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ABSTRACT  

Vegetation affects the spectral information that would be acquired from minerals/rocks imaged by remote 

sensing sensors. This research assessed the potential influence of green vegetation cover on the spectral 

responses of minerals and/or rocks imaged by Landsat and ASTER in the sub-tropical to tropical environment 

of Mbeya, South West Tanzania. Also, the work evaluated the role of the Crippen and Blom’s algorithm in 

suppressing vegetation and enhancing spectral responses of mineral/rocks imaged by both Landsat and 

ASTER sensors.  A bare-vegetation simulation model was used. The model linearly mixes certain amount of 

vegetation and bare ground to assess the influence of vegetation on the spectral response of bare ground (i.e. 

mineral, rock and/or their weathered products). NDVI ranges and false colour composite were used to extract 

the endmembers from the Landsat and ASTER imagery for the input of the simulation model. A detailed 

evaluation of the effect of vegetation on the spectral response of a bare ground was done using the results of 

nine simulation models within the VNIR-SWIR wavelength ranges of the Landsat and ASTER sensors. To 

evaluate the role of the Crippen’s and Blom’s algorithm in spectral enhancement and vegetation suppression, 

results were compared before and after applying the algorithm on ratio images, ROI based spectral signatures, 

RGB combinations of ratio images and NDVI images. The results of the simulation model show that a green 

vegetation cover of 20% or above causes strong mixing effects on the VNIR -SWIR spectra of both the 

Landsat and ASTER images. The evaluation of the Crippen and Blom’s algorithm show more or less similar 

before and after results for both the Landsat and ASTER images. The algorithm qualitatively increased the 

clarity/contrast of the features in images of both sensors. However, the algorithm does not have a significant 

role to enhance the spectrally interpretable content of mineralogical/lithological information from both 

sensors. It seems useful for qualitative discrimination of geological boundaries, but not useful for mineral 

group identification via diagnostic spectral absorption features. Also, for the case of the lithological boundary 

discriminations, it shows more better qualitative enhancement results given that principal component analysis 

(PCA) is applied on top of the qualitative Crippen & Bloom RGB products.  

 

Keywords: Vegetation, Spectral response, minerals/rocks, Multispectral image, Crippen and Blom’s 

algorithm. 
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1. INTRODUCTION 

1.1. Background 

One of the main tasks in the use of remote sensing for earth surface interpretation is to decode mineral and rock 

information from images (Gupta, 2017). For example, geologic interpretation of multispectral images, can be 

used for mineral exploration and lithologic mapping (Gupta, 2017; Hunt, 1977). Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) and Landsat images are among the remote sensing satellite images 

that can be used for interpreting of mineral and rock information (Carranza & Hale, 2002; Cŕosta, De Souza 

Filho, Azevedo, & Brodie, 2003; Gad & Kusky, 2006; Gupta, 2017; R. D. Hewson, Cudahy, & Huntington, 2001; 

R. D. Hewson, Cudahy, Mizuhiko, Ueda, & Mauger, 2005; R. Hewson, Robson, Carlton, & Gilmore, 2017; Rob 

Hewson, Carlton, Gilmore, Jones, & Robson, 2018; Novak & Soulakellis, 2000; Pournamdari, Hashim, & Pour, 

2014; Sultan, Arvidson, & Sturchio, 1986; van der Meer et al., 2012).  

 

However, the potential spectral information that could be acquired by the remote sensing techniques can be 

affected by the vegetation unless the study area is a well exposed barren terrain. This is because of the remote 

sensing techniques are well established for arid and semiarid terrains where there is no vegetation (Ager & Milton, 

1987; Grebby, 2011). However, a great proportion of our earth is covered by vegetation (Murphy & Wadge, 

1994). So, within vegetated terrains the spectra of the geology could be the mixed average of the spectra of the 

vegetation and the spectra of the geology, thus, leading to a misinterpreted result. 

 

Previous works have shown that the presence of vegetation could affect the geologic image interpretation either 

by obscuring the spectra of underlying minerals and rocks (Carranza & Hale, 2002; Crippen & Blom, 2001; Fraser 

& Green, 1987; Grebby, 2011; Grebby, Cunningham, Tansey, & Naden, 2014; Murphy, 1995; Murphy & Wadge, 

1994; Yu, Porwal, Holden, & Dentith, 2011) or by completely dominating the overall spectrum (Siegal & Goetz, 

1977). (Grebby et al., 2014) used airborne multispectral data within the VNIR range and concluded that 30-40 

%, 50-65% and 75% green grass vegetation can obscure low, medium and high albedo rocks respectively; 20-

40% of dry grass obscures most of the rocks and 30% -50%, 50-70 % of lichen can obscure and completely mask 

rocks respectively. (Siegal & Goetz, 1977), used MSS data, and concluded that a 10% green grass cover can mask 

the spectral characteristics of andesite and limestone. In addition, (Murphy & Wadge, 1994) has concluded that 

amalgamated granite and slate soils are largely confused at a vegetation cover greater than 50-60 % from airborne 

and ground imaging spectrometer data. 

 

According to (Clark, 1999), vegetation spectra can be characterized into two general forms: the green and wet 

(photosynthetic), and the dry non-photosynthetic (Figure 1 below).  
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The near-infrared spectra of green vegetation are dominated by liquid water vibrational absorptions, where the 

water bands are shifted to slightly shorter wavelengths than in liquid water, due to hydrogen bonding (Clark, 

1999). The dry, non-photosynthetic vegetation spectrum show absorptions due to cellulose, lignin, and nitrogen 

and some of these absorptions can be confused with mineral absorptions, unless a careful spectral analysis is 

done (Clark, 1999). Thus, different types of vegetation in different conditions might affect the spectral response 

of the minerals and/or rocks differently. However, in this research only the amount of green vegetation is taken 

in to consideration because of data and time constraints. 

 

A little attention has been given to explicitly show how the reflectance of minerals and/or rocks within a given 

wavelength range vary because of a certain amount of vegetation and how much vegetation cover causes a sever 

effect. Also, there have not been detailed demonstrations showing the effect of vegetation on the spectra of the 

minerals and rocks imaged by ASTER. In addition, very few studies have used Landsat TM 5 for similar 

investigations (Crippen & Blom, 2001; Yu et al., 2011), indicating that much is yet to be known. Despite the 

general acceptance, that vegetation can have an influence on the spectral responses of minerals and rocks, there 

are limited published demonstrations that show the relationship between the spectral responses of the vegetation 

and non-vegetated (i.e. minerals, rocks) including the VNIR-SWIR bands of the ASTER and Landsat datasets. 

An understanding of the nature and extent of influence of vegetation on the spectral responses of the 

mineral/rock imaged by Landsat and ASTER is vital for deciding the type of data sets suitable for the mapping 

of minerals and rocks across vegetated terrains.  

 

Apart from evaluating and understanding the effect of vegetation on the spectral signatures or minerals and rocks, 

it is also important to understand how to overcome the influence of vegetation and enhance the 

geological/mineralogical interpretation. Accordingly, previous studies have developed and /or used spectral 

mixing-unmixing, integrating ancillary data, linear regression model, unsupervised classification, forced invariance 

and other techniques to overcome the influence of vegetation on the spectral discrimination of the underlying 

geological information (Bierwirth, 1990; Chabrillat, Ceuleneer, Pinet, Mustard, & Johnson, 2000; Crippen & 

Blom, 2001; Dong & Leblon, 2004; Fraser & Green, 1987; Haest & Caccetta, 2013; Morison, Cloutis, & Mann, 

2014; Mshiu, 2011; Rodger & Cudahy, 2009; Rogge, Rivard, Grant, & Pardy, 2010; Zhang, Rivard, & Sánchez-

Azofeifa, 2005).  

Figure 1: Reflectance spectra of photosynthetic (green) vegetation, non- photosynthetic (dry) 
vegetation, and a soil (Clark, 1999). 
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According to (Crippen & Blom, 2001), all the previous techniques to overcome the influence of vegetation are 

related to spectral unmixing which requires a detailed knowledge of the spectral signature of materials known or 

assumed to be present in a scene. In contrary, (Crippen & Blom, 2001)’s  Landsat TM 5 based technique (forced 

invariance technique, which subdues vegetation and enhance spectral response of lithology), require neither a 

detail knowledge of the spectral signatures of materials nor any complex mixing models.   

 

According to (Crippen & Blom, 2001) the ‘forced invariance’ algorithm calculates images that are invariant with 

respect to vegetation index. The features represented by the vegetation index will not appear in the resultant 

images, since they will contribute no variance (Crippen & Blom, 2001). Thus, data for each spectral band are 

altered in an empirically derived way to produce a superior band that largely excludes contrasts related to 

variations in the abundance of vegetation (Crippen & Blom, 2001). According to the authors, the algorithm works 

well mostly for imagery of areas with open canopy forest and little understory so that strong lithologic spectra 

can remain after the vegetation spectra is suppressed. (Crippen & Blom, 2001) suggested that the forced 

invariance algorithm can also work well on other multispectral imageries. (Yu et al., 2011), who implemented the 

(Crippen & Blom, 2001)’s algorithm with some improvements using Landsat TM+7, also suggested the 

applicability of the algorithm for other multispectral imagery including ASTER. Despite the cited works on the 

use of the Forced invariant algorithm, there is no quantitative demonstrations on the performance of this 

algorithm in different scenarios of vegetation cover. Given the suggestions from previous studies, it is interesting 

to evaluate the role of the algorithm on ASTER imagery using Landsat as a control. 

1.2. General objective 

The main objective of this research is to evaluate the effect of vegetation cover on the spectral responses of 

minerals/rocks, and the performance of forced invariance algorithm to supress vegetation and enhance spectral 

response of mineral/rock in Landsat and ASTER imageries. 

1.3. Specific objectives 

1. To assess the potential influence of green vegetation cover that might have on spectral responses of 

minerals and/or rocks imaged by Landsat and ASTER.  

2. To evaluate the role of the Crippen’s and Blom’s algorithm in suppressing vegetation and enhancing 

spectral responses of mineral/rocks on both the Landsat and ASTER images. 

1.4. Research questions  

1. How does a green vegetation affect the spectral responses (reflectance) of minerals and/or rocks imaged 

by Landsat and ASTER? 
2. What amount of green vegetation cover can have a significant effect on the spectral responses (reflectance) 

of minerals and/or rocks imaged by Landsat and ASTER? 

3. How comparable is the Crippen’s and Blom’s algorithm applied to ASTER VNIR-SWIR bands with the 

previously utilized Landsat to suppress the spectral expression of vegetation and enhance the spectral 

responses of minerals and rocks?  

4. How good is the Crippen and Blom’s algorithm to quantitatively enhance spectral responses of the 

minerals/rocks as applied to both sensors? 

1.5.   Hypothesis 

1. Vegetation can reduce the diagnostic potential of the spectral responses (reflectance) of minerals and/or 

rocks imaged by both the VNIR-SWIR ranges of Landsat and ASTER imageries. 
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2. Any amount of vegetation cover can result in a false information on the interpretation of the spectral 

responses of minerals and/or rocks imaged by the VNIR-SWIR ranges of Landsat and ASTER. 

