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Abstract 
The increasing demand for palm oil is one of the leading causes of deforestation in South-East 

Asia. The expansion of oil palm plantations has led to serious environmental concerns, such as 

land degradation and loss of biodiversity. These concerns gave rise to a demand for increased 

sustainability and transparency in the industry. However, due to poor governance this task is 

particularly challenging regarding smallholder oil palm plantations (SHOPPs). In recent years, 

several organizations have emerged to provide sustainability certifications to farmers and farmer 

cooperatives. To ascertain compliance with sustainability standards, certification organizations 

often rely on remote sensing tools for monitoring changes in land cover. However, detecting 

conversions related to SHOPPs in the tropics is challenging since high resolution imagery is 

expensive and comes at the cost of the temporal resolution necessary for time-series based change 

detection. While medium resolution imagery has been proven useful in detecting smallholders, 

missing data due to cloud cover remains an issue. There is consequently a need for feasible and 

economically viable methods. The purpose of this study is to detect the timing and location of 

deforestation related to SHOPP establishment or expansion, based on freely available data and 

open source software. For this study, multi-temporal Landsat TM/ETM+/OLI NDMI time-series 

data covering the years 2000 – 2016 for the Riau Province in Indonesia was used.  

The detection methods of this study are based on the Bfast Monitor near real-time change detection 

method. To employ Bfast Monitor for historical change detection, it was applied iteratively to the 

time-series in a sequential manner, whereby for each iteration the monitoring period was limited 

to one year, from which the breakpoint of the time-series was detected. Decision rules were applied 

on the outputs of each iteration, so the most likely breakpoints were obtained. To select the most 

relevant breakpoint per location in the time series, two different approaches are tested: NDMI 

Threshold and ΔNDMI. NDMI Threshold defines a threshold, below which, a breakpoint is 

considered more likely to be true. ΔNDMI takes advantage of the difference between the land 

cover present before and after the breakpoint, to determine the likelihood of true change.  The 

results of the spatially applied methods show a similar performance based on their overall 

accuracies, 74.6% and 76.3%, respectively, for all types of land cover change. In the category of 

deforestation alone, the methods achieved the overall accuracy of 92.4% and 88.3%, respectively. 

A probability map of the study area was constructed from the ΔNDMI method, whereby larger 

values for ΔNDMI were related to higher probabilities of correctly-predicted land cover change, 

which was assessed from multi-temporal high-resolution Google Earth imagery. The lowest 

ΔNDMI value (i.e., 0.0) still related to a relatively large probability of ~73%, indicating that Bfast 

Monitor could effectively limit the detection of breakpoint not related to land cover change. 

Both presented methods achieved similar accuracies, however comparing the advantages and 

limitations of each method, it was concluded that the ΔNDMI method is the more promising tool 

for use in the workflow of certification of smallholder plantations. The method provides an initial 

framework to assess land cover change and its timing, which has potential to be applied 

automatically over large areas. However further studies are necessary before a complete integration 

into certification procedures is possible. Priority needs to be given to testing the robustness of the 

method at different locations in the tropical region, as well as at larger scales.  



 

Keywords: Smallholder oil palm plantations, sustainability certification, time-series analysis, land cover change detection, 

Bfast Monitor 
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1 Introduction 
 

1.1 Background  

1.1.1 Oil palm production and certification 

The production of palm oil has expanded significantly in recent times. The oil palm industry is the most 

profitable agricultural sector in the tropics and the global demand for palm oil is expected to increase as 

the global population increases (Sayer et al., 2012). Palm oil has a wide range of applications ranging from 

food and cosmetics to biofuel. It has become especially attractive as a potential renewable energy source 

due to its low production costs and high yields (Tan et al., 2009). 

The production of palm oil takes place in regions such as South America, Africa and South-East Asia, 

which provide the humid, tropical climate suitable for oil palm cultivation (Verheye, 2010). Since 2006, 

Indonesia has taken the place as the world’s leading producer of palm oil  (Block, 2013), and oil palm is 

now the main contributor to Indonesia’s gross domestic product in the agricultural sector (Nurdiana et 

al., 2016). Furthermore, according to the Indonesian government, the extent of oil palm plantations is 

expected to increase from approx. 7 million ha in 2009 to 10-12 million ha by 2020 (Bahroeny, 2009). 

Projections based on provincial plans for Indonesia estimates that the increase in acreage will be 10.7% 

annually until 2020 (Wicke et al., 2011). 

The impacts of the palm oil industry are extensive in the economic, social and environmental sectors of 

Indonesia. According to Sayer et al., (2012), the increasing size of the industry brings economic value to 

the country, but with complex consequences for the local population. While an increase in production 

brings more employment opportunities in large companies, the local rural population often does not 

benefit from this, since the companies prefer to employ foreign work force with the proper work 

experience (Sayer et al., 2012).  

As a solution, Sayer et al. (2012) concluded that adopting smallholder plantations can be a viable way of 

income for many rural farmers, to improve their livelihoods and reduce poverty. Local farmers are 

therefore encouraged to develop Smallholder Oil Palm Plantations (SHOPPs) (Rist et al., (2010), and due 

to poor governance, farmers now manage the establishment and expansion of their plantations 

independently (Euler et al., 2015).  

Other side effects of the expanding oil palm industry consist of serious negative consequences for the 

environment, including deforestation, land degradation, forest fires, loss of biodiversity and peatland 

destruction (Tan et al., 2009). As the demand for palm oil increases, so does the demand for arable land 

to expand oil palm production. While studies show that oil palm expansion can be sustainable (Wicke et 

al., 2011), the decisions on where to establish plantations are based on economic rather than 

environmental concern (Sayer et al., 2012). According to Miettinen et al., (2012), South East Asia has 

experienced a significant decline in peatland areas due to extensive deforestation. In peninsular Malaysia, 

Sumatra and Borneo, the extent of peat swamp forests has been reduced from 76 % in 1990 to 29 % in 
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2015 and 73 % of the industrial areas are accounted for by oil palm plantations in 2015 (Miettinen et al., 

2016). The authors predict that by 2030, all peatlands will disappear from the region if deforestation 

continues at the current rate.  

Deforestation of peatlands caused by oil palm plantation establishment is a serious global environmental 

issue as it results in substantial amounts of carbon being released to the atmosphere through peatland 

fires and peat oxidation as a result of drainage, a common practice in oil palm cultivation (Koh et al., 

2011; Nurdiana et al., 2016; Uryu et al., 2008). Economically viable methods of monitoring SHOPP 

developments are therefore essential to ensure environmental and social sustainability (Environmental 

Investigation Agency, 2014). The Indonesian government and NGOs agree that mapping the 

development of smallholder plantations and ensuring public availability of data are the keys to ensure 

sustainability of the Indonesian palm oil industry (Lake, 2016).  

Several certification organizations (e.g. ISCC, RSPO) assists in monitoring the production chain, to 

uphold the standards of sustainability in the sector, according to defined criteria. The importance of 

certification in the industry is supported by  Barry et al. (2012), who showed that certification schemes 

have a positive influence on both social and environmental practices. Among others, ISCC (International 

Sustainability and Carbon Certification) provides certification systems to the palm oil industry and 

specializes in certifying sustainable palm oil in the biofuels-industry. As an independent third party 

certification system, ISCC ensures sustainability on different levels, such as climate change mitigation and 

the protection of biodiversity, the environment and human rights (ISCC, 2016). According to the report 

on sustainability requirements formulated by ISCC, the production of biomass for biofuel needs to 

comply with certain criteria to qualify for the ISCC certificate (ISCC, 2011). To confirm that sustainability 

requirements are met, the location, timing and extent of land cover conversions into oil palm plantations 

need to be monitored. According to ISCC’s sustainability requirements, oil palm cannot be produced on 

land with a high biodiversity value or high carbon stock. Oil palm plantations cannot be certified if they 

were established on peatlands before January 2008, the cut-off date defined by ISCC (ISCC, 2011). 

 

1.1.2 Remote sensing application: land cover change detection 

Remote sensing has been used extensively and successfully to monitor the spatial distribution of crop 

lands and other vegetation land covers (Xie et al., 2008). Previous studies related to oil palm were often 

focused on detecting industrial plantations ( > 50 ha) with different classification approaches and data 

sources (e. g. Nooni et al., 2014; Petersen et al., 2016). In the often-cloudy tropical regions, multiple 

observations are required to obtain useful and timely information on land cover changes (Carlson et al., 

2012; Miettinen et al., 2012) and commonly-used optical data sources therefore include multi-temporal 

MODIS (Koh et al., 2011), and Landsat imagery (Gunarso et al., 2013).  

Several studies have been conducted to determine land cover changes related to large-scale oil palm 

plantations, mainly by applying bi-temporal optical imagery and applying a post – classification change 

detection approach (Darma et al, 2015; Gunarso et al., 2013; Ramdani & Hino, 2013). Others have 

incorporated time-series analysis based on Vegetation Indices (VI) in order to detect the timing of land 

cover disturbances (e.g. Broich et al., 2011; DeVries et al., 2015; Gutiérrez-Vélez & DeFries, 2013). The 

work of GRAS (Global Risk Assessment Services) has shown time-series plots based on MODIS derived 
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EVI (Enhanced Vegetation Index) to be efficient in detecting large scale changes in oil palm plantation 

(GRAS - Global Risk Assesment Services, 2015).  

Limited research has been conducted related to land cover conversions caused by the establishment  of 

SHOPPs, as studies often focus on the economic and social aspects of smallholder development (e.g. 

Rist et al., 2010; Sayer et al., 2012). SHOPPs are defined as covering less than 50 ha (RSPO, 2016) and 

can therefore be challenging to detect with remotely sensed data. The frequent cloud coverage in tropical 

regions complicates this task further (Asner, 2001). Remotely sensed data with a high temporal resolution 

(e. g. MODIS and Landsat) is widely available, but comes at the cost of spatial resolution. Successful 

approaches so far has been few and diverse. Miettinen et al. (2016) included SHOPPs in their land cover 

distribution studies of South-East Asia using multi-temporal Landsat imagery. Gutiérrez-Vélez & 

DeFries (2013) used Landsat combined with SAR imagery to quantify the areas converted into SHOPPs 

in South-America, while Yayusman & Nagasawa (2015) relied on SAR imagery alone to detect SHOPPs 

in Indonesia. DeVries et al. (2015) used the Bfast Monitor method for time-series based, small-scale 

disturbance detection of tropical forests in Ethiopia. 

 

1.1.3 Theoretical background: Breaks For Additive Season and Trend 

This study implements the Bfast (Breaks For Additive Season And Trend) Monitor near real-time land 

cover change detection method, which was developed by Verbesselt et al. (2012), as an extended 

approach based on the Bfast-algorithm (Verbesselt et al., 2010a). The Bfast-algorithm has been used in 

different studies for the purpose of change detection or land cover monitoring in various locations (e.g. 

DeVries et al., 2015; Hamunyela et al., 2016; Schultz et al., 2016) and was created as a generic, data-driven 

change detection method for time-series analysis. Bfast generally works by decomposing the time-series 

into trend, seasonal and remainder components and has proven robust in handling datasets affected by 

outliers and data gaps (i.e. missing data) (Verbesselt et al., 2012). According to Verbesselt et al., (2010b), 

the method was constructed to handle the three types of change, characteristic of terrestrial plant 

ecosystems: 1) phenological change, 2) abrupt change and 3) gradual change.  

Bfast Monitor was originally developed to provide a monitoring system for newly acquired satellite data 

(Verbesselt et al., 2012), nonetheless it has also been proven a robust method for historical change 

detection (DeVries et al., 2015a, 2015b; Dutrieux et al., 2016). The method works by modelling the 

identified stable historical variation of the time-series. According to Verbesselt et al. (2012), this makes 

detection of structural land cover change possible by identifying when the model is no longer stable for 

new data. To implement Bfast Monitor, some concepts need to be described, which are summarized in 

Table 1.  
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Table 1: Concepts used in implementing Bfast Monitor. 

Concepts Description 

Breakpoint 
 

Identified moment of land cover change 

Historical-period Time-period before the breakpoint, used to model the stable vegetation 
dynamics 

Magnitude The magnitude of the breakpoint. Defined as the median of the residuals 
in the monitoring-period 

Monitoring-period 
 

Time-period for which the algorithm looks for a breakpoint in the data 

Start Date 
 

Start date of the monitoring-period 

 

First step of employing the method, is to define the historical-period and the monitoring-period. The 

historical-period describes the stable time-period of a time-series (i.e. with stable data variation) of 

previously acquired data. An example is given in Figure 1, where the historical-period is shown to contain 

the historical data and stable history. A regression model of the trend and seasonal components of the 

time-series, is fit to the data points of the historical-period to model the vegetation dynamics of the stable 

period (Verbesselt et al., 2012). As described by Verbesselt et al. (2012), the start of the stable historical-

period is identified by expert-knowledge or automatically. The end of the historical-period is defined by 

the start of the monitoring-period, set by the “Start Date”, as illustrated in Figure 1. The monitoring-

period defines the time-period of newly acquired data, where the moment of land cover change is 

detected, i.e. it is the period being monitored for disturbances. The “Start Date” (start of monitoring-

period) is set by the timing of newly acquired data or by expert-knowledge, since it should be set before 

any likely disturbance, otherwise the disturbance will not be detected in the monitoring-period. The 

moment of disturbance in land cover change (labelled as “breakpoint”, figure 1) is detected in the 

monitoring-period, when a structural change is registered in the new data, compared to the stable trend 

and seasonal components modelled in the historical-period (Verbesselt et al., 2012). A Magnitude is 

assigned the detected breakpoint by finding the median of the residuals of the modelled values and the 

new data of the monitoring-period (DeVries et al., 2015a).  

Several freely available tools were created by Dutrieux et al. (2017) based on Bfast Monitor in the open 

source software R. The tools were made for a spatial implementation of Bfast Monitor, and the main 

functions are Bfm Pixel and Bfm Spatial, which are applied to a single pixel or to every pixel of a raster, 

respectively. A breakpoint (if any) and the Magnitude is reported for Bfm Pixel, and a raster stack 

consisting of a breakpoint layer and a Magnitude layers is the result of Bfm Spatial. The breakpoint(s) 

can be filtered by applying a Magnitude threshold to avoid false breakpoints (Dutrieux et al., 2017), 

however the threshold is highly dependent on the study area and should be set based on expert-

knowledge or ground truth data (DeVries et al., 2015).  
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Figure 1: Illustration of the concepts of Bfast Monitor, modified  from Dutrieux et al. (2017). The illustration is based on a single pixel 
analysis with Landsat NDVI. The concepts of historical-period and monitoring-period are illustrated above the figure, with arrows 
indicating their location along the time-line (i.e. 2000 – 2013). The historical-period includes the historical data and stable history 
(black line with green points). The monitoring-period includes the newly acquired data (red line and points) and the detected 
breakpoint (yellow circle), with the timing of the detected breakpoint, illustrated by the red dashed line. The end of the historical-
period and start of the monitoring period is defined by the “Start Date”, illustrated by a black arrow and black dashed line. 
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1.2 Problem statement 

The role of smallholder plantations in the oil palm industry in Indonesia is increasing and likewise are the 

negative impacts on the environment and the social sector. Monitoring of SHOPPs is essential for 

certification organizations to ensure that sustainability criteria are met, since reliable information is not 

easily available. This supports the need for a feasible, economically viable land cover change detection 

method, which is applicable for historical and near real-time detection, without the need for method-

specific expert-knowledge.  

