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ABSTRACT 

Forests are and have been an important source for raw materials and other services for humans. They are 

an important economical factor in many parts of the world and forestry has a long tradition managing this 

resource. Remote sensing is an important tool for the estimation and measurement of large forest areas and 

several methods have been developed over time.  

Unmanned Aerial Vehicles (UAVs), also called drones, have become popular over the last years as an 

alternative and addition to other remote sensing approaches. In combination with commercial RGB cameras 

as sensors and photogrammetric processing of the UAV images have become more popular to complement 

data. With the strongly automatized image calibration, processing and point cloud generation from the 

Structure from Motion (SfM) process in combination with an Object based image analysis (OBIA) approach, 

individual trees and their parameter can be extracted.  

The light detection and ranging (LiDAR) technology, particularly the terrestrial laser scanner (TLS), is used 

frequently in forestry for high precision in to generate accurate biomass estimations on tree level. 

To determine if UAV derived tree parameter were as accurate as TLS derived measurements both data sets 

were compared to reference measurements. Manual measurements for the detection rate of trees and the 

DBH, airborne laser scanner (ALS) data for height reference. The influence of stand density and stand 

composition on the parameter extraction of both data sets was also analysed and compared. 

The tree detection rate from the TLS data was very high (95 %). The number of trees delineated from the 

UAV data was slightly lower (87.4 %) and decreased further to just over half (56.3 %) of the number of 

trees counted in the field. There was a significant difference between height values from the reference ALS 

data and the height values extracted from UAV and TLS data sets. Height values from both data sets, UAV 

and TLS, were higher than the reference height values from the ALS data set.  

TLS and UAV DBH values were not significantly different from the field measurements. The accuracy of 

UAV DBH estimations was higher (RMSE 0.124 m) than the accuracy obtained by the TLS (RMSE 0.334 

m) but lower than the TLS DBH accuracy when excluding extreme outliers (0.079 m). 

The UAV accuracy of both tree detection and DBH extraction accuracy were both significantly (negatively) 

influenced by higher density in stands and in stands with higher deciduous tree content. TLS tree detection 

and DBH value extraction was not influenced by stand composition but partly by stand density. Height 

values from both data sets were significantly influenced by stand density and composition 
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1. INTRODUCTION AND RESEARCH QUESTION 

1.1. Introduction 

Forests are and have been an important source for raw materials and other services for humans. They are 

an important economical factor in many parts of the world and forestry has a long tradition managing this 

resource (West 2009). Apart from the raw materials like wood and fruits, forests also fulfil other highly 

important roles. They act as habitats for a large range of species. They are an integral part in the nutrient 

cycles and have a large impact on water cycles as well as sequestrate carbon dioxide from the atmosphere 

(Wirth et al. 2009).  

In times of climate change the carbon sink function of forests has become an important function to reduce 

the emission of greenhouse gases (GHGs) and their impacts since the sequestered carbon is removed from 

the system. International treaties like the Kyoto Protocol take forests and their functions as one of the key 

factors in mitigating emissions of GHGs (Rosenqvist et al. 2003). 

Assessing the forest resources and their contained biomass is therefore an important task for many 

stakeholders from sub-national to international levels. To quantify this resource in terms of biomass and 

carbon stock information in forest inventories on an ever more detailed level, down to the individual trees, 

is a challenge also for researchers. 

Different methods are being used for the determination of biomass and carbon stocks. The most exact 

approach being destructive sampling for which the tree is cut down, measured and weighed. This approach 

gives detailed information about the biomass and the stored carbon (West 2009). Nevertheless, this 

approach does not only limit the biomass determination to only once in time because of its destructive 

nature but is also highly impractical for large stands (West 2009; Ravindranath & Ostwald 2008). 

For biomass and carbon stock estimations without cutting and weighing, allometric equations are used. They 

are usually based on tree parameters like Diameter at Breast Height (DBH) and height and their strong 

correlation to the total biomass (Ravindranath & Ostwald 2008; West 2009; Laar & Akça 2007). While the 

DBH of a tree is still relatively easy to measure, the height is often more difficult to determine, especially 

within a forest (West 2009).  Nevertheless, to determine tree volume and ultimately the biomass, the height 

is an important factor for accurate biomass estimations (Ravindranath & Ostwald 2008). The Crown 

Projection Area (CPA) is another measure that can also be used to estimate biomass and stands in 

relationship to DBH (Ravindranath & Ostwald 2008; Laar & Akça 2007). This relationship is particularly 

interesting for above canopy remote sensing approaches that use an object based image analysis (OBIA) to 

delineate single tree crowns in a forest canopy (Burnett et al. 2003). 

Traditional forest measurement methods have been developed over centuries. While being well accepted 

and largely used these traditional, and often manual, measurement methods are not practical or relatively 

unprecise for the measurement of large forested areas. To measure and estimate the biomass of large 

forested areas the help of a wide range of remote sensing methods and technologies is being employed 

(West 2009; Rosenqvist et al. 2003). 
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Remote sensing is an important tool for the estimation and measurement of large forest areas and several 

methods have been developed over time (West 2009). Space based platforms carrying optical sensors and 

technologies like synthetic aperture radar (SAR) sensors and Light Detection and Ranging (LiDAR) systems 

are used for large scale forest estimations. They have been identified as being highly important tools also 

for the monitoring of forests for national and international carbon balances in order to comply with the 

Kyoto Protocol (Rosenqvist et al. 2003).  

Remote sensing data can be used to extract important tree parameters which can be used with the 

appropriate models to estimate the forest biomass. These parameters, needed as model inputs, can, amongst 

other methods, be derived from aerial or satellite images. Using the CPA extracted from such an image the 

DBH can be estimated with reasonable results (Ravindranath & Ostwald 2008; Laar & Akça 2007). Even 

the height of trees can be extracted, for example through photogrammetric methods (Laar & Akça 2007; 

Dandois & Ellis 2010; West 2009).  

When coming to very high resolution information down to individual tree levels satellite remote sensing 

technologies are reaching their spatial limit. The spatial resolution provided by satellite images is often not 

enough for the recognition of detail, for example when delineating tree crowns in a forest canopy. Cloud 

cover and shadows lead to occlusions and are a problem, especially in some geographical regions (Tang & 

Shao 2015). Other limitations are the revisiting time which restrains the possible time interval of image 

acquisition for a specific area and the maximum possible obtainable spatial resolution of approximately 0.5 

m  (Lucas et al. 2015).  

1.1.1. UAV in forestry applications 

To obtain very detailed information on tree level, especially in forests, the satellite based sensors are often 

not enough because of their spatial resolution or cloud cover. Unmanned Aerial Vehicles (UAVs), also called 

drones, have become rather popular over the last years as an alternative and addition to other remote sensing 

approaches (Dandois & Ellis 2013; Dandois & Ellis 2010; J. Zhang et al. 2016; Aasen et al. 2015; Gago et 

al. 2015; Stefanik et al. 2011). They do not have the above-mentioned limitations of traditional satellite 

remote sensing and have become reliable and economically affordable (Schiffman 2014). Advantages are 

the flexibility in time but also in choosing a spatial resolution by variation of flying height and the chosen 

sensor (W. Zhang et al. 2016). Especially in combination with simple commercial RGB cameras as sensors 

and a photogrammetric processing (using stereo vision) of the UAV images have become more popular to 

complement data where other remote sensing technologies are not available (Dandois & Ellis 2010).   

The UAVs used for these ends are usually of the class of so-called micro drones. Though there is no 

universal nomenclature for drones yet established (Tang & Shao 2015) the micro-drones are loosely defined 

to be UAVs of up to 5kg including their payload. UAVs are usually distinguished into fixed wing or copter 

types. Fixed wing drones have usually a wider range while rotator drones are more manageable in restrained 

take-off and landing circumstances as well as being more flexible in terms of flight manoeuvres (Tang & 

Shao 2015). The extend of the area that can be covered by a UAV depends largely on the UAV type. Flight 

times and with its range can vary from 15 min to several hours depending on the drone type and the batteries. 

UAVs can be used as a potential solution for the disadvantages of satellite images for forest measurements 

and monitoring. Images taken from a UAV platform have the advantage of delivering very high spatial 

resolution data, much higher than achievable from satellites (Dandois & Ellis 2010). Flying at low altitude 

this technology is a cloud-independent and images can be retrieved when needed and at the interval required 



COMPARING TREE PARAMETERS EXTRACTED FROM UAV IMAGES AND TLS DATA SETS 

3 

(Tang & Shao 2015). The technology for platforms and sensors has advanced a lot over recent years making 

this technology not only practical but also economically viable (Tang & Shao 2015; Dandois & Ellis 2010). 

 

Figure 1: Dense point cloud constructed from UAV images through SfM process (with Pix4D) 

Parallel to the development in drone technology there have been important developments made in the image 

processing domain of very high resolution imagery, improving and speeding up the automatic image 

processing, calibration and extraction of information with the Structure from Motion (SfM) method 

(Dandois et al. 2015; Dandois & Ellis 2010; Stefanik et al. 2011; Alcantarilla et al. 2012; Bay et al. 2006). 

Employing the SfM method the extraction of 3D information from overlapping (stereo pairs or multiple 

stereo) images is possible. Through the photogrammetric process a coloured point cloud can be extracted 

from the overlapping images (Figure 1) and orthomosaics as well as digital surface models (DSMs) can be 

constructed (Wallace et al. 2016; Dandois & Ellis 2010; Dandois & Ellis 2013). 

These developments are very interesting also for forestry applications and research. The point cloud derived 

orthomosaics and DSMs can be used to delineate individual trees and extract CPA and height values that 

can be used in allometric equations to estimate biomass and carbon stocks.  

Over the last years much research has been performed using drones for different applications in forestry 

and biology (Tang & Shao 2015; Schiffman 2014). Photogrammetrically processed high spatial resolution 

images taken from UAV platforms have for example been used to identify riparian buffer strip vegetation 

species (Husson et al. 2014). Zhang et al. (2016) have researched canopy variability and biodiversity,  while 

forest biomass estimations and canopy phenology have been investigated by Dandois & Ellis (2013). 
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1.1.2. LiDAR for forestry applications 

One of the most precise measurement methods used frequently in forestry is light detection and ranging 

(LiDAR) technology. The LiDAR sensor has been developed and improved further during the last years 

and is widely used as well in forestry (van Leeuwen & Nieuwenhuis 2010). From the generated point cloud 

(Figure 2) a variety of forest and tree parameters can be extracted (van Leeuwen & Nieuwenhuis 2010). 

Point clouds are created using laser pulses that hit objects on the ground or the ground itself where the 

measure of return time between the emitted pulse and its reflection is used to determine the distance to the 

reflecting object (van Leeuwen & Nieuwenhuis 2010).  

Among the platforms used for LiDAR are the Airborne LiDAR or commonly called Airborne Laser Scanner 

(ALS) and Terrestrial LiDAR, also called Terrestrial Laser Scanner (TLS). The ALS is usually operated from 

a plane and it is traditionally used to generate Digital Surface and Terrain Models (DSM and DTM). The 

TLS can be used to extract detailed and precise information about trees (Liang et al. 2016; van Leeuwen & 

Nieuwenhuis 2010). The TLS is, as opposed to the ALS, stationary on the ground and used for plot-wise 

measurements. The high precision of this instrument allows to extract parameters from trees with high 

accuracy. The position of the TLS below the forest canopy allows for a very precise measurement of DBH 

but can also be used for volume as well as the general structure (van Leeuwen & Nieuwenhuis 2010; Kankare 

et al. 2016; Liang et al. 2016). Figure 2 shows an example of a TLS point cloud of forest. Height 

measurements are also possible although with some limitations because of occlusion by the canopy structure 

(Tansey et al. 2009). Because of its high precision in measurements (up to millimetre precision) this 

technology is often used for measurements to generate accurate biomass estimations on tree level and is 

also of high commercial interest in the forestry sector (Liang et al. 2016). 

