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Abstract  
 
Ecosystems can undergo changes that are slow and gradual, or an abrupt change - a 
sudden nonlinear dynamics that can bring catastrophic changes and ultimately leads to 
the change in the structure and functioning. Non-linear and discontinuous changes 
sometimes may cause the system to shift into another undesirable state, called ‘regime 
shifts’ or ‘critical transition’. Recent model based and simulation studies have 
identified indicators of impending regime shifts that can be used to provide early 
warning signals of a critical transition or tipping points. However, these studies lack 
an empirical base and studies in real world ecosystems are largely missing. Therefore, 
this study attempted to identify potential critical transitions and tipping points in a 
Mediterranean type forest ecosystem. In this study, we argue that time series of 
enhanced vegetation index (EVI) derived from MODIS satellite images can help to 
identify potential tipping points and critical transitions. The long term increasing trend 
and changes in the statistical properties of the observed time series of metric-based 
early warning indicators of critical transition and tipping points - autocorrelation-at-
lag-1, standard deviation and skewness are used to identify the potential transitions 
and tipping points. The study quantified early warning indicators for the Northern 
Jarrah Forest (NJF) ecosystem, but the strongest signals did not flag any forest that 
showed any signs of an impending shift. In contrast, it largely identified the areas that 
were mined in the past and are susceptible to human interference and land use change. 
Some forest pixels are identified but it did not show any collapse while monitored 
using imagery from Google Earth at different time. There might be several possible 
reasons why the results indicated a non-tipping forest. The possible false indication of 
tipping points could be possibly due to the environmental and climatic variability that 
might have triggered the rise in indicators to act as a source of false alarm of 
impending critical transition or tipping point. On the other hand, it could also be that 
the NJF forest ecosystem is not yet close to tipping points. This study shows that 
detecting critical transitions and tipping points in real world ecosystems remains 
challenging and may not be as promising and straightforward as suggested by 
simulation studies. The gaps in evidences of tipping points in real world examples 
could be filled by analyzing high resolution and high frequency data, integrating 
remote sensing with process based approach dynamic vegetation models and validate 
the results with ground observations. 
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Chapter 1. Introduction 
 
1.1 Ecosystem States and Tipping Points 
Ecosystems are dynamic entities that change over varying time scales. Often, the 
dynamic interactions that occur within or among ecosystems and environmental 
conditions are numerous and very complex. These interactions lead to the 
modifications in the structure and functions of the ecosystems. Many ecosystems are 
subject to slow and gradual or sudden and abrupt changes that are influenced by the 
disturbances and variations in climate and environmental parameters (Scheffer et al. 
2001). As a consequence, the ecosystem switches from one state to another state, and 
can exist in two or more alternative states that differ in composition of the species, 
ecological processes and ecosystem services provided by them (Beisner et al. 2003; 
Suding et al. 2004). The sudden and unprecedented shifts in the ecosystem are 
expected to be more common as variations in climate and depletion of natural 
resources accelerate (Bestelmeyer et al. 2011).The systems that have two alternative 
stable states for a given combination of parameters switch from one state to another 
state at tipping points. Tipping points are defined as the ecological threshold beyond 
which a relatively small change in external conditions may cause the system to shift 
abruptly from one state to another unforeseen, undesirable and contrasting state, 
which may be largely irreversible (Scheffer et al. 2009; Bestelmeyer et al. 2011; 
Laurance et al. 2011). According to (Jax 2014), a tipping point is defined as “a point 
at which ecological system experiences a qualitative change, mostly in an abrupt and 
discontinuous way”.     
 
The fundamental concept of a tipping point, where ecosystems respond differently to 
changing external conditions, is shown in Figure 1. Ecosystems respond either linear 
or gradual and non-linear. In Figure 1(a), there is a gradual response to gradual 
changes in external conditions. However, in Figure 1(b) and 1(c), the response of the 
ecosystem state can be abrupt even with a small change in external condition, and we 
can see a non-linear response. The ecosystem state in 1(a) and 1(b) are reversible to 
initial states, if the magnitude of external condition is reduced. However, the 
ecosystem responds completely differently in 1(c), where the equilibrium curve folds 
backwards (fold bifurcation) and there occurs a situation where a very small change in 
external conditions may trigger an extreme discontinuous response, and the system 
abruptly shifts towards a contrasting state. In Figure 1(c), T1 and T2 represent two 
threshold positions and within the range of environmental conditions between them, 
the ecosystems can occur in two contrasting states. It explains the threshold dependent 
transitions and alternate states in the ecosystem. In case of two alternative stable states 
1(c), reversal of an ecosystem to its original state is very difficult or even impossible.  
 
Tipping points are commonly discussed as the existence of multiple states in an 
ecosystem and their functioning (Andersen et al. 2008). The concept of tipping points 
is typically used with respect to complex systems like ecosystems and climate, but 
sometimes also for financial markets, economics, anthropology and ecology (Scheffer 
et al. 2009; Barnosky et al. 2012). In ecology, various terms have been used to explain 
abrupt and undesirable changes in the ecosystem states. The concept of tipping points 
and sudden shifts in ecosystem states are related to other concepts like ecosystem 
collapse (MacDougall et al. 2013; Lindenmayer et al. 2016), ecological transitions 
(Kéfi et al. 2014), critical threshold (Wissel 1984), regime shifts or state shifts 
(Scheffer et al. 2001; Biggs et al. 2009; Guttal and Jayaprakash 2009), critical 
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transitions (Scheffer et al. 2009; Dakos et al. 2012), alterations in ecosystem state and 
functions (Pulsford et al. 2016) and resilience (Walker and Salt 2012; Dakos et al. 
2015).  
 

