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ABSTRACT 

Precision Agriculture aims to maximize crop production and the efficiency of land use to meet the 
increased demand for food while minimizing environmental impact and economic cost of food 
production. Crop type maps are needed for Precision Agriculture applications and remote sensing 
techniques are an efficient way to produce this information. However, at present, there is no single 
sensor that can provide sufficient data to assess the various growth stages and temporal changes 
of crops over the growing cycle. Therefore, this study investigated the possibility of combining 
Sentinel-2A and Unmanned Aerial Vehicle (UAV) data for crop monitoring. We evaluated the 
potential of the spectral, spatial and temporal information of Sentinel-2A imagery for crop type 
mapping at the plot level in southern Sweden. We explored the compatibility of spectral bands 
between MicaSense RedEdge and Sentinel-2A (S2A) to assess the utility of UAV observations in 
complementing and replacing satellite imagery with cloud-cover and noise. Moreover, we examined 
the seasonal variation of crops based on an annual time-series of S2A NDVI together with available 
UAV NDVI data.  

A supervised Random Forest classifier (RF) was calibrated and validated with ground truth data. 
We tested the performance of the Variable Selection using Random Forest (VSURF) algorithm to 
reduce the number of covariates in the classification and to eliminate redundancy in the dataset. 
We used S2A imagery from 12 dates (from April through July). The number of variables used in 
the classification was reduced from 145 to 8, with an accuracy of 93% and Kappa of 0.92. 
Regarding key spectral information, we found that red-edge and shortwave infrared (SWIR) were 
of high value for crop mapping. Also, the blue band appeared to be important for differentiating 
crops, together with the maximum NDVI for the growing season. Conversely, bands in the near 
infrared were amongst the least important for the classification of crops in the study area.  

Three atmospherically corrected S2A images were compared to three orthomosaics consisting of 
raw image values and reflectances. The comparison was based on averaged UAV pixels falling into 
S2A pixel sized cells. The band-by-band analysis evaluated the correlation and mean differences of 
reflectances and three vegetation indices (NDVI, EVI, and GCC). The results showed that the 
correlation of reflectances between sensors improved after the radiometric calibration performed 
by ATLAS. The most correlated bands were red and NIR, closely followed by the green band. 
However, statistically, significant differences were found in the actual physical units. Similarly, 
vegetation indices (VI) reduced the variability in the data and showed stronger correlations, 
although significant differences were also found mostly with EVI. VIs values from S2A imagery 
were higher in bare soil and lower in green areas compared to those from UAV orthomosaics.  

The S2A NDVI time-series for crop pixels showed potential to provide seasonality information 
that can be of high value for various agriculture applications, including crop monitoring. NDVI 
derived from UAV orthomosaics were used to complement the time-series and to evaluate how 
well they represent the temporal variation. TIMESAT was used to improve data quality and 
produce smooth seasonal curves. Results showed that despite absolute differences between the 
indices obtained from both sensors, UAV observations could provide continuity to the S2A time-
series and improve up-scaling of vegetation phenology. 
 
Keywords: UAV, remote sensing, precision agriculture, Random Forest, classification, Micasense 
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1. Introduction 

1.1. Background 

Increasing food demand due to increasing population is a problem that requires special attention. 
Intensifying agricultural production can adversely impact the environment, especially through land 
cover change and its resulting impacts on water quality (Zhang & Kovacs, 2012). Therefore, effort 
has to be put into the development of methodologies that help cope with this demand efficiently 
and minimize environmental deterioration. Numerous initiatives in agriculture aim to reduce the 
yield gap between realized productivity and the best that can be achieved by using current 
technologies and management systems (Talebpour, Türker, & Yegül, 2015), to increase crop 
production and increase the efficiency of land use. Food security policies rely on up-to-date spatial 
information such as that provided by Precision Agriculture (PA). 

PA has been proposed as a way to achieve food security by monitoring crops closely to prevent 
damage resulting from undesired events through early intervention. PA is the application of a set 
of techniques and methods to retrieve useful information for monitoring and managing crops while 
considering landscape heterogeneity and variability within and between fields (Gago et al., 2015). 
The aim of PA is to optimize production efficiency and quality, improve land management, 
minimize environmental impact and risk, and reduce the uncertainties associated with the decisions 
required for local and site-specific management of crops (Rokhmana, 2015; Schellberg, Hill, 
Gerhards, Rothmund, & Braun, 2008).  

Precision information is required periodically to detect variation in the fields, in order to determine 
the most effective management strategy and adjust agricultural practices accordingly. Remote 
sensing techniques have been used for agricultural applications for over three decades to collect 
data in crop fields at different spatial and temporal scales. Such techniques generally rely on the 
relationship between plant optical properties and bio-physiological parameters (Bolton & Friedl, 
2013; Stroppiana et al., 2015). Monitoring crop development is an important decision support tool 
in remote sensing applications for Precision Agriculture since it allows assessment of the most 
critical stages of growth. Phenological monitoring also improves the understanding of crop 
development and growth process (Ballesteros, Ortega, Hernández, & Moreno, 2014b).  

Satellite images and aerial photos collected during the growing season have been used to monitor 
crops. Several remote sensing techniques have been developed for data derived from sensors like 
MODIS (Bolton & Friedl, 2013; M. Wang, Tao, & Shi, 2014), SPOT-Vegetation (Kowalik, 
Dabrowska-Zielinska, Meroni, Raczka, & de Wit, 2014), NOAA-AVHRR (Balaghi, Tychon, 
Eerens, & Jlibene, 2008; Moriondo, Maselli, & Bindi, 2007), Landsat (Inglada et al., 2015) and 
others. However, it has been acknowledged that previously operational satellite sensors do not 
meet the requirements to simultaneously satisfy the needed temporal frequency and spatial 
resolution for such applications (Vega, Ramírez, Saiz, & Rosúa, 2015; Stafford, 2000).  

Monitoring the development of crops is challenging in heterogeneous and cloud-prone landscapes. 
Crop area extent and crop type maps provide crucial information for this purpose, and to produce 
these we must know what crop is grown where, and when and how it is grown since only then we 
can rely on them for proper monitoring and management. Different crops exhibit similar spectral 
responses and appearance characteristics, thus imposing additional difficulties for identification. 
When data availability from a single sensor is insufficient, complementary use of different sensors 
can be useful to obtain a continuous time-series of high temporal and spatial resolution imagery 
that highlights phenological differences to improve the distinction between land cover types. The 
success of crop identification depends on various factors, including the choice of the spectral, 
spatial and temporal resolutions of the sensor, and the choice of a suitable classification procedure 
(Belgiu & Drăgu, 2016). 
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Image classification is one of the most often used methods of information extraction in remote 
sensing and is used to produce thematic maps from imagery (Choodarathnakara, Kumar, Koliwad, 
& Patil, 2012). Mapping vegetation in crop fields via image classification, i.e. crop mapping, is an 
important step for PA, since it provides important baseline information for numerous agricultural 
decision support and monitoring applications, such as crop area estimation, crop yield prediction 
or water demand calculation (Torres-Sánchez, Peña, de Castro, & López-Granados, 2014; Löw, 
Michel, Dech, & Conrad, 2013).  

Recently, a non-parametric machine learning algorithm known as the Random Forest (RF) 
classifier has been used to effectively perform image classification (Belgiu & Drăgu, 2016). Non-
parametric classifiers are not constrained to assumptions like the need for a parametric distribution 
of the spectral characteristics of input data, which is the case with parametric classifiers like 
Maximum Likelihood Classification (MLC). Inglada, Vincent, Arias, & Marais-Sicre (2016) 
highlighted the adequacy of the RF classifier for land cover mapping and justified the choice of 
this approach by noting that RF can yield high-quality mapping for a variety of crop types. In 
another study, Immitzer, Vuolo, & Atzberger (2016) used the supervised RF classifier for land 
cover classification in agriculture and forestry. Löw et al. (2013) reported that RF has successfully 
been applied to crop classification. 

The continuous improvement of remote sensing technologies in terms of spectral, spatial and 
temporal resolutions now allows for monitoring crop growth and, the accurate classification of 
crop types at the field level. Commercial off-the-shelf Unmanned Aerial Vehicles (UAVs) have 
emerged as an attractive platform for acquiring high-resolution images at low altitude. Among the 
advantages are that UAVs provide a low-cost image acquisition platform with high spatial 
resolution and flexible flight scheduling. UAVs can carry miniature narrowband, hyperspectral 
radiometers or thermal cameras to capture patterns in biophysical variables. Revisit times can be 
optimized to match the phenological cycle of specific species, thus maximizing the availability of 
information needed for crop management. In addition, due to the flight altitude images are free of 
cloud contamination (Anderson & Gaston, 2013). UAVs have the potential to match with small-
scale measurements and in-field ground truth measurements can better relate to remotely sensed 
data. Useful pioneering studies are available on vegetation mapping projects based on UAV 
imagery (Michez, Piégay, Lisein, Claessens, & Lejeune, 2016; Diaz-Varela, Zarco-Tejada, Angileri, 
& Loudjani, 2014).  

At the same time, the recently launched Sentinel-2A and Sentinel-2B satellites carry a unique 
combination of global coverage: systematic acquisition, high revisit frequency, wide field of view, 
high spatial resolution and a large number of spectral bands (Gascon, 2014). At the time of this 
writing, the Sentinel-2B system has not reached its full acquisition capabilities. Another major 
advantage is that Sentinel-2 data is freely available online. Nevertheless, as with any other optical 
satellite sensor, cloud contamination limits applications such as crop growth monitoring, where 
detecting rapid surface changes is crucial. 

One solution to overcome the discrepancy in requirements is to combine both sensors. However, 
prior to this, it is important to recognize the degree of agreements between sensors, as it is critical 
for the consistent retrieval of biophysical parameters and for detecting land-cover changes. Many 
studies have focused on data fusion approaches to generate high-resolution multispectral imagery 
for image sharpness and better visualization (Tu, Su, Shyu, & Huang, 2001). Only a few have 
examined those techniques in terms of outputs calibrated to spectral reflectance which is critical 
for many quantitative remote sensing applications (Gao et al., 2015).  

This study takes advantage of considerable recent improvements in sensor technology and builds 
upon the extensive body of research that has been conducted over the past decades on crop 
monitoring to examine the quantitative changes in radiometry caused by crop phenology and the 
compatibility of radiometrically calibrated surface reflectances from a UAV and atmospherically 
corrected Sentinel-2A imagery. To accomplish this, physical parameters such as surface reflectance 
and vegetation indices were compared on a band-by-band basis. Biophysical parameters provide a 
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comparable measure from different sensors; reflectance acquired from the UAV can be aggregated 
and linearly compared to Sentinel-2A data when they are acquired from the same date and location. 
Another goal of this research is to explore the performance of the Random Forest classifier using 
Sentinel-2A multi-temporal data to differentiate crops at the plot level. To the best of the author’s 
knowledge, there is no literature or publicly available product comparing the spectral response of 
UAV sensors and Sentinel-2A for crop mapping and monitoring at field level, nor studies 
exploiting the temporal information of Sentinel-2A. Within this context, this study contributes to 
the current state-of-the-art by using Sentinel-2A data to map crop types using actual Sentinel-2A 
data.  

1.2. Research Problem 

While UAV platforms have been exploited increasingly according to the state-of-the-art review by 
Colomina & Molina (2014), Sentinel-2A has been recently launched in June 2015 and only a few 
useful pioneering studies are available on Sentinel-2A data (Immitzer et al., 2016; Inglada et al., 
2016), besides studies using simulations of Sentinel-2A time-series based on SPOT4 (Take5) 
(Battude et al. 2016; Inglada et al. 2015). However, at present, there is no single sensor that can 
provide sufficient data to assess the various growth stages and temporal changes of crops over the 
growing cycle. UAVs and Sentinel-2A offer a high potential to provide data to produce maps with 
enough detail to monitor individual parcels and in this way fill the gap between the availability of 
timely and accurate crop type maps and the user’s needs. 

Combining imagery from different sensors via data fusion is a commonly used practice to obtain 
higher quality results than an individual sensor can provide. These practices have been more 
common with moderate and medium spatial resolution sensors such as MODIS and Landsat 
(Knauer, Gessner, Fensholt, & Kuenzer, 2016). Few studies have combined data from high-
resolution sensors like Tewes et al. (2015), that used RapidEye and MODIS to monitor vegetation. 
Similarly, UAV observations can be used to replace satellite imagery with cloud-cover, enlarge 
satellite time-series, or up-scale and generalize data on a larger scale.  

Nevertheless, in applications where biophysical parameters matter and data consistency is required, 
spectral responses from both sensors should be examined to acknowledge the discrepancies that 
may arise due to differences in position, spectral bands, spatial resolutions, acquisition time and 
others, and to be aware of the suitability of the products for various applications. This study focuses 
on the comparison of two cost-efficient technologies for the acquisition of very high-resolution 
imagery, UAVs, and Sentinel-2A, to provide insight about the quality of the data products used for 
monitoring crops. We also examine how well Sentinel-2A can reproduce what it is captured by a 
UAV sensor and if UAV observations can add relevant information to time-series of vegetation 
indices to monitor the spatial and temporal variation of crop conditions.  

1.3. Research Objectives 

The main objectives of this study are to explore the utility of multi-temporal Sentinel-2A (S2A) 
data for identifying different crops and to examine the degree to which UAV sensors, specifically 
the MicaSense RedEdge, can complement or replace S2A data. At the same time, it is also of 
interest to evaluate the performance of the Random Forest classifier, implemented with a 
supervised approach using time-series imagery from Sentinel-2A, for crop type mapping and crop 
monitoring.     

To achieve these objectives, the following specific objectives are defined: 

1. To compare atmospherically corrected S2A imagery and UAV orthomosaics generated 

from raw image values and radiometrically corrected reflectance data. 

2. To compare vegetation indices at the plot level generated from UAV orthomosaics and 

S2A imagery. 
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3. To conduct image classification with multi-temporal S2A imagery using the Random 

Forest classifier and a supervised approach. And to evaluate the accuracy and parsimony 

of the resulting classification. 

4. To explore the potential of S2A time-series to detect phenological cycles of crops in the 

study area and to determine to what extent can UAV observations provide data when 

satellite imagery is not available.   

The following research questions will be addressed: 

1. What, if any, are the differences in reflectance values between imagery collected by UAVs 

and S2A? 

Hypothesis: Reflectance from UAV orthomosaics is linearly related to S2A imagery and 

there is no statistically significant difference between the spectral responses in the data 

recorded by these sensors.  

2. What is the degree of correlation of vegetation indices calculated from UAVs and satellite 

sensors’ imagery? 

Hypothesis: The correlation of vegetation indices is strong. 

3. What is the accuracy of the resulting land cover classification using the described methods?  

Is it a function of the temporal range of the data included in the classification? 

Hypothesis: The accuracy of the land cover classification increases as more temporal data 

is included in the model.  

4. Can S2A time-series data capture crop phenology in the study area? 

Hypothesis: Crop phenology can be seen consistently from S2A time-series.   

2. Review of UAV and Sentinel-2A concepts 

This chapter presents the main concepts used in the methodological framework to compare the 
compatibility of Unmanned Aerial Vehicles and Sentinel-2A for crop type mapping and 
monitoring.  

2.1. Remote Sensing of Vegetation 

Remote sensing allows us to collect information about objects or areas from a distance. The basis 
of many remote-sensing technologies is the detection of electromagnetic radiation by a sensor. 
Electromagnetic radiation interacts with the atmosphere and with objects at the surface of the 
Earth. Every object on Earth absorbs, reflects and transmits a portion of the incident radiation 
received at different wavelengths. The reflected radiation, together with the radiation emitted by 
the Earth, can be captured by remote sensors. Such remote sensors measure radiances that are 
recorded as digital numbers (DN). DNs are the quantized samples value of the electric signal that 
is generated by the detector. “The DNs correspond to photon energy incident upon the detector 
and radiances at the detector, but have not a meaningful physical unit” (ITC, 2013), since the degree 
to which DN correspond to radiances on the ground depends on many factors such as scene 
illumination, atmospheric scattering and absorption, and detector-response characteristics.  

