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ABSTRACT 

Agriculture is one of the main economic sectors of most countries in Africa. It is a source of food to the 

people, acts as a source of employment and also raw materials for some products. Most of farmers are 

mainly small-scale due to lack of adequate land for farming, manpower and finances to manage large-scale 

farming.  

Weeds are a major threat to the crop yields. Most of the small-scale farmers do not tend to their land after 

planting of crops especially if they find another quick way of earning money. The crops are left to grow 

without being well taken care of hence, affecting crop yields. 

This research looks at a methodology for automatic detection of the weeds in farm fields. The information 

could be of use to the government to ensure food security in the country, and also the agricultural 

extension officers who advise farmers on good farming practices. 

The study was carried out using the LSD and SVM algorithms on the UAV and VHR satellite imagery 

between the months of August and November 2014 in Mali. This was carried out on two cotton fields 

selected from two clusters, filed 23 in cluster 3 and filed 18 in cluster 4. The UAV images were found to 

be useful in this research as compared to VHR satellite imagery which failed at crop row detection. GLCM 

texture features were also extracted to assess the effect of additional variables in detection. 

The LSD algorithm was used in this study for the detection of the crop rows and the weeds were detected 

between the crop rows using the SVM algorithm. The LSD algorithm extracts straight lines from images 

and is combined with the Helmholtz principle method for the validation of the detected line segments. 

The Number of False Alarms (NFA) is defined where a threshold epsilon (𝜀) is set in such a way that for 

a line segment to be considered meaningful, the NFA of this line must be less than or equal to 𝜀.  

The validation of the detected crop rows was done using manually digitized row edges. The weeds were 

detected using the SVM (Linear and RBF) classifier where the cover percentage of the weeds class in the 

field was calculated. The results were compared to the field reference data provided by the STARS project 

in collaboration with ICRISAT Mali.  

The results of crop row detection had a great impact on the subsequent detection of weeds. This is 

because the crop rows that were missed in LSD analysis were classified as weeds in the SMV analysis. The 

weed percentage cover obtained in the SVM classification for the two fields showed an increase in weeds 

every month. The LSD algorithm showed a potential for clear crop row detection in case of images with 

clear identifiable crop rows. The SVM classification proved to work well after masking of trees, which 

avoided confusion between weeds and trees. 
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1. INTRODUCTION 

1.1. Background 

A weed is any plant that is considered obnoxious or unwanted especially when growing in a controlled 

setup such as farm fields, gardens, and so on. They hamper the production of crops through competition 

for soil nutrients, water, light and space (Ahmed et al., 2012). Weeds have a negative effect to crop 

production hence, there is need to look for effective and sustainable ways of controlling them in order to 

ensure consistent food supply globally (Sardana et al., 2016).  In order to achieve proper weed 

management, it is important to come up with constructive ways to detect, map and monitor weeds 

accurately (Atkinson et al., 2014). The weeds are eliminated from farms using various methods including; 

manual removal by the farm labourers, mechanical removal especially for large-commercial farms and 

application of herbicides (Ahmed et al., 2012). In the sub-Saharan Africa, most of weeding is done 

through manual removal since agriculture is mostly small-scale. 

The global climate is becoming rapidly unpredictable. Africa is one of the vulnerable continents in terms 

of changes in climate and especially more so in the northern part of the Sub-saharan Africa; making food 

security a major challenge (Vintrou et al., 2009). This makes it important to incorporate reliable scientific 

knowledge to maximize on agricultural production. Most of the small-scale farmers do not have access to 

the right information that could help them in decision making in terms of how to improve farming to 

ensure high crop production (Kuntagod et al., 2016)  

The option to use satellite-based information for agricultural practices has been greatly considered by the 

research community and governmental bodies dealing with agricultural production (Vintrou et al., 2009). 

This makes monitoring of various agricultural practices possible, including weed detection. 

1.2. Motivation and Problem Statement 

Agriculture is one of the major economic growth and sustainability factor for most of the countries (FAO, 

2015) especially in the developing countries. It is the source of the most important human need; food, 

provides raw materials for various products and is also a source of employment for the majority of the 

population. Most farmers in the Sub-Saharan Africa practice small-holder farming and are still using 

traditional methods of agriculture (Calzadilla et al., 2013). This is mainly due to lack of finances and 

knowledge of modern methods that can improve their crop yields. Technological advancement is evident 

in all areas of the economy and agriculture has not been left out. It is possible to achieve sustainable 

development in the field of agriculture by involving the participation of farmers in various agricultural 

technological developments (Otsuka & Kalirajan, 2008). 

Control of weeds is a major challenge for most farmers, which often results in high production costs, low 

crop yields or increased environmental degradation due to poor weed control methods. To ensure high 

production at a low cost while at the same time ensuring good maintenance of the economies and the 

environment, more pressure has been put by creating an opportunity to engineers and scientists to work 

together and find a solution to weed management in crops (Pierce & Clay, 2007). Hence, there is need to 

look for weed management approaches that will have a positive effect to the cropping systems in the 

future. 

Remote sensing is being widely used for weed control in large scale and commercial farming, for crop 

production management and monitoring. This is being done by differentiating weeds from crops through 
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automatic detection, although the approach is often affected by the spatial and temporal resolution of the 

images used. Automatic detection of weeds using low spatial resolution satellite images is not easy; 

especially during early phenological stages, making them inefficient for post emergence control of weeds 

(López-Granados et al., 2016). This leads to further need for technological advancement in the field, 

where use of higher spatial resolution satellite images, airborne as well as UAV images, are being 

considered. They also need to be of high temporal resolution in order to monitor the weeds at different 

crop stages. 

Unmanned aerial vehicles (UAV) images and Very high resolution (VHR) satellite images have become of 

high importance in weed monitoring and mapping. Satellites that provide very high resolution images of 

up to  less than 1m resolution are available and they allow detailed and exhaustive mapping (Rougier et al., 

2016). On the other hand, images from UAVs are more advantageous compared to satellite images as they 

have a higher spatial resolution. They give more details on the ground, which makes detection of weeds 

more precise during all growth stages. They are also not affected by the cloud cover as flying is done at 

lower height than satellite and airborne imagery. They have limitations in that they are expensive especially 

when the area of study is too large, they are susceptible to wind conditions. It is also a cutting edge 

technology as most operators are still not able to deliver data that is of acceptable quality (Zongjian, 2008).  

Merging of spectral and textural information helps in improving the classification of imagery (Bekkari et 

al., 2011; Ursani et al., 2012). This is so especially for very high spatial resolution imagery (Bergado, 2016), 

such as UAV and VHR imagery. Extraction of this information can be done using various approaches 

such as Grey-level co-occurrence matrix (GLCM) which is most widely used. It computes the occurrence 

of pairs of gray-level value pixels in an image. The maximum gray value of a pixel determines the size of 

the GLCM and the relationship between the pixels in GLCM is determined by varying lag and direction 

(Alemu, 2016) 

There are a variety of weed species growing at the same time as the crops in a field. Most of them grow in 

the space between the crop rows and some have similar spectral characteristics as the crops in the farm 

hence making their detection much harder. It is important to develop a methodology that will facilitate 

accurate automatic detection of weeds in the crop fields.  

This study proposes a methodology where weed patches growing between crop rows can be detected 

using Support vector machines (SVM), after discriminating the crop rows using Line segment detector 

(LSD) from UAV and VHR imagery. In most crop fields in Africa, crops are planted in rows, parallel to 

each other and the spaces between them are more or less the same. Depending on the type of crop in a 

particular field, the rows appear mostly to be of the same width although they may not be too straight. 

This is because they are done manually and not mechanized. The LSD algorithm locally detects straight 

lines where gray values of pixels on the image are changing abruptly from dark to light and vice versa 

(Grompone Von Gioi et al., 2012). SVM is a non-parametric classifier that allows separation of data into 

two or more classes. SVMs can perform linear classification where the classes are linearly separable and 

also non-linear classification where the classes are not linearly separable. (Bekkari et al., 2011).  

This technology is mostly useful for the local and national government, non-governmental organizations 

who are interested in monitoring of the crop yields to ensure food security in the country. The 

information could also be used by agricultural extension officers who advice smallholder farmers on 

weeding as a field activity to ensure high crop yields. 
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1.3. Research Identification 

1.3.1.    Research Objective 

The main objective of this research is to develop methodology for between-row weed detection in 

smallholder crop farms using pattern and textural measures from UAV and VHR satellite images using 

line segment detector algorithm and support vector machines classifier. 

1.3.2.   Specific Objectives 

The specific objectives of this research include: 

1. To test the LSD and SVM, in weed detection on both UAV and VHR images. 

 Use LSD algorithm in discrimination of crop rows using pattern measures 

 Compare SVM linear SVM and non-linear SVM (RBF kernel) classifiers in detection of 

weed patches between crop rows 

2. To assess how the different imagery with different spatial resolutions affect the detection results 

3. To compare detection of crop rows and weeds using images with and without texture features 

4. To assess how the extracted weeds, compare with the available reference data  

1.3.3.   Research Questions 

1. How efficient is the LSD algorithm in terms of accuracy in crop row detection in Mali? 

2. How efficient is the LSD algorithm in terms of time in crop row detection in Mali? 

3. How effective is weed detection after discrimination of crop rows? 

4. What are the accuracies obtained after detection with Linear and non-linear SVM for the two 

different images? 

5. Which imagery between the UAV and VHR satellite, gives high accuracy results for detection of 

weeds? 

6. How does detection of both crop rows and weeds on images with texture features compare with 

detection without texture features? 

7. Do the percentages of the automatically detected weeds coincide with the weed cover reported in 

the reference data? 

8. What are the optimal parameters for the LSD and SVM algorithms for the different images? 

1.4.    Innovation  

The novelty of this research is to explore the integration of LSD algorithm and SVM classifier in 

automatic weed detection from UAV and VHR satellite imagery. Most of the similar studies have been 

carried out in Europe and United States where farming is mechanized. Weed detection has not been 

exploited in Africa where farming conditions are different and on small-scale. The study carried out in 

Mali by Njenga (2016) focused on spectral measures and therefore, integration of crop row and weed 

detection has not been carried out in this region. This would be an interesting study considering that the 

crop rows are not as straight as in Europe and United States since they are done manually. LSD has also 

been used for crop row detection in Nigeria (Alemu, 2016) where the fields are clearer and have higher 

density of the crops along the rows which is different from Mali. Hough transform has been widely used 

in the field of agriculture for purpose of weed detection but there are other segment detector algorithms 

like LSD that are yet to be further explored. 
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2. LITERATURE REVIEW 

2.1. Methods of line segment detection 

Line segment detection has become a useful operation and is used in several operations of image 

processing (Akinlar & Topal, 2011). There are various methods that have been used before for line 

segment detection; but an algorithm would be considered ideal if it is able to process any images despite 

their origin, size or orientation, giving results of high quality as expected. This means that there should be 

minimal false detections and not time consuming. It should also not require any parameter tuning but 

should work with the same default parameters for all type of images (Akinlar & Topal, 2011) . For all the 

existing line segment detection algorithms, there is none that can be considered as perfect for detection. 