3. The Crippen’s and Blom’s vegetation suppressing Landsat based algorithm can be better utilized in 

optical ASTER imagery to enhance mineralogical and/or lithological information under vegetated 

terrains compared to previously utilized Landsat.  

1.6. Thesis structure 

The thesis is organized with six chapters. Chapter 1; the introduction which describes the general introductory 

to the thesis including the background information, the statement of the problem, the objectives, research 

questions and the hypothesis of the thesis as well as the thesis structure of the thesis. Chapter 2; describes the 

geographic location, climate, topography, vegetation, tectonic and geologic setting of the study area as well as the 

datasets used in this study. Chapter 3; describes all the methodology used in the thesis including the procedures 

of the methodology. Chapter 4; Contains all the output results of chapter 3. Chapter 5; Includes the discussion 

of the results presented under chapter 4. Chapter 6; presents the conclusions and recommendations drawn based 

on this thesis work. 
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2. STUDY AREA AND DATA SETS 

2.1.       Location    

The study site (covering approximately 1025 Km2) is in the Rungwe Volcanic Province (RVP), SW Tanzania. The 

study site is approximately bounded by Latitude 8° 64' S and 8° 85' S and Longitude 32.97° E -33.36° E. The 

RVP covering about 3000 km2 containing the Ngozi, Rungwe and Kiejo volcanoes (Fontijn, Williamson, Mbede, 

& Ernst, 2012; Macheyeki, 2016.) is found in the Rungwe district of Mbeya region, southwest Tanzania (Figure 

2) bounded by approximately 8° 30' S and 9° 30' S and Longitude 33° E and 34° E. RVP is in the southern 

highland province of Tanzania, northwest of Lake Nyasa approximately 1000 km from the business city of Dar 

es Salaam (Mshiu, 2011). Rungwe district borders Kyela district in the South, Ileje district in the West, Makete 

district in the East and Mbeya district in the North (Tilumanywa, 2013) 

2.2.       Tectonic setting and Geology  

Rungwe Volcanic Province (RVP) is a district found in the Mbeya region of South Western Tanzania across the  

East African Rift System (EARS) (Fontijn et al., 2012). It is located within the triple junction of EARS over the 

NW trending Rukwa rift, NW trending Nyasa rift and NE trending Usangu rift (Figures 2 & 3) (Delvaux et al., 

2010; Fontijn et al., 2012). The RVP is known for its Neogene to recent volcanic eruptions, overlying the 

Cretaceous red sandstone and Karoo sediments and the Precambrian basement (Mshiu, 2011). The Ngozi, 

Rungwe and Kiejo volcanoes in RVP are trachy-dacite while the Kiejo volcano is basaltic to basaltic trachy-

andesite (Macheyeki, 2016). RVP is also the area where the Geothermal system in Mbeya region with characteristic 

Ngozi-Songwe hydrothermal system, at the junction between the eastern and western branches of the EARS, is 

found (Delvaux et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Location map of RVP within EARS showing surrounding rift basins: Malawi Rift, 
Tanganyika/Rukwa Rifts and Usangu Basin after (Fontijn et al., 2012). The red circle is referring to the 
RVP. 
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2.3.       Climate 

The study area is part of the tropical climate with characteristic seasonal variations of dry (October to may) and 

rainy seasons (June to September) (Government, 2016). The rainfall varies from 650mm per Unum in the low 

lands to 2600mm in the highlands (Government, 2016). The temperature varies from about 16°C in the highlands 

to 30°C in the lowland areas (Government, 2016) 

2.4.       Topography  

The study area is mountainous with Mt Rungwe forming the second highest peak in southern Tanzania at an 

altitude of 2, 981m and forms the northern extent of the Southern Rift in the Great Rift Valley (URT, 2017). The 

topographical features of Mt Rungwe include the mountain peaks and the dormant volcanic crater at the top of 

the mountain, Mt Rungwe, a dormant volcano, (URT, 2017). SRTM shaded relief DEM showing the general 

topography of the Rungwe volcanic province (RVP) is given below (Figure 4). 

 

 

 

 

 

 

 

Figure 3: Geological map of Rungwe volcanic province (Fontijn et al., 2012); the red 
box is the study site. 
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2.5.       Soil 

The soils in the study area are weathered products of the rocks found in the study area (Msanya, Otsuka, Araki, 

& Fujitake, 2007; Tilumanywa, 2013). Rock type where the soils are weathered from include: phonolitic-trachyte 

lavas and tuffs, olivine-basalts, pumice and ash (Msanya et al., 2007; Tilumanywa, 2013). The soils are 

characteristic of different colours and layers including black to brownish-gray top soil, dark greyish and dark 

brown as well as dark-yellowish-brown with sandy and clay loams on the steep slopes of Mt Rungwe with thin 

and quite rocky soils of the high grasslands and alternating layers of pumice-gravel-soil subsoils (Msanya et al., 

2007; Tilumanywa, 2013). 

2.6.       Vegetation 

The study contains a diversified natural vegetation (Figure 5) due to variation in climate, soils and topography 

(Range, 2016; Tilumanywa, 2013). Among the most dominant vegetation types include evergreen and semi 

evergreen species. These include indigenous trees, planted trees, grassland, bushland, miombo woodlands, bushed 

grassland, bush-shrubland, shrub grassland (Range, 2016; Tilumanywa, 2013). The largest open grassland consists 

of Eucalyptus spp “mikaratusi”, Cynodon spp and Digitaris spp and is found in the relatively flat areas of the 

Rungwe volcanic mountain (Range, 2016). The vegetation in the study area has been one of the challenges for 

geologic mapping using remote sensing techniques (i.e. Landsat TM) by causing an overlapping problem in the 

spectra of minerals/lithologies (Mshiu, 2011) 

 

 

Figure 4: SRTM shaded relief DEM at 90m resolution of the Rungwe volcanic province region 
and main recent volcanic centres (the red box is the study site and the black dots represent eruptive 
centers) (after Macheyeki, 2016). 
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2.7.       Data sets 

The research has utilized ASTER VNIR surface reflectance and crosstalk corrected SWIR surface reflectance 

and Landsat surface reflectance imageries. The dates of acquisition and sources are presented in table 1 below.  
 

Table 1: Data sets used in this research. 

Sensor type Data type Source of data Date of acquisition 

Landsat TM 5 scene 1 Surface reflectance https://earthexplorer.usgs.gov/ 09-Jun-2005 

Landsat TM 5 scene 2 Surface reflectance https://earthexplorer.usgs.gov/ 16-Jun-2005 

ASTER Surface reflectance https://earthdata.nasa.gov/ 11-Aug-2005 

 

Due to limitations of full scene coverage, two Landsat images were mosaicked into one scene (figure 6A) for 

subsequent use. Then a subset between the resulting Landsat (figure 6A) and ASTER (figure 6B) images was 

done to obtain the intersecting area between both images within the study area. 

 

 

 

 

 

 

 

 

 

 

 

 
 

B: ASTER (RGB, 321) A: Landsat (RGB, 432) 

A 

 

A 

B 

 

B 

Figure 6: Landsat (A) and ASTER (B) images acquired from RVP, SW Tanzania, over the same spatial position. The 
red shades in the false colour composite of both satellite images represent vegetation, while the grey colour represent 
non-vegetated areas. The dark pixels within and around the vegetated area in the ASTER image represent data of 
zero value (masked out pixels), which previously were occupied by clouds. 

Figure 5: Picture showing thick vegetated areas around mount Rungwe in Rungwe 
Volcanic Province (Mshiu, 2011). 
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ASTER and Landsat are multispectral satellite sensors with fourteen and seven spectral bands respectively. The 

fourteen ASTER spectral bands cover 0.52 to 11.65 µm wavelength range while the seven Landsat spectral bands 

cover 0.45 to 12.5 µm wavelength range of the electromagnetic spectrum, only the six bands excluding band 6, 

are used in this research, however. ASTER contains three bands in the VNIR region (15m resolution), six bands 

in the SWIR region (30m resolution), and five bands in the TIR region (90m resolution) while Landsat contains 

four bands in the VNIR region (30m resolution), two bands in the SWIR region (30m resolution) and one band 

in the TIR region (120m resolution). The spectral characteristics of both the Landsat and ASTER are summarized 

in table 2. 

 

Table 2:  Spectral characteristics of the ASTER and Landsat Sensors (after Dagodzo, 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASTER Landsat 

Subsystem Band 

No 

Spectral 

range (µm) 

Spatial 

resolution 

(m) 

Subsystem Band 

No 

Spectral range 

(µm) 

Spatial 

resolution 

(m) 

   1 0.45-0.52  

30  

VNIR 

1 0.52-0.60  

        15 

 

VNIR 

 

2 0.52-0.60 

2 0.63-0.69 3 0.63-0.69 

3 0.78-0.86 4 0.76-0.90 

  

SWIR 

4 1.60-1.70   

       30 

 

  

SWIR 

 

5 

 

1.55-1.75  

30 

5 2.145-2.185 7 2.08-2.35 

6 2.185-2.225 

7 2.235-2.285 

8 2.295-2.365 

9 2.360-2.430 

   

TIR 

10 8.125-8.475   

             

          90 

 

TIR 

6 10.40-12.50  

120 11 8.475-8.825 

12 8.925-9.275 

13 10.25-10.95 

14 10.95-11.65 
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3.   METHODOLOGY 

3.1.       Data preparation 

Data preparation was done in four steps; mosaicking, layer stacking, spatial subsetting and cloud masking. 

These steps are described below. 

3.1.1.     Mosaicking 

 The Landsat scenes acquired on 09-Jun-2005 and 16-Jun-2005 are mosaicked to get a full coverage of the 

required area using ENVI software. Data acquired in multiple dates for the same purpose could cause 

inconsistences (i.e. variability of the vegetation conditions). However, due to lack of full coverage scene of the 

required study area, two scenes acquired within one-week difference are used and the one-week difference is 

accepted tolerably as insignificant difference. 

3.1.2.     Layer stacking 

The Landsat image was downloaded with panchromatic bands. For subsequent processing, the bands were 

stacked using a free software, Multispec MFC application (A Freeware Multispectral Image Data Analysis 

System); a more detail about it can be found in (Biehl & Landgrebe, 2002). In addition, the 15m resolution bands 

of the VNIR and the 30m resolution bands of the SWIR ASTER images were stacked to get the combined 

VNIR-SWIR band range of 30m resolution using ENVI software. 

3.1.3.     Spatial subsetting 

 Images of both Landsat and ASTER were spatially subsetted into a required size (where both the Landsat and 

ASTER images intersect) of the study area using ENVI software and GIS. In addition, the geological map of the 

study area with the same spatial position to the Landsat and ASTER scenes is prepared to be used as a reference 

to the type of lithologies in the study area. 

3.1.4.    Cloud masking 

Manually generated ROI based cloud and cloud shadow masking is done on the ASTER image to eliminate 

extreme values in the subsequent processing. Cloudy pixels were carefully digitized using the ENVI working 

windows. 