Based on the surface properties of an object, the reflectance response varies along the 
electromagnetic spectrum. Reflectance is the fraction of irradiance that is reflected as a function of 
wavelength (Eq. 1). Differences in the reflectance make it possible to identify different Earth 
surface objects by analyzing their reflectance response or spectral signature as a function of 
wavelength in a spectral response curve. Spectral reference characteristics allow a clear distinction 
between three basic types of Earth features: green vegetation, dry bare soil, and clear water. 

 
𝜌(𝜆) =

𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝜆)

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝜆)
×𝜋 

(1) 
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Where: 

𝜌 is reflectance as a function of wavelength 

Irradiance is the energy reaching the surface as a function of wavelength [W m-2]  

Radiance is the energy reflected by the surface as a function of wavelength [W m-2 sr-1 μm-1] 

In optical remote sensing of vegetation, chlorophyll absorption is a fundamental biophysical 
variable that allows differentiation between vegetated and non-vegetated areas, and between 
different types of vegetation. The spectral signature of vegetation clearly shows that due to the 
absorption of red light by leaf pigments like chlorophyll for photosynthesis, the reflectance in the 
red region of the electromagnetic spectrum is very low (Fig.1). The two optimum wavelength 
intervals for sensing chlorophyll absorption are believed to be 0.45 – 0.52 µm and 0.63 – 0.69 µm 
(Jensen, 2000). The spongy mesophyll cells and the amount of water in the plant cause scattering 
of the NIR light, thus a high reflectance in this region of the spectrum. Light in wavelengths at 
0.97, 1.19, 1.45, 1.94, and 2.7 µm is absorbed by the content of water in the leaf (Jensen, 2000). 

Chlorophyll a and b pigments tend to dominate the characteristics of the resulting spectral signature 
over other pigments, but pigments like carotenes and xanthophyll absorb significant portions of 
the blue incident energy, and phycoerythrin absorbs predominantly in the green region. When a 
plant undergoes senescence or encounters stress, chlorophyll may disappear and allow other 
pigments to become dominant and have a much higher reflectance, particularly in the green and 
red portions of the spectrum (Jensen, 2000). In this way, increased reflectance in portions of the 
visible spectrum is considered to be the most consistent response to plant stress detectable by 
optical remote sensing, rather than NIR reflectance, since only once the stress has developed 
sufficiently can a change in the NIR reflectance be noticed. 

The accuracy and precision with which a remote sensor can distinguish different types of vegetation 
depend on the spectral bands, the spatial and temporal resolution, and the choice of a suitable 
classification procedure. Information derived from remote sensing imagery is useful for decision-
making in crop management, yield forecasting, and environmental protection. The continuous 
improvement of remote sensing technologies, combined with more powerful computers and new 
geomatic procedures for extracting information make remote sensing approaches more useful for 
monitoring vegetation (Michez et al., 2016a). 

 

Figure 1. Spectral reflectance characteristics of healthy green vegetation over the wavelength 
interval 0.4 – 2.6 µm. Figure also shows atmospheric water absorption bands  (modified from 

Jensen, 2000) 
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2.2. Vegetation Phenology 

Spectral signatures of vegetation appear to be very similar throughout the visible and NIR, 
especially in broadband multispectral sensors. Besides considering the spectral response of 
vegetation, different temporal characteristics, such as information about the phenological (growth) 
cycles can provide valuable information for identifying different vegetation types or for extracting 
useful vegetation biophysical information (e.g., biomass). Similarly, hyperspectral sensors may 
identify unique absorption features (Jensen, 2000). 

Phenology is the study of periodical phenomena of organisms and how these are influenced by 
seasonal and inter-annual variation in climate (Jin & Eklundh, 2014). Many plant species leaf-out, 
grow to maturity and reach senescence at about the same time each year, but unusually cold or 
warm temperatures in spring or fall can shift their annual phenological cycles by several weeks. 
Therefore, it is important to check if the remotely sensed data were collected in a typical or atypical 
year in order to properly interpret plants’ phenology in that year. 

The most productive growth period of vegetation, when scientists may want to collect the 
maximum amount of remote sensing data, is often associated with intense periods of precipitation 
and cloud cover. Therefore, the phenological calendar of natural vegetation systems and managed 
agricultural systems may provide useful information about an optimum time of the year to collect 
data when there still might be a shift in the growth cycle of plant species or crop types that will 
allow a distinction among them. 

Jensen (2000) mentions that for purposes of classification of vegetation, it is wise to collect remote 
sensing data early in the growing season when the vegetation is developing at different rates when 
hopefully there is a detectable difference in their spectral signals. However, it is more useful to 
collect remote sensing data at the peak of the growing season if the purpose is to monitor the 
biomass of vegetation. 

2.3. Vegetation Indices 

Usually, vegetation indices are dimensionless radiometric measures extracted from remotely sensed 
data. They are used to model various vegetation biophysical variables. At the same time, vegetation 
indices exploit the characteristic response of vegetation over the different wavelengths of the 
electromagnetic spectrum to maximize the contrast of their spectral signatures to differentiate 
vegetation types. In general, healthy or dense vegetation will absorb most of the red light that it 
receives and will reflect back a large portion of the NIR light; conversely when vegetation is sparse 
or not so healthy, there is a decrease in the NIR reflectance and an increase in the red as there is 
less chlorophyll to absorb the light. 

Table 1. Vegetation indices 

Name Formula Source 

NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Tucker 1979 

 

EVI 𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅𝑒𝑑

1 + 𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 ∗ 𝐵
 Kerr and Ostrovsky 2003 

 

GCC 𝐺𝐶𝐶 =
𝐺

𝑅 + 𝐺 + 𝐵
 Richardson et al. 2009 

The Normalized Difference Vegetation Index (NDVI) is a common technique used to help identify 
the presence of vegetation and to provide a measure of its health and vitality (Jensen, 2005). NDVI 
combines the information of the red and NIR wavelengths into a single representative value. NDVI 
is also useful in identifying other features in an image; those that show a distinct behavior in the 
red and NIR spectrum. It has to be noted, however, that NDVI is sensitive to canopy background 
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variations and saturates at very dense vegetation levels while others indices, such as Enhanced 
Vegetation Index (EVI), still respond. EVI is a modification of the NDVI with a soil adjustment 
factor and two correction coefficients for atmospheric aerosol scattering. EVI has improved 
vegetation monitoring through a separation of the canopy background signal and a reduction in 
atmospheric influences (Jensen, 2005). Similarly, the Green Chromatic Coordinate (GCC) is a color 
index that attempts to suppress the effect of changes in scene illumination and was found to 
outperform NDVI when using near-surface remote sensing images (Richardson, Braswell, 
Hollinger, Jenkins, & Ollinger, 2009). 

2.4. Image Classification 

Image classification is often described as the process of assigning pixels to nominal classes. The 
input for this process is an image with multiple bands, and the output is an image in which each 
cell has a thematic code. Classification is generally conducted to extract land information from 
remote sensing imagery for two purposes: The first is to generate maps of categorical variables 
(thematic classes) such as crop mapping, while the second is to generate maps of continuous 
variables for quantification of biophysical variables for modelling such as LAI, biomass, tree 
volume, yield, etc.  

The process of image classification typically involves five steps (ITC, 2013): 

1. Selection and preparation of remote sensing images considering the spatial resolution, 

spectral bands, sensor, acquisition date(s).  

2. Definition of clusters in the feature space depends on the data available and the knowledge 

about the study area to select a supervised or unsupervised classification approaches. 

3. Algorithm selection whether parametric or non-parametric. 

4. Classification at pixel or object level 

5. Validation of the classification. 

Supervised classifiers learn the characteristics of target classes from training samples and identify 
these learned characteristics in the unclassified data. When the knowledge of the characteristics of 
targets is limited or classes have not yet been defined, an unsupervised classification can be 
conducted where clustering algorithms are used to partition the feature space into a number of 
clusters (ITC, 2013). 

Parametric classifiers like Maximum Likelihood Classification (MLC) give good results when 
dealing with unimodal data, but when handling multi-modal datasets they have limitations because 
of the assumption of normally distributed data and remotely sensed data rarely have normal 
distributions (Belgiu & Drăgu, 2016). Non-parametric machine learning classifiers like Random 
Forest (RF), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) can overcome 
these limitations since they are not constrained by assumptions regarding frequency distribution 
(Löw et al., 2013). 

Pixel-based classification is often used to derive thematic classes from multi-band images based 
only on their spectral characteristics. This technique assigns each pixel to only one class, which is 
not a problem when dealing with relative small ground resolution cells where different land cover 
classes are less likely to occur. However, even with higher spatial resolution imagery, in some 
applications, an approach purely based on the spectral characteristics of pixels is unable to 
distinguish desired classes. One solution is to use a different approach, for example, instead of 
classifying every pixel separately based only on spectral properties, object-based classification 
considers segments with homogeneous features such as shape, texture, and context, besides the 
spectral information. 

An important part of using classification is the validation of the results. The most commonly used 
method for accuracy assessment may be derived from a confusion or error matrix. A confusion 
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matrix is a cross-tabulation of the classes in the classification result against the reference data 
derived preferably from field observations, also referred to as validation or testing sample set, 
although sources of higher accuracy are sometimes used. Another way of measuring the overall 
accuracy of the map is the Kappa coefficient, which can be derived from the confusion matrix. 
Kappa coefficient takes into consideration the fact that even assigning labels at random will result 
in a certain degree of accuracy. When the labels are assigned randomly a Kappa of 0 is expected. 
Or to put this another way, a result of Kappa ~ 0 indicates the classification is no better than one 
constructed by random assignment of classes.  If Kappa is greater than 0.80, it means that there is 
a strong agreement between the classification map and the reference data (and the performance is 
considerably better than could be achieved by chance), if Kappa values fall between 0.40 and 0.80 
there is a moderate agreement and if less than 0.40 there is a poor agreement (Jensen, 2005). 

2.4.1. Random Forest Classifier 

Random Forest (RF) is a classifier that has become increasingly popular in remote sensing due to 
its classification accuracy and speed of processing. This approach is not used only for classification, 
but also to assess variable importance. It has been implemented in several software packages, such 
as eCognition, R software and Matlab (Belgiu & Drăgu, 2016).  

RF is a “black-box” machine learning ensemble classifier that uses a set of classifications and 
regression trees (CART) to make a prediction. The trees are created by drawing a random subset 
of training samples through replacement, following a bagging approach, to produce multiple 
decision trees. The RF classifier is sensitive to the sampling procedure, to the size and 
representativeness of the training sample. The samples are divided into two groups: In-bag samples 
and out-of-the-bag (OOB) samples. About two-thirds of the samples are used for training the tree 
(in-bag samples), and the remaining one-third of the samples are used for validating and estimating 
the performance of the RF model (OOB samples). The estimated error of the model is called OOB 
error; this error can be used to as a reliable measure of classification accuracy (Belgiu & Drăgu, 
2016).  

Two parameters need to be set in order to produce the trees: (1) The number of decision trees to 
be generated (Ntree), and (2) the number of variables to be selected and tested for the best split 
when expanding the trees (Mtry). Based on a review on RF in remote sensing, Belgiu & Drăgu 
(2016) suggest a value of 500 for Ntree and mention that Mtry is usually set to the square root of 
the number of input variables. Before the final classification, the class assignment probabilities 
calculated by all produced trees are averaged and a new unlabeled data input is evaluated against all 
decision trees created in the ensemble. Then, each tree votes for a class membership, and finally 
the membership class with the maximum votes will be the one that is finally selected (Belgiu & 
Drăgu, 2016).  

In addition, RF functions provide information about variables and datasets that have greatest ability 
to discriminate between classes; one of these is variable importance (VI). VI can be used to identify 
the optimal variables computed from a single sensor, from several different sensors, or from a 
combination of remote sensing and ancillary geographic data. VI measurement could be used to 
identify the most suitable seasons for identifying desired classes. To increase the classification 
accuracy, input datasets identified as important during the first run of the classification can be used 
to rerun the classification until the OOB error no longer varies. This procedure is known as 
iterative backward feature elimination (Belgiu & Drăgu, 2016).  

VI can be calculated using the Mean Decrease in Accuracy (MDA) or the Mean Decrease in Gini 
(MDG). MDA considers the difference between OOB error from the random permutations of the 
values of different variables and the OBB error from the original dataset. MDG measures how 
much a variable reduces the Gini Impurity metric in a particular class (Belgiu & Drăgu, 2016). Gini 
Impurity refers to how often an element selected randomly from the set would be incorrectly 
labeled if it were randomly labeled according to the distribution of labels in the subset. The majority 
of the studies reported by Belgiu & Drăgu (2016) used the MDA to determine the VI. 
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The RF classifier has been used successfully to extract information from imagery acquired from 
various remote sensors, including Landsat (Frazier, Coops, Wulder, & Kennedy, 2014), MODIS 
(Deng & Wu, 2013), IKONOS (H. Wang, Zhao, Pu, & Zhang, 2015), RapidEye (Löw et al., 2013), 
WorldView-2 (Räsänen, Rusanen, Kuitunen, & Lensu, 2013), SAR (Inglada et al., 2016), LiDAR 
(Li, Cheng, Chen, Chen, & Liu, 2015) and UAV (Michez, Piégay, Jonathan, Claessens, & Lejeune, 
2016). Moreover, it allows the user to combine multi-source and multi-temporal data to improve 
classification accuracy. However, only relevant datasets should be included to reduce the 
computational burden (Belgiu & Drăgu, 2016). 

2.5. Unmanned Aerial Vehicles (UAVs) 

Unmanned aerial vehicles carrying imaging payloads are frequently used for remote sensing 
applications to acquire high-resolution images for the monitoring of various aspects of agriculture 
and the environment. Progress made in the miniaturization and reduction in the cost of sensors, 
Global Position System (GPS) devices, and embedded computers have increased the possibility of 
remote sensing using commercial off-the-shelf (COTS) UAVs (Diaz-Varela et al., 2014).  

The two most important characteristics of UAV platforms are said to be the very high spatial and 
temporal resolutions they support, which allow the recognition of events occurring at a local scale 
in a specific time window (Michez, Piégay, Lisein, et al., 2016). These advantages make UAVs 
feasible for monitoring crops in greater detail, capturing important phenological stages for 
Precision Agriculture, which is a classic limitation of traditional remote sensing platforms. The 
flexibility in acquisition times and the lower cost of operation may exceed the demand from 
traditional manned aircraft and other platforms like WorldView-2, WorldView-3, GeoEye-1, 
IKONOS, Quickbird, and RapidEye.  

Along with these advantages, there are well-known technical problems for UAVs, such as engine 
power, short flight duration limited by the weight of the payload and battery life, stability in winds 
and turbulence, and variation in sun angle (Zhang & Kovacs, 2012). Another key issue that restricts 
sensor selection is UAV payload capacity. Several consumer cameras have been tested due to their 
low weights and low costs in various studies; for instance, by Lelong et al. (2008). However, many 
problems arise with these cameras: These include limited optical quality, zoom lenses, fully 
automatic focusing and a lack of a NIR band for vegetation surveys. 

Different types of vehicles have different capabilities, with advantages and disadvantages 
depending on the purpose. Compromises must be made between ease of flying, distance covered, 
payload capacity and takeoff and landing requirements (Ballesteros, Ortega, Hernández, & Moreno, 
2014a). UAVs can be classified according to the method of takeoff and landing; whether vertical 
or horizontal, they can be either fixed-wing aircraft or rotary-wing in design (helicopter and 
quadcopter) with various remotely sensed sensors used for data collection, such as optical cameras, 
NIR and multispectral, hyperspectral, thermal, and laser scanners. For an overview of the current 
status of the main UAV technologies, the reader is referred to Colomina & Molina (2014) or 
Anderson & Gaston (2013).  

