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ABSTRACT 

Non forest trees like discrete, linear or small groups of trees are considered as Trees Outside Forest 

(TOF). TOF provide important ecological, economic and social function. Biomass estimation of trees 

from areas outside forest is required to aid the holistic decision for climate change mitigation and 

adaptation. Because of the development of remote sensing technology over decades biomass can be 

estimated accurately using Very High Resolution (VHR) image as an alternative of ground based 

measurement which is costly and time consuming. However, high acquisition cost, large space to storage 

as well as long time for image processing limits the use of VHR image for large area biomass estimation. 

In this perspective, as a potential solution, this study attempted to develop an approach for biomass 

estimation over large area by using both very high and medium resolution satellite images. The study was 

conducted near Germany-Netherlands border where six different spatial arrangements of TOF were 

identified. Pleiades high resolution (0.5m) image was used in this study to discern individual tree crowns 

using Object Based Image Analysis (OBIA). Individual tree crowns were used to develop the model for 

Above Ground Biomass (AGB) estimation as a function of tree crown area. OBIA delineated tree crowns 

with 73% accuracy by calculating D index and the developed model of biomass estimation explained 78% 

variance of the biomass as a function of tree crown area. The derived biomass map for the whole area was 

used to upscale biomass to the Sentinel-2 image. The aggregation of biomass was done using area based 

averaging technique within a particular area (10X10m) and average NDVI was also calculated within the 

same area. This process was repeated many times for each spatial arrangement to obtain adequate sample 

for model development and validation. Finally, regression model was carried out for each spatial 

arrangement to develop the model of biomass estimation as a function of NDVI (Sentinel-2). The 

sequence of correlation coefficient in these six spatial arrangement of TOF ranked from high to low was 

as follows: Double line closed canopy (0.88), single line closed canopy (0.80), wind break (0.80), single line 

open canopy (0.76), double line open canopy (0.72) and patch (0.38). The research findings indicated that 

the Above Ground Biomass (AGB) can be estimated as a function of Crown Projection Area (CPA) of 

trees but further research is needed to improve the accuracy of the model. Moreover, the proposed 

approach for upscaling biomass can be used for areas with low density of TOF, on the other hand, further 

research is required to upscale biomass in the case where tree crowns are strongly interlocked and 

arranged in a compact way. 

Key Words: TOF, Above Ground Biomass, Object based Image Analysis, TOF configuration. 
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1. INTRODUCTION 

1.1. Introduction 

Sustainable management of natural resources has received special attention in the past decades to combat 

the negative effect of exploitation and degradation (Kleinn et al., 2001). In this context, globally substantial 

efforts are given for the monitoring of forest resources because of multiple ecosystem services provided 

by forest. (FAO, 2010). However, tree resources that are grown outside forest are not taken into 

consideration for forest monitoring even though they play a relevant role as forest. These tree resources 

are summarized with the term Trees Outside Forest (TOF) which was coined by FAO (Pain-orcet & 

bellofontaine, 2004). TOF refers to those trees on land which are not defined as forest or other wooded 

land (FAO, 2000). TOF includes: trees on the land which fulfils the requirement of forest and other 

wooded land, scattered trees in the permanent meadows and pastures, permanent tree crops, orchards, 

industrial fruit trees, trees on agricultural system and trees in urban environments (Bellefontaine et al., 

2002). A wide range of ecological, economic and social functions is offered by TOF (Auclair et al., 2000, 

Bellefontaine et al., 2002, Idol et al., 2011). For example, they function as a source of timber and fuel 

wood (Mezzalira, 1997a) as well as non- timber production (Mezzalira, 1997b). TOF can also store CO2 

out of the atmosphere (Schoeder, 1994) and as a consequence they have positive impact on climate change 

mitigation (Borin & Maccatrozzo, 2005). Additionally, they protect soil and water quality (Endreny, 2002) 

as well as conserve biodiversity (Bellefontaine et al., 2002). TOF play a different role in developing 

countries than developed countries. For developing countries, TOF are the source of wood product and 

energy for the rural people especially where the forest is scarce (Biasoli, 2002). On the other hand, in 

developed areas, TOF are more linked to the quality of natural environment and to the living standard of 

the population than to wood and non-wood production (Paletto, 2006). Classification of TOF is complex 

because many criteria exist for generating meaningful categories (Schnell, 2015).  Examples of the 

meaningful categories are: Geometric pattern of trees, their origin and function as well as their location in 

which land class. TOF can be broadly classified as TOF on agricultural land, TOF on urban areas and 

TOF on non- urban and non- agricultural land (Bellefontaine et al., 2002). The spatial arrangement of 

TOF can be categorized as isolated and scattered trees, trees in block and planting along linear formation 

(Alexandre et al., 1999). Land owners, government organizations and stockholder need information of 

TOF at national level to support policy and legislation for their use and conservation. Information on 

TOF is needed at international level because different organizations who are working on environment and 

climate change need the information of all tree resources. Moreover to support management of TOF, 

information is needed at local level (Schnell, 2015). In most countries, TOF are not generally included in 

official national monitoring and ignored in the land use planning and policy development (FAO, 2010). 
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FAO attempts to monitor TOF and as a consequence of that many countries have widened their scope 

for TOF monitoring. Since attention has increased on carbon trading and climate change mitigation, it is 

needed to accounts for all possible carbon sources and sinks including Trees Outside Forest. 

It is essential to estimate biomass for TOF at different scale to know the actual role of TOF for reducing 

atmospheric CO2. There are different approaches for biomass estimation where field measurement is the 

most accurate one but there is a problem associated with time, money and application over large area 

which makes it inconvenient (Brown et al., 2002). In the last decades remote sensing was under a strong 

development because of its different spectral, spatial, and temporal resolution of satellite imagery. 

Recently, remote sensing has become an attractive source of data for biomass estimation and assessment 

at multiple scales with large spatial and temporal coverage (Kleinn et al., 2001, Main-korn et al., 2011). 

Although currently, no remote sensing technique can estimate biomass directly but the combination of 

limited field and remote sensing data can potentially improve the estimation of biomass for large areas 

(Du et al., 2014). Several studies have been conducted to demonstrate the effectiveness of the 

combination of remote sensing and field data to estimate Above Ground Biomass (AGB) (Hame et al., 

1997, Drake et al., 2003, Baccini et al., 2004). Several methods have been used to develop biomass 

functions using remote sensing technology. The  one most frequently used  is the regression analysis using 

forest inventory biomass data and satellite generated data (Viana et al., 2012) such as spectral reflectance, 

crown diameter (Woodcock et al., 1997, Phua et al., 2003, Baccini. et al., 2004) and vegetation indices 

(Tomppo et al., 2002, Carriers et al., 2006, Lu, 2006).  The high spatial resolution data are recently used to 

estimate and map Above Ground Biomass accurately (Gibbs et al., 2012). The method of above ground 

biomass estimation is changing because of high resolution of images and development of image analysis 

software. Crown Projection Area (CPA) of trees can be delineated from Very High Resolution (VHR) 

image using different software and Shimano (1997) narrated that the DBH and CPA are related. Although 

DBH is often used to estimate biomass, attempts to model biomass as a function of CPA from VHR 

image and limited sample field measurement are on progress. Delineation of CPA and spatial arrangement 

of TOF is more challenging than of forest because of the complex interaction of TOF with other 

surrounding features. Object Based Image Analysis (OBIA) is adequate to capture the geometry of TOF. 

Numerous studies have been done using OBIA for mapping woody plantation in agricultural land and 

rural landscape around the globe.  For example, hedgerow of 2m width was identified accurately with areal 

imagery in Berkhire, UK by Tansey et al., (2009). Aksoy et al., (2010) carried out a study to identify linear 

wooded strip using OBIA in Germany, Czech Republic and Cyprus. Other related study includes the 

identification of shelterbelt for large area in Manitoba, Canada by Wiseman et al., (2009).  OBIA also 

provided new opportunities to improve biomass estimation using CPA of individual trees. Many studies 

have been carried out to delineate individual tree crown using OBIA. For example, Erikson (2004) 

delineated individual tree crown using different algorithm which resulted in 73-95% correctly segmented 

tree depending on forest type and method. Ke (2011) also used different algorithm for tree crown 

delineation and found more accurate result for coniferous tree than deciduous. Accuracy of CPA 
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delineation is a key factor for model development because CPA influences other variables of the model 

(Ke, 2008) and improvement of CPA delineation improves the model (Hirata et al., 2009). 

1.2. Problem Statement 

The importance and change of global carbon cycle led to increasing demand for knowledge of all possible 

carbon sinks and sources at different spatial and temporal scale (Grosse et al., 2008, Gibbs et al., 2012). In 

addition, due to the need of monitoring biomass and reporting for the Kyoto protocol, demand for 

biomass estimation over large area has increased. Moreover, biomass estimation over large area can raise 

our understanding of carbon cycle and dynamics with land use and climate change (Woodwell et al., 1978, 

Adams et al., 1990, Keeling et al., 1996). Because field data measurements are very expensive to apply over 

large areas, remote sensing technique can be used as optimistic tool.  Very High Resolution (VHR) images 

can estimate biomass accurately (Gibbs et al., 2012) but long  processing time for image analysis over large 

areas, large space needed for data storage, low spatial coverage as well as acquisition cost, limits the 

application of VHR images in large areas (Lu, 2006). However, because of the accuracy maintained by 

VHR to estimate biomass, it can be used as reference data. Therefore, extrapolation of the result obtained 

from VHR data to a medium resolution image can produce reliable result with affordable cost (Manitis & 

Mollicone, 2010). Many studies have been done to estimate biomass over large area in combination of 

very high and medium resolution imagery. Propastin (2013) estimated biomass over large area in a tropical 

forest of Indonesia using Landsat ETM and MODIS data where a geostatistical method was used to relate 

ground truth and Landsat ETM and to produce AGB 3D surface and then assign biomass with MODIS 

band to map biomass over the large areas covered by MODIS data. Tomppo et al., (2002) estimated 

biomass for large areas by simultaneously using Landsat-TM and IRS-1C WiFS data where a map of 

variable of interest was produced from VHR data and field measurement and subsequently aggregated to 

coarser resolution to use as a reference map. After that a pixel by pixel regression model was used to 

develop a relationship between the reference map and coarse resolution satellite image. Similar study was 

carried out by Koju et al., (2017) who upscaled biomass at district level in Nepal. Moreover, Zheng et al., 

(2007) used reflectance data of MODIS to estimate biomass over large area linking with an empirical 

model developed by Landsat ETM data in the Lake State, USA. Upscalling of biomass for Trees Outside 

Forest was done by Mutanga (2012) in a district of Ghana where biomass was estimated using VHR 

(World view-2) image and then correlate with band reflectance of medium resolution Aster image. This 

present study attempts to develop an approach to use of both very high and medium resolution image to 

estimate AGB of TOF over large area where biomass obtained as a function of CPA from VHR image 

will be aggregated with medium resolution image in an area based approach. TOF are classified into 

different configuration based on their spatial arrangement. Because of the variation of their arrangement 

and density, biomass could also differ in different configuration. Considering this issue, biomass will be 

scaled up separately for each configuration. The biomass for the proportion of area coverage will be linked 

to the NDVI of medium resolution data (Sentinel-2). Studies have explored that biomass of trees outside 
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forest can be directly measured by NDVI and there is a positive relation between them. Yao et al., (2015) 

tried different vegetation indices for biomass estimation of urban green space in Xi’an, China and found 

that NDVI is strongly related to biomass than other vegetation indices. Moreover, Gunawardena et al., 

(2015) also found positive correlation between biomass and NDVI for biomass estimation of a national 

park in Sri Lanka. Similar finding was observed by Kanniah et al., (2014) where high positive correlation 

was found between biomass and NDVI in an urban forest, Malaysia. 

