminated in an aggregated map. This misuse of information can also be 

happened in LC-based recovery map in classes SP and SN (the area of uncertainty), which may give a false 

insight of recovery status. 

Lastly, to portrait the whole procedure of producing the aggregated recovery map, this study reminds 

the aggregated recovery map is a function of majority filter applied on pixel-based recovery map, and 

recovery map is a function of post-classification change analysis of the classified map (based on the CF). 

Each classified map, moreover, is a function of SVM (and related parameters, reference, and trained data, 

etc.) applied on raw imagery, and each raw imagery is a function of factors defined by image provider. The 

study is provided an extensive discussion in chapters 5 and 6 about uncertainty in each steps mentioned 

above and possible solutions for each. However, developing the LCLU-based recovery maps is providing 

a deeper insight into this complicated process.  

6.4. Utility of the Number of Imagery in Recovery Assessment 

The number of imagery is highly important in RS-based recovery assessment. The optimum number 

of imagery used in a CF is a trade-off between the purpose of the study, dynamic activity of the area, and 

analysis practicality. A 3-time-based framework provides a basic recovery insight of the region. An 

interesting area to illustrate different “recovery rate” (dynamic of the recovery process) is Santa Elena 

(Figure 6-3 (A)) in the North part of Tacloban city. TP grass-grass-FBA (2 months pre-disaster, disaster 

time, 40 months post-disaster; -02, 00, +40, respectively) (Figure 6-3 B), can exemplify a 3-time-based 

framework. However, this TP shows a very steep change 40 months after the typhoon where the recovery 

progression is neglected. Thus, the area with a high recovery rate requires more than 3-time-based 

framework to cover the recovery evolution which in this example could be an 8-time-based framework 

ranging from 2 months before the disaster (T0) to 40 months after the disaster (T7) (Figure 6-3 B). The 

recovery rate varies project by project due to many issues such as policy and finance. An interesting 

example of this is the different recovery rates of project C compare to project B (Figure 6-3), which are 

only 500 meters apart from each other. Although images were taken at the same time, clearly the recovery 

rate is totally different, suggesting a 4-time based framework for project C (-02, 00, +21, +40). 

In the vegetation related recovery analysis, to understand the change in post-disaster situation, it is 

better first to understand the change in pre-disaster situation, where “grass” can be differentiated from 

“crop”. The greenness (amount of biomass) in grassland varies gently throughout the year, whereas the 

changes of greenness in the crop are sinusoidal (Homolová et al., 2013). Ideally, acquiring 2 images from 

the start and the end of the dry season (for pre- and post-disaster situation) would help to differentiate 

grass from the crop, when at the end of the dry season crops are cultivated, and lands are being prepared 

for next crop. In this way, crops can be differentiated from grass which is still green. Therefore, ideally, a 

5-time-based framework is suggested in a way that images were taken from the start and the end of the dry 

season which is correlated to the harvesting pattern of the crop (pre-event1, pre-event2, event, post-

event1, post-event2).  

6.5. Utility of Practical Guide 

A set of indicators were categorized based on their practicalities and utiliti in the RS-based recovery 

assessment under “macro”, “meso”, and “micro” indicators. The relationship between the set of 

indicators and the aggregation method was inspected via the related tables usiesng a practical guide. The 
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extracted information would then be used for detecting and analyzing meso and macro indicators. Meso 

indicators would support RS-based recovery assessment methodologies, while still holding rooms for 

improvement in terms of completeness and quality assessment of the indicators. For example, one can 

comprehensively investigate the utility of indicators from a wider range of disciplines in the recovery 

context. Most important is that the key reference is provided for each indicator which can help researchers 

to explore the capability of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 (A) Recovery projects after typhoon Haiyan at Santa Elena in the North part of Tacloban city; (B) 
project with high recovery rate; (C) project with low recovery rate; both projects are shown in 8-time-span ranging 

from; 2 months pre-typhoon (-02) to 40 months post-typhoon (+40). 