3.2.       Simulation model: Evaluation of the effect of vegetation on the spectral response of a bare ground  

The effect of vegetation on spectral response of bare ground was evaluated as described in the steps below. 

3.2.1.     Simulation of vegetated and non-vegetated spectra via spectral mixing process 

Spectra based simulation model is done to evaluate the potential influence of vegetation on the spectral responses 

of minerals and/or rocks imaged by both the Landsat and ASTER multispectral sensors. The simulation model 

is done via pixel based spectral mixing analysis for both the Landsat and ASTER images.  

3.2.2.   The concept and procedure of the simulation model 

A pixel based spectral mixing analysis is performed to evaluate the influence of vegetation that might have on the 

spectral responses of minerals and/or rocks. Two pixels representing pure vegetation and pure non-vegetated 

bare area were selected for the subsequent processing. These end members were selected based on the standard 

NDVI ranges adopted from [(Bhandari, Kumar, & Singh, 2012; Chouhan & Rao, 2004)] and false colour 

composite images (Section 3.2.3, figure 7). A pure bear with approximate NDVI values of 0.1 (for both the 

Landsat and ASTER) and pure vegetation with NDVI value of 0.8 (of the Landsat) and 0.7 (of the ASTER) were 

selected from images of both datasets for the subsequent processing in the spectral mixing simulation model, a 
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thermotical model that involves mixing certain amount of vegetation with a certain amount of bare area to 

evaluate the influence of vegetation on the spectral response of the bare. The term bare in this research is referring 

to a mineral/rock and/or their weathered products such as soil where there is no vegetation cover while the term 

vegetation represents green vegetation. The simulation model is aimed to show the spectral variations in the 

spectral response of bare area due to a certain mixed reflectance value of vegetation of a certain percent cover. 

The assumption of this model is: suppose we have 100% cover bare area where the reflectance value at a given 

wavelength and band B is R. So, what will happen to R at a given band B if we linearly mix a certain amount of 

reflectance values of a certain percent coverage of vegetation to a certain reflectance value of a certain percent 

coverage of bare area with in the same band B such that the sum of percent coverage is 100?  

 

The process of the simulation model is: first a representative pure bare and pure vegetation are determined. Then, 

to assess the possible variations of the spectral response of the bare area that might be caused due to the presence 

of a certain amount of vegetation cover, variable amount of vegetation cover is linearly mixed with certain amount 

of bare coverage where the result is summed to 100%. The 100% cover of the bare area assumes 0% cover of 

vegetation and vice versa. The analysis is done for each band of the scenes (six bands of the Landsat and nine 

bands of the ASTER). To calculate the reflectance values of the pixels for each band in each band of any percent 

coverage between 0 and 100, first the percent cover of the pure pixels is assumed to be 100. Then the reflectance 

values of the pixels of a certain amount of the vegetated and bare cover are calculated by multiplying the observed 

reflectance of the 100% coverage of the bare and vegetated areas by the required presumed percent coverage of 

the bare and the vegetated areas (equation-1a, 1b). For example, if the observed reflectance value of the 100% 

bare area at band 1 is 0.05; to get the reflectance value of the presumed 90% coverage of the bare area at band 1; 

the observed reflectance at band 1 (0.05) is multiplied by 0.9 which results 0.045. Finally, to get a certain value of 

a mixed spectra of a certain value of bare area and certain value of vegetation at a given band and wavelength, 

the presumed values of corresponding calculated reflectance values are summed up such that the summation is 

100% (equation-2). For example, if the calculated reflectance value of 90% of bare coverage is 0.045, and the 

calculated reflectance value of 10% vegetation cover is 0.002, the reflectance of the mixed classes of 90% of bare 

and 10% of vegetation is the sum of 0.045 and 0.002 which is 0.047. List of tables showing the detail of the 

calculations and results are given in the appendices (appendix I). 

 

RpBi =  aB/100 ∗ RoBi                            1a 

RpVi =  bV/100 ∗ RoVi                            1b 

Rmi =  RpVi + RpBi                                   2 

 

Where RpBi represents the presumed reflectance of a bare at ith band B; aB, any value between 0 and 100 of the 

bare; RoBi, the observed reflectance of the bare at ith band B; RpVi represents the presumed reflectance of a 

vegetation at ith band B; bV, any value between 0 and 100 of the vegetation; RoVi, the observed reflectance of 

the vegetation at ith band B and Rmi, a calculated mixed reflectance value of both the bare and the vegetation at 

the ith band B.   

A spectrum resulting from the above equations can be simplified in to the following equation (equation 3). 

 

Mixed spectra =  x% bare spectrum +  (100 − x) % vegetation spectrum               3 

3.2.3.   Selection of endmembers for the input of the simulation model 

Two spectral signatures were selected from pure pixels in the image representing pure vegetation and pure bare 

area for subsequent processing. The selection of the endmembers is done using Normalized Difference 

Vegetation Index (NDVI) method, according to (Bhandari et al., 2012; Chen, Srinivasan, Fedosejevs, & Kiniry, 

2003) and natural colour combinations. The NDVI is one of the common and widely used index to highlight a 

vegetated area in remotely sensed satellite images which is the result of the difference of near infrared band (NIR) 

and the red band of the visible (VIS) divided to their sum (equesion-4) (Bhandari et al., 2012; Chen et al., 2003).  
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The NDVI is defined as;    

       𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑉𝐼𝑆

𝑁𝐼𝑅+𝑉𝐼𝑆
                               4 

    

The NDVI values range from -1.0 to +1.0 where the high reflectance of the near-infrared band and low 

reflectance of the red band on vegetation produce a positive NDVI while the low reflectance of the near-infrared 

band and high reflectance of the red band on cloud, snow, and water produce a negative NDVI (Bhandari et al., 

2012). The various levels of NDVI values can be used to distinguish various land cover types. For example, very 

low value of NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow, moderate values represent 

shrub and grassland (0.2 to 0.3), while high value indicates temperate and tropical rainforests (0.6 to 0.8), bare 

soil is represented with NDVI values close to 0 and water bodies are represented with negative values (Bhandari 

et al., 2012; Chouhan, Rajlaxmi; Neeraj, 2004). 

 

 In addition to the NDVI method, additional information from visual inspection of false colour RGB 

combinations of the satellite images were used to differentiate between bare areas and vegetated areas. The colour 

combination of the datasets is based on the RGB combinations of the wavelengths or wavelength regions within: 

1.6µm (red band), 0.8µm (green band), and 0.6µm (blue band) where the reddish/pink shades, green shades, and 

cyan/blue shades are associated with bare area, vegetation and clouds/water (if any) respectively. Accordingly, 

bands 5, 4, 2 and bands 4, 3, 1 are used to make RGB colour composite of the Landsat and ASTER images 

respectively as shown in figure 7 below. The selected pixels are saved as ROIS’ and Vector files so that they are 

used in the subsequent processing. Then, the spectral signatures of the selected pixels are generated from the 

statistical data of the ROIS’ and the mean spectral signature of the ROI’s were used as the spectra of the 

endmembers (Figure 7 below). 

 

 

 

Figure 7: Endmembers of selected pixels from Landsat (A) and ASTER (B). The representative spectra are 
from a mean of a pixel (see zoomed images), their spatial position is shown in the full-size images. 
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As can be seen from the geological map (Figure 8 below) of the same spatial position of the Landsat and ASTER 

images, the vegetation endmember of both images is taken from the same spatial position (blue, Landsat and 

green, ASTER pixels overlapping in the geological map). However, the endmembers of the bare area are taken 

from different spatial positions of the Landsat and ASTER images because of the variations in the NDVI values 

of the images affecting the selection of the endmember based on the required NDVI threshold value. 

 

3.2.4.   Generation of the statistical data of the endmembers for the input of the simulation model 

In this stage, the statistical data of the ROIs’ of the selected pixels are generated and saved into a format that can 

be opened in Microsoft excel sheet. The statistics of the observed/original/ spectral signatures contains the 

reflectance values of the selected endmembers of each band in the corresponding wavelengths that are used as a 

basis for the simulation model. All the statistical information and the calculated numerical results can be found 

in the appendices (appendix I).  

3.2.5.   Simulation model: Bare and vegetation mixing procedure 

In the mixing process one can choose any percent coverage between 0 and 100 of the representative bare and 

vegetated areas where the sum of the mixed values is 100%. In this research, nine mixing percent pairs of the 

bare and vegetation were used for the subsequent analysis of the endmembers of both the Landsat and ASTER 

imageries. These are: 95% bare, 5% vegetation; 90% bare, 10% vegetation; 80% bare, 20% vegetation; 60% bare, 

40% vegetation; 50% bare, 50% vegetation; 40% bare, 60% vegetation; 20% bare, 80% vegetation; 10% bare, 

90% vegetation; and 5% bare, 95% vegetation. A table showing these percent covers and their corresponding 

reflectance values at each band and wavelength is given in the appendices (appendix I).  

3.2.6.   Simulation model: Bare and vegetation simulation interpretation of results 

The results of the simulation model (mixed spectra) of each data sets used (the Landsat and ASTER) were plotted 

together with the bare spectra, compared and interpreted using spectral ratio (the ratio of mixed spectra and bare 

spectra of each mixed model) and slope of the line of fit or trend lines (comparing trend lines generated from the 

mixed and the bare spectra in terms of the differences in their slope value). The purpose of these interpretations 

was to evaluate the influence of vegetation on the spectra of the bare.  

 

3.2.6.1. Spectral ratios  

The ratio of the mixed spectra (Bare plus vegetation) and the bare spectra are used to interpret the effect of 

vegetation on the spectral response of the bare across VNIR-SWIR bands of the Landsat and ASTER scenes. 

The assumption is that if the ratio of the mixed spectra to the pure bare is nearly or equal to one, the effect of 

 

Figure 8: Geological map of the study area subsetted from the geological map of Rungwe volcanic province 
(RVP), after Fontijn (2012). The green and blue dots on the map are to show the spatial position (with 
respect to the geology of the area) of the endmembers selected from the Landsat and the ASTER images 
respectively. 
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vegetation is less or unimaginable. Thus, the maximum possible bare information that can be acquired. However, 

when the ratio of the mixed spectra to the bare spectra is low or very low and/or high or very high (far from 

one), it implies that the effect of vegetation is high or sever so that the potential information that could be 

acquired from the bare is impossible. That means the spectra of the bare ground will be either obscured or 

overestimated (acquire higher values that are not from the bare ground, but from the vegetation).  

 

3.2.6.2. Slope of linear equation  

Trend lines were generated for both the observed and the mixed spectra and compared in terms of their slope 

values. The assumption is that the more the similarity of the slopes of the linear equations of the trend lines of 

the observed (expected) spectra and the mixed spectra, the more the similarity between the observed and the 

mixed spectra, and thus vegetation has no or very little effect on the spectral responses of the bare ground. That 

means the mixed spectra is overlapping or nearly overlapping to the expected spectra (bare), and thus, the less in 

the differences of their slope values.  

 

The steps described above are summarized in figure 9 below. 