Very few researches are carried out for biomass estimation of Trees Outside Forest over large area. 

Development of an approach to interlink very high and medium resolution images can be highly potential 

to estimate biomass for Trees Outside Forest at national or global scale. 

1.3. Objectives of the research 

The overall objective of this study is to develop an approach to estimate biomass using VHR and medium 

resolution (Sentinel-2) satellite images. 

Specific objectives: 

01. To model the relationship between Crown Projection Area (CPA) and Above Ground Biomass 

(AGB) of Tree Outside Forest (TOF). 

02. To assess the accuracy of tree crown segmentation using VHR image of Pleiades satellite. 

03. To upscale biomass and model the relationship between CPA based on VHR image and 

Vegetation Index (NDVI) of medium resolution (Sentinel-2) data for biomass estimation. 

1.4. Research Questions 

01. Is there a relation between CPA and AGB to model biomass estimation? 

Null Hypothesis: There is no relation between CPA and AGB. 

Alternative Hypothesis: There is a positive relation between CPA and AGB. 

02. How accurate can biomass be estimated using a regression equation based on CPA? 

03. How accurate can tree crowns be delineated using VHR image for Trees Outside Forest? 

04.  How can the estimated biomass from VHR image be scaled up to the Sentinel-2 satellite image? 

05. Is there a relation between CPA based on VHR satellite image and NDVI of Sentinel-2 for 

biomass estimation? 

Null Hypothesis: There is no relation between CPA based on VHR satellite image and NDVI of 

Sentinel-2 for biomass estimation. 

Alternative Hypothesis: There is a positive relation between CPA based on VHR satellite image 

and NDVI of Sentinel-2 for biomass estimation. 
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2. MATERIALS AND METHOD 

2.1. Description of the study area 

The study was conducted in a farmland near the border of Germany and Netherlands covering an area of 

36 km2. The study area was closed to the city of Ahaus, Germany and partly to the East of the city 

Enschede, The Netherlands. The study area is geographically located between latitude 52009`35`` N- 

52012`13`` N and longitude 6051`17``E- 6059`23``E (Figure 2-1) and 42m above from the mean sea level.  

 

 

 Enschede, The Netherlands 

 

 

 

 Border of Netherlands-Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Location and map of the study area 
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The present study deals with the spatial variation and different configuration of TOF. The selected study 

area was with adequate feature of interest which was one of main reasons to select this area as study area. 

Moreover, VHR image was also available for the area. During area selection, the area was chosen in such a 

way that can cover as much features of interest as possible (spatial arrangement of tree) which made the 

study area a very irregular shape. 

Most of the land in the study area is occupied by farmlands including agriculture, such as cropland and 

pastures. Linear tree formations are located along the roadsides. Trees are planted along the boundary of 

the land which acts as wind break between agricultural fields. There are also small patches within this 

study area including different softwoods and hardwoods. Scots Pine (Pinus Sylvestris), Oak (Quercus robur), 

Beech (Fagus sylvatica), Birch (Betula pendula) are the most common species in this area. Oak is the most 

common tree along the roadsides. Farmers generally planted trees along their fields and roadside trees are 

managed by administrative authority. 

2.2. Dataset and Materials  

Datasets 

This research used a Pleiades (Very High Resolution) satellite and medium resolution Sentinel-2 optical 

satellite image. Additionally, Google Earth was used to locate sample points and to facilitate manual 

delineation of CPA from Pleiades image. Pleiades 1b satellite was successfully launched on December 2, 

2012. It provides ortho-rectified colour image at 0.5m resolution and capable of acquiring VHR stereo 

imagery. It has five spectral bands including Blue, Green, Red and Near Infrared and Panchromatic. On 

the other hand, Sentinel-2 is an earth observation mission developed by ESA to perform services like 

forest monitoring, land cover change detection, natural disaster management. It provides multi spectral 

data with 13 spectral bands including visible bands, Near Infrared and Short wave infrared part of the 

spectrum with special resolution 10, 20 and 60m. Details of the dataset and their sources are described in 

Table 2-1. 

 

 

 

 

 

 

 

 

 

 



SPATIAL VARIATION OF TREES OUTSIDE FOREST AND THEIR CONTRIBUTION TO THE ABOVE GROUND BIOMASS (AHAUS, GERMANY - ENSCHEDE, THE 

NETHERLANDS) 

7 

Table 2-1: Dataset used in the research and its sources 

Spatial data                      Data description        Source 

 

 

1. Pleiades 

Date of Acquisition: 1st November, 2015, 10.46.55 am 

Spatial resolution:  Panchromatic: 0.5m 

                               Multispectral: 2m 

Spectral range:   Blue: 430-550 nm 

                           Green: 490-610 nm 

                           Red: 600-720 nm 

                           NIR: 750-950 nm 

Projection: WGS-1984-UTM-Zone-32N 

Datum: D-WGS-1984 

Sun angle azimuthal: 172.2328354518122° 

Sun angle elevation: 23.28878868024778° 

https://www.intellige

nce-airbusds.com 

 

 

2. Sentinel-2 

Date of Acquisition: 25th September, 2016 

Spatial resolution: 10m 

Spectral range:   Blue: 490 

                           Green: 560 

                           Red: 665 

                           NIR: 842 

Projection: WGS-1984-UTM-Zone-32N 

Datum: D-WGS-1984 

Sun angle azimuthal: 168.250 

https://earthexplorer

.usgs.gov 

 

Field equipment 

Various equipment was used for conducting field work within the time period between 25th September to 

25th October, 2016 for data collection and measurement. The equipment and their purpose are listed in 

the Table 2-2. 

Table 2-2: List of field equipments and its purpose 

                        Equipment                               Purpose 

GPS and iPAQ Navigation 

Diameter Tape Measuring diameter of tree at breast height 

Data sheet Recording the measured data and other information 

from the field 

Measuring Tape Measuring the area of sample plots. 
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Software 

Different software was used in this study for spatial data analysis as well as numeric calculation for 

biomass estimation. The software and its specific use are described in Table 2-3 

Table 2-3: List of software used and its purpose 

                     Software                               Purpose 

ArcGIS version 10.4 GIS analysis 

ENVI 5.3 Image processing 

eCognition Developer8 Object based image analysis 

SPSS , R and Microsoft Excel Statistical Analysis 

Microsoft Word Writing thesis 

Draw.io Diagrammatic representation 

Microsoft Power Point Presentation of the research 

 

2.3. Method 

The method of this research consisted two major parts. 

1. Model development and biomass estimation for Trees Outside Forest using VHR image. This part 

consisted of field data collection and analysis as well as biomass estimation from field data, image analysis 

and relates image data to the field measured data. 2. Upscaling biomass from VHR (Pleiades) to Sentinel-2 

image and analysing the relationship between biomass obtained from VHR image to the NDVI of 

Sentinel-2. Detail of each step for part one and two is explained in the methodology which is depicted in 

the Figure 2-2 and 2-3 respectively. 
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Figure 2-2: The methodological flow chart of above ground biomass estimation using VHR image and 

field data. 
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Figure 3.2: Methodological flow chart for upscaling biomass to the Sentinel2 data 

 

 

 

 

 

 

 

 

2.3.1. Sampling design for field data collection 

In this research, biomass was quantified for number of representative locations and extrapolated them for 

the larger spatial extent, thus it was crucial that sample is a good representative for the whole area for the 

features of interest (Brown, 1997). In this study area, six different spatial arrangements of TOF were 

found included: patch, windbreak, double line open and double line closed canopy, single line open and 

closed canopy. The group of trees looks like small forest was considered as patch (Figure 2-4). Linear tree 

formation along the road was considered as line tree formation. If the trees were in one side of the road 

was called as single line and if the trees were in both sides of the road was called as double line 

configuration. If there was canopy gap in between two trees in a linear tree formation was called as open 

canopy (Figure 2-6) and if the canopies were so closed and overlapped with each other, was considered as 

closed canopy linear tree formation (Figure 2-5). Linear tree formation which was located along and in 

between two agricultural lands was considered as windbreak.  

 

 

 

Figure 2-3: Methodological flow chart for upscaling biomass to the Sentinel-2 satellite image. The 
procedure is repeated for each configuration to develop model for each configuration 
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Considering these six spatial arrangement

stratification, sample plots were 

representation of all stratums and 

each stratum was in proportion to the area size of each stratum in the study area.

plots were distributed in such a way that it is uniform and cover more or less the whole study area. Before 

field work, sample plots were pointed out in the

the study area. Before selecting the sampling points of patch

measuring tool of Google Earth. If the area was lower than 0.5 ha, only then it was included as sample 

plot because according to FAO (1995) the forest area less than 0.5 ha is considered as patch.
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Figure 2

TREES OUTSIDE FOREST AND THEIR CONTRIBUTION TO THE ABOVE GROUND BIOMASS (AHAUS, GERMANY 

NETHERLANDS) 

six spatial arrangements, the study area was stratified into six homogeneous areas. After 

stratification, sample plots were selected randomly in each stratum. The stratification 

and increases the precision (Husch et al., 2003). The number of samples in 

in proportion to the area size of each stratum in the study area. In this context, sample 

plots were distributed in such a way that it is uniform and cover more or less the whole study area. Before 

pointed out in the Google Earth for each configuration of TOF throughout 

the study area. Before selecting the sampling points of patches, area of patches were

measuring tool of Google Earth. If the area was lower than 0.5 ha, only then it was included as sample 

plot because according to FAO (1995) the forest area less than 0.5 ha is considered as patch.

