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ABSTRACT 

In forest management, dominant tree species information plays an important role in many applications 

ranging from biodiversity to the economic assessment of forest for managing logging. Remote sensing data 

can be used effectively and efficiently to provide information of tree species distribution. Moreover, recent 

technological developments allow the user to access remote sensing data freely, including the higher 

resolution (both spatial and spectral) from Sentinel-2 imagery. The use of machine learning algorithms for 

remote sensing image classification has increased in the last two decades since the accuracy results typically 

outperform traditional parametric classifiers. The most popular algorithms are Artificial Neural Network 

(ANN), Random Forest (RF) and Support Vector Machine (SVM). However, none of these algorithms has 

been shown to consistently outperform, particularly for tree species classification. The other issue is that the 

use of red-edge bands in different seasonal imageries is still limited for tree species classification, and since 

Sentinel-2 allows the three red-edge bands to be approximated, it is desirable to investigate this advantage.  

 

This study aims to compare the performance of ANN, RF and SVM in tree species classification, particularly 

for the dominant species. The experiments were carried out using four images of different season (i.e., 

summer, autumn, winter and spring) using Sentinel-2 acquired over the Bavarian Forest National Park, 

Germany. The accuracy of ANN, RF and SVM in tree species classification were assessed through two main 

experiments: 1) assessing the accuracies of images with and without red-edge bands in a single season 

(summer) and 2) assessing the accuracies of different season images and multi-season image. The sensitivity 

of map accuracy to the algorithms’ parameter settings was investigated to arrive at the optimum value 

settings for model parameters. The performance of ANN, RF and SVM were evaluated using four 

approaches, i.e., overall accuracy, statistical difference in accuracy, ease of use regarding the parameters 

optimization and computational time. Besides the performance of the classifiers, the quality of training 

samples was investigated through class separability, sensitivity analysis of training data size and class 

definition threshold.  

 

The results show that the map accuracy when adding red-edge bands or using a multi-seasonal image is 

improved, yet it is comparable regardless of the algorithm used. Although in all experiments, SVM 

outperformed RF and ANN, the differences were not statistically significant. Furthermore, this study finds 

that the most efficient and the easiest algorithm to use is the RF algorithm as it needs the least number of 

parameters to be set, and it processes faster than ANN and SVM. The other finding in this study is that the 

threshold 75% of canopy coverage for species plot sample definition yielded an unsatisfactory result in class 

separability, and further yielded a classification accuracy which is considerably low.  

 

This study concludes that the Sentinel-2 has the potential for monitoring dominant tree species in mixed 

temperate European forest. It would be interesting to further investigate how soft-classification/fuzzy 

approaches and ancillary data such as DEM and LiDAR may further increase the mapping accuracy of tree 

species using Sentinel-2. 
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1. INTRODUCTION 

1.1. Background 

1.1.1. The importance of dominant tree species information 

Climate change and the increase in demand for wood products may cause a harmful impact on the forest 

biodiversity and conservation management. Unfortunately, there is no good understanding on the historical 

and present drivers of the forest biodiversity (Schulze et al., 2016). Therefore, several methods have been 

proposed to tackle this issue, and one of them is classification of tree species (Franklin, 2001). Knowledge 

about tree species is central to describe forest ecosystems as a parameter for assessing forest biodiversity 

(Innes & Koch, 1998; Hill et al., 2010; Immitzer et al., 2012), particularly for dominant tree species 

information. 

 

Information about the dominant tree species is essential to assist the management of plant community 

protection (Abdollahnejad et al., 2017). Through dominant tree species assessment, information regarding 

forest resilience and vulnerability such as drought, pathogens and climate change adaptation can be gathered 

regarding to prevent and mitigate the forest ecosystem from disturbances (Guyot et al., 2015; Périé & de 

Blois, 2016), the sustainability of forests, as well as the commercial value of forests (Franklin, 2001). Why 

does the dominant tree species have such a critical impact on the forest ecosystem? One may say that it is 

because of the relationship either between inter or intra-species within the forest. In the forest, all tree 

species live either individually or in association with each other, where some species may dominate over 

other species based on biotic and abiotic factors (Abdollahnejad et al., 2017). Thus, the domination of some 

species may influence the ecosystem functions since characteristics of each tree species characterize the 

ecosystem (Lohbeck et al., 2016).  

 

1.1.2. Remote sensing of tree species  

The ground-based survey was the traditional method for recording tree species distribution. However, for 

assessing large areas, ground-based survey is no longer effective in terms of cost and time since it is labour-

intensive and only limited area can be covered due to limited accessibility. Therefore, remote sensing data 

are commonly in forest mapping (Immitzer et al., 2012). A remote sensing synoptic overview provides 

integrated and high-level detailed information at various levels of resolution, allowing the retrieval of 

information of forest characteristics, including tree species composition (Franklin, 2001; Immitzer et al., 

2012; Barrett et al., 2016). 

 

Remotely sensed data such as MODIS and Landsat can be used freely by the public and optimized for many 

remote sensing applications. However, regarding limited spectral and spatial resolution, this imagery is not 

sufficient to capture the ecological characteristics of trees and resulting coarser scale of monitoring (Wulder 

et al., 2009; Lisein et al., 2015). A solution of using (airborne) hyperspectral sensor seems promising since 

from spectral domain the sensor uses hundreds of continuous narrow bands allowing finer result in 

distinguishing spectral characteristics among tree species (Dalponte et al., 2012; Raczko & Zagajewski, 

2017). Moreover, the airborne hyperspectral has a finer spatial resolution (up to 1m) which may be ideal for 

classifying the individual tree species (Shang & Chisholm, 2013; Ballanti et al., 2016; Vaglio Laurin et al., 

2016). However, the hyperspectral system is costly and their availability is limited (Immitzer et al., 2012) . 



MAPPING DOMINANT TREE SPECIES FROM REMOTELY SENSED IMAGE USING MACHINE LEARNING ALGORITHMS  

2 

Recently, a new generation of multispectral satellite imagery -Sentinel-2A & B- were launched and bringing 

a new dimension to the domain of freely accessible remote sensing data (ESA, 2015). Sentinel-2 has more 

bands with a wider range of spectral and finer resolution both spatial and temporal (13 bands and 10-20 m 

resolution, 10 days cycle, 3 red-edge bands) as compared to other free satellite data such as Landsat. These 

specifications open an opportunity to produce a more robust methodology for tree species mapping using 

freely accessible satellite imagery data, particularly for a group of species/stands (Immitzer et al., 2016). 

 

 

 

Fassnacht et al. (2016) reported that selection of the wavelength region is also important to obtain better 

discrimination among tree species. It was found that red and Near Infrared (NIR) wavelength are the most 

important regions where the intensive ratio between vegetation absorption and reflection occurred. Thus, 

these two regions are useful in detecting the leaf pigment which is the primary information for distinguishing 

tree species (Hoffer, 1978). Recently, many studies are trying to optimize the red-edge region for tree species 

classification and found it useful (Immitzer et al., 2012; Schuster et al., 2012). The red-edge denotes the 

maximum slope or transition region (Figure 1.1) of vegetation spectra (680nm -750nm) where the strong 

chlorophyll absorption in the red spectrum and the canopy reflectance in NIR occurs (Mutanga & Skidmore, 

2007). This red-edge region has been successful in estimating vegetation information such as chlorophyll 

concentration, biomass and LAI. Since the chlorophyll concentration is related to the leaf pigment, several 

studies found the red-edge region to be useful in enriching spectral information to gaining higher accuracy 

in tree species classification (Immitzer et al., 2012; Adelabu et al., 2013; Li et al., 2015; Omer et al., 2015). 

 

The temporal resolution of remote sensing imagery, particularly from space-borne/satellite platforms, 

allows the user to optimize different seasons to capture tree phenology throughout the year (Hill et al., 2010; 

Lisein et al., 2015). Considering the phenology, Hill et al. (2010) reported that combining time-series imagery 

in different growing seasons of the trees resulted in a robust species map. This report confirms the statement 

from Hoffer (1978) that considering temporal variations is necessary to understand the spectral 

characteristics of vegetation since the spectral is not static due to the vegetation biological temporal 

phenomenon or phenology. The term phenology is referred to leaf-on/leaf-off condition which covers the 

Figure 1.1. The spectral response characteristics of vegetation. The red-edge region lies on 

wavelength of 680-750 nm marked by red circle. (adapted and modified from Hoffer (1978)). 
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intense green colour of leaves as well as flower blossom events in spring, to the senescence events which 

may change the colour of the leaf under the autumn in deciduous forest (Fassnacht et al., 2016). Therefore, 

in spring and autumn, tree’s leaves may have various spectral reflectance according to the alteration of 

biochemical and biophysical attributes (Hill et al., 2010). Thus, by combining different 

seasons/multitemporal imagery, the user can capture tree phenology to enrich the spectral variability 

between the tree species to gain higher accuracy in tree species classification (Mickelson et al., 1998; Hill et 

al., 2010; Lisein et al., 2015). However, it was suggested to have knowledge about species’ phenological cycle 

in advance. Further, this knowledge can be used for determining the suitable season represented by a certain 

time of image acquisition to address the specific phenology of tree species (Fassnacht et al., 2016). 

 

1.1.3. Overview of machine learning algorithms in tree species classification 

Recently, advances in technology allowed the machine to adopt intelligent systems to process and solve 

problems. Such intelligent systems use learning process and trains its system through experience to solve 

the problem from the input data. Learning process imitates some facets of the human mind to solve highly 

complicated problems (Chaudhary et al., 2013). Thus, machine learning is about enabling the computers to 

modify and adapt their actions, so the actions may improve the efficiency and accuracy of the decisions 

which are drawn by the computer program (Chaudhary et al., 2013; Marsland, 2015). For the application, 

machine learning is widely used in classification, where data is separated into different segments to label the 

data object (Chaudhary et al., 2013). This classification can be applied in tabular/spreadsheet data to image 

recognition which is closely related to the most widely used remote sensing application (i.e., image 

classification).  

 

In the domain of remote sensing, machine learning algorithms have become more popular compared to the 

traditional classifiers such as Maximum Likelihood Classifier. Machine learning algorithms mostly yield 

higher accuracy in image classification compared to the traditional parametric classifiers (Huang et al., 2002; 

Schuster et al., 2012; Shang & Chisholm, 2013; Khatami et al., 2016; Laurin et al., 2016). The higher accuracy 

obtained by machine learning algorithms is based on non-parametric data distribution (no prior 

probabilities). Therefore, this type of classifier does not depend on the performance of the pre-defined 

model and can handle complex data with respect to the nonlinear input data and features (Belgiu & Drăguţ, 

2016; Ghosh et al., 2014). Another advantage of the machine learning algorithms is that several algorithms 

have capability to gain optimum classification accuracy by using small numbers of training/observation set 

and a high number of input features (Cracknell & Reading, 2014; Mountrakis et al., 2011). Fassnacht et al. 

(2016) and Khatami et al. (2016) reported from many types of machine learning algorithms, there are three 

most popular algorithms that are commonly used in remote sensing applications, i.e., Artificial Neural 

Network (ANN), Random Forest (RF) and Support Vector Machine (SVM). Generally, SVM outperforms 

the accuracy of ANN and RF classification in many applications (Kotsiantis, 2007; Khatami et al., 2016), 

but RF is used to be more efficient in the parameter handling and classification speediness (Kotsiantis, 

2007). Since each algorithm has its own advantages, this study will apply and compare the performance of 

these three popular machine learning algorithms, specifically for mapping dominant tree species. In 

following paragraphs the characteristics of ANN, RF and SVM will be explained. 

 

Artificial Neural Network (ANN) 

The basic principal of ANN is that the algorithm imitates a biological brain through two tasks, i.e.: (i) the 

network gains knowledge from certain environment through a learning process and (ii) the knowledge is 

stored in synaptic weights or interneuron connection strengths (Mas & Flores, 2008). As well as the other 

machine learning algorithms, ANN is also based on non-parametric data distribution. Although there are 

several types of ANN, the most common type of ANN in remote sensing application is Multilayer 
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Perceptron (MLP). The applications of MLP can be found in many studies of remote sensing application 

(Cracknell & Reading, 2014; Omer et al., 2015; Li et al., 2016; Raczko & Zagajewski, 2017). MLP is a feed-

forward network (Figure 1.2) where a single hidden layer of nodes exists (Cracknell & Reading, 2014) and 

contains several parameters i.e. size (number of input nodes and hidden layers); initial weight range; 

activation functions; learning rate and momentum; and stopping criterion (Mas & Flores, 2008).  