In this study, a novel automated land cover change detection approach is presented, which provide the 

benefits of freely available data and open source software, and does not require method-specific expert-

knowledge. The approach relies on Bfast Monitor, which has previously been used for historical, small-

scale disturbance detection in tropical areas (DeVries et al., 2015). The term expert-knowledge, in the 

context of this study, is defined as the knowledge needed to set the parameters of Bfast Monitor, which 

required in-depth knowledge of the study area or time-series analysis. The goal of this study is to provide 

a beneficial tool to incorporate in a certification framework, which is not restricted by the study area of 

this study, but is applicable throughout the humid, tropical regions where oil palm is cultivated.  

 

1.3 Objective and research questions 

The main objective of this study is to detect the extent and timing of land cover conversion related to 

smallholder oil palm plantation establishment or expansion from multi-temporal Landsat imagery.  

Based on the main objective, the following research questions are defined: 

1. Which vegetation index derived from Landsat shows the strongest temporal response to known 

land cover conversions related to smallholder oil palm plantation establishment? 

 

2. How can the approximate location and timing of these conversions be automatically extracted 

from Landsat vegetation index time series? 

 

3. Can the probability of land cover change be mapped for areas identified as potential change areas? 
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2 Study Area and Data 

2.1 Study area: Riau Province, Sumatra, Indonesia 

In South East Asia, the largest area of oil palm plantations established on peatlands are found in Sumatra, 

Indonesia (Gunarso et al., 2013). One of the main oil palm producing areas on Sumatra is located in the 

Riau Province. Sumatra is also considered to hold the largest carbon storage in Indonesia as well as being 

home to several endangered species that are dependent on the natural forests in the area (Uryu et al., 

2008). According to WWF (World Wildlife Fund) Indonesia, natural forest cover in the province has 

been reduced by 65 % since the 1980’s up to 2008. The Province has one of the highest deforestation 

rates in Indonesia and has lost more peat swamp forest than any other region (Koh et al., 2011). 

The Riau Province has a humid, tropical climate with rainfall of approx. 1000-3000 mm on average, per 

year, and the climate is characterized by a wet and dry season, with the wet season covering September – 

March (Ramdani & Hino, 2013).  

 

2.2 Data  

Landsat 4/5 TM, 7 ETM+ and 8 OLI imagery was downloaded from USGS for January 1st 2000 – 

October 15th 2016. Scenes with a maximum of 80 % cloud cover were selected at Level 1TP processing 

level (i. e. the highest quality products, suitable for time-series analysis at pixel level (USGS, 2017)), 

resulting in a total of 224 scenes. The images were cropped and resampled by the supplier, USGS.  After 

downloading the datasets, clouds and cloud shadows were masked using the CFMask supplied with the 

data (USGS, 2017). Next, the masked images were stacked and are then ready for processing. Ancillary 

land cover maps of Indonesia were provided by WWF Indonesia and GRAS for 2007 and 2009, 

respectively.  

The following three Landsat datasets were downloaded as final VI products: Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Moisture 

Index (NDMI). The NDVI and EVI are calculated from the Near Infra-Red (NIR) and Red (R) bands 

with the following equations:  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

 

𝐸𝑉𝐼 = 𝐺 ∗ (
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅 − 𝐶2 ∗ 𝐵 + 𝐿
) 

 

where L corrects for the canopy background, C1 and C2 are coefficients for atmospheric resistance and 

B is the blue band. The additional components of the EVI formula can, in most cases, reduce atmospheric 

and background noise, and saturation (USGS, 2017). 
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The NDMI is calculated as the ratio between NIR and Short-Wave Infra-Red (SWIR) (USGS, 2017): 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 

The choice of comparing NDVI, EVI and NDMI in this study was based on three considerations:  

 The availability of finished VI products from USGS (USGS, 2017). 

 

 ISCC/GRAS has extensive experience in the field of land cover change detection related to 

certification purposes. In their work, MODIS-derived EVI was used for larger scale land cover 

change detection (industrial-sized oil palm plantations). EVI was therefore the obvious choice 

for testing a Landsat based approach. The NDMI was also already considered for implementation 

by ISCC/GRASS as a viable approach to oil palm detection.  

 

 The Bfast Monitor near real-time change detection method was developed and tested by the 

authors by applying a NDVI time-series dataset for time-series based change detection (DeVries 

et al., 2015; Dutrieux et al., 2017; Dutrieux et al., 2015; Verbesselt et al., 2010; Verbesselt et al., 

2012).  

 

2.3 Selecting a test location for method development 

To conduct this study, a limited area within the Riau Province was selected for method development and 

testing, based on Google Earth high resolution imagery. Due to the extensive processing time of a 

complete spatial analysis, on a full time-series, an area of 5 x 5 km was defined as the specific study area 

and test-site. Since the objective of this study is to detect land cover change related to SHOPPs, regardless 

of specific geographical location, the exact study area is of less importance. However, certain criteria were 

taken into account for selecting a suitable location for the study of small-scale oil palm related land cover 

change.  

Since reliable land cover data is not available for the location of smallholder plantations in Indonesia, it 

should be possible to visually distinguish SHOPPs from other land cover types in satellite imagery. Visual 

indicators of SHOPPs are based on the shape and planting patterns of oil palm trees, which can be 

identified in high resolution satellite imagery (such as Google Earth). Industrial plantations are usually 

planted in regular, rectangular formations of approx. 25 ha, which are easily visually identified in satellite 

imagery (Gaveau et al., 2016; Gutiérrez-Vélez & DeFries, 2013). Visually identified oil palm fields, which 

do not follow the standard planting practices of industrial oil palm plantations (e. g. rectangular or square 

planting patterns, monocrop practices, optimum tree density and spacing, standard field size of 100 ha 

rectangular blocks (Verheye, 2010)), are thus considered likely to be SHOPPs (Gutiérrez-Vélez & 

DeFries, 2013). An example of identified oil palm cultivation that does not follow the industrial standard 

practices, is shown in Figure 2. 
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It is necessary to identify areas that were converted from forest to oil palm plantation, and high resolution 

imagery should be available in order to validate the type of conversion. It is therefore a criterion that 

historical Google Earth imagery are available at two points in time.  

The criteria for selecting a test site within the study area are the following: 

1. The identified oil palm field should be bordering a known SHOPP (based on ancillary maps) or 

be scattered in patches of irregular size and patterns.  

2. Historical Google Earth imagery should be available at two points in time, to determine if land 

cover change has occurred. Establishment of oil palm plantations should be observed by 

comparing historical and recent Google Earth imagery. 

To select the suitable location, ancillary land cover maps of the region were imported into Google Earth 

to find locations of known oil palm. Furthermore, a “.kmz” file displaying the Landsat-missions paths 

and rows globally was imported to select locations within overlaying paths. This way, more Landsat 

scenes are available for the area, which is highly beneficial in time-series analyses, to reduce the risk of 

data gaps caused by cloud cover.   

 

Based on implementing the aforementioned two criteria for location selection in a visual study of the 

Riau Province in Google Earth, Location ID1 was selected as test site (Figure 3). Location ID1 is 5x5 

kilometer, the North-West corner is located at 1° 11' 37.94'' N and 101° 6' 58.83'' E and the South-East 

corner is located at 1° 8' 55.05'' N, 101° 9' 48.97'' E. The area was partially covered by registered 

Figure 2: Image of scattered patches of oil palm plantations, identified by the characteristic triangular planting pattern. The patches 
likely belong to smallholder farmers since the typical rectanguler block shape of 25 ha is not observed (A). Also mixed growing rates 
can be seen (B), and the size of one patch is relatively small (C).  

A 

B 
C 
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smallholder plantations in 2007, according to WWF Indonesia. For this location, clear Google Earth 

historical imagery is available for the year 2006 and 2014.  

 

    
 

  
 

 
 

 

 

 

Figure 3:  The location of the study area. Location ID1 was selected in the northen part of the  Riau Province, located on Sumatra in 
Indonesia.  

 

a) 

b) 
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3 Methodology 

The methodology in this study is designed in three steps to detect the timing and the location of land 

cover change due to shop establishment using Landsat imagery. The first step is comparison of the 

performance of VI’s to select the most suitable VI based on the defined criteria. The second step is to 

use the selected VI for spatio-temporal detection of land cover change related to SHOPPs. The third 

step is to generate a probability map for the detected land cover changes. Figure 4 illustrates the main 

steps of the methodology of this study.  

 

Figure 4: Flowchart illustrating the main steps of this study. 
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3.1 Comparison of Vegetation Indices 

3.1.1 Selection of test-pixels 

To assess which Landsat-derived VI shows the strongest response to known forest to oil palm 

conversions, a number of test-pixels were selected. Within Location ID1, purposively pixels were selected 

to characterize the temporal signal of each VI, representing: 

a) Stable forest and other dense vegetation (including primary, secondary forest, peat swamp forests 

and non-oil palm plantations) 

b) Stable oil palm plantation  

c) Land cover change: Stable forest and other dense vegetation → oil palm  

 

Because reliable land cover data were not available, the three classes were identified based on the mean 

VI values at different time intervals for each of the VI’s. Figure 5 shows the mean values of the full time-

series: year 2000 – 2016. Intermediate mean values (yellow) resulted from either consistent intermediate 

VI values or a combination of small and large values (e. g. due to land cover change). The spatial variability 

in NDVI is smaller as compared to EVI and NDMI (Figure 5). The majority of pixels has high NDVI 

values, making different land cover patches difficult to visually distinguish from each other. According 

to figure 5c, the range and distribution of NDMI values makes it possible to distinguish land cover 

patches which makes NDMI more beneficial for selecting area of land cover change. 

 
Figure 5: Mean values for the full time-series: 2000 – 2016, Location ID1. A): mean Enhanced Vegetation Index (EVI) values, b): mean 
Normalized Difference Vegetation Index (NDVI) values, c): mean Normalized Difference Moisture Index values.  

The NDMI map as well as newly generated mean value and standard deviation NDMI maps for the 

period of 2006 – 2014 (see Appendix A) were compared with high resolution Google Earth imagery to 

visually confirm the location of stable land cover and areas of land cover change. Using the confirmed 

locations, the following three (GIS) layers were created in order to generate the test-pixels: 

 

• Land Cover Change (stable dense vegetation → oil palm) 

• Stable Dense Vegetation 

• Stable Oil Palm   

 

a) b) c) 
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The land cover GIS layers were manually digitized based on Google Earth imagery, using the open source 

GIS software QGIS and the result is shown in Figure 6. Within each GIS layer, test-pixels were generated 

using stratified random sampling. With this method, the number of random pixels per area is determined 

based on the proportional size of each area, out of the total area (sum of the three GIS layers). 100 pixels 

were chosen in total, and the number of pixels within each area were calculated as follows:  

 

 𝑛ℎ = (
𝑁ℎ

𝑁
) ∗ 𝑛 

 
where nh is the sample size for class h, Nh is the area size for class h, N is the area sum of the classes and 

n is the total number of samples. The land cover classes, the size of each class and the number of random 

test-pixels are shown in Table 2. The distribution of the test-pixels is shown in Figure 6. 

 

 
 

Figure 6: Location of 100 random test-pixels. The 100 test-pixels are distributed within the Land Cover Change, Stable Oil Palm and 
Stable Dense Vegetation classes. 

 

Table 2: The size and number of random test-pixels for each land cover class. 

 

Land Cover Class Size in Ha Number of Random  
Test-Pixels 

Percent out of  
Total Area 

Stable Dense Vegetation 29.5 37 37 % 

Stable Oil Palm  23.3 29 29 % 

Land Cover Change 27.5 34 34 % 
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3.1.2 Visual comparison 

The three VI’s are indicators of the presence of green vegetation, sensitive to either the photosynthesis 

rate of the canopy (NDVI and EVI) or the canopy moisture content (NDMI). Because of this, land use 

changes that affect the green vegetation are expected to show up in the time series of these indices. The 

conversion of forest or other dense vegetation into oil palm would lead to a significant drop in VI values 

after clearance of the initial vegetation. The following VI values were expected to steadily rise over the 

next 5 years, the growth period of oil palm (Verheye, 2010). This pattern was expected to be recognizable, 

particularly because of the absence of distinct seasonal fluctuations in tropical regions, which could 

otherwise obscure the change pattern. All VI’s should be able to portray this pattern, due to their ability 

to enhance vegetation features (Viña et al., 2011). For the stable land covers, the temporal profiles were 

expected to have less variation in VI values over time. 

To compare the temporal response of each VIs visually, time-series profiles of three random test-pixels 

of each land cover class were plotted for illustration purposes. Three test-pixels (in total 27) were 

evaluated as it was not feasible to individually compare 3 x 100 time-series profiles visually, however the 

full number of test-pixels were used for further analysis.  

The visual comparison of the VI time-series profiles followed a qualitative approach. To evaluate the 

suitability of each VI for further analysis, suitability was defined by the following questions:  

 Question 1.a: Can a land cover change signature be identified in the temporal signal of the VI, 

within the Land Cover Change class?   

 Question 1.b: Can a stable land cover signature be identified in the temporal signal of the VI, 

within the stable land cover classes?  

 Question 2: Can the temporal signal of stable land cover or land cover change easily be 

recognized without interference from outliers?  

Based on the suitability questions, each test-pixel was assigned the label “Yes” or “No” in each of the 

questions. The VI with the most “Yes” labels, was then considered the most suitable index for further 

analysis. 

 

3.1.3 Comparison of NDVI, EVI and NDMI based on Bfm Pixel test runs 

To assess if the visually-identified most suitable index also resulted in an optimal detection of breakpoints 

based on Bfast, Bfast Monitor was applied to all 100 test-pixels with each of the three VI’s. However, 

before running any Bfast Monitor function, the function parameters need to be defined. The following 

parameters were set manually, since they are sensitive to the datasets: Formula, start date, and history. 

