
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

INFORMATION FLOW IMPROVEMENT 

FOR GEOCOLLABORATIVE SYSTEM 

BETWEEN IN-FIELD AND IN-OFFICE 

USER IN AREAS WITHOUT INTERNET 

ACCESS 

DIO DINTA DAFRISTA 

March, 2017 

SUPERVISORS: 

Dr. F.O. Ostermann  

Dr. ir. R.A. de By 



 

 

 

 

INFORMATION FLOW IMPROVEMENT 

FOR GEOCOLLABORATIVE SYSTEM 

BETWEEN IN-FIELD AND IN-OFFICE 

USER IN AREAS WITHOUT INTERNET 

ACCESS 

DIO DINTA DAFRISTA 

Enschede, The Netherlands, March, 2017 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information Science 

and Earth Observation. 

Specialization: Geoinformatics 

 

 

 

SUPERVISORS: 

Dr. F.O. Ostermann  

Dr. ir. R.A. de By 

 

THESIS ASSESSMENT BOARD: 

Prof.dr. M.J. Kraak  

Drs. J.J. Verplanke; University of Twente, ITC-PGM 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 

 



i 

ABSTRACT 

Technological advancement provides opportunities for a real-time geocollaborative system where in-field 

users and in-office users do tasks together over a map interface. The distributed user location in such system 

has a strong dependency on the network to exchange the data and information. Empirical studies and 

practices show that internet connection is an important factor in the information flow between users because 

most of them are implemented based on client-server architecture. However, we also need to accommodate 

data exchange in areas without internet access. For example, in an emergency situation where the data needs 

to be sent immediately, but there is no internet connection available. This thesis proposes an improvement 

for geocollaborative system in areas without internet access. 

The improvement is developed based on the gap we found from previous studies and practices on 

geocollaborative system. First, we select data collection as task of geocollaborative system because it is the 

task that is most likely used in distributed synchronise geocollaborative system. We review previous works 

and practices for data collection to find the flows of the information. Then we review characteristic of 

geocollaborative system to find important component that needs to be considered. Finally, we find the gap 

from previous research and practices by considering the flows of information and the component of 

geocollaborative system in areas without internet access.  

We propose a new mechanism called SFormBD to fill the gap by creating a new feature of geocollaborative 

system that allows in-office users to send a new task to in-field user by using SMS. In the end, we evaluate 

the proposed mechanism by developing a prototype that was created based on a scenario where the new 

feature is needed.  

Keywords: mobile data collection, geocollaboration 

 

 

  



ii 

ACKNOWLEDGEMENTS 

Alhamdulillah,  

 

First, I would like to deliver my gratitude to my supervisors and advisor for all the help, guidance and 

feedback throughout my research period 

 

Friends, for all precious and beautiful memories. For keeping me sane during the hard times.  

 

My family, for the endless prayer and support. 

 

Finally, I am utmost appreciative of all the support given by LPDP (Endowment Fund of Education) 

through a scholarship that made this possible. 

 

 



iii 

TABLE OF CONTENTS 

 
Abstract ............................................................................................................................................................................ i 

Acknowledgements ....................................................................................................................................................... ii 

1. Introduction ........................................................................................................................................................... 1 

1.1. Background and Motivation ......................................................................................................................................1 
1.2. Research Identification ...............................................................................................................................................1 
1.3. Innovation Aimed at ...................................................................................................................................................2 
1.4. Research Methodology ...............................................................................................................................................2 

2. Information flows in Geocollaborative systems involving in-field and in-office users ............................ 5 

2.1. Workflows in Geocollaboration ...............................................................................................................................5 
2.2. Information Flows in Geocollaborative System ....................................................................................................6 
2.3. Communication Strategies to Transfer Data ..........................................................................................................9 
2.4. Summary .................................................................................................................................................................... 14 

3. Designing an improvement for information flow in areas without internet access ................................ 15 

3.1. Reviewing Geocollaborative Workflows in Data Collection Tasks ................................................................ 15 
3.2. SFormBD: Proposed Mechanism for Compacting a Form .............................................................................. 17 
3.3. Summary .................................................................................................................................................................... 27 

4. Developing a prototype to implement SFormBD ........................................................................................ 29 

4.1. The Scope of the System ......................................................................................................................................... 29 
4.2. System Architecture ................................................................................................................................................. 32 
4.3. Prototype Implementation ...................................................................................................................................... 34 
4.4. Prototype Testing ..................................................................................................................................................... 42 
4.5. Summary .................................................................................................................................................................... 43 

5. Conclusions and recommendations ................................................................................................................ 45 

5.1. Conclusions ............................................................................................................................................................... 45 
5.2. Recommendations .................................................................................................................................................... 46 

Appendices .................................................................................................................................................................. 53 

Appendix 1: Testing Scenario .............................................................................................................................................. 53 
Appendix 2: SMS processing code for the mobile application...................................................................................... 54 

 

 



iv 

LIST OF FIGURES 

Figure 1. The flow of the methodology ..................................................................................................................... 3 

Figure 2. Main workflow of geocollaborative analysis for monitoring of fall webworm (Wang et al., 2016) 6 

Figure 3. Geocollaborative crisis management workflow adapted from Cai (2005) .......................................... 6 

Figure 4. Data collection platform review (Esri, 2017; Lee, 2015; Signore, 2016; Tayal, 2015) ....................... 7 

Figure 5. The example of map-based data collection captured from Collector for ArcGIS ............................ 8 

Figure 6. Data acquisition (a) and plotted map as data visualisation (b) (Sa et al., 2016) .................................. 9 

Figure 7. Data acquisition (a) and the web-based application of OpenTreeMap (b) (Azavea, 2017) .............. 9 

Figure 8. Form in XML format exported from ODK .......................................................................................... 10 

Figure 9. The example of survey worksheet (left) and choices worksheet (right) from XLSForm ............... 11 

Figure 10. Predefined SMS format to simplify identifying and converting SMS into collected data 

(Puspitasari, 2013) ....................................................................................................................................................... 12 

Figure 11. Predefined form (left) and its message format during transmission (right) (Dasgupta et al., 2013)

 ........................................................................................................................................................................................ 12 

Figure 12. USSD Interface on cell phone as a data collection tools (Barjis et al., 2013) ................................. 13 

Figure 13. The typical flow of the collaboration between in-field and in-office users. ................................... 16 

Figure 14. General use of SFormBD ....................................................................................................................... 18 

Figure 15. Breaking down the form to create SFormBD ..................................................................................... 18 

Figure 16. Question data structure in SFormBD ................................................................................................... 21 

Figure 17.  The format of SFormBD Formatted SMS .......................................................................................... 23 

Figure 18 Formatting SMS procedure in regards to data synchronization ........................................................ 24 

Figure 19. The implementation example of SFormBD workflow ...................................................................... 26 

Figure 20. Workflow of the prototype ..................................................................................................................... 30 

Figure 21. Use case diagram ...................................................................................................................................... 30 

Figure 22. Working with different network coverage ........................................................................................... 31 

Figure 23. System architecture of the system.......................................................................................................... 32 

Figure 24. Karimun Jawa island as area of interest and its network coverage (2014) ...................................... 33 

Figure 25. General SMS format used in the prototype ......................................................................................... 34 

Figure 26. The Firebase database format. ............................................................................................................... 35 

Figure 27. Tasks in tree array format ....................................................................................................................... 36 

Figure 28. Page for monitor the incoming SMS ..................................................................................................... 37 

Figure 29. The map visualisation in the web application: (i) splash screen, (ii) the form that appears after 

long push on the map, and (iii) map visualisation without splash screen .......................................................... 38 

Figure 30. Map visualisation for the web application for monitoring ................................................................ 38 

Figure 31. The interface of creating report form ................................................................................................... 39 

Figure 32. List of SMS ................................................................................................................................................ 41 

Figure 33. The SMS received in mobile device ...................................................................................................... 41 

Figure 34. The form preview after the SMS processed by the system ............................................................... 41 

Figure 35. The installed prototype for the testing. ................................................................................................. 42 

 



v 

LIST OF TABLES 

 
Table 1. JSON format to handle form .................................................................................................................... 11 

Table 2. Differences between USSD and SMS capabilities (Suddul et al., 2011) ............................................. 13 

Table 3. Previous research on data collection in no internet areas and its coverage on geocollaborative 

system ........................................................................................................................................................................... 16 

Table 4. Example of question text in SFormBD base data ................................................................................. 19 

Table 5. Example of choices in SFormBD base data ........................................................................................... 19 

Table 6. Example of choices list name in SFormBD base data .......................................................................... 19 

Table 7. Example of choices list combination in SFormBD base data ............................................................. 20 

Table 8. List of question type in SFormBD base data .......................................................................................... 20 

Table 9. Example of full question base data in SFormBD .................................................................................. 21 

Table 10. Example of form in SFormBD ............................................................................................................... 21 

Table 11. Example of form component in SFormBD ......................................................................................... 21 

Table 12. The example of SFormBD format based on the availability of SFormBD base data ................... 23 

Table 13. Functional requirement of mobile application ..................................................................................... 31 

Table 14. Functional requirement of web application .......................................................................................... 32 

Table 15. Question type table in SFormBD ........................................................................................................... 34 

Table 16. Information type list for the prototype ................................................................................................. 35 

Table 17. SMS format for each information type .................................................................................................. 35 

 

 
  



vi 

LIST OF ACRONYMS 

API  - Application Program Interface 

GIS  - Geographic Information System 

GPS  - Global Positioning System 

GSM  - Global System for Mobile Communication 

HTTP  - Hypertext Transfer Protocol 

JSON  - JavaScript Object Notation 

ODK  -  Open Data Kit 

RDBMS - Relational Database Management System 

REST  - Representational State Transfer 

SFormBD - Form Base Data for SMS-based Data Collection 

SMS  - Short Message Service 

UMB  - USSD Menu Browser 

USSD  - Unstructured Supplementary Service Data 

XML  - Extensible Markup Language 

 

 



INFORMATION FLOW IMPROVEMENT FOR GEOCOLLABORATIVE SYSTEM BETWEEN IN-FIELD AND IN-OFFICE USER IN AREAS WITHOUT INTERNET ACCESS 

1 

1. INTRODUCTION 

1.1. Background and Motivation 

Technological advancements provide opportunities for the implementation of effective real-time 

collaboration of geospatial tasks. For example, real-time geocollaborative system where in-field users and 

in-office users do tasks together over a map interface (Cai, 2005; Heard, Thakur, Losego, & Galluppi, 2014; 

Wang, Qiao, Wu, Chang, & Shi, 2016). In-field users are usually distributed in locations of interest to do 

tasks using their mobile device, while in-office users allocate and monitor the tasks. Presently, most of the 

implementation are based on a client-server infrastructure that supports in-field and in-office 

communication over an internet connection. Wang et al. (2016) stated that one of three important factors 

for their collaborative system is the network coverage needed to transfer the data to the server.  

However, a strong dependency on internet access can cause problems in the implementation because: (i) 

not all areas are covered by internet connection, especially in remote areas, and (ii) the quality and speed of 

the broadband are not evenly distributed, especially in rural regions. The Telecommunication Development 

Sector (ITU-D) stated that, in 2016, area coverage of mobile-broadband network is 84% of the global 

population, but only 67% of the rural population (Sanou, 2016). Furthermore, the penetration of mobile 

data technologies is poor in rural area (Dasgupta, Kamble, Ghosh, & Acharya, 2013). Hence, the areas which 

are the most accessible have coverage first, while the rising costs of access in the remaining areas slow down 

the extent of the coverage. This issue leads to the initiatives of major companies like Facebook and Google 

to start projects that connect rural and remote areas with internet, and eventually provide everyone in the 

world access to the internet (Facebook, 2015; X, 2013). However, these projects are still under development 

and cannot currently offer a solution for the problem at hand.  

As a consequence of these limitations, it is difficult to make use of the full potential of collaborative systems, 

especially when the tasks need to be completed in a specific time. The following processes of real time 

geocollaborative tasks would be difficult in no internet areas: (i) access to data, information, and tasks from 

the server, (ii) transmission of data to the server, (iii) direct communication and interaction between in-

office and in-field users, and (iv) visualization of the integrated and processed data to all involved users for 

further analysis. In these cases, the design of geocollaborative system systems based on client-server 

infrastructure requires adjustments in the means of communication to allow an effective information 

exchange between in-office and in-field users. 

1.2. Research Identification 

The main objective of this research is to improve the information flow between in-field and in-office users 

so that the collaboration process works even in areas without internet access. Specifically, the design should 

allow in-office users to create tasks that require being solved within a specific spatial and temporal context 

by in-field users. The objective is broken down into sub-objectives as listed below, each followed by research 

questions: 

1. To identify geocollaborative workflows that involve tasks from in-field and in-office users, based on 

existing research and practices 



INFORMATION FLOW IMPROVEMENT FOR GEOCOLLABORATIVE SYSTEM BETWEEN IN-FIELD AND IN-OFFICE USER IN AREAS WITHOUT INTERNET ACCESS 

 

2 

 What are typical flows of information and tasks?  