6.6. Final Remarks 

Key insights that were evident in the course of this research are discussed. LCLU information is very 
promising evidence, especially in the analysis of satellite imagery. Several limitations were identified which 
mainly were concerned with efficiency and probable solutions suggested. In addition to this, strategies to 
advance the accuracy of the classification and quality of the maps need to be explored. In next chapter, the 
conclusion will be drawn, and some suggestions will be given. 
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7. CONCLUSION 

LCLU information extracted from satellite imagery is widely used in the RS disciplines. However, the 

value of this information in the recovery context has not yet been explored. The principal purpose of this 

study was to understand post-disaster recovery through LCLUC specifically through RS over large areas 

and to understand the value and utility of LCLU-derived information from RS in post-disaster recovery 

assessment (urban-rural setting). The available data were 3 WV2 images from 8 months before, right after, 

and 4 years after typhoon Haiyan in Tacloban city in the Philippines. A methodology was developed based 

on a generic conceptual framework, comprised of transition patterns to characterize different recovery 

statuses. Moreover, for classification purposes, SVM was employed, and a detailed comparison of the 

performance of linear- and RBF-based SVM relying on the various setting of hand crafted features 

(GLCM, LBP, spectral indices) was conducted. The best combination of SVM with image features 

(SVM+GLCM+NDVI2, SVM+LBP+NDVI2) was applied in 3 time-span images in order to produce 

LCLU maps. The LCLU maps were stacked and, based on the developed CF different TPs from the 

stacked LC and LU maps were extracted. The final products were referred as LC- and LU-based recovery 

maps which further were up-scaled to a region level.  

The developed CF introduces a nuanced definition of recovery statuses based on TPs, which were 

categorized into five groups: positive, slightly positive, neutral, slightly negative, and negative recovery. 

Based on the definition and evolving understanding of this study, it is understood that recovery 

information is a geographic phenomenon and related transition patterns are geographic objects. Moreover, 

it is found that some TPs can specifically characterize short- and some long-term recovery. 

Furthermore, the conducted experiments showed that SVM relying on GLCM+NDVI2 features 

resulted in high LC classification accuracy with an overall accuracy of 89.4%, 82.2%, 90.8% for T0, T1, 

and T2 respectively. SVM relying on LBP+NDVI2, moreover, resulted in an acceptable LU classification 

accuracy with an overall accuracy of 76.3%, 69.9%, 77.8% for T0, T1, and T2 respectively. In both LCLU 

maps, the least accuracies were belonged to the event time. In general, the quality of the LC maps was 

better than LU maps. The main uncertainty in LU maps was due to the misclassification in the vegetation 

related classes. Overall, results showed that well designed hand-crafted features could show competitive 

performance in a complex task involving classes from simple and small to abstract and big in terms of 

complexity and size, respectively. However, more investigation is needed when it comes to vegetation 

related classes in “use” level. 

In this thesis, it was found that the characteristic of the post-Haiyan recovery in Tacloban city can be 

explained through the LCLUC information. By the result of this study, in both LC- and LU-based 

recovery maps, it was observed that 168 ha of the area was positively recovered, while 69 ha was assigned 

as negative recovery. Positive recovery was mainly related to the recovery projects were in part effective to 

build back the damaged area and build impervious surfaces back better. However, the recovery project 

fails where IBA has rebuilt again along the coastline and crop types was increased (as they had to be 

decreased in CLP). Thereby the study suggests reviewing land use policy and considering slum area in the 

planning and land readjustment projects in order to strengthen the resilience of Tacloban city. However, 

to achieve successful readjustment projects such as slum relocation, the location of the new settlement and 

award of compensation in the presence of strong leadership and active participation of community 

members (Hong & Brain, 2012; Viratkapan & Perera, 2006) should be considered in the CLP. Thus, 

resilience should be used in the land use planning where bottom-up participation of affected people 

should be well-adjusted with regards to the top down regularization.  
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Additionally, it was understood that the general understanding of the recovery could be provided by 

LC-based recovery map and LC information, which are easier to produces and normally have high 

accuracy. LC-based recovery map can give planners the basic idea of how recovery and reconstruction 

planning could entirely consider the pre-disaster situation and deal with the dramatically changed situation 

after the event, however the area of uncertainty in the LC-based recovery map (SN, SP) require more 

information to be further precisely characterized. LU information and LU-based recovery map are not 

necessarily effective in the early stage of the recovery process. However, smart use of LU information can 

effectively improve the understanding of the recovery in medium- to the long-term recovery phase. It is 

recommended that not to use LU information in the whole study area, but only in the area of uncertainty 

(which is a derivative of LC-based recovery map) as creating it, is also expensive and less accurate 

specifically over large areas. With doing so, a robust recovery map can be created. Moreover, the impact of 

the level of aggregation was investigated. The result suggested that stakeholders can use a pixel-based 

recovery map within a neighborhood level, while policymakers need a more summary of information 

where isolated pixels can be avoided, thus a region-based recovery map is more desirable for them.  