The other Bfast Monitor parameters were set to default values based on the advice of the creators of the 

Bfm Pixel and Spatial functions (Dutrieux et al., 2017).  

A random test-pixel from each land cover class was used for parameter setting, and based on 

interpretation of the time-series profiles, initial assumptions were made about the setting of each 

parameter:  
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 The value of “history” determines the length of the historical-period. It was set to include all data 

points of the historical-period, as this ensures sufficient data for modelling the trend, if data gaps 

exists (DeVries et al., 2015a).  

 By combining information from Google Earth historical imagery and the visually distinguished 

moment of change in the time-series plots of the Land Cover Change class, change was concluded 

to have occurred after 2006. Consequently the “Start Date” was set to 2006, Julian day 1.   

 The “formula” was set to include modelling of both the trend and seasonal component in the 

historical-period, to account for any seasonality which might influence the temporal signals.  

 

These parameter settings were used to run Bfm Pixel on each of the three random test-pixels. The 

parameters were modified for each VI to optimize the output, if the expected breakpoint or absence of 

breakpoint was not correctly detected by Bfm Pixel. 

 

After setting the parameters, Bfm Pixel was run for the 100 test-pixels with each VI dataset as input. The 

accuracy of running Bfm Pixel with each VI was determined and compared in order to conclude which 

VI is suitable for Bfast Monitor time-series analysis. The suitability of a VI dataset was defined by the 

number of false breakpoints detected by Bfm Pixel, with a given VI as input. False breakpoints were 

defined as follows: 

Detected breakpoint are different than expected breakpoint, i. e.: 

 Breakpoint detected for a pixel within the stable land cover classes, where no breakpoint is 

expected. 

 No breakpoint detected within the Land Cover Change class, where a breakpoint is expected. 

 Breakpoint detected within the Land Cover Change class, but at a time different than expected. 

Each of the 100 test-pixels were analyzed with the Bfm Pixel function, and the outputs were compared. 

For all the test-pixels in the stable land cover classes, it was expected that no breakpoints were detected, 

for the Land Cover Change class, a breakpoint for each pixel was expected. For every test-pixel in the 

Land Cover Change class, the time-series plot was checked visually to determine if the breakpoint was 

detected at the moment of expected land cover change, or in close proximity (based on the drop in VI 

values). Finally, the number of false breakpoints detected within each class, and with each VI dataset, 

were compared. 

 

3.2 Spatio-temporal land cover change detection 

An automated change detection method is essential to provide a tool for people with little GIS and 

remote sensing experience in land cover change detection. The goal of constructing the method is to 

limit the input knowledge needed from the user as much as possible. The approach presented in this 

study is based on the Bfast Monitor functions, and the user-defined inputs are limited to: the pre-

processed Landsat VI data set, the start year and the end year of the dataset.  
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3.2.1 Identifying the necessary parameters 

First it was necessary to identify parameters of the original Bfast Monitor, which requires expert-

knowledge. The “Start Date” of the monitoring-period is set by the user, based on expert-knowledge for 

historical change detection. The chosen “Start Date” has considerable consequences for the output, as 

the monitoring-period defines the period during which the Bfast-algorithm will look for a breakpoint 

(Table 1) (Verbesselt et al., 2012). In Figure 7, the consequences of different “Start Date” settings are 

demonstrated, based on running Bfm Pixel on a test-pixel from the Land Cover Change class. The NDMI 

dataset was used as input and three different “Start Date” settings, year 2005, 2007 and 2009 were chosen 

to illustrate an example. The resulting breakpoints were detected in year 2006, 2007 and 2012 respectively. 

From the three examples in Figure 7, it can be seen that the chosen “Start Date” affects the modelling 

of the historical period considerably, which is illustrated by the three different patterns of the blue line in 

each time-series (Figure 7). Because of this, three different breakpoints resulted for the same input pixel. 

Furthermore, based on the original dataset, it appears that a significant change within the time-series 

occurred in 2006, which is shown by the sudden drop in VI values. This observation supports the first 

detected breakpoint in Figure 7a, in July 2006. However when the “Start Date” is set after 2006, the drop 

is not recorded as a breakpoint and is included in the modelling of the historical-period. 

The original Bfast Monitor was created with the purpose of near real-time change detection (Verbesselt 

et al., 2012), so the purpose is to analyze one specific time period in recent time, based on one specific 

“Start Date”, known by the user as the first date of the newly acquired data. The “Start Date” can be 

unknown by if the purpose is historical change detection (e.g. the case of the study by DeVries et al. 

(2015)). To manually set the correct “Start Date” (i.e. so the monitoring-period includes the breakpoint 

to be detected) will require the user to have in-depth knowledge of the study area or time-series analysis. 

Furthermore, when applying Bfast Monitor spatially, the same “Start Date” is applied to every pixel. As 

the land cover dynamics can differ significantly between any two pixels, using one “Start Date” for every 

pixel is not preferable in a spatial application. An essential part of the new change detection approach is 

consequently to circumvent the use of a single “Start Date”.   
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Figure 7: The results of Bfm Pixel, based on the NDMI dataset, with different Start Dates: Julian day 1 of: 2005 (a), 2007 (b) and 
2009 (c). The breakpoint (red dashed line) is seen to change drastically in each time-series plot, depending on the timing of the Start 
Date (black dotted line). The historical data (black line) indicates the “history” period used by Bfast Monitor (BFM) to model the 
trend and seasonal component. The data points of the “history” period (black dots) are considered as defining a stable history 
period, by BFM. The breakpoint (red dashed line) is determined by the deviation of the “new data” (red line) from fit of the modelled 
trend and season (blue line).  
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3.2.2 Design of change detection method 

The first step in detecting spatio-temporal land cover change related to SHOPPs, was to design a method 

which handles the “Start Date” differently than the original approach. Studies by DeVries et al. (2015a, 

2015b) supports the use of a one-year limited monitoring-period, combined with the original premise 

and input parameters of Bfast Monitor. Furthermore, in this study it has been observed that in some 

cases, a one-year limited monitoring-period can reduce the risk of detecting false breakpoints during 

stable land cover time periods. False breakpoints can be caused by a wrongly fitted trend in the historical-

period, because of e. g. data gaps or outliers.  

To avoid a fixed “Start Date”, based on expert-knowledge, the use of a one-year monitoring-period was 

implemented and extended sequentially to the full time-period of the time-series. This was done by 

iterating through the time-series with the one-year monitoring-period, from here on referenced to as the 

“monitoring-window”, with a 6-month shift between each iteration, which will be described in detail in 

section 3.2.4. 

 

3.2.3 Identification of and dealing with data gaps 

When an annually iterated monitoring-window is applied, the effect of data gaps on the detection of 

breakpoints by Bfast Monitor can be substantial (Schultz et al., 2016; Verbesselt et al., 2010). In the 

original Bfast Monitor method, a “Start Date” is set after any occurring data gap, as any issues related to 

the data gap will arise during the initial parameter setting steps (or the data set may be abandoned for not 

having enough data points for trend modelling, at the time-period of interest). Consequences of a data 

gap can be a wrongly fitted model due to placing the “Start Date” in, or immediately after a data gap.  

From the histogram of scenes per year in the Landsat time-series (Figure 8), it can be seen that no scenes 

were available for 2002 and only one scene was available for 2003. Additional information shows that the 

one scene in 2003 was collected in late December, which makes the majority of 2003 a data gap as well.  

 
Figure 8: Histogram of the scenes per year for 2000 – 2016, for the NDVI, EVI and NDMI datasets.  

Year 
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A Bfm Pixel test run was performed on a test-pixel from the Land Cover Change class, with the NDMI 

dataset, to illustrate when the “Start Date” is set within a data gap, here between 2001 and 2004, showed 

by the green lines (Figure 9). The “Start Date” is set to 2003, Julian day 1, and it is demonstrated how the 

data gap affects the modelled trend and a false breakpoint is detected in 2004. 

 

When the monitoring window is iterated through the time-series, the “Start Date” will undoubtedly fall 

within a data gap at some point, if a data gap exists. There is not any control on the quality of intermediate 

outputs of an iterated procedure, or the opportunity to manually adjust parameters for intermediate 

functions. Therefore it is recommended that the temporal extent of the input time-series is limited to 

exclude any identified data gaps, by adjusting the input and output date for the iterated method. The 

dataset itself is not trimmed, and all data points are therefore still adding information in the breakpoint 

detection. To diminish the effect of a data gap but still provide enough data for modelling the trend for 

each iterated monitoring-window, the input and output dates should be set to include a buffer of scenes 

on each side of the data gap. As seen in the histogram in Figure 8, the data gap spans 2002 and 2003. As 

a consequence, the time-period analyzed for breakpoints were limited to 2005 – 2016 to avoid the data 

gap. The previous years, 2000 – 2005, were still included in the historical-period.  

  

 

Figure 9: Result of Bfm Pixel, based on the NDMI dataset, illustrating the effect of data gap. The “Start Date” (dotted black line at 
2003.1) is set within a data gap, illustrated by the green lines. The modelled trend and season (blue line) is highly affected, and the 
breakpoint (red dashed line) is not detected where expected, by the drop in the temporal signature (black circle).  

The test-pixel shown in Figure 9 was chosen to illustrate the effect of a data gap, however a data gap 

does not always disrupt the modelling to a degree where false breakpoints are detected.  
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3.2.4 Implementing the parameters: the annual, six-month shift iteration 

The solution proposed in this study to circumvent the conventional use of the “Start Date” parameter is 

an annual iteration throughout the time-series with a six-month shift.  Since the iteration works with a 

one-year monitoring-window, the end date of the time-series is set to 2015, as 2016 is not a complete 

year in the dataset (which causes disruptions in the iteration process).  

Based on the dataset for Location ID1, 2005-2015, the iteration procedure was structured as shown in 

Figure 10. The iteration was constructed by defining the “Start Date” and “End Date” parameters, the 

“End Date” indicating the end of the monitoring-window. The first “Start Date” was set to 2005, Julian 

day 1 (January 1st, 2005). The “End Date” was set to 2006, Julian day 1 (January 1st, 2006) and outlines 

the monitoring-window used for the first iteration. This interval is illustrated in figure 10 with the label 

“1st”. The monitoring window was then shifted six months forward and the “Start Date” and “End 

Date” was thus set to 2005.181 and 2006.181 respectively, illustrated with the “2nd” label in Figure 10. 

Julian day 181 falls within the final days of June (depending on leap years). The labels of “07-YYYY” are 

thus chosen to simplify the visualization of the time-line. In every iteration, the end of the historical-

period was defined by the “Start Date” and therefore spans from the first date of the dataset (March 1st, 

2000) until 2005.1 for the 1st iteration, from March 1st 2000 until 2005.181 for the 2nd and so forth.  

The purpose of the six-month shift is to cover the time period immediately after the “Start Date” of the 

previous iteration. During testing stages of this study, it was observed that visually identified breakpoints 

right after the “Start Date” are not detected. A reasonable explanation can be that the data point may be 

considered an outlier by Bfast Monitor (Verbesselt et al., 2012). By implementing a six-month shift, every 

six months are covered twice and if any breakpoint was missed in the first iteration, it may be detected 

in the next. 

 
Figure 10:  Illustration of the six-month shift. The segmented line above (a) shows one-year time periods from July to July. The 
segmented line below (b) shows one-year time periods from January to January. The “1st", “2nd", “3rd" etc. labels indicates the 
order the time-periods are iterated in. First, the time period: 01-2005 to 01-2006 is used. Second, the period: 07-2005 to 07-2006, 
third: 01-2007 to 01-2008, and so forth. 

 

3.2.5 Selecting the final breakpoint date 

The annual, six-month shifted iteration of a dataset covering 11 years has the potential to detect a 

breakpoint at each iteration, i. e. give 22 results. Since the purpose of the method is to detect one major 

break, related to one specific breakpoint during the full time series, it is necessary to incorporate a decision 

rule which can be applied to all the resulting breakpoints. The decision rule should allow for one final 

breakpoint to remain, which has a higher likelihood of representing the true moment of land cover change 

in the time-series. 
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In the original application of Bfast Monitor, it is advised to apply a Magnitude threshold to the output of 

Bfast Monitor (DeVries et al., 2015a). This suggests that a Magnitude threshold could be applied as a 

decision rule, since every breakpoint will have a Magnitude value, related to the monitoring-window 

applied. A Magnitude threshold could be selected the breakpoint that should be included in the final 

result. This threshold would be determined based on previous knowledge of vegetation dynamics in the 

area (e. g. it is known that deforestation results in a breakpoint of a certain magnitude) or experimental 

results.  

However, due to the way the Magnitude is calculated (Table 1), some issues can arise from using it as a 

threshold. During the testing stages of this study, it was observed that breakpoints can be missed to a 

considerable degree, if outliers or data gaps affects the modelled trend or the dataset. The calculation of 

the Magnitude is likewise disturbed if high values before the breakpoint exists in the monitoring-period. 

A similar conclusion was reached by DeVries et al. (2015a) and it is therefore proposed to base the 

decision rules on the VI value at, or surrounding, the detected breakpoint in the presented approach. 

Based on the comparison of VI’s in section 3.1, the NDMI dataset was concluded as most suitable for 

the purpose of designing an automated method for land cover change detection related to SHOPPs. The 

NDMI values was thus used for designing decision rules.  

Based on the assumptions regarding the temporal NDMI deforestation pattern, two decision rules were 

formulated for testing the described approach. 

The first decision rule was based on the assumption that the NDMI value at the moment of deforestation 

(shown as a drop in NDMI values), is relatively low, compared to periods of stable forest. When forest 

is cleared due to the establishment of oil palm plantations (Verheye, 2010), the NDMI value will drop 

due to the removal of dense vegetation (Wilson & Sader, 2002). Based on this assumption, a threshold 

can be set. If the NDMI value of a breakpoint is below this threshold, deforestation is more likely to 

have taken place as the NDMI value is low enough to represent a clearance of vegetation. To apply the 

NDMI threshold, Decision Rule # 1 was formulated as follows: 

Decision Rule # 1: 

 If “the NDMI value of the breakpoint” is larger than “the selected threshold”, then “the breakpoint” is 

accepted.  

 

 If “the NDMI value of the breakpoint” is less than “the selected threshold”, then “the breakpoint” is 

rejected.  

If more breakpoints than one was below the threshold, the earliest dated breakpoint was selected. Based 

on Decision Rule # 1, one breakpoint value then remained as the final result of the iteration procedure.  