 
Figure 1. Schematic representation of the concept of tipping point.  
(adapted from Scheffer and Carpenter (2003) 
 
1.2 Forest Ecosystem and Tipping Points 
The forest ecosystem is a significant carbon pool (Bonan 2008) and ecosystem service 
provider (Betts et al. 2008). In addition, forests have a central role in maintaining 
local climate (Nobre et al. 1991), biodiversity conservation (Dirzo and Raven 2003) 
and global biogeochemical cycles (Bonan 2008). However, the ecosystem of such 
critical importance is subjected to cumulative pressure due to environmental changes 
and variations at different levels and scales. Increased human population, global 
climate change (Dale et al. 2001), forest fires (Nepstad et al. 2008) and drought (Klos 
et al. 2009) are common factors affecting forest ecosystems around the globe. 
Diebacks, changes in composition and structure of the forest, and loss of biodiversity 
are the increasing impacts due to those factors (Clark et al. 2016). On the other hand, 
land-use changes, invasive species and deforestation are putting extra pressure on 
ability of forest ecosystems to adapt to those impacts (Reyer et al. 2015). This has 
resulted in a change of structure and function of forest ecosystem that are observed in 
different parts of the world. For example, forest die back and sudden canopy collapse 
are reported in Arizona, USA (Ganey and Vojta 2011), Eastern Nicaragua (Granzow-
de la Cerda et al. 2012), South Africa and Asia (Steinkamp and Hickler 2015) and 
Australia (Matusick et al. 2013; Steinkamp and Hickler 2015). Such sudden forest 
collapse leads to substantial changes in the structure and function of forest ecosystem 
with several repercussions. It is argued that these changes may ultimately lead to 
decreased resilience of forest ecosystem (Laurance 2004; Lenton et al. 2008), and can 
even lead the system into different state (Scheffer et al. 2001).  
 
The occurrence of different alternative states in tropical forest ecosystem e.g. forest, 
savanna, and treeless state (Hirota et al. 2011) are governed by a feedback mechanism 
between vegetation and climate (Van Nes et al. 2014), biomass, herbivory and fire 
intensity (Van Langevelde et al. 2003). A positive feedback between vegetation and 
climate leads to a wetter and greener state compared to a state without the vegetation 
(Zeng et al. 2002). Empirical evidence suggest that such alternative states of the 
ecosystem are the response to climate variability, precipitation changes, external 
drivers and the historical state of the system (Hirota et al. 2011; Staver et al. 2011). 
Though evidence of forest state changes due to drought, fire and climate variability 
exist, unfortunately, the theory of tipping points and state shift is rarely tested for 
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forest ecosystems. The reason might be that detecting critical transitions and tipping 
points in complex real ecosystems is very difficult (Eslami-Andergoli et al. 2014).  
 
1.3 Early Warning Indicators of Tipping Points  
It is often difficult to predict whether an ecosystem is close to a tipping point (Clark et 
al. 2001). However, recent studies suggest the use of generic leading indicators - 
which are also called early warning signals to detect an approaching tipping point 
(Scheffer et al. 2009). It is often argued that tipping points are associated with fold 
bifurcations in which the ecosystems have two alternative stable states for the given 
combination of the parameters (Hastings and Wysham 2010), and small disturbances 
can switch a system from one state to another (Scheffer et al. 2001; Beisner et al. 
2003). As bifurcation approaches, a phenomenon called ‘critical slowing down 
(CSD)’ occurs (Strogatz 2000) that provides early warning signal about the change 
that is going to happen in the ecosystem (Van Nes and Scheffer 2007). This critical 
slowing down is expected due to the tendency to have a decrease in the recovery rates 
in less resilient systems after a disturbance (Scheffer et al. 2009). In addition, signals 
that can be either totally or partially explained by CSD are an increase in 
autocorrelation-at-lag-1, an increase in the variance and an increase in the skewness 
of the system’s state variable (Eslami-Andergoli et al. 2014).  
 
The use of general early warning signals and leading indicators have been suggested 
to test whether these approaches can detect approaching critical transitions and 
tipping points in a system (Scheffer et al. 2009). The early warning indicator of CSD, 
and hence critical transition and tipping points can be grouped into two broad 
categories: metric-based and model based indicators (Dakos et al. 2012). Metric-based 
indicators are developed to quantify changes in statistical properties of a time series - 
including autocorrelation-at-lag-1, standard deviation, and skewness, and model based 
indicators attempt to fit a model to the time series data in order to quantify the 
changes (Dai et al. 2012; Dakos et al. 2012). Early warning signals of CSD can be 
explained by analyzing the long-term changes in the statistical properties of the 
observed time series. Ecosystems approaching tipping points show an increase in 
autocorrelation (Dakos et al. 2009), variance (Carpenter and Brock 2006; Guttal and 
Jayaprakash 2009), and skewness of the studied variable and a slow recovery from 
disturbances (Van Nes and Scheffer 2007). The statistical analysis of early warning 
signals of CSD helps to detect tipping points and critical transitions in time series 
because it is often argued that long term trends in early warning signals or indicators 
increase in characteristic ways prior approaching tipping points or a critical transition.  
 
The critical slowing down can be detected by the changes in correlation structure in 
the time series of the state variable (Dakos et al. 2012). It is found that if the system is 
approaching a critical transition or a tipping point, there is a noticeable increase in the 
autocorrelation that builds up long before the critical transition occurs (Scheffer et al. 
2009). An increase in autocorrelation at lag-1 indicates that the state of a system 
becomes more similar between consecutive observations (Dakos et al. 2008), and is 
one of the simplest form to measure critical slowing down (Held and Kleinen 2004).  
 
Slow return rates to the stable state can force the system state drift widely around the 
stable state and will cause variance to increase prior to the critical transition (Dakos et 
al. 2008; Scheffer et al. 2009).  
 



 

4 
 

The disturbances can sometimes push the state of the system close to the boundary 
between the alternate states (Dakos et al. 2012). Due to this, the time series becomes 
asymmetric and the dynamics in the boundary becomes slow (Scheffer et al. 2009). 
An increase in asymmetry of fluctuations may happen because of unstable 
equilibrium close to a tipping point (Scheffer et al. 2009), and we may observe a rise 
in the skewness of a time series (Dakos et al. 2012).  
 
1.4 Ecosystem Variables 
An ecosystem state variable is any characteristic number or quantity that changes over 
time and scale, for example net primary productivity and standing biomass. 
Ecosystem state variables are used to describe the state of the ecosystem. Ecosystem 
variables thus help to compare ecosystems and changes in state variables explain the 
behavior of ecosystem at different times and under different external conditions. 
Ecosystems respond differently to different external environment. Disturbances like 
drought, fire, etc. of significant magnitude and duration have influence on the 
ecosystem state variables. Examples of forest ecosystem variables include biomass 
and vegetation index -  an indicator that describes the greenness, relative density and 
health of vegetation derived using the reflectance properties of vegetation, net primary 
productivity, etc. In this research, enhanced vegetation index (EVI) is taken into 
consideration as forest ecosystem variable that is acquired through remotely sensed 
satellite imageries. Using EVI values, we can accentuate a vegetation property and 
explain the behavior of a forest ecosystem because decrease in EVI value indicate a 
decline in greenness, and hence biomass and productivity.  
 