                                                                                                    (Source of photos: Canstock photo, 2016)

 
Figure 2-4: Patch tree formation 

 

2-5: Linear tree formation with closed canopy 

 

2-6: Linear tree formation with open canopy 

, GERMANY - ENSCHEDE, THE 

ratified into six homogeneous areas. After 

The stratification insured the 

number of samples in 

In this context, sample 

plots were distributed in such a way that it is uniform and cover more or less the whole study area. Before 

Google Earth for each configuration of TOF throughout 

were measured by 

measuring tool of Google Earth. If the area was lower than 0.5 ha, only then it was included as sample 

plot because according to FAO (1995) the forest area less than 0.5 ha is considered as patch. 

(Source of photos: Canstock photo, 2016) 
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The major constituting elements in plot design are plot size and shape. Different plot sizes are 

recommended  for sampling technique considering the cost and feasibility of field work (Neigh et al., 

2014). However, the problem arises when discussing plot design for TOF because of their spatial 

arrangement and density variation. Since variability in each stratum is expected, different plot size were 

designed to address the variability of tree density and arrangement of each stratum.  As a sample plot size 

for patch, 32X32 m dimension was considered and 50 X Total width of the tree line was considered for 

linear tree formation (Singh & Chand, 2012).  Due to comparatively high density of windbreak than other 

linear formation, the length of the sample plot was taken as 25 m instead of 50 m. The width of the tree 

line was taken 10 m for this study. The sample plot size with their numbers is listed in table 2-4. 

 

Table 2-4: List of different configurations and their sample plot size and numbers 

Configuration of TOF          Sample size (m2)        Number of plots 

Patch                 32X32                13 

Wind break                 25X10                12 

Double line open canopy                 50X10                 9 

Double line closed canopy                 50X10                 7 

Single line open canopy                 50X10                 9 

Single line closed canopy                 50X10                 9 

 

2.3.2. Field data collection and analysis 

The measurements were carried out from September to October 2016. DBH is the most common 

biophysical parameter that is used to estimate biomass and it can explain 95% variation of biomass alone. 

Considering this issue and uncertainty related to the height estimation, allometric equation based on DBH 

was used in this study.  During the field work, DBH of the tree was measured for all trees of the sample 

plots to develop and validate model for biomass estimation using CPA. A total of 59 sampling plots with 

420 individual trees were measured for the whole area from different TOF configurations. Diameter of all 

trees was measured in the sample plots except of trees with diameter less than 10 cm. Trees smaller than 

10 cm DBH were excluded because of their minimal contribution to the biomass (Brown, 2002). DBH 

was measured at a tree stem height of 1.3 m above the ground. For DBH measurement, forking was 

considered. If a fork stem shape is above 1.3 m, the tree is considered as tree with one stem while fork 

below 1.3 m was considered as two stems. Four different species of trees including Oak (Quercus robur), 

Birch (Betula pendula), Beech (Fagus sylvatica) and Scots Pine (Pinus sylvestris) were identified within the 

sample plots of our study area. Picture index including identification feature of trees was prepared during 

pre-fieldwork time to identify them in the field level. Name of the species and their DBH were recorded 

in the data entry sheet. 
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After field work, species with their DBH were organized in the Microsoft excel and descriptive statistics 

of data were carried out using SPSS.  

2.3.3. Image Processing 

As pre-processing pansharpening and low pass filtering was done to the image to enhance the visual 

interpretation and facilitate object based image analysis. The detail of this processing is described in the 

following paragraph.  

Image fusion is the process of combining information which can be obtained by various sensors or by 

same sensor in different measuring context (Simone et al., 2002). Pan- sharpening is pixel level fusion of 

image which is generally used to improve spatial resolution as well as structural and textural details and 

retail spectral properties of the original data (Zhang et al., 2010).  The high spectral and high spatial 

information of multispectral image was maintained for easy interpretation. In this study, a stacked 

multispectral image (2m resolution) was fused with a panchromatic image (0.5m) of Pleiades to obtain a 

spatial pan sharpened multispectral image of 0.5 m spatial resolution. The fusion was carried out using 

Gram Schmidt pan sharpening algorithm in ENVI 5.3. This method maximizes image sharpness and 

minimizes colour distortion. Next, spatial filtering was applied to the pan sharpened image to enhance the 

image information and interpretability.  

2.3.4.  Manual tree crown delineation 

Tree crowns in the sample plots were manually delineated from the pansharpend Pleiades image using 

ArcGIS 10.4. This was done for two main purposes, one was for regression modelling between crown 

projection area and field measured data and the other one was to use manually delineated CPA as 

reference data for accuracy assessment of automatic delineation. During tree crown delineation, in some 

cases, Google Earth was used for visualization of tree crown to facilitate crown delineation 

2.3.5. Allometric equation and biomass estimation 

Allometric equations were used for this study to calculate above ground biomass using field data. The 

application of the appropriate allometric equation is crucial for reducing error in biomass estimation 

(Chave et al., 2005). In our study area, three broadleaf and one coniferous species were found and species 

specific allomtric equations were used for three species and a general equation was used for one species. 

Species specific equations were developed for different forest around Europe (Jean et al., 2003). Due to 

the availability of the species specific equation for Oak, a general allometric equation was used for Oak 

which was developed for broadleaf species in a temperate forest of US (IPCC, 2003). 

Species specific equations are: 

1. Birch: AGB= 0.3*(DBH)2.22(kg/tree)                                                                             Equation 1 

2. Beech: AGB= 0.1293*(DBH)2.44 (kg/tree)                                                                     Equation 2 

3. Scots pine: AGB= 0.0943*(DBH)2 -0.95 (kg/tree)                                                         Equation 3 
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General equation of broadleaf is: 

1. AGB = 0.5*[25000*(DBH) 2.5)/ ((DBH) 2.5 +246872)] (kg/tree)                                   Equation 4 

2.3.6.  Relationship between biophysical parameters 

Prior to the model development of AGB estimation, it is necessary to find the relationship between 

variables which is required for scientific approach. To determine the relationship, field measured DBH 

was plotted against manually delineated CPA from image and the co-efficient of determination was 

calculated. Based on relationship, a regression model was developed. 

2.3.7. Model development and validation 

Due to the shadow problem and image quality, it was difficult to delineate adequate number of tree 

crowns for each configuration to develop individual model for each configuration. Considering this issue, 

one model was developed for all configuration using samples from each configuration classes. Ninety (90) 

tree crowns from different configurations were manually delineated to develop a model for AGB 

estimation as a function of CPA. Only clearly visible crowns were manually delineated from the image. 

The field data was divided into training (n=90) for model development and test (n= 67) for model 

validation. Different methods are used to validate model. The two most widely used method for validation 

is co efficient of determination (R2) and Root Mean Square Error (RMSE) (Lu, 2006). In our study, both 

R2 and RMSE were used to validate the model. R2 was used to know the fitness of the model to apply 

outside the range of sample data and RMSE was calculated to know how much our prediction deviated on 

average from the actual values of the dataset. R2 was determined by plotting estimated and measured 

biomass against each other and RMSE was calculated using following equation 

                       RMSE= �
�

�
 ∑ (�� − ��)��

�                                                                                Equation 5 

                      Where, 

                      Cp = Predicted Biomass 

                      Co = Observed Biomass 

                      n= Number of observation 

2.3.8. Tree Crown delineation in eCognition 

Individual tree crowns were delineated to obtain the biomass of each tree in the whole study area which 

was used as training data for upscaling biomass to the Sentinel-2 image. Individual tree crown delineation 

was done by image segmentation in eCognition. Segmentation is a spatial clustering technique which 

subdivided image into non-overlapping units or segments (Möller et al., 2007) It is a building block of 

object based image analysis in identifying homogenous areas and groups them into specific objects. There 

are two basic segmentation principles. 
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1. Cutting something big into smaller part which is called Top down approach and 

2. Merging small pieces to get something bigger based on homogenous criteria called 

Bottom up approach. 

Trees Outside Forest is not continuous land class and scattered. Because of this, it is better to start from a 

small piece and merge them to get bigger based on homogenous criteria. Considering the issue related to 

TOF, bottom up approach was used in this study. 

2.3.9. Algorithm for segmentation 

Crown delineation can be done using different processes. It can be done manually with a high spatial 

resolution image however this is very laboured intensive and impracticable for large area (Ferreira et al., 

2014). Different automated segmentation algorithms have been developed and most of them are 

applicable for coniferous and temperate deciduous forest (Latif et al., 2016). According to the 

requirement, specific segmentation algorithm can be used to extract feature of interest. Multiresolution 

region growing approach was used for our study to separate TOF from other land class as well as to 

delineate individual tree crown.  Multiresolution segmentation algorithm locally minimizes the average 

heterogeneity of image object and maximizes their respective homogeneity (Definiens, 2009b). The 

homogeneity of objects on which the scale parameter refers to is called composition of homogeneity 

which depends upon colour, smoothness and compactness. The value of shape field modifies the 

relationship between shape and colour criteria and the compactness is used when different image objects 

are rather compact and separated from non compact objects only by relatively weak spectral contrast. The 

process starts with one pixel of an object and merges similar neighbouring objects together in subsequent 

steps up to a heterogeneity threshold (Benz et al., 2004). Beyond pure spectral information, image objects 

contain different shape and texture information which is considered in this algorithm. This is more logical 

for distinction between different land classes which is important to separate TOF from other classes.  

2.3.10. Scale Parameter 

 Scale parameter is an important parameter for multiresolution segmentation. The scale parameter is a 

term that is used to determine the maximum allowed heterogeneity for the resulting image object. By 

changing the value of the scale parameter, the size of object can be determined. The primary goal for this 

segmentation was to maintain the image objects which are purely tree crown.  To obtain acceptable tree 

crowns, different scale parameters were applied on the subset of image in a trial and error process and 

finally below mentioned scale parameter was used for the whole area. This combination showed best 

representation of tree crown among all other parameter combination. 

Scale parameter: 20 

Shape:  0.9 

Compactness: 0.8 
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2.3.11. Individual tree crown extraction 

After general segmentation using definite scale parameter, shape and compactness, the main aim was to 

separate TOF areas from non-TOF areas. In this study, the process relied primarily on the following 

attributes to separate a TOF from non-TOF image object: Mean value of NIR spectral band and Red 

band, standard deviation of NIR band.  A threshold was developed using above mentioned feature to 

separate different non-TOF areas from TOF areas. Different spectral bands and their information to 

develop a threshold were tested but the above mentioned attributes gave the optimal result to distinguish 

TOF from non-TOF.  Selection of the threshold was done using observed feature information of Non-

TOF objects compared to that of the tree objects. Separation of TOF from non-TOF was done with 

subsequent steps. 

In the first level, bare, build land and shadow was separated using the mean value of red spectral band. 