 

 
Figure 2: A dense TLS point cloud and the scanning positions (black dots) of a sparse Scots pine dominated forest 
stand coloured to show height (ground level (blue) to tree tops about 27 m above the ground level (red)). 
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1.2. Research problem 

Though the TLS delivers high accuracy data of individual trees, one of the main disadvantages of this 

technology is that its operation is plot based. To assess larger areas, the measured parameters must be 

extrapolated from plots to a larger area. Extrapolation nevertheless, is a source for uncertainty since it is 

based on assumptions that may not be accurate. 

UAVs on the other hand can cover and deliver data for larger areas. No extrapolation of the measured 

parameters is needed, which is one advantage of the use of UAVs and sensors for data acquisition. 

The use of UAV images for remote sensing purposes has become quite popular in the forestry domain and 

is also economically highly attractive since commercial type UAVs with RGB cameras as sensors are much 

cheaper than other technologies (Dandois & Ellis 2010; Tang & Shao 2015; Schiffman 2014). Large areas 

can be covered in comparatively short time and at lower costs. 

To decide on how useful information derived from commercial type UAV is, it is important to investigate 

how accurate the parameters extracted from UAV images are compared to technologies with as high 

accuracy like a TLS data.  

The research in this study is focusing on the comparison of the tree parameters such as DBH or CPA and 

height extracted from UAV images and TLS data, which are commonly used for above ground biomass 

(AGB) estimations. 

 

1.3. Research objectives 

The general aim is to compare tree parameters extracted from UAV images by 3D photogrammetric 

methods and the same parameters extracted from TLS data sets. 

Specific objectives are: 

- Compare the ability of extracting individual trees from UAV and TLS data sets  

 

- Compare tree parameters such as DBH or CPA and height extracted from TLS and UAV data set 

to reference data and with each other 

 

- Assess and compare the influence of forest composition and stand density on the ability and 

accuracy of parameters extracted from UAV and TLS data sets. 
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1.4. Research questions and hypotheses 

 

1. Does processing of the UAV and TLS data lead to the expected raw data for the analysis? 

o Can all trees observed in the field be distinguished in the processed TLS data? 

 H0: The point cloud of the TLS plot permits the extraction of all individual trees with 

reasonable accuracy 

 H1: The point cloud of the TLS plot does not permit the extraction of all individual trees 

with reasonable accuracy 

o  Does the number of trees detected from the UAV data coincide with the number of trees 

observed in the field? 

 H0: The processed UAV data detect the same number of trees as observed in the field 

 H1: The processed UAV data does not detect the same number of trees as observed in the 

field 

o Do the positions of trees from the TLS and the UAV data sets coincide? 

 H0: There is a significant difference in the position of detected trees from TLS and UAV 

data. 

 H1: There is no significant difference in the position of detected trees from TLS and UAV 

data. 

 

2. Is there a significant difference between the UAV derived height values, TLS derived height 

values and the ALS reference height values? 

o Is there a significant difference between the UAV extracted height and the height from the 

canopy height model derived from ALS? 

 H0: There is a significant difference in the height of the trees from the UAV data and the 

height derived from ALS. 

 H1: There is no significant difference in the height of the trees from the UAV data and the 

height derived from ALS. 

o Is there a significant difference between the TLS derived height values and the height from the 

canopy height model derived from ALS? 

 H0: There is no significant difference in the height of the trees from the TLS data and the 

height derived from ALS. 

 H1: There is a significant difference in the height of the trees from the TLS data and the 

height derived from ALS. 
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o Is there a significant difference between the TLS derived height values and the height values 

derived from the UAV data? 

 H0: There is no significant difference in the height of the trees from the TLS data and the 

height from the UAV data. 

 H1: There is a significant difference in the height of the trees from the TLS data and the 

height from the UAV data. 

 

3. Is there a significant difference between the UAV derived DBH values, TLS derived DBH 

values and the DBH values from the field measurements? 

o Is there a significant difference between the DBH estimated from the CPA measured from 

the UAV data set and the field measured DBH? 

 H0: There is a significant difference in the DBH between the field measurements and the 

DBH derived from the CPA from the UAV data. 

 H1: There is no significant difference in the DBH between the field measurements and the 

DBH derived from the CPA from the UAV data. 

o Is there a significant difference between the DBH derived from the TLS data set and the field 

measured DBH? 

 H0: There is a significant difference in the DBH and form of detected trees from field 

measurements and TLS data. 

 H1: There is no significant difference in the DBH and form of detected trees from field 

measurements and TLS data. 

o Is there a significant difference between the DBH estimated from the CPA measured from 

the UAV data set and the TLS derived DBH? 

 H0: There is a significant difference in the DBH and form of detected trees from TLS and 

UAV data. 

 H1: There is no significant difference in the DBH and form of detected trees from TLS 

and UAV data. 
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4. Do forest type and structure influence the tree and its parameters (i.e., height and DBH) 

extracted from UAV and TLS data? 

o Does the stand composition influence the tree detection from the TLS and UAV data set? 

 H0: There is no significant difference in the tree detection from the TLS and UAV data 

from coniferous, mixed and broadleaf stands. 

 H1: There is a significant difference in the tree detection from the TLS and UAV data 

from coniferous, mixed and broadleaf stands. 

o Does the forest stand density influence the tree detection from the TLS and UAV data set? 

 H0: There is no significant difference in the tree detection from the TLS and UAV data 

from sparse and dense stands. 

 H1: There is a significant difference in the tree detection from the TLS and UAV data 

from sparse and dense stands. 

o Does the stand composition influence the tree height extraction from the TLS and UAV data 

set? 

 H0: There is no significant difference in the tree height detection from the TLS and UAV 

data from coniferous, mixed and broadleaf stands. 

 H1: There is a significant difference in the tree height detection from the TLS and UAV 

data from coniferous, mixed and broadleaf stands. 

o Does the forest stand density influence the tree height extraction from the TLS and UAV data 

set? 

 H0: There is no significant difference in the tree height detection from the TLS and UAV 

data from sparse and dense stands. 

 H1: There is a significant difference in the tree height detection from the TLS and UAV 

data from sparse and dense stands. 

o Does the stand composition influence the DBH extraction from the TLS and UAV data set? 

 H0: There is no significant difference in the DBH detection from the TLS and UAV data 

from coniferous, mixed and broadleaf stands. 

 H1: There is a significant difference in the DBH detection from the TLS and UAV data 

from coniferous, mixed and broadleaf stands. 

o Does the forest stand density influence the DBH extraction from the TLS and UAV data set? 

 H0: There is no significant difference in the DBH detection from the TLS and UAV data 

from sparse and dense stands. 

 H1: There is a significant difference in the DBH detection from the TLS and UAV data 

from sparse and dense stands. 
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2. METHODOLOGY 

The methodology is divided into three main parts.  

Data acquisition is covering general information about the research area, the sampling design and the 

fieldwork procedures for UAV, TLS and manual measurements. It also includes information on the 

acquisition of additional LiDAR data for elevation information. 

 The processing of the data sets will be explained; TLS point cloud processing to obtain the parameters for 

individual trees; the work flow for the UAV data to obtain individual tree parameters; processing of the 

LiDAR reference data; Above Ground Biomass (AGB) estimations from parameters of the UAV and TLS 

data set. 

The third part is concerned with the data analysis and comparison of the data sets in order of the posed 

research questions. 

2.1. Data acquisition 

The data acquisition description comprises of: the general description of the research area; the two main 

field work parts, TLS and manual measurements as well as UAV image acquisition; and the sourcing of 

additional DTM and reference DSM. 

2.1.1. Research area 

The study area (about 0.5 km2) consists of patches of forest with mixed tree species (Figure 3). It is located 

on the border of the Netherlands and Germany, by Amtsvenn, close to the city of Gronau, Nordrhein-

Westfalen, Germany (: 32558395 m E, 5782262 m N, UTM 32 N, ETRS89). 

The research area consists of several forest stands within an agricultural area (Figure 3). These stands are 

managed on an informal basis and show different densities, stand compositions and growing stages. The 

most common tree species were Beeches (Fagus sylvatica), Scots pines (Pinus sylvestris), Oaks (Quercus robur, 

Quercus petraea), Alders (genus Alnus) and Birches (genus Betula). The identification was done on a common 

name basis and not distinguishing sub-species. 

A stratified random sampling method was employed to select plot sites within in the research area (Figure 

3). The plot based sampling was chosen because of the TLSs plot based functioning. A relatively high 

number of potential plot sites were generated. In the field, some of these plots had to be skipped because 

of inaccessibility. Dense and thorny undergrowth of up to 2 m height inhibited the access with the TLS and 

would also have occluded large parts of the plot. This lead to some bias for some forest patches. 
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Figure 3. Research Area by Amtsvenn, Ahaus, Germany showing the UAV flight areas (white line, white numbers) 

and sampling plots for TLS and field measurements (yellow diamonds). 

 

                         
Figure 4: left: TLS plot scanning positions. The circular plot (dotted grey line) was scanned from five positions (blue 
cylinders). One central scanning position and four evenly distributed outer scanning positions. Right: TLS RIEGL 
VZ-400 with additional mounted camera (image from RIEGL Laser Measurement Systems GmbH 2017) 
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2.1.2. TLS and manual data acquisition 

The sampling unit for the comparison are individual trees but for practical reasons sampling plots were 

established to do the field work with the TLS and for the manual field measurements. The plot based TLS 

scanning procedure allowed to scan several trees within the plot at the same time while the scanning of 

individual randomly selected trees in the research areas would have been unfeasible both time- and involved 

labour-wise. 

The plots were circular of 500 m² (12.62 m radius) (Liang et al. 2016). Each plot was scanned by the TLS 

from 5 scanning positions with one central plus four outer scanning positions distributed at 90° from each 

other and at approximately 12.6 m from the centre spot (Figure 4). From practical experience this formation 

of scanning positions resulted in the most complete scans of forest plots (Calders et al. 2015). 

The TLS used for the fieldwork was a Riegl VZ400 with an additional camera on top (Figure 4). The TLS 

was mounted on a tripod. The angular resolution used for scanning of the plots was of 0.0007° for a 

resolution of 7 cm at 100 m distance over a vertical angle of 130° (3D Laser Mapping Ltd. 2012). For the 

later merging of the five scans of a plot, cylindrical retro-reflectors were evenly distributed in the plot to be 

used as fix points in the registration. The cylindrical form of the retro-reflectors ensured that they were 

visible from all scanning positions if they were not occluded by other objects. The special reflective surface 

was recognized by the TLS and the position of the reflectors was marked in the saved data set. 

The manual measurements were done at the TLS plots as well. All trees in the plot were measured with a 

Diameter tape at breast height (1.30 m from the base of the tree trunk, accurate to millimetre level). The 

measurements were recorded along with the species of the trees to be able to separate the plots into the 

categories of coniferous, deciduous or mixed forest types. Only trees with a diameter equal or above 10 cm 

were recorded. The 10-cm diameter threshold value was chosen since it is generally assumed that the forest 

biomass contribution of trees with smaller DBH is negligible in most cases (Brown 2002). The threshold 

also excludes many small trees that are below the canopy and cannot be seen from above on the UAV 

images. 