In order to produce an experimental output, a conservative NDMI threshold was set to 0.15. This was 

calculated as the mean between the mean value of the test-pixels of the stable land cover classes and the 

mean value of the minimum values of each raster in the Landsat raster stack. See Appendix B for the 

detailed calculation of the threshold. 
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Based on the same assumptions described in the previous section, the second decision rule was based on 

the difference between the NDMI values before and after the breakpoint, calculated as ΔNDMI. The 

assumption was that the mean NDMI value of the period before deforestation (and the detected 

breakpoint) is relatively high, due to a period of stable forest cover. In the period after deforestation, the 

mean NDMI values are then relatively low compared to the period before, due to the removal of the 

forest cover. Calculating the difference between the period before and the period after the breakpoint 

therefore links a size of the drop associated with deforestation, to the breakpoint. A further assumption 

was that the maximum ΔNDMI of a time-series (i.e. representing the maximum drop) has the highest 

likelihood of representing the moment of deforestation. In order to ensure that the ΔNDMI represents 

deforestation, only positive values are included as detected breakpoints.   

To calculate ΔNDMI, the periods before and after the breakpoints are set to one year and the start and 

end date of each period is defined by a buffer period of three months on each side of the breakpoint. 

The one-year period is assumed short enough, that no follow-up land cover would affect the temporal 

signal (DeVries et al., 2015). The one-year and buffer periods are illustrated in Figure 11. Here an example 

time-series plot is shown to demonstrate the one-year periods and the three-month buffer period.  

 

 

In Figure 11, the one-year period on each side of the breakpoint is shown as the gray areas in the plot. 

Only data points within these areas are included in the calculation of the mean values. Any data point 

that falls within the buffer period of six months (white area on each side of the red line) is thus excluded. 

The calculated means are shown by the purple and the green lines, which also illustrate the data points 

included in their calculation.  

The ΔNDMI is thus calculated as follows: 

𝛥𝑁𝐷𝑀𝐼  =  𝑚𝑏𝑒𝑓𝑜𝑟𝑒  −  𝑚𝑎𝑓𝑡𝑒𝑟 

Figure 11: Illustration of how the ΔNDMI was calculated. When a breakpoint is detected by Bfast Monitor (red line), the data 
points (dark blue dots) of a one-year period (grey boxes) on each side of the breakpoint, are used to calculate the mean values 
of the year before and the year after (purple and green lines). 

N
D
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with mbefore = the mean of data points within the year before the breakpoint and mafter = the mean of 

data points within the year after the breakpoint. 

The three-month buffer is implemented since the exact structure and characteristics of the data set is 

unknown during an automated processing sequence. When a breakpoint is detected by Bfast Monitor, it 

is unknown if there are any data points adjacent to the breakpoint, with NDMI values close to that of 

the breakpoint. If this is the case, the mean would be highly affected, and not truly represent the period 

before and after the breakpoint.  

To apply ΔNDMI, Decision Rule # 2 was formulated as follows: 

Decision Rule # 2 

 If “the ΔNDMI of the breakpoint” is larger than “the ΔNDMI of other reported breakpoints”, then “the 

breakpoint” is accepted.  

 

 If “the ΔNDMI of the breakpoint” is less than “the ΔNDMI of other reported breakpoints”, then “the 

breakpoint” is rejected.  

 

3.2.6 Two methods: NDMI Threshold and ΔNDMI 

The two decision rules were incorporated into two different methods for automatic land cover change 

detection, both based on the Bfast Monitor pixel-based and raster-based functions: Bfm Pixel and Bfm 

Spatial. In the following sections, the spatial application of the methods are presented. 

Since the spatially applied methods require considerable processing time, it was decided to divide the 

process up into a separate procedure for each year. This also allows for evaluating intermediate results 

and gives flexibility regarding the time-frame to process (e. g. if the purpose is to detect land cover change 

in a particular area, and the land cover change has been detected early on in the time-series, there is no 

need to process the remaining years).  

The raster-based NDMI Threshold method was implemented by the following steps: 

 

Input data: Landsat NDMI time-series raster stack, 2000-2016. 

Input variables: Start date and end date of monitoring-window. 

Experimental threshold: NDMI 0.15 

 

1. The Bfm Spatial function was run for one year at a time, starting with 2005.1. 

2. The Bfm Spatial raster output was spatially filtered to remove pixel clusters with an area of less 

than 1.8 ha (Susila & Bourgeois, 2006). The spatial filter is illustrated in Appendix C.  

For every remaining cell where a breakpoint was detected:  

3. The corresponding NDMI value of each breakpoint was found. 

4. Decision Rule # 1 was implemented:  
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If NDMI of breakpoint is below threshold, accept breakpoint 

If NDMI of breakpoint is above threshold, reject breakpoint 

5. The final breakpoint raster for the input year was created: All accepted breakpoints were assigned 

to their corresponding cell. 

6. The spatial filter applied in step 2 was applied to the final breakpoint raster. 

Step 1-6 was repeated for every year of the time-series, resulting in 21 breakpoint rasters for the years 

2005 – 2015. The final step produces an output map for the full time-series: 

7. The 11 annual output rasters were merged with priority to the first occurring breakpoint of a cell. 

 

Similarly to the spatially applied NDMI Threshold method, a spatial output of the ΔNDMI method is 

created on an annual basis. The ΔNDMI method was implemented by the following steps: 

 

Input data: Landsat NDMI time-series raster stack, 2000-2015. 

Input variables: Start date and end date of monitoring-window. 

 

1. The Bfm Spatial function was run for one year at a time, starting with 2005.1. 

2. A spatial filter was applied to the Bfm Spatial raster output.  

For every remaining cell where a breakpoint was detected:  

3. The time-series of each cell is extracted and ΔNDMI of each breakpoint was calculated. 

4. A ΔNDMI raster was created by assigning positive ΔNDMI values to their corresponding cell. 

Step 1-4 was repeated for every year of the time-series, resulting in 21 breakpoint rasters for the years 

2005 – 2015 created by the Bfm Spatial function, and 21 ΔNDMI rasters with the corresponding ΔNDMI 

values. The following steps were carried out to produce an output raster for the full time-series: 

5. The 21 annual breakpoint rasters were merged with priority to the maximum ΔNDMI of a cell. 

No threshold was linked to the ΔNDMI value at this point and every breakpoint pixel of the raster 

(detected by Bfast Monitor) was therefore assigned a value. In order to evaluate the likelihood that a land 

cover change occurred at the predicted breakpoints, a measure of probability was linked to the magnitude 

of the ΔNDMI. This leads to Research Question 3: Can the probability of land cover change be mapped for areas 

identified as potential change areas?, and the steps are described in section 3.3. 

 

3.2.7 Validation of the methods 

Validation of both methods (NDMI Threshold and ΔNDMI) was performed with a pixel-based application 

of each method. Bfm Spatial and Bfm Pixel (which forms the foundation of the pixel-based and the 

spatial application, respectively) employs the same algorithm, either for each pixel of a raster (Bfm Spatial) 

or for one target pixel (Bfm Pixel). The algorithm applied per pixel is therefore the same in both 

functions. The pixel-based version was therefore used, for each method, to validate both pixel-based and 

spatial outputs.  
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Confusion matrices were constructed based on a reference dataset and a predicted dataset to determine 

the accuracy of the methods. The number of sample points were chosen by using the formula for 

stratified random sampling by Cochran, (1977) with finite population correction applied. The calculation 

resulted in 758 sampling points, however to allow for points to be omitted (e. g. due to cloud cover), the 

final sample size was set to 1000.   

The reference dataset was created by assigning a “Change” or “No Change” label to each point, 

determined by visual inspection of high resolution Google Earth imagery, based on the time period: 

2006-2014. The pixel-based applications of the NDMI Threshold and ΔNDMI methods were applied to 

the 1000 sample points to create the predicted dataset. 

Two confusion matrices were constructed for each method. One from the full datasets and one from 

limiting the datasets to all points visually determined as dense vegetation in 2006 and dense vegetation or 

oil palm in 2014. This was done in order to limit the datasets to only include points covering the following 

two classes: 

 

 Dense Vegetation → Dense Vegetation (no change) 

 Dense Vegetation → Oil Palm (change) 

 

This limitation was included to describe the accuracy of the methods in detecting specifically 

deforestation due to SHOPP establishment.  

 

3.3 Mapping the probability of land cover change 

Research question 3: Can the probability of land cover change be mapped for areas identified as potential change areas? 

was answered by linking a measure of probability to the output maps created with the spatially applied 

ΔNDMI method for Location ID1. The probability of land cover change was defined as the probability 

that the predicted breakpoints corresponds to actual land cover change.   

In order to map the probability of the detected land cover changes, the following steps were taken: 

1. The full reference and predicted datasets created in the previous step (section 3.2.7) were limited 

to the points labelled “Change” in the reference dataset. This was done in order to calculate the 

probability that the predicted breakpoints corresponds to actual land cover change. 

 

2. The ΔNDMI predicted dataset was divided into categories based on the ΔNDMI value of each 

point. The categories were defined as “more than or equal to” values as follows: Category 0: 

ΔNDMI = 0.00, category 1: ΔNDMI = 0.01, category 2: ΔNDMI= 0.02, category 3: ΔNDMI = 

0.03 and so on.  
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3. Within each category, the probability was quantified with the following calculation:  

                   𝑃 =
𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡

𝑁𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∗  100                                                   

Where P = probability, %, NPredict = Number of predicted change points that were actual change, and 

NReference = Number of actual change points. 

4. A final probability map was made by assigning each breakpoint cell found by the raster-based 

ΔNDMI method, the probability value corresponding to the ΔNDMI value of the cell.  
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4 Results 
 

4.1 Comparison of NDVI, EVI and NDMI  

For the visual comparison of the VI’s, time-series plots based on three random test-pixels of the three 

land cover classes (Table 2) were plotted to observe the temporal profiles of each VI. The result was a 

total of 27 time-series plots. The temporal profiles revealed that the moment of forest clearance was 

visually detectable in the majority of the time-series plots. The moment of land cover change was mostly 

characterized by an abrupt drop in values with a subsequent steady increase (e. g. Figure 12, A).  However, 

the EVI time-series showed a higher frequency of outliers, compared to the NDVI and NDMI time-

series (e.g. Figure 12, B).  

 

Figure 12: Time-series plots of a random pixel of the Land Cover Change test-pixels (defined in section 3.1.1), based on (a) NDVI, (b) 
EVI and (c) NDMI from 2000 – 2016 for the same location. Label A represents representing the moment of land cover change and B 
represents the presence of outliers in the datasets. 

For the stable dense vegetation and stable oil palm classes, the EVI temporal profile also showed more 

outliers than the other two VI’s. Between NDVI and NDMI, the NDVI series showed a higher frequency 

of outliers (Figure 13). The occurrence of outliers in the NDVI and EVI time-series was more frequent 

during later years of the time-series, likely a result of a higher frequency of Landsat scenes from 2014 and 

onwards. 

A 

A 
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B 

B 

B 

(b) 
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Figure 13: Time-series plots of a random pixel of the Stable Dense Vegetation test-pixels (defined in section 3.1.1), based on (a) NDVI, 
(b) EVI and (c) NDMI from 2000 – 2016 for the same location. Label A shows a period of time where a higher frequency of outliers are 
observed in the NDVI and EVI profiles compared to the NDMI profile. 

Table 3 reports the results of the visual comparison of the 27 time-series plot based on the three VI’s. In 

this table, the VIs were used to answer the suitability questions defined in section 3.1.2, for the three land 

cover classes. The VI which received the highest number of “YES” answers in response to the suitability 

questions were determined to be the more suitable VI for further analysis. The results show that the 

NDMI received the highest number of “YES” answers, with 14 out of 18 possible, compared to the 

other VI’s, indicating that it is the more suitable index according to the criteria.   

 

Table 3: Comparison of vegetation indices by suitability questions. The first three test-pixels of the three land cover classes were given 
an answer YES (green) or NO (grey) for each suitability question (Q1 and Q2).  For each land cover class, two answers were given for 
test-pixel 1, test-pixel 2 and test-pixel 3. Q1: Suitability question 1a and 1b:  Can a land cover change signature be identified in the 
temporal signal of the VI, within the Land Cover Change class? Can a stable land cover signature be identified in the temporal signal 
of the VI, within the stable land cover classes? Q2: Suitability question 2: Can the temporal signal of stable land cover or land cover 
change easily be recognized without interference from outliers? 

 

          YES =                           NO =  

 NDVI EVI NDMI 
Land 
Cover 
Change 

Stable 
Oil 
Palm 

Stable 
Dense 
Vegetation 

Land 
Cover 
Change 
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Test-pixel 1 Test-pixel 1 Test-pixel 1 

Q1          

Q2          
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The results of the comparison of the NDVI, EVI and NDMI, based on Bfm Pixel test runs of the 100 

test-pixels are presented in Table 4. The results are shown as the number of false breakpoints detected 

within each land cover class, based on each VI dataset. The NDVI series gave the highest number of 

detected false breakpoints for all land cover classes (81) and NDMI the lowest (55). Looking into each 

land cover class separately, the lowest number of false breakpoints detected in the Stable Oil Palm and 

Land Cover Change classes were also based on the NDMI. In the Stable Dense Vegetation class, all VIs 

achieved high numbers of detected false breakpoints. Based on the NDVI, 37 out of 37 points were false 

breakpoints, based on the EVI and NDMI, 31 and 35 out of 37 were falsely detected breakpoints, 

respectively. All VIs detected false breakpoints in the Land Cover Change class, which is a results of 

breakpoints being detected at other dates than expected, from visual evaluation of the temporal profiles 

of each test-pixel. 

The amount of false breakpoints is likely a result of not adjusting the parameters of Bfm Pixel for each 

point individually (the parameters were adjusted for each VI, not each point). Furthermore, no Magnitude 

threshold was applied, which would likely also reduce the numbers of false detected breakpoints in the 

stable land cover classes. These conditions were the same for all VI’s and the results are therefore 

appropriate for a comparative analysis, however they do not reflect the optimized performance of the 

Bfast Monitor algorithm (DeVries et al., 2015).  

With the lowest number of false breakpoints detected in total and for two out of three land cover classes, 

based on the NDMI dataset, the NDMI was the better performing vegetation index for land cover change 

detection with the Bfast-algorithm.  

Table 4: Comparison of the NDVI, EVI and NDMI datasets based on the number of false breakpoints detected in each land cover class 
by Bfm Pixel. The dark blue boxes indicates the highest number of false breakpoints detected, the medium blue indicates the 
intermediate number and the light blue indicates the lowest number.  