After separating building and bare land, standard deviation of NIR was used to separate grass lands. 

However, some grassland was unclassified which was further classified using mean value of NIR. Finally, 

the non-TOF areas were merged. An additional rule was used such as relation to the neighbour objects to 

distinguish non-TOF which was not classified after first level of classification as well as to add some 

misclassified TOF into non-TOF class. The extracted trees were not in the shape of real trees and some 

trees were in cluster form. To obtain individual tree crown and smooth shape of tree crown, watershed 

transformation and morphology operation was done. Watershed transformation was carried out to 

separate large tree crowns into individual trees. Watershed transformation works by calculating inverted 

distance map. At first watershed transformation calculates inverted distance map which is based on the 

inverted distance for each pixel to the image object border. This makes the maximum value in the original 

image to become minimum value to the inverted distance map (Definiens, 2009b). Further, morphology 

operation was applied to smooth the boundary of the segmented object of TOF. Refinement of tree 

crown shape was applied using open image object (Figure 2-7: Rule set for total segmentation and 

classification process) 

The classification result was exported as vector data from eCognition to ArcGIS 10.4 for further analysis. 

Non-TOF areas were not completely separated by the separation process in eCognition, some non-TOF 

were classified as TOF. This misclassified TOF were manually merged to the non-TOF areas. Some 

unwanted features were also merged to the non-TOF areas using ArcGIS 10.4. Finally non-TOF areas 

were masked off and TOF tree crowns were exported as a vector layer. Biomass for each tree was 

calculated by applying the model equation developed in the modelling phase. The result was used as a 

reference data for upscaling biomass to the Sentinel-2 image. 
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2.3.12. Accuracy assessment of tree crown delineation 

Accuracy assessment of tree crown delineation was carried out because the accuracy of the final biomass 

calculation is dependent on the accuracy of CPA delineation (Hirata et al., 2009). In this study, accuracy of 

tree crown delineation was assessed by calculating the D index.  The index can be explained as the 

closeness of an ideal segmentation result in comparison to the manual segmented tree crowns (Clinton et 

al., 2010). The value of D ranges from 0-1. The closer the value near 0, better the segmentation. The 

method takes into account the area and the positional difference between obtained segmentation and 

reference segmentation which is called over and under segmentation. Manually delineated tree crowns 

from field sample plots were used as a reference data and automatic segmentation tree crowns from 

eCognition were used as obtained tree crowns. Over and under segmentation was calculated from the 

following equations: 

 Over segmentation= 1 −
����(�∩�)

����(�)
                                                                                          Equation 6 

  Under segmentation = 1 −
����(�∩�)

����(�)
                                                                                      Equation 7 

  Where, x and y are reference and automatic segmentation respectively. 

 

 

Figure 2-7 Process of tree crown segmentation and elimination of 
other land class in eCognition Developer 
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Over and Under segmentation ranges between 0 to 1, where 0 indicates a perfect segmentation with 

reference and segmented object. Combining the over and under segmentation, the index D (goodness of 

fit) was interpreted by the following equation which was developed by Clinton et al., (2010).             

  D = �
(���� ������������)��(����� ������������)�

�
                                                                   Equation 8 

2.4.  Information transfer from VHR image to  Medium resolution Sentinel-2 image 

2.4.1. Up scaling 

Upscaling is the processing of scaling up spatial data from a finer spatial resolution image to a coarser 

resolution image (Stein et al., 1998). The basic idea of upscaling biomass is to map biomass with a 

moderate resolution image in the landscape using a VHR image as training data. In the high resolution 

image, pixels are smaller than the object of interest. Therefore aggregation of pixels to objects which 

relates the reflection in medium resolution images is needed to transfer between scales (Gibbs et al., 2012). 

In this study, crown projection area obtained from VHR image was used as training data to transfer 

information from a VHR image to a medium resolution image of Sentinel-2 satellite image.  

A comparative analysis of the relationship between spectral responses and forest biophysical parameter 

like biomass is needed to upscale above ground biomass derived from the small area to the large area. 

Vegetation indices such as NDVI is commonly used for biomass estimation and it is the most used 

vegetation indices (Lu et al.,2004). The NDVI was calculated based on Sentinel 2 image in ArcGIS 10.4 

using the following equation: 

            NDVI=  
(�������)

(�������)
                                                                                                        Equation 9 

2.4.2. Approach for Upscaling 

An area based averaging technique for biomass estimation was used for upscaling biomass from VHR 

image (Pleiades) to medium resolution Sentinel-2 image. An area based averaging technique provides 

satisfactory result for upscaling in comparison to the typical average technique (Hufkens et al., 2008, 

Mutanga, 2012). CPA derived from VHR image was overlaid on the Sentinel-2 NDVI (Figure 2-8). 10 m 

X10 m windows were generated to calculate biomass within the area. To optimize the area covered by 

trees and minimize the area of another land class in the window, Sentinel-2 data was resampled into 2 m 

cell size. After, biomass based on the CPA obtained from VHR image and average NDVI of Sentinel-2 

was calculated for the window. This process was repeated for several windows until an adequate number 

of samples were obtained to develop the regression model. This was done separately for each tree 

configuration. The number of sample size differs from each configuration to the other because of their 

proportion in the study area (Table 2-5). Small window size was used to get more plots for model 

development and validation.  
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Average biomass was calculated from some representative samples which are fully covered by crowns 

within the specified area.  This fixed average biomass was used to calculate area based weighted average 

biomass for every configuration by multiplying the proportion of area covered by the tree crowns within 

the specified area in each configuration. The methodology was adopted from Hufkens et al., (2008) who 

modified upscaling method from the traditional one to upscale LAI in a semi -arid woodland 

Area weighted average biomass =  
���� ����� ����� ����

������ ����
× �������  �������                      Equation 10 

 

Table 2-5: Window size and number of plots for model development at each configuration of TOF 

Configuration of TOF Window size (m2) Number of plots 

Patch 10X10 14 

Wind break 10X10 16 

Double line open canopy 10X10 17 

Double line closed canopy 10X10 15 

Single line open canopy 10X10 14 

Single line closed canopy 10X10 14 

 

Figure 2-8: Overlay of tree crown from VHR image (Pleiades) with NDVI of Sentinel-2 data 
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Finally linear and non-linear regression model was developed for each configuration to predict biomass 

using NDVI of Sentinel-2 image. The number of plots varied from configuration to configuration because 

of their proportion in the study area. 

The developed model for each configuration was validated using the datasets that were not used in model 

development. However, because of low the R2 value obtained from the patch, no validation was carried 

out for patch. For model validation, the two most common methods ( i.e., R2 and RMSE) were used. 
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3. RESULTS 

3.1. Descriptive analysis of field measured data 

In the study area, a total 420 individual trees from 59 sample plots were recorded with their DBH. 

Moreover, four different species were identified in the study area. Among them Oak (Quercus robur) is the 

most dominant tree species in this area especially along the road side. Patches are dominated by Birch 

(Betula pendula) and Beech( Fagus sylvatica) followed by Scots Pine (Pinus sylvestris). Diameter of trees in the 

area ranges between 10.5-90 cm but majority of the tree’s DBH are within the range 20-35 cm (Figure 3-

1). The distribution of DBH means that data is not completely distributed as bell shape which is supposed 

to be for normal distribution of data. It can be seen that data is skewed in one side because DBH was 

measured for trees diameter greater than or equal to 10 cm. If the DBH less than 10 cm would be plotted 

the distribution should be normal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the Kolmogorov-Smirnov and Shapiro Wilk normality test it can be seen that p value is less than 

0.05 (Table 3-1). The stated null hypothesis was that data is not normally distributed. The p value less than 

0.05 means that null hypothesis is rejected and data is normally distributed. Shapiro Wilk test was 

Figure 3-1: Histogram of the data (DBH) distribution for Trees Outside Forest 
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considered because it is more powerful for normality test than Kolmogorov test (Yap, 2011). Considering 

Shapiro Wilk test, it can also be concluded that data is normally distributed. 

 

 

 

 

 

Observations during the field campaign showed a difference in DBH among different configuration 

classes. Statistical information (mean DBH) represented the difference among different classes. It 

appeared that trees from double line with open canopy had lowest mean DBH (mean from the all samples 

taken from field) in comparison to other five configurations (Figure 3-2). Moreover, error bar from all 

configuration overlap with each other except double line open canopy. This indicated that the mean DBH 

of double line open canopy is significantly different than other configurations. 

 

 

 

      

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 3-2: Comparison of DBH from different configurations of Trees Outside Forest 

Table 3-1: Normality test for data (DBH) distribution for Trees Outside Forest 
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With an ANOVA test, the overall significance of the difference of mean DBH among different 

configurations was tested and the statistical result showed that the calculated F value is greater than the 

critical F value with a degree of freedom is 414 (Table 3-2-A) This implies that there is significant 

difference among the mean DBH of all different configurations. Moreover, Homogenous Subset analysis 

(produced by Post Hoc test) was carried out to know is any individual configuration has significant 

different mean DBH or not. The output revealed that, mean DBH from double line open canopy is 

significantly different than others because it appeared individually in a different subset than other. The 

appearance of mean DBH of other configuration in one subset indicated that there is no significance 

difference within them (Table 3-2-B). This indicated that the significant difference of DBH from double 

line open canopy influenced on the overall significance of the difference of mean DBH among 

configurations. 

Table 3-2: ANOVA test for different configuration of Trees Outside Forest 

A) Analysis of Variance 

Sources of variation Sum of Square Df Mean Square       F       Fcrit 

Regression 15778.27   5    3155.65      14.66       2.23 

Residual 89062.35 414    215.12 

Total 104840.63 419  

 

B) Homogenous subset for DBH 

       Configuration 

 

              Subset 1                Subset 2 

       Mean DBH (cm)          Mean DBH (cm) 

Double line open canopy                  25.49  

Wind break                   36.37 

Single line open canopy                  39.10 

Single line closed canopy                  39.37 

Double line closed canopy                 40.29 

Patch                 44.68 

Significance                   1.00                .09 

 

3.2. Relationship between field measured DBH and satellite image based CPA 

In order to understand the relationship between field measured DBH and delineated CPA from image, a 

linear regression model was developed which resulted into a coefficient of determination value of 0.78 at 

95 % confidence level (Table and Figure 3-3). This linear relationship reveals that larger delineated tree 

crowns are related to the larger DBH. An ANOVA test was done to test the significance of the model. 
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The null hypothesis stated that there is no relation between CPA and DBH for model development. The 

statistical F value indicated the significance of the model which means null hypothesis is rejected and there 

is a relation between DBH and CPA for all configurations in together (Table 3-3). 