1.5 Remotely Sensed Ecosystem Variables for Identifying Tipping Points   
Earth observation (remote sensing) data play an important role in mapping, 
monitoring and understanding dynamics of forest ecosystem. Successful monitoring 
of ecosystems requires frequent and consistent spatio-temporal datasets (Tarnavsky et 
al. 2008). Satellite Image Time Series (SITS) offer opportunities to map, monitor and 
understand how ecosystems are changing over time and space at different scales, and 
formulate appropriate strategies for its sustainable management and use. SITS are 
becoming increasingly popular and available (Petitjean et al. 2012), and this has 
drawn interests to test their applicability in various fields from ecosystem and 
vegetation monitoring to climate change modeling. Examples of applications of Earth 
observation and time series analysis include climate monitoring (Wentz and Schabel 
2000), vegetation dynamics (Martinez and Gilabert 2009), modeling forest biomass 
dynamics (Gómez et al. 2014), monitoring vegetation phenology phenomena (Reed et 
al. 1994; Zhang et al. 2003), mapping and monitoring of land use and land cover 
changes (Wu et al. 2006; Shalaby and Tateishi 2007), mapping and monitoring 
deforestation and forest degradation (Margono et al. 2012), monitoring fire events and 
post fire dynamics (Röder et al. 2008), and crop phenology and crop classification 
(Wardlow et al. 2007; Zheng et al. 2016).   
 
Remote sensing has the capacity to describe vegetation conditions, and provide more 
direct estimates of ecological variables like biomass and biodiversity (Andrew et al. 
2014). Since tipping points are often led by increased variability of ecosystem 
variables (Scheffer et al. 2009), we can assume that SITS can provide a realistic 
estimate on how the variables are changing over time. Satellite derived vegetation 
indices are generally used for vegetation mapping and monitoring. One common 
vegetation index is the Normalized Difference Vegetation Index (NDVI) - the most 
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often used vegetation index – which is a measure of greenness, and is calculated as 
the ratio of difference between near-infrared radiation and visible red radiation 
divided by the sum of near-infrared radiation and visible (red) radiation. NDVI is 
widely applied in vegetation mapping and monitoring including e.g. phenological 
change detection (Verbesselt et al. 2010), land-use classification (de Bie et al. 2012), 
forest classification (DeFries et al. 1995), drought mapping and monitoring (Peters et 
al. 2002; Sruthi and Aslam 2015), assess productivity changes (Tucker et al. 2001), as 
well as mapping and monitoring net primary productivity (Ricotta et al. 1999). The 
challenge with NDVI is that it gets saturated at  high biomass levels (Gitelson 2004; 
Mutanga and Skidmore 2004; Unsalam et al. 2004) and hence may not be suitable to 
map and monitor dense vegetation.    
 
To overcome the saturation effect and improve sensitivity at high biomass and correct 
atmospheric distortions, an optimized vegetation index called enhanced vegetation 
index (EVI) has been developed as a standard vegetation product for Terra and Aqua 
Moderate Resolution Imaging Spectroradiometers (MODIS) (Jiang et al. 2008). Like 
NDVI, EVI also provides a degree of greenness of the vegetation and is applied on 
mapping and monitoring phenology (Zheng et al. 2016), crop mapping studies 
(Wardlow et al. 2007), estimating gross primary productivity (Wu et al. 2011), etc. 
EVI as explained in Jiang et al. (2008) is calculated as  
 

𝐸𝑉𝐼 = 𝐺
𝑁 − 𝑅

𝑁 + 𝐶1𝑅 − 𝐶2𝐵 + 𝐿
 

 
where,  
N, R, and B are surface reflectance for near-infrared, red, and blue bands respectively 
G is a gain factor 
C1, C2 are the coefficients of aerosol resistance term 
L functions as the soil-adjustment factor 
 
Changing trends in ecosystem variables can be detected and estimated using satellite 
observations (Andrew et al. 2014). For forest ecosystems, satellite derived estimates 
of vegetation indices (eg. EVI) may help to assess ecosystem states. Changes and 
oscillations in the ecosystem variables like e.g. GPP indicate the health of an 
ecosystem (Brouwers and Coops 2016), and could help to identify a point where 
external disturbances might lead to change in ecosystem state. This can be explained 
by the argument  that a regime shift from one ecosystem state to another, for example  
forest to non-forest state would lead to the long-term increase in the statistical 
properties (autocorrelation at lag-1, standard deviation, and skewness) of the time 
series of the ecosystem variable (Dai et al. 2012; Dakos et al. 2012). There is a need 
for a time series of data from the study area to verify whether the ecosystem is indeed 
changing. The satellite time series analysis provides an opportunity to identify those 
changes and quantify the changes from where ecosystem might go into alternate 
states.   
  
1.6 Research Gap   
Many forest ecosystems are prone to sudden, widespread and long lasting change in 
their state, which puts the forest ecosystem at the risk of collapse (Lindenmayer et al. 
2016). Forest crown dieback and collapse due to various environmental conditions 
like drought, fire, and heat stress, etc. have been recorded around the globe (Ganey 
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and Vojta 2011; Granzow-de la Cerda et al. 2012; Matusick et al. 2013; Steinkamp 
and Hickler 2015). One prominent example of severe forest die back and 
unprecedented forest collapse due to extreme heat and drought conditions is the 
Mediterranean type forest ecosystem in southwestern Australia (Matusick et al. 2013). 
Such evidence of forest collapse resulting from environmental and climatic 
disturbances might prove crucial in testing whether these collapses could be identified 
by precursor signals from remote sensing. One of the ways to assess whether the 
system is approaching a state shift phase is to derive the signals from satellite time 
series based on the theory of tipping point to detect the collapses prior to when they 
occurred.   
 
There have been studies done to understand the changes and sensitivity of various 
systems to external environmental conditions. Various methods are being developed 
to detect early warning signals of tipping points. However, the proposed methods 
largely emphasize the use of simulated ecological data (Dakos et al. 2012) or spatial 
patterns (Kéfi et al. 2014) rather than time series. Examples of model based studies 
are climate systems  (Lenton et al. 2008), vegetation – climate equilibrium using 
dynamic models (Hickler et al. 2005; Hirota et al. 2011; Barbosa et al. 2015) and 
lakes and ocean studies (Scheffer et al. 1993; Longworth et al. 2005; Scott et al. 2008; 
Gruber 2011). Although some researchers (Dakos et al. 2009; Scheffer et al. 2009) 
studied early warning signals of critical transitions and tipping points in ecosystems 
with natural disturbances, evidences to support the theory of CSD and tipping points 
in real ecosystems are largely insufficient. Carpenter et al. (2011) studied early 
warning of regime shifts in a lake ecosystem, but this is on a relatively small scale. 
The application of this rapidly expanding knowledge and theory in tipping points and 
critical transition in studying a large-scale ecosystem is still a pending question and is 
yet to be tested and applied in real world and complex ecosystems like forest 
ecosystems.  
 