The other finding was regard to the optimum number of imagery used in a CF, which is a trade-off 

between the purpose of the study, dynamic activity of the area, and analysis practicality. A 3-time-based 

framework provides an initial recovery (assessment) insight of the region. However, it can potentially 

neglect recovery progression for the region with high recovery rate or recovery for specific LU, function, 

and neighborhood. Thus, a 5-time-based framework is suggested when an overall assessment of the area 

(for instance Tacloban city) is required. The timing of these 5 imagery should be adjusted with regards to 

the recovery rate. However, as recovery rate for the different area is different, an adaptive approach can be 

employed to cover different recovery activities. Meaning that, a region with high recovery rate should 

employ more than 5-time-based and region with low recovery rate should employ 3-time-based 

framework, which in the former it should be less than 10-time-based due to practically issues (operational, 

time, and cost). The other added value of a 5-time-based framework is that for hazard-prone areas such as 

the Philippines, it can, cover not only large natural disasters but also the minor ones which happen 

frequently. This study recommends, in order to understand the changes in vegetation recovery in a post-

disaster situation, it is better first to understand the change in pre-disaster situation. Thus a 5-time-based 

framework is suggested for vegetation recovery assessment in a way that two images relate to the pre-

disaster situation and two for post-disaster (in the start and the end of dry season) and one for the event 

time. The other added value of this timing is that for tropical countries such as the Philippines there are 

more chances to acquire cloud-free images which are highly important. 

The other important objective of this study was to investigate how existing indicators previously 

proposed by the recovery community can be linked with RS data and techniques. The study provides 3 

tables, where all relevant indicators grouped based their utilities in the recovering community ranging from 

low and medium to high; micro, meso, and macro indicators respectively.  

Overall, LCLU information is two of the indicators to understand recovery (among many). It is 

shown that they are capable of providing from a basic (LC) understanding to a more deeper insight (LU) 

of the recovery process, while also LC and LU could reveal physical and functional recovery, respectively. 

However, this information cannot cover whole aspects of the recovery process (Figure 6-2). Therefore, 

LCLU can be combined with other data to provide a full view of the recovery process. This can be 

achieved by the proposed CF in Figure 7-1. 
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7.1. Recommendations and Future Works 

The recommended future works are following: 

• Investigate the capacity of crowd sourced information to validate LCLU maps as well as 

recovery maps in the absence of fieldwork data which is time-money consuming.  

• Investigate the value of transfer learning to directly train a classifier for automatic recovery 

characterization. 

• Investigate the optimal number of imagery can be used in the recovery assessment and to 

characterize the situation which that optimal number of imagery is based on. 

• Investigating transferability of the developed conceptual framework in other geographical 

regions. 

• Investigate the potential of a region-based recovery map based on a region-based 

classification approach. 

• Examine the value of providing a 3-D recovery map in order to get a full view of the recovery 
process, where 2-D recovery map can be LCLUC information (X, Y), and Z value would be 
in-situ based information (could be potentially provided by citizen-powered information). 

• To improve the understanding of transitions patterns and their related recovery statuses 
developed in this study in order to enhance the concept of BBB mentioned in the Sendai 
framework (UNISDR, 2015b). 

  

Figure 7-1 Proposed framework of combined information 
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ANNEX 