This is mostly due to people having differences in the general understanding or inference of a certain 

scene (Grompone von Gioi, 2014). 

There are various techniques that are used for detection of lines, curves and arcs. Hough transform is one 

of the most recognized tools in this area (Jianjun Ni et al., 2016). It was introduced in 1962 by (Hough, 

1962). It is used to detect straight lines, circles and other curved structures if their parametric equation is 

known. The first users were Duda & Hart (1972) who used it to detect straight lines in an image. It uses a 

binary edge map as an input and unlike other methods, it produces long lines that have to be broken down 

to line segments using a post-processing step. There are different versions of HT, with each one trying to 

counter for different limitations of the standard one. They include Randomized Hough transform (Xu et 

al., 1990), Progressive Probabilistic Hough transform (Kiryati et al., 1991), Elliptical Gaussian Hough 

transform (Fernandes & Oliveira, 2008).  

Another technique that computes an edge map and the generates line segments was proposed by Etemadi 

(1992). Chains of pixels are generated from the edge map and then the line segments are generated 

following these chains of pixels. The extraction of the line segments does not require any parameters but 

the extraction of the edge map requires parameters, decided upon by the user. Although the line segments 

and arcs produced are very well-localized, they are too many with many false positives (Akinlar & Topal, 

2011). This is more so in images with noise, trees and clouds. 

Other line segment detection tools are not based on binary edge maps as an input but use the normal 

images where the gradient orientation of the pixels is used. EDLines is one of such tools proposed by 

Akinlar & Topal (2011). It borrows heavily from Burns et al. (1986), Desolneux et al. (2000) and 

Grompone von Gioi et al. (2008). It is a fast method that produces robust and accurate line segments and 

also uses the Helmholtz principle in the line validation process. It is very similar to LSD, used in this study 

and discussed more in Section 2.2. The main difference is that it is much faster in terms of computation 

and has fewer false positives. 

2.2. Line segment detector algorithm 

Line segment detector is a machine learning algorithm that is fast and robust in detecting straight lines as 

line segments on images. It is an algorithm that has been developed based on the method of Burns et al. 

(1986) of extracting straight lines, combining with the Helmholtz principle validation method proposed by 

Desolneux et al. (2008). 
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 The algorithm’s input is a gray-level image which gives a list of detected line segments as an output. These 

lines are the part of the image where the gray levels of pixels are changing abruptly from dark to light and 

vice versa (Grompone Von Gioi et al., 2012). This is done by determining the level-line angle at every 

pixel after which a level-line field is generated. The level-line field is then divided into regions of pixels 

that are connected, which share the same level-line angle up to a certain tolerance 𝜏, known as line support 

regions. Each of the formed line support regions could be considered as a line segment. The line segment 

must be affiliated with a corresponding rectangular object where the principal inertia axis of the line 

support region is considered as the main direction of this rectangle and the size is chosen in order to cover 

the full region.  

In this rectangle, all pixels that have their level-line angle corresponding to its angle up to a certain 

tolerance 𝜏 are known as aligned points. The number of aligned points denoted as 𝑘, together with the 

number of pixels in the rectangle denoted as 𝑛 , are counted and used for validation of whether the 

rectangle forms a detected line segment or not. Each rectangle must go through a validation process which 

is mainly based on two approaches; the a contrario approach and the Helmholtz principle (Grompone Von 

Gioi et al., 2012).  

 

Figure 2.1: Processes in formation of line support regions. Source: Grompone Von Gioi et al. (2012) 

2.2.1. The Helmholtz Principle 

The Helmholtz principle was proposed by Desolneux et al. (2008). It works on a Gestalt theory also 

known as grouping, which is a law of visual perception (Desolneux et al., 2000). Points or objects that 

have some common characteristics like color consistency, parallelism, among others are grouped to form 

larger visual objects; which may further be grouped into other objects according to the characteristics that 

formed them in the first place. The Helmholtz principle validates the grouped objects by trying to depict 

when perception decides to group the objects according to a particular common characteristic (Desolneux 

et al., 2003). This way, it helps in controlling the number of false detections (Akinlar & Topal, 2011). The 

Helmholtz principle also indicates that an image with noise produces a poor detection (Grompone Von 

Gioi et al., 2012). 

2.2.2. The a Contrario Approach 

The a contrario approach is a statistical approach based on hypothesis testing where geometric meaningful 

events are detected (Desolneux, 2016). The probability of an observed geometric event under a noise 

model, also known as null hypothesis is computed and then the event is declared meaningful if the 

probability is small enough. In other words, the approach defines the null hypothesis (𝐻0) where the 
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desired structure is absent (Grompone Von Gioi et al., 2012). An event is only validated if the number of 

events that are expected to be as good as the observed ones are small in the a contrario model. This means 

that the structured events are considered as being uncommon in the a contrario model. The number of the 

aligned points is the most important in the case of line segments and therefore, a line segment in the a 

contrario model is deliberated as having an equivalent or more number of aligned points as the observed 

line segment.  

2.3. Number of False Alarms (NFA) 

In order to ensure conclusive validation by the Helmholtz principle, false detections must be avoided. 

Desolneux in (Desolneux et al., 2000) defines the Number of False Alarms (NFA) of a line segment as: 

“Let 𝐴 be a segment of length 𝑛 with at least 𝑘 points having their directions aligned with the direction of 

A in an image of size 𝑁 𝘹 𝑁 pixels. Define NFA of 𝐴 as: 

where 𝑁4 represents the number of potential line segments in an 𝑁 𝘹 𝑁 image because a line segment has 

two end points, and each end point can be located in any of the 𝑁2 pixels of the image; thus, a total of 

𝑁4 𝘹 𝑁4  =  𝑁4 line segments. The probability 𝑝 used in the computation of the binomial tail represents 

the accuracy of the line direction”. A threshold epsilon (𝜀) is set in such a way that for a line segment to 

be considered meaningful, the NFA of this line must be less or equal to 𝜀, which is set at 1. The line 

segments whose NFA are more than ε are therefore rejected by the Helmholtz principle.  

2.4. Curved linear features 

In man-made objects, some have straight edges while others have edges that are curved (Grompone von 

Gioi, 2014). Detection of curved edges using LSD gives a list of line segments forming the shape of the 

curved object with no information on their relative position; for instance, no information that two line 

segments follow one another along the same edge. Improving the detected line segments of the curved 

edge can be done using a chaining action that selects candidates that could form a continuous edge. This is 

done by finding a line segment after which the closest seed pixel to the end point of this line segment is 

selected and the process is repeated for the consecutive seed pixels allowing the chaining to be done 

manually following the curve (Grompone von Gioi, 2014). This helps in a better control of approximation 

of the curves by the line segments. The chaining of the edge pixels results in a rectangular polygon with 

the line segment candidates. The best approximation of the curves is determined by the fixed geometric 

thresholds which could be selected by use of the a contrario approach. 

2.5.      Support Vector Machines 

SVM is a non-parametric kernel based classification technique used in various application domains 

including image classification in remote sensing (RS). It is a supervised classification technique that aims at 

separation of two or more classes (Richards, 2013). SVMs are effective classifiers, considered currently 

among the most suitable techniques in RS classification. They are applied in classification of VHR images, 

multispectral images, hyperspectral data, aerial and UAV images among others to solve different types of 

classification problems (Bruzzone & Persello, 2010). 

SVMs are considered suitable for image classification because, in order to carry out the classification, the 

classes are not required to be estimated by a statistical distribution but rather, the classification model is 

𝑁𝐹𝐴(𝑛, 𝑘) =  𝑁4 · ∑ (
𝑛
𝑖

) 𝑝𝑖

𝑛

𝑖=𝑘

(1 − 𝑝)𝑛−𝑖 (2.1) 
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defined by looking at the idea of margin maximization. This means that the classification is based on a 

margin-based/geometrical criterion rather than a purely statistical criterion. SVMs are also advantageous 

as they give results that are of high accuracy due to the structural risk minimization technique. They also 

have good generalization capabilities especially for classifications that are based on high dimensional 

feature space with few training samples. Another advantage is that they have a capability of separating 

non-linear classes by projecting the data onto a high dimensional feature space, then separating the classes 

using a simple linear function. Furthermore, in the learning phase, low effort is required in model selection 

with less control on parameters, hence reduction on computation time for the optimum parameter values 

selection. 

2.5.1. Support Vector Machines classifiers 

The SVM classifiers can be applied for classification of linearly separable classes and non-linearly separable 

classes. There are two types of SVMs, Linear SVM and Non-linear SVM. Linear SVM can further be 

divided into two where there is hard margin classification and soft margin classification.  

With hard margin, the classification is applied for training sample classes that are linearly separable. Two 

parallel hyperplanes are selected that separate the two or more classes of data such that the distance 

between them is as large as possible. They also pass through the nearest training pixels from each class 

(Richards, 2013). This distance between the two hyperplanes is known as the margin while the maximum-

margin hyperplane is the hyperplane that lies halfway between them. The points from the classes that fall 

along the two marginal hyperplanes are known as support vectors. 

 

Figure 2.2: A separating hyperplane in the case of a linear separable classification problem. Source: Richards (2013). 

In most cases, it is almost impossible to have pixels from the ground cover classes that are purely linearly 

separable. Therefore, soft margin is mainly applied in the case where two or more classes of data are not 

linearly separable or they overlap. This could be mainly due to noisy samples and outliers, in which case, a 

hard SVM cannot be used (Bruzzone & Persello, 2010). In this case, “slack variables” (𝜉𝑖) are defined 

during the training step, which allow easy handling of consequences brought about by misclassification 

due to the overlapping of these training samples (Richards, 2013). 
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.  

Figure 2.3: A separating hyperplane in the case of a non-linear separable classification problem. Source: Richards 

(2013). 

An improvement soft margin SVM algorithm could also be done where non-linear classifiers are created 

by applying a kernel trick to the maximum margin hyperplanes. A non-linear kernel function replaces 

every dot product or scalar which allows fitting the maximum margin hyperplane in to a transformed high 

dimensional feature space. This way, there is better separability of the transformed training samples 

(Bruzzone & Persello, 2010).  

 

Figure 2.4: Example of a transformation of the training samples using a kernel function into a high dimension feature 

space. a) Input feature space; b) kernel induced high dimensional feature space. Source: Bruzzone & Persello (2010) 

2.6. Texture measures 

Texture of an image is given by a distinction in the spatial occurrence in the frequency and intensity of the 

gray level values of every pixel in an image (Malegori et al., 2016). It plays an important role during image 

analysis as a measure of identifying various objects of interest in images of different kinds, such as Aerial 

images, UAV images and Satellite images. (Haralick et al., 1973). Calculation of texture features through a 

co-occurrence matrix of the gray levels is the technique mostly used for surface analysis in images. This is 

where the number of rows and columns of an image is equal to the number of gray levels in the image, 

known as gray level co-occurrence matrix (GLCM) (Malegori et al., 2016). 