2.1.3. UAV data acquisition 

The UAV flights were done with a DJI Phantom 4 with an integrated RGB camera with a 12.4 MP 

resolution (Figure 5). The UAV data collection was done in five flights over the forest patches of the 

research area. All flight parameters were the same for all the flight plans. The flying height was at 70 m 

(above the starting point of the UAV). The front overlap between images was 80% and the side overlap 

was 60%. The camera was oriented in a Nadir direction. The flight plan was chosen relatively wide to make 

sure no edge effects would occur in the research area (Figure 6 and Annex 3). The flights were done in the 

late morning to mid-day during late summer. 

Although the UAV had an integrated GPS, used in flight control, the information was not very accurate. 

For a high-accuracy geo-referencing of the UAV images four or more Ground Control Points (GCPs) were 

set for each flight area (Figure 6, blue crosses). The location for those GCPs was selected to have a relatively 

unobstructed view of it from the air and therefore be visible from more than one image. The GCPs were 

distributed close to the corners around the forest patches. The GCPs were placed on the ground and then 

georeferenced with a differential GPS. The accuracy of the coordinates of these GCPs was about 2.5 cm. 
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Figure 5: UAV DJI Phantom 4 (image from DJI 2016) 

 
Figure 6: Recorded flight plan for flight area 4. Red dots indicate the position of the UAV where an image was taken 
(measured by on-board GPS). The big red dot in the lower right corner indicates first picture taken from the UAV. 
The blue crosses mark the position of ground control points. 



COMPARING TREE PARAMETERS EXTRACTED FROM UAV IMAGES AND TLS DATA SETS 

13 

 

2.1.4. Digital Terrain and Surface model 

A Digital Terrain Model (DTM) was used for the ground elevation data. Although it is in theory possible 

to derive a DTM from the UAV data, the results of previous studies (Ota et al. 2015; Wallace et al. 2016) 

do indicate a relatively low accuracy in UAV image derived DTMs even in relatively open forests.  

Additionally, a Digital Surface Model (DSM) was acquired as well to be used as reference for the TLS and 

UAV data. For this study the DTM and DSM were kindly provided by the Geobasisdaten der Kommunen 

und des Landes Nordrhein-Westfalen (NRW). The obtained DTM is from a filtered ALS data set and 

comes at a resolution of 1 to 4 points per square meter while the DSM consists of first pulse returns of at 

least 4 points per square meter (Bezirksregierung Köln 2016). The accuracy of the elevation data is about 

20 cm but might be higher in forests (Bezirksregierung Köln 2016). The ALS data were obtained on the 

29th of February in 2015 (GeoBasis NRW 2017). 
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2.2. Data processing 

A general overview of data processing steps for the different data sets can be seen in Figure 7. The detailed 

explanation of individual processing steps is in the following sub chapters. 

 
Figure 7: Data processing steps, UAV data processing (red), TLS processing (blue), reference data (black); CPA-crown 
projection area, SfM- Structure from Motion, CHM-canopy height model, DBH – diameter at breast height
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2.2.1. Reference Canopy Height Model (CHM) 

Manual height measurements in the forest are relatively difficult mainly because of occlusion of the tree tips 

from the ground (West 2009). To have a measure of the accuracy of UAV image derived heights a Canopy 

height model (CHM) was generated from the aerial LiDAR based DTM and DSM by subtracting DTM 

from DSM. 

A limiting aspect of this CHM is that individual tree height estimates based on aerial LiDAR (resolution 3-

4 points/m²) are usually underestimating the tree height by about 7-8% (Suárez et al. 2005). Nevertheless, 

they are considered more accurate than manual measurements (Suárez et al. 2005) and therefore present the 

best approximation for an accurate CHM. 

2.2.2. UAV data processing 

To obtain the tree parameters CHM and height from the UAV images the data were first processed using a 

Structure from Motion (SfM) method. The results from this step were then further processed using an 

Object based Image analysis approach (OBIA). Both procedures are explained in the following section. 

2.2.2.1. Structure from Motion (SfM) 

For the image processing of the images taken from the UAV the Structure from Motion (SfM) method was 

used to construct a point cloud as well as an orthomosaic.  

The SfM method is a photogrammetric method which generates 3D point clouds from a large data set of 

overlapping images. To tie stereo images together tie points in each image are identified and described 

(Alcantarilla et al. 2012; Bolles & Baker 1987). Once these tie points are identified they are matched to the 

tie points in the other images of the scene (Bolles et al. 1987) and their fit is optimized by means of bundle 

adjustments (Dandois & Ellis 2010). Once the calibration of the images is done 3D points can be generated 

by triangulating their position from two or more images in which these points  are visible (Bolles & Baker 

1987). 

The process of using Pix4D software is mostly automatic with some possibly necessary manual 

edits/corrections. Manual tie-points can be marked in the images both as addition to the automatically 

identified tie-points for improved image calibration and as GCPs. The georeferenced GCPs are included to 

refine the geo-referencing of the 3D point cloud. 

The resolution of UAV images can be expressed in terms of the Ground Sampling Distance (GSD) which 

is the measure of how big one pixel of an image is on the ground. This determines the level of detail that 

can be represented in the image. Generally speaking, the larger the GSD the lower the pixel resolution (size) 

of an image is or the higher the distance to the object (or often, with UAV, to the ground) from which the 

image was taken (Dandois et al. 2015). Lower spatial resolution images have the advantage of needing less 

computing resources, especially for processing while images taken from higher positions include a larger 

ground area (Dandois et al. 2015). Higher resolution on the other hand allows for more details to be 

recognized in an image as well as in the 3D point cloud. However, the large amount of detail in images can 

make the tie-point identification difficult since it also adds to the general noise and complexity in an image. 

This is often the case with tree canopies because of their complex structure due to leaves, gaps in the canopy 

and irregularities in their growth form (Dandois & Ellis 2010). 
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For the SfM processing the UAV images from the research area were loaded into Pix4D and calibrated in a 

first step. After the first calibration, the GCPs were included and manually identified and marked in the 

images as well as the necessary tie points. A second calibration process was performed to optimize the 

general calibration of images as well as their spatial reference. 

For the dense point cloud matching the point density was set to high and the number of minimum matches 

to generate a point was set to the minimum of just 2 images. Though this added some level of noise to the 

generated point cloud, this minimum of matches was necessary since otherwise many other points would 

not have been identified. 

Before generating the orthomosaic and DSM in the last step, the point cloud was manually cleaned of 

obvious noise. Points that were clearly disconnected and “floating” far below and above the easily 

identifiable objects of the main point cloud were deleted from the data set. From the remaining point cloud 

an orthomosaic as well as a DSM were generated and exported. 

The DSM data were normalized/converted to a Canopy height model by subtracting the aerial LiDAR DTM 

values from the obtained UAV DSM values (Annex 5). 

2.2.2.2. Object based image analysis (OBIA) 

The resulting orthomosaic and normalized Digital Surface Model (DSM) from the SfM process was then 

used in the identification of single trees using an Object-oriented Image Analysis (OBIA) approach. Since 

the orthomasic and CHM from the UAV data were of very high resolution a limitation of the area was 

needed to reduce processing time. The central plot locations were identified and a radius of 25 m to account 

for the canopies of trees extending outside the sampling plot radius if 12.6 m and positional error from the 

GPS from the central plot locations was used to clip the area to be processed in the image analysis.  

OBIA is a commonly used approach for image and elevation data segmentation and classification, 

particularly with very high resolution data (e.g. MacFaden et al. 2012; Richardson & Moskal 2011). It is 

based on meaningful objects as opposed to pixel classification. These objects consist of a group of pixels 

which often have similar values but can also be defined by other parameters such as the shape, size and 

texture of an object or its context (MacFaden et al. 2012). The defining properties of these objects are 

derived from expert knowledge (MacFaden et al. 2012). A tree crown can be such an object and can for 

example be defined by being at a certain height above ground, having a particular colour composition and 

a roughly circular shape (MacFaden et al. 2012). Many different approaches for using the knowledge to 

delineate tree crowns have been researched. A popular approach is to identify local maxima as tree tops and 

grow the tree crown objects around these maxima. Another approach is a valley-following delineation, 

basically a  watershed-delineation based on an inverted Canopy height model (Jakubowski et al. 2013). The 

accuracy of the results depends highly on the research area and what kind of rule-set was created. Though 

the OBIA approach can be a highly efficient way of tree crown delineation, it is also sensitive to inaccuracies 

caused by insufficient or inaccurate knowledge used to develop a rule set. 

The eCognition Developer software was used for the OBIA based tree crown delineation from the UAV 

data 

The orthomosaic and CHM were resampled with a bilinear approach to a 10 cm by 10 cm spatial resolution 

to smooth over some of the small-scale noise that was not removed during the SfM process. 
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For the initial object creation, a multiresolution segmentation was performed based on the CHM and the 

orthomosaic. The multiresolution segmentation and creates objects of a defined scale based on automatically 

detected “natural” borders in the input data. For the first segmentation, a very small size was chosen 

obtaining an over-segmentation of the tree crowns. These small objects were then classified into “tree 

canopy” and “none-canopy” objects to separate out none-tree related objects (see e.g. MacFaden et al. 2012). 

The threshold chosen to filter out lower none-tree objects was based on observations in the field and set to 

5 m for the mean elevation of an object. 

A watershed approach as used by Jian Yang et al. (2014) was chosen to separate the crowns in the canopy. 

For this all objects in the canopy class were first merged and the watershed segmentation was then 

performed on the inverted DSM layer. To avoid too much over-segmentation an overflow criterion was 

included which resulted in the fusion of objects that consisted of less than a determined number of pixels. 

This overflow criterion was chosen by the estimation of the area of the smallest tree crowns in a plot. 

The resulting objects were then evaluated and too large objects (under-segmented canopy) were broken up 

by another multiresolution segmentation. The parameters for this segmentation were chosen in a trial and 

error approach determining the best combination of parameters based on observations after several 

iterations testing several possible threshold values.  

After achieving a satisfactory segmentation result the objects were filtered based in their roundness. Most 

of the filtered out none-round objects were slivers on the side of crowns while the rounder objects usually 

appeared on tree crown tops. To grow the tree tops to the approximate size of the whole crown the slivers 

were again segmented into very small objects and the tree tops were then grown in several loops into these 

small objects. To avoid the formation of unrealistic crown shapes and sizes, threshold conditions were set 

that limited the growing to maintain a relatively round shape and a size determined by the average crown 

size estimated visually for each plot. 

For the last steps, a circular mask was used to remove “unnatural” edges and smooth the outer crown 

boundaries. Small gaps within the crowns were filled in to create more realistic tree crown shapes 

(MacFaden et al. 2012). The resulting crowns and their centre points were exported as shape files. 

The tree crowns were imported in ArcGIS to calculate the individual Crown projection areas. The centre 

point of each delineated tree crown to be used as the tree position to be compared to the TLS tree positions. 

It was assumed that the stem position coincides with the centre position of the tree crown. 

The allometric relationship between DBH, height and crown projection area (Widlowski et al. 2003; 

Rutishauser et al. 2013) was used to derive a general model for the DBH estimation from CPA and height 

values (Rasel et al. 2017). Two linear regression models, one using only CPA values and the other combining 

CPA values with height values, were fitted to the field measured values thus estimating the research areas 

specific allometric relationship. These linear regression models were based on 50 sample trees that were 

selected from all sample plots. The selection of sample trees was done by selecting 2 to 5 well delineated 

trees from each sample plot. The decision which trees were included was based on visual inspection of the 

delineations. 

The fit of the models was evaluated by calculating the R² values and the model with better fit was selected 

for the DBH calculation. 
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2.2.3. TLS data processing 

The primary processing of the TLS data set was done using the RiSCAN PRO software. 