 

Table: 3-3 Linear regression statistics of DBH estimation model 

(A)  Regression Analysis                             DBH vs CPA 

R2                                 0.786 

Adjusted R2                                                                                                                                        0.783 

Standard Error                                 5.75 

RMSE (%)                                32% 

(B)  Analysis of Variance                           DBH vs CPA 

    Regression          Residual 

DF           1             88 

Sum of squares                                                                                    10698       2909.842 

F       323.53  

Significance        .000  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Regression relation between DBH vs CPA (including samples from all 
configurations) for Trees Outside Forest  
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3.3. Above Ground Biomass modeling as a function of CPA  

In this section results are being described for the method that was followed to address the answer of the 

research question 1: Is there a relation between CPA and AGB to model biomass? and 2: How accurate 

can biomass be estimated using a regression equation based on CPA? 

 

The statistical properties of the linear model for AGB estimation as a function of CPA is shown in Table 

(3-4). The regression analysis resulted with coefficient of determination of 0.78 with a positive slope which 

indicates the increase of biomass with increasing CPA. The regression line didn’t pass through the origin 

(Figure 3-4) which indicates that the data distribution was not near the zero. That is possible for biomass 

because DBH was measure above 10cm and biomass is also an estimation which values are also not near 

zero. The R2 value indicates that the predictor explains 78% variance of dependent variable. The 

parameter prediction for predicting biomass is given by the following equation  

AGB=-495.07+20.07 X CPA                                                                                                    Equation 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Regression relation between AGB (estimation based on allometric equations) and 
CPA for Trees Outside Forest 



SPATIAL VARIATION OF TREES OUTSIDE FOREST AND THEIR CONTRIBUTION TO THE ABOVE GROUND BIOMASS (AHAUS, GERMANY - ENSCHEDE, THE 

NETHERLANDS) 

 

26 

The predetermined null hypothesis was that there is no relationship between AGB and CPA. Through 

ANOVA test the significance of the model was tested and the result showed that the model was 

significant at 95% confidence level. The result of the F test demonstrated that the null hypothesis is 

rejected and there is a relationship between AGB and CPA (Table 3-4). 

 

Table 3-4: Regression statistics for AGB estimation using CPA 

(A) Regression statistics                         CPA vs AGB 

 R2                               0.787 

 Adjusted R2                               0.785 

(B) Analysis of variance                          CPA vs AGB 

     Regression        Residual 

DF              1           88 

Sum of Square     35069549.43     9397001.62 

F value          328.41  

Significance value          .000  

(C) Variation in the equation                            CPA vs AGB 

          CPA         Constant 

Beta          20.07       -495.079 

SE of B           1.01        79.560 

T value          18.12        -6.223 

Significance           .000         .000 

 

In order to validate the fitted equation, calculated biomass from a new dataset was compared with the 

predicted biomass. The calculated biomass was closed to the estimated biomass with 30% RMSE. 

Calculated biomass was plotted against predicted biomass and coefficient of determination value was 

found to be 0.75 (Figure 3-5) with slope 0.72 which indicates that the two dataset are correlated positively. 
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Figure 3-5: Comparison between predicted and calculated biomass for Trees Outside Forest 

Six different spatial arrangement of trees were found within the study area and they were classified as 

patch, wind break, double line open and closed canopy, single line open and closed canopy. Statistical 

analysis showed that there is an overall variation of DBH in different configurations of TOF and mean 

DBH of double line open canopy is significantly different from other classes. The variation of DBH 

indicates the variation of CPA. In order to know how biomass is related to the CPA for each of the 

configuration classes, a trend line was drawn for each configuration and the sample points from each class 

was presented by each different colour (Figure 3-6). The trend line shows that each line is very close to 

other even overlapped by other (Trend line for patch was overlapped by other which can not seen in the 

figure). Moreover, it can be observed that all the trees from double line open canopy have very small CPA 

in comparison to other classes and these trees holding small amount of biomass. On the other hand, there 

was a wide variation of CPA of trees for the other classes.  
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Figure 3-6: The relationship between AGB and CPA of individual tree in different configuration of Trees 

Outside Forest 

3.4. Delineation of the crown of TOF  

In this section result is being described for the method that was followed to address the answer of  the 

research question 3: How accurate can tree crowns be delineated using VHR image for Trees Outside 

Forest? 

 

Object Based Image Analysis (OBIA) of high resolution image (Pleiades) resulted in an accuracy of 73% 

in delineating tree crowns. The obtained D value was 0.27 which was an indication of the strength of the 

approach for TOF tree crown delineation. The subset of segmented tree crowns can be seen in Figure (3-

7). The red polygons represent manually segmented tree crown (delineated from field sampled trees) 

overlaid on the automatically segmented tree crowns. A total of 100 manually segmented tree crowns were 

used for accuracy assessment. The accuracy assessment result and error statistics for tree crown 

delineation is listed in Table 3-5. 

 

Table 3-5: Accuracy assessment of TOF crown delineation using multiresolution segmentation algorithm 

Total reference crowns Over segmentation Under segmentation D value Accuracy 

               100            0.25           0.28     0.27     73% 
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Figure 3-7: Subset of individual tree crown segmentation using multiresolution segmentation algorithm. 

The red polygons are describing the manually segmented tree crown overlaid on automatic segmented tree 

crown. 

3.5. Delineation of TOF configuration 

Object based image analysis detected the TOF configuration satisfactorily in expected geometrics except 

some omission and commission of trees. Patch configuration have been delineated consistently except 

some omission and commission of tree and over and under segmentation also can be seen. The shadow 

problem was mainly seen in the edge of the patch (Figure 3-8-A). Linear tree formation with single line 

also delineated in a reasonable geometry (Figure 3-8-B). Double line open canopy also delineated properly 

(Figure 3-8-D). In the case of double line closed canopy configuration, quite a number of trees are omitted 

in one side due to the shadow effect (Figure 3-8-C). Shadow from trees on one side was fallen on the top 

of the trees in other side which was classified as a shadow instead of a tree.   
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  A 
  B 

C D 

Figure 3-8: Picture A, B, C, D is showing the delineation of the configuration of patch, single line tree 

formation, double line closed canopy with shadow effect ( comparatively darker colour is showing the shadow) 

and double line open canopy respectively 
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Subset of the tree crowns delineation after masking other land cover classes is depicted in Figure (3-9) 

where the green colour indicates the TOF crown. After classification and extraction of TOF, it can be 

observed that the OBIA method detected more individual trees which do not exists.  Trees with red circle 

are the commission of trees (Figure 3-9). Commission of some linear feature can also be observed which 

is marked by red rectangular that also did not exist (Figure 3-9). 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3-9: The delineation of TOF crowns for the subset of the study area 
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3.6. Above Ground Biomass mapping for individual tree  

Based on the model established from CPA and individual tree crown obtained from the segmentation 

process, AGB of each tree was calculated for the whole study area. The obtained biomass was used as 

reference data for upscaling biomass to the Sentinel-2 data. A subset of the TOF with their biomass of the 

study area is shown in the Figure 3-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Subset of the study area with tree crowns and their corresponding biomass 
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3.7. Relationship analysis between biomass obtained from VHR image and Vegetation 

Indices (NDVI) of Sentinel-2 

In this section results are being described for the method that was followed to address the answer of the 

research question 4: How can the estimated biomass from VHR image be scaled up to the Sentinel-2 

satellite image? and 5: Is there a relation between CPA based on VHR satellite image and NDVI of 

Sentinel-2 for biomass estimation? 

Crown projection Area (CPA) obtained from VHR image was aggregated within a particular area (10X10 

m) of Sentinel-2 image and biomass was calculated within the area using area based average biomass 

approach.  GIS based approach was used to aggregate CPA within the area of Sentinel-2 image. 

The regression analysis was performed between area based biomass obtained from VHR image and 

vegetation indices (NDVI) from Sentinel-2 to understand their relationship. The linear and nonlinear 

(Quadratic) statistical models were developed for six different configurations of TOF. Results of the 

model showed that nonlinear models fit better than linear model for all configurations. The biomass from 

VHR image was highly correlated with Sentinel-2 NDVI for single line closed, double line closed and 

windbreak configuration. The correlation coefficient for these three configurations was 0.80, 0.88 and 0.80 

respectively. In contrast, low correlation (R2=0.38) was found for patches. Above ground biomass from 

the VHR image was moderately related with NDVI of Sentinel-2 for double line open and single line open 

canopy configuration and their R2 value were 0.72 and 0.76 respectively. The sequence of correlation 

coefficient in these six configurations ranked from high to low was as follows: Double line closed canopy, 

single line closed canopy, wind break, single line open canopy, double line open canopy and patch (Table 

3-6). Figure 3-11is representing the regression relationship between biomass from VHR image vs NDVI 

of Sentinel-2 for different configurations of TOF. See Appendix two for graphical representation of each 

configuration. 

Table 3-6:  Statistical models of estimated biomass for different configuration of TOF using NDVI 

Configuration of TOF                                        Model     R2                            

Double line closed canopy AGB=5314.07-15392.72*(NDVI)+1343.306*(NDVI)2                      0.88 

Single line closed canopy AGB=1411.53-5364.86*(NDVI)+7224.36*(NDVI)2                    0.80 

Wind break AGB= 981.14-1565.67*(NDVI)+2871.64*(NDVI)2    0.80 

Single line open canopy AGB= 1262.96-3194.73*(NDVI)+4247.50*(NDVI)2                         0.76 

Double line open canopy AGB= 1081.44-2529.078*(NDVI)+3740.58*(NDVI)2                       0.72 

Patch AGB=16189.32-42766.72*(NDVI)+30815.57*(NDVI)2   0.38 
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Figure 3-11: Regression relation between biomass obtained from VHR (Pleiades) image and NDVI of Sentinel-2 data 

for different configurations.  
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An ANOVA test was carried out for six configurations of TOF to test the significance of the model. 

Analysis result showed that for each configuration, the calculated F value was greater than the critical F 

value at 95% level of probability which indicated that the null hypothesis is rejected and there is a 

relationship between biomass and NDVI for each configuration. (Table 3-7) 

 

Table 3-7: Regression summary of biomass estimation for different configuration of TOF 

Analysis of Variance                                       Biomass vs NDVI 

       Regression                           Residual 

Configuration DF Sum of Square   DF Sum of Square F Fcrit 

Patch 1 18192540    26 1616865 292.54 4.22 

Wind break 1 10941353    30 359738.3 912.44 4.17 

Double line open canopy 1 5496379    32 376873 145.41 4.14 

Double line closed canopy 1 9698889   28 386035 703.48 4.19 

Single line open canopy 1 4597814   26 171550.6 696.83 4.22 

Single line closed canopy 1 7110343   26 739473.6 250.00 4.22 

 

3.8.  Model validation  

The biomass obtained from the model was compared against measured biomass to calibrate the model. 