The entire unmanned aerial system consists of (1) the vehicle, (2) the radio control transmitter, (3) 
a ground station with the software for mission planning and flight control, and (4) a telemetry 
system. The main tasks of the handheld radio control transmitter are to start the engines, manage 
takeoff and landing, control the complete flight in the manual mode, and activate the autonomous 
navigation system. The ground station works as an interface between the operator and the vehicle 
and includes support software that allows the UAV settings to be configured, implements the flight 
route plan with the waypoint module, and monitors the flight. The telemetry system collects 
relevant flight data that includes vehicle’s position, flight altitude, flight speed, flight time, battery 
level, and radio control signal quality, among many others. Detailed information about the 
configuration of the UAV flights and specification of the vehicle and the camera used can be found 
in Torres-Sánchez, López-Granados, De Castro, & Peña-Barragán (2013). 
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The main components of the navigation system in a UAV are a GPS receiver, an Inertial 
Measurement Unit (IMU), a magnetic compass, and an altimeter to ensure flight stabilization. The 
GPS receiver reports and controls the location of the UAV. The IMU uses an accelerometer and 
a gyroscope to measure acceleration and rotation of the UAV. This electronic device allows basic 
stabilization of the UAV and facilitates the manual control task of the pilot. The magnetic compass 
indicates direction relative to the Earth’s magnetic field, and the altimeter measures the distance of 
the vehicle from the ground to support accurate flights and landings.  

The recent and rapid growth of the use of UAVs in environmental and agricultural applications 
has prompted the development of innovative methodologies. Several studies were conducted using 
UAVs to assess the potential of images to support Precision Agriculture. Lelong et al. (2008) 
assessed UAV imagery for monitoring a wheat crop in small plots. Ballesteros et al. (2014b) 
examined the relationship between green canopy cover and leaf area index in order to characterize 
crop growth. They concluded that high-resolution images obtained with UAVs, together with 
proper treatment, might be a useful tool for precision monitoring of crop growth and development, 
and has the potential to advise farmers on water requirements, yield prediction, and weed and 
insect infestation, among others. Stroppiana et al. (2015) tested the correlation between reflectance 
in the spectral channels and vegetation indices derived from imagery acquired with a multispectral 
sensor on board a UAV in an effort to estimate rice yield. Their results suggested that UAVs are a 
potential platform for data acquisition for crop monitoring.  

Few studies have taken advantage of the temporal resolution of UAV imagery. Michez et al. (2016) 
proposed a methodological framework to explore multi-temporal imagery to identify variables and 
most relevant image scale in order to characterize riparian forest species and health condition. In 
Precision Agriculture, Bendig et al. (2014) computed a UAV derived digital surface model time-
series to measure the growth rate of experimental field crops, while Torres-Sánchez et al. (2014) 
used multi-temporal imagery to differentiate weeds in wheat fields in the early season and map 
vegetation fraction using visible spectral indices.  

During a UAV mission, several images are captured which have different geometric and 
radiometric features due to the low altitude of the flight, various viewing angles, the stability of the 
camera, the motion of the camera, etc. Usually, these images need to be combined to obtain a scene 
image, often referred as orthomosaic or orthophoto. To overcome geometric differences 
traditional airborne photogrammetry or remote sensing techniques are difficult to apply. However, 
state-of-the-art computer vision techniques such as Structure-from-motion (SfM) enable the 
generation of 2-D imagery, i.e. orthomosaic, from the collection of large sets of multi-angle images 
(Diaz-Varela et al., 2014). More about this technique is discussed in Section 2.5.2.  

2.5.1. UAV Data Acquisition 

The flight can be controlled manually or can be done under autonomous control between GPS 
waypoints using pre-programmed flight plans. Manual control is generally more useful for 
inspections and autonomous for gathering information, in order to create a map or a 3D model 
after the flight is completed.  

Before starting the UAV mission, the design of the flight path covering the area of interest needs 
to be defined, along with the altitude of the flight, and the sensors and UAV configurations. The 
flight path is typically done using a flight planning software, many of which are offered by the UAV 
manufacturers. The path usually follows a pattern of parallel lines, commonly referred as transects, 
which are connected to a series of waypoints. The flight path should ensure that enough images 
are captured and that they overlap to the degree required for the reconstruction of the scene 
(Greenwood, 2015). 

Forward and side overlap between images allows the identification of common points between 
images during the processing stage in order to successfully reconstruct the image of the entire study 
area. Forward overlap, or along-track, refers to the percentage of image overlap between its 
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previous or next image with respect to the flight direction. Forward overlap ensures that the 
distortion introduced by the relief does not cause gaps between the images. Side overlap, or cross-
track, refers to the percentage of image overlap between images from one track and the next with 
respect to the orthogonal direction to the UAV. To achieve a certain image overlap, the flight 
speed, the interval at which the camera is triggered, the altitude of the fight, the distance between 
the transects, and the internal geometry of the camera being used should be considered. However, 
today’s flight planning software will automatically calculate all these parameters (Greenwood, 
2015). 

The altitude of the flight, the focal length of the camera, and the size of the sensor determine the 
ground sampling distance (GSD), also referred to as pixel size on the ground. Resolution in aerial 
photography is measured as GSD, which is equivalent to the ground resolution cell (GRC) 
(Greenwood, 2015). The GSD is the distance between the centers of two adjacent resolution cells 
measured on the ground (ITC, 2013), or the length on the ground corresponding to the side of 
one pixel in the image (GRC). Defining the appropriate flight altitude is a key aspect in PA 
applications, and it depends on the scale of what needs to be captured by the imagery. J. Torres-
Sánchez et al. (2014), acquired images with a UAV over a wheat field in the early-season period 
and studied the influence of flight altitude. The results suggest that a flight altitude of 30 m provides 
better accuracy for vegetation fraction mapping using visible spectral indices, than an altitude of 
60 m. However, it is important to acknowledge that flight altitude is a trade-off between greater 
detail, and area covered. 

Based on the area to be mapped, the specifications of the sensors and the flight altitude, the ground 
control software, like MDC, Mission Planer or UgCS, generates a series of transects with waypoints 
and displays the estimated ground sampling distance to ensure adequate overlap and area coverage. 
Using the software, the flight route can be uploaded to the UAV computer. Connectivity and 
proper functioning of the cameras and the whole system should be checked. Usually, image 
triggering is activated by the UAV according to the programmed flight path. At the moment of 
each shoot, the on-board computer system records a timestamp, the GPS location, the flight 
altitude, and vehicle principal axes (pitch, roll, and yaw) (Greenwood, 2015).  

It is also important to take into consideration the flying mode of the UAV. There are three modes; 
(1) manual; (2) stop mode; and (3) cruising mode. The first mode is used when no flight planning 
is available. The other two modes require planning. When configured in stop mode, the UAV stops 
in each waypoint position and only then the image is taken. When in cruising mode, the UAV 
continues flying at the same speed while images are being taken. Flying in cruising mode reduce 
the flight time by 75% (Mesas-Carrascosa et al., 2015). The turning mode can be of three types, 
namely (1) bank turn; (2) adaptive bank turn; and (3) stop and turn. In the first one, the vehicle 
keeps its speed when turning, so it will deviate from its route. In the second mode, the vehicle 
slows down so as to follow the route. When in stop and turn mode, the vehicle stops and then 
turns (DJI, 2014). 

Another aspect to consider when acquiring UAV images is radiometric calibration. As mentioned 
earlier, sun angle and clouds may affect the radiometric quality of images. During pre-processing 
routines, images should be corrected for changing illumination. For this effect, in situ radiometric 
measurements should be conducted. There are several ways of doing this; the most common being 
placing reflectance targets or panels (that have a high albedo and are spectrally homogeneous) on 
the ground with known reflectance which are later found in the images, as is the case with GCPs. 
Digital images captured by each camera band/channel can be spectrally corrected by applying an 
empirical linear regression to convert digital numbers to reflectance values in all the bands (Torres-
Sánchez et al., 2014). A similar result can be achieved using a spectrometer, where DN can be 
calibrated to surface reflectance values using an empirical model and in situ spectral measurements 
(Stroppiana et al., 2015). This type of correction is called relative correction since the user makes a 
scene-dependent relative atmospheric correction. It is also possible to use radiative transfer models 
(RTM) for atmospheric correction, in which case the correction would be “absolute correction” 
since the atmospheric influence is modeled and removed (ITC, 2013). 
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The weather has become the most important operational consideration for flights. Special care is 
needed to operate UAVs. Winds, turbulence and cold temperatures at designated altitudes are some 
of the meteorological conditions that affect UAVs and must be accounted for (Teets, Donohue, 
Underwood, & Bauer, 1998). In terms of radiometric quality, although low altitude flights limit 
atmospheric effects, weather conditions still pose some limitations during image acquisition. Sun 
angle and cloud shadows may reduce the quality of the orthophoto. Acquiring images at high solar 
angles around solar noon is recommended to reduce the effect of shadow. Another factor that 
influences image quality is blurriness. According to Wijesingha (2016), images can be made blurry 
by the motion of the UAV, cloud shadow and wind. Greenwood (2015) adds turbulence to the list 
of causes of blurriness and argues that reducing the speed of the UAV’s flight and stabilizing the 
camera with a gimbal system can ameliorate the problem. 

2.5.2. UAV Image Processing 

Raw images acquired from a UAV contain geometric distortions due to variations in camera 
orientation and rotation. Usually, all of these images need to be combined to obtain a single scene 
image for further analysis. Image mosaicking is the process of combining all the individual and 
overlapped images. Accurate orthomosaic generation relies on rigorous photogrammetric 
methods. Recent developments in the computer vision field, have developed methods such as 
Structure-from-motion that when integrated with photogrammetry techniques like relative 
orientation, bundle adjustment, feature detection, and Multi-View Stereo (MVS) they are ideal 
processes for use with UAV acquired imagery.  
 
Structure-from-Motion (SfM) has been frequently applied (Westoby, Brasington, Glasser, 
Hambrey, & Reynolds, 2012) to process UAV images and create orthomosaics: in this case motion 
refers to the camera motion, and structure refers to the 3-D point coordinates. SfM is a technique 
that is well suited for a set of multiple overlapping images derived from a moving sensor, such as 
UAVs. It allows the structure reconstruction of a scene from a number of images with 
corresponding points. SfM algorithms can be used to generate orthophotos and 3-D surface 
models from a collection of 2-D digital images by calculating the 3-D structure of a scene. This 
technique differs from conventional photogrammetry as the geometry of the scene, camera 
position and orientation are simultaneously and automatically solved using a highly redundant, 
iterative bundle adjustment procedure based on matching features automatically extracted from 
the multiple views overlapping images (Ma, Soatto, Košecká, & Sastry, 2004; Westoby et al., 2012).  

One key development in SfM is the Scale-Invariant Feature Transform (SIFT) algorithm for feature 
detection and matching. The first stage of a SfM process is to extract features in single images that 
can be matched to their corresponding feature in other images, followed by a rough alignment of 
images with enough number of features. These matched points establish the relative location of 
the sensors during the flight and are used to calculate simultaneously the sensor parameters of each 
image. The SIFT method uses an incremental approach in which the bundle adjustment of an initial 
image pair is repeated sequentially incorporating more images at each iteration. The final product 
of the SIFT process is a sparse 3-D point cloud that represents the matching features and camera 
location for each photo (Mesas-Carrascosa et al., 2015; Nesbit, 2014).  

 
Figure 2. Simplified SfM-MVS workflow to produce an orthomosaic from UAV images 
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Moreover, an additional step that comprises Multiple-View Stereo techniques follows the SfM 
processing, since SfM alone has proven insufficient for studies with high accuracy and fine detail 
(Nesbit, 2014). SfM-MVS produce a reconstruction of the surface by a dense point cloud with up 
to three orders of magnitude more points than the sparse point cloud generated only by SfM 
(Mesas-Carrascosa et al., 2015). The final products of the image processing are a digital surface 
model (DSM) and an orthomosaic image or orthophoto. Several open source software and 
commercial packages that have implemented SfM-MVS processes are available; among the most 
popular are Agisoft PhotoScan, Pix4Dmapper, Visual SFM and 123D Catch. 

2.5.3. Geometric Calibration 

In order to assign spatial coordinates to the orthophoto, it is required to georeference the photos 
during image pre-processing. Georeferencing is an essential step in image processing since it allows 
the orthomosaic to be associated with a real-world scale and integrated with other spatial data. 
Geometric correction allows users to accurately measure distances in the resulting orthomosaic. 
Ground control points (GCPs) or targets placed on the ground, with surveyed coordinates before 
the UAV flight, are used to improve the accuracy of georeferencing images. GCPs enable the image 
processing software to know the real world coordinates of a number of visibly identifiable locations 
in the imagery. GCPs also are used to improve the SfM process during photo alignment and 
calculations of the camera calibration parameters by minimizing the error between the modeled 
locations of the points and measured locations (Cook, 2016). However, some software packages 
no longer require GCPs to create reasonably geographically accurate images, they instead use UAV 
acquired images roughly geotagged based on GPS position data embedded in the camera. However, 
depending on the type of GPS receiver, the coordinates might not be accurate enough for detailed 
studies.  

Generally, a minimum number of GCPs is required by the software for the referencing process to 
function, Greenwood (2015) recommends around five. Mesas-Carrascosa et al. (2015) tested two 
GCP configurations (4 and 5) over a wheat field of 1.12 ha and found that placing 5 GCPs provides 
the best setting to maximize spatial resolution. Nevertheless, it is necessary to consider the area to 
be covered; more ground control points will yield more accurate results. With respect to 
distribution, GCPs should be scattered around the area to be mapped for better results. The 
distribution and number of GCP influences the geometric accuracy of the model. The size of the 
GCP, as a rule of thumb, should be a minimum of 2 or 3 times larger than the image spatial 
resolution in order to avoid mixed pixels (mixed land cover) and recognize it in the images during 
pre-processing routines (ITC, 2013).  

The geometric accuracy can be estimated using the root mean square error (RMSE) statistic. The 
RMSE measures the error between two datasets by comparing a predicted value and an observed 
one. It is important to note that the RMSE is a convenient measure of overall accuracy, however, 
it does not say anything about which parts of the image are accurately georeferenced and which 
parts are not. Note also that the RMSE is only valid for the area bounded by the GCPs. The RMSE 

in the 𝑥-direction, 𝑚𝑥, is calculated with Eq. 2, for the 𝑦-direction with Eq. 3 and the overall error, 

𝑚𝑝 is calculated by Eq. 4 (ITC, 2013).     
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�̂�𝑖 , �̂�𝑖 are the geographic coordinates in the image of point 𝑖 after georeferencing 
x𝑖 , 𝑦𝑖 are the geographic coordinates location of the GCP in the point 𝑖  

2.5.4. Radiometric Calibration 

The low altitude flight of UAV typically provides images that have a higher radiometric 
homogeneity when compared to higher altitude aerial or satellite imagery (Lelong et al., 2008). 
However, the variation of the solar illumination angle during the day, together with bidirectional 
reflectance distribution function (BRDF) effects, and cloud shadows, may affect the radiance 
values measured by the sensor (Zhang & Kovacs, 2012). Radiometric calibration provides transfer 
functions to transform DN values to at-sensor radiance, which in turn have to be corrected by the 
user for atmospheric effects to finally obtain at-sensor or surface reflectance (ITC, 2013). 