 

The ANN-MLP works based on the backpropagation algorithm, where the error is propagated back to input 

data layer as the one iteration is completed (Ardö et al., 1997; Skidmore et al., 1997). In the neural network 

structure, the backpropagation encompasses two iterating phases, i.e., forward and backward phase.  

Forward phase is the first phase where the output nodes calculated from the input data. In the second phase, 

the calculated output node values are compared with the desired known targets value. The difference 

between the value of output node and the target node is treated as the error which is used to modify the 

weights in the previous layer. This process represents one epoch in backpropagation algorithm. The total 

error between the calculated value and the target value for each node is calculated as the Root-Mean-Square-

error (RMSE) in the system. The algorithm’s model is running until the total error decreased to a 

predetermined level, or the rate of decrease becomes asymptotic (Skidmore et al., 1997). 

 

 

Random Forest (RF) 

The Random Forest (RF) algorithm is a combination of several ‘branch’ predictors where each tree depends 

on the values of the random vector which are independently sampled, and each tree has the same 

distributions within the forest (Breiman, 2001). RF is an advanced method of the decision tree algorithm 

which is designed as a hierarchical structure (binary structure) of certain classes (Breiman et al., 1984). Each 

class consisted of a root node and a number of interior nodes as non-terminal nodes and linked to the 

number of terminal nodes (decision stages) as a final classification (Swain & Hauska, 1977). RF works by 

Figure 1.2. The architecture of ANN-Multilayer Perceptron (MLP) where forward propagation flows from 

left (input layer) to right (hidden layers and output layer).  (adapted and modified from Mas & Flores, 2008)  
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assembling trees to draw a subset of training samples through replacement (a bagging approach) (Breiman, 

1996). Only two-thirds of samples is used for training the trees while one-third are used for internal cross-

validation. All samples were randomly chosen. After the samples are divided, the decision trees can be 

independently produced without any pruning and then the nodes are split by the user-defined number of 

features (Figure 1.3). Further, each decision trees will grow together formed as a forest depending on the 

user-defined number of trees (Belgiu & Drăguţ, 2016). The classification decision is taken by averaging the 

class assignment probabilities which is calculated by all produced trees to give a single vote to the most 

frequent class. In other words, a class with maximum votes is the final selected class (Rodriguez-Galiano et 

al., 2012a; Belgiu & Drăguţ, 2016).  

 

Based on this process, RF has two important parameters that need to be set, i.e., number of features to be 

selected and tested for the best split when generating the tree (Mtry) and number of trees to be generated 

(Ntree), both are user-defined. The advantages of RF are that it is relatively insensitive to overfitting; it can 

generate an internal unbiased estimation of error; it gives estimates of important variables in the 

classification; and it can deal with thousands of input variables without any deletion (Rodriguez-Galiano et 

al., 2012a; Belgiu & Drăguţ, 2016).   

     

 

Support Vector Machine (SVM) 

First suggested by Vapnik in 1979, SVM became widely used as a classifier for remote sensing image 

classification in past two decades (Mountrakis et al., 2011). The approach of SVM is to find the optimum 

separation of the hyperplane between the classes by using the support vectors (training samples that lie on 

Figure 1.3. Random forest illustration with an example of using 7 features and Mtry-3 (adapted and modified 

from Thampi et al., 2013 and Kovanović et al., 2016). 
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the edge of class) and set aside other training samples (Figure 1.4). Through this approach, the optimal 

hyperplane will be fitted. SVM also allows small training datasets to gain higher accuracy, which is a very 

advantageous feature for remote sensing application (Foody & Mathur, 2004). As a matter of fact, SVM was 

initially designed for solving binary (two-class) problems. Therefore, when dealing with the multiple classes, 

which often occurs in remote sensing domain, an appropriate multi-class method was required (Pal & 

Mather, 2005). The multi-class method divides into two methods, i.e., One Against One (OAO) and One 

Against All (OAA). In OAO, several classifiers are combined and all possible combinations are evaluated 

from the training set of n classes. Meanwhile, in OAA method, a total of n SVMs are developed for each of 

the n classes, then each SVM trained to classify one class against all other classes (Tso & Mather, 2009). 

Based on Pal & Mather (2005), the OAO method gives higher accuracy as compared to OAA. Hence, OAO 

is the suitable SVM’s method in image classification domain when dealing with small training sets against 

high dimension data.  

 

 

Kavzoglu & Colkesen (2009) stated that SVM classification could also be divided into two approaches, i.e., 

linear and non-linear SVMs. Non-linear SVM is usually suitable for classification of remotely sensed image 

since the data are not linearly separable when the pixel is used as a sample. In this case, data sets cannot be 

classified into two classes with a linear function in the input space. The non-linear approach can be applied 

in remotely sensed image classification by using a kernel function, where the kernel function enables the 

data points to be spread along the hyperplane in such a way that a linear hyperplane can be fitted (Kavzoglu 

& Colkesen, 2009). There are four types of kernel functions that are used in SVM, i.e, linear, polynomial, 

Radial Basis Function (RBF) and sigmoid. However, only polynomial and RBF are commonly used in 

remote sensing image classification, and regarding the accuracy, RBF usually outperformed polynomial 

(Huang et al., 2002; Kavzoglu & Colkesen, 2009). 

 

Figure 1.4. Support vector machine illustration (adapted from Burges, 1998 and Mountrakis et al., 2011) 

 



MAPPING DOMINANT TREE SPECIES FROM REMOTELY SENSED IMAGE USING MACHINE LEARNING ALGORITHMS 

7 

1.1.4. Sentinel-2  

Sentinel-2 is a new generation of multispectral satellite imagery which was launched in June 2015 under the 

European Copernicus program. The launch mission brings a new dimension to the freely accessible data of 

remotely sensed imagery by providing an image with relatively higher resolution in both spectral, spatial and 

temporal (ESA, 2015). The satellite carries sensor of Multispectral Imager (MSI) with a capability to acquire 

data in 13 bands in various spatial resolution (4 bands 10 m; 6 bands 20 m; and 3 bands 60 m) and higher 

temporal resolution (10 days and 5 days with the twin satellites (Sentinel-2B) orbiting in 2017) with swath 

width of 290 km (Immitzer et al., 2016). The mission of Sentinel-2 is to deliver image in accordance with 

the land resources monitoring, emergency management, security and climate change (ESA, 2015). 

 

Compared to the other free satellites imagery which has the closest specification such as Landsat 8 OLI or 

Landsat 7 ETM+, Sentinel-2 outperforms the Landsat specifications, particularly for land applications. In 

term of spectral resolution, the three red-edge bands (B5, B6, B7) of Sentinel-2 may give more advantages 

to monitoring and capturing vegetation properties such as biomass, chlorophyll concentration and LAI 

(Mutanga & Skidmore, 2007) as compared to Landsat which only has a single red band. The spectral 

configuration of Sentinel-2 is designed to match Landsat specifications to ease the integration of these 

satellite imageries (Mandanici & Bitelli, 2016). Regarding the spatial and temporal resolution, Sentinel-2 has 

again outperformed Landsat, with 10-20m resolution to Landsat 30m resolution and 5-10 days cycle to 

Landsat 16 days cycle. Again, Mandanici & Bitelli (2016) noted that the spatial and temporal resolutions of 

Sentinel-2 and Landsat permit easy integration. This study investigates the capability of advanced 

specifications of Sentinel-2 over Landsat for tree species classification.   

 

1.2. Problem statement 

From several prior studies of tree species classification, the accuracy yielded by SVM, RF and ANN 

algorithms showed that none of these algorithms consistently outperformed the others. Some results 

showed that SVM obtained higher accuracy than RF (Dalponte et al., 2012; Adelabu et al., 2013; Ballanti et 

al., 2016), while others reported that RF outperformed SVM (Pal, 2005; Sesnie et al., 2010; Li et al., 2016). 

Although there is a lack of study using ANN in tree species classification (Raczko & Zagajewski, 2017), in 

general, several studies indicate that ANN obtains the lowest accuracy as compared to RF and SVM 

Figure 1.5. The spectral bands comparison between Sentinel-2, Landsat 8 and Landsat 7. Source: 

https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/ 

(60m) 

(20m) 

(10m) 
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(Attarchi & Gloaguen, 2014; Omer et al., 2015). Therefore, further evaluation is needed to evaluate the 

performance of ANN, RF and SVM collectively to obtain a comprehensive reference of the performance 

of the algorithms in remote sensing applications, particularly for dominant tree species classification. 

Moreover, the studies that collectively compare the ANN, SVM and RF algorithms are still few and mostly 

were applied for land use/land cover classification or crop classification instead of tree species classification. 

 

Previous studies have proven that the red-edge channel is useful for improving tree species classification 

since it is sensitive to the chlorophyll content (Immitzer et al., 2012; Schuster et al., 2012; Adelabu et al., 

2013). Furthermore, using or adding different season images is also improved the tree species classification 

(Mickelson et al., 1998; Hill et al., 2010) since the tree has its phenological event which is related to the 

dynamic of chlorophyll content and leaf pigment (Horler et al., 1983). However, based on our knowledge, 

there are still limited studies that optimize the combination of red-edge channel and different season image 

for tree species classification. Some studies optimized the red-edge channel only in a single season image, 

particularly summer with fully developed leaves (leaf-on) since that is a decent condition for classification 

(Immitzer et al., 2012; Waser et al., 2014). On the other hand, Hill et al. (2010) reported that adding leaf-off 

and partially leaf-on/off images without red-edge channel improve the classification accuracy. Therefore, 

investigating the combination of red-edge bands in different season images may obtain a comprehensive 

description of Sentinel-2 capability to improve the accuracy of tree species classification through 

multitemporal approach. 

 

1.3. Research objectives 

The aim of the study is to evaluate the performance of three different machine learning algorithms, i.e., 

Artificial Neural Network (ANN), Random Forest (RF) and Support Vector Machine (SVM) in mapping 

dominant tree species using multi-season Sentinel-2 multispectral imagery. The specific objectives are as 

follow: 

 

1. To compare the accuracies of the ANN, RF and SVM algorithms in mapping dominant tree species 

using a single month in the summer period of Sentinel-2 imagery without using red-edge bands (i.e., 

using B2-B4; B8; B11-B12 bands only). 

 

2. To compare the accuracies of the ANN, RF and SVM algorithms for mapping dominant tree species 

using a single month in the summer period of Sentinel-2 imagery with the inputs of red-edge bands 

(i.e., using B2-B8; B8A; B11-B12 bands). 

 

3. To compare the accuracies of the ANN, RF and SVM algorithms for mapping dominant tree species 

using all bands (i.e., using B2-B8; B8A; B11-B12 bands) of multi-season Sentinel-2 imagery (i.e., 

winter, spring, summer and autumn).  

 

4. To compare the overall accuracies of the ANN, RF and SVM algorithms for mapping dominant tree 

species using Sentinel-2 imagery in all experiments (red-edge and multi-season). 

 

5. To evaluate the computational efficiency (i.e., CPU time usage and parameter settings) of the three 

machine learning algorithms (i.e., ANN, RF and SVM) for mapping dominant tree species using 

Sentinel-2 imagery. 
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1.4. Research questions 

1. Does adding red-edge bands of the Sentinel-2 imagery significantly improve the dominant tree species 

mapping accuracy compared to the accuracy derived from the Sentinel-2 image without red-edge 

bands? 

 

2. Does the use of multi-season Sentinel-2 imagery significantly improve the dominant tree species 

mapping accuracy compared to the accuracy derived from single season image? 

 

3. Are there significant differences in dominant tree species mapping accuracies between the ANN, RF 

and SVM algorithms using Sentinel-2 imagery? 

 

4. Which classification algorithm (i.e., ANN, RF and SVM) is computationally more efficient in mapping 

dominant tree species? 

 

1.5. Research hypotheses 

Hypothesis 1 

H0: There are no significant differences in dominant tree species mapping accuracies with or without the 

inputs of the red-edge bands of Sentinel-2 imagery. 

H1: Adding the red-edge bands of the Sentinel-2 imagery can significantly improve the dominant tree species 

mapping accuracy. 