Annex 1: A complete list of LC-based transition patterns in the study area 

ID T0 T1 T2 Transition ID 

1 Building Building Building 111 

2 Building Building Impervious surface 112 

3 Building Building Bare Land 113 

4 Building Building Inland Water 114 

5 Building Building Tree 115 

6 Building Building Non-Tree (Vegetation) 116 

7 Building Rubble Building 181 

8 Building Rubble Impervious surface 182 

9 Building Rubble Bare Land 183 

10 Building Rubble Inland Water 184 

11 Building Rubble Tree 185 

12 Building Rubble Non-Tree (Vegetation) 186 

13 Impervious surface Impervious surface Building 221 

14 Impervious surface Impervious surface Impervious surface 222 

15 Impervious surface Impervious surface Bare Land 223 

16 Impervious surface Impervious surface Inland Water 224 

17 Impervious surface Impervious surface Tree 225 

18 Impervious surface Impervious surface Non-Tree (Vegetation) 226 

19 Impervious surface Inundated Land Building 241 

20 Impervious surface Inundated Land Impervious surface 242 

21 Impervious surface Inundated Land Bare Land 243 

22 Impervious surface Inundated Land Inland Water 244 

23 Impervious surface Inundated Land Tree 245 

24 Impervious surface Inundated Land Non-Tree (Vegetation) 246 

25 Impervious surface Rubble Building 281 

26 Impervious surface Rubble Impervious surface 282 

27 Impervious surface Rubble Bare Land 283 

28 Impervious surface Rubble Inland Water 284 

29 Impervious surface Rubble Tree 285 

30 Impervious surface Rubble Non-Tree (Vegetation) 286 

31 Bare Land Bare Land Building 331 

32 Bare Land Bare Land Impervious surface 332 

33 Bare Land Bare Land Bare Land 333 

34 Bare Land Bare Land Inland Water 334 

35 Bare Land Bare Land Tree 335 

36 Bare Land Bare Land Non-Tree (Vegetation) 336 

37 Bare Land Inundated Land Building 341 

38 Bare Land Inundated Land Impervious surface 342 

39 Bare Land Inundated Land Bare Land 343 
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ID T0 T1 T2 Transition ID 

40 Bare Land Inundated Land Inland Water 344 

41 Bare Land Inundated Land Tree 345 

42 Bare Land Inundated Land Non-Tree (Vegetation) 346 

43 Bare Land Rubble Building 381 

44 Bare Land Rubble Impervious surface 382 

45 Bare Land Rubble Bare Land 383 

46 Bare Land Rubble Inland Water 384 

47 Bare Land Rubble Tree 385 

48 Bare Land Rubble Non-Tree (Vegetation) 386 

49 Inland Water Inundated Land Building 441 

50 Inland Water Inundated Land Impervious surface 442 

51 Inland Water Inundated Land Bare Land 443 

52 Inland Water Inundated Land Inland Water 444 

53 Inland Water Inundated Land Tree 445 

54 Inland Water Inundated Land Non-Tree (Vegetation) 446 

55 Inland Water Rubble Building 481 

56 Inland Water Rubble Impervious surface 482 

57 Inland Water Rubble Bare Land 483 

58 Inland Water Rubble Inland Water 484 

59 Inland Water Rubble Tree 485 

60 Inland Water Rubble Non-Tree (Vegetation) 486 

61 Tree Flattened Tree Building 551 

62 Tree Flattened Tree Impervious surface 552 

63 Tree Flattened Tree Bare Land 553 

64 Tree Flattened Tree Inland Water 554 

65 Tree Flattened Tree Tree 555 

66 Tree Flattened Tree Non-Tree (Vegetation) 556 

67 Non-Tree (Vegetation) Non-Tree (Vegetation) Building 661 

68 Non-Tree (Vegetation) Non-Tree (Vegetation) Impervious surface 662 

69 Non-Tree (Vegetation) Non-Tree (Vegetation) Bare Land 663 

70 Non-Tree (Vegetation) Non-Tree (Vegetation) Inland Water 664 

71 Non-Tree (Vegetation) Non-Tree (Vegetation) Tree 665 

72 Non-Tree (Vegetation) Non-Tree (Vegetation) Non-Tree (Vegetation) 666 

73 Non-Tree (Vegetation) Inundated Land Building 641 

74 Non-Tree (Vegetation) Inundated Land Impervious surface 642 

75 Non-Tree (Vegetation) Inundated Land Bare Land 643 

76 Non-Tree (Vegetation) Inundated Land Inland Water 644 

77 Non-Tree (Vegetation) Inundated Land Tree 645 

78 Non-Tree (Vegetation) Inundated Land Non-Tree (Vegetation) 646 
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Annex 2: A complete list of LU-based transition patterns in the study area 

 