 How can we characterise collaborative settings? 

 What are possible problems for each identified typical flow in areas without internet access? 

2. To review existing technologies for communication between in-field and in-office users. 

 What communication protocols do mobile devices have and what are their potentials for 

information exchange in areas without internet access?  

 What are their characteristics and their limitations with regards to the identified collaborative 

workflows? 

3. To improve the information flow between in-field and in-office users in areas without  internet 

connection. 

 What are the options to improve information flows given technological and organisational 

constraints? 

 Which is an effective and efficient set-up for a reliable information flow in a geocollaborative 

setting involving in-field and in-office elements? 

4. To evaluate the proposed improvement 

 How can we evaluate the proposed improvement? 

 What are the requirements to conduct the evaluation? 

 What is the result of the evaluation? 

1.3. Innovation Aimed at 

Current research about geocollaborative system is not addressing communication strategies between in-field 

and in-office users in the areas without internet access. The research proposes a new design that can improve 

the information exchange by accommodating in-field user in areas without internet access.  

1.4. Research Methodology 

To carry out the research, several steps are taken. Figure 1 shows the work phase of the research. First step 

is to do literature review and interviews with practitioners as describe in Chapter 2. The purpose is to 

evaluate existing technologies and to identify workflows in geocollaborative systems. The workflows need 

to be identified to assess how the information flows in the systems. In parallel, we review existing 

technologies that have been used in geocollaborative systems to assess how certain information flows in the 

workflow have some problem in areas without internet access. Based on the limitation we found, we propose 

a new design on how to improve the information flow in that scenario(s) in chapter 3. 

Later, after the proposed improvement design is completed, a prototype is developed to evaluate the design. 

The prototype is developed based on simple scenario that need the improvement. Elicit user requirements 

and data collection is done to support the prototype. Chapter 4 discusses the design, implementation, and 

the testing result of the prototype. 



INFORMATION FLOW IMPROVEMENT FOR GEOCOLLABORATIVE SYSTEM BETWEEN IN-FIELD AND IN-OFFICE USER IN AREAS WITHOUT INTERNET ACCESS 

3 

Prototype development

Identify 

geocollaborative 

analysis workflow

Evaluate existing 

technologies 

Design an 

improvement for 

the information 

flow 

Data Collection
Gather user 

requirement

User requirement 

analysist
Data preparation

Prototype 

development

Functionality 

testing

Discussion

prototype

Literature 

Review

Getting insight

from practitioner

 
Figure 1. The flow of the methodology 

 

 

 





 

5 

2. INFORMATION FLOWS IN GEOCOLLABORATIVE 
SYSTEMS INVOLVING IN-FIELD AND IN-OFFICE 
USERS 

In this section, geocollaborative system is described based on empirical studies. The purpose is to identify 

geocollaborative tasks workflows that involve in-field and in-office users based on existing research and 

practices. Maceachren & Brewer (2004) described geocollaboration as an activity that use visually-enabled 

geospatial technologies to support group work. A group work approach is ideal in cases where the problems 

are not well-defined, or it is a multi-disciplinary problem or several stakeholders are involved (Cai, 2005). 

Geocollaborative system is capable of combining the strengths of machine and human analytical thinking. 

This is because machines have a consistent performance, even in time-consuming processes, while humans 

possess capabilities of perception and cognition tasks (Thomas & Cook, 2005). Thus, even though most of 

the geoinformation tasks can be done automatically by the machine, such as in data management, data 

mining, and data visualisation, geocollaboration between users with different capabilities give more 

advantages for the use of the system. 

Generally, collaborative activities are classified based on two dimensions: (i) space or user location (co-

located and distributed) and (ii) time synchronization (same time or synchronous and different time or 

asynchronous) (Heard et al., 2014; Thomas & Cook, 2005; Wu, Convertino, Ganoe, Carroll, & Zhang, 2013). 

This research focuses on distributed-synchronous geocollaboration where users in the field work together 

at the same time with users in the office.  

2.1. Workflows in Geocollaboration 

To understand how the information flows in such geocollaboration, first, we need to know the workflow in 

the geocollaborative system. Distributed-synchronous geocollaboration involving in-field and in-office users 

can be implemented in many ways. The differences can be caused by the diversity of the tasks, the scopes 

(how big is the data? how many users involve in the system? what is the extent of area for field work?), 

urgency (what is the acceptable completion time? what is the acceptable waiting time for each part of the 

works?) and network availability (remote areas, 2G coverage, 3G coverage, and 4G coverage), which then 

will affect the preference of devices, how the information flows, communication channels between the users, 

and the system architectures. In the end, the chosen solutions for building the system must allow in-office 

users to do tasks together with in-field users within a specific spatial and temporal context. That is in-field 

users allowed to do the tasks in selected extent of areas and send the results within allowed range of time to 

other users so that the other users allowed to contribute in the works.  

An example of the geocollaborative system was implemented by Wang et al., (2016) for monitoring fall 

webworm in northern China. The main workflow of their application is shown in Figure 2. Crowdsourced 

data of the occurrence of fall webworm are collected from local reporters (in-field users). At the same time, 

managers (in-office users) monitor the data mapping collection using a visual interface. If they see that data 

is not enough to represent the occurrence, they dispatch a task to volunteer rangers to collect more detailed 

information on the particular site.  



 

6 

 
Figure 2. Main workflow of geocollaborative analysis for monitoring of fall webworm (Wang et al., 2016) 

Another example of a geocollaborative system is a web-based application for distributed crisis management 

developed by Cai (2005). In crisis management, an integrated system for sharing information and expertise 

is important for rapid assessment and to support decision making.  The workflow of the implementation is 

shown in Figure 3. The geocollaboration involves large screen display in Emergency Operation Centres 

(EOCs) for the decision maker in the office and portable devices for first responders in the field such as 

police, fire, and medical services.  

In-field

Client agent 
with Handheld device

for firefighter

Client agent 
with mobile computer

For Health Team

Client Agent
With large-screen display

For Emergency Operation Center

Officer

Decision maker

Client agent
With workstation and desktop
For mobile command center

Officer

Collaboration 
manager

Dialogue 
manager

Geospatial 
information

portal

Geodatabase

 
Figure 3. Geocollaborative crisis management workflow adapted from Cai (2005) 

2.2. Information Flows in Geocollaborative System 

To understand how the information flows between users in the workflows, we need first to understand: (i) 

what kind of tasks that users do with the system, and (ii) what kind of information to be shared with others. 

Tasks in geoinformation technologies are related to data collection, data processing and visual presentation 

(Smirnov & Ponomarev, 2015). While all the tasks in the distributed-synchronous geocollaborative system 

offer wide scope for research, this research focusses on data collection because it is a common task that is 



 

7 

very likely to be done in the field and involves information flow and communication strategies to transfer 

the data. The geocollaboration examples that are described in Section 2.1 also prove that in-field users collect 

data from the field (data collection) and send it to the server. Next, depending on the need and interest, the 

data can be both processed and visualised by the in-office users.  

2.2.1. Data Collection Tasks in Geocollaboration 

Data collection in the field used to be paper-based form and then, as the technologies evolved, the forms 

changed into a digital format that could be filled in mobile devices. This improvement not only saves the 

environment by reducing the use of paper but also save the effort time to post-process the data. For 

example, (Sa et al., 2016) utilise mobile data collection to improve the efficiency of health initiative and 

deliver a positive outcome in both data quality and timely delivery. While custom development of mobile 

data collection needs basic programming and database knowledge, there are also many user-configurable 

data collection platforms that are extensible such as Open Data Kit (ODK), GeoODK, and Collector for 

ArcGIS (Esri, 2016; GeoODK, 2014; Kipf et al., 2016; Tayal, 2015).  

The data collection platforms provide not only map-based data collection capability but also data 

management and dissemination that make them potential capabilities to be used as a geocollaborative system 

in data collection. Figure 4 shows the main workflow in data collection platforms such as ODK, GeoODK, 

and Collector for ArcGIS. It starts with the creation of a form. Then, the form is shared to the in-field user 

devices so that the in-field user can do data acquisition by filling up the form. After the data acquisition is 

completed, the in-field user needs to upload the filled form to the server so that those data can be managed. 

Data management is designed as storages, including the form and the result of the data collection. From 

this data, for example, we can extract the data into a useful format or visualise it, so then the other user who 

interested on that data can work with them.  

Data management

Data acquisition

Template form creation

GeoODK CollectGeoODK Collect

Collector for ArcGISCollector for ArcGIS

Build

Share the form

Upload the compiled form

 
Figure 4. Data collection platform review (Esri, 2017; Lee, 2015; Signore, 2016; Tayal, 2015) 



 

8 

2.2.2. The Information Flows  

The workflow of data collection as seen in Figure 4 shows that the process of sharing the form and uploading 

the compiled form are processes that involve data exchange. Data exchange is also needed after the form is 

filled and needs to be sent. Data dissemination in mobile data collection platform is responsible for handling 

the data transfer. It addresses the task of encoding the form and filled form into a suitable format. The form 

needs to be encoded so that it can be deployed on the mobile devices, decoded into a form that can be filled, 

and then the filled form can be stored and send back to the server (Kipf et al., 2016).  The description of 

the strategies of disseminating the data will be discussed in Section 2.3 while the example of the form can 

be seen in Figure 5. The form shows a site-survey questionnaire that is used to do damage assessment survey 

in the field.   

  
Figure 5. The example of map-based data collection captured from Collector for ArcGIS 

In location-based mobile data collection example, as seen in Figure 5, point location is used to indicate 

where the data is acquired. ODK, GeoODK, and Collector for ArcGIS have the capability to use built-in 

GPS (Global Positioning System) to point out their location and send it along with the filled form. However, 

there is concern about the positioning quality in the built-in GPS of the mobile device. Brovelli, Minghini, 

& Zamboni (2016), GeoODK collect, and Collector for ArcGIS utilise map with knows accuracy as a 

reference to help user point out their location in case they do not have satisfactory access to the GPS. The 

other solution is by using external GPS which then we can input the GPS coordinate directly in the form.  

Even though the use of geospatial information in the data collection is limited to the use of location to 

indicate where the data is acquired, it can be extended depend on the use case.  For example, Freire & 

Painho (2014) implement the data collection by sending the field data into spatial database server, then 

process them into a Web GIS that has the ability to create thematic maps and statistical reports and to do 

query analysis, spatial data editing, and visualization. Another example developed by Sa et al. (2016) that 

plot comorbidity map based the data collected by mobile application as seen in Figure 6. Moreover, 

OpenTreeMap publishes a new tool to collect tree data that integrate with web-based map database that has 

capabilities to calculate economic benefits and environmental impacts of trees as seen in Figure 7. 

 



 

9 

 
a 

 
 

 

b 

Figure 6. Data acquisition (a) and plotted map as data visualisation (b) (Sa et al., 2016) 

 
a 

 
b 

Figure 7. Data acquisition (a) and the web-based application of OpenTreeMap (b) (Azavea, 2017) 

2.3. Communication Strategies to Transfer Data 

Considering that collaborative system needs process coordination and well-managed communication 

strategies between individuals, it is necessary to have effective and comprehensive communication tools. It 

enhances performance as it is responsible for transferring, receiving, and integrating the data (Kapucu & 

Garayev, 2011). While most of them implement client-server architecture to send and receive the data via 

internet connection, some of them also implement other communication strategies to avoid the 

unavailability or instability of internet connection. For example, voice call and instant messaging  (Heard, 

Thakur, Losego, & Galluppi, 2014), Short Message Service (SMS), and Unstructured Supplementary Service 

Data (USSD). This section discusses the previous implementations of data collection using various 

communication channels and how they handle the information sharing between individuals. 

2.3.1. Internet 

Internet technologies provide capabilities for real-time interaction between individuals (or components) 

present in the system. Therefore, this technology is widely used in mobile data collection application as a 

communication strategy.  Although they rely on Internet connection to transmit the data, well-designed 

internet based data collectors, such as ODK, GeoODK, Collector for ArcGIS, support offline setting which 

allows them to work even if Internet connection is not available. Offline support helps in-field users to 



 

10 

retrieve data from the servers before going to the field and keep it locally in their devices for reference 

during field work. Offline support in mobile devices that can be implemented in the system are as following: 

 Local caching 

To support offline mode in mobile application, internal storage service needs to be provided to 

store data locally. With this strategy, the application can work offline using local data as it would 

online by using data from the server.  

 Local queuing 

To support data synchronisation and data consistency between client and server despite 

disconnected network, the data changes on the client side (insert, update, and delete) must be in the 

queue in a persistence way they are executed on server side. 

 Data sync 

Offline support should allow the application to keep the new data written by the application when 

the connection is not available and resend it to the server when the application comes back online.  