Applications for which the actual radiance at ground level is needed to infer chemical properties 
of surface material must include rigorous atmospheric correction (AC) procedures. The correction 
can be relative or absolute. Relative correction is based on ground reflectance properties, while 
absolute correction is based on atmospheric process information (ITC, 2013). There are some 
techniques that can be applied to improve the radiometric quality of UAV images, whether in 
visible or thermal ranges. Atmospheric correction for the visible range will be described since it is 
the range of the spectrum captured by the sensor in this research.  

Sun elevation correction  

When analyzing a sequence of images taken of a particular area on different dates, or when using 
UAVs, for a set of images of the same date taken at different times with which we would like to 
make a mosaic, any changes in illumination will cause difficulties. To correct for sun elevation, each 
image can be normalized as if it was taken with the sun at its zenith. To achieve this, every pixel 
value of an image is divided by the sine of the sun elevation angle at the time of data acquisition. 
The sun elevation angle usually can be found in the metadata file supplied with an image and some 
websites provide estimations of angle. Considering that the atmosphere is dynamic, mainly at low 
altitudes, this is an approximate correction.   

Relative AC methods based on ground reflectance 

These methods rely on the assumption that, for one sensor band, a linear trend establishes the 
relation between the radiances at top of the atmosphere (TOA) and at ground level. According to 
ITC (2013), there are two methods of AC, namely two reflectance measurements and two 
reflectance surfaces. 

Two reflectance measurements: For the application of this method the use of a portable radiometer is 
required. The radiometer should be capable of measuring in the same wavelength range as the 
image band to be corrected. The image output is an absolute atmospherically corrected image, that 
is to say, that it has physical units and the calculated ground radiances are compatible with actual 
atmospheric constituents and it can be used for multi-temporal comparison, parameter evolution 
assessment, and flux quantification. 

Two reflectance surfaces: This method works by normalizing radiance values on individual bands and 
is valid for establishing a basis for uniform comparison, e.g. to derive land properties, or to study 
the evolution of non-flux related parameters such as indexes. The method relies on the existence 
of at least one dark and one bright reflective invariant area that are considered to retain their 
reflective properties over time. These areas can be artificial like reflectance/calibration targets or 
natural like deep reservoir lakes, sandy beaches or desserts, and large asphalted areas. The 
supposition is that the reflectance should always be the same for these pixels. If a difference occurs, 
it is attributed to a different state of the atmosphere. In this case, the atmospheric composition is 
unknown, but its influence is measurable by detecting the change in radiance for the reflective 
invariant areas. The image output allows comparative results since it matches reflectance that is 
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compatible with the atmosphere of a similar image taken on a different date, but absolute values 
of radiance are not obtained. 

Relative AC methods, such as the one just described above, often use empirically derived models 
to convert radiance data to reflectance data based on reflective invariant areas. Techniques known 
as flat-field correction and empirical-line correction are examples. In the first one, the conversion 
is achieved by dividing pixel-by-pixel the whole dataset by the mean value of the reflectance target 
within the area. The second one requires a spectrometer to be used in the field to characterize the 
spectra of a dark and a bright target, to later force with an empirical correction model the best fit 
between sets of field and image spectra that represent the same ground areas. This method removes 
“atmospheric effects, residual instrument artifacts, and viewing geometry effects” (ITC, 2013).  

Absolute AC methods based on atmospheric processes 

Although these methods require a thorough description of the components in the atmospheric 
profile that is rarely available, they allow us to evaluate ground reflectance for any atmospheric 
condition. The output is an image that corresponds with the reflectance of the ground pixels with 
a maximum estimated error of 10%. 

Radiative transfer models: Atmospheric constituents attenuate processes at different wavelengths and 
RTM can be used for calculating radiances for a variety of atmospheric and surface conditions. 
These models require a detailed description of the atmospheric component at specific altitudes 
throughout the atmosphere. Because of the many components to consider, RTMs are based on 
atmospheric common profiles, called standard atmospheres, which correspond to average 
atmospheric conditions for different parts of the Earth and are used as input for the models. 
Different models have different requirements and yield different accuracies.  

2.6. Sentinel-2A 

Sentinel-2A is a satellite sensor launched on 23 June 2015 by the European Copernicus program 
that provides geographical information in areas of land monitoring, emergency management, and 
security. Data can be modified and adapted by users interested in thematic areas such as mapping 
of land cover, classification and change detection, as well as forest management, water 
management, monitoring of vegetation, agriculture and food security. Sentinel-2A images provide 
complementary data to missions such as LANDSAT, SPOT-Vegetation and ENVISAT/MERIS 
sensors (ESA, 2017).  

Sentinel-2A is a polar-orbiting, sun-synchronous mission that offers systematic global coverage of 
land surfaces, between latitudes 56° South and 83° North, as well as observation of inland 
waterways and coastal areas.  The system has the following characteristics; high revisit time (every 
5 days at equator under the same viewing conditions with two satellites); high spatial resolutions: 
10m, 20m and 60m at-ground; multispectral information from 13 bands covering the visible, near 
infrared and short wave infrared part of the spectrum; and a swath width of 290 km, larger than 
previous multispectral optical missions such as SPOT and LANDSAT (ESA, 2017). 

Table 2. Spectral bands and spatial resolution of Sentinel-2A 

Band 
number 

Band name 
Central 

wavelength (nm) 
Bandwidth (nm) 

10m spatial resolution bands 

2 Blue 490 65 

3 Green 560 35 

4 Red 665 30 

8 NIR 842 115 

20m spatial resolution bands 

5 RedEdge 705 15 
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6 Vegetation RedEdge 740 15 

7 Vegetation RedEdge 783 20 

8a Vegetation RedEdge 865 20 

11 SWIR-Snow/ice/clouds 1610 90 

12 SWIR-Snow/ice/clouds 2190 180 

60m spatial resolution bands 

1 Coastal aerosol 443 20 

9 Water vapor 945 20 

10 SWIR-Cirrus 1375 30 

 

 
Figure 3. Sentinel-2A spectral response average – VNIR 

 
Figure 4. Sentinel-2A spectral response average - SWIR 
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Radiometric resolution  

The capacity of an instrument to distinguish differences in light intensity or reflectance is called 
radiometric resolution and it is expressed as a bit number. The greater the radiometric resolution, 
the more capable the device on detecting differences in intensity or reflectance, and more accurate 
the sensed image will be. Sentinel-2A has a radiometric resolution of 12 bits, meaning that the 
acquired image can contain 212 potential light intensity values (ESA, 2017).  

Product types and data formats 

Two types of Sentinel-2A products are available to users: Level-1C and Level-2A. The products 
are in Sentinel-SAFE format that includes image data in JPEG2000 format, quality indicators, 
auxiliary data, and metadata. The SAFE format wraps a folder containing image data in a binary 
data format and product metadata in XML. Level-1C images are processed by the Payload Data 
Ground Segment (PDGS) and distributed online. Level-1C product results from using a Digital 
Elevation Model (DEM) to project the image in cartographic geometry; it contains per-pixel TOA 
reflectances along with the parameters to transform them into radiances. In Level-1C products, 
pixel coordinates refer to the upper left corner of the pixel. Level-2A products are generated on 
the user side from Level-1C products through Sentinel-2A Toolbox to obtain bottom of the 
atmosphere (BOA) reflectance in cartographic geometry. The granules or tiles of both products 
are 100 x 100 Km2 orthoimages in UTM/WGS84 projection and have a size of approximately 500 
MB (ESA, 2017).    

2.6.1.  Sentinel-2A Data Acquisition 

The Copernicus Open Access Data Hub in the official website of European Spatial Agency (ESA) 
provides complete, free and open access to Sentinel-2A products. Data is available to download at 
https://scihub.copernicus.eu/ from an interactive graphical user interface or in the form of 
scripting interface. Data can also be retrieved from other websites like the PEPS platform that 
redistributes products of Sentinel-2A and others satellites from the family 
(https://peps.cnes.fr/rocket/#/home).  

2.6.2. Image Processing 

Data acquired from Sentinel-2A is processed from Level-0 to Level-1C by the PDGS. The Sentinel-
2A ground segment is in charge of the acquisition, processing, archiving and dissemination to the 
final users. Level-0, Level-1A, and Level-1C are not available to users.  

To obtain Level-1C products from Level-1B products, two successive operations are performed: 
The first is a resampling of the Level-1B image to produce an orthoimage in TOA reflectance, and 
calculations of cloud and land/water masks for a tile in the Level-1C geometry. The resampling is 
conducted in five steps: (1) Selection of tiles intersecting the image footprint, (2) Projection 
(geographic coding by bi-linear interpolation), (3) Computation of resampling grids linking the 
image in native geometry to the target geometry (orthoimage), (4) Radiometric interpolation to 
estimate radiance values of each spectral band in the geometry of the orthoimage using the 
resampling grids, and finally (5) TOA reflectance calculation in the target geometry. A Level-2A 
image is produced through the Sentinel Application Platform (SNAP) toolbox using a plugin called 
Sen2Cor. Sen2Cor performs atmospheric, terrain and cirrus correction of TOA Level-1C input 
data. The Sen2cor output is an orthoimage BOA corrected reflectance product. Additional outputs 
are an Aerosol Optical Thickness (AOT) map, Water Vapor (WV) map, a Scene Classification Map 
(SCM) and Quality Indicators (QI) for cloud and snow probabilities (ESA, 2017).  

https://scihub.copernicus.eu/
https://peps.cnes.fr/rocket/#/home


18 
 

3. Data and Methodology 

3.1. Study Area 

The Swedish Infrastructure for Ecosystem Science (SITES) is a national coordinated infrastructure 
for terrestrial and limnological field research. SITES has several research stations throughout 
Sweden. Lönnstorp Research Station is located in the Municipality of Lomma, Skåne County, 
Sweden, and is an experimental area dedicated to “studies of cropping systems ecology, with a 
focus on the design, sustainable development and assessment of arable cropping systems, in 
conventional and organic farming” (SLU, 2017). The Lomma region is characterized by an oceanic 
climate with an average annual precipitation of 666 mm. The soil type is loam with about 15 % 
clay and 3 % organic material.  

Lönnstorp station covers an area of about 60 ha, where the main crop rotations are winter wheat, 
sugar beets, spring barley and winter rapeseed. The study was conducted on experimental plots 
that were part of an ongoing SITES project since 2015 called Agroecological Field Experiment 
(SAFE). In the growing season of 2016-2017, a total of 110 micro-plots of different sizes covering 
an area of 17 ha were delineated and sown with winter crops (wheat, rye, and rapeseed) in mid-
August and early September. In addition to the experimental fields of Lönnstorp, 4 adjacent fields 
of Bomhög farm covering an area of 30 ha were included to increase the size of the study area 
(Fig.5).  

 

 

 

Figure 5. Location of the study area in the Municipality of Lomma, Skåne County, Sweden (left). 
SAFE plots distribution (upper-right), Bomhög plots (bottom-right). 

3.2. Data 

3.2.1. UAV imagery 

A rotary-wing quadcopter platform with vertical takeoff and landing (VTOL), model Explorian 4, 
manufactured by Pitchup AB in Sweden, was used to collect aerial images at a constant flight 
altitude over the experimental crop fields, with a nadir view of direction and around noon. This 
UAV is equipped with four brushless rotor motors powered by a battery and can fly by remote 
control or autonomously with the aid of its GPS receiver and its waypoint navigation system. The 
technical specifications provided by the manufacturer and the operational configurations of the 
UAV are shown in Table 3. 
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Table 3. Technical specifications and operational configurations of UAV Explorian 4 

Technical specifications  

Propulsion system Four 22.2 V brushless electric motors. 

Propellers Four carbon fiber propellers of 45 cm diameter each. 

Energy provider One 24.0 V (22000 mA) battery. 

Height 85 cm 

Width 85 cm, 100 cm when propellers expanded. 

Landing gear height 40 cm 

Maximum TOW 7 Kg 

Maximum payload weight 3.5 Kg 

Max speed 13.88 m/s 

Controller FrSky Remote control of 500 m radius 

Average flying time Up to 37 minutes (depends on payload, wind, and weather) 

Operational configurations 

Turning method Adaptive Bank Turn 

Flying altitude  75 m  

Flying speed 5 m/s 

Source: Pitchup AB (2015) 

The sensors mounted on the UAV to acquire the imagery include a visible spectrum camera, a 
multispectral and a thermal camera. The visible and the thermal cameras were not used in this 
study. The MicaSense RedEdge is a lightweight multispectral camera designed especially for UAV 
mapping with a resolution of 1980 x 960 pixels and five spectral narrow bands described in Table 
4. The spectral response of each band is shown in Fig. 6. The camera weighs 150 g and is powered 
by the UAV battery. The lens achieves 8.2 cm/pixel at 120 m above ground level (AGL). The 
images are 12-bit resolution that can be stored in either 12-bit DNG RAW format or 16-bit TIFF 
RAW format. Metadata tags are embedded for each image in standard format since the sensor has 
its own positioning system. The camera was set to operate in automatic mode, which adjusts the 
shutter speed (exposure time) and the aperture (F-stop) optimally. Image triggering was activated 
by the UAV according to the programmed flight route. At each shoot, the UAV computer system 
records a timestamp, the GPS location in WGS84 coordinate system, the altitude, and vehicle 
principal axes (pitch, roll and heading). 

Table 4. Spectral bands, center wavelength and bandwidth of MicaSense RedEdge as compared 
to Sentinel-2A 

UAV Sentinel-2A 

Band 
Name 

Bandwidth 
(nm) 

Center Wavelength 
(nm) 

Center Wavelength 
(nm) 

Bandwidth 
(nm) 

Blue 20 475 490 65 

Green 20 560 560 35 

Red 10 668 665 30 

Red Edge 10 717 705 15 

NIR 40 840 842 115 

Based on the distribution of the crop fields, the path was designed using the ground control 
software called UgCS (Universal Ground Control System) and then uploaded to the UAV 
computer system. The flight path considered forward and side overlaps of 80%. Six GCPs evenly 
distributed were placed on the ground and their position was measured accurately using a GPS 
real-time kinematic (RTK) satellite navigation receiver that recorded the coordinates in the 
reference system SWEREF99. For the radiometric correction of the images in the pre-processing 
stage, photos of the reflectance panels designed for use with the MicaSense RedEdge were captured 
before the flight ensuring no shadows were covering the panel. 
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Figure 6. MicaSense RedEdge spectral response average (Source: MicaSense 2015) 

Before the flight, the connectivity and proper functioning of the camera were checked. Then, using 
the radio control transmitter, the pilot launched the UAV and later activated the automatic mode. 
While the UAV was flying to the waypoints along the flight lines, another person was controlling 
the information provided by the telemetry system (UAV position, altitude, speed and battery level). 
Once the route was completed, or earlier if the battery was low or the conditions were unstable, 
the pilot manually landed the UAV. Finally, right after landing, another set of photos of the 
reflectance panels were taken. Images were acquired on five different dates during early-season 
crop development (emergence, tillering and growth after dormancy) and covered between 15 and 
30 plots (Table 5). 

Table 5. UAV missions 

Date 
Flight 
time 

Images Time 
Illumination Coverage 

(ha) 

03-Nov-2016 8 min 158 11-12 am Clear sky 5.44 

02-Dec-2016 8 min 117 15-16 pm Clear sky 3.64 

07-Mar-2017 8 min 139 11-12 am Overcast 4.15 

13-Mar-20117 8 min 136 11-12 am Overcast 4.36 

24-Mar-2017 11 min 172 11-12 am Clear sky 5.34 

3.2.2. Sentinel-2A imagery 

For the present study, all available Sentinel-2A Level-1C (TOA) products were examined for cloud 
coverage in the study area for the year 2016 and 2017. Only cloud-free images were downloaded 
from the official website of ESA and from the French website PEPS. A total of 17 images of tile 
33UUB were downloaded, 15 from 2016 and 2 from 2017.    