ID T0 T1 T2 Transition ID 

1 LSI LSI LSI 111 

2 LSI LSI IBA 112 

3 LSI LSI FBA 113 

4 LSI LSI Palm Tree 114 

5 LSI LSI Other Tree 115 

6 LSI LSI Recreation Area 116 

7 LSI LSI Crop Land 117 

8 LSI LSI Grass Land 118 

9 LSI LSI Inland Water 119 

10 LSI LSI Bare Land 1110 

11 LSI LSI Impervious Surface 1111 

12 LSI Rubble LSI 151 

13 LSI Rubble IBA 152 

14 LSI Rubble FBA 153 

15 LSI Rubble Palm Tree 154 

16 LSI Rubble Other Tree 155 

17 LSI Rubble Recreation Area 156 

18 LSI Rubble Crop Land 157 

19 LSI Rubble Grass Land 158 

20 LSI Rubble Inland Water 159 

21 LSI Rubble Bare Land 1510 

22 LSI Rubble Impervious Surface 1511 

23 IBA IBA LSI 221 

24 IBA IBA IBA 222 

25 IBA IBA FBA 223 

26 IBA IBA Palm Tree 224 

27 IBA IBA Other Tree 225 

28 IBA IBA Recreation Area 226 

29 IBA IBA Crop Land 227 

30 IBA IBA Grass Land 228 

31 IBA IBA Inland Water 229 

32 IBA IBA Bare Land 2210 

33 IBA IBA Impervious Surface 2211 

34 IBA Rubble LSI 251 

35 IBA Rubble IBA 252 

36 IBA Rubble FBA 253 

37 IBA Rubble Palm Tree 254 

38 IBA Rubble Other Tree 255 
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ID T0 T1 T2 Transition ID 

39 IBA Rubble Recreation Area 256 

40 IBA Rubble Crop Land 257 

41 IBA Rubble Grass Land 258 

42 IBA Rubble Inland Water 259 

43 IBA Rubble Bare Land 2510 

44 IBA Rubble Impervious Surface 2511 

45 IBA Inundated Land LSI 291 

46 IBA Inundated Land IBA 292 

47 IBA Inundated Land FBA 293 

48 IBA Inundated Land Palm Tree 294 

49 IBA Inundated Land Other Tree 295 

50 IBA Inundated Land Recreation Area 296 

51 IBA Inundated Land Crop Land 297 

52 IBA Inundated Land Grass Land 298 

53 IBA Inundated Land Inland Water 299 

54 IBA Inundated Land Bare Land 2910 

55 IBA Inundated Land Impervious Surface 2911 

56 FBA FBA LSI 331 

57 FBA FBA IBA 332 

58 FBA FBA FBA 333 

59 FBA FBA Palm Tree 334 

60 FBA FBA Other Tree 335 

61 FBA FBA Recreation Area 336 

62 FBA FBA Crop Land 337 

63 FBA FBA Grass Land 338 

64 FBA FBA Inland Water 339 

65 FBA FBA Bare Land 3310 

66 FBA FBA Impervious Surface 3311 

67 FBA Rubble LSI 351 

68 FBA Rubble IBA 352 

69 FBA Rubble FBA 353 

70 FBA Rubble Palm Tree 354 

71 FBA Rubble Other Tree 355 

72 FBA Rubble Recreation Area 356 

73 FBA Rubble Crop Land 357 

74 FBA Rubble Grass Land 358 

75 FBA Rubble Inland Water 359 

76 FBA Rubble Bare Land 3510 
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ID T0 T1 T2 Transition ID 

77 FBA Rubble Impervious Surface 3511 

78 Palm Tree Flattened Tree LSI 441 

79 Palm Tree Flattened Tree IBA 442 

80 Palm Tree Flattened Tree FBA 443 

81 Palm Tree Flattened Tree Palm Tree 444 

82 Palm Tree Flattened Tree Other Tree 445 

83 Palm Tree Flattened Tree Recreation Area 446 

84 Palm Tree Flattened Tree Crop Land 447 

85 Palm Tree Flattened Tree Grass Land 448 

86 Palm Tree Flattened Tree Inland Water 449 

87 Palm Tree Flattened Tree Bare Land 4410 

88 Palm Tree Flattened Tree Impervious Surface 4411 

89 Other Tree Flattened Tree LSI 541 

90 Other Tree Flattened Tree IBA 542 

91 Other Tree Flattened Tree FBA 543 

92 Other Tree Flattened Tree Palm Tree 544 

93 Other Tree Flattened Tree Other Tree 545 

94 Other Tree Flattened Tree Recreation Area 546 

95 Other Tree Flattened Tree Crop Land 547 

96 Other Tree Flattened Tree Grass Land 548 

97 Other Tree Flattened Tree Inland Water 549 

98 Other Tree Flattened Tree Bare Land 5410 

99 Other Tree Flattened Tree Impervious Surface 5411 

100 Recreation Area Recreation Area LSI 661 

101 Recreation Area Recreation Area IBA 662 

102 Recreation Area Recreation Area FBA 663 

103 Recreation Area Recreation Area Palm Tree 664 

104 Recreation Area Recreation Area Other Tree 665 

105 Recreation Area Recreation Area Recreation Area 666 

106 Recreation Area Recreation Area Crop Land 667 

107 Recreation Area Recreation Area Grass Land 668 