By using the internet, there are several data formats that have been used to handle the data transfer. The 

primary purpose is to build a form, send it over internet connection, and save it in the mobile devices. The 

examples of the data formats are XML (Extensible Markup Language), XLSForm, and JSON formats. XML 

is a simple and flexible text format from World Wide Web Consortium (W3C) that has important role in 

exchanging wide variety of data on the web (Quin, 2016). XLSForm is a standard format that has been used 

to help create forms in Excel. For basic formats, each excel workbook has survey and choices worksheet 

which are used to specify the form contents; overall structure, constraints, questions, and choices 

(XLSForm.org, 2017). The example of mobile data collection application that uses XML and XLSForm 

formats is Open Data Kit (ODK), one of the most common open mobile data collection solution. The 

ODKs forms are build based on logic and data schema and can be exported into XML or XLSForm format. 

Figure 9 shows the example of a form from ODK that is exported into XML format, while in Figure 8, it is 

exported into XLSForm. The exported data then can be downloaded from mobile devices or put directly 

into mobile devices storage. 

 
Figure 8. Form in XML format exported from ODK 



 

11 

 
Figure 9. The example of survey worksheet (left) and choices worksheet (right) from XLSForm  

On the other hand, JSON (JavaScript Object Notation) is a lightweight ECMA (European Computer 

Manufacturers Association) International standard text format that has the capabilities to facilitate data 

interchange between many programming languages (Bray, 2014). There are several implementations of 

structuring form in JSON format. For example, there is a JSON Form JavaScript library which is defining 

and structuring the data model using JSON Schema (Joshfire, 2014). The other example is JSON Schema 

that is used in Angular Schema Form, a schema form that is using AngularJS directives (TEXTALK, 2016). 

JSON Schema is using an Angular JavaScript that can be used to develop an application on any platform, 

e.g. Web-based and mobile-based application. Table 1 shows the simple example of using JSON format for 

structuring form.  

Table 1. JSON format to handle form 

Implementation JSON Format Form Result 

JSON Form { 

   name: { 

   type: 'string', 

   title: 'Name', 

   required: true 

   }, 

   age: { 

   type: 'number', 

   title: 'Age' 

   } 

} 

 

 

Angular Schema Form { 

  "type": "object", 

  "title": "Comment", 

  "properties": { 

    "name": { 

      "title": "Name", 

      "type": "string" 

    }, 

    "age": { 

      "title": "Age", 

      "type": "string" 

    } 

  }, 

  "required": [ 

    "name" 

  ] 

} 

2.3.2. SMS 

SMS (Short Message Service) is a basic mobile communication service between mobile devices service that 

is formed in a simple text format. In data collection tasks, it is used to transmit collected data in the field for 

several reasons; rural regions that do not covered by internet access (Dasgupta et al., 2013), and Emergency 

responses where the internet service becomes unavailable (Morrow, Mock, Papendieck, & Kocmich, 2011; 

Puspitasari, 2013). Even though SMS is one of the oldest methods of mobile communication and only 

accommodates 160 Latin characters in one text message, it requires low-bandwidth to transmit the data and 

allows messaging with very low latency (Triggs, 2013). Thus, SMS is suitable for communication in limited 

internet access areas. Additionally, it has SMSC (SMS Centre) that controls the distribution of messages 



 

12 

including receiving, storing, and forwarding the messages. To ensure that the information sent successfully 

to the recipient, SMSC has a store-and-forward method that keeps trying to redeliver the message if the 

message is failed to be delivered to the recipient.  

Most of the implementations rely on format-specific SMS’s and a procedure to parse the data. Consequently, 

the implementations are only used in specific use case by implementing: (i) predefined SMS format for 

collecting the data, or (ii) predefined form to collect the data and automatically format the SMS based on 

the filled form so then it can be sent via SMS. Figure 10 shows the example of a predefined SMS format 

that needs to be typed and sent by in-field user. It is simple, can be used by almost all kind of mobile phone, 

and can be implemented relatively fast. However, it lacks the flexibility to integrate the data collection into 

another functionality, and it has big possibility to get error format because it fully relies on in-field user 

capabilities on typing in the right format.  

 
Figure 10. Predefined SMS format to simplify identifying and converting SMS into collected data (Puspitasari, 2013) 

On the other hand, the use of a user interface as a predefined form as seen in figure 11 can reduce the 

chances of error in formatting the data, and by using such application, it is easier to integrate with another 

functionality in the system.  

 
Figure 11. Predefined form (left) and its message format during transmission (right) (Dasgupta et al., 2013) 

2.3.3. USSD 

USSD best described as an interactive or bidirectional SMS that allows data transmission via Global System 

for Mobile communication (GSM) network (Wouters, Barjis, Maponya, Martiz, & Mashiri, 2009). It is 

generally used as a communication channel between mobile provider and mobile user. For example, mobile 

user can check credit balance and subscribe internet access by using this service. It works on almost every 

mobile device and easy to use, especially when it is in USSD Menu Browser (UMB) format that allows two 

ways communication between mobile provider and mobile user. UMB has been used as mobile marketing 

technologies that can be used to: (i) collect customer data, (ii) set up quizzes, (ii) provide info service, and 

(ii) conduct surveys. 



 

13 

In a geocollaborative system, Ochoa, Talavera, & Paciello (2015) utilised USSD messages as a real-time 

identification epidemiological risk areas to avoid the possibility of sending a malformed message by using 

predefined menu option in USSD module. The data was then be processed, analysed, and visualised in a 

map viewer. The USSD application uses RESTful web service that communicates with HTTP and XML 

protocols. 

Another example is implemented by Barjis, Kolfschoten, & Maritz (2013) that proposed decision support 

system for rural healthcare delivery as seen in Figure 12. Care workers as mobile user need to dial a certain 

number that will establish a session of communication that can provide predefined questions that need to 

be answered based on the patient visit result.  

 
Figure 12. USSD Interface on cell phone as a data collection tools (Barjis et al., 2013) 

USSD and SMS are two communication channel that mostly use to communicate in GSM network without 

internet connection. Compared to SMS, USSD has an interactive interface and can accommodate more 

characters. Table 2 shows how USSD and SMS are different from each other. A big difference between 

SMS and USSD is in the approach of communication. SMS has store and forward approach which makes 

sure that there is no information lost in transferring the data. It is because SMS has control centre (SMSC) 

that keeps resending the data until it is received by the intended receiver. Even when the message is not 

delivered successfully, the control centre will have the report that, in the end, the message could not be 

delivered. On the other hand, USSD has a session oriented approach that establishes a real-time connection 

during USSD session. It is responsive and able to deliver message relatively faster than SMS. However, the 

open connection is disabled after 3 minutes (Barjis et al., 2013). 

Table 2. Differences between USSD and SMS capabilities (Suddul et al., 2011) 

Feature USSD SMS 

Store and forward approach X √ 

Session-oriented approach √ X 

Maximum message length 182 character 160 character 

Guaranteed message delivery X √ 

Interaction between mobile users X √ 

  



 

14 

2.4. Summary 

In this chapter, we describe previous researches that discuss distributed synchronous geocollaborative 

system that involves in-field and in-office users. First, we described how they implemented it in various case 

studies. Based on the description and the workflow of the previous studies, we consider the in-field tasks as 

in-field data collection because it is the task that involves exchange data between in-field and in-office users 

and it is the most likely task that in-field user does in the office.  

Then, we discussed in detail about mobile data collection. It focussed on how the data is transferred in 

various communication channel: (i) internet, (ii) SMS and (iii) USSD. From the description, we conclude 

that SMS and USSD are communication channel that has been used to exchange data in areas without 

internet access. 

 

  



 

15 

3. DESIGNING AN IMPROVEMENT FOR INFORMATION 
FLOW IN AREAS WITHOUT INTERNET ACCESS 

In chapter 2, we described empirical research on the workflow of distributed-synchronous geocollaborative 

system and how the information flow has been supported in any possible communication channel as part 

of data and information sharing in geocollaborative systems. In this chapter, we focus on reviewing 

characteristic and limitation from previous research and practices of in-field data collection in 

geocollaborative system in regards to its flow of information in the areas without internet access. Then, 

based on the limitation, we propose an improvement to cover its limitation. 

3.1. Reviewing Geocollaborative Workflows in Data Collection Tasks 

Based on previous research and practices, there are various ways to implement a geocollaborative system 

for in-field data collection. However, to focus on the information flow, first, we need to describe the typical 

workflow of synchronous geocollaboration so then we can understand the links of the data. In parallel, we 

discuss the components that need to be considered when implementing distributed-synchronous data 

collection in geocollaborative system. Thus, to improve the information flow, we can assess how certain 

information links face problems in certain conditions. 

3.1.1. Typical Flow 

Based on existing mobile data collection platform that we describe in Section 2.2.1, there are three main 

tasks that needs to be done to complete the process of mobile data collection: (i) creating the form, (ii) data 

acquisition from the field and send it back to the server, and (iii) data management and visualisation. 

However, considering the need of geocollaboration between in-field and in-field user, the process need to 

be modified because (i) there is a possibility for the in-field user to start the work, and (ii) there is a need to 

have flexible communication for following up the tasks between in-field and in-office user (Wang et al., 

2016). Figure 13 shows the typical flow that is developed based on the need of geocollaborative system in 

mobile data collection. 

In diagram, we can see that: (i) Both in-field and in-office users can start the works, (ii) Data and information 

sharing among individual must be allowed during the works, and (iii) Data storing and data retrieval must 

be allowed, in this case, even in areas without internet access. Thus, the needed information links that will 

be discussed in this research become: (i) In-office user define tasks to in-field user, (ii) In-field user send 

tasks completion to the in-office user, and (iii) In-office user send follow-up tasks to in-field user if needed. 

 



 

16 

users users
Middleware

Create task
Send task

Send task

Visualize the 
result

Task completion

Send results

Send results

Need 
follow up?

Yes

Send completion notification
Send completion notification

Data retrieval and 
visualization

Data retrieval and 
visualization

Task visualization

Data storing Data storing

 
Figure 13. The typical flow of the collaboration between in-field and in-office users. 

3.1.2. Previous Research Limitations 

In addition to the typical flow, we need to describe the other components of geocollaborative system for 

mobile data collection that are implemented in the system. Three critical components are the use of map 

interface, mobile data management, and interactive and user-friendly user interface. As described by its 

definition, map interface is an important component for geocollaborative system. Mobile data management 

is a component of mobile data collection that enables access for in-field user to the data that they need in 

their mobile application. Lastly, interactive and user-friendly user interface makes the application easy to 

use. Table 3 shows the necessary component and whether the previous research on data collection in areas 

without internet access make them available in their system. 

 
Table 3. Previous research on data collection in no internet areas and its coverage on geocollaborative system 

No Component 
Predefined 

form 

SMS 

Format 
USSD 

Information flow component 

1 In-office user define tasks to in-field user √ √ √ 

2 In-field user send tasks completion to in-office user √ √ √ 

3 In-office user send follow-up tasks to in-field user X X √ 

Other component 

4 Map interface X X X 

5 Mobile data management √ X X 

6 Interactive and user-friendly user interface √ X √ 

In Table 3, we can see that there are several items that can be improved in regards to the geocollaborative 

system. As seen in previous research, the advantages of using USSD (Barjis et al., 2013; Ochoa et al., 2015; 

Wouters et al., 2009) in stable mobile connection without internet is that, by default, it has interactive 

interface and in-office has the flexibility to send new tasks to in-field users, which means a good 

communication strategies for distributed synchronous geocollaboration for data collection. Previous 

researches do not discuss the integration between the use of USSD as data collector inside of a mobile 



 

17 

application, which makes it a potential improvement. However, it is not a common service that mobile 

telecommunication provider gives directly to their mobile users. To explore and take advantage of this 

communication channel, we need to cooperate with the provider. Because of its closed infrastructures, it 

will be difficult to implement and evaluate a prototype that runs in the production.  

On the other hand, by using a predefined form that is installed in the mobile device application (Dasgupta 

et al., 2013), the data acquired and filled in the mobile application can be sent to the server using SMS and 

automatically managed by using specific mechanism. In this way, it is practically possible to integrate the 

map interface and data management in the system. Compared to a strategy where the user is manually typing 

the acquired data in specific SMS format (Puspitasari, 2013), this strategy delivers more interactive and user-

friendly application for the user to fill the data they acquire in the field. By doing so, it also prevents a 

possibility for in-field user to send the wrong format. However, by using predefined form, we potentially 

eliminate the geocollaborative capabilities because the communication is one way, which is limited from in-

field user to in-office user.  

By using SMS as the communication channel, we can see the gap of information flow in the table by noticing 

that in previous research and practices, the geocollaborative system lose its flexibility to communicate. In 

this way, the system needs the flexibility in transmitting data so that the communication is not one way. In 

this works, we improve distributed synchronous geocollaborative system by creating a new feature that 

allows in-office users to follow up the tasks by sending a new form to in-field user. By doing so, we make 

possible all the information flow in data collection for geocollaborative system in areas without internet 

access. In an urgent situation, it will give a solution to the in-office side that needs to send a new task to in-

field users immediately, but the in-field users are not connected to the internet. 