3.2.3. Field data 

Inspections of the crops were conducted from November 2016 to March 2017 during the UAV 
missions. Phenological observations were performed at the same plots covered by the UAV flights 
and the height of the crops was recorded in each visit. In addition, on March 13th, 2017, spectral 
reflectances of three crops (winter wheat, winter rye, winter rapeseed) and bare soil were obtained 
using an ASD FieldSpec FR spectroradiometer with FOV 7.5º (350-2500 nm).  

In addition, the Swedish Infrastructure for Ecosystem Science (SITES) provided information of 
the crop calendar for the years 2016-2017, and a land cover polygon layer of experimental plots. 
The phenological information of the crops is summarized in Table 6. 
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Table 6. Crop calendar 2016 in Lönnstorp farm showing the key phenological stages starting 
from the seeding, rising, blooming and harvest. The months where crops can be found on the 

ground are shown in grey. 

  Crop calendar 2016 

Time Jan Feb Mar Apr May Jun  Jul Aug Sep Oct Nov  Dec 

Winter-rapeseed                       

Sugar-beat                         

Winter-wheat                        

Spring barley/Lupin                         

Grass-legume ley                         

Spring wheat/Fava 
bean                         

Spring wheat                         

Spring barley                        

Spring rapeseed                         

 
 Seeding  Rising  Blooming  Harvest  On the ground 

3.2.4. Sampling Strategy 

The sample set for the calibration and validation of the supervised classification was generated 
following a stratified random sampling strategy including 10 strata (Built up area, rapeseed, spring 
barley, sugar beet, wheat, fava bean/wheat, grass-legume ley, kernza, kernza/lucerne, and spring 
barley/lupin). The sampling unit was one Sentinel-2A pixel (10 x 10 m). Based on the land cover 
polygon layer provided by SITES a set of 10 pixels per number of bands (10x11) for each class was 
considered. The sample size used for testing the performance of the Random Forest model (25% 
of the total sample set) was enough to achieve 85% accuracy according to the formula (Eq. 4) for 
the binomial probability theory suggested by Fitzpatrick-Lins (1981) for a land-use classification 
map. 
 
 

𝑁 =
𝑧2(𝑝)(𝑞)

𝐸2
 

(4) 

 
Where: 
z is the z-score for the standard normal deviate for the 95% two-sided confidence interval (1.96)  
p is the estimated error of success (85%)  
E is the level of error allowed (5%) 
q is the percentage of error (q=1 – p) 

3.3. Methods  

3.3.1. UAV imagery pre-processing 

Agisoft PhotoScan Professional Edition (Agisoft LLC, St. Petersburg. Russia) was used to generate 
orthomosaics from images captured by MicaSense RedEdge. Before starting the pre-processing, 
based on the image quality value estimated by the software, images were inspected and discarded 
if they were blurry. According to the Agisoft LLC (2016) user guide, images with a quality value of 
less than 0.5 units are recommended to be disabled and excluded from the photogrammetric 
processing. After Wijesingha (2016), the threshold considered in this study was 0.65. 

The process followed to generate the orthomosaics is summarized in Fig. 7. The first step in the 
process was image alignment. The software looks for common points in the images and matches 
them, also finds the position of the camera for each image and refines camera calibration 
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parameters. The output of this process was a sparse point cloud. The next step was to georeference 
the images using the coordinates of the GCP. To optimize cameras, a routine was followed using 
the gradual selection tool to filter out points from the sparse point cloud based on reconstruction 
uncertainty, projection accuracy, and re-projection error. Once again the images were aligned, this 
time with the highest accuracy. Based on the estimated camera positions and images themselves a 
dense point cloud was built by the software. The last step was to build the DSM and based on this, 
the orthomosaic. 

The orthomosaics were then projected to WGS 1984 UTM Zone 33N and the cell size resampled 
to 0.05 x 0.05 m with nearest neighbor interpolation since the original map was produced under 
geographic coordinates WGS 1984. 

Another set of orthomosaics was generated by the ATLAS cloud-based data platform, a service 
provided by MicaSense for the RedEdge camera (https://www.micasense.com/atlas/), to obtain 
reflectance values from the radiometrically corrected orthomosaics. The reflectance values were 
scaled by a factor of 32768 for storage as 16-bit data.  

 
Figure 7. Workflow for orthomosaic generation using Agisoft Photoscan 

3.3.2. Sentinel-2A imagery pre-processing 

Images were processed to Level-2A BOA reflectance using SNAP 5.0.0 with the plugin Sen2cor 
2.3.1 in the Sentinel-2A toolbox and then were clipped to the study area extent. Bands acquired at 
20 m resolution (5, 6, 7, 8a, 11, 12) and at 60 m (9) were resampled using the nearest neighbor 
method to obtain a layer stack of 11 spectral bands at 10 m and to minimize changes to pixel values. 
Bands 1 and band 10 were excluded since the first one is used for aerosol detection and the second 
one is omitted from the output after atmospheric correction. The reflectance values were kept 
scaled by a factor of 10000 for file storage and precision considerations.  

https://www.micasense.com/atlas/
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3.3.3. Image Classification and Accuracy Assessment 

Image classification was performed using RF supervised classification implemented within the R 
package “randomForest”. Regarding the parameters ntree (number of trees to be grown in the run) 
and Mtry (number of features used in each split) we used the default values and set ntree to 500 trees 
and Mtry to the square root of the total number of input features.   

A total of 12 images from 2016 were used to run the classification, one from April, five from May, 
three from June, and three from July (Table 7). Ten land cover classes were considered: Built up 
area, rapeseed, spring barley, sugar beet, wheat, fava bean/wheat, grass-legume ley, kernza, 
kernza/lucerne, and spring barley/lupin. The sample set for training and testing the model was 
composed of 1097 observations derived from the land cover polygons provided by SITES and the 
UAV orthomosaic of August. Of this sample set, 75% was used to train the model and 25 % to 
test.  

The classification was performed five times with different explanatory variables each time in an 
attempt to find a parsimonious relationship between S2A time-series and land cover classes. The 
first model was constructed using 11 Sentinel-2A spectral bands, i.e. 2, 3, 4, 5, 6, 7, 8, 8A, 9, 11, 12, 
and NDVI for a single date image of June 11th (12 explanatory variables). The second model 
included the same 11 spectral bands but from 12 different images from April to July. In addition, 
NDVI for each image date and an extra covariate with the maximum NDVI of the growing season 
making a total of 145 explanatory variables.  

Table 7. Sentinel-2A imagery used in the study for the image classification, the comparison 
between sensors with raw and reflectance values, and imagery used for the annual NDVI-time 

series extraction 

Nº Date Image 
classification 

UAV image 
pair 

NDVI time-
series 

1 22/4/2016 X  X 

2 2/5/2016 X  X 

3 5/5/2016 X  X 

4 12/5/2016 X  X 

5 22/5/2016 X  X 

6 25/5/2016 X  X 

7 4/6/2016 X  X 

8 11/6/2016 X  X 

9 24/6/2016 X  X 

10 11/7/2016 X  X 

11 21/7/2016 X  X 

12 24/7/2016 X  X 

13 31/07/2016   X 

14 12/9/2016   X 

15 8/11/2016  X X 

16 28/11/2016  X X 

17 27/1/2017    

18 11/3/2017  X  

The results of the two first models were evaluated to identify variables that were most relevant to 
differentiate land cover classes in the study area. Once the variables were identified, the third 
classification was run using a model that considered only these variables, thus, a total of 30 variables 
were included in the classification. Furthermore, the third model was evaluated in the same way to 
build a fourth model with 15 variables. Finally, the fifth model consisted of the 8 most important 
variables. To identify these variables, we used the Variable Importance function (VI) and the 
Variable Selection Using Random Forest (VSURF) implemented within the R packages 
“randomForest” and “VSURF” respectively.  
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Figure 8. Workflow for image classification and validation using S2A 

Variable importance considers the following measures of importance: Mean decrease in accuracy 
and mean decrease in Gini, which measures how much better than random a predictor variable is 
in successfully classifying data. Mean decrease in accuracy identifies variables that decrease the 
accuracy of the Random Forest due to exclusion or permutation. Therefore, variables with large 
mean decreases in accuracy are more important for the classification of the data. The mean decrease 
in Gini measures how each variable contributes to the homogeneity of the node in the resulting 
Random Forest (0 homogeneous and 1 heterogeneous). Every time a split of a node is made on a 
variable the Gini impurity criterion for the two descendent nodes is less than the parent node A 
low Gini (i.e. higher decrease in Gini) signifies that a predictor variable plays a greater role in 
partitioning the data into the defined classes (Breiman & Cutler, 2007). 

VSURF is a package in the R software based on the Random Forest algorithm that handles high-
dimensional data for variable selection. It returns two subsets of variables: 1) a subset including 
some redundancy which can be relevant for interpretation and 2) a smaller subset corresponding 
to a set of variables that are selected to avoid redundancy in the model and focus closely on the 
prediction objective. The process of variable selection follows three steps. The first step, 
thresholding, runs ntree Random Forest trees (2000 default) and eliminates irrelevant variables 
based on the variable importance (Gini index) computed during the Random Forest processes, the 
second step is the interpretation where the objective is to find important variables highly related to 
the response variable, even if there is redundancy. The third is the prediction, to find a smaller 
number of variables with very low redundancy and a set that are sufficient for a good enough 
(essentially, parsimonious) prediction of the response variable (Genuer, Poggi, & Tuleau-Malot, 
2015). The initial model is based only on the most important variable, and other variables are added 
to the model in a stepwise manner. A variable must have a bigger impact on the model accuracy 
than a noise variable (variables left out by interpretation) to remain in the final model (Michez, 
Piégay, Lisein, et al., 2016).  

The accuracy of the model was assessed with the confusion matrix, the out-of-bag error (OOB), 
Kappa coefficient and by applying the model to the test set. The workflow for image classification 
and validation using S2A imagery is shown in Fig. 8. 

3.3.4. Spectral bands comparison 

In this phase, UAV intensity and reflectance values were extracted to find the correlation with 
Sentinel-2A reflectance values on a band-by-band basis. An average of the UAV pixel values 
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covered by a Sentinel-2A pixel (10 x 10 m) was used for the comparison. The average was based 
on presumably pure pixels, meaning that pixels with only one land cover were selected.  

Two band-by-band comparisons were explored. First, the correlation between the intensity values 
of the orthomosaics generated using Agisoft Photoscan and the atmospherically corrected 
reflectance values of Sentinel-2A imagery and second, the correlation between these Sentinel-2A 
images with radiometrically corrected reflectances of the orthomosaics produced by the ATLAS 
platform. In this analysis, three pairs of images were compared; November 3rd, 2016 with 
November 8th, 2016, December 2nd, 2016 with November 28th, 2016, and March 13th with March 
11th, 2017. Then, the compatibility of the spectral data from the UAV bands and the Sentinel-2A 
bands was analyzed through statistical methods. A t-test compared two samples means to evaluate 
if there is a significant difference between the spectral responses recorded by the two sensors. All 
the available UAV images were paired with the most contemporaneous available Sentinel-2A image 
(Table 8) as this is a realistic situation in which there is no exact date match due to cloudy periods 
or no available imagery from the provider. 

Table 8. Dates of the UAV and Sentinel-2A imagery used in the research 

UAV imagery Sentinel-2A imagery ±Δt 

November 3rd, 2016 November 8th, 2016 5 

December 2nd, 2016 November 28th, 2016 4 

March 13th, 2017 March 11th, 2017 2 

In addition, statistical analysis was conducted to addresses two questions: (1) Does the radiometric 
correction performed by ATLAS to the UAV orthomosaics improve the correlation with Sentinel-
2A imagery? (2) Are the spectral bands of the MicaSense sensor on board of the UAV compatible 
with the coinciding Sentinel-2A bands? The answers to these questions provide insights into the 
compatibility of sensors and the extent to which one can replace the other when observations for 
a time-series are missing. 

The first question requires us to explore the correlation of reflectance values of S2A images and 
raw image values from UAV orthomosaics on a band-by-band basis. A linear model was fitted to 
UAV-S2A image pairs of November 3rd with 8th, December 2nd with November 28th (2016) and 
March 13th with 11th (2017). The coefficients of determination were calculated and compared to 
assess the strength of the relationship between both sensors.    

The second question requires us to compare the mean difference of reflectance values and raw 
values from UAV orthomosaics with the most coinciding S2A imagery on a band-by-band basis. 
The null hypothesis (H0) assumes that the true mean difference between the paired samples is zero. 
Under this model, all observable differences are explained by random variation. Conversely, the 
alternative hypothesis (HA) assumes that the true mean difference between the paired samples is 
not equal to zero. 
 
H0: There is no significant difference of 
reflectances between sensors (µ1= µ2). 

HA: There is a statistically significant difference 
of reflectances between sensors (µ1≠ µ2). 

The chosen probability of making a Type I error (rejecting a true H0) was α=0.05. The statistical 
test selected to compare the spectral bands of the UAV and Sentinel-2A was the paired two samples 
for mean t-test. Paired Student’s t-test is usually used to compare means of two sets of paired 
samples, taken from two populations with unknown variances (Quinn & Keough, 2002).  

The application of a t-test depends upon several assumptions; it is important to know whether 
these assumptions are satisfied. Three main assumptions should be met to appropriately apply t-
test: Both samples should: 1) be random, 2) be independent, meaning that one observation is not 
affected by the value of another observation, and 3) come from a normally distributed population 
with unknown but equal variances, such that when the t procedures are applied to the differences, 
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we assume that the differences are normally distributed. This last assumption rules out outliers and 
skewed distributions.  

Spatial data are often non-independent. The effect of ignoring dependence when it is present in 
the data is to reject null hypotheses more frequently than we should. Over rejection of the null 
hypothesis is more pronounced as the degree of dependence increases. In case of violating the 
assumption of homoscedasticity, heterogeneity causes slightly more null hypotheses to be rejected 
than desired, but the effect is not strong. Generally, outliers may be due to recording errors, to the 
sample not being entirely from the same population, or to the values being from the same, but no-
normal population. A risk of violating the outlier’s assumption is that because neither the sample 
mean nor the sample variance is resistant to outliers; a large outlier can inflate the sample variance, 
decreasing the t statistic and thus lowering the chance of rejecting the null hypothesis.  

The t procedures are relatively robust to deviations from assumptions of normality of the 
population and homoscedasticity except in the case of outliers or strong skewness (Quinn & 
Keough, 2002). A normal quantile plot and a boxplot were used to explore whether the observed 
distribution of the sample conforms to the normal population distribution. In addition, data was 
tested for normality using two tests: Shapiro-Wilk and Anderson-Darling (null hypothesis against 
the assumption of normality) in RStudio. 

Because of the risk of the t-test incorrectly rejecting the null hypothesis that the mean of the paired 
differences is 0 due to skewness in the data, we employed a logarithmic transformation to promote 
normality and at the same time solve for possible outliers, skewness and asymmetry. Furthermore, 
we proceeded with the t-test analysis on the transformed data and the inspection of p-values. 
However, as the transformation and the previous tests were not very reassuring concerning the 
assumption that the data are normally distributed, we applied the Wilcoxon signed rank test to the 
data to corroborate the results obtained with the t-test even though the resulting p-values were not 
close to the significance level. Wilcoxon signed rank test is a distribution-free inference procedure, 
i.e. a nonparametric procedure, that does not make assumptions regarding how the underlying data 
are distributed but still assumes symmetry. 

Moreover, we compared crop reflectances from both sensors to in situ measurements collected 
using a hyperspectral radiometer for one single day (March 13th). 

3.3.5. Vegetation indices 

Vegetation indices were calculated for UAV and Sentinel-2A image pairs (Table 8) to evaluate the 
compatibility of the sensors. The multispectral vegetation indices calculated in this study were 
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Green 
Chromatic Coordinate (GCC). The comparison was based on the methodology described in 
Section 3.3.4. 