Independent samples that were not used in the empirical model development were now used for model 

calibration. The validation was carried out for each configuration of TOF except patch, because of the 

poor fit of the model for patch. The sample size for validation varied from one configuration class to 

another based on their proportion on the ground (Table 3-8). 

3.8.1. Windbreak 

Regression line was fitted between measured and estimated biomass for windbreak resulted in a 0.84 

coefficient of determination value (Figure 3-12) and a RMSE was found to be 15.11%. Descriptive 

analysis showed that measured biomass ranged from 1004.911 to 1368.49 Kg/100m2 with a mean of 

1176.68 which was very closed to the estimated biomass (Table 3-8) 
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3.8.2. Single line closed canopy 

Comparing estimated and measured biomass of trees for single line closed canopy showed that the two 

sets of data correlated with a coefficient of determination value of 0.80 (Figure 3-13) and RMSE was 

found to be 21.23%.  Descriptive statistical analysis presented that the measured mean biomass was 2.35% 

lower than the estimated biomass (Table 3-8) 
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Figure 3-12: Comparison between measured and predicted biomass for 
windbreak 

Figure 3-13: Comparison between measured and predicted biomass for single line 
closed canopy 
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3.8.3. Single line open canopy 

For comparison of the measured and estimated biomass, one was plotted against other (Figure 3-14). The 

R2 value was 0.77 and RMSE was found to be 20.24%. The mean biomass from the model was only 

2.38% lower than the measured biomass (Table 3-8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.4. Double line closed canopy 

The regression line fitted moderately between predicted and measured biomass of trees for double line 

closed canopy with a coefficient of determination 0.72 (Figure 3-15) and RMSE was found to be 19.49 %. 

The mean of the measured biomass was 1076.40 Kg/100m2 and the estimated was 1065.47 Kg/100m2 

which means the measured and estimated biomass is closed (Table 3-8). 
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Figure 3-14: Comparison between measured and predicted biomass for single 
line open canopy 
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3.8.5. Double line open canopy 

Estimated biomass and measured biomass for trees at double line open canopy showed positive relation 

with coefficient of determination value 0.75 (Figure 3-16). The calculated RMSE was 20.15%. The mean 

value of estimated and measured biomass was 808.89 and 848.74 Kg/100m2 respectively (Table 3-8) 
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Figure 3-15: Comparison between measured and predicted biomass for 
double line closed canopy 

Figure 3-16: Comparison between measured and predicted biomass for 
double line open canopy 
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Table 3-8: Summary of biomass estimation using data for validation. The unit for Average biomass is 

Kg/100m2 

Configuration Average biomass N Minimum Maximum Mean Std.Error Std.dev 

Windbreak Estimated 9 929.56 1422.18 1178.57 45.87 137.63 

Measured 9 1004.91 1368.49 1176.68 40.16 120.50 

Double line 

(closed) 

Estimated 9 922.29 1234.92 1065.47 36.35 109.07 

Measured 9 920.80 1257.63 1076.40 43.74 131.23 

Double line 

(open) 

Estimated 9 655.75 1017.94 848.74 42.74 128.13 

Measured 9 657.76 910.60 808.89 32.87 98.61 

Single line 

(closed) 

Estimated 10 669.07 1298.56 995.70 79.17 237.53 

Measured 10 721.11 1257.13 972.8 64.12 192.36 

Single line 

(open) 

Estimated 10 696.31 980.93 820.81 29.81 94.28 

Measured 10 675.34 1033.10 840.00 39.93 126.29 
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4. DISCUSSIONS 

4.1.  Descriptive Statistics 

The diameter distribution is well known and widely used for describing forest stand diameter structure 

(Duan et al., 2013). In this study, the distribution of tree diameter showed positive skewness. The possible 

reason for skewness could be that the measurements of DBH were taken from trees greater than 10 cm in 

diameter and if all the trees were measured it would not be skewed.  

Besides, it can be seen that, there is a variation of DBH from one configuration to another and it was 

lowest for double line open canopy configuration. From the field campaign, it was observed that the trees 

from double line open canopy were newly planted. Low DBH for trees of this configuration could be 

explained by the tree age-DBH relationship because Lukaszkiewicz & Kosmala (2008) found that DBH 

increases with increasing age for road side trees.  

4.2. Above Ground Biomass estimation using CPA 

In this study, linear relationship between CPA and AGB indicates that biomass continues to increase 

linearly with increasing CPA. However, Shimano (1997) reported that the relationship between CPA and 

DBH fit best in a power sigmoid model. This relationship indicates that CPA increment decreases 

overtime but DBH continues to increase. At the younger stage, CPA starts to increase with increasing 

DBH because of less competition for resources. But later, due to the competition of nearby trees for light 

and other resources, CPA starts to stabilize when DBH reaches around 30 cm (Hemery et al., 2005) 

resulted to an exponential relation between CPA and DBH. However, many researchers found linear 

relationship between CPA and DBH. For example, Workie (2011) found linear relation between DBH and 

CPA for both broadleaf and coniferous forests of Netherlands. Moreover, Anderson et al., (2000) found 

linear relationship between CPA and DBH for different species. Hemery et al., (2005) also reported that 

within the diameter range 20-50 cm, a linear relation can be found between CPA and DBH. After this 

range, linear relation starts to distort and a slight reduction in the rate of CPA growth appears due to the 

effect of competition. This is practical in this study because most of the tree diameter was between 20-35 

cm and mean diameter was less than 50 cm. This could lead to the linear relationship between DBH and 

CPA. Moreover, Mitchell & Popovich (1997)  found a linear relation for a pine forest where tree cover 

was 60% and the relationship started to break down in denser crown area. Trees Outside Forest in our 

study site are well managed with some sylvicultural practices like thinning and pruning which keeps 

distance between trees and reduce competition. Moreover, TOF are not as dense as forest. Because of low 

density and management practice CPA can continue to increase. This could lead to a linear relation 

between CPA and DBH. The linear relationship indicates the effect of competition on the CPA of trees is 

insignificant in this study area.  
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This study revealed that 78% variability of biomass can be predicted by CPA and considerable amount of 

variance remains unexplained which needs further improvement. Improvement of the model can be 

possible by improving the accuracy of CPA delineation (Hirata et al., 2009). This is because accurate CPA 

delineation is the key factor for estimating other variables (Ke, 2008). Some possible sources of error 

could affect on the accuracy of CPA delineation as well as the biomass estimation. Due to the high 

shadow effect, slight over or under segmentation could affect the accuracy of CPA and its relationship 

with biomass. Moreover, the model for biomass estimation was developed by combining data from all 

configurations but our result showed that CPA varies from configuration to configuration. Development 

of models for different configurations could show the relation in different ways which could also has an 

effect on the relationship. In this study, manually delineated tree crowns were used for model 

development but shadow problems and image quality made it difficult to delineate adequate tree crowns in 

each configuration which made some limitation to develop a model for each configuration. An improved 

quality and shadow free image can privileges model development for each configuration. In addition, 

Workie (2011) and Anderson et al.,(2000) found that CPA-Biomass relationship also differs from species 

to species. This was not included in the developed model and could introduce error. Moreover, over and 

under segmentation due to the human error could also occur during the manual delineation of tree crowns 

which could also affect on the relationship between CPA and AGB. 

4.3. Allometric equation and biomass estimation 

Allometric equation is one of the crucial sources of uncertainty to calculate AGB from inventory data 

(Chave et al., 2004). There are several published equations for biomass estimation. A species specific 

equation is preferred for above ground biomass estimation because trees from different species differ in 

term of tree architecture and wood density. An advantage of species specific equation was proved by 

studying temperate and tropical regions (Basuki et al., 2009). Among four species in our study area, species 

specific equations were used for three species and a general equation for a temperate broadleaved species 

was used for Oak species. All the allometric equations were developed in different parts of Europe and 

US. Allometric equations are developed using certain number of individual trees from a limited region or 

broader combination of sites (Chambers et al., 2001). In our case, allometric equation was applied beyond 

the regions for which they were developed which can transfer an error, even when growth condition are 

very similar. Vieira et al., (2008) found 36% error for using an equation in a site different than the one 

which was developed for. 

Incorporation of all appropriate structural variables like DBH, Height that affect AGB is an important 

requirement for developing accurate allometric equation (Rosa et al., 2014). However, the most typical tree 

parameter which is used to predict AGB model is DBH because it is easily measurable in a precise way 

that makes it a more reliable parameter (Valbuena et al., 2016, Ketterings et al., 2001, Fang et al., 2016). 

Thus, AGB allometric equations were widely developed based on DBH (Bartelink, 1996, Jenkins et al., 

2003, Nelson et al., 1999, Zinnias & Seura 2005). However, the importance of including tree height in 
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biomass estimation has been emphasized by several authors (Chave et al., 2014, Ketterings et al., 2001, 

Molto et al., 2014). Chave et al., (2005) mentioned to incorporate tree height for biomass estimation to 

obtain unbiased estimations. For example in Tapajos national forest in Brazilian state of para, it was 

observed that incorporation of height in biomass estimation provided 21% less biomass than the 

estimated biomass using DBH only. This finding was supported by Feldpausch et al., (2013) who found 

13% lower biomass by incorporating tree height than the reference one based on DBH only. These results 

indicate that the allometric equation using DBH only overestimated biomass rather using DBH and 

height.  

Even though an AGB model with height improves the model, it also depends on the accuracy of the tree 

height measurement. Different sources of uncertainty can contribute to the measurement of height 

accurately. Offset between measured distance and crown top position, tree top occlusion, ground slope, 

obstacles for distance measurement and clinometers operator (Hunter et al., 2013) are the main sources of 

error.  Measuring height is also costly in field. Hunter et al., (2013) found 5-6% uncertainty of biomass 

estimation due to the imprecision of height measurement. Additionally, several authors also found 

negligible impact of height inclusion to predict biomass (Nelson et al., 1999, Kuyah et al., 2012, Shampaio 

et al., 2010). In this study, field height measurements were not precise. Moreover, lack of a suitable species 

specific allometric equation including both DBH and height made it difficult to use allometric equation in 

combination of DBH and height. The exclusion of height for biomass estimation could affect the accuracy 

of biomass estimation. 