3.2. SFormBD: Proposed Mechanism for Compacting a Form 

This section discusses a solution to improve the information flow of distributed-synchronous 

geocollaborative system by allowing the system to transfer forms through SMS as discussed in the Section 

3.1.2. The flexibility for transmitting data in areas without internet access can be implemented by structuring 

the form into a compact format. The structure needs to be: (i) save as much space as possible because the 

cost of the SMS is per 160 characters, and (ii) systematically possible to be processed automatically. This 

research proposes a mechanism to limit space needed in the process of sending and receiving the tasks when 

using SMS called Form Base Data for SMS-based data collection (SFormBD). By adapting the previous 

formats (JSON, XML, and XLSForm) to construct a form, we learn how to minimise the used components 

and the characters so it can fit the space and reduce the cost of SMS needed to send the data.   

Generally, SFormBD can be implemented by using workflow as seen in figure 14. First, we need to develop 

the SFormBD base data. The data in SFormBD base data consist of predefined data with unique IDs as will 

described in section 3.2.1. It is, as a reference to construct the form from the SMS. The idea is, formatted 

SMS that is sent and received by users are minimising the characters by only defining the ID of its 

component. In this way, the more complete is the SFormBD base data created in both in-field and in-office 

local data, the more possible it is to compact the SMS. Additionally, the SFormBD base data stored in the 

local mobile device need to be in the same state with the server so that the form construction is referring to 

the same reference. Thus, the use of SFormBD needs to implement database synchronisation method 

between base data stored in mobile device and base data stored in the server.  



 

18 

Next, after base data is deployed in both in-field and in-office user devices, we can use them in the system. 

The system needs to define SMS formats that are valid to use in the system, so then we can parse them into 

significant parts and store them into the database. SFormBD Formatted SMS is used to simplify the 

information that is sent or received by each individual that will be matched to the SFormBD base data that 

is needed as a reference to construct the form.  

In-office side In-field sideServer

Form 

Creation

Formatting 

the form

Parsing the 

SMS

Form 

construction

SFormBD 

base data

SFormBD 

base data

sync

SMS

 
Figure 14. General use of SFormBD 

3.2.1. SFormBD Base Data 

SFormBD base data are constructed to store base information needed to build a form in the application. 

First, we inspect the way form is constructed. Compared to form constructed by XML, JSON, or XML, 

form constructed by SMS need to limit the content, so it contains only highly important information.  We 

propose to leave other information but three sections as seen in Figure 15: question, question text, and 

question choice. In this way, we can keep what is needed to construct the form. In SFormBD, question 

section shows the type of question, question text section shows the question asked and, finally, the question 

choices show the available choice that can be picked for multiple answer questions.  

Question

Question text

Question choices

 
Figure 15. Breaking down the form to create SFormBD 

 Question text section 

While question section in SFormBD store information about the type of question, question text data in the 

database will be used as a base question text to limit more space of data transmission. For example, instead 

of sending a question like “The availability of public facility” every time the tasks need to include the 



 

19 

question in the form, the system can just send the ID of the question and then the application will recreate 

the form based on the SFormBD on their local database. Table 4 shows the example of base question text 

that can be added to the database. 

Table 4. Example of question text in SFormBD base data 

ID Question Text 

T1 Source name 

T2 Cleanliness 

T3 The availability of public facility 

 Choices section 

The idea of choices section in SFormBD is the same with question text. Instead of sending choices like ‘very 

good’, ‘good’, ‘bad’, ‘very bad’ in one question every time it needs, the implementation can just send the id 

of the choices list. Some choices can be listed to several choices list, especially scaling options like excellent, 

good, bad, etc. Some choices list can also be matched with several kinds of question. Table 5 shows the 

example of base choices, Table 6 shows the example of base choices list name, and Table 7 shows the 

example of base choices list combination that can be added to the database.  

Table 5. Example of choices in SFormBD base data 

ID Choices Text 

C1 Toilet 

C2 Trash bin 

C3 Wifi 

C4 First aid 

C5 Bad 

C6 Ok 

C7 Good 

C8 Very good 

 
Table 6. Example of choices list name in SFormBD base data 

ID Choices List Name 

CL1 Quality 

CL2 Public facilities 

 

  



 

20 

Table 7. Example of choices list combination in SFormBD base data 

Choices list name ID Choices text ID 

CL1 C8 

CL1 C7 

CL1 C6 

CL1 C5 

CL2 C4 

CL2 C3 

CL2 C2 

CL2 C1 

 

 Question section 

Question section provides references to the parameter needed to construct each question in the form. In 

SFormBD, the most important component that needs to be sent is the type of the question. There are 

several types of question, for example, a simple question with text answer or multiple choices question with 

single or multiple answers. Question data in SFormBD store the type of question and its valid component. 

The example of question type can be seen in Table 8. From the table, we can conclude that the question 

types are mostly divided into two; the question with choices, and question with no choices. In case of 

question with no choice, then the question text is the only component that needs to exist in the data. 

Question text is the question that will be written in the form. On the other hand, question with choices 

must have listed the option text it has.  

Table 8. List of question type in SFormBD base data 

ID Question type Element Description 

QT1 Text Text QuestionText 

QT2 Text Paragraph QuestionText 

QT3 Multiple 

choice 

Radio 

button 

QuestionText ,Option1, OptionText1,  …, 

OptionN, OptionTextN 

QT4 Multiple 

choice 

List QuestionText, Option1, OptionText1, …, 

OptionN, OptionTextN 

QT5 Multiple 

choice 

Checkboxes QuestionText, Option1, OptionText, …, 

OptionN, OptionTextN 

QT6 Linear 

Scale 

Scale QuestionText, Value Min, Value Max, …,  

ValueText Min, ValueText Max 

QT7 Grid Grid QuestionText, Row1, RowText1, …, RowN, 

RowTextN 

Additionally, in question section, SFormBD can also store a full question ready to use in the form. The 

structure of the question data can be seen in Figure 13. A full question in SFormBD consists of question 

type, question text, and choices list (if any) as seen in Table 9.  



 

21 

Table 9. Example of full question base data in SFormBD 

Question ID Question Type ID Question Text ID Choices List ID 

Q1 QT1 T1 Null 

Q2 QT3 T2 CL1 

Q3 QT4 T3 CL3 

 

QuestionQuestion

QChoicesListQChoicesList

QuestionTypeQuestionType

QuestionTextQuestionText

ChoicesChoices

QuestionIDQuestionIDPKPK

QuestionTypeIDQuestionTypeID

QuestionTextIDQuestionTextID

QChoicesListIDQChoicesListIDPKPK

ChoicesIDChoicesID

ChoicesListIDChoicesListID

QuestionTypeIDQuestionTypeIDPKPK

QuestionTypeQuestionType

QuestionTextIDQuestionTextIDPKPK

QuestionTextQuestionText

ChoicesIDChoicesIDPKPK

ChoicesTextChoicesText

 
Figure 16. Question data structure in SFormBD 

 Form Section 

The purpose of form section is to store a complete form component because it is possible to reuse a form 

in a different location, different in-field user, or different range of time. The form name can be seen in Table 

10 and form components can be seen in Table 11.  

Table 10. Example of form in SFormBD 

ID Form name 

F1 Restaurant Quality 

F2 Tourism spot facilities 

 

Table 11. Example of form component in SFormBD 

Form 

ID 
Question ID 

F1 Q1 

F1 Q2 

F1 Q3 

 
  



 

22 

 Location Information 

While the form is crucial information to be shared in data collection, sharing the geographical data is also 

important in geocollaborative works because it provides the location of the impending task. Depending on 

the format of the location information, direct referencing, indirect referencing, and hybrid referencing can 

also be implemented based on the reference of the location information. Direct referencing has been used 

in data collection where user sharing coordinate (X, Y) of the location. In indirect referencing, all location 

is predefined in the local database with unique ID as a reference to the location. Hybrid referencing are 

getting popular because they do not need an extensive database as a reference to look up for the data. For 

example, What3word that named coordinate as three “random” words are using tessellation for tiling the 

space of a plane into grid square 3 x 3 m in size without gaps or overlaps (Barr, 2008). 

Depending on the availability of the data, the size of the data, the use case, and the hardware capability of 

the mobile device, the use of location information in the tasks can be different. For example, we can use 

indirect referencing to minimize the characters used because we only need to send the IDs of the location. 

We recommend using this reference because it uses the same approach with another component that we 

send via SMS, which is sending the IDs of the location data that already stored in local database. In case of 

using indirect referencing, we need to save local location of interest layers in the mobile application. Which 

then we need to assess whether the size of the reference data we need to put in the local database fit the 

hardware specification of the mobile device we are planning to use.  

By using indirect referencing, for example, we have a location that has been saved in the local database with 

ID 2322 (4 characters). Compared to indirect referencing, direct referencing and hybrid referencing most 

likely will have more characters. In direct referencing with XY coordinate, depends on the precision the 

system want to achieve, we have to write, for example, -5.81226, 110.45375 (18 characters) to point at a 

location. On the other hand, by using what3words, we need to send “guards.touchingly.receives” (26 

characters) to point at the same location by using what3words.  

3.2.2. SFormBD Formatted SMS 

Formatted SMS in the SFormBD structure is designed in such a way that it is possible to send not only a 

pre-stored form in SFormBD base data but also a brand-new form with entirely new components. In this 

way, the system can send a new form to in-field user in the right format, even though the in-field user does 

not have the most updated SFormBD base data at the time the form is being sent. This capability is 

supported by parsing mechanism that checking if the component in the SMS is already in the local SFormBD 

base data. This mechanism will be described in detail in Section 3.2.3. 

To distinguish different parts in the SMS, formatted SMS in the SFormBD can separate each question using 

a parser tag. Following tag in JSON format, it is convenient to use curly bracket parser “{}” as a parser to 

each question in the formatted SMS. In this way, it is clear to see the separation of each section. However, 

it is not necessary to have both opening and closing tag for SMS to indicate that the question is in the middle 

of the open and close bracket. The Formatted SMS only need a parser character to indicate that the next 

character belongs to next section until a parser found again. In this way, we can save at least one character 

for every section. For example, we can use semicolon character (; ) as the parser of the question and caret 

character ( ^ ) as parser between question component as seen in Figure 17. Thus, in case of question with 

no choices, we can use QuestionTypeID^QuestionText format, while in question with choices, we can use 

QuestionTypeID^QuestionText^Choices1^Choices2;… format. 



 

23 

FORM

Question Question Question; ;

Type Text Choices ; ;Type Text Choices Type Text Choices^ ^ ^ ^ ^ ^

 
Figure 17.  The format of SFormBD Formatted SMS 

In Figure 17 we can see how each component of the form is placed in the formatted text. Using the same 

hierarchy, we can set either the predefined components that already exist in the SFormBD base data or the 

new one. The example of the SFormBD Formatted SMS can be seen in Table 12.  

Table 12. The example of SFormBD format based on the availability of SFormBD base data 

Case SFormBD Format 

Form exists in SFormBD base data FormID 

Form does not exist, but the 

question exists in the SFormBD 

base data 

QuestionID;QuestionID;..;QuestionID 

One question does not exist in 

SFormBD base data (with no 

choices) 

QuestionID;QuestionID;QuestionTypeID^QuestionText 

One question does not exist in 

SFormBD base data (with 

choiceList that already exists in 

SFormBD base data) 

QuestionID;QuestionTypeID^QuestionText^choicesListID 

One question does not exist in 

SFormBD base data (with 

choiceList that does not exist in 

SFormBD base data) 

QuestionTypeID^QuestionText^choicesText1^…^choicesText

N 

3.2.3. SFormBD Base Data Synchronisation 

In synchronized works, we need to make sure that the user is using the same data. In areas without internet 

connection, data synchronisation capability ensures that data in the server is always in the same state with 

data in the local database of the mobile device. This capability usually run when the mobile devices find an 

internet connection. However, it is also possible that in-office user needs to send new data that does not 

exist in the local database because the in-field user has been offline for too long. In SFormBD, the step that 

needs to be taken to fill the gap is shown in Figure 18.  

First, we need to know when the last time the intended users synchronised their database. Some cloud-

hosted database provides an offline setting that is required for this procedure. For example, Firebase Real-

time Database which uses data synchronisation for every data changes instead of using HTTP request 

(“Firebase,” 2017). That is why this data synchronisation capability in SFormBD will not be discussed in 

detailed in this works. Second, we need to add the last update for each data record in the SFormBD base 

data database. Then, we need to compare the last synchronisation time of the intended user with the last 



 

24 

update of the form component we are using to see if the data are already available in in-field user local 

database. In this way, we can send the right data in the right format as seen in Table 12.  