The technique of GLCM was introduced by Haralick et al. (1973), whose importance is to ensure 

contribution of many variables to represent the intricacy of a phenomenon; which is met through the 

Principle of Components analysis (PCA). Through PCA, the observed variability is well explained. The 

phenomenon is described by two or more orthogonal dimensions arranged according to their significance 
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in the variance explanation (Malegori et al., 2016). There are 14 GLCM textural features, some of which 

are highly correlated and hence, no need to use all of them in image analysis (Haralick et al., 1973).  
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3. STUDY AREA AND DATA DESCRIPTION 

3.1. Study area 

This study is carried out in Sougoumba, Sikasso Region in Mali. The area is located in the southern part of 

the country, at location coordinates 12°10′20″N 5°11′20″W. The southern region of the country is where 

most of agricultural production is practiced. The main crops grown in Mali include corn, millet, sorghum, 

paddy rice, peanuts, cotton, vegetables, with corn, millet and rice being the basic crops. Cotton is the main 

crop produced for exportation and is the country’s largest foreign earner in the agricultural sector (Nations 

Encyclopedia, 2015). 

For most of the crops grown in this region, the growing season is mainly between the months of June and 

November; with May being the month when crop fields are prepared for planting. 

 

                                                                  
 

                                                      

Figure 3.1: Study area. Top image shows the location of the Mali on the map of Africa, lower left map is the whole of 

Mali with Sikasso region highlighted in red and lower right is the 2014 UAV image showing one of the cotton fields 

used in the study. 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Sougoumba&params=12_10_20_N_5_11_20_W_region:ML_type:city
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3.2. Data description 

3.2.1. Very high resolution satellite images 

The satellite images available for the study in this area include WorldView-2, QuickBird and GeoEye-1 

satellite images for the year 2014. These are available between the months of May and November 2014. 

The resolution of the panchromatic bands is between 0.41 and 0.61 meters while for the multispectral 

bands is between 1.65 and 2.44 meters. The images used in the study are selected from all the three 

sensors during the mid-growing season. The criteria for selection is looking at the images free of clouds 

especially on the fields being analysed and also when the crops are already established in the fields. The 

selected images include: 

 WorldView-2 – 29th July 2014 

 GeoEye-1 – 25th September 2014 

 Quickbird – 26th August 2014 

The World View 2 satellite was launched on 8th October 2009. It has a resolution of 0.46 m and 2 m for 

the panchromatic band and the multispectral bands respectively. The panchromatic band has a spectral 

range between 450 nm and 800 nm. On the other hand, it has eight multispectral bands with different 

spectral ranges which include; Coastal (400 – 450 nm), Blue (450 – 510 nm), Green (510 – 580 nm), 

Yellow (585 – 625 nm), Red (630 – 690 nm), Red Edge (705 – 745 nm), Near Infrared (NIR) 1 (770 – 895 

nm) Near Infrared (NIR) 2 (860 – 1040 nm). It has a swath width of 16.4 km and a revisit time of 1.1 

days. 

The GeoEye-1 satellite was launched on 6th September 2008. It has a resolution of 0.41 m and 1.65 m for 

the panchromatic band and the multispectral bands respectively. The panchromatic band has a spectral 

range between 450 nm and 800 nm. The 4 multispectral bands include; Blue (450 – 510 nm), Green (510 – 

580 nm), Red (655 – 690 nm) and Near Infrared (780 – 920 nm). It has a swath width of 15.3 km at nadir 

with a revisit time of 2.6 days. 

The QuickBird satellite was launched on 18th October 2001. It has a resolution of 0.61 m and 2.44 m for 

the panchromatic band and the multispectral bands respectively. The panchromatic band has a spectral 

range between 405 nm and 1053 nm. The 4 multispectral bands include; Blue (430 – 545 nm), Green (466 

– 620 nm), Red (590 – 710 nm) and Near Infra-Red (715 – 918 nm). It has a swath width of 16.8 km at 

nadir with a revisit time of 5.9 days. 

3.2.2. Unmanned Aerial Vehicle (UAV) Images 

The UAV images used in this study were provided by the STARS project in collaboration with ICRISAT 

Mali. They include images captured between August and December 2014, having a fine resolution of 10 

cm and three bands; Red, Green and Near Infra-Red. The images were captured using an eBee platform 

with a NIR camera. This was done in clusters as shown in Figure 3.3, as it would not have been possible 

to capture one image covering the whole study area. The study area was divided into seven clusters, where 

images were captured every two weeks per cluster within the five months. Figure 3.2 shows the timeline 

for the image acquisition for each cluster. UAV images in clusters 3 and 4 are used in this study, analysing 

one image per month. This is because the two clusters have images taken almost same dates and the 

capturing is also consistent between late August and November when the crops are well established in the 

fields up to the harvesting time. 
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Figure 3.2: UAV acquisition timeline per cluster. Cluster 3 and 4 are selected for this study. Source: STARS & 

ICRISAT (2015) 

 

Figure 3.3: Map showing the location of the 7 clusters. Each cluster has field boundaries with colour coded crop 

type. Clusters 3 and 4 are selected for this study. Source: STARS & ICRISAT (2015) 
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3.2.3. Reference dataset 

Field data collected in the fields during the 2014 growing season was provided by the STARS project in 

collaboration with ICRISAT Mali. This data includes shapefile of 48 field boundaries with different crop 

types as shown in Figure 3.3. They were recorded using a GPS Trimble JUNO with no any differential 

correction. The accuracy position of the field boundaries is between 5 and 10 meters. The attributes of the 

field boundaries include names of the field owners, the field number, the crop type grown and the eBee 

cluster number that the field belongs to.   

After assessing the UAV images, two cotton fields, one in cluster 3 and another in cluster 4, are used for 

the analysis of crop rows and weeds in this study. The fields selected are field number 23 in cluster 3 as 

shown in Figure 3.4 and field number 18 in cluster 4 as shown in Figure 3.5. The reason for using cotton 

fields in this study is because the cotton fields were observed to have clearer and identifiable crop rows 

compared to all other crop types within the study area. The sowing date for field number 23 was 23rd June 

2014 and only one weeding carried out throughout the entire season, done on 10th July 2014. The sowing 

date for field 18 was 10th June 2014 and no weeding done throughout the entire growing season. 

Information on the various activities carried out in the fields within the entire growing season was also 

recorded. This data was collected at 2 m 𝗑 2 m quadrat level and then aggregated to 15 m 𝗑 15 m plots. 

The information included; the soil type, dates of fertilizer application, ground cover, canopy cover, dates 

of weeding, yield in metric tons, weed biomass, crop biomass, presence or absence of weeds, weed cover 

per quadrat in grams. The weed cover information for the two fields was measured between 15th August 

and 17th September 2014. This was recorded as a range of 0%; <10%, 10 – 50% and >50%.  

In this study, the information on percentage range of weeds cover is used as the reference data in weed 

detection. The field photos captured at different point in the quadrats were also used for verification of 

presence of weeds in the fields. The reference data used in crop row detection is manually delineated from 

the UAV images. This is done by manually digitizing the edges of the crop rows using the ArcGIS 

software.  

                      

Figure 3.4: UAV image of field 23 in cluster 3 captured on 25th August 2014. The outer boundary is the entire extent 

of the field, the yellow inner boundary is a subset used in the analysis (band combination – R-Red, G-Green, B-NIR) 
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Figure 3.5: UAV image of field 18 in cluster 4 captured on 20th August 2014. The outer boundary is the entire extent 

of the field, the yellow inner boundary is a subset used in the analysis (band combination – R-Red, G-Green, B-

NIR). 
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4. METHODOLOGY 

4.1. GLCM feature extraction 

In an image, the GLCM features can be extracted in up to eight directions of the nearest neibours to the 

pixel of interest. This is not necessary as a GLCM is usually considered to be symmetric, where pixels 

directly opposite one another from the pixel of interest are the same (Clausi & Jernigan, 1998), and have 

the same spatial distance to that pixel. Hence, only four directions, (0°, 45°, 90° and 135°) are important 

when extracting the texture features. The texture features in this study are extracted using the ENVI 

software. For each pixel being analysed, the features were extracted in the four directions and at lag 

distances d = 1, 2 and 3 for window size 3 𝗑 3 and d = 1 for window size 5 𝗑 5.   

As discussed in Section 2.7, there are 14 types of GLCM features that can be extracted but not all of them 

are useful as some are highly correlated hence, would result in redundancy. The statistics of texture 

features used in this study are eight, (mean, contrast, angular second moment, variance, dissimilarity, 

correlation, homogeneity and entropy) with notations 𝑝(𝑖, 𝑗) and 𝑁𝑔  , where 𝑝(𝑖, 𝑗)  is the normalized gray 

level in the cell (𝑖, 𝑗)𝑡ℎ  of the spatial dependence matrix while 𝑁𝑔  is the number of clear gray levels in the 

quantized image (Haralick et al., 1973). 

The mean GLCM feature is calculated by: 

The contrast texture feature determines the contrast or local intensity between a pixel and its neighbouring 

pixels all over an image. Pixels with similar DN values give low contrast resulting to poor distinction 

between objects in an image. The equation for contrast intensity is: 

Angular second moment (ASM) is a measure of textural uniformity or homogeneity in an image. Pixels 

that are uniform in gray level distribution result in maximum energy of texture. ASM is given by: 

The variance is a measure of roughness in an image. It is calculated by: 

Dissimilarity feature is calculated as follows: 

Mean = ∑ ∑ 𝑖𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=1

𝑁𝑔−1

𝑖=1

 (4.1) 

Contrast = ∑ 𝑛2

𝑁𝑔−1

𝑛=0

{∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

} ,             |𝑖 − 𝑗| = 𝑛 (4.2) 

ASM = ∑ ∑ {𝑝(𝑖, 𝑗)}2 

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.3) 

Variance = ∑ ∑ (𝑖 −  µ)2 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.4) 
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Correlation feature shows how a reference pixel has a spatial linear dependency to its neighbouring pixels 

in an image. It considers the mean and standard deviation of the row and column in the matrix. It is 

calculated by: 

where µ𝑥,  µ𝑦,  σ𝑥,  σ𝑥 are the mean and standard deviation of 𝑝𝑥 and 𝑝𝑦 respectively. 