 

Hypothesis 2 

H0: There are no significant differences in dominant tree species mapping accuracies between the use of the 

one single season image (summer) and the multi-season Sentinel-2 imagery. 

H1: Adding the multi-season Sentinel-2 imageries can significantly improve the dominant tree species 

accuracy rather than the use of any single season Sentinel-2 imagery. 

 

Hypothesis 3 

H0: There are no significant differences in dominant tree species mapping accuracies between the ANN, RF 

and SVM algorithms using Sentinel-2 imagery. 

H1: The mapping accuracy derived from the SVM algorithm is significantly higher than the ANN and RF 

algorithms. 

 

Hypothesis 4 

H0: There are no differences in computational efficiency for mapping dominant tree species between the 

ANN, RF and SVM algorithms. 

H1: The RF algorithm is computationally more efficient than the ANN and SVM algorithms for mapping 

dominant tree species. 
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2. MATERIALS AND METHODS 

2.1. Study Area 

The study was undertaken in the Bavarian Forest National Park (BFNP), located in south-eastern Germany 

(48°54' N, 13°29' E) within the two rural districts of Regen and Freyung-Grafenau bordering The Sumava 

National Park in the Czech Republic (Figure 2.1). The BFNP area covers 242 km2 and is characterized by 

montane areas in altitudes between 300 to 1,450 m. The area belongs to the temperate climate zone which 

is influenced by Atlantic and continental characteristics. The annual precipitation is between 900 and 1800 

mm, and the mean annual temperature varies from high elevations (3.5°C) to low elevations (9.0°C). 

Geologically, it is relatively homogenous with granitic and gneissic bedrock. The soil is acidic with sandy 

and loamy soils dominating (Bässler et. al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The location map of Bavarian Forest National Park with the distribution of sample 

plots. The presented image is Sentinel-2 with true colour composite (band 432) acquired at 

August 27, 2016. 
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The composition and the distribution of tree species in BFNP had changed along with the history of the 

forest management within BFNP. In the beginning of 16th  century, Norway spruce (Picea abies) was the most 

common tree species followed by beech (Fagus sylvatica) and silver fir (Abies Alba). Previously, the 

composition was dominated by beech-fir forest type. As time went by, the spruce became more dominant 

since the forest management was handed over to the Kingdom of Bavaria at 19th-20th century and during 

World War I and II, it formed highest proportion. In this time, the beech was relatively stable while the fir 

was decreased (Heurich & Englmaier, 2010). When the National Park was established in 1970, the 

proportion of spruce had increased to 72% while beech was still stable at 25% and fir decreased to only 

3.2%. Then,  20-30 years after establishment, the composition of tree species within BFNP changed a little 

where the spruce decreased due to the bark beetle infestation, fir increased and beech remains stable 

(Heurich & Englmaier, 2010). In present days, the spruce is still dominating the species in BFNP forming 

around 67% of the forest, as shown in Table 2.1 which taken from Sommer et al., (2015).  

 

Sommer et al., (2015) divided the forest types in BFNP into three characteristics with regards to the elevation 

as follows: 

1. Region at elevation > 1,100 m (16% of the BFNP area) is dominated by Norway spruce. 

2. Region at elevation between 600-1,100 m (68% of the area) consists of montane mixed forests 

with Norway spruce, silver fir, European beech and sycamore maple. 

3. Region at elevation < 600 m, at the bottom of the valley (16% of the area), consists of Norway 

spruce, mountain ash and birch . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Data 

2.2.1. Tree species plot 

This study used an existing sample of tree species plots which was designed in 2006 under the BIOKLIM 

project, with fixed coordinate position to allow annual biodiversity monitoring (Bässler et al., 2009). The 

BIOKLIM sampling design uses four transect plots and represents the different ranges of altitude 

environment within the BFNP. The sample consists of 293 plots, each measuring 30 m × 30 m (Figure 2.1). 

Twenty-three replications of measurement within the altitudinal range are needed to overcome the 

Scientific Name Common Name 
Relative Amount 

(%) 

Picea abies Norway spruce 67 

Fagus sylvatica European beech 24.5 

Sorbus aucuparia Common rowan 3.1 

Abies alba Silver fir 2.6 

Acer pseudoplantanus Sycamore maple 1.2 

Betula pendula European white birch 0.7 

Pseudotsuga menziesii Douglas fir 0.2 

Larix decidua European larch 0.1 

Pinus sylvestris Scots pine 0.1 

Alnus glutinosa European alder 0.1 

Populus tremula European aspen 0.1 

Fraxinus excelsior European ash 0.1 

Table 2.1. Relative percentage of tree species composition within BFNP based 

from forest inventory in 2002/2003 (taken from Sommer et al., 2015)  
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environmental effect. Therefore, to reach the number of replications, the distance between the plots is 100 

m (Bässler et al., 2009). 13 more plots from Wang et al. (2017) were added to add more information about 

the species distribution. These 13 plots have same dimensions as the BIOKLIM’s plots and were taken 

during fieldwork from mid-July to mid-August 2013. 

 

A threshold 75% of canopy coverage was used to define a species as dominant within a plot. The 75% 

threshold is based on the FAO National Forest Inventory Guideline (2004). To assign plot into certain class 

in the classification scheme, several conditions were used to define the class boundary (Table 2.2). Refer to 

the BFNP forest inventory 2002/2003 (Table 2.1), there are two dominant species (i.e., spruce and beech) 

within BFNP. The other species were categorized as less dominant species in this study. If a plot is covered 

whether by spruce or beech canopy for ≥ 75%, then it will be assigned as a spruce or beech class. If the plot 

consists of less dominant species outside spruce and beech for ≥ 40%, then it will be assigned to a mixed 

class. This 40% canopy coverage is assumed to be the boundary between the vegetated area and the 

deadwood area (non-vegetated) since based on the BFNP land use map and BIOKLIM database, mostly 

the plots which are lied on the deadwood area have < 40% of canopy coverage. A class called spruce-beech 

was developed since several plots consist of spruce and beech with canopy cover of ≥ 75%. The deadwood 

class was considered to be added to classification scheme as it contains information about the evidence of 

bark beetle infestation (Heurich & Englmaier, 2010) and that this class can also give a picture of the 

distribution of BFNP area which previously was vegetated. The deadwood class is defined by canopy 

coverage of < 40% for all species both dominant and less dominant. 

 

 

 

 

 

 

The canopy cover percentage information is available on the BIOKLIM plots database. It also should be 

noted that the analyzed object within the plot is a group of stands/species instead of an individual stand. 

The defining and setting of the species configuration plots were assisted by a very high-resolution image 

(0.5 m) interpretation from an aerial photograph (AP) which was taken on August 19, 2012, and existing 

land cover/land use map of BFNP which was also derived from the AP for references.  

To develop a classification scheme that consists of classes which spectrally have a minimum correlation, a 

class separability test was proposed using Transformed Divergence (TD) to find the best classification 

No  Class Name Class Boundary Conditions 

1 Spruce the canopy coverage of spruce is ≥ 75% and other species are < 75%.    

2 Beech the canopy coverage of beech is ≥ 75% and other species are < 75%.    

3 Spruce-Beech the canopy coverage of spruce and beech are ≥ 75% and other species are < 

75%.    

4 Mix Species the canopy coverage of: 
  

1. less dominant species is ≥ 40%, and spruce and or beech do not exist. 

2. spruce and or beech is ranging from ≥ 40% to <75%, with or without less  

    dominant species existence. 

3. all species both dominant (spruce and beech) and less dominant are ≥ 75%. 

  

  

   

5 Deadwood the canopy coverage of all species both dominant (spruce and beech) and less 

dominant are < 40%. Note, if the plot is not lie on the deadwood area based on 

AP Land-Use map, then it considered to assign as mix class. 

Table 2.2. The class boundary condition for defining and assigning species into a class in the classification 

system. All the conditions are referred to the FAO National Forest Inventory Guideline (2004) where the 

threshold of canopy coverage within a plot is 75%. Since the BFNP dominated by spruce and beech, other 

species was assigned as mixed species, besides the number of sample plots is too few. The class configuration 

setting also assisted by land use map of BFNP which derived from aerial photograph (AP) interpretation.   
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scheme. This process is achieved through trial and error process by selecting and assigning several pixels as 

a region of interest (ROI) within the plots. As Jensen (2005) proposed, the index of TD should has value at 

least 1.7 to imply that the classes have good separation/minimum spectral correlation. From the developed 

classification scheme, 2,572 original pixels were created for classification process. Further, the original pixels 

were split randomly into training set (two-thirds of original pixels) and test set (one-third of original pixels), 

refer to the suggestion from Ghosh et al. (2014) and Raczko & Zagajewski (2017). Thus, the training set has 

1,712 pixels, meanwhile test set has 860 pixels. The sizes of training and test sets were varied for each class 

due to a different number of samples per class. The detail of the classification scheme and the number of 

training and test sets can be seen in Table 2.3. 

 

 
 

 

 

 

 

 

 

 

 

2.2.2. Sentinel-2 Pre-Processing  

In this study, Sentinel-2 imagery were acquired at four different months. These images include October 

2015, December 2015, May 2016 and August 2016, representing different seasons from autumn, winter, 

spring, and summer respectively. Following the study objectives, various acquisition images will address the 

phenology of tree species within BFNP as input features for the classifiers. Sentinel-2 has 13 different 

wavelength bands with various resolutions (10 m, 20 m and 60 m). This study uses only ten bands with 10 

m (B2-4; B8) and 20 m (B5-7; B8A; and B11-12) resolution. The other three bands (B1, B9, B10) are not 

utilized for this study because they are extremely coarse (60 m in spatial resolution) and are considered as 

‘atmospheric bands’ which are not useful for this study. All the bands were resampled to the resolution of 

20 m to preserve the information in the red-edge bands (B5, B6, B7) since the red-edge wavelength is 

essential for capturing chlorophyll content information within vegetation. Table 2.4 shows the selected 

bands that will be used for this study.  

 

All the Sentinel-2 images used in this research are at level 1-C where the images are geometrically corrected, 

and per-pixel radiometric measurements are provided in Top of Atmosphere (ToA) reflectance (ESA, 2015). 

However, not all the images are in the cloud-free condition, particularly for May 2016 (spring) image. 

Therefore, a cloud masking method was applied by using “Cloud Mask Model” which is run in ERDAS 

Imagine® software to mask the cloud. The BFNP land cover map was used to mask the area outside our 

study area from the images. Since this study is not focusing on land cover classification, other objects such 

as built-up area and water bodies are masked out. This activity was achieved through visual interpretation 

from very high-resolution aerial photograph.  

 

To create multi-season image, all bands from four different season images were stacked into one file image. 

This multi-season image consists of 40 bands derived from 10 bands of each single season image. 

Furthermore, the images are divided into three datasets, i.e., single season (summer) without red-edge bands 

(6 bands); single season images (summer, autumn, winter and spring, each image has 10 bands); and Multi-

season image (40 bands). 

ID Class Name 
Number of Pixels 

Training  Test  

1 Spruce 529 261 

2 Beech 386 193 

3 Spruce-Beech 252 168 

4 Mix 252 110 

5 Deadwood 293 128 

Table 2.3. The classification scheme with number 

of training and test pixels for each class.  
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2.3. Methods 

 

Band Resolution Wavelength Description Information 

B2 10 m 490 nm Blue Resampled to 20 m 

B3 10 m 560 nm Green Resampled to 20 m 

B4 10 m 665 nm Red Resampled to 20 m 

B5 20 m 705 nm Red-Edge 1 - 

B6 20 m 740 nm Red-Edge 2 - 

B7 20 m 743 nm Red-Edge 3 - 

B8 10 m 842 nm Near Infrared (NIR) Resampled to 20 m 

B8A 20 m 865 nm Near Infrared 2 (NIR) - 

B11 20 m 1610 nm Shortwave Infrared (SWIR) - 

B12 20 m 2190 nm Shortwave Infrared (SWIR) - 

Table 2.4. The characteristics of selected bands of Sentinel-2 which is used in this 

study (adapted  from ESA, 2015). 