Add last updated 

attribute in each 

SFormBD data 

component

Form Creation

Last 

update

Check last update 

for each data 

component

Create log table 

on last data 

synchronization 

for each user

Last Sync

If last update > 

last sync

Check last sync 

for the intended 

user

Treat the 

component as 

new component

Treat the 

component as 

data that already 

exist in SFormBD

Formatting SMS

 
Figure 18 Formatting SMS procedure in regards to data synchronization 

3.2.4. SFormBD Parsing Mechanism 

The steps are as following: 

Step 1: Parsing the SMS by the parser tag into arrays question[ ] 
Step 2: Check if the form is already in local database 
 if count(question) == 1 { 
  check form base data ID. if question[0] is in database { 
      Step 7 

  } 
  else { 
       step 3 
  } 

Step 3: Parsing each member of array in question[ ] into question component array qComponent[ ] 
based on its parsing character 

Step 4: Check if the question is already in the local database.  
 if question is in database { 
    step 7 
 } 
 else { 
  Update SFormBD base data 
 } 
Step 5:  Identify each component of the question based on its position in the array 
 n=0; 
 qComponent[0] = QuestionType 
 qComponent[1] = QuestionText 
 if (count(qComponent) > 2) { 
  for (i=2, i<count(qComponent);i++){ 
   choices[n] = qComponent[i]; 
   n = n+1; 
`     } 
 } 
Step 6: Check if question components are already in database 
Step 7: Store form data to task database 
Step 8: Visualise the form based on task database and the base data  

 



 

25 

3.2.5. SFormBD Example 

To understand how SFormBD works, we follow the proposed workflow to create a form as seen in Figure 

15. Question 1, which is source name, is a text question type with no choices. Question 2 and question 3 

question with choices. After SFormBD is settled, we need to design the SMS format that is valid for the 

system. Once it arrives at the designed user, the formatted SMS will be parsed into the component needed. 

Figure 19 shows the example of formatted SMS to send a brand-new form where the component of the 

form that does not exist in the SFormBD base data of the client. We can see that the question text and 

choices for every question are fully typed. SFormBD can make its full potential when the base data prepared 

in the database stores as many data as possible. So, for example, instead of putting cleanliness (11 characters), 

we only need to put T2 (2 characters) if we have the data as seen in Table 4. Instead of putting good (4 

characters), we can only put C6 (2 characters). Even better, we can just type F1 in the formatted SMS to 

send a brand-new form in the task to in-field user if the data is available in the SFormBD base data. 



 

26 

1^Source name|3^Cleanliness^Good^Ok^Bad|4^Public facilities^Toilet^Trash bin^Wifi^First aid

1^Source name
3^Cleanliness^Good^Ok

^Bad
4^Public facilities^Toilet^Trash bin^Wifi^First aid

Question Type 

1

Question Text : 

Source name

Question Type 

3

Question Text 

Cleanliness

Choice 1

Good

Choice 2

OK

Question Type 

4

Question Text 

Public facilities

Choice 1

Toilet

Choice 2

Trash bin

Choice 3

Wifi

Choice 4

First aid

Formatted SMS

SMS Parsing
To each question

SMS Parsing
to question type,

question text, and
choices

Store in database

Form base data

Choice 3

Bad

 
Figure 19. The implementation example of SFormBD workflow 



 

27 

3.3. Summary 

This chapter summarises the workflow of the distributed synchronous geocollaborative analysis and creates 

the link of the information flow.  Compared to the previous research, we assess the gaps that have not been 

covered by the previous research which then we propose a solution. The result is the need for a new feature 

that utilises SMS as communication channel so that in-office user able to send a new form that needs to be 

filled as soon as possible. In areas without internet access, the new feature is expected to be a solution for 

distributed synchronous geocollaborative system in case of urgency. 

We propose a new mechanism called SFormBD that make use of SMS to send the data. SFormBD is 

combining the strength of local database and structuring the form into a compact format so that it cost less 

to send the SMS.  The workflow of using SFormBD starts with the development of SFormBD base data 

that stores basic component of the form, for example, the question and its component that is likely to be 

asked in the form. The SFormBD base data is then stored in the local database of in-field mobile device. To 

keep the data synchronized, we can implement a sync mechanism. 

By using SFormBD data as a reference, we just need to send the IDs of the components. However, to 

accommodate offline setting, where there is no guarantee that in-field users will keep updated, the form is 

structured in such a way that it can send the form even if the local database has not been recently updated. 

In this scenario, the result of the compacting the form is not as compact as the one with most updated 

SFormBD data. However, this mechanism is needed to cover any situation such as the effect of 

disconnected internet network. In this way, we can conclude that the more complete and more updated is 

the SFormBD base data in both in-field and in-office user, the more compact is the SMS that needs to be 

sent. Hence, the cost of sending the SMS is lesser. Finally, we provide the workflow and an example of 

SFormBD implementation 
 
  



 

28 

  



 

29 

4. DEVELOPING A PROTOTYPE TO IMPLEMENT 
SFORMBD 

In Chapter 3, we discussed gaps in the previous research and practices of distributed synchronous 

geocollaborative system in areas without internet access. In the end, we developed a mechanism that allows 

in-office send a new task to in-field users even though the in-field user does not have access to the internet. 

To evaluate the mechanism design that we propose in Chapter 3, we develop a prototype to see if the design 

improves the information flow by allowing in-office user to send a new form to in-field user immediately 

even when the in-field user is in areas without internet access. For that aim, the geocollaborative system is 

implemented based on the following scenario: 

“A tour guide is guiding his/her tourist in an uninhabited island, where ships come every three days. The trip has been set for 

six days. However, in the day-5, he finds that the wind surprisingly becomes much stronger, there is a massive rain for half day 

that surprisingly makes most of the site becomes extremely unpleasant; the land becomes muddy, and the water is not suitable 

for water activity. He still reports current situation to the office, even though the weather comes back to normal and the tourists 

decide that they still want to finish the trip until the last day.  

The office side receives the report and analyses the situation. Because there will be next trip to the island in the next two days, 

the office wants to monitor the place, whether it will be a good idea to send their next guess there. The island does not have an 

internet connection, even though they will find cellular signal in some spots of the island. Even so, the office needs to send the 

tour guide the monitoring form regarding the current situation of the tourism spots there. The tourist guide needs to send back 

the results periodically until he/she come back to the base camp.” 

By using the scenario, we can implement all three information flow described in the geocollaborative 

workflow. However, the geocollaborative setting requires the prototype to have the other component 

described in Table 3. Therefore, we integrate all the component into a simple prototype for the tourist guide, 

and office side to work together on a geocollaborative setting. The application is developed into two based 

on the users: a mobile application for tourist guide, and web application for office side. The focus is the data 

exchange between this two application in areas without internet access by using SFormBD.  

The discussion starts with the scope of the system, including requirement and architecture design for the 

software and hardware setting, to explain the required costs to set-up such a geocollaborative environment. 

Then, we briefly describe the area of interest and the data use in the prototype to complete the prototype. 

Then, after the prototype ready, we test the prototype in two phase: (i) based on the required functionality, 

and (ii) by performing the scenario where SFormBD is needed. 

4.1. The Scope of the System 

The scope of the system defines the boundary of the system and the expected result that will be delivered 

in the end. Firstly, to determine the boundary of the system, we summarise the workflow that will be covered 

in the prototype. The workflow can be seen in Figure 20. In the workflow, we can see that the works start 

simultaneously from both office side and tourist guide. The trigger of the works depends on the situation, 

so both users have capabilities to create the tasks. Tourist guide can report situation from the field to office 

side to get their judgement. On the other side, office side can also send tasks to tourist guide when they 

need data directly from the field. The work is complete when office side does not have anything that need 

follow up from tourist guide and decide to say so. 



 

30 

Reporting 
situation

Analyzing the 
situation

Office side

FinishNeed follow up? No

Monitor the 
situation

Create task yes

Start

Start

Tourist guide

 
Figure 20. Workflow of the prototype 

The scope of the system is defined by describing: (i) the use case diagram to summarise who use the system 

and what they can do with it and (ii) functional requirement of the system to summarise the goal for each 

use cases. 

A use case diagram summarises the relationship between actors, action, and the system. Figure 21 shows 

the use case diagram for the prototype. There are five main cases that are developed: (i) create reports for 

the tourist guide, (ii) send tasks for the office user, (iii) do tasks for tourist guide, (iv) send task result, and 

(v) monitor the tasks. In the prototype, we can see the task can be created from both sides. Tourist guide 

can create tasks to office user by creating a report, and office user can create a task to tourist guide by 

creating the form. A tourist guide will collect data from the field, and send the filled form to the office side. 

The SFormBD will be implemented in how office user sends a task to tourist guide in case of areas without 

internet access. 

Tourism collaboration 
system
Tourism collaboration 
system

In-field user In-office user

create task

do task

send task

create report

monitor task

 
Figure 21. Use case diagram 

Functional requirement describes the main functionalities of the application and what the system intended 

to do that can make the use cases possible. To ensure that improvement in handle information flow in both 

areas with internet access and areas without internet access, the prototype will focus on the functionality to 

send task in both areas. Figure 22 shows how the prototype handles information sharing in each network 

condition. By default, every work done by tourist guide will be saved in the local database. Later, the system 

needs to send the data via selected communication strategies to office side once it finds the network 

connection. In weak connections, the prototype will automatically choose the communication strategies 

based on the urgency setting it has.  



 

31 

Internet ConnectionWithout Internet 
Connection

No connection

Working on 
data 

collection

Send text 
via sms

Send data 
via 

internet

Urgent data?

yes

No

 
Figure 22. Working with different network coverage 

To handle data transfer in various network connection, the prototype needs to have capabilities in sending 

data via both SMS and internet.  The selection of the communication channel to use is based on the 

connection setting and the urgency of the data. Thus, to summarise the functional requirement to its 

network connection, the functional requirement in this document are divided into two part based on the 

application: functional requirement for mobile application and functional requirement for web application. 

Table 13 shows the functional requirement for mobile application and Table 14 shows the functional 

requirement for the web application. FR02, FR05, FR08, FR14, and FR17 are functional requirements that 

utilise the SFormBD, and this functionality is the focus of this prototype development. 

Table 13. Functional requirement of mobile application 

Requirement 

ID 

Requirement Definition 

FR01 Fill report form in the field 

FR02 Send report data using SMS 

FR03 Send report data via Internet connection 

FR04 Save report data to local database 

FR05 Receive form via SMS 

FR06 Receive form via Internet 

FR07 Fill the form 

FR08 Send filled form using SMS 

FR09 Send filled form using internet connection 

FR10 Save filled form 

FR11 Visualize location data in a map interface 

 

 

  



 

32 

Table 14. Functional requirement of web application 

Requirement 

ID 

Requirement Definition 

FR12 Monitor the report 

FR13 Follow up the report from tourist guide via Internet 

FR14 Follow up the report from tourist guide via SMS 

FR15 Send form to tourist guide via the internet 

FR16 Send form to tourist guide via SMS 

FR17 Visualize location data in a map interface 

4.2. System Architecture 

System architecture in this section describes the selected solution that meets all technical and functional 

requirements of the system. Based on the functional requirement of the prototype, what we need are: (i) 

hosting server to store the web application, (ii) database server to store data, (iii) web programming to create 

web application, (iv) mobile programming to create mobile application, and (v) SMS gateway to send and 

receive SMS for the web application. Figure 23 shows the system architecture propose in the research that 

defines software elements that are used in the system and the relationship among them. The architecture is 

divided into two parts: server side and client side.  

 

In-officeIn-office

In-fieldIn-field

SMS

Nexmo API

Internet

internet

Server Client

SMS

SMS

 
Figure 23. System architecture of the system 

On the server side, the prototype uses Firebase database and Firebase Hosting as the environment to build 

the backend system of both mobile and web application. Firebase is a platform that provides tools and 

infrastructures to build mobile and web apps. It has capabilities to support online and offline setting that 

will be useful in the implementation of geocollaborative system. On the other hand, to support sending and 

receiving data via SMS on the server, Nexmo (Nexmo, 2017) is used as SMS Gateway because it provides 

SMS API that works with web developments.  



 

33 

On the client side, both web application and mobile application are developed using basic web programming 

(HTML, JavaScript, and CSS) as a basic visualisation and communication tools to the server and Leaflet 

JavaScript library (Agafonkin, 2015) to handle spatial visualisation. Ionic framework (Ionic, 2016) and 

Apache Cordova (The Apache Software Foundation, 2015) are used as a framework to build the mobile 

application. 

4.2.1. Area of Interest 

The area of interest that is used in the prototype is Karimun Jawa National Marine Park, north-west Central 

Java, Indonesia. The Archipelago consists of 27 islands, but only seven islands are inhabited. It is one famous 

destination with both land and water tourism activities that are well-distributed over the islands. For 

example, snorkelling, diving, tracking the forest, and exploring the cave. Based on network connection 

coverage given by Indonesia’s Central Statistical Agency, network coverage in Karimun Jawa areas are 

divided into 3: No connection, weak connection, and strong connection. Assuming that strong connection 

is a coverage where there is no problem with internet connection, weak connection is where the internet is 

not available in the network, and no connection is the areas that is not connected to the network, Figure 24 

shows the network coverage distribution map of the area of interest. The distribution of network coverage 

in Karimun Jawa covers not only areas with internet connection, but also areas without internet connection, 

that makes implementation of SFormBD makes sense in this area.  

 
Figure 24. Karimun Jawa island as area of interest and its network coverage (2014) 

The prototype provides a simple interactive map of Karimun Jawa as part of a geocollaborative system that 

uses boundary data from Indonesia’s Central Statistic Agency (BPS).  