This study is an attempt to apply the emerging theory of tipping points to the North 
Jarrah Forest (NJF) forest ecosystem in south western Australia, which is being 
increasingly affected by alternate drying and warming climatic conditions (Abbott and 
Le Maitre 2010; CSIRO and Bureau of Meteorology 2015). Matusick et al. (2013) 
reported a severe forest die back and unprecedented forest collapse due to extreme 
heat and drought conditions in Western Australia. The fact that canopy collapse and 
forest diebacks occurred in the NJF forest ecosystem makes it an appropriate 
ecosystem to test whether we can detect these collapse in retrospect, applying the 
early warning indicators of tipping points and critical transitions.  
 
While acknowledging the theoretical and methodological advancements in early 
warning signals and tipping points, there is a lack of evidence of early warning signs 
and tipping points in forest ecosystem that are derived using Earth observation data. 
There might be a huge potential in the applicability of those methods and indicators 
on detecting early warning signals of tipping points as it can meaningfully contribute 
in planning and management of forests ecosystem, reduce the risk of ecosystem 
collapse, and maintain the ecosystem services forest ecosystems provide. Therefore, 
the current research is designed to apply the theories of early warning signals and 
tipping point transitions in forest ecosystems using satellite derived EVI.      
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1.7 Research Objectives   
The aim of this research is to analyze time series of remotely sensed satellite data to 
identify potential critical transition in a forest ecosystem. The specific objectives are:  
 

a. To identify whether the areas with high levels of early warning indicators 
are undergoing critical transitions.  

b. To analyze if generic early warning indicators of tipping points - 
autocorrelation-at-lag-1, variance, and skewness increase before a critical 
transition in a forest ecosystem.  

 
1.8 Research Questions  
This research tries to find answers to the following research questions: 
 

a. Do high values of early warning indicators based on satellite remote 
sensing time series correctly identify areas that have undergone 
transitions?  

b. Does the increase in long term trend in autocorrelation-at-lag-1, skewness 
and variance indicate areas that underwent a sudden transition between 
alternative states?   

 
1.9 Hypothesis  

a. Hypothesis 1: The high values of early warning indicators based on 
satellite remote sensing time series correctly identify areas that have 
undergone transitions.   

b. Hypothesis 2: Increased autocorrelation-at-lag-1, variance, and skewness 
of EVI indicate areas that underwent critical transition.    
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Chapter 2. Data and Methods  
 
2.1 Study Area  

2.1.1 General  

The Northern Jarrah Forest (NJF) is located in the Southwestern Botanical Province 
or bioregion of Western Australia, directly east of Perth (Figure 1) and covers an area 
of 1,127,600 ha (Havel 1975). The NJF stands atop the Darling Plateau with an 
average elevation of 300 m above mean sea level (Williams and Mitchell 2002). The 
NJF lies in the Mediterranean ecosystem of south western Australia which is 
recognized as one of the 10 Australian ecosystems most vulnerable to tipping points 
(Laurance et al. 2011).  
 

 
Figure 2. Map featuring the study area and the North Jarrah Forest. 
Map prepared by: Author  
 

2.1.2 Vegetation and Biodiversity  

The Mediterranean ecosystem of the southwestern bioregion of Australia is a global 
biodiversity hotspots and contains a highly diverse endemic plant diversity (Myers et 
al. 2000). The NJF is a habitat for over 850 vascular plant species, contributing to 
Southwestern Botanical Province being one of the global biodiversity hotspots 
(Mittermeier et al. 2011).  
 
The NJF is classified as medium-open forest with average canopy height of 10-30m 
and canopy cover between 30-70% (Williams and Mitchell 2002). The NJF is an 
evergreen dry sclerophyll forests dominated by Jarrah plant (Euclayptus marginata 
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Donn ex Smith) (Dell and Havel 1989). The NJF has a 4 to 7-meter understory of 
small trees, mainly Alocasuarina fraseriana Miq., Banksia grandis Willd. Persoonia 
spp., and ground cover of woody shrubs and grass-trees Xanthprrhoes perissii Endll., 
Kingia australis R. Br. and the cycad Macrozamia riedlei (Dell and Havel 1989). The 
dominant land uses in the NJF include forest, mining, plantation forestry, water 
production and recreation (Dell and Havel 1989).  
 

2.1.3 Hydroclimatic Characteristics  

The NJF experiences a Mediterranean type of climate characterized by hot and dry 
summers and cool and wet winters (Peel et al. 2007), which has been rapidly changing 
since the 1970s (Suppiah et al. 2007). The precipitation ranges from 700 mm to 1100 
mm (Gentilli 1989). The winter rain, the characteristic of Mediterranean ecosystems, 
occurs from mid-April to late October (mid-autumn to mid-spring) and is usually 
characterized by sudden and heavy showers (Gentilli 1989; Bates et al. 2008). 
Southwestern Australia suffers a seasonal drought that may last from 4 to 7 months 
(Gentilli 1989). The summer droughts are the most intense droughts and they 
frequently occur between January and February although they can affect any months 
from November to April (Gentilli 1989). The region has experienced a pronounced 
precipitation shifts since 1970s (Bates et al. 2008). The mean annual precipitation was 
around 14% lower during 1975 to 2004 compared to mean annual precipitation before 
1975 in contrast to the average temperature that has increased at the rate of 0.15oC per 
decade (Bates et al. 2008). A study done by CSIRO and Bureau of Meteorology have 
indicated that this area is expected to experience even more climatic variability and 
drought than already observed (CSIRO and Bureau of Meteorology 2015), and thus 
that the area will most probably be prone to sudden shifts even more in the future 
(Abbott and Le Maitre 2010). 
 
 
2.2 Methods  
To answer the research questions, the method as presented in Figure 3 is followed. 
The research is divided into three steps a) data collection and preparation (section 
2.2.1) – involving satellite data download, extracting science dataset (SDS) layers, 
projection and preparing AOI vector file b) data processing (section 2.2.2) - including 
data filtering and smoothening and preparation of time series and c) data analysis 
(section 2.2.3) - about testing metric-based generic early warning indicators of critical 
transition and tipping points. The R scripts used to download, process and analyze 
MODIS data are presented in Appendix I.  
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Figure 3. Methodological flow chart explaining research steps. 
 