The statistical analysis conducted to compare vegetation indices calculated from imagery from both 
sensors addressed the following question: Can vegetation indices produced from UAV 
orthomosaics be used for upscaling data to Sentinel-2A imagery scale? Three vegetation indices 
(NDVI, EVI, and GCC) were calculated from orthomosaics and Sentinel-2A imagery. Again, both 
the t-test: paired two samples for mean and Wilcoxon signed rank statistical test were applied in 
RStudio to determine whether the vegetation index mean is significantly different between sensors.  

H0: The difference in vegetation index mean 
between sensors is zero (µ1= µ2). 

HA: The difference in vegetation index mean 
between sensors is not zero (µ1≠ µ2). 

In addition, to exploring upscaling opportunities, NDVI time-series data from Sentinel-2A from 
2016 were used to assess how well the satellite captured the temporal variation of the crops and to 
evaluate the potential of UAV observations in replacing noisy or missing S2A observation. 
TIMESAT (Jönsson et al. 2017, unpublished) was used to fit a double logistic function to define 
better the curve of crop development. Orthomosaics generated from acquired imagery in 
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November and December were used to extract NDVI values of different crops and compare with 
NDVI predictions constructed based on S2A imagery. 

4. Results 

4.1. Image classification and accuracy assessment 

The first Random Forest classification based on a Sentinel-2A image from June 11th, 2016 gave an 
accuracy of 91.6% with an OOB error of 8.38 (Fig. 9). The performance of the classifier using the 
test set to predict the land cover map gave an accuracy of 92.3% with a Kappa coefficient of 0.91. 
The misclassification rate for predicting the land cover class of the training set can be seen in the 
confusion matrix obtained by the model (see Appendix 1). The land cover classes with higher 
errors of omission were fava bean/wheat and grass-legume ley accounting for 26% of the OOB 
error. Fava bean/wheat was the class that scored highest on both error of omission (57%) and 
error of commission (50%) in the validation of the classifier. On the other hand, the classes where 
the model was more accurate were built up area, spring barley, rapeseed, sugar beet and wheat (see 
Appendix 1).  

 

 

 
Figure 9. Land cover classification map single date image of June 11th, 2016 with 12 explanatory 

variables 

According to the Variable Importance function of the Random Forest model (Fig. 10 a), the 
variables that had the highest impact on accuracy are bands 11 (1610 nm), 9 (945 nm), 2 (490 nm), 
6 (740 nm) and 3 (560 nm). Those that had less impact were NDVI, band 7 and band 4 probably 
due to the similar spectral response that crops exhibit on these bands as shown in Fig. 11. These 
findings are also confirmed by Immitzer et al. (2016), who found that Sentinel-2A blue and red 
bands were more important than red and NIR for crop classification in Austria.  



28 
 

   
Figure 10. Variable importance plot using a) single date imagery with all 12 explanatory variables 

for the classification, b) multi-temporal imagery with 30 explanatory variables for the 
classification and showing only the 15 most important variables after the VSURF prediction step, 

c) multi-temporal imagery with 8 explanatory variables for the classification and showing all 8 
variables in order of importance from top to bottom. 

The second classification based on the 12 Sentinel-2A images, NDVI layers for each date and 
maximum NDVI of the season resulted in the highest accuracy 97% and the lowest OOB error of 
3.1%. However, it included 145 explanatory variables. Grass-legume ley was the class with the 
lowest producer accuracy (85.7%). The model predicted successfully built up areas with 100% user 
accuracy. The 145 variables were evaluated using VSURF of which 87 were found to be relevant 
and were used in the interpretation step. After eliminating redundancy in the set, the prediction 
step selected 19 variables that were combined with those that were important to the result 
according to the Variable Importance function making a total of 30 explanatory variables that were 
feed to the next classifier. The first three dates of the dataset (April 22th, May 2nd and May 5th) were 
not selected. This might be due to the fact that growth of crops resumes after dormancy and starts 
to rise in mid-May according to the crop calendar in Table 6. 

 

 
Figure 11. Spectral signature of crops in Lönnstorp based on 9 bands of Sentinel-2A imagery of 

June 11th, 2016 

An interesting finding was that red-edge band 5 (705 nm) was also absent from the important 
variables. Figure 11 shows that many spectral signatures of crops are overlapping at 705 nm, this 
could be the reason why band 5 does not seems to be of value for differentiating these crops. On 
the other hand, 63% of the variable set was comprised of bands 3, 6, 8, 12 and NDVI layers, this 
is possible since at these wavelengths the spectral response of crops varies (see Appendix 2 for 
bands 11 and 12). The high frequency of NDVI in the set of important variables can be explained 
due to the different response of crops to the Red and NIR at different phenological stage.  
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The third classification used 30 variables as inputs to predict the land cover classes of the study 
area. Despite reducing the number of explanatory variables more than 80%, the accuracy of the 
classification did not decrease (96.2%). The model predicted with 100% accuracy the classes built 
up areas and kernza and had the same poor performance as the previous model in predicting fava 
bean/wheat, with an error of commission of 21%.  

The result of the VSURF was 24 variables in the interpretation step and 15 in the prediction step 
(Fig. 10 b). More than 66% of coinciding important variables were found between VI and VSURF. 
This time only the 15 variables predicted by VSURF were used as input for the fourth classification. 
Apart from band 5, the second VSURF eliminated bands 7, 8A and 9. The images of June and July 
resulted in the most frequently selected among the variables.   

  

  

 
Figure 12. Land cover classification maps. a) Multi-temporal imagery from April until June with 

145 explanatory variables. b) Multi-temporal imagery with 30 explanatory variables. c) Multi-
temporal imagery with 15 explanatory variables. d) Multi-temporal imagery with 8 explanatory 

variables. 

In the fourth classification, the number of explanatory variables was reduced by 90%. The 15 
remaining variables from the algorithm for variable selection predicted 10 land cover classes with 
the same accuracy (96.2%). The model performed poorly again for the classes fava bean/wheat 
and grass-legume ley, but very well with built up areas. However, with the testing set, the model 
predicted five classes with 100% of accuracy: built up area, spring barley, fava bean/wheat, kernza, 
and kernza/lucerne. The overall classification accuracy was 97.8% and the Kappa coefficient was 
0.9746.  

In addition, the test sample set was used with the predict method of VSURF, which permits to 
predict the outcomes for new data with RF using only the variables selected by VSURF. The 

(a) (b) 

(c) (d) 
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accuracy using 8 variables was 94.8% compared to the accuracy of 96.2% using 145 (see Appendix 
1). The 8 important variables selected were: two single date image NDVI from May 12th and 22nd; 
band 6 from June 11th; band 3 and 11 from June 24th; band 6 and 12 from July 11th; and maximum 
NDVI of the growing season. It can be noted that two of the important bands for vegetation, Red 
(band 2) and NIR (band 8), are absent from the last set of variables, however, their importance 
might be accounted by the presence of three NDVI variables. With respect to the timing, it seems 
that images from June and July provide enough information for a good distinction of crops in the 
study area, and even with one single date image, the accuracy of the classification it is still 
acceptable.  

The last classification attempt was using these 8 variables (Fig. 10 c). The overall accuracy was 95% 
with the training set and 93.3% with the testing set and a Kappa coefficient of 0.92. Figure 12 
shows the four land cover maps using the validation set as input for the model. The previous results 
show that VSURF was a good method for finding a smaller number of important variables highly 
related to the response variable (i.e. crop class) and eliminating redundancy from the set. In the 
case where the study area would be bigger, a smaller set of variables sufficient to achieve a good 
parsimonious prediction of the response variable could decrease the computational load and the 
time required to process the data. 

4.2. Spectral bands comparison 

The coefficients of determination obtained from comparing radiometrically corrected 
orthomosaics and Sentinel-2A imagery were higher than those correlations obtained with raw 
orthomosaics. Coefficients of determination for each band of the three most coinciding dates are 
given in Table 9, and in Fig. 13 the plots for the last pair of images for bands red, NIR and red-
edge are shown. According to the results, the radiometric correction performed by ATLAS in the 
first and last orthomosaics improved the correlation more than for the orthomosaic of December 
2nd.  

There is a visible difference in the quality of the orthomosaic of December (see Appendix 3) 
compared with the other orthomosaics which can perhaps explain the lower coefficients obtained 
for this pair. Nevertheless, the coefficients of determination of the other two pairs were higher 
than 0.60 with p-value<0.05 which means that there is a relationship between the two sensors that 
it is unlikely that it is due to chance, however, the relationship is not very strong. A special situation 
occurs in the red-edge band since it is the least coinciding between the two sensors and this is 
reflected in the coefficient of determination as it is the lowest of all bands. 

Table 9. Coefficients of determination based on a band-by-band comparison 

 November 3rd with 8th, 
2016 

December 2nd with 
November 28th, 2016 

March 13th with 11th, 
2017 

r2 (raw) r2 (atlas) r2 (raw) r2 (atlas) r2 (raw) r2 (atlas) 

Blue 0.05 0.63 0.33 0.24 0.2 0.8 

Green 0.02 0.68 0.48 0.53 5.6x10-3 0.69 

Red 0.57 0.71 0.17 0.13 0.79 0.94 

RedEdge 0.11 0.58 0.37 0.39 0.28 0.42 

NIR 0.44 0.74 0.46 0.61 0.83 0.96 
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Figure 13. Band-by-band comparison between UAV and S2A. Raw UAV orthomosaic (left) of 
March 13th and radiometrically corrected (right) with S2A image of March 11th, 2017. 

The results suggest that while more than 60% of the variation in the data can be explained by the 
linear model, the remaining variation that cannot be accounted by the model might be due to the 
difference in acquisition dates, differences in the radiometric correction and differences in the 
center wavelength and bandwidth of the sensors (Table 4).    

Further analyses of the data showed that no anomalous outliers were present, but also showed 
signs of skewness and asymmetry (Fig. 14). However, the paired difference was more symmetric, 
meaning that the sample sets had similar skewness. The logarithmic transformation employed 
solved for skewness and promoted normality in most of the band-by-band pairs. Since the 
skewness was not severe, and the sample size was large, which tends to improve the accuracy of p-
values and critical values from the t distribution, we considered that the t-test performed 
adequately. 

 
Figure 14. Boxplot of reflectances per band for both sensors. UAV image of March 13th and S2A 

image of March 11th. 

Regarding the assumption of independence, if we would have incorrectly assumed independence 
within the samples and the t-critical values should have to be larger, the t-statistic obtained is much 
larger and at the same time the p-value obtained is very small, hence, we would have still detected a 
significant departure from 0 of the mean of the paired difference. 
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Table 10. t-test and Wilcoxon signed rank test of reflectance data for the first image pair. UAV 
orthomosaic of November 3rd and Sentinel-2A image of November 8th, 2016 

 November 3rd with 8th, 2016 

B G R RedEdge NIR 

Observations 192 

df 191 

Pearson correlation (r) 0.79 0.82 0.84 0.76 0.86 

Wilcoxon signed rank p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-stat -6.45 22.52 -12.53 19.21 -4.46 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.97 

Table 11. t-test and Wilcoxon signed rank test of reflectance data for the second image pair. 
UAV orthomosaic of December 2nd and Sentinel-2A image of November 28th, 2016 

 December 2nd with November 28th, 2016 

B G R RedEdge NIR 

Observations 74 

df 73 

Pearson correlation (r) 0.49 0.73 0.35 0.63 0.78 

Wilcoxon signed rank  0.25* p<0.001 p<0.001 p<0.001 p<0.001 

t-Stat 1.19 10.52 19.19 13.17 10.47 

P(T≤t) two-tail 0.24* p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.99 

The t-scores from the paired two samples for mean t-test showed that there is a statistically 
significant difference between mean reflectances of UAV and mean reflectances of Sentinel-2A 
based on a band-by-band comparison. The test statistic obtained for all image pairs is beyond t-
critical. Based on this data it appears that there is a significant difference between both sensors (p-
value<0.001). With 95% confidence interval, we reject the null hypothesis since there is evidence 
that the mean of the reflectance of UAV and S2A is different than zero. The results of the Wilcoxon 
signed rank test agreed with the results obtained with the t-test as shown in Tables 10-12. 

The only non-significant difference from the whole analysis was found in band blue on the 
comparison between the orthomosaic of December 2nd and the S2A imagery of November 28th 
that on the previous band-by-band analysis of reflectance showed the lowest correlation. 

Table 12. t-test and Wilcoxon signed rank test of reflectance data for the third image pair. UAV 
orthomosaic of March 13th and Sentinel-2A image of March 11th, 2017 

 March 13th with 11th, 2017 

B G R RedEdge NIR 

Observations 95 

df 94 

Pearson correlation (r) 0.89 0.83 0.97 0.65 0.98 

Wilcoxon signed rank  p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-stat -15.50 -60.35 -31.69 -27.02 -25.85 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.98 

The differences between in situ and measurements are pronounced at the green and NIR bands in 
both winter rye and winter rapeseed crops. Contrarily, reflectances are more consistent in bands 
blue, red and red-edge (Fig. 15). It should be noted that in general, data from S2A imagery on this 
date had higher values than the UAV data as shown in the boxplot. However, for the other dates 
UAV derived reflectances were higher than those from S2A, this explains why the t-stat results are 
positive for most of the bands in November and December.   
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Figure 15. Spectral signature of crops from in situ and remotely derived measurements. a) Winter 

rye b) Winter rapeseed     

4.3. Vegetation indices 

Unlike the comparison band-by-band with reflectance data, the coefficients of determination of 
vegetation indices calculated from comparison of the two sources of imagery are stronger. There 
is no consistent pattern between indices on different observations dates.  Figure 16 shows that the 
correlation varies from one image pair to the other. Based on this data, EVI and NDVI correlate 
the best, closely followed by GCC, but with lower coefficients in all the analyzed pairs. GCC and 
NDVI mean values are similar between sensors, whereas with EVI it seems that there is a 
disagreement.  EVI and GCC values are higher when calculated from UAV imagery and NDVI 
appears to capture a larger variability using data from both sensors (Fig. 17).  

 
Figure 16. Coefficient of determination of vegetation indices 

 
Figure 17. Boxplot of vegetation indices per sensor. UAV image March 13th with S2A March 11th. 

Although the correlation seems stronger, the paired t-test shows that there are still significant 
differences between sensors. The statistical test conducted with vegetation indices produces results 
that are not consistent in the three days of observation. The first image pair compared (see image 
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pairs in Table 8) shows that there is no statistical evidence that the mean difference between NDVI 
calculated from UAV and S2A imagery is significantly different from zero (α=0.05). However, the 
difference in means of GCC and EVI is statistically significant (p-value<0.001 and t-statistic>t-
critical), therefore we reject the null hypothesis in favor of the alternative (Table 13).  

Table 13. t-test and Wilcoxon signed rank test of vegetation indices for the first image pair. UAV 
orthomosaic of November 3rd and Sentinel-2A image of November 8th, 2016 

 November 3rd with 8th, 2016 

NDVI GCC EVI 

Observations 192 

df 191 

Pearson correlation (r) 0.81 0.71 0.86 

Wilcoxon signed rank 0.72* p<0.001 p<0.001 

t-stat -0.66* 31.47 33.27 

P(T≤t) two-tail 0.51 p<0.001 p<0.001 

t-critical two-tail 1.97 

If we analyze where most of these differences occur, we can find that when subtracting the S2A 
imagery from the UAV orthomosaic, S2A gives lower values for bare soil areas shown in brown 
and conversely the UAV yields higher NDVI values for green areas like spring wheat and sugar 
beet (Fig. 18). Areas with sparsely cover, like the case of crops in the green-up stage like winter rye 
and grass-legume ley, have almost the same NDVI values.  