  



 

34 

4.3. Prototype Implementation 

This section discusses technical steps that have been done to build the prototype. First, we describe the 

technical setting on how we develop the components of the prototype. Then, we display the results for the 

selected component. There are three main components that will be discussed. First, we discuss the 

environment for building the prototype, which includes SFormBD implementation design and the database 

implementation. Second, we discuss the implementation of the mobile application especially, in regards to 

the scenario: (i) how to send a report to the office, (ii).  How to receive a form using SMS, and (iii) how to 

send back the filled form to the office. Finally, we discuss the implementation of the web application 

especially, in regards to the scenario: how monitor report from the tourist guide, and how to receive the 

data via SMS. 

4.3.1. Working with the Environment 

SFormBD Implementation Design 

SFormBD implementation is done by doing following steps: (i) prepare the SFormBD base data, (ii) defining 

SMS format for the form, and (iii) defining whole SMS format for information sharing. First, to define SMS 

format for the form, we limit the implementation for only several data. For example, we limit the type of 

question that can be used in the prototype as shown in Table 15. We pick two question type as 

representatives of two type of question that we mentioned before: one of the question types represent 

question with no choices (text), and the other one is question type that represents multiple choices question 

(radio button). We use vertical bar (|) parser to identify the next question, colon (:) parser to identify the 

next component of the question, and semicolon (;) to identify the next component of the choices. We decide 

on the parser character based on the character that is unlikely needed to be written when a user fills the 

form and programmatically error that happens during the development when using other characters ( 

number sign ‘#’ do not work during the web development). 

Table 15. Question type table in SFormBD 

QuestionTypeID Question Type SFormBD Format 

1 Text QuestionTypeID:QuestionText 

2 Radio button QuestionTypeID:QuestionText:Choices1;Choices2;… 

 

Second, to define the SMS format, we need to make a list of information that is being sent or received. The 

general SMS format can be seen in Figure 25. Every SMS must be identified by TextTypeID so that the 

system can recognise the content it belongs. ID represents the ID of the information that is being sent. 

Location information represents the latitude and longitude or LocationID (if using direct referencing). 

TextTypeID is determined by listing all information that is being transferred in the system. 

TextTypeID ID Content
Location 

Information
^ ^ ^

 

Figure 25. General SMS format used in the prototype 

This list of information will help to identify what kind of information it is. In this prototype, there is three 

information, as discussed earlier, that is being sent or received. This information can be as seen in Table 16. 

Content to be sent are data that need to be written in the main message, and attached content are data that 

can be automatically added to the database. For example, the username can be added by acknowledging the 

username of the application. Status of the report will be automatically set as open once it is stored, while 



 

35 

the timestamp will be added automatically using server timestamp whenever data is stored in the database. 

After the information types in the flows are recognized, then we can decide on the format of SMS for each 

information as seen in Table 17.  

Table 16. Information type list for the prototype 

TextTypeID 
Information 

type 
Flow Content to be sent Attached content 

1 Task Web application to 

mobile application 

TaskID, ReportID, title, 

lat, long, form 

- 

2 Report Mobile application 

to server (web 

application) 

ReportID, Title, 

Description, Follow up 

needed, lat, long, 

urgencies 

User name, 

timestamp, status 

3 Task result Mobile application 

to server (web 

application) 

TaskID, Collected data, 

lat, long 

Username, 

timestamp 

 

Table 17. SMS format for each information type 

Information type SMS format Array Count 

Send Task 1^taskID^reportID^FormComponent^location 5 

Send Report 2#reportID#title#description#followup needed#location 4 

Send Task result 3#taskID#answerQuestion1|answerQuestion2|…#location 4 

Database Implementation 

To build the SFormBD in geocollaborative setting, we need to design the data management. Thus, we need 

to implement the database. The prototype uses Firebase database as a database, a JSON-based database that 

has different schema and relationship with regular RDMS (Relational Database Management System) that 

is based on SQL. The example of how Firebase database structure the data can be seen in Figure 26. Reports 

is a ‘table’ that stores report data from the tourist guide. Each report is stored as a child that has unique ID.  

 
Figure 26. The Firebase database format. 

In Firebase database, we need to define it in the program code if we need regular RDBMS capabilities in 

the system. For example, for filtering data, defining a foreign key, defining attribute type, or join tables. The 

advantage of using Firebase in a geocollaborative setting are the offline capabilities that write the data to the 



 

36 

disk and sync them once the client is connected to the database and its capabilities to know whether the 

client connected to the database or not. 

On the other hand, on the mobile application, the tasks are stored in JSON-based local database by using 

ngStorage. ngStorage is a free to use AngularJS module that is available on GitHub 

(https://github.com/gsklee/ngStorage). The tasks are saved in JSON format in the same structure as seen 

for dummy task data in Figure 27. The data with the same structure also exists in the Firebase database that 

can be compared and sync to the mobile application if needed. The tasks data are stored in unique ID with 

attributes as following: title to save the title of the task, latitude and longitude to save location if it needs a 

special location to be reported, form (question ID, question type, question type, choices).  

 
Figure 27. Tasks in tree array format 

SMS Receiver Environment 

Compared to mobile application that has its own SMS receiver, the web application for monitoring need 

third party tools that allow office user to monitor the incoming SMS. Even though Nexmo SMS API in its 

cloud dashboard allow us to search for the incoming SMS, directing the incoming SMS into internal system 

provides opportunities for automating the process after SMS received in the system. Figure 28 shows the 

inspection page to monitor the incoming SMS. 

https://github.com/gsklee/ngStorage


 

37 

 
Figure 28. Page for monitor the incoming SMS 

4.3.2. Map Visualization 

The prototype application provides a simple interactive map with minimum feature like zoom in, zoom out, 

and panning by using leafletjs javascript library. 

Mobile application 

The main functionality of the map visualization in the mobile application is as a reference to input the 

location data in the form. It allows the system to record latitude and longitude location and send it along 

with the form submission. We follow the example of Leafletjs in ionic framework application that is available 

via GitHub in https://github.com/calendee/ionic-leafletjs-map-demo. Figure 29 shows the screen capture 

of the map visualisation for the mobile application. Figure 29 (i) shows the splash screen to introduce the 

section to the user and to give a hint to the user how to use the map. Figure 29 (iii) is the map visualisation 

without splash screen. Figure 29 (ii) is the visualisasion of the form that appears after a long push of the 

map. Notice the latitude and longitude that is recorded using leafletDirectiveMap library as seen below.  

1.       $scope.$on('leafletDirectiveMap.contextmenu', function(event, locationEvent){ 
  

2.         $scope.newLocation = new Location();   
3.         $scope.newLocation.lat = locationEvent.leafletEvent.latlng.lat;   



 

38 

4.         $scope.newLocation.lng = locationEvent.leafletEvent.latlng.lng;   
5.         $scope.modal.show();   
6.       });   

 

 
(i) 

 
(ii) 

 
(iii) 

Figure 29. The map visualisation in the web application: (i) splash screen, (ii) the form that appears after long push on the map, and (iii) 
map visualisation without splash screen 

Web application 

The main functionality of map in the web application is to plot the distribution of the tourist guide report 

as seen in Figure 30. The monitoring dashboard displays the report with status open, and the point can be 

clicked to display the report detail. 

 

 
Figure 30. Map visualisation for the web application for monitoring 



 

39 

4.3.3. Sending Data from a Mobile Application 

Sending data from mobile application to the server is related to a scenario where the tourist guide report to 

the office if the situation is so unpleasant to the tourist. The communication channel is chosen by taking 

urgency component and the type of network coverage into account. In the prototype, the mobile device as 

the sender has a native capability to recognise the connection they have by using Cordova-plugin-network-

information that is available via https://github.com/apache/cordova-plugin-network-information/. After 

the system recognises the internet availability, the system will take urgency parameter that is chosen by the 

users when they fill the form. The user needs to choose its urgency by sliding the toggle in the form as seen 

in Figure 31 which also shows the interface for creating a report form that appeared when a location on the 

map is clicked. 

 
 

Figure 31. The interface of creating report form 

The steps to implement this feature are as following: 

Step 1:  Create service script to return status of the connectivity. 

1. .factory('ConnectivityMonitor', function($rootScope, $cordovaNetwork){   
2.  return {   
3.     isOnline: function(){   
4.       if(ionic.Platform.isWebView()){   
5.         return $cordovaNetwork.isOnline();       
6.       }  
7.     }   

Step 2: Capture urgency input and create variable of it 

Step 3: Put functions save data into local database on send button 

Step 4: Create if else script to send the data via chosen communication channel 

1. $scope.saveLocation = function() {   
2.         if(ConnectivityMonitor.isOnline()==true){   
3.             LocationsService.savedLocations.push($scope.newLocation);   
4.             $scope.modal.hide();   
5.             $scope.goTo(LocationsService.savedLocations.length - 1);   
6.                
7.             $scope.messages.$add({   
8.               title: $scope.newLocation.name,   
9.               content: $scope.newLocation.description,   
10.               followup: $scope.newLocation.followup,   
11.               urgencies: $scope.newLocation.urgencies,   

https://github.com/apache/cordova-plugin-network-information/


 

40 

12.               long: $scope.newLocation.lat,   
13.               lat: $scope.newLocation.lng,   
14.               user: 'diodinta',   
15.               status: 'open'   
16.             });   
17.         }   
18.         else{   
19.             if($scope.newLocation.urgencies==true){   
20. message = '#2#4#'+$scope.newLocation.name+'#'+$scope.newLocation.descrip

tion+'#'+$scope.newLocation.followup+'#'+$scope.newLocation.lng+','+$sco
pe.newLocation.lat+'';   

21.                 console.log(message);   
22.                 number = '3197010240043';   
23.                 $cordovaSms   
24.                     .send(number, message, options)   
25.                       .then(function() {   
26.                           // Success! SMS was sent   
27.                           console.log('Success');   
28.                       }, function(error) {   
29.                       // An error occurred   
30.                           console.log(error);   
31.                     });//then   
32.             }   
33.             console.log("its not online");   
34.             console.log($scope.sms);   
35.            }   
36.       }; 

 

The plugin to utilise SMS in the mobile application is cordova-sms-plugin that is available via 

https://github.com/cordova-sms/cordova-sms-plugin.  

4.3.4. Sending Data from the Office Side 

It is also important for the office side to understand the state of client they want to communicate with in 

term of the connectivity they have. Thus, even though they do not have difficulties in sending and receiving 

data via internet, they need to know the state of connectivity of the client they want to send the data to. 

Firebase database has this capability. However, we do not implement it because it requires a lot of time by 

setting up authentication for the device. By simulating this ability of Firebase Real-Time Database, we have 

a userStatus parameter that, along with the urgency parameter given by the office user, can be used to decide 

the communication channel that is used to send the form.  

 
Nexmo SMS API is also used to send the SMS from the web application by using its REST API using 

following code: 

1. window.open('https://rest.nexmo.com/sms/xml?api_key=c4628c85&api_secret=33e68831c053
5d49&from=3197010240043&to=31630089277&text='+SendSMSFormat+'', '_blank')   

Figure 27 shows the SMS list that has been retrieved from Nexmo API Dashboard to test the prototype. In 

Netherland, one SMS cost €0.0761. From the list, we can see capability to split the SMS into 160 characters 

per SMS automatically. One line represents one SMS that is sent. The red box in Figure 32 indicates SMS 

that is split into two and the received SMS that is saved in the mobile device that is joined automatically 

before being processed by the prototype in Figure 33.  

 

https://github.com/cordova-sms/cordova-sms-plugin


 

41 

 
Figure 32. List of SMS 

 
Figure 33. The SMS received in mobile device 

4.3.5. SMS Processing 

SMS processing is a mechanism that we develop to parse the SMS and store them into the right structure in 

the database. The function is developed by using Javascript that uses steps as seen in Section 3.2.4. The 

parsing method is using a simple string split() method, and iterate the array result based on the structure of 

the database we need. The complete code can be seen in the appendix while the result can be seen in Figure 

34.   

  

Figure 34. The form preview after the SMS processed by the system 

  



 

42 

4.4. Prototype Testing 

4.4.1. Testing the Prototype 

To test the prototype, the mobile application is installed in Moto G4 Plus with Android Marshmallow 6.0.1 

as seen in Figure 35. Functional testing is done to test that the prototype has the expected result as it said in 

the requirement. By using the scenario we discussed earlier, the testing has been done by acting user that 

use to work in remote area to collect the data and familiar with mobile application. The testing scenario is 

described in the appendix. The prototype testing is a success with notes that are discussed in Section 4.4.2.  

the implementation section where the system screenshot are based on the scenario we did with the 

prototype.  

 
Figure 35. The installed prototype for the testing. 

4.4.2. General Discussion 

Even though we do not develop a full-automatic system of distributed geocollaborative system, we develop 

enough to integrate SFormBD mechanism and test the scenario where this mechanism is used. By 

developing the prototype, we notice that SFormBD mechanism has several dependencies in compacting the 

form component. These dependencies are related to finding the best way to use less character for another 

task components that need to be sent along with the form. The examples in this prototype are the location 

information and the IDs.  