 

 

3.3.       Evaluation of the role of the vegetation suppressing Crippen’s and Blom’s algorithm 

To assess the potential use of the Crippen and Blom’s algorithm in the removal of the effect of vegetation 

followed by enhancement of minerals and rocks, first the algorithm is automatically applied to the Landsat and 

Objective 1 

Figure 9: Flow chart showing the summary of the procedures of the evaluation of the effect of vegetation on 
the spectral response of bare ground (mineral/rock) (the right side) and the data preparation part (the left 
side). 
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ASTER images. Then, the processed (after applying the algorithm) images of both sensors are compared to their 

corresponding original images using different types of techniques including ratio images, NDVI images, ROI 

based spectral signatures and RGB combinations of ratio images. 

3.3.1.    The Crippen’s and Blom’s algorithm  

The Crippen’s and Blom’s algorithm, “forced invariance”, is an algorithm which subdues the spectral response 

of vegetation and enhance the spectral response of minerals/rocks forcing the image under process to be invariant 

with a vegetation amount (Crippen & Blom, 2001). The algorithm calculates images that are invariant relative to 

vegetation index so that features represented by that spectral index will not appear in the resultant images 

(Crippen & Blom, 2001). In the algorithm, data for each spectral band are altered empirically to produce a refined 

band (Crippen & Blom, 2001). The algorithm was previously utilized in Landsat 5 TM radiance data by (Crippen 

& Blom, 2001). Adopting the Crippen’s and Blom’s procedure, but based on the datasets used in this research 

(surface reflectance of Landsat, ASTER), the possible procedures of the algorithm could be;  

• Preparing the data sets for the subsequent processing (i.e. mosaicking if we have more than one scene 

of the same sensor, layer stacking if our original data is downloaded as a set of panchromatic images or 

if we need to combine different wavelength regions of the same type of image sensor and spatial 

subsetting if needed and cloud masking if any).  

• Calculation of vegetation index (NDVI) 

•  Rescaling the NDVI values to the reflectance values of the bands in the image  

• Plotting reflectance values versus vegetation index values.  

• Fitting a smooth best-fit curve to the plot by finding the average reflectance value at each scaled and 

quantized vegetation index value (or group of values) and smoothing the results over several quantized 

vegetation index values.  

• Multiplicatively flatten the curve and drag all the pixels along with it. Selecting a target average reflectance 

value and multiplying all pixels at each vegetation index level by an amount that shifts the curve to that 

target. In other words, for each vegetation index level, multiply all pixels at that vegetation level by the 

target reflectance divided by the curve reflectance. Saturate any pixels that exceed the upper quantization 

limit.  

The above procedures can be summarized in the flow chart below (Figure 10) 
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However, due to time constraints, this research does not cover the mathematical and computer codes 

(programming) of the algorithm to show the step by step functionality of the algorithm that are involved in the 

process. The algorithm is simply applied from the ENVI software automatically which only takes input images 

(pre-processed) and needs the visible and near infrared bands as input parameters.  

 

Thus, this research rather assesses the role of the ENVI driven vegetation suppressing algorithm that might have 

on the Landsat and ASTER images in terms of suppressing vegetation and enhancing spectral responses of 

minerals/rocks. The aim is to assess the algorithm’s utility using data analysis of the before and after results on 

both Landsat and ASTER, on an area with some geological control and diagnostic geological features, under 

variable vegetation covers. The original images of the Landsat and ASTER are compared to the corresponding 

processed images (after applying the algorithm) using the following techniques: (1). Ratio images (2) NDVI 

images (3), ROI based spectral signatures characterization (4) and RGB combinations of ratio images. 

 

3.3.2.  Ratio images  

Ratio images of both LANDSAT and ASTER images were analysed to assess the role of the Crippen's and Blom’s 

algorithm as applied to those datasets. The importance of this information processing is for evaluating the 

geologically interpretable signatures using band ratios whether they are enhanced with the Crippens and Blom’s 

algorithm. Even though Landsat TM lacks ASTER’s SWIR bands, both their ratio results can show spatially 

coherent geological meaningful anomalies (i.e. clay ratio B5/B7 and (B5+B7)/B6)) as well as examples of ferrous 

irons. Selected ratio images of both datasets were interpreted for checking possible mineralogical/lithological 

enhancements as the result of applying the Crippen’s and Blom’s algorithm. The selection of the mineral indices 

for this purpose is based on the similarity of the wavelength or wavelength ranges that the mineral indices have 

Figure 10: Generalized working procedures of the Crippen and Blom’s algorithm 
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a common feature as imaged by both the Landsat and ASTER images. This is because of the requirement that 

the comparison of the sensors for the role of the applied algorithm should be based on the common wavelength 

ranges that they cover.  

 

The following examples of mineral indices were used to assess the Crippen and Blom’s algorithm for both the 

ASTER (based on previously known indices) and the Landsat (empirically based on bands of similar wavelength 

regions). 

 

I. AlOH group content (phengite, muscovite, paragonite, lepidolite, illite, brammalite, montmorillonite, 

beidellite, kaolinite, dickite) (B5+B7)/B6 (Cudahy, 2012) 

            [Landsat equivalent, (B5/B7)] 

II. Ferrous iron index: (B5/B3) + (B1/B2) (Rowan, Mars, & Simpson, 2005) 

[Landsat equivalent, (B7/B4) + (B2/B3)] 

 

To evaluate the potential role of the Crippen’s and Blom’s vegetation suppressing algorithm that might have on 

the abundances inferred by the selected mineral indices, first ratio images of those mineral indices were generated 

using ENVI. Then, region of interests with respect to the different lithologies in the geological map are generated 

from the scenes of both datasets. Then, the abundances of the minerals based on the above indices as occurring 

in each lithology were compared between the abundances before and after applying the algorithm.  

3.3.3.  NDVI images 

NDVI images of both LANDSAT and ASTER images were generated from the original and the processed 

images. Then those images were used to check the possible variations of NDVI values and NDVI trends before 

and after applying the Crippen and Blom’s algorithm to assess the role of the algorithm that might have on the 

amount of the vegetation cover along a given profile. Scatter plotting of horizontal profiles across the NDVI 

images were generated from the same geographic position of each scenes both before and after applying the 

algorithm. Then the NDVI values of those profiles were compared using scatter plots to see the differences in 

the NDVI values of the before and after applying the algorithm.  

3.3.4.  ROI based spectral signatures 

Vector defined regions of interests (ROI) were used to collect spectral signatures from the ASTER image both 

before and after applying the Crippen and Blom’s algorithm. Due to limitation in the number of bands in the 

SWIR of the Landsat, only the ASTER scene is used for this purpose. First three ROIs’ from areas of relatively 

low, medium, and high vegetation cover, were selected from the same lithology. Then the mean spectra of the 

ROI’s were plotted and interpreted and compared in terms of wavelength absorption position and relative band 

depth (RBD) to check for any possible spectral feature differences due to the applied algorithm. In addition, in 

order to have a complete observation throughout the scene, another fourteen ROI’s were generated from all 

parts of the images covering the different types of lithologies in the study area.  

3.3.5.  RGB combinations of ratio images 

(Simon et al., 2016) showed RGB combinations of the ratio images of the Landsat scene including 4/3, 5/2, 

3/1and 4/2, 5/3, 4/3 for lithological discriminations. In this research, the above ratio images were adopted to 

produce RGB composite images from the Landsat scene both before and after applying the Crippen and Blom’s 

algorithm. This was done to examine the role of the algorithm in exposing previously vegetation obscured 

lithologies or lithologic boundaries. The RGB combinations of the ratio images before applying the Crippen and 

Blom’s algorithm were compared to the corresponding results after applying the Crippen’a and Blom’s algorithm 

in reference to the existing geological map of the study area.  
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3.3.6.  RGB combinations of ratio images and principal component analysis (PCA) 

Previous researches (Çorumluoğlu, Çorumluoğlu AVural, & Asri, 2013; Pournamdari et al., 2014), have shown 

that PCA and ratio images can be used for visual rock identification from images. In this research RGB 

combinations of ratio images of the same type obtained before and after applying the Crippen and Blom’s 

algorithm were used for a better qualitative rock discrimination, given that the RGB combination of the ratio 

products are subject to PCA.  Thus, each of the 3 ratio band products were used as input to PCA processing and 

then displayed as RGB images of the produced PC1, PC2 and PC3.  

The summary of all the above methods is given in the following flowchart (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Flow chart showing the summary of the procedures of the evaluation of the role of the Crippen’s 
and Blom’s vegetation suppressing algorithm to enhance the spectral response of bare area (mineral/rock) 
across vegetated terrains. 

Objective 2 
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4. RESULTS 

This chapter contains results of the bare-vegetation simulation model to evaluate the effect of vegetation on the 

spectral responses of a bare ground (mineral, rock) as well as ratio images, NDVI images, ROI based spectral 

signatures, RGB combinations of ratio images and PCA applied on RGB combinations of ratio images to evaluate 

the role of Crippen’s and Blom’s vegetation suppressing algorithm in suppressing vegetation and enhancing the 

bare. ‘Bare’, in this research is assumed to represent mineral/rock and/or weathered products minerals/rocks in 

a non-vegetated terrain and the term vegetation is referring to a green vegetation. Due to limitations in spectral 

resolution of the datasets used, specific minerals (i.e. kaolinite, alunite) were difficult to be determined from the 

image data sets, hence a general term ‘bare’ ground (i.e. mineral/rock of ant type, based on published NDVI 

ranges, section 3.1) was used in the subsequent processing and interpretation.  

4.1.       Simulation model: Evaluation of effect of the vegetation on the spectral response of a bare ground  

A total of nine bare-vegetation spectral simulation models, when vegetation cover is 5%, 10%, 20%, 40%, 50%, 

60%, 80%, 90% and 95% were generated for both the Landsat and ASTER data sets. Spectra of the Landsat and 

ASTER images showing the spectral signature of a bare ground and the mixed spectra when vegetation cover is 

5%, 10%, 20% and 80% plotted with the 100% bare (observed spectra) are shown in the following figures 

(Figures 12 and 13, A, B, C and D respectively). The remaining results when vegetation cover is 40%, 50%, 60%, 

80%, 90% and 95% are given in the appendices (appendix II). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Bare spectra versus mixed spectra of variable amount of vegetation (Landsat) 
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From figure 12 above, the variations between the mixed spectra and the bare spectrum increases with increase in 

the % of simulated vegetation cover. This trend of variation is similar for both Landsat and ASTER as can be 

seen in figure 13 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of vegetation on the spectra of bare described in Figures 12 and 13 above, was further analysed using 

spectral ratio and line fitting.  

4.1.1. Spectral ratios  

Generally, the results from spectral ratio analysis reveal that increase in the percentage of vegetation increases the 

variation in ratio value away from 1. In the case of Landsat image (Figure 14, A below), the first three bands were 

relatively less affected by vegetation cover of 5%, 10% and 20%, compared to the other bands. Similarly, for the 

ASTER image (Figure 14, B), a relatively lesser impact is recorded when vegetation cover is 5%, 10% and 20%, 

and the influence also increases with increasing the amount of vegetation (i.e. 80%). Graphs showing the influence 

of the remaining vegetation covers (40%, 50%, 60%, 90% and 95%) are given in the appendices (Appendix III; 

A, B). 