 
2.2.1 Data Collection and Preparation   
 
2.2.1.1 MODIS Data  
In this study, data from the MODIS are used to detect tipping point transitions in 
forest ecosystem. The MOD13A1 Version 6 product for vegetation index from 2001 
to 2015 was retrieved from online Reverb ECHO- the next generation Earth science 
discovery tool, courtesy of the NASA EOSDIS Land Processes Distributed Active 
Archive Center (LP DAAC), USGS/Earth Resources Observation and Science 
(EROS) Center, Sioux Falls, South Dakota, https://reverb.echo.nasa.gov/reverb/. 
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MOD13A1 is a 16-day composite vegetation index generated using two 8-day 
composite surface reflectance granules (MxD09A1) in the 16-day period and has 500 
meter spatial resolution (LP DAAC 2017). The granule has 12 science dataset (SDS) 
layers. The second SDS layer, i.e. the EVI dataset layer, is used in this study. The EVI 
layers was extracted from 2001 to 2015, generating a time series of 15 years. 
MODIStsp package in R environment (Busetto and Ranghetti 2016) is used for SDS 
extraction. 
 

2.2.1.2 Creating the Mask  

A mask of the NJF area was created based on existing land cover data. The MODIS 
land cover type product MCD12Q1 (LP DAAC 2012) of 500 meter spatial resolution 
retrieved from online Reverb ECHO- the next generation Earth science discovery tool 
from LP DAAC website, https://reverb.echo.nasa.gov/reverb/ was used to create the 
mask. The MCD12Q1 land cover type has 16 HDF Science Data Set Layers, each 
layer characterizing a global land cover classification system. For this study, the 
International Geosphere-Biosphere Programme (IGBP) land cover type classification 
was used for classifying land cover into forest and non-forest categories. First, the 
reclassified land cover map with forest and non-forest areas for NJF was masked out. 
From the masked image, only forest area is extracted and converted into vector – 
which is the area of interest (AOI).    
 
An exploratory analysis was done to identify pixels that are not forest area. A relative 
measure of dispersion based on the 1% and 99% of quantile deviation of EVI values 
are calculated and plotted to identify pixels with too high or too low values (hereafter 
denoted as outlier pixels). The outlier pixels were selected and overlay operation was 
done in ArcGIS to see whether the land cover represented by the pixels are consistent 
or different over time. Once the overlay operation is completed, the output was 
opened in Google Earth to see the type of land cover category the pixel represents. 
Based on higher resolution information from Google Earth, the pixels which are 
found not to be forest (e.g. mining areas, agriculture land, water bodies and small 
forest patches in the agriculture land) were excluded and the AOI is then refined and 
updated.  
 

2.2.2 Data Processing  

Using AOI vector file, each of the MODIS images are masked. The masked EVI 
layers (images) are stacked and a satellite image time series is prepared, so that each 
pixel in the dataset (540 rows*175 columns) contains time series of EVI values. 
Filtered time series is prepared applying Savitzky-Golay filter method (Savitzky and 
Golay 1964). The second-degree polynomial and moving window of five is used to 
filter the time series. The filtering technique is applied to reduce impact of any noise 
resulting from atmospheric distortions or cloud contaminations and to smooth out the 
irregular roughness to see a clearer signal. When applying the Savitzky-Golay filter 
method, considerations are made so that the time series is not over-fitted because it is 
expected that the Savitzky-Golay filter would influence some of the statistics that are 
part of the time series analysis, for example the algorithm does not distinguish 
between natural variations in EVI and atmospheric distortions. It is assumed that the 
pixels affected by atmospheric distortions and cloud contaminations are lifted 
according to the Savitzky-Golay filter method. The Savitzky-Golay filter is based on 
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smoothing of the time series by re-estimating points in a moving window with a least-
squares polynomial fitting procedure (Savitzky and Golay 1964).  
 
All the analyses are implemented in the R software environment v. 3.4.0 (R 
Development Core Team 2013) using functionalities of the raster package for reading, 
writing and manipulating satellite images (Hijmans et al. 2016) and rts package for 
manipulating time series of satellite images (Naimi 2016). 
 
2.2.3 Data Analysis  
The extracted time series of EVI are then used to calculate the early warning 
indicators of tipping points and identify the pixels where early warning indicators are 
flagging a possible signals of tipping points.  

2.2.3.1 Leading Indicators of Tipping Points 

In this study, the approach as suggested in Carpenter and Brock (2006), Dakos et al. 
(2009), Kuehn (2011) and Dakos et al. (2015) is used to generate early warning 
indicators of tipping points or critical transitions using the statistics that measure 
critical slowing down in relevant system variables. Metric-based indicators (Dai et al. 
2012; Dakos et al. 2012) are used to quantify the changes in the statistical properties 
of the EVI time series including temporal autocorrelation at lag-1, standard deviation, 
and skewness.  

2.2.3.2 Metric-based Early Warning Indicators 

Metric-based indicators of critical transition and tipping points are used to analyze the 
changes in the statistical properties of the observed time series – autocorrelation 
(Dakos et al. 2009), variance (Carpenter and Brock 2006; Guttal and Jayaprakash 
2009), and skewness (Guttal and Jayaprakash 2009; Scheffer et al. 2009). Here, we 
analyze the changes in the statistical properties of the observed EVI time series.  
 
The temporal autocorrelation-at-lag-1 is defined as the correlation between EVI 
values at time (t) and (t-1). The autocorrelation can be calculated (Dakos et al. 2008) 
as:    

 
where µ is the mean and δ is the variance of variable zt.  
 
Variance is the second moment around the mean of a distribution and can be 
measured as standard deviation:  

 
or alternatively as the coefficient of variation CV = SD/µ (Carpenter and Brock 
2006).   
 
Skewness is the standardized third moment around the mean of a distribution and can 
be calculated as (Scheffer et al. 2009): 
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Before the metric based early warning indicators are applied and tested, the data is 
detrended and smoothed. Detrending is done to eliminate the effects of non-stationary 
conditions on the leading indicators. Gaussian, linear and loess filters, and first-
differencing are the most commonly detrending approaches (Lenton et al. 2012). In 
this research, the first-differencing detrending approach is used. The first difference of 
the EVI time series is the series of changes from one period to the next i.e. 
the difference of EVI values of one moment and the preceding moment along the time 
series is the first difference. If et denotes the value of the time series EVI at period t, 
then the first difference of EVI at period t is equal to et-et-1. The detrending of the time 
series is done to reduce the longer-term dynamics, so that any anomalies are better 
captured by the analysis.  
 