Figure 2.2 A flow chart of the methodology and classification process. Three datasets were produced 

from different season images of Sentinel-2. The dataset 3 (multi-season image) were used to determine 

the optimum value of ANN, RF and SVM parameters. After the optimum value was found, then it will 

be applied to datasets 1 and 2 in classification process. To assess the performance of the algorithms, the 

sensitivity analysis was applied to the algorithms parameters. This is also done by using dataset 3. 
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2.3.1. Classification procedure 

Regarding the study objectives, we applied three machine learning algorithm classifiers (i.e., ANN, RF and 

SVM) for tree species classification and then evaluated the performance of these algorithms on different 

datasets (i.e., single season (summer) without red-edge bands; single season images; and multi-season image). 

The evaluation of the performance of the algorithms was done through sensitivity analysis of the parameters 

(Figure 2.2). The purpose of conducting sensitivity analysis in algorithm parameter settings, other than 

performance evaluation, is to find the optimum value for each parameter for each algorithm, given the input 

data set. The sensitivity analysis is only applied to one dataset, i.e. multi-season dataset, since accuracy of 

multi-season image potentially outperforms the other datasets, and further, the defined optimum value will 

be applied to all datasets for each algorithm.  

 

2.3.2. Parameters optimization 

 

Artificial Neural Network (ANN) 

As mentioned before in §1.1.3, The MLP is the most common ANN architecture that used by remote 

sensing application (Tso & Mather, 2009; Cracknell & Reading, 2014; Kumar et al., 2015; Raczko & 

Zagajewski, 2017). Therefore, this study is applied ANN-MLP for classifying dominant tree species. Five 

parameters need to be optimized in using ANN-MLP, i.e., training threshold contribution, learning rate, 

momentum, the number of hidden layers and number of epochs (iterations). The training and the 

classification processes were applied in ENVI-IDL® software using the Neural Net classification tool. In 

this study, the number of iterations was determined by the lowest root-mean-square (RMS) error by running 

the model in 1000 iterations. As seen in figure 2.3, the RMS tended to converge beyond approximately 400 

iterations. Thus, 400 iterations were decided to be used in this study since beyond this value there are no 

substantial changes in the errors, and the model was tended to overfit, and further needs more 

computational effort. The other parameters were also determined through experimental testings, and the 

sensitivity analysis is used to find the optimum value. Since the parameters in ANN are user-defined based, 

Figure 2.3. The result of optimum iteration number for ANN algorithm in this study. The target 

point shows the number of iteration that been chosen for this study is 400 with RMS 0.6652. The 

test was running in 1000 iterations.    
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often the optimum number was found based on the user experience and experimental testing (Skidmore et 

al., 1997; Kavzoglu & Mather, 2003). Thus, based on the experimental results, this study uses the value of 

0.1, 0.2, 0.2, 2 for training threshold contribution, learning rate, momentum and number of hidden layers 

respectively (Table 2.5). All the training and the classification processes used logistic activation function.   

 

Random Forest (RF)  
The training and classification processes for RF classifier were performed in R environment using the 

randomForest package (Liaw & Wiener, 2002). Two parameters are needed to optimize; those are Ntree 

(number of trees) and Mtry (number of input features). These two parameters are user-defined which allow 

user to used arbitrary values. However, this is not an issue since RF is insensitive to overfitting and the use 

of Out-Of-Bag (OOB) produced unbiased estimation (Breiman, 2001; Pal, 2005; Belgiu & Drăguţ, 2016). 

The OOB is based on the bagging approach by drawing a subset of the training set from replacement 

(Breiman, 1996). Through the bagging approach, the same sample can be selected many times while the 

others might never chosen (the OOB). Breiman (2001) suggests using one-third of samples be used as OOB 

for internal cross-validation to estimate the RF performance. Based on the advantage of the OOB, this study 

is using an experimental activity corresponding to Rodriguez-Galiano et al., (2012b), by setting different 

Mtry and running the algorithm with different Ntree settings (this study used 0-1500 trees) to find the lowest 

OOB error. Although there is a function in the package called tuneRF, it was not suggested to use it since 

there is no research yet about the effects of selecting Mtry to optimize OOB error rates for RF using remote 

sensing data (Rodriguez-Galiano et al., 2012b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 2.4, the estimation used different values of Mtry from multi-season image which consists 

of 40 bands. The Mtry value was set to four different values, i.e., Mtry 1, Mtry 6, Mtry 20 and Mtry 40. The 

Mtry 6 is derived from the square root of the total input features (40 bands), as suggested by Gislason et al. 

(2006) to use the square root of total input features for defining Mtry. From the estimation, it was found 

that after 100-300 trees the error rates are reached the lowest rate and tended to converge in all Mtry, 

meaning that the increase in number of trees does not affect the model accuracy. Therefore, this study 

decides to use 300 trees instead of 100 trees as suggested by Breiman (2001) to run past the point where the 

10

15

20

25

30

35

0 300 600 900 1200 1500

O
O
B
 
E
r
r
o
r
 
R
a
t
e
 
(
%
)

Ntree

Mtry 1

Mtry 6

Mtry 20

Mtry 40

optimum value 

Figure 2.4. The Out-Of-Bag (OOB) error estimation of random forest algorithm. The 

estimation is using four different Mtry values with Ntree that is set from 0-1500 trees. From 

this estimation, 300 trees and Mtry 6 were found as optimum values as the lowest error 

reached. Beyond Ntree 300, the error tends to converge. 
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error converges to avoid OOB bias. In respect to Mtry, it was found that Mtry 6, 20, and 40 had slightly 

different in error rate. Even more, in 300 trees the values of Mtry 6 and 40 are similar. Thus, this study 

decided to use the square root of input features (6 bands) for defining the Mtry (Table 2.5). 

 

Support Vector Machine (SVM) 
Based on the results from Huang et al.,(2002) and  Kavzoglu & Colkesen (2009), this study applied non-

linear SVM with the Radial Basis Function (RBF) kernel to the classification process using the e1071 package 

from Meyer et.al (2015) in R environment. As the consequence of using RBF kernel, two parameters were 

needed to be set, i.e., cost (C) and gamma (γ). Both parameters are user-defined and the value can be 

arbitrarily chosen. This study uses a certain range of values for both C and γ  and then applies it with a 

function from e1071 package called best.tune with 10-fold cross validation to obtain the optimum parameters 

combination (Li et. al., 2016). There are 8 values of C parameter (10-2, 10-1, 100, 101,102,103,104 and 105) and 

20 values of γ parameter which ranging from 0-1 at an interval of 0.05. Based on best.tune result, the optimum 

combination was found to be C-101 and γ-0.05 (Table 2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3. Accuracy assessment and significance test 

The accuracy performance of each experiment and algorithm are assessed by using a calculation based on 

the confusion matrix. The confusion matrix is commonly used for accuracy assessment and widely used in 

remote sensing applications as a simple cross-tabulation which gives information of the mapped class against 

the ground truth for a sample data at certain locations (Congalton, 1991; Foody, 2002). Besides being the 

common assessment method in remote sensing, the confusion matrix also gives an adequate representation 

of the present error on the map since the individual accuracies in each map category were described 

(Congalton & Green, 2009). The calculations used for this study are overall accuracy and the Kappa statistic. 

The overall accuracy is derived from the sum of the number of samples that are correctly classified in both 

mapped classes and ground truth data divided by the total number of all samples (Congalton, 1991; Stehman 

& Czaplewski, 1998). 

 

To assess the reliability of the accuracy assessment results, this study uses Kappa statistics (Cohen, 1960) to 

measure the map accuracy agreement. Kappa measures the differences between the actual agreement in 

error matrix and the chance agreement that is indicated by the row and column total (Congalton,1991). The 

Algorithms Parameters Values 

ANN 

Training Threshold Contribution 

(weight) 
0.1 

Learning rate 0.2 

Momentum 0.2 

Hidden Layers 2 

Iteration 400 

RF 
Mtry 

Square root of input 

features 

Ntree 300 

SVM-RBF 
Cost (C)  10 

Gamma (γ) 0.05 

Table 2.5. Summary of parameters optimization for ANN, RF and SVM. All the values 

were optimized in multi-season dataset and then will be applied to other datasets. 
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value of Kappa can range from -1 to 1 where 0 represents the amount of agreement that is expected from 

random chance and 1 represents perfect agreement. Cohen (1960) noticed that Kappa value of less than 0 

is also possible although unlikely in practice. In this study, the interpretation of Kappa value follows the 

benchmark from Landis & Koch (1977), where < 0.00 is poor agreement; 0.00-0.20 is slight; 0.21-0.40 is 

fair; 0.41-0.60 is moderate; 0.61-0.80 is substantial, and 0.81-1.00 is almost perfect agreement. 

 

This study uses the same sample sites for both training and test sets in accuracy assessment to guarantee the 

comparability between the experiments and or classifiers. This is a common procedure that has been applied 

in many remote sensing studies (de Leeuw et al., 2006; Raczko & Zagajewski, 2017). The consequence of 

this procedure is that samples used in both classifiers are not independent. Therefore, the testing of 

significant difference from two experiments or classifiers can be done by McNemar’s test instead of Kappa 

z-test (Foody, 2004; de Leeuw et al., 2006). The McNemar’s test is based on chi-square statistics which 

computed from two error matrices (usually 2×2 contingency table). The computation calculates total cases 

that correctly classified by classifier 1 but wrongly classified by classifier 2 and vice versa (Manandhar et al., 

2009). The McNemar’s test is quite preferable since this test is non-parametric, easy to execute and simply 

understandable (Manandhar et al., 2009; Adam et al., 2014). It should be noted that this study is using 95% 

(α = 0.05) as the level of confidence. Thus, all the tests will be considered to have a significant difference if 

p-value < 0.05. 
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3. RESULTS 

3.1. The classification results 

According to the research objectives, the classification results are divided into two parts. The first part 

describes the accuracy of the tree species classification in a single season, in this case summer season, by 

optimizing red-edge bands in Sentinel-2 imagery. The second part describes how classification accuracy is 

improved by combining different images of different season to optimize the information from tree 

phenology.  

3.1.1. Accuracies with and without red-edge bands  

Table 3.1 provides a comparison of the accuracy result from three machine learning algorithms with and 

without the red-edge bands. The result shows that the accuracy from SVM outperformed other algorithms 

in both experiments (with or without red-edge bands) and followed by ANN and RF respectively. The 

mapping accuracy is improved by adding red-edge bands in all classifiers by 1-2%, although the accuracy in 

each algorithm is considered low in both experiments (with and without red-edge bands). This low accuracy 

may be caused by the spruce-beech and mix class. As seen in error matrix example (Table 3.3) from one of 

the algorithm (SVM), both spruce-beech and mix class yielded an extremely low producer’s and user’s 

accuracy compare to the other classes. However, the difference of the accuracies (producer’s, user’s, overall) 

from both experiments are not significantly difference for all algorithms. This result is confirmed by the 

McNemar’s test result (Table 3.2) which shows that there is no a significant difference between the 

experiments where p-value > 0.05 for all algorithms. It should be noted that this experiment is only applied 

to a single season image (i.e., summer image). 

 

 

 

 

 

 

 

 

 

 

 

Algorithms 
Red-Edge vs. without Red-edge 

f12 f21 Chi-Sqr p-value 

SVM 228 192 2.92 0.09 

RF 339 304 1.80 0.18 

ANN 109 85 2.73 0.10 

Red-Edge Bands Experiments 
SVM RF ANN 

OA  Kappa OA Kappa OA Kappa 

single season (summer) without red-edge bands 61.2% 0.50 58.4% 0.48 59.0% 0.46 

single season (summer) with red-edge bands 62.2% 0.51 60.4% 0.49 60.8% 0.48 

Table 3.1. Comparison of overall mapping (OA) accuracy and Kappa for tree species 

classification from different algorithms (i.e., SVM, RF and ANN) in image without and with 

red-edge bands. 