All five scans belonging to one plot were uploaded into a project. With the help of the retro-reflectors, 

which served as anchor points, the scans were registered and set into relation with each other. The correct 

registration of the scans was done by matching the retro-reflectors, also called tie points, in each scan to 

their respective counterparts in the other scans. The fit was done by calculating the standard deviation of 

the distance of the reflectors to each other.  

The mean deviation for the registration of point clouds was 0.021 m with a range from 0.011 to 0.060 m 

(Annex 2). These values are slightly higher than those obtained by other researchers (see Calders et al., 2015; 

Tansey et al., 2009). 

Individual trees within a diameter of 12.6 m from the central position were then marked in the complete 

point cloud of each plot. All identified trees were then extracted manually into individual tree point clouds. 

Most important for the manual extraction were the stem and an approximate crown as far as identifiable 

(Figure 8). 

For the DBH extraction a circle was fitted to the point cloud at 1.3 m above the lowest tree point of the 

tree. In order to have sufficient points for the circle fitting the points from 1.27 m to 1.33 m where projected 

on a plane as in Tansey et al. (2009). 

Two approaches for the circle fitting were tested. One was the least square adjustment, where the DBH 

resulted from the best fitting circle diameter minimizing through iterations the residuals from the circle to 

the points and implemented by Brown (2007). The other method used an approach of circle fitting by 

minimizes the sum of squared radial deviations as implemented by Bucher (2004). 

Since the method used  was originally used in an undergrowth-free and low branch-poor stand (Tansey et 

al. 2009), and many of the plots in the research area actually did have a considerable amount of undergrowth 

and low branches large overestimations were expected for some trees. 

To counter the effect of overestimation the resulting DBH values were tested for outliers. The resulting 

DBH values were compared with the field measurements and values with a deviation higher than 20% were 

flagged. These outliers occurred mainly due to branches at the measuring height. To exclude the points of 

these branches and retain only the points belonging to the stem 20% of the outmost points of the flagged 

tree slices were removed and the DBH values were recalculated as in the previous steps. This procedure was 

repeated 5 times or until the deviations lay below 20% as compared to the field measurements. 

The height was estimated by determining the highest and lowest point from the extracted tree point cloud 

and measure the distance between these two points. 
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Figure 8: Upper figure: plot point cloud as obtained by combination of all five TLS plot scans (cropped just to include 
immediate plot surroundings). Middle figure: plot point cloud as above with marked individual tree as manually 
identified. Lower figure: isolated individual tree point cloud.  
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2.3. Data analysis 

In Figure 9 the general steps of the analysis of the research questions 1 – 3 are shown. The analysis steps 

for the 4th research question are visualized in Figure 10. 

For all analysis steps a confidence level of 95 % (α = 0.05) was used. 

 
Figure 9: Data analysis steps for research question 1- 3 (Q 1-3). Red lines indicate UAV data input and output regarding 
only UAV and reference data comparisons, blue lines are assigned respective TLS regarding analysis steps, black lines 
show reference data input and UAV and TLS comparative output.  
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1. Does processing of the UAV and TLS data lead to the expected raw data for the analysis? 

 

o Can all trees observed in the field be distinguished in the processed TLS data? 

The number of trees observed in the field was compared to the number of trees that could be extracted 

from the TLS data set. The Ratio of TLS trees to field observations was calculated.  

 

o  Does the number of trees detected from the UAV data coincide with the number of trees observed in 

the field? 

A spatial overlay of the sampling plot areas and the crown centre points was performed to extract the 

number of UAV trees. The Ratio of UAV trees to field observations was calculated. 

 

o Do the positions of trees from the TLS and the UAV data sets coincide? 

For the position of the TLS trees the distinguishable trees in a point cloud were compared to the tree 

positions on the photos that were taken during the TLS scans. These positions were marked and their 

coordinates as point features exported. 

For the identification of UAV derived trees with their TLS counterpart the UAV tree crown centre points 

were compared with the TLS tree point positions in ArcGIS. 

Based on a closest neighbour approach the UAV centre point positions were matched to the TLS positions. 

When one TLS position was the closest match for more than one UAV position only the closest UAV 

position was matched. To avoid unrealistic identifications the matching was also confined to a radius of 5 

m that seemed reasonable in the context of the sampling plots.  

UAV tree positions that could not be matched were marked as “no match” as well as those TLS trees that 

could not be identified in the UAV data. All trees that were marked as “no match” were excluded from 

further analysis steps. 

The positional deviations of the matched UAV and TLS trees were calculated with a point distance approach 

from TLS to UAV tree locations. 
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2. Is there a significant difference between the UAV derived height values, TLS derived height values and the 

ALS reference height values? 

For the height derived from the UAV and TLS data over the reference data from the ALS and the UAV 

over TLS height the root mean square error (RMSE) was calculated. 

The RMSE  was calculated after the formula as noted by Barnston & Barnston (1992): 

𝑅𝑀𝑆𝐸𝑓 𝑟 =  √∑(𝑥𝑓𝑖
− 𝑥𝑟𝑖

)
2

/𝑛)

𝑛

𝑖=1

 

Where 

n = sample size 

f = the height or DBH values derived from the UAV or TLS data 

r = the reference height or DBH values from the ALS data or field measurements 

 

o Is there a significant difference between the UAV extracted height and the height from the canopy height model 

derived from ALS? 

The mean height per plot and its standard deviation was calculated from both UAV and ALS height values 

as well as the RMSE of UAV to ALS height values. 

A two-sample t-test at confidence level α=0.05 with unknown population standard deviation was done to 

establish if the mean of the UAV height values was significantly different from that of the ALS. 

 

o Is there a significant difference between the TLS derived height values and the height from the canopy height model 

derived from ALS? 

The mean height per plot and its standard deviation was calculated from both TLS and ALS height values 

as well as the RMSE of TLS to ALS height values. 

A two-sample t-test at confidence level α=0.05 with unknown population standard deviation was done to 

establish if the mean of the TLS height values was significantly different from that of the ALS. 

 

o Is there a significant difference between the TLS derived height values and the height values derived from the UAV 

data? 
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The mean height per plot and its standard deviation was calculated from both UAV and ALS height values 

as well as the RMSE of UAV to TLS height values. 

A paired t-test at confidence level α=0.05 with unknown population standard deviation was done to establish 

if the mean of the UAV height values was significantly different from that of the TLS. 

 

3. I Is there a significant difference between the UAV derived DBH values, TLS derived DBH values and the 

DBH values from the field measurements? 

 

o Is there a significant difference between the DBH estimated from the CPA measured from the UAV data set and 

the field measured DBH? 

The mean DBH per plot and its standard deviation was calculated from both UAV and field measured 

values as well as the RMSE of UAV to field measured DBH values. 

A two-sample t-test at confidence level α=0.05 with unknown population standard deviation was done to 

establish if the mean of the UAV DBH values was significantly different from that of the field 

measurements. 

 

o Is there a significant difference between the DBH estimated from the CPA measured from the UAV data set 

and the field measured DBH? 

The mean DBH per plot and its standard deviation was calculated from both TLS and field measured values 

as well as the RMSE of TLS to field measured DBH values. 

A two-sample t-test at confidence level α=0.05 with unknown population standard deviation was done to 

establish if the mean of the TLS DBH values was significantly different from that of the field measurements. 

 

o Is there a significant difference between the DBH estimated from the CPA measured from the UAV data set 

and the TLS derived DBH? 

The mean DBH per plot and its standard deviation was calculated from both UAV and TLS values as well 

as the RMSE of UAV to TLS DBH values. 

A paired t-test at confidence level α=0.05 with unknown population standard deviation was done to establish 

if the mean of the UAV DBH values was significantly different from that of the TLS.  



COMPARING TREE PARAMETERS EXTRACTED FROM UAV IMAGES AND TLS DATA SETS 

24 

 

Figure 10: Analysis steps for Research question 4. Blue marks the TLS data input and relevant output, red marks the 
UAV data steps, black lines show reference data input 

 

4. Do forest type and structure influence the tree and parameter (height and DBH) extraction from UAV and 

TLS data? 

To determine whether the stand composition and stand density had a significant influence on the 

completeness of tree detection and the accuracy of parameter extraction from both the UAV and the TLS 

data a linear regression analysis was performed using dummy variables for the stand composition and 

density. For the dummy variables, the stand composition and stand density were classified into different 

categories. 

The forest composition was divided into three categories: deciduous, mixed and coniferous. These 

classifications were assigned plot based and per the species occurrence within each plot. For the 

classification of deciduous or coniferous stand composition, the trees of the plot needed to be 80% or more 

deciduous or coniferous species respectively. Below this threshold value the stand was defined to be a mixed 

composition (Table 1). 
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For the stand density, the number of trees per ha was also divided into three classes. Low density, less than 

300 trees per ha; medium density of 300 – 500 trees per ha and more than 500 trees per ha is high density 

(Table 1). 

Table 1: Classification criteria for the stand composition and stand density 

Stand composition Deciduous  Mixed Coniferous 

≥ 80% Deciduous trees < 80% deciduous and 

coniferous trees 

≥ 80% Coniferous trees 

Stand density High Medium Low 

> 500 trees per ha 300 – 500 trees per ha < 300 trees per ha 

 

o Does the stand composition influence the tree detection from the TLS and UAV data set? 

o Does the forest stand density influence the tree detection from the TLS and UAV data set? 

For the analysis of the influence of stand composition and density on the completeness of the tree detection 

from UAV and TLS data, the percentage of extracted trees from the TLS data set and the percentage of 

matched trees from the UAV data set per plot was examined as a function of stand composition and stand 

density. Three linear regression models were fit based on the dummy coded stand composition, stand density 

and stand composition and density. The base model was built as a function of the coniferous composition 

class and the low-density class. 

o Does the stand composition influence the tree height extraction from the TLS and UAV data set? 

o Does the forest stand density influence the tree height extraction from the TLS and UAV data set? 

For the analysis of the influence of stand composition and density on the height extraction error from UAV 

and TLS data, the difference between UAV and ALS height values, TLS and ALS height values and UAV 

and TLS height values was examined as a function of stand composition and stand density. Three linear 

regression models were fit based on the dummy coded stand composition, stand density and stand 

composition and density. The base model was built as a function of the coniferous composition class and 

the low-density class. 

o Does the stand composition influence the DBH extraction from the TLS and UAV data set? 

o Does the forest stand density influence the DBH extraction from the TLS and UAV data set? 

For the analysis of the influence of stand composition and density on the DBH extraction error from UAV 

and TLS data, the difference between UAV and field DBH values, TLS and field DBH values and UAV 

and TLS DBH values was examined as a function of stand composition and stand density. Three linear 

regression models were fit based on the dummy coded stand composition, stand density and stand 

composition and density. The base model was built as a function of the coniferous composition class and 

the low-density class.  
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3. RESULTS 

3.1. Field measurements 

During the field measurements 18 plots were established and all trees with a diameter equal or higher than 

10 cm in diameter. In total 458 trees were measured. The mean number of trees per plot was about 25 and 

26 trees varying from 6 to 41 trees per plot. Four of the sampling plots were excluded from the analysis 

since the UAV images for the area they were located could not be properly processed (see 3.2 UAV image 

processing). In the 14 remaining plots, there were 341 trees with a mean DBH of 27.7 cm varying from 10 

cm to 104 cm (Table 2 and Figure 11). 