Homogeneity is the closeness of the gray level values in the spatial distribution in an image. It is calculated 

by: 

Entropy measures the uniformity of the gray level distribution in an image. Homogeneous scenes in an 

image have high entropy while inhomogeneous scenes have low entropy. It is calculated by: 

4.2. Crop row detection 

The crop row detection is carried out using the LSD algorithm. This algorithm extends the work of Burns 

et al. (1986) of line segment detection and integrates it with the line validation method due to the 

Helmholtz principle by Desolneux et al. (2008). Different internal parameters require to be estimated in 

order to get a set of the most optimal ones that give the most accurate line segments. 

4.2.1. Image scaling and gradient magnitude 

During the LSD analysis, the original image requires to be downscaled to a coarser spatial resolution. This 

is to ensure that the image is brought to a scale where the most of the crop rows are detectable including 

the ones that appear smallest on the image (Sidiropoulou et al., 2015). This is done by using a scale factor 

less than 1 (𝑆 < 1). The image 𝑓(𝑥, 𝑦) is filtered using the derivative of Gaussian, 𝐺 with 𝜎 =  
0.8

𝑆
. The 

image is filtered in the horizontal direction (𝑔𝑥)  and vertical direction (𝑔𝑦) . Image gradient is the 

directional change in intensity which is used for extraction of information from images. (Grompone von 

Gioi, 2014; Akinlar & Topal, 2011). Figure 4.1 show an example of image gradient for horizontal and 

vertical directions. The pixel gradient (𝑔𝑥) and (𝑔𝑦) in the 𝑥 and 𝑦 directions is calculated as: 

 

Dissimilarity = ∑ ∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.5) 

Correlation = ∑ ∑
{𝑖 · 𝑗}  ·  𝑝(𝑖, 𝑗) −  {µ𝑥 · µ𝑦}

{𝜎𝑥 · 𝜎𝑦}

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.6) 

Homogeneity = ∑ ∑
𝑝(𝑖, 𝑗)

1 +  |𝑖 − 𝑗|

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.7) 

Entropy = − ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

log(𝑝(𝑖, 𝑗)) (4.8) 

𝑔𝑥 =
𝜕(𝐺 ∗ 𝑓)

𝜕𝑥
=  

𝜕 𝐺

𝜕𝑥
 ∗ 𝑓 (4.9) 
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The gradient magnitude 𝑍 is calculated as: 

The gradient direction or the level-line angle of the pixel (𝑥, 𝑦) is calculated as: 

 

The level line angles are responsible for change in direction of the edge or the angle of dark to light 

transition. Transitions from dark to light are not the same as light to dark because of the 180° angle 

difference in the corresponding gradient. Therefore, line segments with different transitions are oriented 

but the order of their start and end points are different since the algorithm encodes the darker side of the 

edge.  

 

           

Figure 4.1: Example of image gradient in different directions. Left image is gradient in the horizontal direction 

(𝑔𝑥) while the right image is gradient in the vertical direction (𝑔𝑦). 

4.2.2. Angular tolerance parameter (𝝉)  

This is the parameter that joins the aligned pixels into a line support region. As discussed in Section 2.2, 

each line support region is a candidate for a line segment. By “aligned”, it means that a line segment with 2 

points 𝐴 and 𝐵 have the same direction; meaning that the points are aligned with a precision of 
1

𝑛
 if angle 

A and angle B are within 
𝜋

𝑛
 degrees of one another.  

𝑔𝑦 =
𝜕(𝐺 ∗ 𝑓)

𝜕𝑦
=  

𝜕 𝐺

𝜕𝑦
 ∗ 𝑓 

where ∗ is the convolution operation which is associative.  

(4.10) 

𝑍(𝑥, 𝑦) = √𝑔𝑥(𝑥, 𝑦)2 + 𝑔𝑦(𝑥, 𝑦)2 (4.11) 

𝜙(𝑥, 𝑦) = arctan (
𝑔𝑥(𝑥, 𝑦)

−𝑔𝑦(𝑥, 𝑦)
) (4.12) 
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Using a neighbourhood of 16 pixels or 𝜏 = 45° results in regions expanding too far from the edge while a 

neighbourhood of 4 pixels or 𝜏 = 11.25° is limiting with the region obtained being too small as seen in 

Figure 4.3. Therefore, 2 points are always assumed to be aligned if their angles are within 
𝜋

8
 or 22.5° of 

each other. The actual value of 𝜏 is not the most important but the order of magnitude. It is therefore set 

to obtain precision p which is the likelihood that a pixel has an explicit orientation in the a contrario model. 

The precision 𝑝 is set at 
𝜏

180°
. Different values of 𝜏 are tested in this study to evaluate their effect on the 

LSD results. 

     

Figure 4.2: Example of line support regions obtained at varying 𝜏. From left to right: Image; 𝜏 = 11.25°; 𝜏 = 22.25° 

and 𝜏 = 45°. Source: Grompone Von Gioi et al. (2012) 

4.2.3. Gradient threshold and ordering  

The order in which pixels are analysed in LSD has an effect on the output result. Pixels of high gradient 

magnitude result in edges with more contrast. Since the central pixels in an edge has a higher gradient 

magnitude, the algorithm starts looking for line segments at these pixels (Grompone von Gioi, 2014).  

Once the gradient computation is done, all pixels that have gradient values with less than a certain 

threshold are ignored for chaining of segments. This allows omission of pixels that do not contain edgels.  

In this study, the minimum gradient magnitude threshold for region growing is performed using quantile-

based thresholding, which is a way of binarizing high gradient magnitudes (Teutsch, 2014). The threshold 

𝜔𝑞 is selected depending on the way the gray values of pixels are distributed in an image. In the gradient 

magnitude image, all of its gray values are assembled together in a histogram. The quantile value 𝑞 divides 

the histogram into two gray value parts that is, lighter and darker gray value parts. The 𝑞 value should be 

between 0 and 1. If it is set at a very low value, it leads to features on the image that have poor contrast 

being undetectable. On the other hand, if set too high, it results in detections that are merged.  

4.2.4. Region growing 

In this step, the line support regions are formed. The algorithm gets the ordered pixels (the seed) to form 

a line support region. It also tests the neighbouring pixels that are within the region (𝑅); adding to it the 

ones whose level-line angle is the same as the region angle 𝜃𝑅  up to a tolerance 𝜏. The initial 𝜃𝑅   is usually 

set to the level-line angle of the seed pixel and as new neighbouring pixels are added to 𝑅, the 𝜃𝑅   value is 

updated by:   

 

𝜃𝑅 = arctan (
∑ sin  𝜃𝑗𝑗

∑ cos  𝜃𝑗𝑗
) (4.13) 
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where index j runs over the pixels inside 𝑅 while 𝜃𝑗 is the level-line angle. The process is done iteratively 

as shown in Figure 4.3 until no more neighbouring pixels within 𝑅 are added to it. Figure 4.4 shows an 

example of an image with ordered pixels that form line support regions.  

         

Figure 4.3: Iterative formation of the regions shown by the pixels highlighted in gray. Sorce: Grompone von Gioi 

(2014) 

                                        

Figure 4.4: Example of a gray scale image with ordered pixels (in blue) that form line support regions  

4.2.5. Rectangular approximation 

At this point, the line support regions are evaluated in order to determine whether they are meaningful or 

not. As indicated earlier in Section 2.2, a line segment must be affiliated with a corresponding rectangular 

event which must be found for the line support regions to be evaluated. The region (𝑅) of pixels is 

considered as a solid object with every pixel’s gradient magnitude used as the mass of that point. The 

middle of the mass of 𝑅 is then chosen as the middle of the rectangle, with the main direction of the 

rectangle being set to the first inertia axis of 𝑅. The length and the width of 𝑅 are then set to the smallest 

values that make the rectangle to make the full line support region as seen in Figure 4.5. To get the centre 

of the rectangle (𝑐𝑥 , 𝑐𝑦), the following formula is used. 

 

 

C𝑥 = (
∑ 𝑔(𝑗). 𝑥(𝑗)𝑗𝜖𝑅

∑ 𝑔(𝑗)𝑗𝜖𝑅
) (4.14) 

C𝑦 = (
∑ 𝑔(𝑗). 𝑦(𝑗)𝑗𝜖𝑅

∑ 𝑔(𝑗)𝑗𝜖𝑅
) (4.15) 
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where 𝑔(𝑗) is the gradient magnitude of pixel 𝑗 in 𝑅. Index 𝑗 runs over all the pixels in 𝑅. The rectangle’s 

direction is set to the eigenvector angle, which is connected to the smallest eigenvalue of the matrix: 

where 

 

                       

 

                                      

Figure 4.5: Rectangles covering the line support regions with line segments at the center of the rectangle. 

4.2.6. NFA computation 

This is the line validation step which is based on the Helmholtz principle. It is an a contrario approach 

where the objects are detected as outliers in the background model (Akinlar & Topal, 2011). It depends on 

the precision 𝑝, set initially to 
𝜏

𝜋
, with τ being the angular tolerance used in region growing. In a rectangle, 

the total number of pixels are represented by 𝑛 while the number of p-aligned points represented by 𝑘. 

The number of false alarms related to the rectangle is given by: 

𝑀 = (
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑥𝑦 𝑚𝑦𝑦
) (4.16) 

𝑚𝑥𝑥 =
∑ 𝑔(𝑗) . (𝑥(𝑗) − 𝑐𝑥)2

𝑗𝜖𝑅

∑ 𝑔(𝑗)𝑗𝜖𝑅
 (4.17) 

𝑚𝑦𝑦 =
∑ 𝑔(𝑗) . (𝑦(𝑗) − 𝑐𝑦)

2
𝑗𝜖𝑅

∑ 𝑔(𝑗)𝑗𝜖𝑅
 (4.18) 

𝑚𝑥𝑦 =
∑  𝑔(𝑗) . (𝑥(𝑗) −  𝑐𝑥 ) . (𝑦(𝑗) −  𝑐𝑦)𝑗𝜖𝑅

∑ 𝑔(𝑗)𝑗𝜖𝑅
 (4.19) 

𝑁𝐹𝐴(𝑟) = (𝑁𝑀)5/2 𝛾 · 𝐵(𝑛, 𝑘, 𝑝) (4.20) 
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where 𝑁 and 𝑀 are the number of rows and columns of the image after scaling, while 𝛾 is the number of 

𝑝 that are tested. 𝐵(𝑛, 𝑘, 𝑝) is the binomial distribution’s tail; given by: 

In all the rectangles evaluated and allocated a precision 𝑝, the numbers of 𝑘 and 𝑛 are calculated, after 

which their NFA values are computed as follows: 

As indicated in Section 2.3, for a rectangle to be considered having valid detections, the value of NFA has 

to be less or equal to the epsilon (𝜀) which is usually set as 1. In this analysis, different values of 𝜀 are 

tested to see the effect on the result. 