 

Table 3.2. The McNemar’s test results for tree species classification accuracy from different 

algorithms (i.e., SVM, RF and ANN) in red-edge experiment. fij means the number of cases 

that were correctly classified in classifier i but wrongly classified in classifier j (i,j = 1,2) and 

the confidence level is 95% (α = 0.05). The result however, did not show any significant 

difference since p-value > 0.05 in all algorithms. 
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It can be seen in Figure 3.1, that maps created by each algorithm have a similar pattern. The class mix and 

spruce-beech are either relatively missing, or the patch size is relatively too small to appear in ANN 

classification; this occurred in both the experiments, with or without red-edge bands. In contrast, RF and 

SVM succeeded in bringing out the class mix and spruce-beech with more patches and larger size. This was 

the case with both experiments, with or without red-edge bands.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. Accuracies of single season vs. multi-season  

It can be seen in Table 3.4, the accuracy of the SVM algorithm is higher than other classifiers in all 

experiment (single season and multi-season), while ANN outperformed the RF except for the autumn and 

multi-season cases. Thus, only the SVM consistently outperformed the other algorithms. Compared to the 

single season imagery, the multi-season imagery has an improved map accuracy of about 6-8% and has the 

highest accuracy in all three algorithms. In single season images experiment, the result shows that summer 

image has higher accuracy than other seasons. 

 

 

 

 

 

(a) 

 Spruce Beech Spruce-Beech Mix Deadwood Total 

Spruce 183 0 50 24 2 259 

Beech 13 126 37 43 6 225 

Spruce-Beech 7 12 20 8 3 50 

Mix 3 19 31 17 1 71 

Deadwood 14 1 7 0 97 119 

Total 220 158 145 92 109 724 

PA 83.2% 79.7% 13.8% 18.5% 89.0%  

UA 70.7% 56.0% 40.0% 23.9% 81.5%  

     OA 61.2% 

       

(b) 

 Spruce Beech Spruce-Beech Mix Deadwood Total 

Spruce 182 0 50 18 1 251 

Beech 10 125 40 43 5 223 

Spruce-Beech 12 14 22 11 1 60 

Mix 3 23 25 20 1 72 

Deadwood 10 0 7 0 101 118 

Total 217 162 144 92 109 724 

PA: 83.9% 77.2% 15.3% 21.7% 92.7%  

UA: 72.5% 56.1% 36.7% 27.8% 85.6%  

     OA: 62.2% 

Table 3.3. Error matrices example of one of the algorithm (SVM) in red-edge experiment. Table 

(a) represents classification without red-edge bands and (b) represents classification with red-

edge bands. OA: Overall Accuracy; PA: Producer’s Accuracy; UA: User’s Accuracy. 
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As can be seen in Figure 3.2 and Appendix 1A and 1B, the maps produced by each season for each classifier 

have similar distribution patterns for spruce and beech class, since these classes are the dominant species. 

However, the distribution patterns of mixed and spruce-beech class vary across seasons, as the patches are 

too small to visualize. For example, in Figure 3.2 the maps produced from SVM classification show that the 

mix and spruce-beech class can be easily identified in the autumn and winter images. Meanwhile, in ANN 

classification, summer image shows that spruce-beech class tends to be missing in the map (Appendix 1A). 

In opposite with the single season image, the multi-season image was succeeded to brought out all classes 

as well as increase the map accuracy regardless the algorithms.  

 
Using McNemar’s test, the significant difference between seasons were tested for each classifier. In general, 

it appears that single season and multi-season classification accuracies are comparable as show by the non-

significant results in most tests. The experiments in ANN classifier, both in Table 3.5a and b, shows that 

only in ‘multi-season vs. autumn’ and ‘summer vs. autumn’ was there a significant difference with p-value 

< 0.05. As well as ANN, SVM classifier shows that only three seasons exhibit a significant difference in 

classification accuracy (i.e., ‘multi-season vs. winter’; ‘multi-season vs. spring’ and ‘winter vs. spring’). Among 

the ANN, RF and SVM, RF algorithms succeeded in providing significant results more often than ANN 

and SVM. It can be seen in Table 3.5a and b, that from 10 experiments, RF provided five significant results. 

In total, there were 30 experiments from multi-season and single season experiments, but in only one third 

or 10 experiments could be confirmed that using different seasons or combining all seasons would improve 

the accuracy significantly. Therefore, in context of classifying the dominant tree species in BFNP, the use 

of different seasons or multi-season image did not yield a significant improvement in accuracy regardless of 

the classifier algorithms used. 

 

 

 

 

 

 

 

Season 

Experiments 

SVM RF ANN 

OA  Kappa OA Kappa OA Kappa 

Summer 62.2% 0.51 60.4% 0.49 60.8% 0.48 

Autumn 60.1% 0.45 56.6% 0.45 53.6% 0.41 

Winter 57.7% 0.45 55.5% 0.43 57.0% 0.43 

Spring 59.8% 0.46 56.1% 0.43 57.6% 0.45 

Multi-season 63.0% 0.52 62.3% 0.51 61.1% 0.48 

Table 3.4. Comparison of overall mapping (OA) accuracy and Kappa coefficient 

for tree species classification from different classifiers (i.e., SVM, RF, and ANN) 

in four different seasons and combination of multiple seasons. 
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3.1.3. Comparison of overall accuracies among ANN, RF and SVM algorithms  

 Overall, SVM yielded the highest accuracy, followed by RF and ANN respectively in both experiments 

(red-edge and season/multi-season), although the value of these three algorithms is slightly different. Two 

experiments (i.e., single season (summer) image and multi-season image) were used to test the significant 

difference of map accuracy between ANN, RF and SVM using the McNemar’s test. The two experiments 

were chosen as they produced the highest accuracy among the other experiments and were considered to 

be able to represent the whole classification process between ANN, RF and SVM algorithms (Table 3.6a 

and 3.6b). Apparently, from two experiments, only SVM has a significantly higher mapping accuracy 

compared to ANN with a p-value < 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Parameter optimization 

The other aim of this research is to evaluate the performance of ANN, RF and SVM algorithms in mapping 

the tree species. In general, the first objective is to find which algorithm obtained the highest accuracy for 

tree species mapping, with the results described in section 3.1. Section 3.2 describes the evaluation of the 

ANN, RF and SVM parameter settings including the quality of sample data to gain an understanding of the 

classification process, and understand why such algorithm obtains certain accuracy. All the evaluations were 

applied for multi-season imagery, and the sensitivity analysis of algorithms parameter settings is applied for 

training set and test set to obtain comprehensive information on classifier algorithm’s behaviour.    

3.2.1. Class separability  

Table 3.7. provides the results of class separability by using Transformed Divergence (TD) test. The test 

showed relatively poor separation between the classes except when the tree species classes were paired with 

deadwood class. The lowest separation was showed by the pair of mix and spruce-beech class. The results 

indicate that in general the spectral between the species is possibly correlated in the Sentinel-2 image. The 

visualization of the class separability also provided in 2-D scatterplot in Figure 3.3 and Appendix 2 which 

shows the spectral reflectance of each class between band 4 (NIR) vs. band 5 (red-edge 1). Clearly, the 

scatterplot shows that there are no clear boundaries between the tree species clusters. The classes, except 

 
Pairwise Algorithms 

Single Season (Summer) 

 f12 f21 Chi-Sqr p-value 

(a) SVM v RF 272 319 3.58 0.06 

 SVM v NN 181 142 4.47 0.03 

 RF v NN 247 262 0.39 0.53 

      

 Pairwise Algorithms 
Multi-season 

 f12 f21 Chi-Sqr p-value 

(b) SVM v RF 190 211 1.00 0.32 

 SVM v NN 338 283 4.70 0.03 

 RF v NN 299 169 35.56 0.00 

Table 3.6. The McNemar’s test results of tree species classification accuracy from pairwise algorithms. Table 

(a) presents results from pairwise algorithms in single season (summer) image and table (b) presents results 

from multi-season image. fij means the number of cases that were correctly classified in classifier i but wrongly 

classified in classifier j (i,j = 1,2). The highlighted values are the experiments with a significant difference 

where p-value < 0.05. 
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deadwood class, tend to be clustered and therefore the expectation of the classification accuracy should not 

be high.   

 

 

 

 Spruce Beech Spruce-Beech Mix Deadwood 

Spruce - 1.4372 0.8203 1.0487 1.9988 

Beech - - 0.6747 0.8410 1.9996 

Spruce-Beech - - - 0.3225 1.9999 

Mix - - - - 2.0000 

Deadwood - - - - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Sensitivity analysis to the size of training samples and class definition threshold  

It can be seen in Figure 3.4 that all algorithms show sensitivity to the sample size by the increases of sample 

size from 170 to 340 training pixels. ANN was the most sensitive with an increase of accuracy by 0.09%, 

while SVM and RF increased by 0.04% and 0.05% respectively (Table 3.8). The interesting finding from this 

analysis is after the training sample increase above 340 pixels, the pattern of each algorithm is different from 

one another. ANN shows insensitivity to the increase in sample sizes after 340 pixels and tends to decrease 

slightly by 0.01%, but then it turns sensitive when the number of training pixels’ crosses 1,360 by showing 

increases of 0.04%. It found that the optimum sample size for training the ANN algorithm is 340-680 pixels 

or 20-40% of total training pixels since the overall accuracy outperformed the overall accuracies of SVM 

and RF. RF accuracy shows insensitivity by slightly increase in accuracy beyond 1,020-1,360 pixels or around 

60-80% of total training samples. Therefore, the optimal number of training pixels appears to be around 

1,020 pixels to train the RF. In contrast with ANN and RF, SVM is more sensitive indicated by the increase 

Table 3.7. The result of tree species class separability test using Transformed 

Divergence (TD). 

 

Figure 3.3. The 2-D scatter plot of Sentinel-2 band 4 vs. band 5. Band 4 

represented NIR spectrum and band 5 represented red-edge 1 spectrum. 
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of overall accuracy as the training sample size increases. The other interesting result is that SVM 

outperformed both RF and ANN only when all the training samples were used. In general, this study shows 

that beyond 1,020 training pixels might be the optimum training size for use in all algorithms, since the 

algorithms steadily obtain the higher overall accuracy.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As this study used a threshold of 75% of canopy coverage based on the National Forest Inventory Guideline 

from FAO (the detail is provided in § 2.2.1) to assign species class, it might be interesting to observe if 

different threshold value will affect the accuracy of tree species classification. Figure 3.5 shows the results 

of Kappa by changing class thresholds in ANN, RF and SVM. Based on the graph, SVM outperformed 

ANN and RF in all different threshold. In general, all algorithms demonstrate the same pattern with regards 

to the changing threshold. The Kappa decreases when the threshold is changed from 60% to 70%, and then 

rises gradually until the class threshold is 90%. In general, this event was expected since the threshold is 

increased, the variance between the classes will decrease. Thus, the consequences of the increase of class 

threshold besides the higher accuracy, are that the chances of less dominant classes (i.e., mix class) to appear 

is getting higher since the dominant class such as spruce and beech were merged into mix class, as the 

canopy coverage was not meet the higher threshold criteria. 

Sample Size 

(Pixel) 

SVM RF ANN 

OA Kappa OA Kappa OA Kappa 

170 0.51 0.38 0.53 0.41 0.49 0.35 

340 0.55 0.42 0.58 0.46 0.58 0.45 

680 0.56 0.43 0.57 0.44 0.58 0.45 

1020 0.59 0.47 0.61 0.50 0.57 0.46 

1360 0.58 0.46 0.61 0.50 0.57 0.44 

1700 0.63 0.52 0.62 0.51 0.61 0.48 

Table 3.8. The overall accuracy (OA) and Kappa of trees species classification 

from SVM, RF and ANN with different subsets of training sample size. 

Figure 3.4. Sensitivity analysis of SVM, RF and ANN overall accuracies to 

the different training sample sizes. The SVM and RF tend to be sensitive to 

the alteration of sample size, meanwhile ANN shows an insensitive event. 
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3.2.3. Sensitivity analysis to the parameters of ANN, RF and SVM 

Besides investigating the performance of SVM, RF and ANN algorithms in tree species classification, the 

sensitivity analysis to the algorithms parameter settings was also carried out to find the optimum value for 

the algorithm parameter settings. The other reason why parameters sensitivity needs an investigation, is to 

observe where and when the classifier is overfitted/over-trained. For further, a prevention can be taken to 

avoid this situation. Follow sections describe the obtained results from sensitivity analysis for each parameter 

per classifier. 