 

Land Cover Class 

Number 

of samples 

NDVI -based 

false breakpoints 

EVI-based 

false breakpoints 

NDMI-based 

false breakpoints 

Stable Dense Vegetation 37 37 31 35 

Stable Oil Palm 29 28 15 14 

Land Cover Change 34 16 24 6 

Total 100 81 70 55 

 

The NDMI had the best performance in the visual comparison and detected the lowest number of false 

breakpoints in the Bfm Pixel test-runs, compared with the EVI, NDVI and NDMI datasets. The NDMI 

was therefore selected as the most suitable VI for detecting the conversion of forest to oil palm plantation 

and used for further analysis in this study. 
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4.2 Comparison of methods for spatio-temporal detection of land cover change 

4.2.1 The pixel-based NDMI Threshold and ΔNDMI methods 

The results of running the methods on the 100 test-pixels defined in section 3.1 1, are presented in Figure 

14a and b. For each point the year of change was assigned, as detected by the pixel-based NDMI Threshold 

method (Figure 14a) or the ΔNDMI method (Figure 14b) or “No Breakpoint” if no change was detected.  

The result of pixel-based NDMI Threshold method with the experimental threshold of 0.15, shows that 

breakpoints were only detected within the Land Cover Change area, where each point was assigned a 

year of change (Figure 14a). The breakpoints were detected in 2006, 2008, 2009 and 2010, and are 

grouped by their detected change year, indicating a possible deforestation pattern of the area.  

The ΔNDMI method resulted in detected breakpoints in 2005 – 2010, 2014 and 2016, detected in the 

Land Cover Change area and the Stable Dense Vegetation area (Figure 14b). In the Land Cover Change 

area, the detected change points are distributed similarly to the result in Figure 14a, except with a few 

points detected in 2007. Since the 2007 points are located between breakpoints detected in 2010, the 

2007 points does not appear likely to be a part of a deforestation pattern. The breakpoints detected in 

the Stable Dense Vegetation class does not appear to represent any pattern of change as they are not 

grouped by their year of change. 

   

Figure 14: Results of the pixel-based NDMI Threshold method (a) and the pixel-based ΔNDMI method (b). The methods were run on 
the 100 test-points, and the color of the points indicate the year of land cover change detected by the methods.                

By comparing the results of the two methods (Figure 14a and b), the main difference is seen in the 

number of detected breakpoints in the Stable Dense Vegetation class. The NDMI Threshold method did 

not detect any breakpoints in this class, while the ΔNDMI method detected 15 breakpoints out of the 

37 points. This is likely a consequence of not applying any threshold in the ΔNDMI method. The NDMI-

based Bfm Pixel runs on the same test-pixels, presented in the previous section, resulted in 35 breakpoints 

out of the 37 “stable” points. The number of breakpoints detected in the Stable Dense Vegetation class 

(a) (b) 
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were decreased considerably by applying the ΔNDMI method, and no breakpoints were detected by 

applying the NDMI Threshold method.  

 

4.2.2 The spatial application of NDMI Threshold and ΔNDMI methods 

The result of the spatial application of NDMI Threshold method (Figure 15a) for the time-series of 2005 

– 2015, was achieved with the experimental threshold of 0.15. Land cover change in Location ID1 was 

detected for approx. 16% of the total area, for the years 2005 – 2011 and in year 2013 and 2014. 

Rectangular and systematic patterns of land cover change were detected in the South-West corner (label 

A, Figure 15a), while scattered patches of land cover change, were found in the North-East part of 

Location ID1 (label B, Figure 15a).  

The raster-based ΔNDMI method detected land cover change for approx. 24% of the area, in every year 

from 2005 – 2015 (Figure 15b). A similar rectangular pattern of land cover change is found in the South-

West part of Location ID1 (label A, Figure 15b). In the North-East corner, a higher amount of land 

cover changed patches were detected (label B, Figure 15b), compared to Figure 15a.  

 

The main difference between the two results is the total size of land cover change areas detected, where 

the area detected by the ΔNDMI method was approx. 24% of the total area, the NDMI Threshold method 

detected land cover change for approx. 16%. Both results are considerably smaller than the total area 

detected by the original output of Bfm Spatial (Figure 15c) of approx. 48%. The larger change area 

observed in figure 15c is resulted from not applying a spatial filter or threshold to the breakpoints 

detected by Bfm Spatial. Furthermore, the output was not limited to breakpoints caused by deforestation.  

By comparing the resulted maps of the two methods visually, a high similarity in the location and timing 

of detected land cover changes is observed. Both methods were designed to detect land cover change 

due to deforestation, and it is therefore likely that the areas detected as change by both methods (e. g. by 

label A, Figure 15a and b were caused by removing forests or other types of dense vegetation. In Figure 

15b by label B, patches of change pixels are observed which are absent in figure 15a. A pattern also seen 

in the output of Bfm Spatial (Figure 15c, label B), however with a higher pixel density in the area.  

These results show that the threshold applied in the NDMI Threshold method, highly limits the size of the 

area detected as change, compared to the Bfm Spatial output. This further supports the likelihood that 

only a certain type of land cover change (deforestation) was detected by this method. The result of the 

ΔNDMI method is also limited, but to a lesser degree. The result was limited by only including 

breakpoints with a ΔNDMI value above zero. By incorporating a threshold based on the ΔNDMI values 

of the breakpoints, the area detected would likely be increased further.  
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Figure 15:  The timing and location of land cover change detected for 2005 – 2015. a): the NDMI Threshold method,  (b): the ΔNDMI 
method, c): The output of Bfm Spatial. Land cover change was detected in rectangular, coherent patterns (A) and in irregular, scattered 
patches (B). 
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4.2.3 Validation of the NDMI Threshold and the ΔNDMI methods 

Validation of both methods was performed by applying the pixel-based versions of each method to 1000 

random sample points within Location ID1, as described in section 3.2.7. Since both the pixel-based and 

spatial application of the methods detect land cover change by implementing the Bfast-algorithm per 

pixel, the pixel-based versions serve as validation for the spatial application as well.  

The reference dataset were cleaned from points where a “Change” or “No Change” label could not be 

assigned (e.g. due to cloud cover or uncertain visual evaluation). Secondly, points with change detected 

before or after 2006 – 2013 were excluded from both the reference and predicted datasets, since these 

could not be validated by Google Earth imagery. Since the number of change pixels detected before or 

after 2013 were different for each method, the final number of reference points used for validation was 

different. For NDMI Threshold, 893 points remained, and for ΔNDMI, 767 remained. The distribution of 

points were approx. 62.5% and 64.5% belonging to the “No Change” class, for NDMI Threshold and 

ΔNDMI, respectively.  

The accuracies achieved based on the full reference dataset were 74.6 % and 76.3 % for the NDMI 

Threshold and the ΔNDMI methods, respectively (Table 5), for changes that occurred in 2006 – 2014. 

Table 5: The overall, Producer’s and User’s accuracies achieved by the NDMI Threshold and the ΔNDMI methods, including all types 
of land cover change, in year 2006 – 2014. 

 Overall (%) Producer’s Accuracy (%) User’s Accuracy (%) 
 All land cover types Change No Change Change No Change 

NDMI Threshold    74.6 34.9 98.4 92.9 71.6 
ΔNDMI 76.3 55.2 89.7 73.4 77.5 

 

Looking into the classes separately, the NDMI Threshold achieved the lowest accuracy of all, of 34.9% of 

the actual change points that were correctly predicted as change (Producer’s accuracy, i.e. correctly 

detecting actual change), and the highest accuracy of all in correctly detecting no change (98.4% in 

Producer’s accuracy). The NDMI Threshold method thus detected no change with a considerable higher 

accuracy than change was detected. In User’s accuracy however, NDMI Threshold could achieve an 

accuracy of 92.9% in number of predicted change that were actual change. So even though only approx. 

one third (34.9%) of the actual change points were correctly detected, the majority (92.9%) of all predicted 

change points were correct. 

The ΔNDMI method similarly achieved its highest accuracy in actual change points that were correctly 

predicted as no change (89.7%, Producer’s accuracy), and its lowest accuracy in actual change points that 

were correctly predicted as change (55.2%, Producer’s accuracy).  

 

 



DETECTING LAND COVER CHANGE RELATED TO SMALLHOLDER OIL PALM PLANTATIONS:   
AN AUTOMATED APPROACH BASED ON MULTI-TEMPORAL LANDSAT 

 

 

Page | 34  

Table 6: The overall, Producer’s and User’s accuracies achieved by the NDMI Threshold and the ΔNDMI methods, for land cover 
change related to dense vegetation, in year 2006 – 2014. “Change”: dense vegetation changed into oil palm. “No Change”: dense 
vegetation that remained dense vegetation. 

 Overall (%) Producers Accuracy (%) Users Accuracy (%) 
 Dense Vegetation Change No Change Change No Change 

NDMI Threshold 92.4 92.5 92.1 96.1 85.4 
ΔNDMI 88.3 97.4 66.7 87.4 91.7 

 

The accuracies achieved from limiting the datasets to only include: dense vegetation → dense vegetation 

(“No Change”) and dense vegetation → oil palm (“Change”), were 92.4% and 88.3% for the NDMI 

Threshold and the ΔNDMI, respectively (Table 6). The obtained accuracies are again similar for both 

methods. Looking into the classes, ΔNDMI achieved the highest accuracy of all, with 97.4% of actual 

change points that were correctly predicted as change (Producer’s accuracy), while the largest accuracy 

achieved by the NDMI Threshold method in number of predicted change that were actual change (96.1%, 

User’s accuracy). The ΔNDMI method achieved the lowest accuracy in actual change points that were 

correctly predicted as no change (66.7% in Producer’s accuracy) and the lowest accuracy for the NDMI 

Threshold, were in in number of predicted no change that were actual no change (85.4%, User’s accuracy). 

From the results of the accuracy assessments, it can be concluded that similar accuracies were achieved 

by both methods. The accuracies were obtained without using the previously defined expert-knowledge, 

required by the original Bfast Monitor method, and both historical and near real-time detection of land 

cover change was accomplished.  

 

4.3 Probability mapping 

The probability of how accurately the ΔNDMI method can correctly detect land cover change, was 

calculated for the ΔNDMI categories: ΔNDMI 0.00 – ΔNDMI 0.49 (interval: 0.01) (Figure 16). The 

ΔNDMI categories were defined as “more than or equal to” values, so the ΔNDMI 0.00 category 

includes all ΔNDMI values more than or equal to 0.00, and so on.  

From the results, the lowest probability is found for category 0.00 at approx. 73% (Figure 16). Since the 

ΔNDMI 0.00 category includes all positive ΔNDMI values and therefore all breakpoints detected by the 

ΔNDMI method, the probability of any land cover change detected by the ΔNDMI being actual change, 

is 73%. If a threshold was applied to the ΔNDMI values of the detected breakpoints, the probability of 

the method detecting change accurately, would increase according to the graph shown in Figure 16. For 

all ΔNDMI categories above 0.22 (red point, Figure 16), a probability of 100 % was reached. A threshold 

of ΔNDMI 0.22 would thus result in 100% probability of the land cover change detected by the ΔNDMI 

method is true change, according to the reference dataset.  
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Figure 16: The probability of accurate detection of land cover change for each ΔNDMI category. The ΔNDMI categories are defined 
with a 0.01 interval. Gaps in the blue plot, e. g. at ΔNDMI category 0.45 are a consequence of no points having a ΔNDMI value of 
0.45. The red point illustrates that a probability of 100% is reached at ΔNDMI category 0.22. 

A probability map was created based on the probabilities assigned to each ΔNDMI category. The 

probability areas are shown in Figure 17 and correspond to the detected land cover change areas in Figure 

15b. Compared with the corresponding change years (Figure 15b), it is notable that the areas of lower 

probability mostly relates to recent change years, after year 2010, e. g. the low probability patch by label 

A, Figure 17, which was detected in 2015 (Figure 15b). Furthermore, from Figure 17 it can be seen that 

the majority of low probability areas are smaller patches (label B) while larger patches (label C and D) 

generally have a higher probability of being correctly detected land cover change.  

The relatively low probability is a result of a low ΔNDMI value (approximating zero) of the detected 

breakpoint, a consequence of a similar mean NDMI value in the year before the breakpoint, to the mean 

value the year after. This can indicate that another type of land cover change occurred than deforestation, 

or that false breakpoints were detected. Outliers in the dataset could likewise result in unexpected 

ΔNDMI values, however this option is less likely since a pattern could be recognized for the breakpoints 

with lower probabilities. Other notable facts are that the low probability areas were detected in years and 

in locations mainly absent in Figure 15a. Thus, the breakpoints of the areas did not occur at NDMI values 

below 0.15, the selected threshold for detecting deforestation with the NDMI Threshold method.   
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Figure 17: The mapped probabilities of the land cover change detected by the ΔNDMI method. Label A: example of a low probability 
patch detected in recent years, according to figure 13 (b). Label B: Example of relatively smaller, scattered low probability patches. 
Label C and D: Example of a relatively larger, high probability patch.   
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5 Discussion 

In this study, Bfast Monitor was integrated into an automated approach, with the purpose of detecting 

deforestation caused by Smallholder Oil Palm Plantation (SHOPP) establishment.  

The results showed that NDMI was more suitable vegetation, for detecting land cover change with the 

Bfast-algorithm, as compared to NDVI and EVI. Furthermore, two distinct methods for detecting 

spatio-temporal land cover change were presented: the NDMI Threshold and the ΔNDMI method. Both 

methods obtained similar accuracies, but are characterized by different advantages and disadvantages. 

Finally, a probability of the ΔNDMI method correctly detecting land cover changes, was mapped. These 

results will be discussed in the following sections.   

 

5.1 Choice of vegetation index for time-series analysis with Bfast Monitor 

The choice of NDMI as the foundation of this study, was made based on visual interpretation of time-

series plots and Bfm Pixel test-runs. Previous studies using the Bfast-algorithm were mostly based on 

NDVI datasets, either derived from MODIS or Landsat imagery (e. g. DeVries et al., 2015a; Schultz et 

al., 2016; Verbesselt et al., 2010, 2012), except the study by  Dutrieux et al. (2016) and DeVries et al. 

(2015b).  Dutrieux et al. (2016) successfully used NDMI to reconstruct land use history in Brazil, whereas 

DeVries et al. (2015b) monitored disturbance and regrowth of tropical forests in Peru. Based on 

experience from ISCC/GRAS (GRAS - Global Risk Assesment Services, 2015), it was decided to 

compare different vegetation indices for this study.  

Since both comparison methods were highly influenced by outliers and noise, the strength of the 

temporal signals of each VI, could likely have been improved by temporal filtering. Several filters exist, 

however temporal filtering was usually not employed for studies using Bfast Monitor (e.g. Dutrieux et 

al., 2016), since the algorithm is not considered sensitive to outliers (Verbesselt et al., 2012). However, a 

considerable amount of false breakpoints were still detected by Bfast Monitor, based on all three VIs 

(Table 4). If the datasets had been temporally filtered, this amount would likely have decreased, and thus 

the suitability of the NDVI and EVI could likewise have been increased. However, the premise was the 

same for all VI’s and the NDMI could still be concluded suitable without temporal filtering of the 

datasets, limiting the necessary pre-processing steps.  