The size of the moving window might influence the long-term trend in the indicators 
of tipping points. A small moving window can lead to a more noisy time series while 
a large moving window can smoothen the fluctuations that may be indicative of a 
critical transition (Alibakhshi et al. 2017). A moving window of half the size of the 
time series is used to identify critical transitions. Examples include identifying a 
critical transition in a wetland ecosystem (Alibakhshi et al. 2017) and climate change 
(Dakos et al. 2008). Also in this study, the early warning indicators of critical 
transition and tipping points are calculated in a moving window of half of the length 
of the time series and are assessed for any unusual increase over time with the first-
differencing detrending approach.    
  
The top 1% quantile of all three leading indicators at a given moment (the last year we 
have data) are identified. The pixels that show long term increasing trend in the 
statistical properties (autocorrelation-at-lag-1, standard deviation and hence variance, 
skewness) are identified as potential tipping points. The identified pixels are further 
analyzed on the behavior of the EVI time series. It is expected that the statistical 
properties of the observed time series show the evidences of critical transitions and 
tipping point, i.e. a long term increasing trend in the statistical properties.   
 
All the analyses are implemented in the R software environment v. 3.4.0 (R 
Development Core Team 2013) using functionalities of the early warnings package 
for calculating generic early warning indicators and identifying potential tipping 
points and critical transitions (Dakos 2014).    
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Chapter 3. Results 
 
3.1 Potential Critical Transitions  
The analysis started examining the statistical changes in time series of EVI. The time 
series of a subset of the top 1% quantile of all three leading indicators - 
autocorrelation-at-lag-1, standard deviation and skewness are plotted. Plotting time 
series of all pixels would produce overlapping lines, which makes it difficult to see 
trends in the time series.  A subset is plotted to see the visible trends in the time series.  
 
The long-term trends in time series for autocorrelation-at-lag-1 (Figure 4), standard 
deviation (Figure 5) and skewness (Figure 6) are shown below. Long term increasing 
trends are clearly visible in autocorrelation-at-lag-1 and standard deviation, but not in 
skewness where different behavior is observed (Figure 6). In skewness, some pixels 
show a gradual increase whereas some pixels show an abrupt increase in 2009, 2013 
and 2014.  

 
Figure 4. Long term trends of autocorrelation-at-lag-1 of the Savitzky-Golay filtered EVI time 
series.   
 

 
Figure 5. Long term trends of standard deviation of the Savitzky-Golay filtered EVI time 
series.   
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It is found that the overall behavior of the autocorrelation-at-lag-1 and the standard 
deviation time series was robust against first-difference detrending and moving 
window of half of the length of the time series. However, skewness is found to be 
very sensitive to noise (Figure 6) and shows large jumps in the time series, which 
might be the time when a sudden shift might have occurred.   
 

 
Figure 6. Long term trends of skewness of the Savitzky-Golay filtered EVI time series.   
 
Further analysis is based on the long-term trends in time series of autocorrelation-at-
lag-1, standard deviation and skewness. The pixels with long term increasing trend in 
autocorrelation-at-lag-1, standard deviation and skewness are considered as outliers 
(Figure 7) which might be the ‘potential tipping point’ areas. The identified potential 
tipping point areas are shown in Figure 7.  
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Figure 7. Potential tipping point areas in the NJF forest ecosystem as indicated by all 
three metric-based early warning indicators.   
 
The pixels with a long term increasing trend in early warning indicators are expected 
to be less resilient and more sensitive to disturbances. So, a less resilient pixel would 
be more likely to collapse when a disturbance occurs than a resilient pixel (without a 
trend in early warning indicators). Figure 8 shows all the identified potential tipping 
point areas in Google Earth.  
 
For the pixels with strong trends in autocorrelation-at-lag-1 or standard deviation or 
skewness, changes in land cover (and possible collapse of forest) were monitored 
using imagery from Google Earth at different time. The pixels with the strongest 
trends in the leading indicators did not corresponded to collapsing forests, or forests 
suffering from dieback. Instead, many of the identified pixels (around 83% of the total 
identified pixels) are mining areas or the areas close to mining areas or on the edge of 
forest-agricultural areas, which might have been largely influenced by human 
activities (Figure 8).  
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Figure 8. Location of potential tipping points as observed in Google Earth. 
 
From the Figure 8, we can see that many of the identified potential tipping point areas 
are on the edges between forest and agricultural land and susceptible to human 
interferences.  
 
Figure 9, Figure 10 and Figure 11 show the expansion of mining activities and 
subsequent changes in the forest. If we compare the Google Earth images for 2001, 
2010 and 2015, we can see a large increase in the mining areas, and subsequent forest 
loss. In Figure 11 (2015), we can observe that the lost forest areas due to mining in 
2001 (Figure 9) are recovered. We can also see the increased forest loss due to mining 
in 2015 compared to 2001 and 2010. The continuous expansion of mining areas has 
lead the change in forest area. This might be one reason why we see long term 
increasing trends of early warning indicators.  
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Figure 9. Potential tipping points and mining areas in the NJF in 2001 as seen in 
Google Earth.  
 

 
Figure 10. Potential tipping points and mining areas in the NJF in 2010 as seen in 
Google Earth.  
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Figure 11. Potential tipping points and mining areas in the NJF in 2015 as seen in 
Google Earth.  
 
Around 17% of the pixels that are identified as potential tipping points are in the 
middle of the forest. It is expected that those pixels (Figure 12) were not biased by 
mining or other land use interferences. Those pixels are monitored using imagery 
from Google Earth from 2001 to 2015. The imagery did not show any change in forest 
cover, i.e. no collapse is recorded on those pixels. Google Earth view for the year 
2001, 2005, 2010 and 2015 are shown in the Figure 12, Figure 13, Figure 14 and 
Figure 15.  
 

 
Figure 12. Overlay of identified potential tipping point in the middle of forest with 
Google Earth image from 2001.  
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Figure 13. Overlay of potential tipping point areas in the middle of forest with Google 
Earth image from 2005. 
 