4.3. Parameter tuning 

The various internal parameters in the LSD algorithm were tuned in order to get the set that produced the 

most optimal results in terms of the correct detection of the edges of the crop rows. The parameters tuned 

included the minimum gradient magnitude threshold for region growing (𝜔), scale (𝑆), angle tolerance (𝜏), 

detection threshold – epsilon (𝜀) and the threshold of detection for the smallest area in pixels. This was 

done by tuning each parameter at a time while keeping the rest fixed. They were tuned in order of their 

occurrence in the algorithm. The scale parameter was the first to be tuned while the rest were kept at their 

default values. This was then followed by the gradient magnitude threshold for region growing, angular 

tolerance, epsilon and finally the threshold of detection for the smallest area in pixels. The UAV image 

used for the tuning process was the subset of cotton field 23 in cluster 3 captured on 25th August 2014. 

The Satellite image used for this process was WorldView-2 captured on 29th July 2014. 

4.4. Approximating the undetected edges of the crop rows 

The detection of crop rows on the UAV image was resulting in only one side of the row being detected. 

This could be due to the quality of the image and also the position of the drone during capturing of the 

images. The side of the crop row that formed a shadow is the only side that was automatically detected by 

the LSD algorithm. There was therefore a need to approximate the other side of the row in order to get 

the two edges. This would help in facilitating better detection of weeds in the next step of the study.  

The orientation angle of the detected lines was calculated in order to check the orientation dominance of 

the detected lines that represent crop rows. This is important to ensure that the detected rows have the 

same orientation as the actual crop rows in the field. The orientation was calculated by getting the angle 

theta of each detected line as follows: 

𝐵(𝑛, 𝑘, 𝑝) = ∑ (
𝑛
𝑗 )

𝑛

𝑗=𝑘

𝑝𝑗 (1 −  𝑝)𝑛−𝑗 (4.21) 

𝑁𝐹𝐴(𝑟) = (𝑁𝑀)5/2 𝛾 · ∑ (
𝑛
𝑗 )

𝑛

𝑗=𝑘

𝑝𝑗 (1 −  𝑝)𝑛−𝑗 (4.22) 

𝜃 = arctan (
∆𝑦 

∆𝑥
) (4.23) 
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where ∆𝑦 and ∆𝑥 are changes in 𝑦 and 𝑥 for the detected line segments respectively. 

This was simplified to only the first two quadrants of the circle (0° - 180°). A histogram was then plotted 

in order to show how the orientation of the detected lines appears and the range with the highest peak on 

the histogram was considered as the lines with the same orientation as the actual crop rows in the field. 

The ones outside this range, which did not represent the crop rows were then discarded.  

A manual check of the width of the rows was done by measuring the width of the majority of rows in the 

field. The width ranged between 0.4 – 0.55 m. Therefore, an approximate width of 0.5 m was chosen and 

used to approximate the other side of the row. This was done in ArcGIS by copying parallel of the lines at 

an offset of 0.5 m either to the right or the left of the lines depending on which side of the row required 

to be approximated. This is because images of different dates produced lines detected on different sides of 

the crop rows. 

4.5. Accuracy assessment and validation 

The accuracy of the detected crop rows was assessed by cross-checking the detected lines with the 

manually digitized rows. The manually digitized crop rows were captured using the ArcGIS software as 

discussed in Section 3.2.3. 

A part of the process in Section 4.3 for getting the orientation dominance was repeated for both the 

detected lines and the manually digitized rows. After getting the angle of orientation for both sets of lines, 

rose diagrams were plotted for graphical presentation, showing the comparison between the detected lines 

and the manually digitized ones.  

4.6. Weed detection 

The main importance of this study is the detection and analysis of the weeds in the fields in Mali. After the 

detection of the crop rows, the next step was to detect the weeds using the SVM algorithm. This was 

carried out on the UAV images as detection of crop rows in the satellite images had failed. 

The process required to detect the weeds that are between the crop rows. In order to ensure that only the 

pixels with vegetation that represent anything else except for the crop rows are analysed for weed 

detection, the detected crop rows were first masked out of the image, leaving the values of pixels of the 

crop rows as NA values.  Linear and RBF SVM were then applied on the masked images for weed 

detection. This was done on images with and without texture features.  

4.6.1. Selection of training, test and validation data sets  

Labelled data known as the training set and test set are selected that are used to train the SVM classifier 

and test it for accuracy assessment. The training data set should be selected in such a way that the 

polygons represent all classes of interest and if possible all classes represented in the subset of image to be 

classified (Richards, 2013). The training data set is randomly selected with each polygon labelled as the 

class that it should represent during the training of the SVM.  

The test data set is a sample of randomly selected pixels that are used to assess the accuracy of the SVM 

classification. Their labels are checked against the actual ground samples or the training data. The test set 

is similar to the training set and therefore, in most cases, the two data sets are randomly selected as one, 

labelled to represent the different classes and then a subset is used as training pixels and another subset 

used as the test pixels. 
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4.6.2. Parameter tuning – Linear SVM 

The Linear SVM used for classification in this study is the soft margin SVM for overlapping classes where 

slack variables are introduced as discussed in Section 2.6.2. During the training of the classifier, the 

number of erroneous training samples are minimized while at the same time maximizing the margin. The 

parameter that requires tuning is the “regularization parameter” (𝐶), which is a positive weight that helps in 

regulating the relative importance of the margin against the misclassification error (Richards, 2013). This 

parameter is always selected at each classification of different data as it varies according to the data input. 

It should be selected in an accurate model selection phase as a precise value is very important for the 

accuracy of the classification result. It should also neither be too small nor too large as a very small value 

of 𝐶  leads to erroneous results leading to underfitting of the classifier while the latter may lead to 

overfitting of the classifier. This leads to poor generalization of the classifier. The algorithm estimates the 

best 𝐶 by setting a search grid where values are selected then used to train the SVM one by one until the 

best value is arrived at. This value is then used to produce the classification result. 

4.6.3. Parameter tuning – RBF SVM 

RBF SVM kernel was also applied on the UAV images for weeds analysis in this study. The parameters 

required to be tuned include gamma (𝛾) and the regularization parameter (𝐶) (Richards, 2013). 𝛾 is the 

width parameter in the RBF kernel and determines the effect of a single training sample. Low values of 𝛾 

mean the kernel is very wide and high values mean that the kernel is very narrow. The two parameters are 

interdependent and therefore one cannot be estimated without the other. 

Different data sets give different values for the best 𝐶 and 𝛾. Therefore, the two have to be estimated for 

each classification process. These can vary over a wide range, especially the 𝐶 parameter thus, the need for 

an efficient search strategy. The algorithm uses a grid search strategy that is set to select an initial range of 

values of pairs of the two parameters. This is followed by training of the SVM using set of pairs selected in 

turns after which the best value for 𝐶 and 𝛾 are selected.  

4.6.4. Feature selection 

During the analysis of weeds using images with the texture features, feature selection is done to reduce the 

number of the features used for the analysis since not all features give optimal results. This is important as 

it helps to; reduce computational burden of the algorithm, reduced storage memory, avoid confusion of 

the algorithm due to redundant and irrelevant features and finally avoid errors due to reduced 

generalization capability (Song et al., 2012).  

For data 𝑋 and 𝑌, there is a set of features (𝐴), where each element in 𝐴 represents one dimension of the 

data. A subset 𝐵 ⊆ 𝐴  is selected with the relevant information in 𝑋  being maintained. If the data is 

computed while being restricted to dimensions in 𝐵 and the relevance of information is measured by 

𝑄(𝐵), formulation of feature selection is then as follows: 

where |𝐵| computes the number of elements of a set and 𝑏 is the limit on the number of the selected 

features. For a feature selection criterion to be considered efficient, two conditions must be met. First, the 

measure 𝑄(𝐵) should be able to detect the required functional dependence, whether linear or nonlinear, 

between the data and the training samples. Secondly 𝑄(𝐵) should be applied with respect to the measure 

𝐵0 = argmax
𝐵⊆𝐴

𝑄(𝐵)  subject to   |𝐵| ≤ (𝑏) (4.24) 
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being used. This ensures a high probability of the detected functional dependence being retained in the 

test samples. 

The feature selection method used in this study is the Hilbert – Schmidt independence criterion (HSIC); 

which is a non-parametric measure of dependence. It does not only consider linear correlation between 

variables, but also all forms of dependence between the variables. It is an unbiased empirical estimate that 

guarantees a good uniform convergence. It also meets the two conditions that are required for 𝑄(𝐵) 

(Song et al., 2012). 

4.6.5. Masking of trees 

The noise in the UAV images affect their quality, making all types of vegetation on images to appear as 

having similar reflectance values. Some of the pixels that represent tree features have same DN values as 

the pixels representing weeds. This is also observed in the crops and therefore, most of the vegetation in 

the UAV images appear to have similar pixel values. The errors brought about by the confusion between 

weeds and crops was minimized by the detection of the crop rows and masking them before SVM 

classification for weed detection. 

There is need for precise detection of weeds and this would only be possible by trying to avoid as many 

errors as possible. For this reason, the trees within the fields where the classification was carried out were 

masked from the image; in order to avoid confusion between the trees and weeds classes. This was done 

manually by digitizing the trees using the ArcGIS software and then masking them out the same way the 

crop rows were masked. In case of classification of a large area, this task would require to be automated. 

In this study, the task was not automated because it was not part of this study and is only done to ensure 

higher accuracy. The area analysed is also not large and the manual digitization of the trees was very fast. 

4.7. Accuracy assessment and validation 

After the SVM classification, the accuracy assessment and validation of the obtained results is carried out. 

One of the ways used in accuracy assessment is the use of the test samples as discussed in Section 4.6.1. 

The labels of the test data are checked against those of the training data used to train the classifier as the 

reference for classification. After this, the result is presented in form of a confusion matrix; where the 

training data classes are listed by column and the resulting classes as per the classification map are listed by 

row of the matrix. The overall accuracy is then calculated by getting the sum of the diagonal of the 

confusion matrix and dividing the value by the test samples. 

The Kappa Coefficient is also a measure of accuracy assessment used in this study. It is derived from the 

confusion matrix and is assumed to be unbiased in terms of the chance agreement between the output 

result and the reference/training data.  

The validation of the classification results obtained is carried out by use of the reference data provided by 

the STARS project in collaboration with ICRISAT Mali. After the classification, the area covered by the 

pixels classified as representing each class in the field is calculated. The area of the weeds class is then 

computed as a percentage, and compared to the reference data provided. 
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5. RESULTS  

5.1. Crop row detection 

5.1.1. Tuning of the scale parameter 

As discussed in Section 4.2.1, the scale is important for downscaling of the image to ensure that most of 

the crop rows are detectable, even the smallest ones (Sidiropoulou et al., 2015). This parameter was tuned 

by trying out different values that included 𝑆 = 0.2, 𝑆 = 0.5, 𝑆 = 0.8, 𝑆 = 1, 𝑆 = 1.2 and 𝑆 = 1.5. At 𝑆 = 1, 

this would be analysing the image at its original status of 100%. Figure 5.1 shows the results of tuning 

parameter 𝑆 on the UAV imagery. 