The choice of NDMI in general, carries some limitations that needs to be considered. The NDMI is a 

moisture index, which is sensitive to the moisture contained in land covers, e. g. the moisture content of 

soil and foliage (McDonald et al., 1998; Thenkabail, 2016). Limitations therefore exists in extrapolating 

the land cover change detection methods presented in this study, to different geographic regions. The 

NDMI Threshold and ΔNDMI were designed specifically for the purpose of detecting deforestation related 

to oil palm plantations, which are cultivated in humid tropical lowlands (Verheye, 2010). The climate of 

the study area, the Riau Province, Indonesia, is characterized by a dry and wet season, with high humidity 

throughout the year and an annual rainfall of 2500 to 3000 mm (Biagioni et al., 2015; Motohka et al., 

2014). Seasonality is present, defined by the dry and wet season, however the wet season usually spans 9-

10 months (September-May), and the minimum rainfall observed in June is approx. 100-150 mm 
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(monthly mean, Biagioni et al., 2015). Since seasonality was observed in time-series based on both NDVI 

and EVI  in previous studies related to oil palm, (Gutiérrez-Vélez & DeFries, 2013; Panuju & 

Trisasongko, 2012), the humid tropical climate likely caused the little seasonality observed in the NDMI 

time-series (e.g. Figure 12 and 13), due to NDMI’s sensitivity to moisture. Since the variables (i.e. NDMI 

threshold and ΔNDMI) defined in this study, were designed based on the characteristics of the NDMI 

time-series, the automated methods are therefore highly advantageous for application in humid, tropical 

regions. It is therefore also likely that they can prove disadvantageous for application in climate regions, 

experiencing a higher degree of seasonality, compared to South-East Asia. However, previous studies 

based on Landsat-derived NDMI time-series for forest disturbance detection (Hais et al., 2009; Jin & 

Sader, 2005; Wilson & Sader, 2002) were conducted in continental and temperate climate zones, 

suggesting that, with modifications, an NDMI based tool can be useful in other climate regions. Further 

testing in areas of different climate is necessary to verify this potential. 

 

5.2 The NDMI Threshold method 

The NDMI Threshold method was designed as an automated approach (i.e. not applying the needed 

expert-knowledge) to the Bfast Monitor method, and uses the exact NDMI value of the breakpoint 

detected by Bfast Monitor, to create a final result.  

The main advantage of the NDMI Threshold is its independency of noise and outliers that can be present 

in the time-series. If the NDMI threshold is set to the value providing the highest accuracy, the probability 

of detecting false breakpoints is expected to be minimal, based on the findings of this study. Previous 

studies have as well found the implementation of a threshold beneficial in land cover change detection, 

in order to separate the temporal change signal from seasonal variability, outliers and noise, however 

based on a number of different approaches (Cai & Liu, 2015; Kennedy, Yang, & Cohen, 2010; Potter et 

al., 2003; White & Nemani, 2006). Further research is still needed to test the method, and to determine 

the threshold with the most accurate outcome. An approach could be to apply the NDMI Threshold 

method for a number of test pixels at a range of threshold values (f. ex. between 0.00 - 0.50), and quantify 

the correctly detected breakpoint for each value, by reference to ground truth data.  

The need for a threshold is an obvious disadvantage, as it requires extensive costs and efforts to determine 

the threshold (Verbesselt et al., 2012), which will result in the most accurate outcome. The NDMI 

threshold used in this study (i.e. 0.15) is experimental, and adjusting the value would greatly influence the 

final output of the method. For instance, the size of the detected change area would decrease if a lower 

threshold was applied (Figure 18).  
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Figure 18: The NDMI values of the breakpoints detected by the NDMI Threshold method from 2005 – 2015. According to the 
experimental threshold, all NDMI values are below 0.15.  

Furthermore, applying the NDMI threshold results in limitations related to the following concepts and 

components of this study: 

 The vegetation index: The method is founded on the Landsat NDMI, and the threshold is an 

NDMI value, and obviously therefore only applies to an NDMI based time-series. As discussed 

in the previous section (section 5.1), the method could be successful with other Landsat-derived 

VI’s, and the threshold defined and implemented in this study would thus not apply.  

 

 Type of change: While it can be considered an advantage that the method is flexible regarding 

the type of land cover change detected (be determining different thresholds for different types), 

it is likewise a disadvantage that extended research is necessary for determining different 

thresholds. The threshold was set based on the expected temporal NDMI signal of deforestation 

(a sudden drop in NDMI value, to a relatively low value at the moment of land cover change). If 

another type of change occurs, characterized by a different temporal pattern, such grassland → 

oil palm, the threshold should be adjusted accordingly.  

 

 Geographic location: The NDMI reflects minimal seasonality (as modelled by Bfast Monitor), 

and the little seasonal variability observed is directly related to the location of the study area in a 

tropical region. If high seasonal variability was present in the dataset, a vegetation index-threshold 

could be problematic, since large fluctuations would change the characteristics of the dataset, 

requiring an entirely different approach.  
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Because of the aforementioned constraints, the threshold can be optimized to provide a highly accurate 

result, with the purpose of detecting deforestation (or plantation conversion) due to oil palm plantation 

establishment in tropical regions. However, flexibility or the possibility of extrapolating the method to 

other non-tropical geographic regions or other types of land cover change is very likely lost by introducing 

a threshold of an absolute VI value (White & Nemani, 2006).   

The accuracy assessment was conducted with the pixel-based NDMI Threshold method for 1000 random 

points within Location ID1. An overall accuracy of 74.6% was achieved, and looking into the land cover 

classes individually, the lowest Producer’s accuracy (34.9%, Table 5) of the “Change” class was likely 

caused by the defined threshold 0.15. In the full dataset, no distinction is made between types of land 

cover change. For example, if grassland was converted to oil palm, the breakpoint would be detected 

when a change in the time-series occurred, at the point when the NDMI values were increasing compared 

to the stable grassland condition. The NDMI value of the breakpoint would then be higher than during 

deforestation, where the breakpoint would occur at the moment of clearing the forest cover. Since the 

threshold was designed in order to detect deforestation, it is expected that other types of land cover 

change can be missed by the method. 

The high accuracy (98.4%) of the “No Change” class however, shows that the method detected very few 

false breakpoints. The NDMI Threshold method, applying the experimental threshold, can thus be 

concluded to perform relatively better in correctly detecting “no change”, than in detecting the actual 

timing and location of land cover change (according to the reference, Google Earth imagery). Since the 

threshold is experimental, further studies could suggest a better performing threshold, as discussed above, 

and thus improve the overall performance of the method.  

To determine the ability of the method to detect land cover change specifically related to deforestation 

caused by SHOPP establishment, the reference and predicted datasets were limited to only include dense 

vegetation.  Compared with the full dataset in Table 5, a higher accuracy was achieved with the limited 

dataset (92.4%, Table 6), which suggests that the performance of the method has increased considerably, 

when only land cover change related to dense vegetation is taken into account. Compared with the 

performance based on the full datasets, the method is here more likely to detect actual land cover change, 

with an accuracy of 92.5% (Producer’s accuracy in the “Change” class) versus 34.9%. This result supports 

the conclusion that the performance of the method is relatively better in detecting one type of land cover 

change (deforestation), compared to other types.  

It is concluded that, while the threshold is a disadvantage, it can be optimized to provide a highly accurate 

result, with the purpose of detecting deforestation due to oil palm plantation establishment in tropical 

regions.  

 

5.3 The ΔNDMI method 

The ΔNDMI method is the second proposed solution for an automated approach to the Bfast Monitor 

change detection method. The ΔNDMI method uses the difference in the temporal pattern before and 

after the breakpoint detected by Bfast Monitor, to determine the magnitude of change.  
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The main advantage is that no threshold is required, which provides flexibility since a specific threshold 

accustomed to the type of land cover present is needed. A probability measure for determining the 

probability of the ΔNDMI method correctly predicting land cover change, could be linked to the 

ΔNDMI values, which also provides a tool for setting a threshold based on the found probabilities, e. g 

by only including areas with a probability higher than 95% (section 4.3). 

The definition of ΔNDMI (i.e. the size of a detected change), the concept could in theory be implemented 

with other VI’s. As concluded from visually comparing the VI’s, a land cover change signal could be 

identified in most of the NDVI and EVI time-series plots. While further testing of the method is needed, 

it is likely that the method can work with other VIs, e.g. EVI which has previously been successfully 

applied in time-series based change detection related to do oil palm plantations (Gutiérrez-Vélez & 

DeFries, 2013).  

Another advantage of ΔNDMI is that it can be further improved to characterize the different types of 

changes recorded, e. g. by including breakpoints with negative ΔNDMI values, which would indicate 

growth of dense vegetation. This requires further research into how the ΔNDMI values can be 

representative of different types of change, still the ΔNDMI method has the potential to be a method, 

which does not depend on a threshold, and is capable of detecting the both the location, timing and type 

of land cover change.  

The main disadvantage of the method is the calculation of the ΔNDMI. Since ΔNDMI relies solely on 

the dataset, and thereby the temporal distribution and density of data points in the time-series, calculating 

the value becomes highly sensitive to the characteristics of the dataset. If noise, outliers and data gaps 

affects the temporal signal of the two one-year periods used to calculate the ΔNDMI, the value will be 

distorted accordingly. A precaution was built into the method, by returning no value if a data gap does 

not allow for calculating a mean in any of the periods, and no output is returned, even though Bfast 

Monitor were able to give a result. A solution for the problem of data gaps could be to locate the nearest 

stable period on each side of the breakpoint in the dataset. Some criteria could be defined: the number 

of data point values should fall within a specific period of time to represent a stable period. The mean of 

these could then be used to calculate the ΔNDMI. The defined three-month buffer and one-year before 

and after periods could likewise be re-defined by a similar criteria.  

If outliers disturb the value of ΔNDMI, the output can likely be improved by applying a temporal filter 

to increase the quality of the dataset (Chen et al., 2004), as discussed previously. Similar to the limitation 

of NDMI Threshold method, the characteristics of the temporal signal is key to the concept of the ΔNDMI 

method. While this method is more flexible by not including a threshold, limitations remain in 

extrapolating the method to non-tropical regions. Fluctuations caused by seasonal variability in the 

temporal pattern belonging to non-tropical vegetation, e.g. boreal, would create difficulties in calculating 

a meaningful ΔNDMI, as the high and low values of the fluctuations would negate each other. A 

difference in mean values could still be detected, however likely of a relatively smaller magnitude than 

the ΔNDMI values observed in this study. Another approach could be to only include seasonal data, to 

avoid the effect of fluctuations by only calculating the mean values from data points from one season, 

e.g. the dry season to avoid cloud cover. This would however effect data availability, and data gaps which 

extent the time-period used for calculating ΔNDMI, has already been observed in this study.   
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For the full datasets, a total accuracy of 76.3% was achieved (Table 5). The result is slightly higher than 

the result for the NDMI Threshold method (74.6 %). Compared to the Producer’s accuracy achieved by 

NDMI Threshold, the ΔNDMI method was superior in detecting land cover change, without employing a 

threshold. A direct comparison of the accuracies achieved to previous studies is not advantageous, since 

no previous study based on Bfast Monitor has employed the same method framework as this study, nor 

for the same purpose. However, noticeable studies include DeVries et al. (2015a, 2015b), who similarly 

used the one-year monitoring-window sequentially iterated through-out the time-series. The studies 

utilized Landsat-derived NDVI, and Landsat-derived NDMI, respectively and both were conducted in 

tropical regions (Ethiopia and Peru). In the study in Ethiopia, 78% overall accuracy could be obtained in 

detecting small-scale forest disturbances based on NDVI (DeVries et al., 2015a), whereas in the study in 

Peru, disturbance in tropical forests could be detected with an overall accuracy of 91% based on NDMI 

(DeVries et al., 2015b).  

The method overall performs well in the “Dense Vegetation” category as well, with an overall accuracy 

of 88.3% (Table 6). However the relatively lower Producer’s accuracy of the “No Change” class suggests 

an issue in the ability of the method to not detect false breakpoints during stable land cover conditions. 

This is likely caused by not including a threshold in the ΔNDMI method. Values (very) close to zero are 

included in the output, however a ΔNDMI value of zero cannot represent land cover change by the 

definition of the ΔNDMI variable, as this suggest that there is no difference in land cover before and 

after the breakpoint. Since no threshold, the output is completely dependent on the breakpoints detected 

by the Bfast Monitor algorithm. If a false breakpoint is detected by Bfast Monitor, it will be included in 

the output of the ΔNDMI method, if it has a positive ΔNDMI value.  To tackle this issue, a probability 

value was assigned to detected change pixels, as described in section 4.3.  

Based on the results of the validation, it is concluded that the sensitivity of the Bfast-algorithm to outliers 

(causing false breakpoint detection) is also seen the ΔNDMI method. This issue is not further explored 

in this study, however a study by Schultz et al. (2016) concluded that Bfast Monitors sensitivity to outliers 

increases when there is little data variance in the time-series dataset. This is likely the case of the NDMI 

dataset (evaluated based on the visual comparison) and a consequence of studying a tropical region with 

a minor amount of seasonal fluctuations, compared to other geographical regions.  

Overall, it can be concluded that the ΔNDMI method has a wider range of applicability, compared to 

the NDMI Threshold, since a threshold is not required. With further study, the output can be categorized 

into different types land cover change based on the corresponding ΔNDMI value of the detected 

breakpoints. This step could be included as a post-processing step, without adjustments to the original 

ΔNDMI method. To apply the method in other geographical regions, adjustments needs to be made in 

the way ΔNDMI values are calculated (e.g. due to seasonal fluctuations as discussed previously), however, 

compared to setting location- and vegetation-specific thresholds, this task is considered more feasible.  

 

5.4 Performance and applicability of the automated land cover change detection method 

The proposed methods in this study offer a solution to detect deforestation in tropical regions, by 

applying the Bfast-algorithm, without the required expert-knowledge. DeVries et al. (2015a) successfully 

detected small-scale forest disturbances in Ethiopia with Bfast Monitor, however with the conclusion 
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that manual calibration of the Magnitude threshold was necessary. This restricts the application of the 

Bfast Monitor method by providing constraints in different locations, even locations of high similarity to 

their study site (DeVries et al., 2015a). The original Magnitude is somewhat comparable to ΔNDMI, in 

that they are both an expression of the size of a change, however defined differently. A notable difference 

lies in the time-periods used for calculating each parameter. The Magnitude is calculated from the entire 

monitoring-period while ΔNDMI is based on the year before and after the breakpoint. While the 

selection of included data points may be improved (e.g. according to the discussed approach, section 5.3), 

the ΔNDMI calculation emphasizes the difference between the land cover present before and after the 

breakpoint. This supports the advantage of the ΔNDMI method and location-specific calibration is not 

expected to be necessary within tropical regions. However, further testing is needed in different locations 

and at larger scale, due to the relatively small test-site used in this study.   