 

 
Figure 14. Overlay of potential tipping points in the middle of forest with Google 
Earth image from 2010.  
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Figure 15. Overlay of potential tipping points in the middle of forest with Google 
Earth image from 2015. 
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Chapter 4. Discussion 
 
This research assessed the use of remote sensing derived ecosystem variables to 
measure the state of the ecosystem and identify potential critical transitions and 
tipping points in the NJF forest ecosystem. Due to high climatic variability and 
drought occurrences in the region, the NJF ecosystem is getting increasingly dry, and 
reports of forest canopy collapse in the region have been recorded in the past 
(Matusick et al. 2013). Similarly, the NJF forest ecosystem was identified as one of 
the most vulnerable Australian ecosystem approaching tipping point (Laurance et al. 
2011). This finding encouraged this study to attempt to identify potential critical 
transitions and tipping points and test whether the recorded forest collapses could be 
identified using remote sensing data. Considering that the indicator’s behavior before 
a critical transition is straightforward and promising to assess in real situations 
(Scheffer et al. 2009; Dakos et al. 2012), it was expected that generic early warning 
indicators of tipping points and critical transitions would be detected in the NJF 
ecosystem. The study identified potential critical transitions and tipping point areas, 
and quantified early warning indicators for the NJF forest ecosystem but the strongest 
signals did not flag any forest that showed any sights of collapse or an impending 
shift. Rather, it largely identified the areas that were mined in the past and are 
susceptible to human interference and land use change. These detected signals are 
likely to be false alarms, given that most the identified pixels cover mining and 
agricultural areas. Also, the identified pixels in the middle of the forest did not show 
evidence of forest collapse when monitored using Google Earth images from different 
years.   
 
Although Scheffer et al. (2009) and Dakos et al. (2012) mentioned detecting early 
warning signals of critical transitions in time series data is straightforward and 
promising to assess in real situations, the current study identified potential tipping 
point areas but failed to detect changes and true instabilities in the NJF forest 
ecosystem. There might be several possible reasons why the results indicated a non-
tipping forest ecosystem.  
 
CSD indicators are sensitive to false alarms  
CSD based early warning indicators are promising tools for detecting critical 
transitions due to their generic nature (Scheffer et al. 2009). Therefore, it is tempting 
to think that before impending transitions in an ecosystem, there happens sudden rise 
in statistical characteristics like temporal autocorrelation, variance and skewness that 
indicate an approaching transition (Dakos et al. 2015). However, not all critical 
transitions are expected to exhibit such changes in the statistical pattern of the time 
series of their measured variables (Scheffer et al. 2001; DeYoung et al. 2008; 
Boettiger et al. 2013). They can also reflect environmental stochasticity and give false 
alarms that the ecosystem is approaching a tipping point (Dakos et al. 2015).  
 
Our result found long-term increasing trends in the statistical properties 
(autocorrelation-at-lag-1, standard deviation and skewness) in EVI time series. There 
might be several reasons for this. According to Dakos et al. (2015), the increasing 
trends in autocorrelation-at-lag-1, variance and skewness can be also observed in 
ecosystems with high magnitude of environmental stochasticity or chaotic dynamics. 
Since the NJF forest ecosystem is suffering extreme and persistent reductions in 
precipitation, increase in temperature, heat waves (CSIRO and Bureau of 
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Meteorology 2015) and fire events (Evans and Lyons 2013) frequently in the past 
decade, this might have led the increasing positive trends in autocorrelation-at-lag-1, 
standard deviation and skewness. This trend might have reflected the changes in the 
patterns of the environmental stochasticity rather than a truly approaching critical 
transition. Therefore, it can be said that environmental and climatic variability might 
have triggered the rise in indicators to act as a source of false alarm of impending 
critical transition or tipping point. This might be the reason why the long-term trends 
are observed in the early warning indicators, and why they are not yet able to be 
interpreted as early warning indicator of tipping point.  
 
The forest is resilient and not yet close to tipping point 
Forests in MTF ecosystems have evolved with extreme variabilities, disturbances and 
fluctuations in temperature and precipitation (Roberts et al. 2001). This resulted in the 
forests developing an unique adaptation and survival capacities (James 1984). 
Matusick et al. (2013) reported severe crown die back and canopy collapse in the NJF 
corresponding with record dry and heat conditions in 2010/11 and Coleoptera 
infestations. Regardless of the collapse, the forest went through a period of regrowth 
and recovery, and it was found that 52% (± 3.6%) of the trees that showed sudden and 
unprecedented collapse during June and July 2010/2011 had re-sprouted in October 
and November 2011 (Matusick et al. 2013). From this, we can understand the ability 
of the NJF to bounce back and recover from disturbances. In other terms, the NJF 
forests resisted the changes and persists with minimal transformation induced by 
climatic variabilities and fire. The dominant vegetation in the NJF – the eucalypts, are 
not only fire resistant, but are also self-sustaining and have the capacity to regenerate 
abundantly after fire (Mount 2013). Ruthrof et al. (2015) also found that Northern 
Jarrah Forest of southwestern Australia has resistance and resilience mechanisms to 
cope with drought and external environmental variabilities. The ability of trees to 
bounce back from disturbances by substantial regrowth and re-sprouting of the 
vegetation indicate that the NJF ecosystem is still resilient. The regrowth and re-
sprouting also suggests that the system was recovering from the collapse. However, 
the question here is how long the resilience can be maintained by the forest when 
extreme climatic variabilities and environmental conditions continue exerting pressure 
for a longer time. There might be a point where the forests tip. A longer monitoring of 
external environmental conditions (e.g. drought, rainfall and fire) and forest 
regeneration might prove useful to know the ability of forest to resist the changes.     
 
When a system is closer to a tipping point, it results in a loss of resilience and even 
small perturbations can invoke a shift to an alternative, undesirable and contrasting 
state (Scheffer et al. 2001; Scheffer 2009). In contrast, the NJF forest is resilient to 
droughts, climatic variability and external environmental conditions. Due to this, we 
cannot yet expect the NJF ecosystem to shift abruptly from one state to another 
unforeseen, undesirable and contrasting states with a relatively small change in 
external condition. This does not correspond with the theoretical definitions of critical 
transition and tipping points – which is defined as the ecological threshold beyond 
which a relatively small change in external condition may cause the system to shift 
abruptly from one state to another unforeseen, undesirable and contrasting states, 
which may be largely irreversible (Scheffer et al. 2009; Bestelmeyer et al. 2011; 
Laurance et al. 2011). So, the possible reason for not being able to detect critical 
transitions and tipping points is that the forest is still resilient, and the environmental 
variabilities and external conditions are not strong enough to easily trigger the system 



 

25 
 

to shift to another state. This explains why the result showed signals of critical 
slowing down (increases in autocorrelation-at-lag-1, standard deviation and skewness) 
at some locations, but these were not corresponding to the forest areas.  
 