 

 

 

 

 

 

Figure 13: Bare spectra versus mixed spectra of variable amount of vegetation (ASTER) 
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4.1.2. Slope of linear equation:  

Analysing the slopes of the line of best fit, this study reveal that increase in the percentage of vegetation cover 

increase the differences in slope. The graphs are shown in (Figures 15 and 16; A, B, C, and D) where vegetation 

cover is 5%, 10%, 20%, and 80% respectively). The remaining simulation model results for the maximal 

vegetation effects (when vegetation cover is 40%, 50%, 60%, 90% and 95%) are given in appendix IV. 

 

 

 

 

 

Figure 14: Column charts showing the effect of variable amount of vegetation on spectra of the bare in the 
Landsat (A) and the ASTER (B) imageries. 
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The above results show that for a vegetation cover of 20% or lower, the slope value of the trend lines of the 

observed spectra and the mixed spectra are almost similar. In this context, this means, the effect of the vegetation 

is insignificant and thus the higher chance of acquiring maximum information of the mineral/rock of interest. 

Conversely, when there is very high effect of vegetation on the spectra of the bare (Figure 16, D), the difference 

in the slopes of the trend lines is higher. That means all the required information that would be acquired from 

the bare (i.e. mineral/rock) is imperceptible.  

 

The following figure (Figure 16) shows the spectral relationships between the mixed and bare spectra of the 

ASTER scene when vegetation cover is 5%, 10%, 20%, and 80% (A, B, C, and D respectively). 
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Figure 15: Spectral signature variations of bare area with variable mixture of green vegetation (A-D) of 
the Landsat scene. The influence of vegetation in the spectra of the bare is less when vegetation cover is 
5% (nearly similar slopes of the trend lines (A)) and increases with increasing vegetation cover (the 
difference in the slope of the trend line gets increased (B, C, D)). 



THE EFFECT OF VEGETATION ON THE SPECTRAL RESPONSE OF MINERALS/ROCKS, AND  

PERFORMANCE OF A FORCED INVARIANCE VEGETATION SUPPRESSION ALGORITHM ON MULTI-SPECTRAL IMAGERY, SW TANZANIA. 

29 

 

 

 

 

 

 
 

The above results in general show that in the presence of less than or equal 20% vegetation cover, the slope value 

of the trend lines of the observed spectra and the mixed spectra do not show great differences.  

4.2.       Evaluation of the role of the vegetation suppressing Crippen’s and Blom’s algorithm 

Results, testing the potential of the Crippen and Blom’s algorithm in supressing vegetation and enhancing 

mineralogical/mineralogical information was done using ratio images, NDVI images, ROI based spectral 

signatures characterization, RGB combinations of ratio images and PCA applied on RGB combinations of ratio 

images are demonstrated in the following sections. 

 

Figure 16: Spectral signature variations of bare area with variable mixture of green vegetation (A-D) of the 
ASTER scene. The influence of vegetation in the spectra of the bare is less when vegetation cover is 5% 
(nearly similar slopes of the trend lines (A)) and gets sever with increasing vegetation cover (the difference 
in the slope of the trend line gets increased (B, C, D)). 
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4.2.1.    Ratio images  

The results of ratio images show the abundances of given mineral indices contained in the different types of 

lithologies both before and after applying the Crippen and Blom’s algorithm. The basic statistics of the 

abundances are tabulated below, and the differences in the abundances of the before and after applying the 

algorithm are shown in scatter plots and column charts of the mean abundances of the mineral indices across 

each lithology. The abundances of the ratio images were generated from ROI’s representing each lithology in the 

study area. The ROI’s were generated from the different lithologies to assesses the differences in the abundances 

of the mineral groups across the different lithologies before and applying the Crippen and Blom’s algorithm. 

4.2.1.1.      Ratio images (ASTER): AlOH group content [B5+B7)/B6] ((Cudahy, 2012)) 

According to (Cudahy, 2012), the ASTER band combination of [(B5+B7)/B6] can target absorption features at 

ASTER band 6 for AlOH group of clay minerals such as muscovite, illite, phengite, kaolinite and Al-smectite. 

Ratio images of the above index were produced from the ASTER image both before and after applying the 

Crippen and Blom’s algorithm to check whether the algorithm has played a role to enhance the mineral content. 

A linear type stretching with 2.00 and 2.25 (based on (Cudahy, 2012)) of lower and upper limits respectively were 

used where the blue and red colours of the rainbow colour in the ratio images represent low and high values 

respectively (Figure 17; A, B).  The geological map representing the study area showing the different lithologies 

is given side to side of the ratio images (Figure 17; C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geological map of the study area subsetted 

from the geological map of the Rungwe 

volcanic province (RVP) by Fontijn (2012)  
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Figure 17: Ratio images of AlOH group content before (A) and after (B) applying the Crippen’s and Blom’s 
algorithm in the ASTER. The polygons in magenta represent the different lithologies in the study area where 
number 1, 2, 3, 4, 5, 6, belongs to Precambrian basement, Older sediments (Lake beds), Red sandstone, Younger 
volcanics, Younger sediments (Lake beds) and Karoo respectively (C)). The image is divided in to parts based on 
the lithologic boundaries to assess the abundance of the mineral groups in each lithology both before and after 
applying the Crippen and Blom’s algorithm. 

 



THE EFFECT OF VEGETATION ON THE SPECTRAL RESPONSE OF MINERALS/ROCKS, AND  

PERFORMANCE OF A FORCED INVARIANCE VEGETATION SUPPRESSION ALGORITHM ON MULTI-SPECTRAL IMAGERY, SW TANZANIA. 

31 

 

In the figure given above (Figure 17), even though there are AlOH group content abundance values between 

2.00 and 2.25 in the different lithologies (as can be seen from the basic statistics of the ratio images in table 3), 

the mean statistics (average abundance statistics) shows there are no abundance values within the threshold value 

stated according to (Cudahy, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate whether the Crippen and Blom’s algorithm has made changes to the abundance images, a scatter plot 

and a column chart showing the relationship between the abundances of the minerals as well as mean ratio of the 

abundance images across the different lithologies, produced before and after applying the Crippen and Blom’s 

algorithm are given below (Figure 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3:  Basic statistics of the abundance of AlOH across the different types of the 
lithologies (applying the Crippen and Blom’s algorithm (ASTER). 

Figure 18: Scatter plot (A) and column chart (B) showing the abundances of the AlOH group content in 
each lithology (ASTER). The scatter plot (A) is showing the abundance of the AlOH group content before 
(blue) and after (orange) applying the Crippen and Blom’s algorithm. The column chart shows the ratio of 
the AlOH group content after applying the algorithm to the ratio of the AlOH group content before 
applying the algorithm. 
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The above figures (Figure 18; A & B), show that the role of the Crippen and Blom’s algorithm is very small to 

insignificant in the overall ratio images (A, scatter plots are overlapping; meaning there is no change because of 

the applied algorithm; otherwise the orange colour scatter should have to be above blue scatter plot). The 

assumption is that if the algorithm is successfully operating to enhance the AlOH group content, either the scatter 

plot or the column chart should show variations between the ratio images obtained after and before applying the 

Crippen and Blom’s algorithm. Nonetheless, very small differences in the abundance of the AlOH group content 

in each lithology are observed in the column chart (B). For example, AlOH group content in the Precambrian 

lithology and the younger lake beds is enhanced to a very small percent (0.009% and 0.004% respectively), which 

is insignificant, however. The abundance of AlOH group content in the red sandstone is decreased after applying 

the algorithm. This could be due the effect of the algorithm itself during its process or because of the absence of 

detectable amount of AlOH in that lithology and the previous anomaly was probably due to vegetation only. The 

abundance of the AlOH group content in the remaining lithologies show no change (B). In summary, in this case, 

the Crippen and Blom’s algorithm has not a significant role in enhancing the AlOH group content imaged by 

ASTER for this study area. 

4.2.1. 2.    Ratio images (Landsat): AlOH group content [B5/B7]  

A Similar way to the AlOH group content presented using the ASTER image (section 4.2.1.1.), an AlOH group 

index (B5/B7) of the Landsat was used to evaluate the role of Crippen and Blom’s algorithm in suppressing 

vegetation and enhancing the mineral (Figure 19). This band ratio is selected with the assumption that it 

approximately covers similar wavelength region with the ASTER. Thus, comparing the significance of the 

algorithm to enhance AlOH group content between the ASTER and the Landsat helps to understand in which 

of these sensors is the algorithm better applicable. The threshold values used are 2.00-2.25 with a linear type of 

stretch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above figure (Figure 19), the image in the left (A) seems to show higher content in the mountainous areas 

of the Precambrian basement (1). This all high anomaly might not be necessarily the AlOH group content. This 

is because these areas are the highly vegetated areas in the area so that water content from the leaves of the 

vegetation might also contribute causing the overall response to increase. In the second image (B), areas which 

previously were darker seems to be replaced by certain amount of AlOH group content. This could be probably 

due to the applied algorithm that enables detection of certain amount of AlOH group content. However, as can 

be seen from the scatter plot (Figure 20) and the basic statistics (table 4), there is no improvement in the 

abundance of the AlOH after applying the algorithm, all anomalies across the image rather become reduced 
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Figure 19: Ratio images of AlOH group content before (A) and after (B) applying the Crippen’s and 
Blom’s algorithm on the Landsat scene. The polygons in magenta represent the different lithologies in the 
study area where number 1, 2, 3, 4, 5, 6, belongs to the Precambrian basement, Older sediments (Lake 
beds), Red sandstone, Younger volcanics, Younger sediments (Lake beds) and Karoo respectively (C, 
Figure 18). The image is divided in to parts based on the lithologic boundaries to assess the presence of 
the mineral groups in each lithology both before and after applying the Crippen and Blom’s algorithm. 
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which probably could be because of false anomalies related with vegetation so that the previous anomaly was a 

vegetation and hence suppressed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following figures (Figure 20; A, B), show the variations in the abundance of the AlOH group content in the 

Landsat scene across the different lithologies. Both figures (A and B) show the AlOH group across all lithologies 

has reduced after applying the Crippen and Blom’s algorithm. However, in a common sense the AlOH group 

abundance values both before and after applying the Crippen and Blom’s algorithm are below the standard 

threshold values of AlOH used in this research (2.00-2.25, (Cudahy, 2012). Thus, the reduction in the detected 

anomaly could be probably because of the original anomaly was due to vegetation and hence the vegetation gets 

suppressed by the applied algorithm. Such kind of situation might happen in areas where there is no enough 

amount of detectable mineral/rock of interest but vegetated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4:  Basic statistics of the abundance of AlOH across the different types of the 
lithologies before and after applying the Crippen and Blom’s algorithm in the 
Landsat 