In the SFormBD design, we recommend using indirect referencing to provide location information of the 

task that needs to be done so that we only need to send the ID of the location information. In the prototype, 

we implement direct referencing using latitude and longitude coordinate that is directly captured from the 

map. However, the selection of the location information does not affect the workflow of the SFormBD 

mechanism, mostly, it affects the number of used characters. 

Another dependency is the design of IDs in the application. For multi-user application, there will be a chance 

of ID conflict for simple IDs like we use in the prototype (an auto increment IDs). In Firebase database, 

they ensure unique identifier by ordering timestamp and random bits that are resulting 20 characters ID like 

“-KbvlTwyOERch73pkx97”. There are 20 characters for one ID, and yet we potentially need to deliver 

more than one ID in one SMS. To make potential use of the SFormBD mechanism, we need to pay attention 

on how we format the ID of the data we use and use as fewer characters as possible.  

Thus, despite these limitations, the current prototype is developed with software and hardware requirement 

that makes it is extendable to another activity that in-field and in-office need with the geocollaborative 



 

43 

system. For example, to retrieve and visualise the report data based on temporal and spatial activities, from 

which we can derive a trend or even acquire useful insight from historical events.  

Before implementing the SFormBD into geocollaborative system, we needed to pay attention to two things: 

(i) the data hierarchy, and (ii) the parser character. First, a careful design of the data hierarchy was crucial. 

In this prototype, the task was under report because it allows an in-office user to follow up the report if 

needed, and it would be easier for them to monitor the flow of the tasks.  Moreover, this data needed to be 

delivered during data exchanged. Secondly, we needed to pay attention to the choice of the parser characters. 

It was necessary to choose a character that is most unlikely to be used in filling out the form. In addition, 

this character would be such that it did not pose a challenge to coding. For example, in the prototype 

development, we found that number sign ‘#’ cut the text that is being sent with SMS from the Nexmo 

REST API.  

The successful testing of the scenario that involves the implementation of SFormBD indicates that 

SFormBD, the proposed mechanism works, and can accommodate the improvement on the new feature 

we need on the geocollaborative system in areas without internet access. As illustrated in Figure 28, the form 

is the result of parsing and restructuring mechanism in SFormBD. We tried to test in two scenarios; where 

the form is already in the SFormBD base data and where the form and its component is not in the SFormBD 

base data. From this scenario, the statement we have about the completeness of the SFormBD base data is 

correct: The more complete and update the SFormBD base data in local mobile application, the fewer 

characters it needs to deliver the information, which then can reduce the cost of sending SMS. 

4.5. Summary 

In this chapter, we presented a way to evaluate the improvement we need in the distributed synchronous 

geocollaborative setting by creating a scenario where there was a need for the new feature in the system. 

The new feature implementation is based on SFormBD mechanism we propose in Section 3. The prototype 

is a success based on the functional testing, which indicates that SFormBD mechanism we proposed in this 

work can accommodate the improvement we need to fill in the gap of information flow of distributed 

synchronous geocollaborative analysis in areas without internet access. 



 

44 

  



 

45 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

Because of a wide scope of implementation of geocollaborative systems involving in-field and in-office 

users, we narrow down the discussion into distributed synchronised geocollaborative works in data 

collection.  In-field users are in the field to collect data and, simultaneously, in-office users monitor and 

analysis the data. First, we assessed previous solutions of data collection without internet and how they can 

cover the geocollaborative component and all links in the information flows. In the end, we found a gap 

and solve it by developing a new mechanism that allows the in-office user to send a new form to in-field 

users by using SMS. This new mechanism fills the gap of distributed synchronised geocollaborative system 

that loses its flexibility to follow up the works during works session. 

Following are the results corresponding to the research questions from Section 1.2: 

How are typical flows of the information and tasks?  

In data collection, the information that needs to be exchanged is the empty form (request) and the filled 

form (response). The flows are the in-office users sending the empty form to in-field user, in-field users 

sending back the data acquired to the in-office users. In regard to geocollaborative workflows, the 

information flows need to be more flexible, because the workflow can start from both sides and both sides 

can do follow up works. This requirement modifies the typical geocollaborative workflow for data collection 

as follows: (i) an in-field user has a predefined form to start the works, (ii) an in-office user sends an empty 

form to in-field user, and (iii) the in-field user(s) are able to send back the result of the new form. 
 

How can we characterise collaborative settings? 

Based on empirical research and practices, we point at three critical components in distributed synchronized 

geocollaborative systems in data collection: (i) use of map interfaces which accommodate location 

information, (ii) mobile data management which accommodates data storage and retrieval in mobile devices, 

and (iii) interactive and user-friendly user interface. 

What are possible problems for each identified flow in areas without internet access? 

Previous research and practices accommodate offline capability as follows: (i) download the form when they 

have connection or have predefined form in the mobile application, (ii) save the filled form in the local 

mobile database when they are working in areas without internet access, and (iii) send the data once they 

find the connection. However, in case of an emergency where they cannot find a connection when the task 

needs to be finished, then the consequences will be: (i) their work cannot be sent to the in-office users and 

(ii) there is no collaboration between them and in-office user in the meantime. 

What communication protocols do mobile devices have and what are their potentials for 

information exchange in areas without internet access?  

From previous studies and practices, we found three communication channels that have been used to 

exchange data and information in a collaborative setting.  They are voice call, SMS, and USSD. SMS and 

USSD are the potential use because they are text-based communication channel that we need for the 

collaboration we discuss earlier 

 

 



 

46 

What are their characteristics and their limitations with regards to the identified collaborative 

workflows? 

USSD and SMS can be used as the communication channels to exchange data in areas without internet 

access, as long as the area is covered by GSM network. From previous research and practices, SMS and 

USSD are used as text-based data exchange. In regards to the collaborative workflows, USSD covers all the 

flow while SMS cannot cover the identified flow: an in-office user sends an empty form to in-field user. 

 

What are the options to improve information flows given technological and organisational 

constraints? 

We find two ways to improve information flows in geocollaborative systems. First, by using USSD, we need 

to find a way to integrate it into the geocollaborative component. Second, by using SMS, we need to add 

flexibility for the in-office user to follow up the task during the workflow. Considering the limited access to 

explore USSD technology, we explored on the second option. In the end, we filled the gap in the workflow 

by creating a mechanism that allows in-office users to send follow-up task, in a new form, to in-field users 

in areas without internet connection.  

Which is an effective and efficient set-up for reliable information flow in geocollaborative setting 

involving in-field and in-office elements? 

Reliable information flow in geocollaborative setting must allow users to exchange data when they need it 

even if they do not have access to the internet. Especially in urgent situation when the data need to be sent 

or received immediately. Effective and efficient set up for reliable information flow means that the 

implementation of geocollaborative system covers all the information flow and other geocollaborative 

setting components even in areas without internet access. 

 

How can we evaluate the proposed improvement? 

We evaluate the improvement design by developing a simple prototype based on a scenario where SFormBD 

mechanism is needed in urgent situation. 

What are the requirements to conduct the evaluation? 

In the prototype, we implement SFormBD and test if the office user can send new data collection task to 

tourist guide through SMS. To evaluate how well the design is, we also implement the other geocollaborative 

components to see if the implementation of SFormBD integrates well with the current workflow of 

geocollaborative system. 
 

What is the result of the evaluation? 

The success of the functional testing in a scenario where it needed indicates that SFormBD mechanism we 

propose in this work can accommodate the improvement we need to fill in the gap of information flow of 

distributed synchronous geocollaborative analysis in areas without internet access. 

5.2. Recommendations 

Even though the implementation of the prototype SFormBD is limited to text-based data collection, it is a 

new feature that will improve the workflow of geocollaborative system in areas without internet access. To 

assess the full potential of the SFormBD mechanism, we recommend integrating the implementation of 



 

47 

SFormBD into the existing distributed-synchronize geocollaborative systems for data collection in areas 

without internet access.  

By implementing SFormBD mechanism in a real use case, we can assess which part of the design need to 

be extended. It is because the design of SFormBD in this work is limited to a very basic form that might be 

not enough for some use cases. For example, a user might need to constrain the data type and character 

length, to set a default value, to set up a hint for every question, or to set the required field. By using the 

same approach, it is possible to add components into the formatted SMS and adjust the parsing mechanism. 

Thus, even though this information can be synched later when in-field user has an internet connection, the 

user might need to consider if it is worth the cost to put the information into the SMS in the first place.   

Second, by performing usability test in the real use case where the users have experience with the workflow, 

we can evaluate how this new feature improves their workflow and their work performance. 

 

 
  



 

48 

  



 

49 

LIST OF REFERENCES 

Agafonkin, V. (2015). Leaflet - a JavaScript library for interactive maps. Retrieved January 4, 2017, from 
http://leafletjs.com/ 

Azavea. (2017). PhillyTreeMap. Retrieved February 9, 2017, from 
https://www.opentreemap.org/phillytreemap/page/About/ 

Barjis, J., Kolfschoten, G., & Maritz, J. (2013). A sustainable and affordable support system for rural 
healthcare delivery. Decision Support Systems, 56(1), 223–233. 
https://doi.org/10.1016/j.dss.2013.06.005 

Barr, R. (2008). what3words Technical appraisal. Cheshire. 

Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format. 
https://doi.org/10.17487/RFC7158 

Brovelli, M. A., Minghini, M., & Zamboni, G. (2016). Public participation in GIS via mobile applications. 
ISPRS Journal of Photogrammetry and Remote Sensing, 114, 306–315. 
https://doi.org/10.1016/j.isprsjprs.2015.04.002 

Cai, G. (2005). Extending Distributed GIS to Support Geo-Collaborative Crisis Management. Geographic 
Information Sciences: A Journal of the Association of Chinese Professionals in Geographic Information Systems, 
11:1, 4–14. https://doi.org/10.1080/10824000509480595 

Dasgupta, A., Kamble, R., Ghosh, S. K., & Acharya, P. S. (2013). GeoSMS framework for information 
acquisition in rural public health management system. 2013 Annual IEEE India Conference 
(INDICON), 1–4. https://doi.org/10.1109/INDCON.2013.6725880 

Esri. (2016). Collector for ArcGIS. Retrieved August 11, 2016, from http://doc.arcgis.com/en/collector/ 

Esri. (2017). Create and share a map for data collection. Retrieved January 17, 2017, from 
https://doc.arcgis.com/en/collector/ios/create-maps/create-and-share-a-collector-map.htm 

Facebook. (2015). Internet.org is connecting the world. Retrieved August 10, 2016, from 
https://info.internet.org/en/ 

Firebase. (2017). Retrieved January 25, 2017, from https://firebase.google.com/docs/database/ 

Freire, C. E. de A., & Painho, M. (2014). Development of a Mobile Mapping Solution for Spatial Data 
Collection Using Open-Source Technologies. Procedia Technology, 16, 481–490. 
https://doi.org/10.1016/j.protcy.2014.10.115 

GeoODK. (2014). Geographical Open Data Kit. Retrieved December 12, 2016, from 
http://geoodk.com/ 

Heard, J., Thakur, S., Losego, J., & Galluppi, K. (2014a). Big board: Teleconferencing over maps for 
shared situational awareness. Computer Supported Cooperative Work: CSCW: An International Journal, 
23(1), 51–74. https://doi.org/10.1007/s10606-013-9191-9 

Heard, J., Thakur, S., Losego, J., & Galluppi, K. (2014b). Big board: Teleconferencing over maps for 
shared situational awareness. Computer Supported Cooperative Work: CSCW: An International Journal. 
https://doi.org/10.1007/s10606-013-9191-9 

Ionic. (2016). Build Amazing Native Apps and Progressive Web Apps with Ionic Framework and Angular. 
Retrieved January 4, 2017, from http://ionicframework.com/ 



 

50 

Joshfire. (2014). JSON Form. Retrieved December 12, 2016, from https://github.com/joshfire/jsonform 

Kapucu, N., & Garayev, V. (2011). Collaborative Decision-Making in Emergency and Disaster 
Management. International Journal of Public Administration, 34(6), 366–375. 
https://doi.org/10.1080/01900692.2011.561477 

Kipf, A., Brunette, W., Kellerstrass, J., Podolsky, M., Rosa, J., Sundt, M., … Thomas, E. (2016). A 
proposed integrated data collection , analysis and sharing platform for impact evaluation. Development 
Engineering, 1, 36–44. https://doi.org/10.1016/j.deveng.2015.12.002 

Lee, M. (2015). Collecting Field Data in an Environment Combining APP and Fusion Tables, 11–16. 