 

Table 2: Descriptive statistics of data acquisition and processing for all sampling plots included in the analysis 

Forest type Number of measured 

trees 

Mean # of trees per 

plot 

Mean of trees 

per ha 

Mean 

DBH 

All 341 25.05 500 stems/ha 23.46 cm 

Deciduous 222 31.75 635 stems/ha 22.60 cm 

Coniferous 37 9.25 185 stems/ha 34.01 cm 

Mixed 82 27.33 547 stems/ha 24.86 cm 

 

 

Figure 11: Distribution of field measured DBH (in meter) (including only the 14 sampling plots used in the analysis)  
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3.2. UAV image processing 

The UAV data acquisition was done in 5 flights over the research area. The image calibration and SfM 

process was performed for each flight separately.  Table 3 shows the results of image calibration. For 3 

flights the calibration of images was mostly complete (2, 3, 4 in Table 3). For one flight (flight 1 in Table 3) 

a cluster of images in the centre area could not be calibrated. Since the resulting hole in the point cloud was 

not immediately over a sampling plot location and the resulting data could be used for further processing. 

The calibration of the last flight 5 images (flight 5 in Table 3) was not successful. Almost 25% of the images 

were not calibrated and those images that were calibrated, were tilted and positioned erratically (Figure 12). 

The flight area was excluded from further processing as well as the 131 trees in the four sampling plots in 

this area. 

Table 3: Calibration results for UAV image calibration process: number of images, number and percentage of calibrated 
images and the root mean squared error (RMSE) of the geo-referencing with the ground control points (GCPs). For 
flight area 5 (marked red) no RMSE error was calculated since no satisfactory image calibration was reached. 

Flight area Total number images Calibrated images RMSE to GCPs (m) 

1 154 142 92.2 % 0.001 

2 170 168 98.8 % 0.016 

3 176 176 100 % 0.005 

4 232 232 100 % 0.013 

5 204 159 77.4 % - 

 

 
Figure 12: Results of the image calibration attempt of the 5th UAV flight. Blue pyramids represent the recorded UAV 
GPS position when the picture was taken. Green pyramids show the calculated position after the Pix4D calibration 
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(with additional manual tie points (green circles with pin) and GCPs (blue circles with pin)). Red pyramids signal images 
that could not be calibrated. 

The linear model used for the DBH calculations from the UAV data was based on both CPA and height 

values: 

𝐷𝐵𝐻𝑈𝐴𝑉𝑖
=  0.02943 +  0.00433 ∗  𝐶𝑃𝐴𝑖  +  0.00727 ∗  ℎ𝑒𝑖𝑔ℎ𝑡𝑖 

adjusted R²= 0.483 

P-values: CPA = 0.0000366165, height=0.117997044 

 

Although the p-value for the height parameter in the regression model did not fall within the range of the 

95% confidence level chosen as threshold value, the overall model fit was better than the alternative model 

based only on the CPA which was a slightly lower fit (R²=0.477). 

 

3.3. TLS data processing 

The DBH estimations without any applied filter for low branches and undergrowth resulted in 

overestimations for several trees (Figure 13).  

 

Figure 13: Results of two DBH calculation methods (blue circles and red stars) without any filtering for the TLS data 
in relation to the field measured DBH (yellow 1:1 line). 
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Figure 14: Results of the both DBH calculation methods (blue circles and red stars) for the TLS data in relation to the 
field measured DBH (yellow 1:1 line) after excluding calculated TLS DBH values that had more than + 20 % deviations 
from the Field values. The blue and green line show the respective polynomial fit of DBH 1 and DBH 2. The 
Correlation coefficient of each set to the Field DBH is displayed in the upper left corner. 

 

In Figure 14 the results from both DBH calculation methods from the TLS data are displayed as well as 

their polynomial fits and the correlation coefficient for each method’s results. Since values higher than 1.2 

times the Field DBH were excluded from the polynomial fits (Figure 16) the results are more strongly 

influenced by DBH values that are lower than the measured DBH values. Based on the slightly better 

correlation of the DBH1 method the results of this method were used as DBH estimation from the TLS 

data set for the analysis. Both estimation methods seem to generally underestimate the DBH as compared 

to the field results. This bias is also partly a result from the implemented filtering procedure since some of 

the results clearly underestimate the DBH compared to the field measurements (Figure 15). Several of the 

values estimated from a resampled point cloud, particularly for smaller DBH values, are considerably smaller 

than the measured DBH. 
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Figure 15: TLS DBH values calculated after the first method after running through filtering to eliminate noise. Stars 
(black) show the DBH results of trees that were not filtered while the circles (grey) indicate those values obtained after 
filtering out the outer 20 % of the stem point cloud. 

 

Figure 16: The DBH values as calculated from the TLS tree data with the first calculation method. The crosses mark 

those DBH values that have been identified as outliers and were excluded from further analysis.  
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3.4. UAV and TLS data processing and tree detection 

The results of the tree detection and matching process follow the order of the sub points of the first research 

question. 

3.4.1. TLS tree detection 

From the TLS data 324 trees could be extracted within the sampling area. They represented 95% of all trees 

that were counted during the field measurements. Table 4 shows the plot-wise results. 

3.4.2. UAV tree delineation 

The total number of delineated trees derived from the UAV data was of 298 which corresponded to 87.4% 

of the number of trees observed during the field measurements (Table 4). 

3.4.3. Tree position matching 

Table 4 shows the number of identified trees from the field, the TLS processing and the UAV image process 

as well as the number of matched trees per plot and the mean distance between the respective positions. 

 

Table 4: Number of trees in remaining sampling plots, field measured (Field), TLS extracted (TLS and number of tree 
tops/crowns identified from the UAV data (UAV) in the plot area (crowns) and the number of trees that were 
successfully matched (matched) to the field and TLS positions as well as the mean distance of matched UAV tree 
positions to the TLS positions. 

plot Field TLS UAV Mean distance of 
UAV to TLS crowns matched 

0908_1 15 13 86,7 % 21 9 60 % 3.75 m 

0912_1 29 26 89.7 % 20 18 62.1 % 3.25 m 

0912_2 38 36 94.7 % 50 23 60.5 % 3.96 m 

0922_1 10 10 100 % 11 7 70 % 1.69 m 

0922_2 6 6 100 % 7 5 83.3 % 1.93 m 

0923_1 7 7 100 % 9 7 100 % 2.52 m 

0923_2 32 32 100 % 24 20 62.5 % 3.21 m 

0923_3 29 27 93.1 % 29 14 48.3 % 3.20 m 

0924_1 16 16 100 % 13 12 75 % 2.94 m 

0924_2 41 37 90.2 % 36 22 53.7 % 3.60 m 

0926_1 34 34 100 % 21 14 41.2 % 2.58 m 

0926_2 39 35 89.7 % 22 15 38.5 % 2.84 m 

1024_1 13 13 100 % 17 8 61.5 % 3.30 m 

1026_1 32 32 100 % 18 18 56.3 % 2.91 m 

total 341 324 95.0 % 298 192 56.3 % 2.98 m 
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3.5. Tree height extraction and accuracy 

The results for the comparison of tree heights from UAV, TLS and ALS reference values are shown in the 

order of the sub points of the second research question. 

3.5.1. UAV to ALS 

For the comparison of height values from UAV data and the ALS reference data a RMSE of 7.652 m was 

calculated. The mean and standard deviation of height values per plot can be seen in Table 5. 

The results of the two-sample t-test show that the values are statistically significantly different. Figure 17 

shows the distribution of UAV trees height values over the ALS trees height values and their correlation 

value. 

 

 

Figure 17: TLS (grey stars and line) and UAV (black crosses and line) height values for the matched trees compared to 
the ALS derived height values and the correlation values. 
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3.5.2. TLS to ALS 

For the comparison of height values from TLS data and the ALS reference data a RMSE of 6.587 m was 

calculated. The mean and standard deviation of height values per plot can be seen in Table 5. 

The results of the two-sample t-test show that the values are statistically significantly different. Figure 17 

shows the distribution of TLS trees height values compared to the ALS trees height values and their 

correlation value. 

3.5.3. UAV to TLS 

The RMSE between UAV and TLS height values was 5.460 m. The mean and standard deviation of the differences 
per plot can be seen in  

Table 6. 

The height values from both data sets have not been found to be significantly different. The distribution of 

UAV trees height values over TLS trees height values and their correlation can be seen in Figure 18. 

 

Figure 18: UAV height values (black stars and grey trend line) over the TLS height values for the matched trees and 

the correlation coefficient. 

  



COMPARING TREE PARAMETERS EXTRACTED FROM UAV IMAGES AND TLS DATA SETS 

34 

Table 5: Plot-wise UAV, TLS and ALS height means and standards deviations of matched trees 

plot 
TLS UAV ALS 

Mean Std Mean Std Mean diff Std 

total 15.98 m 4.60 m 18.55 m 3.072 m 11.59 m 1.30 m 

0908_1 17.676 3.855 21.002 0.703 10.928 0.059 

0912_1 15.749 3.538 18.674 2.032 9.799 0.301 

0912_2 14.255 4.119 17.186 1.363 10.599 0.266 

0922_1 16.444 3.980 15.668 2.722 11.522 0.480 

0922_2 21.539 1.513 15.485 5.068 11.008 0.763 

0923_1 20.216 1.773 17.454 2.259 10.933 0.318 

0923_2 13.916 1.928 15.522 0.958 12.779 0.265 

0923_3 13.706 5.089 18.019 2.140 11.891 0.709 

0924_1 19.954 7.577 23.559 1.970 12.062 0.248 

0924_2 16.370 5.351 21.214 2.417 11.074 0.212 

0926_1 14.837 3.820 19.265 2.671 13.291 1.320 

0926_2 15.058 5.450 20.660 2.569 14.427 0.226 

1024_1 18.482 4.294 19.593 1.071 10.758 0.363 

1026_1 15.163 1.540 15.942 0.904 11.471 0.924 

 

Table 6: Plot-wise mean and standard deviation of height differences between TLS and ALS, UAV and ALS, UAV 
and TLS 

plot 
TLS to ALS UAV to ALS UAV to TLS 

Mean Std Mean Std Mean diff Std 

All 4.386 4.928 6.957 3.195 2.571 m 4.830 m 

0908_1 6.748 3.827 10.073 0.735 3.326 4.052 

0912_1 5.950 3.581 8.874 1.900 2.924 3.610 

0912_2 3.657 4.204 6.587 1.297 2.930 4.411 

0922_1 4.922 3.874 4.146 2.535 -0.776 2.497 

0922_2 10.531 1.298 4.476 4.797 -6.055 5.786 

0923_1 9.283 1.573 6.520 2.362 -2.762 2.782 

0923_2 1.136 2.032 2.743 0.988 1.606 1.836 

0923_3 1.815 4.932 6.129 2.172 4.313 5.233 

0924_1 7.892 7.538 11.497 1.922 3.605 7.368 

0924_2 5.295 5.284 10.140 2.371 4.845 5.015 

0926_1 1.546 4.791 5.974 2.360 4.427 5.365 

0926_2 0.631 5.491 6.233 2.482 5.602 4.481 

1024_1 7.724 4.328 8.835 1.007 1.111 4.141 

1026_1 3.692 1.481 4.471 1.017 0.780 1.351 
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3.6. DBH extraction and accuracy 

The results for the comparison of DBH values from UAV, TLS and field measurements are shown in the 

order of the sub points of the third research question. 

3.6.1. UAV to field 

For the comparison of estimated DBH values from UAV data and the field measurements a RMSE of 0.124 

m was calculated. The mean and standard deviation of DBH values per plot can be seen in Table 7. 

The results of the two-sample t-test show that the UAV DBH values are not significantly different from the 

field measurements.  Figure 19 shows the distribution of UAV derived DBH values over the field 

measurements and their correlation value can be observed. 

3.6.2. TLS to field 

For the comparison of TLS DBH values and the field measurements a RMSE of 0.334 m was calculated. 

After the omission of the 5 most extreme outliers the new RMSE value was 0.079 m. The mean and standard 

deviation of DBH values per plot can be seen in Table 7: . 