 

5.4.1 Error sources 

Additional error sources, apart from those discussed in previous sections, include the high resolution 

imagery accessed through Google Earth. This data was the source for selecting the study area, performing 

the suitability assessment of VI’s and validation of the methods. Several studies have used high resolution 

Google Earth imagery for validation purposes (Dutrieux et al., 2016; Gutiérrez-Vélez & DeFries, 2013; 

Hamunyela et al., 2016), however issues exist with the accuracy of the imagery displayed. According to 

Google Incorporated, (2017), the date stamp on Google Earth images can be inaccurate (likely a few 

months or within the year stated), for several reasons, such as the true date not being reported by the 

image provider. Ground truth data collected manually through field work is therefore highly 

recommended for future validation of the methods presented in this study. To validate spatial land cover 

change, field observations could be collected to document recent land covers and field survey among 

locals could be used for historical land cover/land use data.  

Other error sources which deserves attention are the effect of outliers, noise and data gaps, which have 

been addressed to some extent in the previous section. There can be several reasons for outliers and data 

gaps. Outliers can be caused by remnants of cloud and cloud shadows which were not completely 

removed during masking (DeVries et al., 2015a) and clouds are also likely the source of data gaps, due to 

extensive  cloud cover in the tropics. Using Landsat ETM+ imagery further adds data gaps due to its 

operation in SLC-off mode from 2003 (USGS & NASA, 2003). A considerable difference in the design 

of the two methods exists in the respect. The ΔNDMI method is more sensitive to these issues since its 

calculation depends on a two-year period in total. However, one safeguards has been built-in against data 

gaps: If no data points are available in the one-year periods used to calculate ΔNDMI, no breakpoint will 

be recorded, even if one was detected by Bfast Monitor. Further improvement to the time period could 

be to remove the one-year limit, and instead base the time period on a determined number of available 

data point, in order to calculate the mean. The NDMI threshold is less sensitive to outliers and data gaps, 

with the exception of outliers which were falsely detected by Bfast Monitor as a breakpoint, and have an 

NDMI value below the selected threshold. Data gaps will be an issue if they occur at the actual moment 

of deforestation. This issue persists in remote sensing-based time-series analyses and has been addressed 
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by a number of studies by combining data sources, such as SAR (Synthetic Aperture Radar) (Reiche et 

al., 2013; Reiche et al., 2015a; Reiche et al., 2015b).  

 

5.4.2 Contribution to sustainability certification of smallholders 

An automated land cover change detection method that can detect historical and near real-time 

deforestation in tropical regions without prior knowledge, is highly beneficial for organizations 

implementing certification schemes. It provides a cost-efficient method for non-experts to evaluate the 

sustainability of farming practices from a spatio-temporal aspect, and remote sensing tools are considered 

a necessity in in aiding certification processes (Scarlat & Dallemand, 2011). E.g. by providing a tool to 

enforce regulations regarding the cut-off date (January, 2008) defined according to ISCC requirements 

(ISCC, 2011). The methods proposed in this study can provide the location and timing of the 

establishment of investigated smallholder farms to provide documentation on if their practice was 

established before or after the cut-off date. 

Summarizing the obtained results and discussed advantages and disadvantages, it can be concluded that 

the ΔNDMI method meets the criteria necessary (i.e. detecting SHOPPs without expert-knowledge, with 

the potential to be up-scaled and applied to different locations) to be a valuable tool for certification 

purposes. However several points needs to be addressed, before the proposed method can be 

implemented directly:  

 Parameterization. The one-year before and after periods used to calculate the ΔNDMI of each 

breakpoint can be optimized for a more automatic approach to this part of the method. By 

extracting a certain number of data points within defined time-frames, the effect of outliers and 

data gaps could also be alleviated (according to the discussed approach, section 5.3).   

 The robustness of the ΔNDMI method. According to the advantages and disadvantages, this 

method has potential in certification of smallholder oil palm farmers, and the focus can therefore 

remain on humid, tropical regions. It is still necessary to test the method in other regions of 

South-East Asia, as well as in the regions of South America and Africa used for oil palm 

cultivation and in larger areas than the 5x5 test-site.  

 The probability table. With proper testing of the method, a general look up table (Figure 16) can 

be provided for a region, to always provide a probability map as an output. This can provide a 

useful post-processing tool or as a final change map without limiting the output based on 

ΔNDMI. An approach could be to use the same method of visual validation based on high 

resolution Google Earth imagery for a larger area, in order to create a representative table. 

 Creating functions: The method is carried out in the open source R language and software 

environment. With a guiding manual the implementation can be straight forward for non-expert 

users, however by converting the script into a set of functions, a highly user-friendly platform 

can be achieved. 

With attention to these points, the method can be incorporated into the certification procedures carried 

out by organizations, as a tool for assuring that smallholder plantations meet the defined criteria that 

relates to location and time of establishment. 
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6 Conclusions and Prospects 

The main objective of this study was to detect the extent and timing of land cover conversion related to 

smallholder oil palm plantation establishment or expansion from multi-temporal Landsat imagery. 

According to a comparison performed between NDVI EVI and NDMI based on visual interpretation 

and a series of Bfast Monitor test-runs, this study concluded that the most suitable Landsat-derived 

vegetation index for this task was NDMI. An automatic approach could be developed based on the 

NDMI time-series, employing the Bfast-algorithm to extract the location and timing of land cover 

conversion related to smallholder oil palm plantation establishment. The original Bfast Monitor requires 

parameterization based on in-depth knowledge of the time-series data or the study area in order to 

correctly detect a breakpoint within the monitoring-period (DeVries et al., 2015a; Dutrieux et al., 2017). 

The proposed method of this study circumvents that need, by introducing an iterative framework, and 

selecting the most probable breakpoint by applying ΔNDMI, which is defined as the difference between 

the land cover present before and after the breakpoint. Finally, a probability map of the study area could 

be generated from the ΔNDMI method, showing the methods ability to correctly predict land cover 

change. This resulted in a minimum probability of approx. 73% for all changes detected by ΔNDMI. 

This study showed that the Bfast Monitor could effectively identify breakpoints in Landsat time series, 

which could be related to land cover change. The NDMI Threshold and ΔNDMI methods obtained similar 

overall accuracies when evaluating against multi-temporal high-resolution Google Earth imagery, based 

on both the full datasets including all types of land cover change and the datasets only including 

deforestation. Their performance in detecting spatio-temporal deforestation caused by Smallholder Oil 

Palm Plantation (SHOPP) establishment, can thus be considered equal. Nevertheless, the advantages and 

disadvantages of each method sets them apart. In summary, the NDMI Threshold method has the potential 

of achieving high accuracies for the specific purpose of this study, if further research is conducted in 

setting the threshold with the most accurate outcome. The ΔNDMI method has potential in extending 

its applicability outside of the scope of this study, and can potentially achieve a probability of 100% in 

correctly predicting land cover change by post-processing the output.  

Future research should evaluate the potential of upscaling the ΔNDMI method to larger areas, e.g. a 

Landsat scene of 170 x 185 km. As the ΔNDMI method considers the difference between land covers 

before and after the detected breakpoint, the approach would also allow detecting other land cover 

changes unrelated to deforestation.  

In this study it has been achieved to design a promising method, which may provide a useful tool for 

detecting deforestation in the Riau Province, without the need for an area-specific threshold or method-

specific expert-knowledge. The method is particularly beneficial for certification purposes, as the method 

provides both historical change detection and near real-time monitoring and therefore offers two 

functionalities: 1) the year and location of deforestation with an associated probability can be compared 

with criteria defined by certification companies e. g. the cut-off date defined by ISCC. 2) Near real-time 

monitoring for recent land cover development, e. g. the expansion of smallholder plantations or 

increasing deforestation. Finally, the method has the potential of being integrated into automated 

monitoring systems useful for certification organizations, since the method is developed for non-experts 

and uses free and open source data and software. 
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Appendix A 

Mean value and standard deviation maps for Location ID1, 2006 – 2014. The time-period is limited to 

the imagery available in Google Earth for a direct comparison. The low mean value areas of map a) are 

considered likely areas of change, which corresponds to the observed land cover change in the Google 

Earth high resolution imagery, shown in map c) and d). The same pattern applies to the high standard 

deviation pixels in map b). 

  

                  

 

 

 

 

a) b) 

c) d) 2006 2014 
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Appendix B 

Calculation of the conservative and experimental NDMI threshold, based on the 100 test-pixels. First 

the mean NDMI of each of the test-pixels of the Stable Dense Vegetation class were found. The 

minimum of the mean values was chosen to represent the lower boundary of the NDMI values of stable 

dense vegetation, illustrated with a green line in the demonstrated time-series plot a) below. The same 

was done for the Stable Oil Palm class, where the minimum of the mean values was 0.38. This value was 

therefore considered the lower boundary for all stable vegetation. To set the lowest boundary, shown in 

brown in the time-series plot below, the minimum values of each raster was found. The mean of all the 

minimums was taken as representative of no vegetation / clearance, at -0.08. The threshold, shown in a 

red dashed line, was set to the mean of these two values, to fall exactly in the middle between the lower 

boundery of stable vegetation and the lowest boundary of no vegetation.  

 

Calculation of threshold: 

Minimum of the means of test-pixels, Stable Dense Vegetation (mmDV): 0.44 NDMI 

Minimum of the means of test-pixels, Stable Oil Palm (mmOP):  0.38 NDMI 

Means of the minimum values of all rasters of the stack (mmS):  - 0.08 NDMI 

The likely interval where the breakpoint value may fall is then between mmOP = 0.38 and mmS = - 0.08. 

The mean between these two values are chosen as the threshold: 

NDMIthresh (-0.08 NDMI + 0.38 NDMI) / 2 = 0.15 NDMI  

 

 

a) 

Stable dense vegetation: 0.38 

No vegetation / clearance -0.08 

Threshold: 0.15 
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Appendix C 

The spatial filter used with the spatially applied NDMI Threshold and ΔNDMI methods. The first map a) 

shows the output of Bfm Spatial without filter, demonstrated for the year 2013. The second map b) 

shows the area in hectare assigned to each pixel cluster. Pixels in all 8 directions were included as 

adjacent. Map c) shows the result after masking pixels below the chosen threshold.  

 

 

 

 

 

 

a) b) 

c) 
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Appendix D 
The script implemented in the R language and software environment. Several parts were modified from 
Dutrieux et al. (2017).  

The following R packages were used: devtools, bfastSpatial, raster, maptools, bfast, data.table, lubridate 
 

### UNZIP, EXTRACT AND CLEAN DATA ### 
folder_gz <- "C:/mydir/myzippedfiles" 
listzip <- list.files(folder_gz, pattern= ".tar.gz$", full.names=TRUE) 
 
## CREATE TEMP DIRECTORY USED FOR BATCH PROCESSING 
srdir <- dirout <- file.path(dirname(rasterTmpFile()), 'bfmspatial') 
dir.create(dirout, showWarning=FALSE) 
 
## RUN BATCH PROCESSING, UNZIP, EXTRACT VI AND CLOUD MASKED  
output_gz <- "C:/mydir/unzippedfiles" 
processLandsatBatch(x=listzip, pattern=glob2rx('*.zip'), outdir=output_gz, srdir=srdir, delete=TRUE, 
vi='ndmi', mask='fmask', keep=0, overwrite=F) 
 

### LOAD DATA AND SHOW HISTOGRAM OF SCENES ### 
GRDfiles <- "C:/mydir/myGRDfiles" 
listVI <- list.files(GRDfiles, pattern=glob2rx('*.grd'), full.names=TRUE) 
info <- getSceneinfo(listVI) 
info$year <- as.numeric(substr(info$date, 1, 4)) 
plot(hist(info$year, breaks=c(2000:2016), main="Scenes per Year", 
     xlab="year", ylab="# of scenes")) 
 

### CREATE RASTER BRICK ### 
out_dir <- "C:/mydir" 
t_stack <- file.path(out_dir, 'my_stack.grd')  
 
Rbrick <- timeStack(x=listVI, filename=t_stack, datatype='INT2S', overwrite=TRUE) 
Rbrick = calc(Rbrick, function(x) x/10000) 
 
## CALCULATE MEAN AND STANDARD DEVIATION 
meanVI <- summaryBrick(Rbrick, fun=mean, na.rm = TRUE) 
stdVI <- summaryBrick(Rbrick, fun=sd, na.rm = TRUE) 
meanVI_06_14 <- summaryBrick(Rbrick, fun=mean, na.rm=TRUE, minDate="2006-01-01", 
                          maxDate="2014-01-01") 
sdVI_06_14 <- summaryBrick(Rbrick, fun=sd, na.rm=TRUE, minDate="2006-01-01", 
                          maxDate="2014-01-01") 

 
### BFM PIXEL TEST RUNS ### 
## load test-pixels (shapefile), Stable Dense Vegetation, Stable Oil Palm, Land Cover Change 
myproj <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"   
pointsForest <- readShapeSpatial("C:/mydir/randompixels_forest.shp", proj4string = CRS(myproj)) 
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## extract corresponting cellnumbers 
cellNumbersForest.df <- extract(meanVI, pointsForest, cellnumber = T, df=T) 
## run bfm pixel for every cell belonging to class (e.g. EVI time-series, Stable Dense Vegetation) 
 
VI <- "EVI" 
A <- NULL 
B <- NULL 
C <- NULL 
D <- NULL 
k <- 1 
 
for (i in 1:34){ 
  cellID <- 1  
  cell_number <- cellNumbersForest.df[cellID,2] 
  bfm_cell <- bfmPixel(Rbrick, cell= cell_number, start = c(2006,1), formula = response~harmon+trend, 
history = c("all"))    
 
  nam <- paste("BfmBreak_", VI, "_", i, sep = "") 
  assign(nam, bfm_cell, envir = .GlobalEnv) 
 
  A[k] <- i 
  B[k] <- cell_number   
  C[k] <- bfm_cell$bfm$breakpoint  
  D[k] <- nam 
   
  k = k+1 
} 
 
total_bfm_evi <- data.frame(ID=A, Cell=B, Breakpoint=(as_date(date_decimal(C))), Name=D) 
 