The allometric equations applied in this study for biomass estimation of trees outside forest were 

developed from data that was collected from forests. But the target population should resemble to the one 

used for model development for biomass estimation (Tanhuanpaa et al., 2017). The magnitude of the 

uncertainty for application of model developed for forest to the non-forest trees is unknown (Nowak, 

1994). The transfer of model from forest to TOF pointed out over and underestimation by two reviewed 

studies (McHale et al., 2009, Kyung et al., 2013). In addition, Nowak (1994) found overestimation of 

biomass for urban environment using forest based equation. Generally, TOF varies in their spatial 

arrangement from single scattered trees over linear formation to dense forest like woodlots of small area 

extent. TOF are often exposed to the edge effects and increased course of radiation, wind speed, causing 

difference in specific gravity of wood and structure compared to forest trees may be observed for TOF 

(Zhou et al., 2006). Due to this variation, specific allometric model is needed for specific type of TOF. 

Unfortunately very few allometric equations are developed for TOF biomass estimation but most of them 

are for local site or local species. No two TOF types are similar in terms of planting arrangement, plant 

composition and stand density which makes it a challenge to determine biomass and extrapolate from one 

system to others. More studies are needed for the development of allometric equation for non forest trees. 

Species specific and site specific models could be an appropriate solution though it needs more resources. 

McHale et al., (2009) suggested applying averaged equations to reduce variability if a forest model is 

applied to the TOF. A multispecies model developed for forest or estimating of stem volume and 



SPATIAL VARIATION OF TREES OUTSIDE FOREST AND THEIR CONTRIBUTION TO THE ABOVE GROUND BIOMASS (AHAUS, GERMANY - ENSCHEDE, THE 

NETHERLANDS) 

43 

converting to biomass by using wood density could be an alternative solution for TOF biomass estimation 

which was suggested by Nair (2011). 

Besides allometric equation, omission and commission of TOF, because of misclassification could 

introduce error for biomass estimation in this study. Especially commission of scattered trees and linear 

tree formation in the grassland as well as the omission of some linear formations and trees from patches 

due to the shadow effect could also propagate uncertainty for biomass estimation. Moreover, the sources 

of error could also propagate during the data collection in the field. Field data collection (e.g.,DBH 

measurement) and sample tree location was mainly supported by GPS and printed image. The signal of 

GPS can be degraded by various factors and specially wind and cloudy weather during our field data 

collection. This noise could introduce error for DBH measurement which is source of error for biomass 

estimation. In addition error can be propagated in this study due to small number of sample plots for 

double line and single line linear tree formation. Small numbers of sample plots are not representative for 

the whole area. Moreover, in some points, trees with large basal area had some parasites and thick bark on 

it but it wasn’t possible to remove parasites and bark which caused overestimated of the DBH.  

Uncertainty analysis of biomass estimation from remote sensing based method has received attention to 

know the impact of various inputs on the variation of output. This provides guidelines to the modeller and 

analyst to identify the uncertainty caused by input as well as to reduce the uncertainty to improve the 

model. But due to the limitation of time, no uncertainty analysis was carried out for this study which limits 

the detailed information about model uncertainty and its improvement. This was one of the limitations of 

this research. 

4.4. Tree crown delineation 

The TOF crown detection and delineation is more difficult than forest because the landscape is extremely 

complex and it consists of several main elements including elimination of other land classes using 

threshold, seed detection of tree crown, region growth and refinement. Most delineation or segmentation 

algorithms have been developed for forest type. Comparison with existing studies of tree crown 

delineation of forest revealed that TOF show unique property because it is part of another land cover, 

hence it has a background. Considering these components and complexity, a reasonable tree crown 

delineation and accuracy was achieved with Object Based Image Analysis.  

Region growing approach is widely used for different types of forests and their usefulness has been 

demonstrated. It is a robust method which can extract objects and smoothness boundaries (Cui & Guan, 

2008). The accuracy of region growing  algorithm varies from deciduous to coniferous forest and studies 

showed that the accuracy of tree delineation for coniferous species can  reach upto 80% (Erikson & 

Olofsson, 2005) but the accuracy for a deciduous stand between 50-70% ( Erikson & Olofsson, 2005,  

Wang et al., 2004). Locating tree top can be used as local maxima for growing the image object for tree 

crown which works greatly for coniferous stands. On the other hand, trees from deciduous stand don’t 

have conical shapes like coniferous stands which make it difficult to find tree tops. The issue of 
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overlapping tree layer and density of tropical forest makes it more difficult for good segmentation (Feret 

& Anser, 2013, Saliola, 2014). The spatial arrangement and distribution of trees of TOF makes the 

scenario different than forest. TOF are not generally dense like forest and gaps can be seen in the linear 

formation of tree without understory. Ngwayi (2012) and Mutanga (2012) also found a reasonable 

accuracy of tree crown segmentation for Trees Outside Forest using region growing multiresolution 

algorithm. 

 Over and under segmentation was observed for the multiresolution segmentation algorithm. This could 

be caused by the nearby vegetation surface such as grassland or agricultural land which is a hinder for 

identification and delineation of tree crown accurately (Bunting & Lucas, 2006, Ke & Quackenbush, 

2008). Moreover, sensor viewing angle, sun elevation and topography have significant effect on the 

radiometric and geometric properties of tree crown in the satellite image (Yin et al., 2015). Moreover, 

shadow affects the quality of the image because it causes the loss of information from the feature (Haijian 

et al., 2008). The ideal situation for individual tree crown delineation is when the view area is within ±150 

off nadir (Wang et al., 2004). The image of this study was acquired with a view area within approximately 

±230 off nadir and not in the range of ideal off nadir, resulting in high shadows and inclination of trees in 

the image which can affect the over or under segmentation. Different studies attempted to minimize the 

shadow problem and each has some draw backs. Asner (2002) tried to avoid the shadow problem by 

manually tracing the trees but this is not possible for large areas.  Ke et al., (2010) attempted to increase 

scale parameter for segmentation which decreased the shadow problem but in some points, objects 

became larger than forest stand. In addition, Li (2008) suggested decreasing the resolution of image which 

will reduce the shadow but will make it difficult to distinguish the boundary of the tree crown. In this 

research, trees from one side of double line linear trees were classified as shadow because of the shadow 

from one side tree fallen in the other side. To obtain the double line configuration, manual tracing of trees 

was done which is suggested by Asner (2002) but this was time consuming and it is not convenient to do 

for the whole area. Manual tracing could also affect over and under segmentation of tree crown resulting 

in an error on biomass estimation. Further study is needed for dealing with shadow problem. 

TOF interacts in a very complex way with other landscape features.  For this study, we needed to 

eliminate other features to extract TOF only. Different spectral threshold values were used to separate 

other features. During the separation, few misclassifications existed which can be observed visually by 

comparing the classified image and the original one. The differentiation of the boundary was difficult 

between two nearly identical spectral features which could introduce some misclassification especially 

where the tree cover and other vegetation exists nearly. Shadow over tree crowns also has its effect in the 

misclassification. Plantation is along the road side, so their branches spread over the road and in some 

places ground can be seen in between two trees. In this case, it is difficult to distinguish the boundary of 

features.  

Future research needs to be conducted for robust tree crown delineation for Trees Outside Forest. 

Different algorithms can be applied over the same area or new algorithm needs to be developed for trees 
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outside forest considering the spatial arrangement of TOF in relation to other land classes. Although each 

segmentation algorithm has its own limitation and advantages, combination of multiple algorithm can 

improve the delineation of tree crowns. Workie (2011) investigated three different types of segmentation 

algorithm for tree crown delineation of both broadleaf and coniferous species but no one was sufficient 

enough for CPA delineation. However, a combination of multiple algorithms improves the delineation of 

trees for both broadleaf and coniferous trees. Ke (2008) also indicated that development of a robust 

algorithm requires taking the advantages of the characteristic of multiple algorithms. Meneguzzo et al., 

(2013) used three different methods including OBIA for TOF extraction and faced problems in all cases 

which indicates the necessity to develop separate classification model for TOF landscape. Acquisition of 

image within the range of off- nadir and in perfect time could mitigate the problem related to shadow as 

well as can improve the CPA delineation resulting in an accurate model for biomass estimation. Moreover, 

Lidar is very helpful to distinguish building, roads, tree and low vegetation and shadow over objects using 

the height information which can reduce the misclassification. The combination of VHR image and Lidar 

data can be a possible option regarding TOF delineation. 

4.5. Upscaling biomass 

In this study, an approach was developed for upscaling biomass from VHR image of Pleiades satellite to 

the medium resolution Sentinel-2. The study developed a model for large area biomass estimation as a 

function of NDVI (Sentinel-2) through regression analysis. Area based biomass averaging techniques was 

used to aggregate biomass for upscaling which provided reasonable result in relation to NDVI of Sentinel-

2 .This observation is supported by Hufkins et al., (2006) and Gibbs et al., (2010). Hufkins et al., (2006) 

calculated the proportion of crown coverage to upscale LAI point measurement and Gibss et al., (2010) 

identified tree crown from IKONOS imagery and scaled up to the Landsat pixel resolution. A similar 

conclusion was reported by Mutanga (2012) who upscaled biomass for Trees Outside Forest using area 

based averaging techniques. In this study,  tree crown area was taken into account for biomass estimation 

because it is an essential parameter as it affects greatly the amount of reflectance from surface (Olander et 

al., 2011) and the aggregation of crown area rather than relying on pixel information yield better result  

(Hasnen et al., 2002). 

The regression relation between biomass and NDVI of Sentinel-2 showed exponential relation for all 

configurations in the study area. The exponential relationship of the model is supported by many other 

studies (Asrar et al., 1984, Myeong et al., 2005, Goswami et al., 2015). This could be explained by the 

saturation problem of vegetation indices. As biomass increases, there is a trend in vegetation indices to be 

insensitive to the increase of biomass which was investigated by Tucker & Seller (1986). The curvilinear 

function between NDVI and biomass implied the limitation of vegetation indices. Moreover, Goswami et 

al., (2015) mentioned saturation problem of NDVI as the reason for the exponential relationship between 

biomass and NDVI. However, NDVI estimated poor yields where there is 100% vegetation cover and it 

saturates after a certain biomass density (Baret and Guyot, 1991, Jiang et al., 2008).  This could be the 
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reason for poor yield of biomass estimation in patch as a function of NDVI. A patch is small forest where 

the density of tree is high and its coverage approaches approximately 100%. In this situation, basal area 

continues to grow but the change in DBH does not directly affect information derived from remote 

sensing because optical remote sensing is sensitive to crown surface not to below canopy information. 

Therefore, the signal shows saturation effect (Franklin, 1986). On contrast, because of the low density of 

trees, the limitation of saturation was not significant in linear tree formation which resulted in a high R2 

value between biomass and NDVI. Myeong et al., 2005 and Yao et al. 2015 also mentioned low tree 

density as a reason for less saturation of biomass estimation using NDVI in urban green areas. 

Saturation occurs when spectral values remain insensitive to increases of AGB beyond a certain value. 