     

Sensitivity to ANN parameters 

In this study, the parameters of ANN that need to be tuned are epoch (iterations), training thresholds 

contribution (TTC), the number of hidden layers, learning rate and momentum, where the sensitivity analysis 

to these parameters is applied to multi-season imagery. The sensitivity of Kappa to epoch (iterations) is 

shown in Figure 3.6. As can be seen that the training Kappa improves while the test Kappa gradually 

decreases as the number of iterations increases. The training set becomes relatively diverged beyond 

approximately 400 iterations where the change in the kappa values is small, thus it can be inferred that above 

400 iterations the model becomes over-trained. The over-training was also clarified by test set with the 

declination after 400 iterations. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Sensitivity analysis of SVM, RF and ANN Kappa analysis to 

the different class thresholds. In general, all algorithms show similar 

pattern to the alteration of class thresholds. 
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Figure 3.6. The accuracy of training and test set against of epoch (iterations). 
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The result of sensitivity analysis to the number of hidden layers is shown in Figure 3.7. As can be seen the 

accuracy of the training set increases gradually as the number of hidden layers increase reaches 2, after which, 

it begins to decline. In contrast, the accuracy of the test set is declines as the number of hidden layer increase 

to 1, and remains steady from that point on.  Based on the training set sensitivity analysis, the optimum 

number of hidden layers is 2 since that is when the highest accuracy is obtained. 

 

The sensitivity results of Training Threshold Contribution (TTC) can be seen in Figure 3.8. From the Figure, 

the graph describes that the increase in TTC does not significantly affect training set as is shown by a 

relatively plain curve with regards to change in TTC. The test set gave a different result to the training set. 

The test set accuracy result shows decline as the TTC increases and drops when TTC goes above 0.5. By 

this result, the optimum range value of TTC is identified to be 0.1-0.2 where relatively higher accuracies can 

be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9a and b provide results from learning rate parameter and momentum parameter respectively. 

These sensitivity analyses were run by keeping one of each parameter constant at a certain value. In this 

case, when the sensitivity test of learning rate was run, the momentum was held constant at 0.2, and for the 

momentum sensitivity analysis, the learning rate is also constant at 0.2. The pattern of the training set and 

test set accuracies appear to be similar while testing sensitivity to learning rate parameter (Figure 3.9a). Both 

 

Figure 3.7. The accuracy of training and test set against the number 

of hidden layers. 
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decrease as the learning rate increases and both reach asymptotic state after the learning rate goes above 0.5. 

From this result, the optimum learning rate value is 0.1-0.2 with the use of the constant value of momentum 

at 0.2. The lower accuracies that were obtained after 0.5 might be caused by the large steps taken by the 

system as the learning rate was set too high.  

 

The curves of the training set and test set while testing sensitivity to momentum parameter show a 

contrasting pattern (Figure 3.9b). In training set, the accuracy changes only slightly as the momentum 

increase up to 1; in fact, it appears that the accuracy is almost constant. However, in the test set, the accuracy 

gradually increases as momentum moves up to 0.6, after which it begins to decline momentum reaches 1. 

In general, the momentum did not improve the accuracy for the training set. However, based on this 

sensitivity result showed by Figure 3.9b, the optimum value for momentum is identified to be 0.2 with the 

use of the constant value of learning rate at 0.2.  

 

 

In addition, to understand the pattern of learning rate and momentum relationship, Figure 3.10 provides a 

graph which shows the accuracies produced by different combinations of learning rate and momentum 

along the increases in the iteration. Specifically, there are 5 combinations of learning rate-momentum, i.e., 

0.1-0.2; 0.1-0.6; 0.2-0.2; 0.2-0.6; and 0.5-0.9. In general, the combination of small learning rate and 

momentum values produced the highest map accuracy. The opposite result is shown by the largest value of 

learning rate-momentum combination (0.5-0.9), where the map accuracy is low, and the graph is shown an 

unstable pattern (high oscillation). The accuracies produced by 0.5-0.9 combination show a fluctuation with 

an extreme difference, particularly at iterations of 200 to 300 and 400 to 500, where the accuracy rose and 

declined by approximately 0.3 or 30%. This condition corresponds to the result from Figure 3.9a where a 

high value of learning rate cause instability and oscillations of the system/model and produced low accuracy 

result. Moreover, this combination also uses a high value of momentum (0.9) which causing an increase of 

oscillations effect. 

 

 

 

 

 

(a) (b) 

Figure 3.9. The sensitivity analysis of learning rate parameter (a) and momentum (b). The learning rate sensitivity is 

run in constant value of momentum at 0.2 and the momentum sensitivity is run in constant value of learning rate at 

0.2. 
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Sensitivity to Random Forest parameters 

In random forest classification, the sensitivity analysis was applied into two parameters i.e. number of 

features (Mtry) and number of trees (Ntree). Figures 3.11 and 3.12 show the sensitivity of the map accuracy 

in response to changes in Mtry and Ntree. All tests were conducted on multi-season image which consists 

of 40 bands as input features in RF classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Figure 3.11, that in general, both training and test sets fluctuate with the change in feature 

numbers although the accuracies differ slightly. However, overall accuracies show a decline in both training 

and test sets. This might be caused by the features in RF model are more correlated and became redundant 

as the Mtry value is getting large. Therefore, the optimum value of Mtry can be considered to be 6 or 

approximately square root from total input features. Based on the Figure 3.12, the overall accuracy seems 

Figure 3.11. The accuracy of training and test set against the number of features 

(Mtry). Note that there are 40 bands of multi-season image that used as input features. 
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to be less sensitive to Ntree than to Mtry parameter shown by the relatively smooth curve as Ntree changes 

from 100 to 5000, both for trained and test sets. Moreover, the differences between the accuracies are also 

small which may confirm that the number of trees is not influencing the accuracy substantially. Thus, Ntree 

can be as large as possible, but then it will affect the computer’s memory usage and the computational time. 

From these results, the optimum number of trees to run the classification is 300 considering the obtained 

accuracy in sensitivity analysis and that the OOB error rate (Figure 2.3) stabilizes after Ntree value of 300. 

Beyond this number, in general the accuracy has not affected at all. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity to Support Vector Machine parameters. 

As explained in methods section this research used the SVM algorithm with radial basis function (RBF) 

kernel. Thus, two parameters will be observed here are cost (C) and gamma (γ). Figures 3.13 and 3.14 show 

the impact of increase in C and γ values to the obtained overall accuracy respectively.  Specifically, the 

sensitivity test of parameter C uses 8 different values of C, i.e., 10-2, 10-1, 100, 101,102,103,104 and 105. Based 

on this range, Figure 3.13 shows that both the training set and test set have a similar pattern where the  
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Figure 3.12. The accuracy of training and test set against the number of trees (Ntree). 

The trees were set from 0-5000 trees. 

Figure 3.13. The accuracy of training and test set against the cost (C) parameter.  
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accuracies increase as C increases from 0.01 to 0.1 and then gradually decreased after C increases beyond 

10. The model also becomes insensitive to the C value when C reaches 10.000 and beyond. From this result, 

the application of larger C values -in this case beyond 10- tends to cause an over-fitted model and reduce 

the accuracy. Therefore, the optimum value of C should be 10 that can be applied to the other experiments 

since this value leads to the highest accuracy. 

 

For sensitivity analysis to the gamma (γ) parameter, the values between 0-1 were used at an interval of 0.05. 

In general, for both training set and test set, the overall accuracy tends to decline gradually as the γ value 

increases (Figure 3.14). This result indicates that larger values of γ lead to an over-fitted model which reduce 

the accuracy of the model. Based on this sensitivity test, a value of 0.05 is found to be the optimum γ value 

according to the highest obtained accuracy (0.63). The value based on this sensitivity analysis also confirms 

to the result of SVM tuning by 10-fold cross validation where 0.05 was also found as the best γ value for 

this research (Table 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. The accuracy of training and test set against the gamma (γ) parameter. 
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4. DISCUSSION 

4.1. Uncertainty from tree species sample configuration  

In the history of the Bavarian Forest National Park (BFNP), the composition and configuration of tree 

species have changed over the centuries (Heurich & Englmaier, 2010). During the last two decades, two 

main species are dominating and spreading in all elevations within BFNP with a relative total of 91.5% (i.e., 

Norway spruce (67%) and European beech (24.5%)) (Heurich & Englmaier, 2010; Bässler et al., 2015; 

Sommer et al., 2015). Therefore, since the domination of spruce and beech overspread the existence of 

other minor/less dominant species, assigning a plot to a certain species becomes a challenge. 

 

Following FAO National Forest Inventory Guideline (2004), this research has used 75% of tree canopy 

coverage for an individual species as a threshold to assign a species class to that dominate species. This 

threshold is based on empirical ground observations and measurements. Since remote sensing imagery 

captures the object reflectance from above, the most representative reflectance from a tree is the uppermost 

part of the canopy. However, this uppermost canopy cover may not represent actual species configuration 

within the plot, since there is a possibility that the uppermost canopy consists of certain species which has 

coverage less than 75%. This uppermost canopy could cover the other species below (understorey) which 

might be more dominant (>75%). The lower canopy species may provide different spectral information 

than the uppermost canopy, and the information could be the actual representation of species spectral 

reflectance (Abdollahnejad et al., 2017).  

 

In fact, this study finds that 75% threshold of canopy coverage did not give a satisfactory result for class 

spectral separation, particularly for the mix and spruce-beech class. Clearly, this research is focused only on 

two types of vegetation structure in BFNP (i.e., coniferous and broadleaf forests) and neglects other broad 

cover classes such as shrub and grass. Further, these two types of forest were broken down into specific 

classes which were considered as the dominant species, i.e., spruce (coniferous type) and beech (broadleaf 

type). The other three classes are mix (an aggregate of less dominant species and dominant species < 75%), 

spruce-beech (if the plot consists of spruce and beech with threshold ≥ 75%) and deadwood (non-vegetated 

area). The Transformed Divergence (TD) index shows that most of the pairwise classes have low separability 

except where the classes were paired with the deadwood class. The high separation of deadwood class is 

easily predictable since the deadwood is a non-vegetated area or has less vegetation which may produce high 

separability when compared to the other vegetated class.  

 

In contrast with deadwood class, the separability test result is low when the dominant classes (spruce and 

beech) were paired together, particularly with mix or spruce-beech class. This is clearly depicted by feature 

space in figure 3.3 and appendix 2, where mix and spruce-beech class create unclear cluster boundary to the 

dominant species classes, or the other words the clusters tend to be mixed. This issue may occur since the 

definition of mix class consists of less dominant species which also have the same structure with the spruce 

such as fir or the beech such as maple and birch. Therefore, the spectra were not capable of differentiating 

the dominant classes (spruce and beech) and the mixed classes and further led to reducing the accuracy of 

the classification (Sesnie et al., 2010). The low separability of classes may also reveal that the spectral 

information of the species is overlapping even though they may not overlap on the ground situation. This 

issue will affect the classification process which is run by the classifier’s algorithm, where it can be considered 

that the algorithm has failed to distinguish the species spectral information (Skidmore et al., 1988). However, 
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this study confirms that there is no clear boundary between the spectral clusters representing the different 

classes, and that classes may not be completely distinguished by the classifier’s algorithm. 

 

In § 3.2.2, figure 3.5 implied that increasing the class threshold led to the decreases of spruce and beech 

class number since they are merged into mix class, but then the Kappa increased consequently. This evidence 

proves that merging the classes that have poor results in spectral signature separation, improve the 

classification accuracy (Manandhar et al., 2009; Laborte et al., 2010). However, the consequence is that less 

number of species is identified since the classes might have been missed. Determining different class 

threshold in the simulation may cause another problem since the training and test set are selected randomly 

into the size of two-thirds for the training set and one-third for the test set. This issue is creating a probability 

that some samples are repeatedly selected or not selected at all for training or test set. This issue may explain 

why the classification Kappa suddenly decreased when the threshold increased from 60%-70% in each 

algorithm (ANN, RF and SVM). 

4.2. Classification improvements 

4.2.1. Red-edge band experiment  

This study finds that adding the red-edge bands improves the tree species classification accuracy in ANN, 

RF and SVM algorithms. This result confirmed other studies which also added red-edge bands, particularly 

if the classification scheme consists of vegetation existence (Schuster et al., 2012; Adam et al., 2014; Massetti 

et al., 2016; Laurin et al., 2016). The improvement from the red-edge bands of Sentinel-2 imagery may be 

caused by the sensitivity of red-edge bands to the chlorophyll concentration in the vegetation, particularly 

in the leaf parts (Horler et al., 1983; Mutanga & Skidmore, 2007). Further, chlorophyll concentration is also 

related to the leaf pigment which controls the optical properties of leaves at canopy level which vary from 

one species to another (Horler et al., 1983; Carter & Knapp, 2001; Sims & Gamon, 2002). Thus, the 

combination of optimizing the sensitiveness of red-edge spectrum and different behaviour of leaves optical 

properties makes tree species distinguishable in remote sensing imagery which consequently improves the 

classification accuracy. Interestingly, by adding the red-edge bands, the accuracy improves not more than 

3% based on the results from Schuster et al. (2012) and Massetti et al. (2016), as well as this study. 