  
Figure 18. UAV orthomosaic of November 3rd and NDVI difference between UAV imagery and 

S2A imagery of November 8th, 2016 

The analysis of the second image pair reveals that there are statistically significant differences only 
with EVI and not with NDVI and GCC (Table 14). This is interesting given that the previous 
analysis showed that the orthomosaic of December 2nd had the lowest correlation on a band-by-
band analysis, but it was also the only image pair where one band (blue) had no significant 
difference between sensors.  

Table 14. t-test and Wilcoxon signed rank test of vegetation indices for the second image pair. 
UAV orthomosaic of December 2nd and Sentinel-2A image of November 28th, 2016 

 December 2nd with November 28th, 2016 

NDVI GCC EVI 

Observations 74 

df 73 

Pearson correlation (r) 0.84 0.78 0.80 

Wilcoxon signed rank 0.85* 0.33* p<0.001 

t-stat -0.29* 1.49* 13.73 

P(T≤t) two-tail 0.77 0.14 p<0.001 

t-critical two-tail 1.99 
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Figure 19. UAV orthomosaic of December 2nd and GCC difference between 

UAV imagery and S2A imagery of November 28th, 2016 

Similarly, the image difference of GCC for the next pair (Fig. 19) shows that values of the 
vegetation index using the UAV imagery give approximately 20% higher values in crop areas while 
areas with bare soil have less error. 

Moreover, the statistical test performed on the third image pair resulted in significant differences 
in the three indices (Table 15). Results suggest that whether there is a relationship between sensors, 
it is difficult to relate reflectance values between sensors.  

Table 15. t-test and Wilcoxon signed rank test of vegetation indices for the third image pair. 
UAV orthomosaic of March 13th and Sentinel-2A image of March 11th, 2017 

 March 13th with 11th, 2017 

NDVI GCC EVI 

Observations 95 

df 94 

Pearson correlation (r) 0.99 0.96 0.98 

Wilcoxon signed rank p<0.001 p<0.001 p<0.001 

t-stat -11.44 7.98 15.42 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.98 

The results of the image differencing of EVI agrees with the previous findings. The green areas 
shown in the orthomosaic in Fig. 20 correspond to winter rye and winter rapeseed that give higher 
EVI values when using the UAV imagery than when using S2A.  
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Figure 20. UAV orthomosaic of March 13th and EVI difference between UAV imagery and S2A 
imagery of March 11th, 2017 

Senitnel-2A NDVI time-series allows us to observe the temporal development and phenology of 
the crops in the study area. In Fig. 21 we can see that time-series of crop pixels allow us to roughly 
estimate the start, end, and length of the season, as well as the estimations of the maximum NDVI 
and the time of the middle of the season (Jönsson & Eklundh, 2004). Sentinel-2A observations of 
the growing season in 2016 seem to represent well the temporal variation of the crops in the study 
area. However, as expected, some of the observations contain noise that affects the estimation of 
the seasonality parameters and no obvious peak of photosynthetic activity can be recognized in 
crops like Fava bean/Wheat apart from finding sudden drops of NDVI.   

Kernza Kernza/Lucerne 

  
 
 
 
 

Fava bean/Wheat – Winter rapeseed Spring wheat - GLL 

  
Spring rapeseed – Winter wheat Spring barley/Lupin – Winter rye 

  
 

Figure 21. Time-series of S2A NDVI data for crop pixels 

Many studies use crop phenology metrics derived from vegetation indices to estimate yield 
(Mkhabela, Mkhabela, & Mashinini, 2005; M. Wang et al., 2014). Yield is most influenced by crop 
conditions during the heading or peak phase of the growth (Wall, Larocque, & Léger, 2008). 
Identifying key stages of crop phenology is important for the development of satellite-based crop 
yield estimation models. Even though there are significant differences in the actual units of 
reflectances and vegetation indices, UAV observations appear to have the potential to replace noisy 
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pixels and/or complement observations to represent better the phenology of crops and thus 
contribute to an improvement in the accuracy of yield predictions (Fig. 21).  

  
 

Figure 22. Time-series of S2A NDVI data for sugar beet. a) Sugar beet pixel extraction, b) 
Smoothed curve after fitting the function. 

The two dips that appear on the plots of kernza and kernza/lucerne were due to events of clipping 
that occurred in July (DOY=207) and November (DOY=330). The blue circles represent the UAV 
observations of November and December, which correspond to the end of the season and 
beginning of winter crops after the harvest (red dashed line). The harvest time of the crops differs 
very little, however earlier in the phenological cycle, i.e. rising and blooming, crops can be 
distinguishable due to the spectral differences when they are developing at different rates.     

In Fig. 22 a) we show the result of the extraction of NDVI time-series of one sugar beet pixel and 
in b) the same extraction after fitting a double logistic function. The algorithm of TIMESAT seems 
to reduce the noisy signal, improve the data quality and transform the data into a smoothed seasonal 
curve that highlights phenology parameters. Moreover, the UAV observations complement the 
time-series and coincided with the estimation of the temporal variation despite the significant 
differences found in the previous analyses.  

5. Discussion  

5.1. Evaluation of multi-temporal S2A data for crop identification 

We found high accuracies in the outputs of the digital image classification using a supervised 
Random Forest approach. Based on the results, a single date Sentinel-2A image from mid-June has 
the potential to distinguish the different crops in the study area through this classification approach 
with a Kappa coefficient of 0.91. The spectral signatures of crops derived from the same image 
corroborate this finding, as crops exhibit different responses in mid-June, especially in SWIR bands 
(Appendix 2). According to the variable importance plot, differences in NDVI between crops did 
not seem to impact the accuracy of the classification more than red and NIR bands alone did, this 
probably due to the vegetation index not adding additional information. The single date image 
from June 11th corresponds to the day of the year 163, about two months ahead of harvest, meaning 
that it is possible to have a clear distinction between crops early in the season. It is important to 
mention that this result is supported by a strong sampling set, comprised of 808 pixels for training 
and 269 more for testing, that allowed identification of intercropping plots like spring barley/lupin, 
fava bean/wheat, and kernza/lucerne, although with slightly more error than the other classes.      

Including multi-temporal data increased the accuracy of the classification by 4%, but considered a 
very large number of covariates. However, the variable importance function of the randomForest 
package and VSURF algorithm were successful in reducing the number to 8 variables with the 
highest impact in the classification while maintaining an overall accuracy above 90%. This poses 
an opportunity to reduce the computational burden when increasing the size of the study area. 
Moreover, the multi-temporal evaluation shows that June and July are the most optimal months 

(a) (b) 
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for differentiating crops in the study area. The results are already comparable to the outcome of 
the study presented in Immitzer et al. (2016) where they investigated the classification performance 
using a single image to classify crops in Austria and achieved accuracies around 77-83%. 

Amongst the most important spectral bands, we found one in the red-edge (B6), two in the SWIR 
(B11 and B12) and one in the visible spectrum (B3). Immitzer et al. (2016) observed the same 
behavior in their study regarding the importance of SWIR and red-edge bands of S2A for crop 
classification. 

We consider that the proportion of background material present within the field of view of the 
sensors allowed the discrimination between vegetation types since the background material is 
closely related to the stage of the plant in its phenological cycle. In this case, imagery from early in 
the growing season when crops are developing at different rates yields different percent canopy 
closure, and that could create differences in their spectral signatures.  

Song et al. (2017) used maximum NDVI to separate different crops as well as to separate these 
from non-crop land covers. In this study, maximum NDVI of the growing season turned out to 
be very important as well for the accuracy of the classification. Since neither band red nor NIR 
were included among the 8 important variables, we can suggest that their information was retained 
in the NDVI from single date imagery instead. In general, the results suggest that the classifier 
performed well, considering the size of the experimental plots and that the harvest date of crops 
was variable since July 11th. 

5.2. Band differences 

MicaSense RedEdge has very well corresponding central wavelengths to Sentinel-2A, although 
their bandwidths are narrower than those of S2A. There was a clear improvement in the correlation 
of Sentinel-2A and MicaSense RedEdge spectral bands after the radiometric calibration performed 
by ATLAS, except with data from December 2nd. This orthomosaic was greatly affected by 
blurriness caused by wind and varying sun illumination conditions due to the time of the flight, 
this could explain the difference in the results. In general, red and NIR bands showed stronger 
correlation. Tewes et al. (2015) suggested that achieving better results with these bands may be 
because for vegetated land surfaces the reflected radiation in the NIR is higher than in visible 
wavelengths and therefore less affected by radiation variations. Conversely, the least correlated 
band was the red-edge band. Discrepancies between sensors regarding the center wavelength and 
bandwidth of red-edge may have caused a decrease in the correlation. The large variability found 
in the data from the NIR band of both sensors could be due to the broader bandwidth, 40 nm for 
MicaSense and 115 nm for S2A, compared to the other channels.  

Despite the strong correlation of bands, a significant difference in reflectance, between MicaSense 
RedEdge and Sentinel-2A, was found with the statistical testing. This means that one should be 
aware of these differences when combining data from both sensors since these differences could 
affect the performance of models based on biophysical variables and they could lead to biases in 
the estimation of the timing of phenologic events. Certain seasonal transitions could be effectively 
observed at nearly the same time when observed from both platforms, while others may not. 
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Figure 23. Spectral signature of crops from UAV imagery. a) March 7th, 2017, b) March 13th, 
2017. 

Besides differences in spatial resolution, the poor agreement can be explained by factors such as 
observation quality, varying atmospheric conditions, and viewing geometry (Vrieling et al., 2017). 
Probably the most important source of dissimilarities in reflectance between the sensors is due to 
the observation dates not coinciding. The most coincident pair had a difference of 2 days between 
observations, followed by 4 and 5 days for the remaining image pairs. The sensitivity of the sensors 
may be another important source of discrepancy. However, an interesting finding was that the 
spectral response of crops between two consecutive UAV observations differs greatly, even when 
flying with the same configurations and at the same time of the day (Fig. 23). This means that the 
differences are not only between Sentinel-2A and UAV data but are also between different 
observations with the same sensor.  

Compared to field reflectances, UAV and S2A values were generally lower; this could be explained 
by how the field measurements were taken. The radiometer was pointing directly to the vegetation, 
thus reducing the influence of the soil background to the spectra. 

The influence of different land covers contributing to the signal of a S2A pixel cannot be ruled 
out, even if we tried to include only pure S2A pixels in the analyses. The measurements would 
most likely contain a variety of surface materials due to the growing stage of the crops, i.e. winter 
wheat and winter rye, as at the time this study was conducted the canopy did not cover the ground 
completely, thus the measurement of the sensor consist of mixed signals from multiple reflectance 
signatures. Moreover, it can be possible that a simple spatial average to degrade high-resolution 
UAV observations to a S2A footprint might not be representing well the signal captured by the 
satellite.  

It should be noted that we do not know what is behind the radiometric calibration performed by 
ATLAS and in which way this could be improved. In this sense, there is a potential to increase the 
compatibility between UAVs and satellite sensors by improving the radiometric calibration 
according to local conditions. At the end of this study, three MosaicMill reflectance panels were 
available but the attempt of calibrating the images was not successful given that the 44% and 23% 
panels appeared saturated in the images with the current configuration of the UAV sensor. 

(a) (b) 
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5.3. Vegetation indices  

The comparison of vegetation indices between sensors showed stronger correlation. NDVI and 
GCC showed to normalize the data better compared to EVI as shown in the boxplot in Fig. 17. 
Similar results were found with the other two image pairs. Although, as was the case with the 
reflectances, there were absolute differences between vegetation indices derived from the UAV 
and S2A, in this case, less statistically significant differences were found.  

In general, UAV vegetation indices values were higher than those from S2A; this was found with 
two out of three image pairs (except March) where the UAV measurements were higher in most 
of the bands. This could be explained since there is less interaction of the reflected radiation with 
the atmosphere before it reaches the sensor. 

From the image differencing approach, we can see that the S2A values were higher in bare soil and 
lower in crop areas. NDVI derived from S2A imagery was likely more influenced by the soil 
background as in the image differencing bare soil areas showed very low values (-0.79) compared 
to the differences found with GCC and EVI. The difference between sensors is smaller when crops 
are starting to develop. 

The NDVI time-series using cloud-free and atmospherically corrected images with Sen2Cor 
highlighted the seasonal development of the crops in the study area. Most of the NDVI 
observations derived from the UAV showed the potential to complement the time-series. 
Nevertheless, as expected, we found noisy data in both S2A and UAV images, probably arising 
from varying atmospheric conditions, radiometric calibration, blurriness effects (in the case of 
UAV imagery) and others. Improved radiometric calibration (as discussed above) may make 
spectral reflectances and derived products, such as vegetation indices, more comparable. The fitted 
function could reduce the impact of these issues and smooth the data to produce and improve the 
quality of data for a better estimation of phenological parameters. 

For this study, data availability restricted us from evaluating the agreement of S2A and UAV 
observations at the beginning and peak of the season. However, scaling between UAV derived 
vegetation indices and S2A showed strong agreement, UAV observations may thus provide more 
confidence in the accuracy of transition dates at key development stages. Nevertheless, when 
combining UAV imagery with other sensors, data should be validated before making a detailed 
analysis, especially in landscapes with fine-scale land cover variability as this could lead us to 
conclude that UAVs and satellite could indicate different phenology (Vrieling et al., 2017).  

6. Conclusions and Recommendations 

In the context of crop monitoring for Precision Agriculture practices, the aim of this study was to 
explore a multi-temporal Sentinel-2A dataset for crop type mapping at the plot level and to assess 
the performance of the methodology used. Another major ambition was to examine the 
compatibility of S2A data with that derived from the MicaSense RedEdge sensor, operated on-
board a UAV. 

This study demonstrated that cloud-free S2A atmospherically corrected images applied to a pixel-
based supervised Random Forest classification yielded satisfactory results for crop identification in 
the study area. The accuracy achieved with a single-date S2A image from mid-June (two months 
before harvest) was comparable to the accuracy of a multi-temporal stack of imagery from the 
whole growing season. 

The radiometric calibration of the orthomosaics performed by ATLAS improved the correlation 
of spectral bands between UAV and S2A data in terms of reflectance information. Moreover, we 
found a stronger agreement of vegetation indices (NDVI, EVI, GCC) between both sensors using 
UAV calibrated images. 
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S2A annual time-series data effectively represented the characteristic phenological development of 
the different crops in the study area and displayed agreement with the crop calendar. Although, in 
cloud-prone landscapes like in Sweden, frequent good-quality observations for phenology 
assessments are rare and difficult to obtain. UAV data showed the potential to complement satellite 
data, as well as to be useful for validating phenological estimates derived from satellite data, to 
provide more confidence in the accurate determination of transition dates for key development 
stages, and to improve classification of crops with this information. 

Despite the many advantages of UAVs, among these that they are able to capture the small-scale 
spatial variability of crops, their usefulness is hindered by their relatively low area coverage per 
flight. For this reason, UAV data should be validated and used as a representative high-resolution 
input for various models, because while S2A has a lower spatial resolution, it represents an 
important tool for global monitoring due to its frequent and extensive coverage. 