Data saturation may occur by different factors such as remote sensing data themselves, vegetation and 

topography (Zhao et al., 2016). Patch is small forest where canopy gap have been closed by leaves and 

branches, trees and biomass increases but an optical sensor can’t penetrate through the canopy which 

causes saturation. Due to this saturation problem, there is a need to improve the technique for biomass 

estimation in a dense vegetation area like in patches. In this context, SAR data could be an option because 

L- band (24cm) is capable to penetrate through the canopy and P band (70cm) is even more appropriate 

to penetrate and can capture the entire structure (Zhao et al., 2016). The integration of optical and SAR 

data can mitigate the problem associated with saturation problem for biomass estimation.  Boyd (2012) 

showed the improvement of biomass estimation by reducing the saturation problem with integration of 

Landsat and SAR data. Attarchi & Gloaguen (2014) also reported that SAR data can improve the biomass 

estimation. Moreover, Lu’s (2005) study showed that incorporation of texture information into spectral 

response improves biomass estimation. Other researches also supported incorporation of texture from 

optical and SAR data for improved biomass estimation (Sarker & Nichol, 2011, Timothy et al., 2015, 

Kelsey & Neff, 2014). Besides, narrow band vegetation indices can reduce the saturation problem related 

to NDVI. Mutanga & Skidmore (2004) used MNDVI, SR and TVI to reduce the saturation problem for 

biomass estimation. 

The findings of the linear tree formation showed satisfactory result for biomass estimation using NDVI 

but considerable amount of variance was still unexplained in each linear tree configuration. The landscape 

of TOF is much more complex than general forest ecosystem because of the heterogeneous surface 

feature. Depending on the spatial resolution, the heterogeneity of TOF interacts with the sensor response 

function which gives mixed pixel effect (Myeong et al., 2006) and difficulty arises to extract target 

information due to this mixed pixel. Regression relation could over or underestimate the biomass storage 

due to the effect of mixed pixel. The main limitation of pixel based vegetation indices or reflectance value 

for biomass estimation is that they do not consider the mixed spectral information. This could be 

mitigated by pixel un-mixing analysis which is the most used method for deriving information from pixel 

(Lu et al., 2003) and extract vegetation information. Sun et al., (2015) experienced increased accuracy of 

biomass estimation in urban forest using spectral un-mixing analysis. This finding was supported by 

Basuki et al., (2012) where spectral unmixing analysis was used for biomass estimation in a tropical forest. 
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The error for upscaling biomass could also be introduced by the reference biomass map. All the error 

related to reference biomass map could propagate to the upscaled model. Issue related to the accurate 

biomass estimation using VHR image needs to be considered because accurate ground reference is 

essential for upscaling. Effort needs to be made to explore the AGB based on empirical regression 

methods and allometric equations. The suggested mitigation approach for reducing saturation for patch 

could also be used for linear tree formation for reducing saturation problem. Time series NDVI can result 

in more accurate biomass estimation and less saturation than using single NDVI (Zhu & Liu, 2014). This 

can also be considered for accurate biomass estimation for future research. 

The regression analysis showed lower R2 value for single and double line open canopy in comparison to 

other linear tree formations. The reason for lower coefficient of determination value could be explained 

by their spatial arrangement of trees. The linear formation (single and double line open) is located along 

the road side and due to the canopy gaps between trees (single line and double line) and road between two 

tree lines (double line), all these non-green and green are interwoven which could make it more difficult to 

extract information from the sensor than other linear tree formation. Leeuwen and Huete (1996) also 

mentioned that the gap between vegetation cover, site variations and bare soil reflectance can produce 

unpredictable bias in the quantification of the properties of vegetation. Moreover, soil background 

condition exerts considerable influence on partial canopy spectra and calculated vegetation indices (Huete, 

1988) and NDVI is also sensitive for soil scattering which could occur for single line open and closed 

canopy because of their canopy gap between trees. All these could lead to lower R2 value between NDVI 

and biomass for single and double line open canopy than for other linear configurations. In this context, 

EVI could be used to mitigate the soil scattering issues because it can eliminate background information. 

Moreover, SAVI can reduce to the inherence sensitivity of NDVI and MSAVI is designed to correct the 

weakness of SAVI in how vegetation responds as it moves away from soil line (Qi et al., 1994) which can 

be useful for sparse vegetation. Moreover, according to Yan et al., (2013) MSAVI and SAVI showed 

relatively higher correlation with aboveground biomass than NDVI in a sandy land of China.  

 Due to the variation of species composition, planting arrangement and stand density among different 

configurations, one approach may not fit for all configurations. Using only NDVI for all configurations 

could be mentioned as limitation of this study. Different vegetation indices could be useful in this context 

because different vegetation indices are sensitive to different range of biomass and fractional vegetated 

ground cover. Further research is essential for developing different approach in different configurations 

for upscaling. Moreover, species specific model development is essential for accurate biomass estimation 

for regional scale (Liangfu et al., 2005) which also needs to be addressed for future research. In addition, 

datasets for validation was only taken within the extent of VHR image but not the other site covered by 

Sentinel-2 image. Validation data from the other side of the VHR image could improve the accuracy of the 

model fitness for upscaling. Besides, the data for model development and validation was few in numbers. 

The increase of data for model development and validation could provide more accurate result. Moreover, 

according to the methodology of upscaling applied in this study, average biomass needs to be calculated 
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from some samples within the window size which is fully covered by crowns. This fixed average biomass 

can be used to calculate area based average biomass for any window by multiplying the proportion of 

crown area within the window size. As there are six configurations in this study area, this fixed biomass 

needed to be calculated for each configuration. However, because of the limited time and it was not 

possible to obtain fully covered area in each configuration, the fixed biomass was calculated only from 

patches and double line closed canopy configuration and used for all configurations. This could also 

introduce error in biomass calculation in each configuration. 

4.6. Consideration for wider application 

The preliminary results based on the reference dataset showed that there is a strong relationship between 

CPA and DBH (R2=0.78) and calibrated model for biomass estimation showed 0.75 R2 value. This result 

suggested that the proposed method can be used to estimate biomass and related variables over relatively 

large areas. The tree crown mapping approach presented in the study was designed to account for tree 

crown size, spectral properties of different landscape features. The design included the use of geometric 

and spectral thresholds for separation of tree cover from the field. The spectral thresholds are sensor 

specific. The threshold value applied in this study would need to be adjusted to account for the difference 

in vegetation and atmospheric conditions. Identification of optimal spectral threshold values should be 

based on the prior knowledge about the structure and spectral properties of the local species and tree 

composition and field layer components. Biomass mapping and individual tree crown separation was 

limited to a small study area. Similar results in terms of detection and delineation accuracies are expected 

when the proposed method will be applied in the areas with similar tree cover structure but adjustment of 

threshold is needed.  

VHR image is an effective way of tree crown delineation and biomass estimation but spatial coverage 

limits its use for large area biomass estimation. Integration of VHR and medium resolution image can be 

an alternative. The proposed approach for scaling up biomass can be used for TOF with low density but 

further improvement is essential for individual configuration. This approach could considerably reduce the 

requirements for field data for biomass estimation and could be used in extensive area where field data are 

limited. On the other hand, further research is required to upscale biomass in the case where tree crown 

are strongly interlocked and arranged in a compact way. 
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5. CONCLUSION 

This study evaluated the use of very high resolution (Pleiades) satellite image for predicting TOF biomass 

and tried to upscale the estimated biomass over large area by incorporating VHR, Sentinel-2 (NDVI) and 

field measured data. The main objective of the research was to develop an approach to estimate biomass 

using VHR and medium resolution Sentinel-2 satellite image. The method was divided into two main parts 

(Above Ground Biomass estimation using VHR image and upscaling biomass to the Sentinel-2 image) to 

achieve the objective of the research.  

In this study, regression model was developed between CPA and AGB. Object Based Image Analysis was 

employed to delineate TOF crown using VHR image of Pleiades satellite. This was followed by the 

accuracy assessment and biomass calculation for all trees in the study area. Finally, obtained biomass from 

VHR image was used to upscale biomass to Sentinel-2 image by applying an area based averaging 

technique and regression model developed between biomass and NDVI of Sentinel-2. Hence, research 

questions mentioned in the section 1.4 is answered properly. 

 

1. Is there a relation between CPA and AGB to model biomass estimation? 

Above Ground Biomass (AGB) can be predicted by the model developed as a function of Crown 

Projection Area (CPA) of trees. The model explained 78% variability of the biomass. The statistical 

analysis showed the significance of the model at 95% confidence level. 

2. How accurate biomass can be estimated using a regression equation based on CPA? 

The calibrated model showed 0.75 coefficient of determination value and found to be 30% RMSE value. 

The result indicated that the model can be extrapolated outside the boundary and a reasonable output will 

be obtained from the model. 

3. How accurate can tree crowns be delineated using VHR image for Trees Outside Forest? 

The Object Based Image Analysis delineated tree crowns with an accuracy of 73% by calculating D index. 

Considering the issues related to the TOF crown delineation such as other features surrounded by TOF, a 

reasonable accuracy was obtained. 

4. How can the estimated biomass from VHR image be upscaled to the Sentinel-2 satellite image? 

Crown projection Area (CPA) obtained from VHR image was aggregated within a particular area (10X10 

m) of Sentinel-2 image and biomass was calculated within the area using area based average biomass 

approach.  
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5. Is there a relation between CPA based on VHR satellite image and NDVI of Sentinel-2 for 

biomass estimation? 

The different coefficient of determination value was obtained for different configuration classes. The 

sequence of correlation coefficient in these six spatial arrangements of TOF ranked from high to low was 

as follows: Double line closed canopy (0.88), single line closed canopy (0.80), wind break (0.80), single line 

open canopy (0.76), double line open canopy (0.72) and patch (0.38). The results of upscaling biomass in 

different configurations showed that the proposed method performed better for linear formation of trees 

than group of trees (patches). 
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Figure: Regression relation 

between biomass obtained 

from VHR (Pleiades) image 

and NDVI of Sentinel-2 for 

double line open canopy 

configuration. 

 

 

Figure: Regression relation 

between biomass obtained 

from VHR (Pleiades) image 

and NDVI of Sentinel-2 

for single line closed 

canopy configuration. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Regression relation 

between biomass obtained 

from VHR (Pleaides) image 

and NDVI of Sentinel-2 

for single line open canopy 

configuration. 

 

 

Figure: Regression relation 

between biomass obtained 

from VHR (Pleiades) image 

and NDVI of Sentinel-2 for 

wind break configuration. 

 



 

 

 

Figure: Regression relation 

between biomass obtained 

from VHR (Pleiades) 

image and NDVI of 

Sentinel-2 for patch 

configuration. 

 