The results of the two-sample t-test show that the TLS DBH values are not significantly different from the 

field measurements.  Figure 19 shows the distribution of TLS DBH values over the field measurements and 

their correlation value can be observed too. 

3.6.3. UAV to TLS 

The RMSE between UAV and TLS DBH values was 0.128 m. The mean and standard deviation of the 

differences per plot can be seen in Table 8. 

The height values from both data sets have not been found to be significantly different. 

 
Figure 19: TLS DBH values (grey circles and dashed line) and UAV DBH values (black crosses and continuous line) 
for the matched trees over the field measurements of DBH. The correlation coefficient for the TLS values was 
calculated with (TLS) and without the five most prominent outliers ((TLS w/o outliers, outlier DBH values > 1 m).  
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Table 7: Plot-wise UAV, TLS and field measured DBH (and CPA for UAV) means and standards deviations of 
matched trees 

plot TLS UAV Field 

CPA DBH  

Mean Std Mean Std Mean std Mean std 

total 0.269 m 0.355 m 19.938 m² 14.305 m² 0.250 m 0.072 m 0.244 m 0.115 m 

0908_1 0.243 0.118 25.112 12.159 0.291 0.053 0.306 0.099 

0912_1 0.222 0.121 19.261 12.263 0.248 0.057 0.256 0.120 

0912_2 0.163 0.067 8.525 5.615 0.191 0.028 0.184 0.088 

0922_1 0.790 1.411 23.889 13.105 0.247 0.073 0.296 0.025 

0922_2 0.296 0.079 11.832 15.422 0.193 0.103 0.367 0.024 

0923_1 0.260 0.094 14.481 10.438 0.219 0.057 0.363 0.039 

0923_2 0.311 0.445 19.846 15.241 0.228 0.066 0.224 0.065 

0923_3 0.215 0.173 17.509 12.207 0.236 0.059 0.233 0.159 

0924_1 0.346 0.156 32.523 23.310 0.341 0.108 0.346 0.168 

0924_2 0.181 0.097 14.478 8.873 0.246 0.046 0.194 0.096 

0926_1 0.174 0.097 24.827 11.457 0.277 0.061 0.213 0.092 

0926_2 0.226 0.170 24.545 13.091 0.286 0.069 0.179 0.125 

1024_1 0.569 0.499 26.518 15.073 0.287 0.067 0.306 0.094 

1026_1 0.261 0.212 25.788 15.706 0.257 0.070 0.229 0.088 

 

Table 8: Plot-wise mean and standard deviation of DBH differences between TLS and field measurements, UAV and 
measurements, UAV and TLS 

plot 
TLS to field measurements UAV to field measurements UAV to TLS 

Mean (m) Std (m) Mean (m) Std (m) Mean(m) Std (m) 

total 0.025 0.337 0.007 0.124 -0.018 0.356 

0908_1 -0.063 0.092 -0.016 0.112 0.048 0.112 

0912_1 -0.034 0.039 -0.008 0.136 0.026 0.136 

0912_2 -0.021 0.036 0.007 0.097 0.028 0.079 

0922_1 0.494 1.397 -0.049 0.068 -0.543 1.440 

0922_2 -0.071 0.083 -0.174 0.091 -0.103 0.123 

0923_1 -0.103 0.093 -0.144 0.076 -0.041 0.111 

0923_2 0.087 0.426 0.004 0.093 -0.083 0.414 

0923_3 -0.018 0.037 0.003 0.166 0.022 0.177 

0924_1 -0.001 0.064 -0.005 0.178 -0.004 0.162 

0924_2 -0.013 0.055 0.052 0.092 0.066 0.090 

0926_1 -0.039 0.030 0.064 0.128 0.103 0.129 

0926_2 0.047 0.129 0.107 0.083 0.060 0.155 

1024_1 0.263 0.522 -0.020 0.103 -0.283 0.524 

1026_1 0.032 0.229 0.028 0.106 -0.004 0.189 
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3.7. Forest type and stand structure influence 

Table 9: Number of matched trees per composition and density 

Composition/density Low Medium High All 

Coniferous 19 0 0 19 

Mixed 8 26 12 46 

Deciduous 0 26 93 119 

All 27 52 105 184 

The number of trees per composition and density class can be seen in Table 9. The highest number of trees 

were found in the density class high and the composition class deciduous. Deciduous class trees in high 

density stands represented over 50% of all matched trees. 

The results of the linear regression analysis over the influence of stand composition and density on tree 

detection, height and DBH extraction accuracy are summarized in Table 10. 

Table 10: Results of multiple linear regression analysis with dummy variables. Results displayed are adjusted R² (R² adj., 
light grey) and p-values for the variables. The variables were: for the stand composition, mixed (mix.) and deciduous 
(dec.) over the coniferous model; for the stand density, medium (med.) and high (high) over the low model. P-values 
higher than the chosen α=0.05 are marked in dark grey (p-value > α) 

 

 

R² and p-values -> 

 

Stand composition Stand density 

R² adj. Mix. Dec. R² adj. Med. High 

Tree det. 

UAV 
0.464 0.010 0.006 0.409 0.075 0.007 

TLS 
0.046 0.148 0.208 0.229 0.034 0.173 

pos. 
0.078 0.002 0.000 0.043 0.007 0.002 

Height 

UAV-ALS 
0.076 0.000 0.035 0.145 0.000 0.938 

TLS-ALS 
0.076 0.035 0.000 0.127 0.023 0.000 

UAV-TLS 
0.139 0.000 0.000 0.127 0.000 0.000 

DBH 

UAV-field 
0.110 0.000 0.000 0.114 0.003 0.000 

TLS-field 
-0.001 0.213 0.186 0.023 0.015 0.037 

UAV-TLS 
0.031 0.013 0.004 0.066 0.001 0.000 
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4. DISCUSSION 

4.1. Data acquisition and processing 

The acquisition and processing of both TLS and UAV data both represent different challenges because of 

sources for errors and inaccuracies. 

4.1.1. TLS data acquisition and processing 

The TLS data acquisition was relatively time consuming compared to the UAV image acquisition process. 

It was also restricted by the accessibility of the research area which limited the data acquisition in some cases 

and introduced a bias to the analysis. Certain forest types with too dense undergrowth vegetation could not 

be sampled with the TLS and where therefore not included in the direct comparison with the UAV. This 

biased the analysis since only relatively optimal TLS sampling areas were included while areas with 

unfavourable conditions for the TLS conditions were omitted. This should be considered when interpreting 

the results since it might have biased the TLS results towards a higher accuracy based on favourable sampling 

conditions. 

The manual tree extraction from the TLS point clouds was time consuming and required subjective 

decisions. Though most trees measured in the field for reference could be identified in the TLS data ( Table 

4) the extraction of individual trees, especially the crowns, was hampered by several natural and data related 

factors. These factors made it difficult to recognize the belonging of certain objects or point groups to a 

tree and make the correct extraction of trees a very complex process (Figure 20 and Figure 21 ). Though the 

factor of occlusion has been tried to be minimized by the sampling design and number of scanning positions 

in plot it could not completely be avoided in all cases. Especially in more dense stands and in the tree crowns 

there was often partial occlusion by trees or branches in the line of sight of the scanner which lead to 

occlusion. This occlusion made the recognition of the continuity and connection of objects, such as 

branches, difficult and a question of subjective interpretation (Figure 20). The occurrence of “shadows”, 

points that seem to be shadowing areas behind a certain object without any surface they could have been 

reflected off, introduce another source of uncertainty in the extraction process (Figure 21). The free-floating 

points trailing behind objects and the occlusion effects by branches and foliage create a more scattered 

appearance of the point cloud. This combination of effects is particularly noticeable in the crown areas 

where it complicates the correct separation of crowns and the identification of tree tops. 

In some cases, the separation and extraction of individual trees was also complicated by natural growth form 

of trees. Strongly intertwined trees and branches (Figure 20) made the manual separation time consuming 

and increased the probability of introducing errors by either including non-belonging objects or excluding 

belonging objects during the extraction of individual trees. 

Due to the complexity of the task the automatic solution for the tree extraction is rather challenging. In 

many studies and for economic purposes the solutions for automatic tree recognition are limited to the stem 

detection and the DBH calculation (e.g. Olofsson, Holmgren, & Olsson, 2014). Nevertheless, several studies 

and researchers are investigating the possibilities of automatic tree extractions for example via an object 

based approach (Hackenberg et al. 2015). Although sometimes with relatively good results these studies 

were mostly done in relatively open stands with few intermingled crowns (Calders et al. 2015).  
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Figure 20: left: Occlusion of structures/objects (see red circles) make recognition of connected structures (e.g. 
branches) difficult. Right: Intertwined tree stems that cannot effectively be separated and create errors especially when 
measuring DBH. 

 
Figure 21: The occurrence of “shadows” of points behind objects (see red circles) add to general complexity of 
structures and make the recognition of interconnected and separated objects as well as the recognition of finer 
structures difficult.   
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4.1.2. UAV data acquisition and processing 

The UAV image acquisition was relatively fast compared to the TLS measurements. Apart from the flying 

time the flight planning and the preparation for the geo-referencing also went into the acquisition process. 

In the practical implementation, the most time-consuming factor resulted to be the placement of the GPCs. 

GCPs had to be distributed in well visible places for the UAV images around the forest patches and 

measured with a differential GPS. Nevertheless, the total time spend on the UAV acquisition process was 

still much less than the TLS data acquisition. 

The RMSE for the final geo-referenced UAV data was less than the values obtained by other researchers (J. 

Zhang et al. 2016). In the future, the time spend on GCPs could also be saved when using high accuracy 

GPS on board of the UAV. It would also be a solution for areas with limited ground access for GCP 

placement. 

For time-sensitive data acquisition, this can be a big advantage. If the access to an area is limited due to 

climate or other factors the UAV can cover areas rapidly. This also is an advantage if short interval time 

series of an area is necessary. 

Although the same flight parameters were set for each flight area the processing facility and results did vary 

between the areas. 

In the SfM process the calibration of the images and consequent point cloud construction worked best over 

plane areas and worst in areas of high complexity such as forest canopy. The recognition of tie points in 

different images, which is necessary for the calibration process, worked best on planes were the form and 

colouring of potential tie point features were much less prone to change depending on the viewing angle. 

Potential tie point features within the tree canopies on the other hand were changing a lot in appearance 

from one view point to the other. A complex surface as the tree canopy would look very different from 

different angles and would therefore often not be automatically identified as the same tie point during the 

SfM processing. An additional problem is that in a forest canopy many features are very similar in shape and 

colour which makes the unique description of tie points challenging. A unique descriptor nevertheless, is 

necessary to match the tie points in different images (Bolles & Baker 1987). A very high overlap and 

therefore only very small changes in viewing angles in neighbouring images is used to avoid this problem 

(Dandois & Ellis 2013). Even though a very high overlap had been chosen in the flight planning in several 

flight areas there were problems in the calibration of images due to a lack of automatically identified tie 

points. In some cases, the inability of automatic calibration was due to complex canopy surfaces while in 

some cases there were irregularities in the flight path and image spacing which led to a diminished overlap 

between neighbouring images (Figure 22). 
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Figure 22: UAV flight area 2 with irregularly spaced image acquisition points (red circles), GCPs (blue crosses) 

(background image source: Google Maps) 

The irregularity of the image spacing is probably due to either inaccuracies of the on-board GPS of the UAV 

or possibly wind or gusts that either sped up or braked the UAV disrupting the intended flight plan. To 

avoid these kind of irregularities and ensure a sufficiently high overlap of the images to automatically identify 

tie-points during a SfM process it would be advisable to fly an area twice with perpendicular flight directions 

or (also additionally) increase the flying height (Dandois et al. 2015). 