Finally, we consider that MicaSense RedEdge offers an interesting alternative for small-scale 
farmers to take advantage of multispectral sensors to monitor their crops, while at the same time 
promoting Precision Agriculture practices. 
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Appendix 1. Confusion matrices 
 
Confusion matrix model 1 with single-date image and 12 variables 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 116 0 0 2 0 2 0 0 0 1 121 4.1 95.9 

Rapeseed 0 114 1 1 0 0 0 0 1 1 118 3.4 96.6 

Spring barley 0 0 77 0 2 0 1 0 0 2 82 6.1 93.9 

Sugar beet 2 0 0 123 0 0 1 2 1 5 134 8.2 91.8 

Wheat 1 0 2 0 97 5 0 1 0 4 110 11.8 88.2 

Fava bean/Wheat 1 0 0 0 0 25 2 0 1 1 30 16.7 83.3 

Grass legume ley 1 0 0 1 0 2 27 0 1 1 33 18.2 81.8 

Kernza 1 0 0 0 0 0 0 62 1 0 64 3.1 96.9 

Kernza/Lucerne 0 0 0 1 0 0 1 4 38 0 44 13.6 86.4 

Spring barley/Lupin 0 1 0 6 0 2 2 1 0 75 87 13.8 86.2 

Total 122 115 80 134 99 36 34 70 43 90 823   
Error of omission 4.9 0.9 3.8 8.2 2.0 30.6 20.6 11.4 11.6 10.0    
Producer accuracy 95.1 99.1 96.3 91.8 98.0 69.4 79.4 88.6 88.4 90.0    

 

Overall classification accuracy 91.62 

OOB estimate of error rate  8.38 
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Confusion matrix prediction based on model 1 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 30 1 0 1 0 0 0 0 0 0 32 6.3 93.8 

Rapeseed 0 37 0 0 1 0 0 0 0 0 38 2.6 97.4 

Spring barley 0 1 33 0 1 0 0 0 0 0 35 5.7 94.3 

Sugar beet 0 0 0 50 1 0 0 0 0 0 51 2.0 98.0 

Wheat 0 0 0 0 36 1 0 0 0 0 37 2.7 97.3 

Fava bean/Wheat 0 0 0 0 2 3 0 0 0 1 6 50.0 50.0 

Grass legume ley 0 0 0 0 0 1 8 0 0 1 10 20.0 80.0 

Kernza 0 0 0 0 0 1 0 10 1 0 12 16.7 83.3 

Kernza/Lucerne 0 0 0 0 0 0 0 2 15 0 17 11.8 88.2 

Spring barley/Lupin 0 0 1 1 1 1 1 0 0 31 36 13.9 86.1 

Total 30 39 34 52 42 7 9 12 16 33 274    
Error of omission 0.0 5.1 2.9 3.8 14.3 57.1 11.1 16.7 6.3 6.1    
Producer accuracy 100.0 94.9 97.1 96.2 85.7 42.9 88.9 83.3 93.8 93.9    

 

Overall classification accuracy 92.34 

Kappa coefficient 0.9122 
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Confusion matrix model 2 with 145 variables 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 113 0 0 0 0 0 0 0 0 0 113 0.0 100.0 

Rapeseed 1 108 1 0 1 0 0 0 0 0 111 2.7 97.3 

Spring barley 0 0 85 0 0 0 0 0 0 3 88 3.4 96.6 

Sugar beet 0 0 0 137 0 0 1 1 0 2 141 2.8 97.2 

Wheat 0 0 0 0 110 1 0 0 0 1 112 1.8 98.2 

Fava bean/Wheat 0 0 0 0 3 19 1 1 0 0 24 20.8 79.2 

Grass legume ley 0 0 0 0 0 0 24 0 0 3 27 11.1 88.9 

Kernza 0 0 0 0 0 0 0 54 1 0 55 1.8 98.2 

Kernza/Lucerne 0 0 0 0 0 0 0 1 45 0 46 2.2 97.8 

Spring barley/Lupin 0 1 0 0 0 0 2 0 0 88 91 3.3 96.7 

Total 114 109 86 137 114 20 28 57 46 97 808   
Error of omission 0.9 0.9 1.2 0.0 3.5 5.0 14.3 5.3 2.2 9.3    
Producer accuracy 99.1 99.1 98.8 100.0 96.5 95.0 85.7 94.7 97.8 90.7    

 

Overall classification accuracy 96.91 

OOB estimate of error rate  3.09 
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Confusion matrix prediction based on model 2 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 36 0 0 0 0 0 0 0 0 0 36 0.0 100.0 

Rapeseed 0 44 0 0 1 0 0 0 0 0 45 2.2 97.8 

Spring barley 0 0 27 0 0 0 0 0 0 0 27 0.0 100.0 

Sugar beet 0 0 0 43 0 0 0 0 0 0 43 0.0 100.0 

Wheat 0 0 0 0 36 1 0 0 0 0 37 2.7 97.3 

Fava bean/Wheat 0 0 0 0 1 8 0 0 0 0 9 11.1 88.9 

Grass legume ley 0 0 0 1 0 1 11 0 0 0 13 15.4 84.6 

Kernza 0 0 0 0 0 0 0 19 0 0 19 0.0 100.0 

Kernza/Lucerne 0 0 0 0 0 0 0 1 13 0 14 7.1 92.9 

Spring barley/Lupin 0 1 0 0 0 1 0 0 0 24 26 7.7 92.3 

Total 36 45 27 44 38 11 11 20 13 24 269   
Error of omission 0.0 2.2 0.0 2.3 5.3 27.3 0.0 5.0 0.0 0.0    
Producer accuracy 100.0 97.8 100.0 97.7 94.7 72.7 100.0 95.0 100.0 100.0    

 

Overall classification accuracy 97.03 

Kappa coefficient 0.9662 
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Confusion matrix model 3 with 30 variables 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 113 0 0 0 0 0 0 0 0 0 113 0.0 100.0 

Rapeseed 1 107 1 0 0 1 0 0 1 0 111 3.6 96.4 

Spring barley 0 0 85 0 0 0 0 0 0 3 88 3.4 96.6 

Sugar beet 0 0 0 136 0 0 2 1 0 2 141 3.5 96.5 

Wheat 0 0 0 0 109 2 0 0 0 1 112 2.7 97.3 

Fava bean/Wheat 0 0 0 1 2 19 0 1 0 1 24 20.8 79.2 

Grass legume ley 0 0 0 2 0 0 22 0 0 3 27 18.5 81.5 

Kernza 0 0 0 0 0 0 0 55 0 0 55 0.0 100.0 

Kernza/Lucerne 0 0 0 1 0 0 0 2 43 0 46 6.5 93.5 

Spring barley/Lupin 0 1 0 0 1 0 1 0 0 88 91 3.3 96.7 

Total 114 108 86 140 112 22 25 59 44 98 808   
Error of omission 0.9 0.9 1.2 2.9 2.7 13.6 12.0 6.8 2.3 10.2    
Producer accuracy 99.1 99.1 98.8 97.1 97.3 86.4 88.0 93.2 97.7 89.8    

 

Overall classification accuracy 96.16 

OOB estimate of error rate  3.84 
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Confusion matrix prediction based on model 3 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 36 0 0 0 0 0 0 0 0 0 36 0.0 100.0 

Rapeseed 0 44 0 0 1 0 0 0 0 0 45 2.2 97.8 

Spring barley 0 0 27 0 0 0 0 0 0 0 27 0.0 100.0 

Sugar beet 0 0 0 43 1 0 0 0 0 0 44 2.3 97.7 

Wheat 0 0 0 0 36 1 0 0 0 0 37 2.7 97.3 

Fava bean/Wheat 0 0 0 0 0 9 0 0 0 0 9 0.0 100.0 

Grass legume ley 0 0 0 1 0 1 11 0 0 0 13 15.4 84.6 

Kernza 0 0 0 0 0 0 0 20 1 0 21 4.8 95.2 

Kernza/Lucerne 0 0 0 0 0 0 0 0 12 0 12 0.0 100.0 

Spring barley/Lupin 0 1 0 0 0 0 0 0 0 24 25 4.0 96.0 

Total 36 45 27 44 38 11 11 20 13 24 269   
Error of omission 0.0 2.2 0.0 2.3 5.3 18.2 0.0 0.0 7.7 0.0    
Producer accuracy 100.0 97.8 100.0 97.7 94.7 81.8 100.0 100.0 92.3 100.0    

 

Overall classification accuracy 97.40 

Kappa coefficient 0.9662 
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Confusion matrix model 4 with 15 variables 

 

Built 
up area 

Rapeseed 
Spring 
barley 

Sugar 
beet 

Wheat 
Fava 
bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza/ 
Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 
User 

accuracy 

Built up area 113 0 0 0 0 0 0 0 0 0 113 0.0 100.0 

Rapeseed 1 108 1 0 0 1 0 0 0 0 111 2.7 97.3 

Spring barley 0 0 85 0 0 0 0 0 0 3 88 3.4 96.6 

Sugar beet 0 0 0 138 0 0 1 1 0 1 141 2.1 97.9 

Wheat 0 0 0 0 106 5 0 0 0 1 112 5.4 94.6 

Fava bean/Wheat 0 0 0 1 1 21 0 1 0 0 24 12.5 87.5 

Grass legume ley 0 0 0 2 0 0 21 0 0 4 27 22.2 77.8 

Kernza 0 0 0 0 0 0 0 54 1 0 55 1.8 98.2 

Kernza/Lucerne 0 0 0 1 0 0 0 2 43 0 46 6.5 93.5 

Spring barley/Lupin 0 1 0 0 1 0 1 0 0 88 91 3.3 96.7 

Total 114 109 86 142 108 27 23 58 44 97 808   
Error of omission 0.9 0.9 1.2 2.8 1.9 22.2 8.7 5.2 2.3 19.6    
Producer accuracy 99.1 99.1 98.8 97.2 98.1 77.8 91.3 94.8 97.7 80.4    

 

Overall classification accuracy 96.16 

OOB estimate of error rate  3.84 
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Confusion matrix prediction based on model 4 

 

Built 
up area 

Rapes
eed 

Spring 
barley 

Sugar 
beet 

Wheat 
Fava 

bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza
/ 

Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 

User 
accurac

y 

Built up area 36 0 0 0 0 0 0 0 0 0 36 0.0 100.0 

Rapeseed 0 44 0 0 1 0 0 0 0 0 45 2.2 97.8 

Spring barley 0 0 27 0 0 0 0 0 0 0 27 0.0 100.0 

Sugar beet 0 0 0 43 1 1 0 0 0 0 45 4.5 95.5 

Wheat 0 0 0 0 36 1 0 0 0 0 37 2.7 97.3 

Fava bean/Wheat 0 0 0 0 0 9 0 0 0 0 9 0.0 100.0 

Grass legume ley 0 0 0 1 0 0 11 0 0 0 12 8.3 91.7 

Kernza 0 0 0 0 0 0 0 20 0 0 20 0.0 100.0 

Kernza/Lucerne 0 0 0 0 0 0 0 0 13 0 13 0.0 100.0 

Spring barley/Lupin 0 1 0 0 0 0 0 0 0 24 25 4.0 96.0 

Total 36 45 27 44 38 11 11 20 13 24 269   
Error of omission 0.0 2.2 0.0 2.3 5.3 18.2 0.0 0.0 0.0 0.0    
Producer accuracy 100.0 97.8 100.0 97.7 94.7 81.8 100.0 100.0 100.0 100.0    

 

Overall classification accuracy 97.77 

Kappa coefficient 0.9746 
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Confusion matrix model 5 with 8 variables 

 

Built 
up area 

Rapes
eed 

Spring 
barley 

Sugar 
beet 

Wheat 
Fava 

bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza
/ 

Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 

User 
accurac

y 

Built up area 111 0 0 0 0 0 0 0 0 0 111 0.0 100.0 

Rapeseed 0 118 0 0 0 0 0 0 0 1 119 0.8 99.2 

Spring barley 0 0 83 0 0 0 0 0 0 2 85 2.4 97.6 

Sugar beet 0 0 0 124 0 0 6 1 0 3 134 7.5 92.5 

Wheat 0 2 0 0 111 4 1 0 0 2 120 7.5 92.5 

Fava bean/Wheat 1 1 0 1 1 18 0 0 0 2 24 25.0 75.0 

Grass legume ley 0 0 0 1 0 0 27 0 0 1 29 6.9 93.1 

Kernza 0 0 0 0 0 0 0 60 1 0 61 1.6 98.4 

Kernza/Lucerne 0 0 0 0 1 0 1 5 38 0 45 15.6 84.4 

Spring barley/Lupin 0 0 0 0 0 2 0 0 0 78 80 2.5 97.5 

Total 112 121 83 126 113 24 35 66 39 89 808  

 

Error of omission 0.9 2.5 0.0 1.6 1.8 25.0 22.9 9.1 2.6 12.4   

 

Producer accuracy 99.1 97.5 100.0 98.4 98.2 75.0 77.1 90.9 97.4 87.6   

 

 

Overall classification accuracy 95.05 

OOB estimate of error rate  4.95 
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Confusion matrix prediction based on model 5  

 

Built 
up area 

Rapes
eed 

Spring 
barley 

Sugar 
beet 

Wheat 
Fava 

bean/ 
Wheat 

Grass-
legume 

ley 
Kernza 

Kernza
/ 

Lucerne 

Spring 
barley/ 
Lupin 

Total 
Error of 

commission 

User 
accurac

y 

Built up area 38 0 0 0 0 0 0 0 0 0 38 0.0 100.0 

Rapeseed 0 36 1 0 0 0 0 0 0 0 37 2.7 97.3 

Spring barley 0 0 26 0 1 0 0 0 0 0 27 3.7 96.3 

Sugar beet 0 0 0 51 0 0 0 1 0 0 52 1.9 98.1 

Wheat 0 0 2 0 26 0 0 0 0 0 28 7.1 92.9 

Fava bean/Wheat 0 0 0 0 2 6 0 0 0 0 8 25.0 75.0 

Grass legume ley 0 0 0 0 0 0 8 0 0 1 9 11.1 88.9 

Kernza 0 0 0 0 0 1 0 13 1 0 15 13.3 86.7 

Kernza/Lucerne 0 0 0 0 0 0 0 0 13 0 13 0.0 100.0 

Spring barley/Lupin 0 1 1 0 1 4 1 0 0 34 42 19.0 81.0 

Total 38 37 30 51 30 11 9 14 14 35 269    
Error of omission 0.0 2.7 13.3 0.0 13.3 45.5 11.1 7.1 7.1 2.9    
Producer accuracy 100.0 97.3 86.7 100.0 86.7 54.5 88.9 92.9 92.9 97.1    

 

Overall classification accuracy 93.31 

Kappa coefficient 0.9234 
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Appendix 2. Spectral signature of crops on 11 spectral bands of Sentinel-2A 
 

 

 
Figure 25. Spectral signature of Lönnstorp crops on 11 bands of Sentinel-2images of June 11th, 

2016
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Appendix 3. Orthomosaics with ATLAS radiometric correction 
August 12th, 2016 November 3rd, 2016 December 2nd, 2016 

  
 

March 7th, 2017 March 13th, 2017 March 24th, 2017 
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Appendix 4. t-test and Wilcoxon signed rank test of reflectance data for other image pairs 
 

 August 12th with July 31st, 2016 

B G R RedEdge NIR 

Observations 90 

df 89 

Pearson correlation (r) 0.33 0.09 0.17 -0.03 0.9 

Wilcoxon signed rank p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-stat 11.22 21.26 5.631 21.22 18.13 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.98 

 

 March 7th with 11th, 2017 

B G R RedEdge NIR 

Observations 80 

df 79 

Pearson correlation (r) 0.83 0.77 0.94 0.72 0.97 

Wilcoxon signed rank p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-Stat 78.28 59.63 35.92 26.23 21.93 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.99 

 

 March 24rd with 11th, 2017 

B G R RedEdge NIR 

Observations 101 

df 100 

Pearson correlation (r) 0.70 0.11 0.84 0.32 0.92 

Wilcoxon signed rank p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-stat 17.36 18.29 9.30 38.99 18.43 

P(T≤t) two-tail p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

t-critical two-tail 1.98 
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Appendix 5. Boxplot of reflectances per band for both sensors

  
Figure 26. a) November 3rd with 8th pair, b) December 2nd with November 28th pair 

 
 
 
 
 
 
 
 
 
  

(a) (b) 
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Appendix 6. Boxplot of vegetation indices per sensor 

  
Figure 27. a) November 3rd with 8th pair, b) December 2nd with November 28th pair 

(a) (b) 
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