At both high and low extremes of the 𝑆 values tuned, the results were unsuccessful. 𝑆 = 0.2 produced few 

detections and most of the segments were incorrect. Most did not represent crop rows and others were on 

top and edges of trees. 𝑆 = 0.5 produced the most number of line segments with most being incorrect. 

Some of the detected line segments were on top and edges of trees. 𝑆 = 1 and 𝑆 = 0.8 produced almost 

same results, with 𝑆 = 0.8 producing a slightly higher number of line segments. Most of these segments 

were correctly detected as compared to the ones produced at lower 𝑆  values. 𝑆  = 1.2 and 𝑆 = 1.5 

produced most correct line segments although with a lot of missed detections. Most of the crop rows were 

not detected at these two values as compared to 𝑆 = 1 and 𝑆 = 0.8. Thus, 𝑆 = 0.8 was considered as the 

most optimal value. The processing time of the algorithm in a PC with 2.40 GHz was 25.77 seconds. 
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(a) 𝑆 = 0.2 

 

(b) 𝑆 = 0.5 

 

(c) 𝑆 = 0.8 

 

(d) 𝑆 = 1.5 

 

Figure 5.1: Crop row detection at different scale (𝑆) parameter values. Black segments are the reference lines, red 

segments are the detected lines 

5.1.2. Tuning of the magnitude quantile (𝒒) 

This parameter was tuned at different quantile 𝑞 values of 0.25, 0.5, 0.7, 0.72, 0.74, 0.75, 0.76, 0.78 and 0.8. 

This was done in order to get the optimal value that ensures that features with poor contrast on the image 

are detectable and also there are no merged detections (Teutsch, 2014). The other parameters were kept 

default values of 𝑆 = 0.8, 𝜏 = 22.5°, minimum area in pixels = 10 and 𝜀 = 1. Figure 5.2 shows the results 

of UAV image at various magnitude quantile parameters tested. The reason for tuning many 𝑞 values 

between 0.7 and 0.8 is because at 𝑞 = 0.7 is where more stable results were realised. 

It was observed that the lower the quantile value for thresholding tested, the poorer the detection. 

Improvement is observed at 𝑞 = 0.6, which produced few lines that were long and continuous but mostly 

incorrect.  The 𝑞 values between 0.7 and 0.76 produced a higher number of detected lines but the higher 

the value, the more the missed detections. 𝑞 = 0.8 produced lines correctly representing the rows but with 

a lot of missed detections. 𝑞 = 0.7 was observed to produce more correct detections with less missed 

detections compared to other values and was therefore selected as the optimal value for gradient 

magnitude threshold. Figure 5.2 shows the results of some detections at different 𝑞 values. 
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(a) 𝑞 = 0.25 

 

(b) 𝑞 = 0.5 

 

(c) 𝑞 = 0.6 

 

(d) 𝑞 = 0.7 

 

(e) 𝑞 = 0.75 

 

(f) 𝑞= 0.8 

 

Figure 5.2: Crop row detection at different 𝑞 parameter values. Black segments are the reference lines, red segments 

are the detected lines 

5.1.3. Tuning of the angular tolerance for region growing (𝝉) parameter 

The tuning of the 𝜏 parameter was done by maintaining the scale at 𝑆 = 0.8 and the magnitude quantile at 

𝑞 = 0.7. The tuning the 𝜏 parameter was carried out for different values of 𝜏 = 5.625°, 𝜏 = 11.25°, 𝜏 = 

22.5° and 𝜏 = 45°. Epsilon was maintained at 𝜀 = 1 and the threshold for the smallest region area in pixels 
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maintained at 10 pixels. As observed in Figure 5.3, 𝜏 = 5.625° and 𝜏 = 11.25° produced so many line 

segments with many small pieces of segments along one edge while 𝜏  = 45° produced very few line 

segments with a lot of missed detections. 𝜏  =22.5° (considered as the optimal 𝜏  value in this study) 

produced more correct line segments. There were few missed detections compared to 𝜏 =45° and few and 

continuous line segments as compared to 𝜏 = 11.25°. 

(a) 𝜏 = 5.625° 

 

(b) 𝜏 = 11.25° 

 

(c) 𝜏 = 22.5° 

 

(c) 𝜏 = 45° 

 

Figure 5.3: Crop row detection at different 𝜏 parameter values. Black segments are the reference lines, red segments 

are the detected lines 

5.1.4. Tuning of the epsilon (𝜺) parameter 

The 𝜀 parameter was tuned by maintaining the others at 𝑠 = 0.8, 𝑞 = 0.7 and 𝜏 = 22.5° respectively. The 

tuning of this parameter was done at different values of 𝜀 = 0.1, 𝜀 = 0.5, 𝜀 = 1, 𝜀 = 5 and 𝜀 = 10. The 

threshold for the smallest region area in pixels was maintained at 10 pixels. Figure 5.4 shows the results of 

UAV image at various 𝜀  parameters. The higher the value of 𝜀  tested, the more the number of line 

segments detected. This means that with a high value of 𝜀, the more the number of detected lines are 

considered meaningful by the algorithm, even though they are not. 𝜀 = 1 was considered as the optimal 

value in this study.  
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(a) 𝜀 = 0.1 

 
 

(b) 𝜀 = 1 

 

(c) 𝜀 = 5 

 

(d) 𝜀 = 10 

 

Figure 5.4: Crop row detection at different 𝜀 parameter. Black segments are the reference lines, red segments are the 

detected lines 

5.1.5. Tuning of the threshold for the smallest region area parameter 

The last parameter to be estimated was the threshold for the smallest region area in pixels. This parameter 

gives the threshold of detection for the minimum area in pixels. The estimation was done by maintaining 

the other parameters at 𝑆 = 0.8, 𝑞 = 0.7, 𝜏 = 22.5° and 𝜀 = 1. The different values estimated representing 

the number of pixels were; 0.5, 1, 10, 20 and 50. Figure 5.5 shows the results for the UAV image at 

various values tested.  

At 0.5 pixels, very many lines were detected but only a few printed, only at the edges and top of trees. At 

50 pixels, there were less rows detected with a lot of missed detections. Values between 1 and 20 produced 

similar results and therefore either of them could be used as an optimal value. The value of 10 pixels was 

selected as the optimal one to be used in this study. 
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(a) Minimum area = 0.5 pixel 

 

(b) Minimum area = 10 pixels 

 

(c) Minimum area = 20 pixels 

 

(d) Minimum area = 50 pixels 

 

Figure 5.5: Crop row detection at different values of threshold for the smallest region area. Black segments are the 

reference lines, red segments are the detected lines 

5.2. Approximating the undetected side of the crop rows  

After estimating all the internal parameters of the algorithm, the optimal values selected were; 𝑆 = 8, 𝑞 = 

0.7, 𝜏 = 22.5°, 𝜀 = 1 and minimum area = 10 pixels. As discussed in Section 4.4. only one side of the crop 

rows was being detected by the algorithm. Therefore, the undetected side of the rows were approximated 

following the procedure explained in the same section. The orientation angles of the detected lines were 

calculated and represented in a histogram to help in interpretation of the results. The detected lines with 

highest peak on the histogram were selected as those representing crop rows while the ones outside this 

range were discarded. The approximated width of 0.5 m per crop row was then used to approximate the 

other side of the row. For UAV image subset of field 23 in cluster 3, most of the detected lines with the 

same orientation as the crop rows are between the range of 55° and 80° as observed in the left-hand side 

histogram in Figure 5.6. After discarding the ones outside this range, the result is as seen on the right-hand 

side histogram in Figure 5.6 and right hand side image in Figure 5.7. As observed in Figure 5.8 below, the 

approximation of the other side of the crop row at a distance of 0.5 m gave a clearer representation of 

crop rows in the field.  
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Figure 5.6: Histogram of crop row orientation. Left histogram is for all the detected rows, the right histogram is after 

discarding rows that have different orientation dominance as the crop rows 

  

Figure 5.7: Orientation analysis. Left image shows all the detected lines while the right image shows the detected lines 

with same orientation as crop rows after discarding ones ouside the range of 55°- 80°. Black segments are the 

reference lines; red segments are the detected lines.   
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Figure 5.8: Result of approximating the undetected side of the row. Black segments are the reference lines, red 

segments are the detected lines 

5.3. LSD results on UAV images with texture features 

The detection was carried out on UAV imagery with the texture features. The texture features were 

extracted at four directions (0°, 45°, 90° and 135°), d = 1, 2 and 3 for window size 3 𝗑 3 and d = 1 for 

window size and 5 𝗑 5 as discussed in Section 4.1. With the detection of crop rows using the texture 

features with UAV images there was no much difference observed between the different sets of texture 

features analysed. All the detected lines were mostly on the same positions as the detection without texture 

features. There were very slight differences in the number of detected lines for the various texture 

features, mainly due to some producing many line segments along one edge of the crop row while others 

having longer and less line segments along one edge of the crop row. Figure 5.9 shows results for various 

UAV images with texture features. 
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(a)  

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.9: Result for crop row detection on UAV with texture features. (a) Texture features extracted at 0°, d = 1, 

using a 3 𝗑 3 window size; (b) texture features extracted at 45°, d = 2, using a 3 𝗑 3 window size; (c) texture features 

extracted at 135°, d = 3, using a 3 𝗑 3 window size; (d) texture features extracted at 90°, d = 1, using a 5 𝗑 5 window 

size. Black segments are the reference lines, red segments are the detected lines. 

5.4. Results for crop row detection for different dates 

The detection of crop rows was carried out for the UAV images of the different dates between August 

and November. For subset 1, which is in cluster 3, the analysis was done for the 3 images August, 

September and October. There was no UAV image available for the month of November in this cluster. 

For subset 2, the analysis was done on 4 images between August and November.  

The results generally showed more missed detections in the progressive months except for the October 

UAV image in for subset 1 where the detections were more successful than in the previous month 

September. The LSD results for subset 1 are as observed in Figure 5.10 while for subset 2 are presented in 

Figure 5.11. 
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(a) 

 

(b) 

 

                                           (c) 

                                             

Figure 5.10: LSD results for different dates for subset 1 in cluster 3. (a) Result for UAV image dated 25/08/2014; (b) 

result for UAV image dated 18/09/2014; (c) result for UAV image dated 27/10/2014. Red lines are the detected 

lines while black lines are reference lines. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.11: LSD results for different dates for subset 2 in cluster 4. (a) Result for UAV image dated 20/08/2014; (b) 

result for UAV image dated 11/09/2014; (c) result for UAV image dated 27/10/2014; (d) result for UAV image 

dated 26/11/2014. Red lines are the detected lines while black lines are reference lines. 