 
### PIXEL BASED NDMI THRESHOLD FOR STABLE DENSE VEGETATION### 
thresh <- 0.15 
 
G <- NULL 
H <- NULL 
I <- NULL 
J <- NULL 
L <- NULL  
K <- NULL 
l <- 1 
 
for (j in 1:34){ 
  cellID <- 1  
  cell_number <- cellNumbersForest.df[cellID,2] 
 
D <- NULL #breakpoint 
R <- NULL #ndmi 
C <- NULL #cell 
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Y <- NULL #year 
W <- NULL #6 month index 
k <- 1 
for (i in 2005:2015){ 
  for (n in c(1,181)){ 
 
  bfmPix <- bfmPixel(Rbrick, cell=cellNum, start=c(i, n), monend = c(i+1, n), formula = 
response~harmon+trend, history = c("all"), order=1) 
 
  if (is.na(bfmPix$bfm$breakpoint) == TRUE) { 
      
    D[k] <- NA 
    R[k] <- NA 
    C[k] <- cellNum 
    Y[k] <- NA 
    W[k] <- NA 
     
  } else { 
     
    out <- bfmPix$bfm$tspp 
     
    out2 <- out[which(bfmPix$bfm$tspp$time == bfmPix$bfm$breakpoint), ] 
     
    D[k] <- out2$time 
    R[k] <- out2$response 
    C[k] <- cellNum 
    Y[k] <- format(date_decimal(out2$time), "%Y") 
    W[k] <- n     
  }   
  k <- k+1 
  }  
}  
 
ndmi.res <- data.frame(Breakpoint=as_date(date_decimal(D)), 
                      NDMI=R, Date=Y, Index=W, Cell=C) 
 
trueIndex <- which(ndmi.res[2] < thresh) 
 
if (length(trueIndex) == 0L){  
   
  G[l] <- cellNum 
  I[l] <- NA 
  J[l] <- NA 
  K[l] <- thresh 
  L[l] <- NA 
  H[l] <- j 
   
  l <- l+1 
   
} else {  
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  trueBreak <- ndmi.res[trueIndex[[1]],] 
  trueYear <- as.vector(trueBreak$Date) 
   
  G[l] <- trueBreak$Cell 
  I[l] <- trueYear 
  J[l] <- trueBreak$NDMI 
  K[l] <- thresh 
  L[l] <- trueBreak$Breakpoint 
  H[l] <- j 
   
  l <- l+1 
} 
} 
 
resultF <- data.frame(Cell=G, Date=I, NDMI=J, Breakpoint=L, ID=H) 
 
 
### SPATIAL NDMI THRESHOLD, e.g. 2015### 
 
startMonit <- 2015 
endMonit <- startMonit + 1 
Smonth <- 1 
dirOutput <- 'D:/mydir/NDMI 0.15' 
NamePath <- file.path(dirOutput, paste(startMonit, "15_NDMI0.15.grd")) 
 
bfmSp <- bfmSpatial(Rbrick, start = c(startMonit, Smonth), monend = c(endMonit, Smonth), formula = 
response~harmon+trend, history = c("all"), overwrite=TRUE, filename = NamePath, returnLayers = 
c("breakpoint")) 
 
nam <- paste("BfmSpatial", startMonit, "_", Smonth, sep = "") 
assign(nam, bfmSp, envir = .GlobalEnv) 
 
## spatial filter 
blay <- bfmSp 
blayFilt <- clumpSize(blay, f=900/10000, stats = T, direction=8) 
blayFilt$clumps 
clumpFilt <- blayFilt$clumps 
clumpFilt[blayFilt$clumps < 1.8] <- NA ## 1.8 hectares filt  
Bfilt <- blay 
Bfilt[is.na(clumpFilt)] <- NA 
 
## get cell numbers 
blay.df <- as.data.frame(Bfilt) 
blayClean.df <- na.omit(blay.df) 
blayClean.df$date <- as_date(date_decimal(blayClean.df$layer)) 
rnames = as.numeric(rownames(blayClean.df[1])) 
NumbCell <- length(rnames) 
 
 
# Apply bfm pixel to all breakpoint pixels in raster and extract NDMI 
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D <- NULL 
R <- NULL 
C <- NULL 
Y <- NULL 
k <- 1 
 
for (i in 1:NumbCell){ 
 celln <- rnames[i] 
 bfmPix <- bfmPixel(Rbrick, cell=celln, start=c(startMonit, Smonth), monend = c(endMonit, Smonth), 
formula = response~harmon+trend, history = c("all")) 
   
  out <- bfmPix$bfm$tspp 
  out2 <- out[which(bfmPix$bfm$tspp$time == bfmPix$bfm$breakpoint), ] 
     
  if (out2$response < 0.15) { 
  D[k] <- out2$time 
  R[k] <- out2$response 
  Y[k] <- format(as_date(date_decimal(out2$time)), "%Y") 
  C[k] <- tt 
 
} else { 
  print(paste(out2$time, out2$response)) 
} 
  k <- k+1 
}  
ndmiVal <- data.frame(date=D, 
                      ndmi=R, cell=C, Year=Y) 
 
## create new empty raster 
newR <- raster(ncol=176, nrow=169, xmn=101.1164, xmx=101.1638, ymn=1.148424, ymx=1.19397, 
crs=myproj) 
 
for (i in 1:NumbCell){ 
  newCell <- ndmiVal[i,3] 
  newVal <- ndmiVal[i,2] 
   
  newR[newCell] <- newVal ## how to insert new values into raster 
} 
 
## create new breakpoint layer with years 
newR_2 <- raster(ncol=176, nrow=169, xmn=101.1164, xmx=101.1638, ymn=1.148424, ymx=1.19397, 
crs=myproj) 
 
for (i in 1:NumbCell){ 
  newCell_2 <- ndmiVal[i,3] 
  newVal_2 <- as.vector(ndmiVal[i,4]) 
   
  newR_2[newCell_2] <- as.numeric(newVal_2) ## how to insert new values into raster 
} 
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## spatial filter 
NDMIlayC <- clumpSize(newR, f=900/10000, stats = T, direction=8) 
NDMIFilt <- NDMIlayC$clumps 
NDMIFilt[NDMIlayC$clumps < 1.8] <- NA ##  
newR[is.na(NDMIFilt)] <- NA 
newR_2[is.na(NDMIFilt)] <- NA 
 
nam2 <- paste("NDMIThresh", startMonit, "_", Smonth, sep = "") 
assign(nam2, newR_2, envir = .GlobalEnv) 
 
nam3 <- paste("NDMI_values", startMonit, "_", Smonth, sep = "") 
assign(nam3, newR, envir = .GlobalEnv) 
 
### CREATE OUTPUT FOR FULL TIME SERIES### 
merge() 
 
 
###PIXEL BASED ΔNDMI### 
 
G <- NULL 
H <- NULL 
I <- NULL 
J <- NULL 
K <- NULL 
M <- NULL 
N <- NULL 
l <- 1 
 
for (i in 1:34){ 
cellNum <- cellNumbersBreak.df[i,2] 
 
D <- NULL #breakpoint date  
R <- NULL #past mean 
V <- NULL #future mean 
O <- NULL #NDMI Diff 
C <- NULL #cellnumber 
Y <- NULL #year 
k <- 1 
 
for (j in 2005:2015){ 
  for (m in c(1,181)){ 
  bfmPix <- bfmPixel(Rbrick, cell=cellNum, start=c(j, m), monend = c(j+1, m), formula = 
response~harmon+trend, history = c("all"))   
  breakpoint <- bfmPix$bfm$breakpoint 
  breakpoint1 <- as_date(date_decimal(breakpoint)) 
  
 if (is.na(breakpoint1) == TRUE) { 
     
    R[k] <- NA 
    V[k] <- NA 
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    O[k] <- NA 
    C[k] <- cellNum 
    Y[k] <- NA 
  } else { 
     
    ss <- zooExtract(Rbrick, cellNum) 
    ss_complete_cases <- ss[complete.cases(ss),] 
    
    ## extract ndmi in time series corresponding to breakpoint found by bfm 
         
    stD.p <- breakpoint1 - 90 # start date of past year 
    stD.f <- breakpoint1 + 90 # start date of future year 
    pastD <- stD.p - 365 # find past date after one year 
    futD <- stD.f + 365 # find future date after one year 
     
    wind.p <- window(ss, start = pastD, end = stD.p) # extract past year 
    wind.p.mean <- mean(wind.p, na.rm=T) # calc mean of year 
    wind.f <- window(ss, start = stD.f, end = futD) # extract future year 
    wind.f.mean <- mean(wind.f, na.rm=T) 
     
    ndmiDiff.mean <- wind.p.mean - wind.f.mean 
     
    R[k] <- wind.p.mean 
    V[k] <- wind.f.mean 
    O[k] <- ndmiDiff.mean  
    C[k] <- cellNum 
    Y[k] <- format(as.Date(breakpoint1), "%B-%Y") 
     
  } 
  k <- k+1 
  }  
} 
 
ndmi_diff <- data.frame(PastTrend=R, FutureTrend=V, Diff=O, Year=Y, Cell=C) 
diff.mx <- as.matrix(ndmi_diff[3]) 
 
if (sum(diff.mx, na.rm=T)==0){  
        
  G[l] <- cellNum 
  I[l] <- NA 
  J[l] <- NA 
  M[l] <- NA 
  N[l] <- NA 
  H[l] <- i 
   
  l <- l+1 
   
} else {  
  trueIndex <- which(ndmi_diff[3]== max(ndmi_diff[3], na.rm=T)) 
  trueBreak <- ndmi_diff[trueIndex[1],] 
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  trueYear <- as.vector(trueBreak$Year) 
 
  G[l] <- trueBreak$Cell 
  I[l] <- trueYear[1] 
  J[l] <- trueBreak$Diff 
  M[l] <- trueBreak$PastTrend 
  N[l] <- trueBreak$FutureTrend 
  H[l] <- i 
 
  l <- l+1 
} 
} 
 
resultsF <- data.frame(ID = H, Cell=G, Breakpoint=I, Diff=J, PastTrend = M, FutureTrend=N) 
 
 
###ΔNDMI, e.g. 2005### 
 
## original bfm spatial breakpoint layers were created for the full time-frame 2005-2015 in previous step 
## apply spatial filter 
blayFiltD <- clumpSize(bfmSp, f=900/10000, stats = T, direction=8) 
clumpFiltD <- blayFiltD$clumps 
clumpFiltD[blayFiltD$clumps < 1.8] <- NA  
BfiltD <- bfmSp 
BfiltD[is.na(clumpFiltD)] <- NA 
 
blayD.df <- as.data.frame(BfiltD) 
blayCleanD.df <- na.omit(blayD.df) 
blayCleanD.df$date <- as_date(date_decimal(blayCleanD.df$layer))  
rnamesD = as.numeric(rownames(blayCleanD.df[1])) 
NumbCellD <- length(rnamesD) 
 
D <- NULL #breakpoint date  
O <- NULL #NDMI Diff 
C <- NULL #cellnumber 
Y <- NULL #year 
k <- 1 
 
for (i in 1:NumbCellD){ 
  cellNum <- rnamesD[i] 
  BreakPD <- blayCleanD.df[i,2] 
 
  ss <- zooExtract(Rbrick, cellNum) 
  ss_complete_cases <- ss[complete.cases(ss),] 
   
  stD.p <- BreakPD - 90 # start date of past year 
  stD.f <- BreakPD + 90 # start date of future year 
  pastD <- stD.p - 365 # find past date after one year 
  futD <- stD.f + 365 # find future date after one year 
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  wind.p <- window(ss, start = pastD, end = stD.p) # extract past year 
  wind.p.mean <- mean(wind.p, na.rm=T) # calc mean of year 
  wind.f <- window(ss, start = stD.f, end = futD) # extract future year 
  wind.f.mean <- mean(wind.f, na.rm=T) 
   
  ndmiDiff.mean <- wind.p.mean - wind.f.mean 
   
  D[k] <- as.character(BreakPD) 
  O[k] <- ndmiDiff.mean  
  C[k] <- cellNum 
  Y[k] <- format(BreakPD, "%Y") 
   
  k <- k+1 
}  
 
ndmi_Delta <- data.frame(Breakpoint=D, Diff=round(O, digits = 3), Year=Y, Cell=C) 
 
## create new empty raster 
newRD <- raster(ncol=176, nrow=169, xmn=101.1164, xmx=101.1638, ymn=1.148424, ymx=1.19397, 
crs=myproj) 
 
## create new values for raster based on breakpoint ndmi value and cellnumber 
for (i in 1:NumbCellD){ 
  newCellD <- ndmi_Delta[i,4] 
  newValD <- ndmi_Delta[i,3] 
  newRD[newCellD] <- newValD ## how to insert new values into raster 
   
}   
} 
 
 
### PROBABILITY MAP ### 
##Read probability table 
prob.csv <- read.csv("C:/mydir/mytable.csv", header = TRUE, sep = ";",dec = ".") 
prob.df <- as.data.frame(prob.csv) 
 
P <- NULL 
l <- 1 
 
for(j in 1:NumbCellD){ 
   
  DeltaCheck <- ndmi_Delta[j,2] #diff to mach with prob 
   
  if (is.na(DeltaCheck)){ 
    P[l] <- NA 
  }else{ 
     
    if (DeltaCheck>=0.500){ 
       
      P[l] <- 100.0 



DETECTING LAND COVER CHANGE RELATED TO SMALLHOLDER OIL PALM PLANTATIONS:   
AN AUTOMATED APPROACH BASED ON MULTI-TEMPORAL LANDSAT 

 

 

XIII 

       
    }else{ 
       
      if (DeltaCheck>=0){ 
        indexP <- which((with(prob.df,  
                              start <= DeltaCheck & end >= DeltaCheck)) == TRUE) 
         
        DProb <- prob.df[indexP,5] 
        P[l] <- DProb 
         
      }else{ 
        P[l] <- NA 
      } 
    } 
  } 
  l <- l+1 
  print(paste(j, P[l])) 
} 
 
ndmi_Delta_Prob <- data.frame(Breakpoint=D, Diff=round(O, digits = 3), Year=Y, Cell=C, Probability=P) 
 
## create new empty raster 
newRD <- raster(ncol=176, nrow=169, xmn=101.1164, xmx=101.1638, ymn=1.148424, ymx=1.19397, 
crs=myproj) 
 
for (i in 1:NumbCellD){ 
  newCellD <- ndmi_Delta_Prob[i,4] 
  newValD <- ndmi_Delta_Prob[i,5] 
  newRD[newCellD] <- newValD  
} 
 
 
namProb <- paste("prob", year, "_", mon, sep = "") 
assign(namProb, newRD, envir = .GlobalEnv) 
 
 
 

 