Once calibrated the dense point cloud construction could be done without major problems resulting in 

visually sound 3D representations of the research areas. Although visually sound at first glance, a closer look 

on the outer edges as well as on the edges to uncalibrated images the point cloud was often much less dense 

and missing some features completely. This edge effect was a result of insufficient overlap and distortion. 

The effects can also be seen in the orthomosaic and DSM output which is derived from the point cloud. 

The orthomosaic and DSM close to these edge areas tended to misrepresent objects or omit them 

completely (Figure 23 and Figure 24). Some sampling plots were close to these edge areas which might have 

negatively influenced the accuracy of the OBIA process and analysis. 

To ensure a correct representation of objects in the point cloud and the derived orthomosaic and DSM it is 

therefore important during the flight planning stage to consider generous buffer areas around the research 

area to avoid the problematic distortion and misrepresentation at the edges of the flight and image covered 

area. 
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Figure 23: Image calibration results of flight area 1 and the DSM (upper left) and orthomosaic (upper right) derived 
from the dense point cloud generated in the SfM process (Data: University of Twente, 2017). Lower image: The image 
calibration results of the SfM process as obtained from the quality report by Pix4D: The grey rectangle marks the scope 
of the two upper maps Offset between initial (blue dots) and computed (green dots) image positions as well as the 
offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view 
(XY plane), front-view (XZ plane), and side-view (YZ plane). Red dots indicate disabled or uncalibrated images. Dark 
green ellipses indicate the absolute position uncertainty of the bundle block adjustment result.  
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Figure 24: Border area of the flight area 2 DSM (upper map) and orthomosaic (lower map). Showing trees that have 
not been properly reconstructed during in the SfM process and are therefore incorrectly or partly visible in the 
orthomosaic and DMS (red circles). The tree locations can be deduced from origin of the shadows of the tree stems 
in the orthomosaic. Stems of trees (blue circles) that normally should not be visible in the orthomosaic which should 

give a nadir view only of the tree crowns. 
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The tree detection and consequently its parameters extraction from the UAV data set are highly dependent 

on the tree crown delineation. The creation of OBIA rule sets for the crown delineation varied strongly 

between different plots since they also varied strongly in terms of structure. In this study the individualized 

approach resulted in visually assessed better fit crown delineations than a uniform approach. This approach 

has also been used and achieved reasonable results in other studies (Tiede et al. 2006; Burnett et al. 2003). 

As a general impression, the delineation of low density stands resulted in the most realistic and accurate 

results while more dense stands had more visually detected inaccuracies. 

This was particularly true for the dense stands of mixed or deciduous composition. The delineation of tree 

crowns in those stands proved most challenging because manual delineation of tree crowns was often 

ambiguous. Several studies using ALS derived DSMs, spectral information or a combination of both have 

found that the individual tree delineation in dense deciduous forests leads to non-recognition of up to 76% 

of the trees, especially of medium to lower canopy trees (Tiede et al. 2006; Jian Yang et al. 2014; Richardson 

& Moskal 2011). The most challenging stands for the delineation were the dense stands with many different 

trees (in species, height and crown sizes) and dense deciduous stands with an almost plantation-like structure 

which resulted in a very uniform and highly intermingled canopy. These stands were prone to over- and 

under segmentation of the tree crowns. Small trees were often under-segmented while particularly large trees 

were over-segmented. 

Deciduous tree stands tend to have a relatively continuous canopy with intermingling branches in the crowns 

(Figure 26). The structure of the entangled branches in the deciduous tree stands were visible in the TLS 

scans where they made the separation of individual trees rather complicated (Figure 26). The coniferous 

stands in the research area did have more distinguishable canopies that facilitated the extraction of single 

trees. Although the crowns of scots pine trees were also of relatively irregular shape their delineation also 

was relatively unambiguous. To a large degree the easy delineation was mostly also due to the very sparse 

stands (Figure 25) where most scots pine trees were detected and that trees in dense stands were usually 

much taller than the surrounding tree canopies. 

 
Figure 25: Crown delineation (red) in a low density coniferous plot  
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Figure 26: Strongly intermingled crowns of a deciduous plot. Top: UAV derived orthomosaic with crown delineation 
(red), Bottom: TLS side view of trees of the same plot  
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4.2. Tree detection and matching 

The tree detection ratio from the TLS data was high as it was expected from the experience from other 

studies (Tansey et al. 2009; Bauwens et al. 2016). Nevertheless, several trees could not be identified from 

the point clouds probably due to occlusion by other trees or undergrowth. 

The percentage of identified tree crowns from the UAV data set shows an overall underestimation of the 

number of trees in the research area. It could be indicated as a problem of under-segmentation in the OBIA 

process of outlining the tree crowns or could be caused by undetectable under-canopy trees (Figure 27). 

One source of error in the process of position matching of UAV trees and TLS trees came from the 

inaccuracy of the GPS coordinates for the TLS central scanning position of the sampling plots. While the 

relative positioning and orientation (North-South-East-West) of the trees in respect to the central scanning 

point were of high accuracy (i.e., around 2 cm) the GPS location had an expected uncertainty of 3-7 m.  

The orthomosaic and DSM generated from the UAV data on the other hand had a higher accuracy due to 

the geo-referencing with high accuracy GCPs. 

To correct the positioning of the TLS centre spots the UAV orthomosaics and DSMs were therefore used 

as a reference. While maintaining the relative TLS tree positions, the centre was moved manually to adjust 

to the visually identified centre position in the reference data. In one case, the actual centre location 

identified in the reference data set was 10 m removed from the GPS measured point. 

Although a good visual fit could be reached in most cases, the process was strongly influenced by subjective 

decisions particularly in dense stands. This could have introduced some inaccuracies in the positioning and 

thus adding to the uncertainties in the tree matching. 

 
Figure 27: Small under-canopy trees (red) are occluded from above by the crowns of higher surrounding trees (black) 
and make a recognition in the UAV images impossible. 
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By choosing the nearest neighbour approach to match tree positions of UAV, TLS and field data and by 

assuming, that the stem positions coincide with the centre of the crowns there is a distinct possibility of 

mismatching the trees. By default, and normally a tree develops in a straight and symmetric way. However, 

due to disturbances (e.g., natural or  others) the crown centre points do not always coincides with stem 

position (Sprauer 2013). Such an irregular tree shape could have led for to a situation where the crown centre 

point derived from the UAV data was either out of the matching range of 5 m from its real stem position 

or that the crown or stem were wrongly assigned to another tree stem or crown.  

A visual inspection to identify such cases was possible in the low density stands where the individual trees 

and their position could be distinguished quite well from the UAV derived orthomosaics and DSM. 

However, in all other plots of the research area this identification was not possible and the matching error 

caused by irregular tree shapes could not be quantified.  

As indicated from the number of identified trees from the UAV data and as was also observed during the 

TLS data processing there are several small trees in the research area that are smaller than the surrounding 

trees. Their crowns remain below the canopy and are invisible to the UAV (Figure 27). Although not visible 

in the UAV data these small trees might have been erroneously matched to UAV delineated trees. Due to 

positioning errors through the geo-referencing and central crown point assumptions the small trees might 

in some cases have been the nearest neighbour for a UAV tree position.  

To optimize the matching process further investigations and observations are needed to determine how 

large is the influence of geo-referencing, irregular tree shapes and other factors are on the matching process 

using the nearest neighbour approach. Other matching approaches could also be considered by introducing 

an additional criterion to distance. This criterion could for example be based on a relationship of tree height 

and crown width to the DBH of a tree and matching therefore the most likely pair within a set matching 

range. This method would require a close study of the allometric relationship of the trees in the study area. 

4.3. Tree height extraction and comparison 

A major concern in the analysis of the height parameter are the values of the ALS reference values. Although 

ALS generally known to deliver high accuracy values for tree heights (Tiede et al. 2006), there are studies of 

ALS measurements with similar resolution as used in this study that show that the ALS height values are 

around 6.5% smaller than field values (in leave-on conditions) (Verma et al. 2016). 

The data was obtained a year previous to the fieldwork with UAV and TLS in February, which is in the 

leave off season (GeoBasis NRW 2017). Some differences in heights to the UAV and TLS data could have 

been introduced by the growth of trees between the acquisition of the data sets. The missing foliage is most 

likely increased the probability of the ALS missing the tree top and reflect off lower branches thus 

underestimating the tree height as well. The error caused by these problems were not quantified or included 

in the analysis but their potential impact should be carefully considered. 

4.3.1. UAV to field 

The RMSE between UAV and ALS height values is very high and the correlation index is rather low ( Figure 

17). The t-test even revealed that the mean height values are significantly different. As has been discussed 

previously the ALS as reference data set could have strongly influenced these results. 
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Furthermore, the UAV height values are depending on the crown delineation (the highest crown value is 

set as the tree top value) and is therefore affected by inaccuracies occurring in the OBIA process itself and 

inaccuracies in the data used for it. Inaccurate crown delineations could have led to the potential exclusion 

of the highest values or also include non-belonging height values larger than the actual height for the 

respective tree. 

The height values were also directly dependent on the DSM created by the SfM process. This also means 

that the height values were affected by the edge effects which led to a distorted or incomplete point cloud 

construction and ultimately the inaccurate DSM (Figure 23 and Figure 24). 

Particularly two coniferous sampling plots this effect was very noticeable since they were located near the 

border of the flight areas. Within these sampling plots several trees were only partly or not at all recognizable 

in the DSM (Figure 24, red circles). The height values for these trees (if they could be delineated at all) were 

likely to be lower than the actual tree height. 

4.3.2. TLS to field 

The TLS height values were also found to be significantly different from the reference ALS data displaying 

a rather large RMSE as well. Reasons for these large differences in height values between TLS and ALS, 

apart from the problem with the reference data set, could be a result from the problems with the tree 

matching. In some cases of possible mismatches a sub-canopy tree (e.g. Figure 27) might have been matched 

with a crown identified from the UAV data. ALS height values as UAV height values are both derived from 

the forest canopy surface. Sub-canopy trees are occluded from their view. The TLS height value would be 

much lower than the ALS value which would belong to another tree (visible from above) entirely.  

Other inaccuracies in the TLS height values could be derive simply from the occlusion of the actual tree top 

or also the potentially incorrect subjective decisions taken in the tree extraction process.  

4.3.3. UAV to TLS 

The direct comparison of UAV and TLS height values does not result in high correlation values. Although 

Figure 18 shows positively correlated results, the value remains very low at 0.26 and the deviation around 

this trend was quite substantial. Nevertheless, the results of the paired t-test indicate that the height values 

of UAV and TLS are not significantly different. The RMSE between UAV and TLS was a meter lower than 

the RMSE between both data sets and the reference height values which shows a better agreement between 

UAV and TLS data. Nevertheless, the RMSE value was still rather high indicating large differences in the 

height values of both sets. 

The sources for the high RMSE, although not significant, are in the potential mismatching of trees which is 

the same problem as with the TLS and ALS height values. The above discussed factors resulting with 

inaccurate height values from the TLS and UAV data also apply in this case adding to the noise. 
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4.4. DBH exrtaction and comparison 

4.4.1. UAV to field 

While a there was no significant difference between the UAV data compared to the field data the collinearity 

values between the DBH values and the field measurements were rather low (Figure 19). The low collinearity 

of the UAV DBH values to the field measurements indicate a problem with the estimation of DBH values 

from the CPA showing overestimations for smaller DBH trees and underestimations for larger DBH ranges. 