Furthermore, this study shows that there is no significant difference by adding the red-edge bands in any of 

the algorithms. It might be that the red-edge spectrum did not outperform the other spectrum particularly 

in red and NIR region where the absorption and the reflection of the spectral in vegetation objects occurred. 

Thus, it can be inferred that red-edge may have a role if it is incorporated with other spectral bands (Adelabu 

et al., 2013). Another option which is not tested in this study is incorporated red-edge based vegetation 

indices, where several studies have proven that adding red-edge based vegetation indices may also improve 

the accuracy of the classification (Schuster et al., 2012; Li et al., 2016; Laurin et al., 2016). 

 

4.2.2. Single season and multi-season experiments 

This study finds that combining several images from the different seasons (i.e., summer, autumn, winter and 

spring) improves the map accuracy in each classifier, as also reported by Hill et al. (2010) and Li et al. (2015). 

The improvement of the accuracy may be caused by the different phenological stages of each species 

captured by the images which lead to the higher separation of the spectral signature (Hill et al., 2010; Lisein 

et al., 2015; Li et al., 2015). Although the accuracy is improved, the interesting thing is that the accuracies 

between the single season and multi-season images are relatively comparable among the algorithms (ANN, 

RF and SVM). The McNemar’s test shows that in general there is no a significant difference between the 

experiments of multi-season vs. single season. In single season experiments, the McNemar’s test also shows 

that among the different seasons, the accuracies were not significantly different in general. There are only 
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four experiments out of eighteen that had a significant difference. These findings can be explained by the 

characteristics of tree species distribution within BFNP. As reported by Bässler et al. (2015), BFNP was 

dominated by almost 70% of evergreen coniferous type, mainly spruce which has no leaf-off state regardless 

the season. Therefore, from one season image to another, the variability of species composition information 

that can be captured by the image are quite low. This condition occurred since the spruce appearance 

dominates the images and almost covers the other classes appearance, and therefore provide a relatively 

similar condition. 

 

Since in summer the leaf structure was fully developed for all species, the summer image provides sufficient 

information of the tree canopy for the algorithms to classify all species classes both coniferous and 

deciduous types (Immitzer et al.,2012). Therefore, the summer image had the highest accuracy compared to 

the other season. In contrast to the summer image, leaf condition varies for the deciduous tree species in 

autumn, winter and spring where the leaf pigment changes due to leaf senescence and leaf-off state in winter. 

This condition somehow cannot be completely captured by the images since the dominant evergreen spruce 

covered the other species (mostly deciduous type), and thus the information from the less dominant species 

is lacked. These results, are also corresponded to the study by Voss & Sugumaran (2008) and Li et al. (2015) 

where summer image obtains higher accuracy than another season. Meanwhile, the suggestions from 

Fassnacht et al. (2016), Hill et al. (2010) and Mickelson et al. (1998) to use the beginning of spring or late 

autumn images cannot be confirmed by the results of this study, since the characteristics of the study area 

are also different. 

 

4.2.3. Performance comparison of ANN, RF and SVM 

The impact from parameter settings in each algorithm and the quality of training sample yielded a range of 

accuracy from 54%-63% depending on the algorithms in each experiment. The accuracy result did not meet 

the criteria of 85% accuracy, as was suggested by Anderson et al. (1976) for operational classification map. 

Therefore, the Kappa was observed to see how reliable the accuracy result is. The Kappa itself yielded values 

ranging from 0.41-0.52 which according to benchmark from Landis & Koch (1977), have a moderate 

agreement. The other studies from Wang et al. (2009) and Fleiss (2013) stated that values ranging 0.41-0.75 

have a good strength agreement. Thus, the accuracy yielded by each algorithm can be considered as a reliable 

result. The relatively low map accuracy confirmed the explanation of the poor quality of the training samples 

since they do not meet satisfactory criteria for class separation. Moreover, it should be noted that this study 

distinguishes tree species which can be considered as the derivation of one single land cover class (i.e., 

vegetation/forest). The samples for mix and spruce-beech class do not seem sufficient for training the 

algorithms, although there is a possibility of mislabelling the training samples as well.  

 

With respect to the map accuracy, this study found that SVM outperformed RF and ANN for all 

experiments and ANN outperformed the RF except for autumn and multi-season cases. Although these 

findings correspond to the studies from Huang et al. (2002), Dalponte et al. (2012), Adelabu et al. (2013), 

and Shang & Chisholm (2013), the accuracy of the algorithms are relatively comparable in each experiment. 

Moreover, the McNemar’s test shows that in general, the differences among the algorithms statistically were 

not significant. Table 3.5 shows that in general, RF was not significantly different from both SVM and ANN, 

but SVM had a significant difference to ANN. These results, however, cannot be generalized to be stated 

that SVM outperforms ANN and RF (Khatami et al., 2016). Since the other studies found that several times 

either RF and or ANN has outperformed SVM (Adam et al., 2014; Raczko & Zagajewski, 2017), while some 

studies found that these classifiers are relatively comparable (Attarchi & Gloaguen, 2014; Omer et al., 2015). 

Thus, it can be considered that these machine learning algorithms, particularly SVM, RF and ANN, are 

stochastic-based methods. This means that SVM, RF and ANN can produce a different accuracy result and 

draw a different conclusion depending on several components such as data quality, training purposes, 
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heuristic approaches in the parameter settings and even the characteristics of study site (Nieddu & Patrizi, 

2000; Li et al., 2013; Li et al., 2016). 

 

According to the sensitivity to the training sample size, this study found that SVM and RF are relatively 

more sensitive to training sample size than ANN. This result slightly contrasts with other studies. For 

example, Li et al. (2016) stated RF is insensitive to the training size which was not confirmed by this study. 

This study also found that training size for ANN does not have to be large. As shown in figure 3.4, ANN 

became insensitive beyond 40% (340 pixels) of training size which also corresponds to the statement by 

Kavzoglu & Mather (2003), where larger training size is only needed by ANN if the data is too noisy. 

However, in general, the classification accuracy of ANN tends to increase with increasing training size as 

also reported by Staufer & Fischer (1997). The training size sensitivity of SVM corresponds to the result 

from Foody et al. (2016), where SVM is sensitive to the training size particularly if class mislabelling has 

occurred. It can be explained that there are some possibilities why such results were obtained in this study. 

Firstly, there is a possibility that the quality of the training data was relatively poor regarding the spectral 

separability. Secondly, the training data for less dominant species classes is insufficient, although this might 

need a profound investigation. Last, there are some mistakes occurred in the setting of the algorithms 

parameter and training data mislabelled which may affect the classification process (Foody et al., 2016). 

 

4.3. The impact of algorithms parameter optimization 

4.3.1. Artificial Neural Network (ANN) 

Compared to RF and SVM, the parameter settings for ANN are more complex, wherein this study five 

parameters needed to be set. Most of the results from the ANN parameter sensitivity tests show that the 

pattern of the value of each parameter has a similar tendency as seen in previous studies by Kavzoglu & 

Mather (2003) and Skidmore et al. (1997). Although, in some parameters, the sensitivity tests show that 

there is a possibility of mistakes in the parameter settings which produced the over-fitted model. For 

example, according to Kavzoglu & Mather (2003), the higher momentum should increase the possibility of 

the model to run in the wrong direction over the error surface leading to lower classification accuracy. 

However, this study finds that the accuracy in the training set was not affected by an increase in momentum 

value. On the other hand, the test set was affected by the increases of momentum shown by the relative 

fluctuation of the curve (figure 3.9b). As the ANN parameter settings is user-defined based, often the 

optimum number was not found and lead to producing low map accuracy since the parameter optimization 

was failed. Therefore, in many case, user experience is a key role in determining the optimum value for ANN 

parameters (Skidmore et al., 1997; Kavzoglu & Mather, 2003; Pal & Mather, 2005; Mas & Flores, 2008). 

 

It was proposed by Mas & Flores (2008) that using few training samples in ANN may disable neural network 

from deriving classes, while large training samples may cause overfitting and longer time for the system to 

learn. According to the figure 3.4, ANN in this study only needed 340 training pixels and tended to converge 

beyond 340. Instead of using 340 training pixels, this study used all training pixels (1,712 pixels) which may 

have caused the overfitted model. Moreover, as explained in § 3.2.1 and 4.1, generally the quality of the 

training data is poor with regards to class separability and lack of training samples for less dominant classes 

(mix and spruce-beech class). These issues can also explain why the ANN classifier is not obtained the 

optimum accuracy. As suggested by Skidmore et al. (1997), to obtain credible results, the neural networks 

require good training data which could not be provided in this study.   
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4.3.2. Random Forest (RF) 

Compared to ANN and SVM, this study reveals that RF classifier has the easiest parameters to control. In 

many studies as well as this study, two parameters are needed to be set, i.e., Mtry (number of features) and 

Ntree (number of trees). Although both Mtry and Ntree also can be considered as user-defined parameters, 

finding the optimum value for those parameters is relatively quantifiable and can be done through a certain 

test (Belgiu & Drăguţ, 2016; Rodriguez-Galiano et al., 2012b). Regarding the Mtry, this study confirms 

Gislason et al. (2006) suggestion that using a square root of the total number of features as the Mtry value 

produced higher map accuracy than using all features. In this case, the use of 6 bands (square root of 40 

bands) as an Mtry value in multi-season image, obtained the highest map accuracy. Moreover, the sensitivity 

analysis shows that beyond the Mtry-6 the accuracy tended to decrease. This event corresponds to the 

observation by Rodriguez-Galiano et al. (2012a) that reducing the value of Mtry will increase the accuracy 

since the correlation between the trees is reduced. However, Guan et al., (2013) reported that eliminating 

Mtry can be counterproductive if its excessively reduced leading to the lower accuracy. Therefore, finding 

the optimum Mtry can be the challenging part of the RF parameters settings, though it can be assisted by 

the measurement of Variable Importance (VI) by calculating the Mean Decrease in Accuracy (MDA) (Belgiu 

& Drăguţ, 2016).  

 

This study used 300 trees as a value for Ntree which is different from several studies. In many studies, Ntree 

was set to 500 trees which is also the default value in the randomForest package in R environment. In general, 

Ntree values ranging from 100 to 5000 trees (Belgiu & Drăguţ, 2016). There is no exact guideline to 

determine how many trees that are needed to run the RF classification since RF algorithm is insensitive to 

overfitting, thus the number of trees can be grown as large as possible (Pal, 2005; Guan et al., 2013). 

However, this will affect the use of computer’s memory and computational time (Belgiu & Drăguţ, 2016). 

To find the optimum value of Ntree, Rodriguez-Galiano et al. (2012b) proposed the Out-Of-Bag (OOB) 

error estimation. Through this test, it was found that after 300 trees the error is relatively low and converged 

beyond this value. It was proved in this study that RF classification is insensitive to the overfitting and thus 

Ntree can be as large as possible, and as long we optimize the Mtry through VI measurement, the accuracy 

would not decrease. 

 

4.3.3. Support Vector Machine (SVM) 

Similar to ANN, the disadvantage of SVM is that the selection of value in parameters setting depends on 

the user expertise and experience, considered as a subjective selection (Pal & Mather, 2005). This study used 

SVM with RBF kernel which is commonly used in remote sensing applications and has several times yielded 

higher accuracy than the other kernels (Huang et al., 2002; Kavzoglu & Colkesen, 2009; Omer et al., 2015). 