108 Recreation Area Recreation Area Inland Water 669 

109 Recreation Area Recreation Area Bare Land 6610 

110 Recreation Area Recreation Area Impervious Surface 6611 

111 Recreation Area Rubble LSI 651 

112 Recreation Area Rubble IBA 652 

113 Recreation Area Rubble FBA 653 

114 Recreation Area Rubble Palm Tree 654 
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ID T0 T1 T2 Transition ID 

115 Recreation Area Rubble Other Tree 655 

116 Recreation Area Rubble Recreation Area 656 

117 Recreation Area Rubble Crop Land 657 

118 Recreation Area Rubble Grass Land 658 

119 Recreation Area Rubble Inland Water 659 

120 Recreation Area Rubble Bare Land 6510 

121 Recreation Area Rubble Impervious Surface 6511 

122 Recreation Area Inundated Land LSI 691 

123 Recreation Area Inundated Land IBA 692 

124 Recreation Area Inundated Land FBA 693 

125 Recreation Area Inundated Land Palm Tree 694 

126 Recreation Area Inundated Land Other Tree 695 

127 Recreation Area Inundated Land Recreation Area 696 

128 Recreation Area Inundated Land Crop Land 697 

129 Recreation Area Inundated Land Grass Land 698 

130 Recreation Area Inundated Land Inland Water 699 

131 Recreation Area Inundated Land Bare Land 6910 

132 Recreation Area Inundated Land Impervious Surface 6911 

133 Crop Land Crop Land LSI 771 

134 Crop Land Crop Land IBA 772 

135 Crop Land Crop Land FBA 773 

136 Crop Land Crop Land Palm Tree 774 

137 Crop Land Crop Land Other Tree 775 

138 Crop Land Crop Land Recreation Area 776 

139 Crop Land Crop Land Crop Land 777 

140 Crop Land Crop Land Grass Land 778 

141 Crop Land Crop Land Inland Water 779 

142 Crop Land Crop Land Bare Land 7710 

143 Crop Land Crop Land Impervious Surface 7711 

144 Crop Land Inundated Land LSI 791 

145 Crop Land Inundated Land IBA 792 

146 Crop Land Inundated Land FBA 793 

147 Crop Land Inundated Land Palm Tree 794 

148 Crop Land Inundated Land Other Tree 795 

149 Crop Land Inundated Land Recreation Area 796 

150 Crop Land Inundated Land Crop Land 797 

151 Crop Land Inundated Land Grass Land 798 

152 Crop Land Inundated Land Inland Water 799 



UNDERSTANDING POST DISASTER RECOVERY THROUGH ASSESSMENT OF LAND COVER AND LAND USE CHANGES USING REMOTE SENSING  

69 

 

ID T0 T1 T2 Transition ID 

153 Crop Land Inundated Land Bare Land 7910 

154 Crop Land Inundated Land Impervious Surface 7911 

155 Grass Land Grass Land LSI 881 

156 Grass Land Grass Land IBA 882 

157 Grass Land Grass Land FBA 883 

158 Grass Land Grass Land Palm Tree 884 

159 Grass Land Grass Land Other Tree 885 

160 Grass Land Grass Land Recreation Area 886 

161 Grass Land Grass Land Crop Land 887 

162 Grass Land Grass Land Grass Land 888 

163 Grass Land Grass Land Inland Water 889 

164 Grass Land Grass Land Bare Land 8810 

165 Grass Land Grass Land Impervious Surface 8811 

166 Grass Land Rubble LSI 851 

167 Grass Land Rubble IBA 852 

168 Grass Land Rubble FBA 853 

169 Grass Land Rubble Palm Tree 854 

170 Grass Land Rubble Other Tree 855 

171 Grass Land Rubble Recreation Area 856 

172 Grass Land Rubble Crop Land 857 

173 Grass Land Rubble Grass Land 858 

174 Grass Land Rubble Inland Water 859 

175 Grass Land Rubble Bare Land 8510 

176 Grass Land Rubble Impervious Surface 8511 

177 Grass Land Inundated Land LSI 891 

178 Grass Land Inundated Land IBA 892 

179 Grass Land Inundated Land FBA 893 

180 Grass Land Inundated Land Palm Tree 894 

181 Grass Land Inundated Land Other Tree 895 

182 Grass Land Inundated Land Recreation Area 896 

183 Grass Land Inundated Land Crop Land 897 

184 Grass Land Inundated Land Grass Land 898 

185 Grass Land Inundated Land Inland Water 899 

186 Grass Land Inundated Land Bare Land 8910 

187 Grass Land Inundated Land Impervious Surface 8911 
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Annex 3: LU plan of study area (CLP, 2016) 
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