One source of the under- and over estimations could be in the assumption of a linear relationship between 

CPA, height and DBH while it could be a non-linear relation. Although the CPA (or sometimes the crown 

diameter or radius is used) usually has an approximately linear relation to the DBH the relation of DBH and 

height tends to turn constant for larger DBH values for the most common tree species in the research area 

(Widlowski et al. 2003). The model is also assuming the same allometric relationship for all tree species in 

the research area while the species-specific allometric equations are not considered. This can lead to 

overestimations of DBH values for trees of species with a weaker relationship and to underestimations for 

species with a stronger relationship. 

The sample of matched trees which was used for the model fitting for the estimation of DBH using CPA 

and height values could also have introduced a bias. Although trees from all sampling plots were used, the 

sampling in the plot itself was done with a purposeful approach of selecting well fitted crown delineations. 

The resulting sample could have not been a realistic sample of all matched trees. An over-representation of 

certain tree species that showed favourable features for delineation in the OBIA process might have 

occurred. This might have influenced the model fitting. The model might also be influenced by possibly 

mismatched trees which combine CPA and height values with the DBH value of another tree. 

Apart from the inaccuracies originating by the model itself, other factors might also have influenced in the 

DBH estimations. 

The underestimations could be, in part due to the same problem to the possible mismatching of trees. 

Similar as with the height values, larger crowns could have been matched to smaller sub-canopy trees which 

are not only smaller in height but most likely in DBH as well. Although in fact a small sub-canopy tree, the 

delineated UAV crown belongs to a larger tree and the estimations result in a larger DBH value (because of 

a larger CPA and height).  

Under-segmentation of small trees led to over-estimation of DBH values of small trees while over-

segmentation of large tree crowns resulted in an underestimation of DBH values for larger trees. 

4.4.2. TLS to field 

Although there was no significant difference between the TLS DBH values and the field measurements, the 

collinearity value was at first much lower than expected. The RMSE was very high at over 30 cm. Extreme 

outliers influenced these values strongly. By removing the five most prominent outliers the collinearity index 

was much higher (Figure 19). The RMSE was lowered by the outlier removal to 0.079 m which is still 

quite large compared to values obtained in other studies, for example DBH estimations with RMSE of 

0.019m (Tansey et al. 2009) and 0.024 m (Calders et al. 2015). The differences in accuracy might be in part 
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due to the differences in the researched stands. In Tansey et al., (2009) the research area was mostly 

undergrowth free and the trees had almost no low branches that could interfere with the DBH 

measurements. Calders et al., (2015) studied relatively open eucalyptus stands. Both circumstances could 

have favoured the measurements since particularly small trees with many branches and trees surrounded by 

much undergrowth proved to prone to the extraction of unrealistic DBH values from the TLS data (Tansey 

et al. 2009). The filter that was applied to remove the noise around the stems did only succeed partly in 

cleaning out non-stem points. It led to an underestimation of the DBH in some cases because it was also 

removing points that belonged to the stem. 

4.4.3. UAV to TLS 

UAV and TLS (without outliers) DBH data were also not significantly different though the RMSE between 

both was slightly higher than compared to the values with respect to the field measurements. This increased 

RMSE was probably due to the combination of inaccuracies from the UAV and the TLS DBH extraction. 

4.5. Influence of stand composition and density 

A general problem of the regression analysis of the influence by stand composition and density is that more 

than half of the matched trees are from high density deciduous stands (Table 12). For combined stand 

density and composition classification there were very few or no trees for a sound analysis. The low number 

or non- existence of trees in classes like the high density coniferous class did skew the analysis further. The 

skewed sample size of the classes did also result in critical values of collinearity between some classes ( 

Annex 6). A tentative analysis did return low R² values and mostly p-values clearly higher than α (Annex 6). 

A problem with the regression analysis on tree detection is the relatively small sample size of only 14. The 

small sample size is because the percentage of matched (UAV) and found (TLS) trees was calculated plot-

wise instead of tree wise. 

The R² for the UAV height regression analysis were the highest for both the analysis of the stand 

composition (R² = 0.464) and density (R² = 0.409). Both composition classes, mixed and deciduous, had a 

significant impact lowering the percentage of recognized and matched trees each by 28% compared to 

coniferous stands. These results are similar to those of other studies findings that the delineation of 

deciduous trees is less accurate than that of coniferous trees (Tiede et al. 2006; Jian Yang et al. 2014; 

Richardson & Moskal 2011). 

The results in this study’s analysis were probably also strongly influenced by the fact, that all coniferous 

stands were of low density since in other studies it has been found that there were also problems with 

accurate crown delineation of coniferous stands of high density (Korpela et al. 2006). 

In the density analysis, the medium and high density did also both have a significant impact compared to 

the low-density stand lowering the detection and matching by approximately 26 % (high density) and 17 % 

(medium density). 

The TLS tree detection rate was apparently much less impacted by the stand composition and density. Only 

the density seemed to have some effect but only the medium density factor was found to have a significant 

impact (around 7% less than in low density stands) on the tree detection. Nevertheless, the general 

recognition of trees was very high in the TLS data set. 
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To be able to determine whether the stand composition or its density had more impact on the tree detection, 

especially from the UAV data, a larger sample size would be required. These sample plots should also include 

data about the composition density combinations that were not present in this study such as high density 

coniferous stands.  

The rather low R² values for both tree height extraction and DBH extraction accuracy seem to indicate, that 

there might be other factors that influence the accuracy of these parameters. The TLS parameter extraction 

seemed in general less impacted by the stand composition and density. 

One such factor that should be investigated further could be related to the age of trees and how mixed these 

age groups are within a stand.  
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5. CONCLUSIONS 

In general, the results from this study suggest that the parameters extracted from UAV data are of lower 

accuracy than the parameters obtained by TLS measurements. 

1. Does processing of the UAV and TLS data lead to the expected raw data for the analysis? 

As expected the tree detection rate from the TLS data was very high (95 %). The number of trees delineated 

from the UAV data was slightly lower (87.4 %) and decreased further to just over half (56.3 %) of the 

number of trees counted in the field. The recognition rate of individual trees from the UAV data was lower 

than in comparable studies. 

The UAV data from one flight area could not be calibrated and therefore further processing and analysis 

could not be done for that area. Problems in the UAV flight planning and data acquisition lead to incomplete 

or inaccurate results in the UAV data processing. 

2. Is there a significant difference between the UAV derived height values, TLS derived height values and the 

ALS reference height values? 

There was a significant difference between height values from the reference ALS data and the height values 

extracted from UAV and TLS data sets. Height values from both data sets, UAV and TLS, were higher than 

the reference height values from the ALS data set (RMSE UAV 7.7 m, RMSE TLS 6.6 m). UAV and TLS 

height values were not significantly different from each other. 

3. Is there a significant difference between the UAV derived DBH values, TLS derived DBH values and the 

DBH values from the field measurements? 

TLS and UAV DBH values were not significantly different from the field measurements. 

The accuracy of UAV DBH estimations was higher (RMSE 0.124 m) than the accuracy obtained by the TLS 

(RMSE 0.334 m) but lower than the TLS DBH accuracy when excluding extreme outliers (0.079 m). 

4. Do forest type and structure influence the tree and parameter (height and DBH) extraction from UAV and 

TLS data? 

The UAV accuracy of both tree detection and DBH extraction accuracy were both significantly (negatively) 

influenced by higher density in stands and in stands with higher deciduous tree content. TLS tree detection 

and DBH value extraction was not influenced by stand composition but partly by stand density. Height 

values from both data sets were significantly influenced by stand density and composition 
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Annex1 

Fieldwork procedure 

The procedure followed during the fieldwork was the following: 

1. Find location of first plot using the GPS and the coordinate list. 

a. If it is not the first day in the field: find the position of the last plot of the previous day. 

b. Continue looking for next plot location in a structured way (north-south, east-west). 

2.  When scan centre position is found: 

a. Place reflectors (evenly distributed in horizontal and vertical component). 

b. Mark and count all trees (DBH > 10 cm) in plot with numbered targets and reflectors. 

c. Take GPS measurement of scanning position. 

TLS data acquisition: 

a. Level TLS. 

b. Create new scanning position (name accordingly). 

c. Enter scan settings (Panorama 40 for resolution). 

d. Start scanning process. 

Manual measurements: 

a. Identify tree species (based on personal knowledge, take pictures of unknown tree species 

for later identification). 

b. Measure DBH (1.3 m above ground). 

3. Using a compass, find the surrounding plot positions. 

a. Take 4 surrounding plot positions (90 degrees) at approximately 12.6 m distance from the 

centre position 

4. When found, scan surrounding plot positions. 

Repeat 2a – 2f. 

5. When finished, move to next plot. Repeat from step 2. 

  



 

B 

Annex 2 

Table 11: Standard Deviation (StDev) for scan registration in TLS plots. Calculated by using reflectors as tie points for 
scan registration by using a least square approach in RiSCAN PRO. 

Plot StDev (m) 

20160908_1 0.051 

20160912_1 0.060 

20160912_2 0.019 

20160919_2 0.014 

20160920_1 0.015 

20160920_2 0.016 

20160922_1 0.026 

20160922_2 0.018 

20160923_1 0.025 

20160923_2 0.011 

20160923_4 0.011 

20160924_1 0.014 

20160924_2 0.011 

20160926_1 0.016 

20160926_2 0.012 
  

Average 0.021 

Min 0.011 

Max 0.060 
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Annex 3 

Flight plans 

 
Figure 28: Flight plan (green line and red image taking positions) and GCPs (blue crosses) for UAV flight area 1 

 
Figure 29: Flight plan (green line and red image taking positions) and GCPs (blue crosses) for flight area 3 



 

D 

 

 

Figure 30: Flight plan (green line and red image taking positions) and GCPs (blue crosses) for flight area 5 
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Annex 4 

Composition and density class per plot 

Table 12: Composition class, density class and number of matched trees per plot 

Plot Number of matched 

trees 

Density Composition 

0908_1 9 Medium Mixed 

0912_1 17 Medium Mixed 

0912_2 22 High Deciduous 

0922_1 7 Low Coniferous 

0922_2 5 Low Coniferous 

0923_1 7 Low Coniferous 

0923_2 19 High Deciduous 

0923_3 14 Medium Deciduous 

0924_1 12 Medium Deciduous 

0924_2 22 High Deciduous 

0926_1 12 High Mixed 

0926_2 12 High Deciduous 

1024_1 8 Low Mixed 

1026_1 18 High Deciduous 

Total 184 - - 
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Annex 5 

DTM and CHM processing 

Import ascii point elevation data 

Clip point elevation vector 

Rasterize point elevation vector (using pointtoraster tool in ArcGIS) using automatic cell-size 

Clip elevation raster using plot extends 

Resample (bilinear interpolation method) individual dtms using respective dsm plot for resolution 

Substract DTM from respective DSM to obtain CHM 
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Annex 6 

Regression analysis for combined composition and density 

Table 13: Results of regression analysis combining density and composition classes 

 

p-values -> 

Stand composition and density 

R² adj. Mix. Dec. Med. High 

Tree det. 
UAV 

0.474 0.126 0.329 0.814 0.341 

TLS 
0.098 1 0.739 0.158 0.336 

pos. 
0.069 0.016 0.008 0.565 0.660 

Height 
UAV-ALS 

0.179 0.003 0.012 0.825 0.042 

TLS-ALS 
0.117 0.886 0.838 0.016 0.225 

UAV-TLS 
0.139 0.035 0.066 0.163 0.234 

DBH 
UAV-field 

0.124 0.049 0.104 0.688 0.177 

TLS-field 
0.019 0.330 0.243 0.018 0.036 

UAV-TLS 
0.059 0.781 0.560 0.016 0.013 

 