Figure 20: Scatter plot (A) and column chart (B) showing the abundances of the AlOH group content in each 
lithology (Landsat). The scatter plot (A) is showing the abundance of the AlOH group content before (blue) and 
after (orange) applying the Crippen and Blom’s algorithm. The column chart shows the ratio of the AlOH group 
content after applying the algorithm to the ratio of the AlOH group content before applying the algorithm.  
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4.2.1.3.      Ratio images: ASTER; Ferrous iron index [(B5/B3) +(B1/B2)], (Rowan et al., 2005) 

According to (Rowan et al., 2005)), (B5/B3) and (B1/B2) of the ASTER, can highlight ferrous iron. Thus, in this 

research, abundance images using combination of these ratio indices, (B5/B3) + (B1/B2) are produced both 

before and after applying the Crippen and Blom’s algorithm (Figure 21; A, B). The threshold values used are 0.5-

2.5 with a linear type of stretch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
As can be seen from the Colour shades of the images (Figure 21 above) and the basic statistics (table 5), there 
seems to be there is an improvement in the abundances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To check how much change is made to the abundances of the ferrous iron in each lithology because of the 
Crippen and Blom’s algorithm, a scatter plot and column chart of the mean abundances are given in Figure 22 
below. As can be seen in figure 22 below, there is an overall enhancement in the abundance of the ferrous iron in the 
ASTER image after applying the Crippen and Blom algorithm (Orange colour, A). For example, the ferrous iron in the older 
lake beds seems to show 26% increment (B, 2). The assumption in (B) is that if there is no enhancement, the ratio value 
should be 1. However, the result shows the abundance of ferrous iron is enhanced (all values are above 1). Thus, the Crippen 
and Blom’s algorithm is possibly applicable for the ASTER in cases of mapping ferrous iron in areas like the study area of 
this research. 
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Figure 21: Ratio images of ferrous iron before (A) and after (B) applying the Crippen’s and Blom’s 
algorithm on the ASTER scene; the red shades are high values while the blue/dark shades are low values. 
The polygons correspond to the different lithologies.  

 

Table 5: Basic statistics of the abundance of ferrous iron across the 
different types of the lithologies before and after applying the Crippen 
and Blom’s algorithm on the ASTER scene. 
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4.2.1.4.      Ratio images: Landsat; Ferrous iron index [(B7/B4) +(B2/B3)] (based on (Rowan et al., 2005) ASTER 
equivalent bands) 

Another ferrous iron abundance images (Figure 23) were produced from the Landsat image using ratio index 

[(B7/B4) +(B2/B3)], approximately within similar wavelength ranges as in the ASTER. This ratio image is done 

in order to compare the utility of the Crippen and Blom’s algorithm in ASTER with its utility in Landsat to detect 

ferrous iron. The stretch type used is linear with 0.5-2.5 threshold values.  
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Figure 22: Scatter plot of the before and after applying the Crippen and Blom’s algorithm (A) and column 
chart showing the ratio of the abundance of the ferrous iron after applying the algorithm to the ratio of the 
ferrous iron before applying the algorithm to show the degree of enhancement (B)). 

Figure 23: Ratio images of ferrous iron before (A) and after (B) applying the Crippen’s and Blom’s vegetation 
suppressing algorithm (Landsat scene); the red shades represent high values while the blue/dark shades represent 
low values. The polygons correspond to the different lithologies.  
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As can be seen from the Colour shades of the images above (Figure 23), and the basic statistics (table 6 below), 
there seems to be an improvement in the abundances of the ferrous iron after applying the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
However, to check how much change is made to the abundances of the ferrous iron in each lithology because of 
the Crippen and Blom’s algorithm, a scatter plot and column chart of the mean abundances are given below 
(Figure 24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Basic statistics of the abundance of ferrous iron across the different 
lithologies before and after applying the Crippen and Blom’s algorithm on the 
Landsat scene. 

 

B A 

Figure 24: The abundance of the ferrous iron contained in each lithology (scatter plot of the before and after Crippen and 
Blom’s algorithm of (A) and the ratio of the abundance of the ferrous iron after applying the algorithm to the ratio of the 
ferrous iron before applying the algorithm to show the degree of enhancement (B). 
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The above figures (Figure 24; A & B) show scatter plot of the abundance of the ferrous iron before and after 

applying the Crippen and Blom’s algorithm across the different lithologies (A) and a column chart showing the 

ratio of the mean abundances after applying the Crippen and Blom’s algorithm to the abundances before applying 

the Crippen and Blom algorithm to check the degree of change (enhancement) (B). There seems an overall 

enhancement in the abundance of the ferrous iron in the Landsat image after applying the Crippen and Blom’s 

algorithm (Orange colour, A). For example, the ferrous iron in the older lake beds show 7% increment (B, 1). 

The assumption in (B) is that if there is no enhancement, the ratio value should be 1. However, the result shows 

the abundance of ferrous iron is enhanced (all values are above 1). Thus, the Crippen and Blom’s algorithm is 

possibly applicable for the Landsat in cases of mapping ferrous iron in areas like the study area of this research 

but relatively less as compared to ASTER (section 4.2.1.3, Figure 22 above). 

4.2.2.    NDVI images 

NDVI images of both the Landsat and ASTER images were produced (Figure 25; A, A’ and B, B’) to be used as 

additional ways of checking the role of Crippen and Blom’s algorithm in the green vegetation (if it suppresses 

vegetation). The assumption is that if the NDVI values across a given area of the images is reduced after applying 

the Crippen and the Blom’s algorithm as compared to the original images, the algorithm makes a change in the 

NDVI values of the images. Thus, this helps to understand at least weather the algorithm is applicable to suppress 

vegetation or not for both the Landsat and ASTER images. But, in order to check how much does the algorithm 

play a role to enhance spectral response of mineral/rock of interest following the suppression of the vegetation, 

an example of ROI based spectral signatures generated from the ASTER image are evaluated in section 4.2.3. or 

we can look back at section 4.2.1 above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

The following figures (Figure 26; A & B) show the vigour of the green vegetation across the horizontal profiles 

of both the Landsat and ASTER images.  

After VegSupp 

Before VegSupp After VegSupp 

A A’ 

B B’ 

Figure 25: NDVI images generated from both the Landsat (A & A’, before and after applying the Crippen 
and Blom’s algorithm respectively) and the ASTER (B & B’, before and after applying the Crippen and Blom’s 
algorithm respectively). The red lines are horizontal lines across both the Landsat and ASTER NDVI images 
which were used as a horizontal profile to check the variations in NDVI values across the images. VegSupp 
(white text on the images denotes for vegetations suppression). 
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From figure 26 above, the NDVI profile across the Landsat scene (A) which is taken from the same spatial 
position before and after applying the algorithm, shows a general reduction of the NDVI values from near 0.8 
(before applying the algorithm) to 0.3-0.4 (after applying the algorithm). Analogous situation is observed in the 
ASTER where the NDVI values get reduced from around 0.6 to near 0 (B). Both figures show the applied 
algorithm is suppressing vegetation in general, but to check its geological importance (whether it enhances 
minerals/rocks) see sections 4.2.3, 4.2.4, and 4.2.5. 

4.2.3.    ROI based spectral signatures 

Spectral signatures generated from the average statistics spectra of three ROI’s selected from the ASTER image 

with variable amount of vegetation cover (with relatively low, (ROI 1), medium (ROI 2) and higher (ROI 3) 

(Figure 27, A) across the same type of lithology (Figure 27, D) are shown below (Figure 27). The importance of 

these ROI based spectra is to assess the role of Crippen and Blom’s algorithm on the spectral features of the 

selected ROI spectra across the relatively low, medium and high amount of vegetation. The spectral signatures 

of the ROI’s shown in (Figure 27) both before (B) and after (C) applying the algorithm show variations in the 

spectral signatures after applying the algorithm in that strength of the red edge is minimized and clear features 

within the SWIR region are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 26:  Scatter plots of horizontal profiles along the NDVI images of the Landsat (A) and the ASTER 
(B) images showing the variations of the NDVI values both before (red colour) and after (blue colour) 
applying the Crippen’s and Blom’s algorithm.  
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Note that the aim of this test is not targeting to identify the target minerals, it is to assess the role of the applied 

algorithm that might have on the enhancement of mineral features. This is because of the limited resolution of 

the dataset used, there are no clear diagnostic features that can be used to identify specific minerals (i.e. kaolinite, 

alunite,). Consequently, some relatively interesting features within the ASTER SWIR which in general are 

referring to the absorption features of group of clay minerals (i.e. reflectance minimum for AlOH (2.167 µm) and 

MgOH (2.336 µm)) (Figure 28 below) were used as examples of spectral features to assess whether the Crippen 

and Blom’s algorithm makes a change to these features.  

 

A 
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B 

Geological map of the study area subsetted 

from the geological map of the Rungwe 

volcanic province (RVP) by Fontijn (2012) 

Figure 27: ROI based spectral signatures selected from ASTER image (A) from the same lithology (B) to assess 
the spectral variations of the three mineral groups before (B) and after (C) applying the Crippen’s and Blom’s 
algorithm. The oval shape shows spectral variations of vegetation in the red edge and the arrows show the 
variations in the general shape of the absorption/reflection features. 
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To check if the variations in the spectral features show an enhancement of spectra of those group of minerals, 

spectral signatures generated from the mean statistics of the ROI’s of both the original and processed (after 

applying Crippen and Blom’s algorithm) were interpreted in terms of wavelength absorption position and relative 

band depth (RBD) (see sections 4.2.3.1 & 4.2.3.2 below).  

 

Obviously, the reduction of the NDVI values in each ROI after applying the algorithm (table, 7 below) can 

suggest the suppression of the vegetation is made, but for checking any possible change in the spectral features 

of the mineral groups (AlOH, MgOH), following the vegetation suppression, their absorption wavelength 

position and Relative band depth are discussed below (sections 4.2.3.1 and 4.2.3.2) 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Basic statistics of the NDVI of the three ROI’s before 
and after applying the Crippen and Blom’s algorithm. 

Figure 28: Mean spectra of three ROI’s generated from ASTER scene both before and after 
applying the Crippen and Blom’s algorithm. 
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4.2.3.1. Maximum absorption wavelength position 

The absorption wavelength position is one of the essential parameters in spectroscopy at which a specific type 

of material can be determined (Kopăcková & Koucká, 2017). In this research, this parameter was used to assess 

the role of the Crippen and Blom’s algorithm that might cause any changes in the wavelength position of the 

spectra after its implementation. As can be seen from the above figure (Figure 28), the maximum absorption 

wavelength position of the AlOH and MgOH group minerals are laying in the same position both before and 

after applying the Crippen and Blom’s algorithm. Thus, the Crippen and Blom’s algorithm has not made any 

change with respect to the absorption position. This implies that there are no new minerals/mineral groups 

shown as the result of applying the Crippen and Blom’s algorithm.  