Maceachren, A. M., & Brewer, I. (2004). Developing a conceptual framework for visually-enabled 
geocollaboration. International Journal of Geographical Information Science, 18(1), 1–34. 
https://doi.org/10.1080/13658810310001596094 

Morrow, N., Mock, N., Papendieck, A., & Kocmich, N. (2011). Independent evaluation of the Ushahidi 
Haiti project. Development Information Systems International, 1–36. https://doi.org/10.1109/MIS.2011.52 

Nexmo. (2017). Nexmo - APIs for SMS, Voice and Phone Verifications. Retrieved January 4, 2017, from 
https://www.nexmo.com/ 

Ochoa, S., Talavera, J., & Paciello, J. (2015). Applying a Geospatial Visualization Based on USSD 
Messages to Real Time Identification of Epidemiological Risk Areas in Developing Countries: A 
Case of Study of Paraguay. Studies in Health Technology and Informatics, 216, 396–400. 
https://doi.org/10.3233/978-1-61499-564-7-396 

Puspitasari, Y. (2013). Emergency information system of IDP (Internally Displaced Persons) needs using SMS gateway 
for flood disaster emergency response in Sukoharjo Regency, Central Java Province. Gadjah Mada University and 
University of Twente. 

Quin, L. (2016). Extensible Markup Language (XML). Retrieved December 12, 2016, from 
https://www.w3.org/XML/ 

Sa, J. H. G., Rebelo, M. S., Brentani, A., Grisi, S. J. F. E., Iwaya, L. H., Simplicio, M. A., … Gutierrez, M. 
A. (2016). Georeferenced and secure mobile health system for large scale data collection in primary 
care. International Journal of Medical Informatics, 94, 91–99. 
https://doi.org/10.1016/j.ijmedinf.2016.06.013 

Sanou, B. (2016). ICT facts and figures 2016. Retrieved July 27, 2016, from http://www.itu.int/en/ITU-
D/Statistics/Documents/facts/ICTFactsFigures2016.pdf 

Signore, A. (2016). Mapping and sharing agro-biodiversity using Open Data Kit and Google Fusion 
Tables. Computers and Electronics in Agriculture, 127, 87–91. 
https://doi.org/10.1016/j.compag.2016.06.006 

Smirnov, A., & Ponomarev, A. (2015). Crowd Computing Framework for Geoinformation Tasks, 109–
123. https://doi.org/10.1007/978-3-319-16667-4 

Suddul, G., Bahadoor, U., Ramdoyal, A., Doolhur, N., Soobul, A., & Richomme, M. (2011). An open 
USSD enabler to simplify access to mobile services in emerging countries. International Conference on 
Emerging Trends in Engineering and Technology, ICETET, 323–326. 
https://doi.org/10.1109/ICETET.2011.53 

Tayal, R. (2015). Open Data Kit- Use of Smartphone Technology for Surveying, 461–464. 

TEXTALK. (2016). Angular Schema Form. Retrieved December 12, 2016, from http://schemaform.io/ 



 

51 

The Apache Software Foundation. (2015). Apache Cordova. Retrieved January 4, 2017, from 
https://cordova.apache.org/ 

Thomas, J. J., & Cook, K. a. (2005). Illuminating the path: The research and development agenda for 
visual analytics. IEEE Computer Society. https://doi.org/10.3389/fmicb.2011.00006 

Triggs, R. (2013). What is SMS and how does it work? Retrieved August 14, 2016, from 
http://www.androidauthority.com/what-is-sms-280988/ 

Wang, C., Qiao, Y., Wu, H., Chang, Y., & Shi, M. (2016). Empowering fall webworm surveillance with 
mobile phone-based community monitoring: a case study in northern China. Journal of Forestry 
Research, 1–8. https://doi.org/10.1007/s11676-016-0230-5 

Wouters, B., Barjis, J., Maponya, G., Martiz, J., & Mashiri, M. (2009). Supporting Home Based Health 
Care in South African Rural Communities Using USSD Technology Supporting home based health 
care in South African rural communities using USSD technology. Americas Conference on Information 
Systems (AMCIS), (January 2017). 

Wu, A., Convertino, G., Ganoe, C., Carroll, J. M., & Zhang, X. (Luke). (2013). Supporting collaborative 
sense-making in emergency management through geo-visualization. International Journal of Human-
Computer Studies, 71(1), 4–23. https://doi.org/10.1016/j.ijhcs.2012.07.007 

X. (2013). Balloon-powered internet for everyone. Retrieved August 10, 2016, from 
https://www.solveforx.com/loon/ 

XLSForm.org. (2017). What is an XLSForm? Retrieved January 16, 2017, from http://xlsform.org/ 

 
  



 

52 

  



 

53 

APPENDICES 

Appendix 1: Testing Scenario 

 

Scenario 

A tour guide is guiding his/her tourist in an uninhabited island, where ships come every three days. The 

trip has been set for six days. However, in the day-5, he finds that the wind surprisingly becomes much 

stronger, there is a very heavy rain for half day that surprisingly makes most of the site becomes extremely 

unpleasant; the land becomes muddy, and the water is not suitable for water activity. He still reports 

current situation to the office, even though the weather comes back to normal and the tourists decide 

that they still want to finish the trip until the last day.  

The office side receives the report and analyses the situation. Because there will be next trip to the island 

in the next two days, the office wants to monitor the place, whether it will be a good idea to send their 

next guess there. The island does not have an internet connection, even though they will find cellular 

signal in some spots of the island. Even so, the office needs to send the tour guide the monitoring form 

regarding the current situation of the tourism spots there. The tourist guide needs to send back the results 

periodically until he/she come back to the base camp. 

User Tourist guide 

Scenario  Tourist guide create report to in-field user 

 office user respond with creating task (form) to tourist guide 

 tourist guide fill the form 

 send it to office user 

 Office user end the tasks. 

Preliminary condition  Install application in mobile device 

 Turn off internet connection on the mobile devices 

Testing Scenario: 

 Open application 

 Open create report tab in left tab 

 Select location in the map by long push on the screen.  

 Create task by filling the form with following text: 

Title           :   

Description: 

Follow up   : 

 Toggle on the urgencies  

 Click submit button 

 

User Office 

Scenario  Office user send new form to tourist guide 

Preliminary condition  Open application in a web browser 

Testing Scenario: 

 Click on follow up button 



 

54 

 Select the report from the list 

 Select the user from the list 

 Select the form that want to be send 

 Hit Send Task Button 

User Tourist guide 

Testing Scenario: 

 Process the incoming SMS into form 

 Fill in form 

 Toggle on the urgencies  

 Send Report 

Appendix 2: SMS processing code for the mobile application  

1. .controller('resultCtrl', ['$scope', '$stateParams', 'StorageService', 'SFormBDQuest
ion', 'SFormBDQuestionText', 'SFormBDQuestionChoiceList'   

2.  $stateParams.parameterName   
3. function ($scope, $stateParams, StorageService, SFormBDQuestion, SFormBDQuestionText

, SFormBDQuestionChoiceList) {   
4.     var items = [   
5.            
6.         ];   
7.     var itemid = $stateParams.input;   
8.     var str = itemid;   
9.     var res = str.split("^");   
10.     var SMSType = res[1];   
11.     if(SMSType == 1){   
12.     }   
13.     var formKet = res[3].split(":");   
14.     var formArray = res[4].split("|");   
15.     var longlat = res[5].split(",");   
16.     var idform = parseInt(res[2]);   
17.     var idTask = parseInt(res[2]);   
18.     $scope.formArray = formArray;   
19.     console.log($scope.formArray);   
20.     console.log($scope.formArray.length);   
21.     var formInputperRow=[];   
22.     if (formKet.length > 1) {   
23.         console.log("it's a new form");   
24.         var formID = formKet[0];   
25.         var formTitle = formKet[1];   
26.         var question = [];   
27.         for(i=0;i<$scope.formArray.length;i++){   
28.             console.log(i);   
29.             var formRow = [];   
30.             question = {};   
31.             var formRow = formArray[i].split(":");         
32.             var Questionitems = SFormBDQuestion.getAll();   
33.             console.log(Questionitems);   
34.             for(var j=0;j<Questionitems.length;j++) {   
35.                 var itemQ = Questionitems[j];   
36.                 console.log(itemQ);   
37.                 console.log(itemQ.QuestionID);   
38.                 if(itemQ.QuestionID == formRow[0]) {   
39.                     var QuestionText = itemQ.QuestionText   
40.                     console.log(QuestionText);   
41.                 }   
42.             }   



 

55 

43.             if (formRow.length > 1) { //new question   
44.                 console.log("it is a new question");   
45.                 if(formRow[1]=="1"){   
46.                     if (formRow.length > 3) { // with new text   
47.                         question = {   
48.                             "QuestionID":formRow[0],   
49.                             "type":"text",   
50.                             "textID":formRow[1],                               
51.                             "text":formRow[3]   
52.                         }   
53.                                
54.                     }   
55.                     else{ //old text   
56.                     var Questionitems = SFormBDQuestion.getAll();   
57.                         console.log(Questionitems);   
58.                         question = {   
59.                             "QuestionID":formRow[0],   
60.                             "type":"text",   
61.                             "textID":formRow[1],   
62.                             "text":QuestionText   
63.                         }   
64.                     }   
65.                 }   
66.                 else if(formRow[1]=="2"){   
67.                     var QuestionTextItem = SFormBDQuestionText.getAll();   
68.                     console.log(QuestionTextItem);   
69.                     for(var k=0;k<QuestionTextItem.length;k++) {   
70.                         var itemQT = QuestionTextItem[k];   
71.                         console.log(itemQT);   
72.                         console.log(itemQT.QuestionTextID);   
73.                         if(itemQT.QuestionTextID == formRow[2]) {   
74.                             var QuestionText2 = itemQT.QuestionText   
75.                             console.log(QuestionText2);   
76.                         }   
77.                     }   
78.                     var choiceRow = formArray[i].split(";");       
79.                     console.log(choiceRow);                            
80.                     if(choiceRow.length > 1 ){   
81.                         console.log("it is a new choice list");   
82.                         var choices=[];   
83.                         for(j=1;j<choiceRow.length;j++){   
84.                             choices.push(choiceRow[j]);   
85.                         }   
86.                            
87.                         if (formRow.length > 4) {    // new question text       
88.                             var choiceIDSeq = formRow[4].split(";");   
89.                             question = {   
90.                                 "QuestionID":formRow[0],   
91.                                 "type":"radio",   
92.                                 "textID":formRow[2],   
93.                                 "text":formRow[3],   
94.                                 "choiceListID":choiceIDSeq[0],                      

   
95.                                 "choices":choices                                  
96.                             }   
97.                                
98.                         }   
99.                         else { //old question text   
100.                             var choiceIDSeq = formRow[3].split(";");   
101.                             question = {   
102.                                 "QuestionID":formRow[0],   
103.                                 "type":"radio",   
104.                                 "textID":formRow[2],   
105.                                 "text":QuestionText2,   



 

56 

106.                                 "choiceListID":choiceIDSeq[0],               
      

107.                                 "choices":choices                            
      

108.                             }   
109.                         }   
110.                            
111.                     }          
112.                     else{   
113.                         var QuestionChoiceItem = SFormBDQuestionChoiceList.ge

tAll();   
114.                         console.log(QuestionChoiceItem);   
115.                         for(var l=0;l<QuestionChoiceItem.length;l++) {   
116.                             var itemCL = QuestionChoiceItem[l];   
117.                             console.log(itemCL);   
118.                             console.log(formRow.slice(-1));   
119.                             if(itemCL.QuestionChoiceListID == formRow.slice(-

1)) {   
120.                                 var QuestionChoiceL = itemCL.QuestionChoice   
121.                                 console.log(QuestionChoiceL);   
122.                             }   
123.                         }   
124.                         if (formRow.length > 4) {    // new question text   
125.                             question = {   
126.                                 "QuestionID":formRow[0],   
127.                                 "type":"radio",   
128.                                 "textID":formRow[2],   
129.                                 "text":formRow[3],   
130.                                 "choiceListID":formRow[4],   
131.                                 "choices":  QuestionChoiceL                  

          
132.                             }   
133.                                
134.                         }   
135.                         else { //old question text   
136.                             question = {   
137.                                 "QuestionID":formRow[0],   
138.                                 "type":"radio",   
139.                                 "textID":formRow[2],   
140.                                 "text":QuestionText,   
141.                                 "choiceListID":formRow[3],   
142.                                 "choices":  QuestionChoiceL                  

                  
143.                             }   
144.                         }   
145.                     }   
146.                 }   
147.             SFormBDQuestion.add(question); //input question into SFormBD base

 data   
148.             }   
149.             else{ //old question   
150.                 console.log("it is an old question");   
151.                 question =  {   
152.                     "QuestionID":formRow[0]   
153.                 }  
154.             }   
155.         formInputperRow.push(question);   
156.         }   
157.     }   
158.     else {   
159.         console.log("it is an old form");   
160.         StorageService.add({"$id":formID,"title":formTitle,"lat":longlat[1],"

lng":longlat[0]});   
161.     }   
162.            



 

57 

163.     StorageService.add({"$id":formID,"title":formTitle,"lat":longlat[1],"lng"
:longlat[0],"form":formInputperRow   

164.             });   
165.     console.log(formInputperRow);   
166.     /*items.push({"$id":res[3],"title":res[4],"lat":res[7],"lng":res[6],"form

":formInputperRow  
167.     });*/   
168.        
169.     console.log(StorageService.getAll());   
170.     //console.log(items);   
171.    
172. }])   

  