SVM-RBF, as well as RF, has only two parameters, i.e., cost (C) and Gamma (γ). However, since there are 

no clear guidelines to determine the range value of both C and γ, this study tried to use the range that seemed 

to be reasonable based on the previous studies, particularly studies from Huang et al. (2002), Samadzadegan 

et al. (2005) and Qian et al. (2015). Based on the sensitivity results, the accuracies from both C and γ tended 

to decrease as their values increased. This finding confirmed the studies from Foody & Mathur, (2006) and 

Qian et al. (2015), that the use of large value in both C and γ would overfit the training data and yield poorly 

generalization shown by low accuracy. Although, there is a possibility that if the value of the parameters was 

set too low, the classifier could not capture the complexity of the data shape. Thus, setting the C and γ 

parameters must be taken carefully. In case we are using the larger γ, then we should decrease the value of 

C and vice-versa, even though the subjectivity from the user still plays the key role (Foody & Mathur, 2006). 

Therefore, to reduce the subjectivity, this study used grid search method with 10-fold cross validation to 

determine the value of C and γ (Foody & Mathur, 2006; Kavzoglu & Colkesen, 2009). The grid search 
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method yielded value of 10 for C and 0.05 for γ, and those values are similar to the finding of this study 

from sensitivity analysis (figure 3.13 and 3.14).   

 

4.3.4. Which algorithm is the most efficient? 

Regarding the operations of ANN, RF and SVM, this study reveals that in general, RF is the most efficient 

and the easiest algorithm to use since the number of parameters that need to be set is the least as compared 

to ANN for example. Although the number of RF parameters is same as SVM, it is much easier to find and 

set the optimum value, and it is less time consuming through Variable Importance (VI) analysis and Out-

Of-Bag (OOB) error estimation. The SVM parameters need to be set through trial and error process which 

may be more time consuming, and the range of parameter values to choose is more arbitrary than RF. 

According to the speed of training process, RF is the fastest followed by SVM and ANN respectively. The 

classification and training process was performed on a computer with specifications of Intel® Core™ i5-

4200U (2.30 GHz), 4 Gb RAM running Windows ©7 64 bits. The averages time that the classifiers needed 

to finish the training and predicting processes are 6.51; 6.70; and 8.87 minutes for RF, SVM and ANN 

respectively. However, this time benchmarking cannot be generalized as an indicator of algorithms speed 

since the results might vary as different systems also have many factors that influence the training process 

(Pirotti et al., 2016).        
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

This study has demonstrated the performance of three machine learning algorithms, i.e., Artificial Neural 

Network (ANN), Random Forest (RF) and Support Vector Machine (SVM) for mapping dominant tree 

species from Sentinel-2 imagery. The general conclusion that can be drawn from the entire process of this 

study is that the performance of ANN, RF and SVM in mapping dominant tree species is comparable. This 

shown by the McNemar’s test that the map accuracy yielded by the ANN, RF and SVM statistically does 

not have a significant difference. To compare the performance of each algorithm and to achieve the research 

objectives, an investigation was carried out in six aspects: 1) compared the overall accuracy of all algorithms; 

2) compared the overall accuracy from single season (summer) image with and without red-edge band; 3) 

compared the overall accuracy from single season image and multi-season image; 4) the capability of Sentine-

2 imagery in mapping tree species was examined; 5) the efficiency of each algorithm were evaluated; 6) the 

quality of the training data set/tree plot samples configuration was evaluated. The specific conclusions of 

this study can be summarized as follow: 

 

• In overall, SVM outperformed RF and ANN in the accuracy of classification. However, this study 

finds that the difference between these algorithms is not significantly different in general. Therefore, 

it cannot be determined which one of these algorithms is more suitable for tree species mapping. 

Moreover, since these algorithms follow a stochastic-based method, the selection between ANN, 

RF and SVM may need to consider several aspects such as input data quality, training purposes, 

parameter settings and characteristics of study site. 

 

• Adding the red-edge bands improved the classification accuracy in each algorithm. The sensitivity 

of red-edge region to the chlorophyll concentration is useful for discriminating tree species since 

the chlorophyll concentration controls the optical properties of leaves at canopy level. However, 

the improvement to the map accuracy is not significant for all algorithms. The accuracy only 

improves by 1-2% in each classifier, and the McNemar’s test shows that there is no a significant 

difference in the accuracy of each algorithm. Apparently, the red-edge did not outperform the red 

and NIR spectral bands where the absorption and reflection of spectral in vegetation objects 

occurred. Therefore, the red-edge region can be useful if it is incorporated with other spectral bands.    

 

• The accuracy obtained from multi-season imagery are higher (by 1-8%) than single season imagery 

in each algorithm. It can be concluded that this study succeeded to demonstrate that combining 

red-edge bands from different seasons improved the accuracy. This study states that the 

phenological event of the tree which captured by red-edge band provides valuable information 

which can enhance the tree species classification. However, in general, the McNemar’s test shows 

that there is no a significant difference between the use of single image and multi-season image 

since only one-third of the experiments were found to be statistically significant. The condition of 

the BFNP which is mainly dominated by evergreen spruce might have caused this result since the 

images from season to season relatively capture the same conditions. Therefore, the selection of 

the season imagery for addressing tree phenology in mapping tree species should consider the 

characteristics of the forest structure. 
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• The Kappa yielded by the accuracy assessment shows that Sentinel-2 has the greatest potential for 

tree species mapping. Although the accuracies from ANN, RF and SVM algorithms do not meet 

the criteria for the operational map, the Kappa showed that the classification results have a 

moderate agreement (0.41-0.52) and they can be considered as reliable classification result.  

 

• The efficiency evaluation of all algorithms from two aspects (i.e., parameter settings and 

computational time), found that RF outperformed SVM and ANN. RF has only two parameters 

that need to be set. Even the RF parameters are user-defined (similar to ANN and SVM), the 

selection of the value for the parameters is easier to be quantified and measured through Variable 

Importance (VI) and Out-Of-Bag (OOB) error estimation. The computational time for the RF 

classification process is also lesser than SVM and ANN by 12 seconds and 140 seconds respectively. 

Thus, RF is the most efficient compared to the other algorithms. Although the RF’s accuracy was 

lower than SVM and sometimes ANN, the differences were not significant. Similarly, the 

McNemar’s test shows that statistically, the difference among the algorithms accuracy was also not 

significant. Further, RF is less sensitive to the overfitting than SVM and ANN. 

 

• The criteria of 75% threshold for assigning species within a plot did not meet a satisfactory result 

in class separability especially in mix class and spruce-beech class and further lead to the low 

accuracy map. Since remote sensing imagery captured information from the uppermost canopy, 

this criterion creates a gap between the species composition information where the observation 

from the ground/below canopy has a different perspective than from above canopy. The 

uppermost canopy may not represent the actual composition of certain species since there is a 

possibility that the species below is more dominant, but they are covered by the uppermost canopy. 

The domination of spruce and beech within BFNP may also cause the low map accuracy since the 

number of less dominant species is too few then it is difficult to find them and to assign into certain 

classes, and therefore the number of samples for less dominant species may not sufficient for 

classification process. 

 

5.2. Recommendations for future studies 

As a relatively new satellite remote sensing imagery, not many studies have used Sentinel-2 for identifying 

the tree species. Therefore, this study was brought to demonstrate the capability of Sentinel-2 imagery for 

mapping the tree species by using machine learning algorithms. In general, the accuracy results can be 

considered low to moderate although the Kappa shows that the accuracy results are reliable. Similar results 

were also obtained by a study from Immitzer et al. (2016) where the study was conducted in the similar 

forest type and relatively the similar region characteristic. Based on these findings, the basic issues such as 

spectral resolution, spatial resolution and ancillary data are still relevant to be considered before deciding to 

use Sentinel-2 for tree species classification study (Fassnacht et al., 2016; Immitzer et al., 2016). Regarding 

spectral resolution, apparently Sentinel-2 still lacks of spectral bands or has less narrow wavelength even 

though it can be said the spectral resolution is higher than other multispectral images such as Landsat for 

example. The uses of narrower wavelength bands such as hyperspectral sensor were suggested, and in several 

prior studies, this sensor has proven to obtain higher map accuracy in tree species mapping. However, the 

challenging issue will be on the operational of the hyperspectral sensor, since it is still limited to the 

experimental circumstances and the operation may costly and not practical in terms of handling hundreds 

of bands (Immitzer et al., 2012). 

 

Ancillary data can also be useful to improve the classification accuracy (Schmidt et al., 2004). There are many 

ancillary data which can be added to tree species classification processes such as topography, DEM, and 



MAPPING DOMINANT TREE SPECIES FROM REMOTELY SENSED IMAGE USING MACHINE LEARNING ALGORITHMS  

42 

other sensors such as LiDAR and radar (Fassnacht et al., 2016). This study also tried to incorporate the 

ancillary data by combining different season images. The accuracy of classification is improved but still 

considered low. It seems that  the classification should add more different season images with denser 

acquisition time differences to capture more information of tree phenology (Hill et al., 2010; Sheeren et al., 

2016). It is now becoming possible with the launch of Sentinel-2B recently, with higher temporal resolution 

of five days’ acquisition when it is combined with Sentinel-2A acquisition. The other suggestion is to 

combine it with another sensor such as LiDAR data, which many studies have done and produced 

satisfactory results (Voss & Sugumaran, 2008; Dalponte et al., 2012; Alonzo et al., 2014; Ghosh et al., 2014). 

By using LiDAR data, the information of the tree species can be enriched by capturing both the height and 

the structure of trees such as canopy, branches and trunk. Further, a comprehensive information can be 

obtained for each species both from the spectral signature and the tree structure. Using vegetation indices 

such as NDVI also proved to improve the tree species classification accuracy (Schuster et al., 2012; Sheeren 

et al., 2016). Moreover, Sentinel-2 added three red-edge bands which may potentially be incorporated in 

vegetation indices besides traditional red and NIR bands, which were not used in this study since the purpose 

was solely optimize the Sentinel-2 spectral bands. 

 

Wulder et al. (2009) stated that spatial resolution is arguably essential and gave the greatest impact the tree 

species classification. There are three types of Sentinel-2 spatial resolution (i.e., 10 m, 20 m, 60 m) depend 

on the bands. This study uses 10 m and 20 m, and further, the 10 m bands were resampled to 20 m to 

preserve the spectral information of red-edge bands. Although it is considerably higher than other 

multispectral data such Landsat (30 m), the spatial resolution of Sentinel-2 appears to be insufficient to 

classify certain classes, particularly the mix class which consist of less dominant species. The 20 m resolution 

still has the issue of spectral mixture where spectral of the less dominant species was covered by the 

dominant species spectral (Immitzer et al., 2016). Taking into consideration of the Sentinel-2 resolution, 

Wulder et al. (2009) proposed that this type of resolution is suitable for stand level characteristics recognition 

such as deciduous vs. coniferous forest type instead of species. The other way to improve the accuracy is by 

improving the classifier algorithms and methods. Since there are limitations of Sentinel-2 imagery 

resolutions both spectral and spatial, it might be unrealistic to assign pixel into single class membership 

through hard classification which is applied among the algorithms (ANN, RF and SVM) in this study. Thus, 

for future research, another approach could be taken that may tackle this issue by using fuzzy/soft-

classification approach, where each pixel is associated with a class membership in various degrees (Rocchini 

et al., 2013). Also, it can be considered to use pan-sharpening methods by incorporating higher resolution 

images to downscale the spatial resolution (Wang et al., 2016).  

 

Based on the evaluation in this study, we may not state whether Sentinel-2 is suitable or not for classifying 

tree species since it depends on several factors. However, the accuracies of the classification from ANN, 

RF and SVM algorithms show that Sentinel-2 has potential to identify the tree species if the setting of the 

training sample configuration and classifiers parameters are done through proper methods and techniques 

(Immitzer et al., 2016). Therefore, with the obtained accuracy and Kappa, we may state that the results are 

quite optimistic which may be improved in future to a more satisfactory output by incorporating ancillary 

data and other approaches.
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App.2. The 2-D scatter plot of Sentinel-2 band 4 vs. band 5 with different pairwise of class. (a) 

spruce and beech; (b) spruce and spruce-beech; (c) spruce and deadwood; (d) spruce and mix. 
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App. 2. The 2-D scatter plot of Sentinel-2 band 4 vs. band 5 with different pairwise of class. (e) 

beech and mix; (f) beech and spruce-beech; (g) beech and deadwood; (d) spruce-beech and mix. 
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 (i) 

 

(j) 

 

App. 2. The 2-D scatter plot of Sentinel-2 band 4 vs. band 5 with different pairwise of class. 

(i) deadwood and mix; (j) deadwood and spruce-beech. 