4.2.3.2. Relative Band Depth (RBD) 

 Absorption band-depth is a method of analysis designated to distinguish mineral absorption features, while 

reducing differences in reflectance related to topographic slope and albedo variations (Crowley, Brickey, & 

Rowan, 1989).  It can be created by dividing the sum of bands located at the shoulders of the absorption feature 

by the sum of one or more bands located at the reflectance minimum of the absorption features (Crowley et al., 

1989; Murphy, 1995). Here, in this research, it is executed to compare the absorption depth of the AlOH and 

MgOH mineral groups across the three ROI’s (see Figure 28, above) before and after applying the Crippen and 

Blom’s algorithm on to the ASTER image. Thus, the RBD of AlOH and MgOH across the ROI’s were calculated 

by summing reflectance at shoulders and dividing by the reflectance at minimum (table 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from the following figure (Figure 29), the RBD before (blue colour) and after (orange colour) 

applying the Crippen and Blom’s algorithm show very little to no differences. Thus, the Crippen and Blom’s 

algorithm does not make significant changes.  

 

 

 

 

 

 

 

 

 

 

 

Table 8: The RBD of the AlOH and MgOH mineral groups across three ROI’s. 

Figure 29: Variations in the relative band depth (RBD) of the AlOH and MgOH mineral groups before and 
after applying the Crippen and Blom’s algorithm 
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ROI 

Crippen and 

Blom's algorithm 

implementation 

Reflectance at shoulders (Bands: 4, 6, 9 and) and 

reflectance minimum (Bands: 5, 7, and 8) 

(Band 4 + 

Band 

6)/Band 5 

(Band 6 + Band 

9)/ (Band 7 + 

Band 8) Band 

4 

Band 

5 

Band 

6 

Band 7 Band 

8 

Band 

9 

ROI 1 Before 0.3 0.18 0.19 0.17 0.17 0.16  2.72 1.03 

After 0.32 0.2 0.22 0.19 0.19 0.17  2.7 1.03 

ROI 2 Before 0.28 0.16 0.17 0.15 0.15 0.14  2.81 1.03 

After 0.32 0.18 0.2 0.18 0.19 0.17  2.89 1 

ROI 3 Before 0.25 0.13 0.14 0.13 0.13 0.18  3 1.23 

After 0.29 0.16 0.18 0.17 0.16 0.16  2.94 1.03 

 

AlOH MgOH 
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In addition to the above three ROI’s, more spectral signatures were collected from the ASTER scene in order to 

observe any possible differences in the spectral responses representing different areas with a variable amount of 

vegetation cover. Thus, fourteen ROI’s were selected from the ASTER image (Figure 30, A) across various parts 

of the image assumed to represent the different types of the lithologies (Figure 30; geological map, B) with variable 

amount of vegetation cover. Vectors representing the ROI’s selected from the ASTER scene are shown below 

(Figure 30, A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean spectral signatures of the fourteen ROI’s (Figure 30, A above) were generated both before and after 

applying the Crippen and Blom’s algorithm and the four ROI’s are shown in the following figure (Figure 31 

below). 
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Figure 30: Fourteen region of interests (ROI’s) (dark box, on the ASTER scene (A)) across areas where all the 
lithologies are crossing in the ground. The blue polygons in the image (A) belong to the boundaries of different 
lithologies (B). 

Figure 31: Mean spectra of four ROI’s of the ASTER scene both before and after applying the Crippen and 
Blom’s algorithm. The oval shapes show the variations in the red edge because of the applied algorithm while 
the rectangular box shows the absorption features of the AlOH and MgOH mineral groups. 
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As can be seen from the spectral signatures (Figure 31 above), the spectral features of the ROI’s are the same as 

the previously described three ROI’s (Figure 29; sections 4.4.1, 4.4.2 above) where there is no variation in terms 

of the absorption wavelength position because of the applied algorithm. Thus, the remaining ten ROI’s, because 

of no differences with four ROI’s shown above (Figures 28 & 31), it is not necessary to repeat them here and 

they are shown in the appendices including the mean of the NDVI values of each ROI’s (appendix V).  

 

The spectral signatures show that the red edge (in the VNIR range) is reduced in all the ROI’s, implying the 

suppression of the vegetation due to the applied algorithm. The spectral features in the SWIR range show there 

is a difference in the signal (reflectance values) between the spectra collected before applying the Crippen and 

Blom’s algorithm and the spectra collected after applying the algorithm. Thus, this seems to imply that there is a 

little enhancement of the mineral groups which previously might be obscured by the vegetation. However, like 

section 4.2.3 of the three ROI’s, there are no differences observed in terms of absorption wavelength position 

and relative band depth (RBD). Thus, the results in general suggest the Crippen and Blom’s algorithm has not 

made significant changes in the spectral information content of the mineral groups. 

 

The average NDVI values of the four ROI’S are given below (table 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary the results on the spectra of the ROI’s show the signal of the vegetation seems to be diminished (see 

the red edge, Figure 31 above). However, in terms of spectral information content on the mineral groups, there 

is no significant changes on the spectra obtained from the processed images (after applying the algorithm) 

compared to the spectra obtained from the original images. 

4.2.4.    RGB combinations of ratio images 

RGB combinations of the ratio images of the Landsat scene including 4/3, 5/2, 3/1; and 4/2, 5/3, 4/3 were 

produced both before and after applying the Crippen and Blom’s algorithm (Figure 32 A, A’; B, B’;). The selection 

of the combination of these ratio images is based on (Simon et al., 2016), where he has used them to discriminate 

lithologies using Landsat. This was done to check for any improvement on the lithologies/lithologic boundaries 

of the study area after applying the Crippen and Blom’s algorithm. The results on the images were compared to 

existing geological map of the study area (Figures, 32 and 33, C). 

 

 

 

 

 

 

Table 9: NDVI values of the above four ROI’s before and after applying the Crippen and 
Blom’s algorithm. 

 

NDVI_Basic statistics  

ROI 
Crippen and Blom's 

implementation Mean 
1 Before 0.2 

 After 0.05 
2 Before 0.21 

 After 0.06 
3 Before 0.19 

 After 0.04 
4 Before 0.19 

 After 0.04 
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As can be seen from the above images, the RGB composites after applying the algorithm (A’, B’) seems to show 

clear features on the lithologic boundaries which probably were obscured by vegetation. This can be observed 

especially in the Precambrian rock (greyish yellow and greyish pink colours in A’ and B’ respectively). Thus, the 

algorithm seems to make the RGB composites clearer where some lithologies appear brighter and distinguishable.  

4.2.5.    PCA applied on RGB combinations of ratio images 

However, here in this research, we applied PCA transformation up on the above RGB composite images and we 

got relatively better results where the Precambrian rock show more clearer boundaries (Figure 33, below). This 

clearly observed especially in the RGB combinations of the ratio images: 4/3, 5/2, 3/1 (Figure 33, A’). These 

images are displayed as RGB combinations of PCA1, PCA2 and PCA3 respectively. 

 

 

 

 

B’ 

Figure 32: RGB combinations of ratio images (4/3, 5/2, 3/1; A, A and 4/2, 5/3, 4/3; B, B’ of the Landsat 
image showing the different lithological units in different colours. A, B and and A’, B’ are representing the 
ratio images before and after applying the Crippen and Blom’s algorithm respectively. ‘Veg’ on the images 
represent for vegetation (i.e. reddish colour in A) and ‘a’ is representing the Precambrian rock. The ‘white’ 
polygons are indicating for lithological boundaries.  
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So, the above results (Figure 33) suggest that there appears to be a better qualitative enhancement because of 

the PCA, on top of the qualitative Crippen & Bloom technique. 

 

 

Figure 33: PCA applied RGB combinations of ratio images (4/3, 5/2, 3/1; A, A and 4/2, 5/3, 4/3; B, B’ of the 
Landsat image showing the different lithological units in different colours. A, B and and A’, B’ are representing 
the ratio images before and after applying the Crippen and Blom’s algorithm respectively. ‘Veg’ on the images 
represent for vegetation (i.e. Blue colour in A) and ‘a’ is representing the Precambrian rock. The ‘white’ polygons 
are indicating for lithological boundaries. 

a 
Veg a a 
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5. DISCUSSION 

5.1.       Evaluating the effect of vegetation on the spectral response of a bare ground (mineral/rock). 

The results of the bare-vegetation simulation model in this research, suggest that the effect of vegetation on the 

spectral responses of bare ground varies with the amount of vegetation cover and the spectral characteristics of 

the datasets used. Variable amount of vegetation causes spectral mixing and shifting problems for the different 

VNIR-SWIR bands of the Landsat and ASTER to a variable degree of influence. 

 

 From the spectral ratio analysis, with a 5% vegetation cover on the ground simulated by Landsat in this model 

(Figure 14, A; in chapter four) the spectral information acquired from band 4 is above the expected (falsely 

enhanced response) and this effect increases with increasing vegetation cover. This is probably because, band 4 

in Landsat is highly sensitive to vegetation. Also, in the first three bands of Landsat, and all but band 3 of the 

ASTER (Figure 14, B; in chapter four), the vegetation shows a relatively lesser impact when it is 5%, and the 

influence increases with increasing amount of the vegetation. The results of the simulation model show that the 

vegetation affects the spectral response of bare ground both by obscuring (hiding) and overestimating the spectral 

information of the bare ground. Obscuring and overestimating in this context mean, lowering and falsely 

increasing the signal of the bare ground below or above expectation according to the bare-vegetation simulation 

model. Additionally, the results from the slope values of the trend lines reveal that the smaller the difference in 

the slope values, the lower the influence of vegetation and vice versa (see Figures 15 & 16; section 4.1.2).  

 
According to the results of this research, a green vegetation cover of 20% or above seems to cause relatively 

stronger mixing and shifting problems on the spectral responses of the bare ground within the SWIR range of 

the Landsat image, including band 4 in the VNIR. Note that in this context the threshold of these percentages is 

depending our bare-vegetation simulation model where we start with 100% pure vegetation and 100% pure bare 

of the two end members. Thus, we used 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90% and 95% vegetation cover 

as threshold values to assess the influence of the variable amount of vegetation cover on the spectra of the bare 

ground. A vegetation cover of >=20 % shows significant effect on  almost all bands of the ASTER (VNIR-SWIR 

bands).  In relation to geological interpretations both images would be better interpretable across area of less than 

20% vegetation cover. However, in cases of higher vegetation cover, it is recommendable either to look for 

techniques that successfully can suppress the vegetation and enhance the geological information or use another 

high spectral and spatial resolution data set (i.e. air borne data) that might relatively be able to acquire more 

information with minimal mixing effects. In addition, note that our results are based on the particular area and 

environment where we derived the original bare ground and vegetation endmembers. Thus, it could be suggested 

that, further studies in other areas could be important to observe the varying effects of vegetation versus bare 

ground spectral signatures since spectral responses of the vegetation and the bare ground might vary in areas of 

different vegetation types and bare ground.   

 

The results in general, can be related to some previous works, (Carranza & Hale, 2002; Crippen & Blom, 2001; 

Fraser & Green, 1987; Grebby, 2011; Grebby et al., 2014; Murphy, 1995; Murphy & Wadge, 1994; Yu et al., 2011) 

who have shown that the vegetation could affect the geologic image interpretation either by obscuring the spectra 

of underlying minerals and lithologies or by completely dominating the overall spectrum (Siegal & Goetz, 1977). 