The processing time for the LSD algorithm was also assessed to determine how efficient it is in terms of 

computation time. This was done on the two whole fields. The processing time for subset 1 is indicated in 

Section 5.1.1. The UAV image of 25th August was used for field 23 in cluster 3 and the UAV image of 20th 

August for field 18 in cluster 4. The results are recorded in Table 5.1. 

Table 5.1: The LSD processing time recorded for the two fields using a PC with 2.40 GHz processor. 

Field no. Gradient computation Region growing NFA computation Total time 

23 1.53 seconds 

2.53 seconds 

2.78 minutes 

4.28 minutes 

45.19 minutes 48.12 minutes 

18 60 minutes 64.31 minutes 

5.5. Crop row detection on Satellite imagery 

The VHR satellite imagery was the last to be analysed for detection of the crop rows. Parameter tuning 

was first carried out following the same procedure as in the UAV images. This was done on the 
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WorldView-2 satellite image captured on 29th July 2014. For all the parameters tested, no set of them 

produced any successful results. The World-View 2 imagery, QuickBird dated 26th August 2014 and 

GeoEye-1 imagery dated 25th September 2014 were then analysed at the set of parameters; 𝑆 = 0.8, 𝑞 = 

0.7, 𝜏 = 22.5°, 𝜀 = 1 and minimum area = 10 pixels as used on the UAV images.  This was carried out on 

the two selected cotton fields, 23 in cluster 3 and 18 in cluster 4. Figures 5.12 and 5.13 show the results of 

the detection on the 3 satellite images for cotton fields 23 and 18 respectively. Detection of crop rows on 

the satellite imagery for Nigeria was also performed using same internal parameters as in Mali. This was 

done to compare the result to that obtained in satellite images for Mali. Figure 5.14 shows the result of 

crop row detection on the WV-2 panchromatic band for Nigeria. 

As observed in the results, the detection of crop rows on the satellite images in Mali was not successful. 

This is mostly due to the nature of the farms in Mali. Although the resolution of the panchromatic band 

could be considered as a limiting factor to successful detection, this is contradicted by the detection result 

for Nigeria. As seen in Figure 5.14 and also in work by Alemu (2016), the analysis was on VHR satellite 

image (WV-2) in Nigeria; which have similar spatial and spectral characteristics as imagery used in Mali. 

The only difference is that the characteristics of farm fields in Nigeria are much different from Mali. The 

farms in Nigeria image appear to be well maintained, the crop rows are well spaced and have high 

densities of crops. This makes them more clear and easier to detect. On the other hand, crop rows as seen 

in Mali satellite imagery can barely be identified and are therefore hard to detect throughout the entire 

growing season. This could be mainly due to; poor spacing of the rows, low densities of the crops on the 

rows and lack of weeding resulting to weeds growing as tall as the crops; making it hard to be identify the 

crop rows. 
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(a)                                                                                                      (b) 

 

                                  (c)                                                                                                        

                                                                                                                                    

                                                                                                  

Figure 5.12: LSD results for VHR satellite images for cotton field 1. (a) Result for WorldView-2 satellite image; (b) 

result for QuickBird satellite image; (c) result for GeoEye-1 satellite image. 
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(a)                                                                                                    (b) 

     

                                                 (c)                         

                                    

Figure 5.13: LSD results for VHR satellite images for cotton field 2. (a) Result for QuickBird satellite image; (b) 

result for GeoEye-1 satellite image; (c) result for WorldView-2 satellite image. 
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Figure 5.14: LSD result for crop row detection on WorldView-2 satellite image of Nigeria 

5.6. Validation of the crop row detection on UAV images 

The validation was done by comparing the detected line segments with the digitized references rows. The 

orientation dominance of both the detected lines and the reference rows were assessed and graphically 

presented in rose diagrams.  For the automatically detected lines, the orientation dominance was assessed 

after discarding the lines considered as not representing crop rows and approximating the undetected side 

of the crop row.  Table 5.2 shows the results of the two subsets with the number of reference lines, 

detected lines, orientation angle in radians and the difference of orientation dominance between the 

reference rows and the detected rows. Subset 1 is for field number 23 in cluster 3 dated 25th August 2014 

while subset 2 is for field number 18 in cluster 4 dated 20th August 2014. Figure 5.15 shows the rose 

diagrams of orientation dominance for the two subsets.  

Visual inspection of the detected line segments was also done to assess how they compared to the 

manually digitized rows. It was observed that not all the crop rows in the fields were detected, although 

majority were. Most of the segments detected incorrectly were on top and along the edges of trees and 

also where there were large patches of weeds covering the crop rows. After discarding the lines that did 

not represent crop rows, the orientation dominance of the remaining line segments was observed to be 

similar to that of the manually digitized reference rows. The detected lines that represented the actual crop 

rows in the field for subset 1 were between 55° and 80° while subset 2 were between 80° and 100°. 
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Table 5.2: Orientation dominance of reference and detected line segments. 

Subset No. of lines Orientation dominance 

(radians) 

Difference in orientation 

dominance 

 Reference Detected Reference Detected Difference in radians 

1 312 686 1.18 1.15 0.03 

2 272 648 1.62 1.59 0.03 

 

(a) 

      

(b) 

       

(c) 

      

(d) 

          

Figure 5.15: Rose diagrams showing orientation dominance of both reference lines and the detected lines; (a and c) = 

reference for subsets 1 and 2 respectively, (b and d) = detected for subsets 1 and 2 respectively. 
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5.7. Results for weed detection 

After the crop row detection analysis, weed detection was performed on the UAV images. 

5.7.1. Results for linear SVM 

The tuning of the classifier was done by setting the algorithm in such a way that it picked the same 

training samples for each iteration when finding the best value of 𝐶. The Linear SVM was then predicted 

using the best value obtained. Figure 5.16 shows the classification results for the two subsets. The best 

value of 𝐶 obtained after parameter tuning was 1 for both subsets 1 and 2.   

 

                                            

Figure 5.16: Results of Linear SVM. Left image is for subset 1 (Cluster 3 - 25th Aug 2014), right image is for subset 2 

(Cluster 4 - 20th Aug 2014) 

Linear SVM classification was observed to work better for the subset 1 image as compared to subset 2, although 

there was still confusion between the weed and tree classes. Subset 2 classification was very poor as observed in 

Figure 5.16. The confusion matrix in Table 5.3 shows the confusion between classes with most being between weeds 

and trees. The analysis was repeated by setting the algorithm not to pick the same training samples for each iteration 

while tuning for the best value of 𝐶. This was done to check if different training samples used to train the classifier at 

each iteration would have an effect on the classification results. The classification map result produced was the same, 

with best value of 𝐶 obtained still being 1. 
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Table 5.3: Confusion matrix of subset 2 classification shows confusion between weed and tree classes 

                                                        Reference 

 

Class Weed Tree Bare Soil 

0 

0 

104 

0 

Weed 12 69 

Tree 80 577 

Bare Soil 0 0 

NA 0 0 

5.7.2. Results for RBF SVM 

The tuning of the regularization parameter (𝐶)  and 𝛾  parameter was performed and the best values 

obtained were used to predict the RBF SVM. The best values of 𝐶 and 𝛾 obtained after parameter tuning 

were 1 and 0.1 respectively for both subsets 1 and 2. Due to confusion between the weed and tree classes 

as also observed in the case of Linear SVM, the classification was poor for subset 2. Both weed and tree 

classes were classified as weeds as observed in the right-hand side image in Figure 5.17. The tuning of 

parameters was repeated for subset 2 without fixing the same training samples during each iteration of 

finding best values. The best value of 𝐶 and 𝛾 obtained were still the same at 1 and 0.1 respectively. There 

was no observed improvement in the classification results. 

 

                                                

Figure 5.17: Results of RBF SVM. Left image is for subset 1 (Cluster 3 - 25th Aug 2014), right image is for subset 2 

(Cluster 4 - 20th Aug 2014)                           
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5.7.3. Results for linear and RBF SVM after masking of trees 

As discussed in Section 4.6.5, manual masking of trees was done due to the errors in the classification 

brought about by confusion between weed and tree classes. This was then followed by tuning the classifier 

excluding the tree class. After tuning of the parameters, best values of 𝐶 obtained for Linear SVM was 1, 

while best values of 𝐶  and 𝛾 for RBF SVM was 1 and 0.1 respectively for both subsets 1 and 2. As 

observed in Figures 5.18 and 5.19, the masking of trees helped in improving the classification maps of the 

two subsets.  

 

                                                    

Figure 5.18: Linear and RBF SVM classification results of subset 1 after masking out trees 

 

                                              

Figure 5.19: Linear and RBF SVM classification results of subset 2 after tree masking       
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5.7.4. Results for linear and RBF SVM on UAV images with texture features 

The final analysis of the weeds was carried out on UAV images with texture features. The classification 

was done after tuning the best value of 𝐶 for the Linear SVM and best values of 𝐶 and 𝛾 for the RBF 

SVM. The classification results of analysis on texture features extracted at 0°, d = 1, on a 3 𝗑 3 window; 

and features extracted at 90°, d = 1, on a 5 𝗑 5 window size are presented in Figures 5.20 and 5.21 

respectively. The best 𝐶 obtained for Linear SVM in the 3 𝗑 3 window size was 1 while best 𝐶 and 𝛾 

obtained for RBF SVM was 18.33 and 0.264 respectively. For window size 5 𝗑 5, best 𝐶 obtained for 

Linear SVM was 37.93 while best 𝐶 and 𝛾 in RBF SVM was 1 and 0.1 respectively. The texture features 

did not help in improving the classification result but rather the results appeared to get worse than those 

of images without texture features. 

  

                                                 

Figure 5.20: Linear and RBF SVM on images with texture features at 0° orientation, d=1 on a 3 𝗑 3 window size. 

Table 5.4: Confusion matrix of subset 1 with texture features at 0° orientation, d=1 on a 3 𝗑 3 window size. 

                                                         Reference 

 

Class Weed Tree Bare Soil 

34 

0 

283 

0 

Weed 123 60 

Tree 114 364 

Bare Soil 0 0 

NA 0 0 
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Figure 5.21: Linear and RBF SVM on images with texture features at 90° orientation, d=1 on a 5 𝗑 5 window size. 

Feature selection was then performed for all the sets of GLCM features extracted. This was not 

meaningful as for all the GLCM features, the best selected features were bands 2 and 3 except for GLCM 

features extracted at 135°orientation which gave best features as 1 and 3. This means that no GLCM 

texture feature was considered as useful by the algorithm, as the selected features are not texture features 

but the bands in the UAV image. 

5.8. Results for weed analysis for different dates 

The weeds analysis was performed on the two fields for different dates between August and November. 