Inclusion of ecosystem variables that represent ecosystem more closely   
The generic early warning indicators of critical transition and tipping point may fail to 
announce a true transition if a wrong variable is measured (Dakos et al. 2015). It is 
expected that CSD affects a system as a whole but all ecosystem variables are not 
equally sensitive to approaching critical transitions, and hence all ecosystem variables 
may not exhibit the generic early warning indicators of impending critical transitions 
(Carpenter et al. 2008; Batt et al. 2013). In this study, we used EVI as an ecosystem 
variable to identify critical transition and tipping points. Time series of vegetation 
indices are mostly used to quantify map and monitor vegetation dynamics, drought, 
phenology, change detection and biophysical interpretations. We assumed that EVI 
time series would effectively characterize the process and dynamics that NJF is 
undergoing. The analysis of EVI time series quantified early warning indicators for 
the NJF forest ecosystem but the strongest signals did not flag any forest that showed 
any sights of collapse or an impending shift while monitored using Google Earth 
images from different years. Analysis of ecosystem variables that represent NJF 
ecosystem more closely might be required to measure the variabilities and changes the 
forest is undergoing. For forest ecosystems, analysis of direct ecosystem variables like 
biomass, NPP in addition to vegetation indices (which are used as proxy for biomass 
or greenness) might prove useful, because changes and oscillations in these ecosystem 
variables for e.g. GPP indicate the health of an ecosystem (Brouwers and Coops 
2016), and could help to identify the true changes in the ecosystem state.  
 
One limitation in this study might be the resolution and frequency of the data. For 
example, satellite data with high spatial and temporal resolution are recommended as 
the challenges in statistical detection of leading indicators can be improved with high 
resolution and high frequency data (Scheffer et al. 2009; Carpenter et al. 2011). One 
promising option would be an airborne light detection and ranging (LIDAR) dataset 
that may provide a high resolution and high frequency data of the desired ecosystem 
variables, for example biomass. LIDAR can be used to assess forest biomass. 
Biomass is a more direct ecosystem state variable than the enhanced vegetation index, 
which is a measure of greenness. Modelling individual trees, crown structure and area 
using LIDAR could yield more accurate results in terms of trend in biomass and 
spatial indication where the biomass has declined, increased or remained stable. A 
data fusion approach can be used for estimating biomass using space borne LIDAR 
with synthetic aperture radar (SAR) and passive optical image combinations for 
calculating more accurate estimation of biomass (Montesano et al. 2013). Considering 
this superiority, time series of LIDAR data could provide an opportunity to detect 
spatial and temporal indicators, and increased accuracy in detecting critical transitions 
and tipping points. However, it requires expensive tools and high data storage 
capacity. Another option would be using very high spatial and temporal resolution 
satellite imagery.  
 
Understanding thresholds and baseline values  
Most of the indicators to detect critical transitions and tipping points have been 
derived from simulated data, simple models and tested through controlled 
experiments (Scheffer et al. 2009). Although empirical evidence support the 
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recognition of the science and theory of tipping point, demonstration of these 
approaches in real ecosystems has been very limited (Scheffer et al. 2009; Dai et al. 
2012; Seekell et al. 2012). Due to this challenge, it is argued that detecting critical 
transitions and tipping points in complex real ecosystems is very difficult and not 
straight forward, and may not work in complex real ecosystems (Eslami-Andergoli et 
al. 2014).  
 
The recent empirical methodological developments and metric based indicators 
lacked explanation on the baseline values that could indicate whether a transition is 
approaching. Though the baseline measurement and threshold values depend on the 
nature of the system and the variables that are measured, there is no absolute value or 
threshold defined for ecosystems which if crossed signify a tipping ecosystem. This 
limits the understanding on how far the system has transformed compared to its initial 
state. The results from this study highlights the limitations in the application and 
interpretation of the early warning indicators to understand regime shifts in complex 
and dynamic ecosystems like forest.  This is a huge challenge to test and apply the 
generic early warning signals of impending critical transitions and tipping points 
indicators in real-world time series. With regard to the challenges, the studies could 
be done in explaining the thresholds in baseline values for tipping points. The 
thresholds and baseline values might be determined in retrospect by looking at the 
signals for areas that have tipped in the past. 
 
Despite the strong theoretical underpinning and increasing number of empirical 
studies and demonstrations, this research in contrast has shown that metric based early 
warning indicators are not a panacea for anticipating critical transitions and tipping 
points in forest ecosystem. There are evidences that generic early warning indicators 
of CSD have largely failed to detect the known transitions (Lindegren et al. 2012) 
though positive results have been derived from testing early warning indicators 
(Beaugrand et al. 2008; Litzow et al. 2008; Hewitt and Thrush 2010). The current 
study also shows some positive indicators, possibly as false alarms. The theory on 
tipping points in ecosystems has attracted quite a lot of attentions and the knowledge 
and evidences on understanding the dynamics and complexities in tipping points 
detection are gradually increasing. However, the understanding and quantification of 
critical transitions and tipping points in real-world ecosystems remains challenging. 
One of the possible approach to fill the gap would be integrating observation based 
approaches (earth observation and remote sensing) with a process based approach 
(dynamic vegetation models) and validate the results with ground observation data. 
Using this integrated approach will allow to understand the complex interplay of 
drivers, triggers, or other processes of critical transition and tipping points and 
provide insights in the observed forest dynamics and patterns. 
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Chapter 5. Conclusion 
 
The study attempted to increase the empirical base of the early warning indicators of 
critical transition and tipping points by using time series of EVI derived from MODIS 
satellite images. The time series of EVI are used to generate early warning indicators 
of critical transitions. Metric-based indicators of critical transition and tipping points 
(autocorrelation-at-lag-1, standard deviation and skewness) are used to quantify the 
changes in the statistical properties of the observed time series. The study identified 
potential critical transition and tipping point areas, and quantified early warning 
indicators for the NJF forest ecosystem but the high values of early warning indicators 
did not flag forest that showed any sights of an impending shift. In contrast, it largely 
identified areas that were mined in the past and are susceptible to human interferences 
and land use change. Some forest pixels were also identified but it did not show any 
collapse while monitored using imagery from Google Earth at different times. There 
might be several possible reasons why the results indicated a non-tipping forest. The 
possible false indication of tipping points was found possibly due to the 
environmental and climatic variability that might have triggered the rise in indicators 
to act as a source of false alarm of impending critical transition or tipping point, but 
alternatively, it could also be that NJF forest ecosystem is not yet close to tipping 
points i.e. forest is still resilient. The results show that detecting critical transitions 
and tipping points in real-world ecosystems may not be as promising and 
straightforward as suggested by model simulations.  
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