Most of the previous works were based on airborne datasets and or MSS, except (Crippen & Blom, 2001; Yu et 

al., 2011); who have used Landsat. The added value of this research is the quantitative simulated demonstration 

of the influence of variable amount of vegetation (amount of vegetation in percentages using bare-vegetation 

simulation model) on the spectra of bare ground in Tanzania imaged by the Landsat and ASTER including all 

bands within the VNIR-SWIR ranges (six Landsat and nine ASTER bands) which previously were given a little 

focus. 
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5.2.       Evaluation of the role of the vegetation suppressing Crippen’s and Blom’s algorithm 

The results of the ratio images, the ROI based spectral signatures and the RGB combinations of the ratio images 

in general suggest that the algorithm has little or no role in enhancing mineral/lithological information in both 

the Landsat and ASTER images. The results on the ratio images of the mineral groups (chapter-4, section 4.2.1) 

shows a little to no difference in the abundances (mineral content) of the images produced before and after 

applying the Crippen and Blom’s algorithm.  

For example, the AlOH group content on the ASTER image shows no change between the images before and 

after applying the Crippen and Blom’s algorithm. Moreover, the same type of mineral group (AlOH) on the 

Landsat image showed a decline in the original content (Figure 20; chapter four) which seems not related with 

AlOH. The reduction in the detected anomaly could be probably because the original anomaly was mostly due 

to vegetation and hence once the vegetation was suppressed by the applied algorithm, and the response reduced. 

Possibly, it could be related to the relative band depth values of the ASTER AlOH product that they were low 

and below the 2.0 threshold as used by (Cudahy, 2012). Also, such results might be observed in areas where there 

is no enough amount of detectable mineral/rock of interest but vegetated. Consequently, a given mineral is 

supposed to be enhanced only if a given area is characterized by the presence of that mineral, an argument that 

agrees with Crippen & Blom (2001). 

The results on the ratio images of the ferrous iron show a little difference between the images produced before 

and after applying the Crippen and Blom’s algorithm in that the abundances of the mineral groups relatively 

increased to a little extent in both the Landsat and ASTER images, with relatively better results in the ASTER 

image. This might be an indication that the Crippen and Blom’s algorithm has a better impact on the VNIR 

ranges than the SWIR. The NDVI images show that the Crippen and Blom’s algorithm is suppressing the 

vegetation. However, with respect to improving the geologic information from within the diagnostic SWIR 

wavelength region, it has a little to insignificant changes.  

For the ROI based spectra, there were a very little to no differences in the wavelength absorption position as well 

as on the relative band depth (RBD) (sections 4.2.3.1; 4.2.3.2, chapter four). The general trends of all the spectra 

of the ROI’s show that the red edge seems to be declining and the general spectral trend before and after applying 

the algorithm show relative differences in the actual reflectance positions. But these actual reflectance values 

could be affected by topographic slope and albedo variations. Hence, we calculated the RBD that can distinguish 

absorption features, while reducing differences in reflectance related to topographic slope and albedo variations 

(Crowley et al., 1989). We have used bands 4, 5, and 6 and 6, 7, 8, 9 RBD calculations to approximately represent 

for AlOH and MgOH mineral groups respectively (see section 4.2.3.2; chapter four) to check any possible 

variations in the diagnostic absorption or spectral features before and after applying the Crippen and Blom’s 

algorithm. However, there are not significant differences on the results of the RBD’s of both mineral groups 

(Figure 29, section 4.2.3.2).  

 

The results of the RGB combinations of the ratio images on the Landsat scene show that there seems to be 

qualitative improvements on the visual interpretation of some lithologic boundaries (especially on the 

Precambrian rocks, section 4.2.4, A’).  

 

Previous researches (Çorumluoğlu et al., 2013), have shown that principal component analysis (PCA) and ratio 

images can be used for visual rock identification from images. In this research we found that RGB combinations 

of ratio images obtained before and after applying the Crippen and Blom’s algorithm are better interpretable for 

qualitative rock discriminations, given that the RGB combination of the ratio products are subject to PCA.  In 

this research we applied a PCA transformation up on the qualitative RGB composite images of the Crippen and 

Blom’s algorithm. Each of the 3 ratio band products were used as input to PCA processing and then displayed 

as RGB images of the produced PC1, PC2 and PC3 (see Figure 33, section 4.2.5). Our results show that the RGB 
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combinations of the PCA’s are better interpretable for the discrimination of the lithologic boundaries. For 

example, especially the Precambrian rock (Figure 33, A’) show more clearer features and boundaries than the one 

with only Crippen and Blom’s applied RGB result (Figure 32, A’).  

 

 In general, the results on the ratio images and the ROI based spectra signatures show little to no quantitative 

changes to the spectrally interpretable content of the mineral groups while the RGB combinations of ratio images 

show changes in the relative contrast in the images qualitatively. 

 

In summary, the overall results imply that the Crippen and Blom’s algorithm has made some changes in terms of 

image contrast (made increased the contrasting of the images), but in terms of spectral information content it 

does not make significant changes/improvements. Thus, the algorithm seems to be useful for discrimination of 

possible spectrally related geological boundaries, but not useful for mineral group identification via diagnostic 

spectral absorption features. 

 

As described earlier in this study,  the another objective was to quantitatively demonstrate the role of the Landsat 

TM based Crippen & Blom (2001) algorithm in enhancing mineralogical/lithological information imaged by 

Landsat and to compare its impacts on ASTER, which has not been published previously. This is vital to 

understand if the algorithm can successfully be adopted to the multiband ASTER (including all bands in the 

VNIR-SWIR), for the acquisition of mineralogical/lithological information across vegetated terrains. 

 

 According to the results in this research, comparatively, the algorithm works for both sensors producing similar 

results. The algorithm seems to increase the clarity or contrast of the images in both sensors, but it does not 

significantly enhance the spectrally interpretable content of mineralogical/lithological information on both 

sensors.  
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6.CONCLUSIONS AND RECOMMENDATIONS 

6.1.       Conclusions 

Based on this research, the following conclusions are drawn; 

 

Research question 1: How does a green vegetation affect the spectral responses (reflectance) of minerals and/or 

rocks imaged by Landsat and ASTER? 

 
The bare-vegetation simulation model has successfully modeled the influence of vegetation on the spectral 

responses of the bare ground, assuming representative endmembers for this particular study area of SW Tanzania. 

The effect of vegetation on the spectral responses of the bare ground varies with the amount of vegetation cover 

and the spectral characteristics of the datasets used. Vegetation causes mixing within the 30-meter image pixels 

of the spectral response of bare ground both by obscuring (hiding) the spectral information of the bare and 

overestimating the spectral responses of the bare-ground. 

 

Research question 2:  What amount of green vegetation cover can have a significant effect on the spectral 

responses (reflectance) of minerals and/or rocks imaged by Landsat and ASTER? 
 

The density of vegetation cover causes spectral mixing and shifting problems for the different VNIR-SWIR bands 

of the Landsat and ASTER to a different degree of influence. The first three bands of Landsat are relatively less 

affected and the influence increases relatively with increase in vegetation thickness (> 20%). Also, for the ASTER 

image, the first two bands of the ASTER are relatively less affected and the influence increases relatively with 

increase a vegetation thickness of > 20%. This is specifically true for the case of the study area and using the 

bare-vegetation simulation model of this study. 

 
Research question 3: How comparable is the Crippen’s and Blom’s algorithm applied to ASTER VNIR-SWIR 

bands with the previously utilized Landsat to enhance the spectral responses of minerals and rocks? 

 

Despite of differences in terms mineral groups and lithologic discriminations possible between Landsat and 

ASTER, the Crippen and Blom’s algorithm work for both cases in a comparable way. The abundances estimated 

by ratio parameters of the ferrous iron mineral groups increased to a little extent in both the Landsat and ASTER 

images with relatively better results for the ASTER suppressed product. For mineral groups, it seems that the 

algorithm relatively better work with ASTER while for lithological discrimination from an RGB  combination 

image, the algorithm seems to better work with the Landsat. 

 

Research question 4:  How good is the Crippen and Blom’s algorithm to quantitively enhance spectral responses 

of the minerals/rocks as applied to both sensors? 

 

The algorithm qualitatively increased the clarity/contrast of the features in images of both sensors. However, the 

algorithm does not show a significant role to enhance the spectrally interpretable content of 

mineralogical/lithological information from both sensors. It seems useful for qualitative discrimination of 

geological boundaries, but not useful for mineral group identification via diagnostic spectral absorption features. 

Also, for the case of the lithological boundary discriminations, it shows more better qualitative enhancement 

results given that PCA is applied on top of the qualitative Crippen & Bloom RGB products of the Landsat image. 
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6.2.       Recommendations 

 

The following recommendations are suggested for a further research. 

 

1. In addition to the techniques of NDVI and RGB colour composite, it is recommended to crosscheck or 

completely acquire field data for endmembers representing a real bare ground exposure (different 

minerals or rocks of interest) and a real vegetation within in this study area. 
2. Apart from quantifying the amount of the green vegetation cover with field observations, further 

research is recommended to test the effect of vegetation on the spectral responses of mineral and/or 

rocks as it varies with the type, species, health, season and any other characteristics of the vegetation. 
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APPENDICES 

Appendix I: A 

Calculated reflectance values of each end members (A, B) and the mixed values of the endmembers (C) of the 

Nine models in each bands of the Landsat (for the evaluation of the effect of vegetation). The symbols B and V 

refers to the bare and vegetation respectively and the coefficient in each symbol represents the percent coverage 

of the endmembers. 
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Appendix I: B 

 Calculated reflectance values of each end members (A, B) and the mixed values of the endmembers (C) of the 

Nine models in each bands of the ASTER (for the evaluation of the effect of vegetation). The symbols B and V 

refers to the bare and vegetation respectively and the coefficient in each symbol represents the percent coverage 

of the endmembers. 
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Appendix: II, A 

Bare-vegetation simulation model results from the Landsat image when vegetation cover is 40%, 50%, 60%, 

90% and 95% (A, B, C, D, E respectively). 
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Appendix: II, B 

Bare-vegetation simulation model results from the ASTER image when vegetation cover is 40%, 50%, 60%, 

90% and 95% (A, B, C, D, E respectively). 
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Appendix III:  

Column charts showing the effect of variable amount of vegetation (when vegetation cover is 40%, 50%, 60%, 

90% and 95%) on the spectra of the bare ground in the Landsat (A) and ASTER (B) scenes.  
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Appendix IV: A 

Bare-vegetation simulation results when vegetation cover is 40%, 50%, 60%, 90% and 95% (A-E respectively) 

(Landsat); with trend lines showing the relationship between the bare and the mixed spectra. 
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Appendix IV: B 

Bare-vegetation simulation results when vegetation cover is 40%, 50%, 60%, 90% and 95% (A-E respectively) 

(ASTER); with trend lines showing the relationship between the bare and the mixed spectra. 
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Appendix V: 

 

Mean spectra of ten ROI’s of the ASTER scene both before and after applying the Crippen and Blom’s algorithm 

(A, B, C). 
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