This was done by applying SVM classifier on the whole field and not the subset. For field number 23 in 

cluster 3, three images were analysed, one each month between August and October. There was no UAV 

image available for the month of November in this cluster. For field number 18 in cluster 4, four images 

were analysed, one every month from August to November. The results of the weeds percentage cover, 

overall accuracy and Kappa coefficient values obtained are as presented in Tables 5.5, 5.6, 5.7 and 5.8 

The analysis in field 23 showed increasing weed cover percentage every month. The September results for 

both Linear SVM and RBF SVM on the field with trees showed reduced weed percentage cover as seen in 

Tables 5.5 and 5.6. This is mainly because of confusion between weed and tree classes, hence, most weeds 

being classified as trees. The increase in the weeds from August to October as clearly seen in analysis of 

weeds after masking of the trees could be as a result of lack of weeding by farmers. This is because 

weeding in this field was done only once throughout the entire growing season as discussed in Section 

3.2.3. 
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Table 5.5: Linear SVM results for percentage weed cover, overall accuracy and kappa for cotton field number 23 in 

cluster 3 with and without trees at different dates. 

With trees Date Weed cover (%) Overall Accuracy (%) Kappa 

23 25/08/2014 31.49 97 0.95 

23 18/09/2014 6.19 82 0.68 

23 27/10/2014 47.06 97 0.94 

Without trees     

23 25/08/2014 43.06 98 0.96 

23 18/09/2014 46.56 100 1 

23 27/10/2014 49.92 99 0.99 

Table 5.6: RBF SVM results for percentage weed cover, overall accuracy and kappa for cotton field number 23 in 

cluster 3 with and without trees at different dates. 

With trees Date Weed cover (%) Overall Accuracy (%) Kappa 

23 25/08/2014 17.37 85 0.70 

23 18/09/2014 4.79 82 0.68 

23 27/10/2014 20.75 90 0.75 

Without trees     

23 25/08/2014 38.00 99 0.99 

23 18/09/2014 46.41 100 1 

23 27/10/2014 48.97 99 0.99 

The analysis in field 18 also showed an increasing weed cover percentage every month. The result for the 

11th September 2014 for the RBF SVM on the field with trees showed reduced weed percentage cover as 

seen in Table 5.7. This was mainly due to confusion between weed and tree classes and hence, most weeds 

were classified as trees. The results for the months of October and November show very high weeds 

percentage cover. Even though the increase could be true as no weeding is done in this field throughout 

the entire growing season as discussed in Section 3.2.3, the increase is also attributed to poor results in 

detection of crop rows where very few crop rows were detected in the UAV images of these two dates. 

Therefore, some of the pixels classified as weeds represent the missed crop rows on the ground. 
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Table 5.7: Linear SVM results for percentage weed cover, overall accuracy and kappa for cotton field number 18 in 

cluster 4 with and without trees at different dates. 

With trees Date Weed cover (%) Overall Accuracy (%) Kappa 

18 20/08/2014 25.20 88 0.78 

18 11/09/2014 24.87 89 0.78 

18 27/10/2014 72.03 96 0.90 

18 26/11/2014 69.59 95 0.88 

Without trees     

18 20/08/2014 27.37 100 1 

18 11/09/2014 36.64 100 1 

18 27/10/2014 72.67 100 1 

18 26/11/2014 72.01 100 1 

Table 5.8: RBF SVM results for percentage weed cover, overall accuracy and kappa for cotton field number 18 in 

cluster 4 with and without trees at different dates. 

With trees Date Weed cover (%) Overall Accuracy (%) Kappa 

18 20/08/2014 25.13 83 0.68 

18 11/09/2014 4.74 87 0.73 

18 27/10/2014 72.50 95 0.87 

18 26/11/2014 66.41 95 0.87 

Without trees     

18 20/08/2014 25.32 100 1 

18 11/09/2014 34.85 100 1 

18 27/10/2014 73.07 100 1 

18 26/11/2014 76.54 100 1 

5.9. Validation of weed detection 

Accuracy assessment of the weeds analysis was done by looking at the overall accuracy and the kappa 

values obtained. These two did not give the true picture of the actual results. This is because some 

classification maps showed very poor results but their overall accuracy and kappa coefficient values 

obtained were still high depending on how the classes were classified. A good example is the result for 

subset 2 in Figures 5.16 and 5.17 which gave high overall accuracy (95%) and kappa (0.82) yet the 

classification map showed poor results. Also, as observed in Tables 5.5 and 5.6 on the analysis of weeds 

on the whole field with trees, the image of 18th September 2014 produced low weed cover percentage but 

the overall accuracy and the kappa values were still at the acceptable range. The same was observed in the 

classification results for RBF SVM for field 18 on 11th September as indicated in Table 5.8 

The classification maps after masking of trees showed improved results; the overall accuracy for subset 1 

and 2 for Linear SVM being 99% and 100% respectively and kappa values being 0.9 and 1 respectively. 

Overall accuracy in RBF SVM result was 99% for subset 1 and 95% for subset 2. The kappa was 0.99 for 

subset 1 and 0.98 for subset 2. This was also observed in results of weed analysis on the whole fields. 

The weeds percentages calculated in the SVM classifier were then checked with the field reference data 

available. This data was measured between 15th August to 17th September 2014 and therefore, only results 
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analysed for the two months could be compared. According to the reference data, the weed cover for 

both fields were ranging between 10 – 50%. The percentage cover results for field 23 calculated from the 

image in August were, for Linear SVM, 31.49% and 43.06% for analysis with trees and without trees 

respectively as seen in Table 5.5 and RBF SVM, 17.37% and 38.00% for analysis with trees and without 

trees respectively as seen in Table 5.6. This agreed with the range recorded in the reference data. The 

results for RBF SVM with trees was much lower than without trees due to most weeds being classified as 

trees. The percentage cover results for same field for the image of September were, for Linear SVM, 

6.19% and 46.56% for analysis with trees and without trees respectively as seen in Table 5.5 and RBF 

SVM, 4.79% and 46.41% for analysis with trees and without trees respectively as seen in Table 5.6. The 

classification with masked trees agreed with the range recorded in the reference data.  

The percentage cover results for field 18, calculated from the image in August were, for Linear SVM, 

25.20% and 27.37% for analysis with trees and without trees respectively as seen in Table 5.7 and RBF 

SVM, 25.13% and 25.32% for analysis with trees and without trees respectively as seen in Table 5.8. This 

agreed with the range recorded in the reference data. The percentage cover results for same field for the 

image of September were, for Linear SVM, 24.87% and 36.64% for analysis with trees and without trees 

respectively as seen in Table 5.7 and RBF SVM, 4.74% and 34.85% for analysis with trees and without 

trees respectively as seen in Table 5.8. The classification with masked trees for SVM RBF and both Linear 

with and without trees agreed with the range recorded in the reference data. The field photos capture at 

different quadrats were also checked to see if they showed presence of weeds in the fields. Figure 5.22 

shows field photos captured in field 23  

                            

Figure 5.22 Photographs captured in field 23 showing presence of weeds in the field. Source: STARS & ICRISAT 

(2014) 
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6. DISCUSSION 

In this study, the main focus was applying the LSD and SVM algorithms on a real problem of crop row 

and weed detection in Mali, Africa. This was done by analysing two sets of imagery, the UAV imagery and 

VHR satellite imagery. The study involved the detection of crop rows on two cotton fields after which the 

weeds were detected between the rows. The crop rows were then validated by use of manually digitized 

crop row edges while the weeds accuracy assessment was done by visual inspection of classification map 

results, overall accuracy and kappa values obtained. The weeds analysis results were also validated using 

the reference data provided by the STARS project in collaboration with ICRISAT Mali. 

6.1. Crop row detection  

The LSD algorithm takes in one feature as an input for analysis. In this study, all the 3 bands of the UAV 

images were used in the analysis by getting their mean. This was important as, having more spectral 

information from the different bands help in improving the detection results. For the crop row detection 

using the VHR satellite imagery, the panchromatic band was used.  

6.1.1. Crop row detection on the UAV images 

The analysis started with parameter tuning where the various internal parameters were tuned before 

selecting the set of the most optimal ones to be used in the analysis. These included the scale (𝑆), angular 

tolerance for region growing (𝜏), magnitude quantile for gradient thresholding (𝑞), epsilon (ε) and the 

threshold for the smallest region area in pixels. The optimal results selected include 𝑆 = 0.8, 𝜏 = 22.5°, 𝑞 

= 0.7, 𝜀 = 1 and minimum region in pixels = 10. The parameter values of 𝑆, 𝜏, and 𝜀 agreed to those in 

the study by Grompone Von Gioi et al. (2012). The gradient magnitude thresholding used is quantile 

based as discussed in Section 4.2.3. In studies by Grompone Von Gioi et al. (2012); Alemu (2016); Akinlar 

& Topal (2011), the threshold 𝜔𝑞 is set in order to eliminate the points that have an angle error bigger 

than the angle tolerance. This is done by setting maximum quantization error at 2 which is divided by the 

angle tolerance τ to get the magnitude threshold. 

An algorithm should not be termed as efficient if it only produces accurate detections, but there are other 

factors to be considered. The LSD algorithm was assessed in terms of the processing time it took for one 

analysis. For the subset 1 analysed, the total processing time was 25.77 seconds in a PC with 2.40 GHz 

processor. The process that took the longest was the NFA computation at 24.22 seconds, followed by 

region growing at 1.37 seconds and finally gradient computation at 0.18 seconds. The processing time was 

also analysed for the 2 whole fields. The processing time for field 18 on UAV image of 20th August was 

64.31 minutes. while that of field 23 on UAV image of 25th August was 48.12 minutes as seen in Table 5.1. 

Field 23 is smaller in size than field 18 by approximately 1160 Sq/m 

The detection of crop rows using the UAV images was successful for the months of August for both 

fields, September for field 18 and October for field 23. Although not all the crop rows were detected, a 

majority of them were, compared to other dates. The detections were observed to deteriorate with each 

month in later stages of the crop growing season, especially for field 18. This could have been caused by 

more weeds growing taller between the rows making it hard to identify the crop row edges. It could have 

also been caused by the closing canopy of the crops hence, the space between the rows becoming unclear. 

It was also observed that the detections were on one edge of the crop rows where the row formed a 

shadow. In some dates, the detections were on the right edges of the crop rows while in other dates it was 
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on the left edges. The result for UAV image of 25th August in field 23 resulted in rows being detected on 

the right-side edges of the rows while the UAV image of 27th October for the same field had crop rows 

detected on the left side. This could have been due to the images being capture off-nadir and also the 

effect of sun illumination angle during the capturing of images. The detection on one side only therefore, 

necessitated the approximation of the undetected edge of the crop row. This was done by calculating the 

orientation dominance of the detected lines and comparing them to the orientation dominance of the 

refence lines which was taken to represent that of the crop rows. The detected lines outside the range 

represented by crop rows were then discarded and the undetected edge was approximated at an offset 

distance of 0.5 m as discussed in Section 4.4. This proved to work well for the two fields where all the 

rows in each field were observed to have the same orientation.  

It is possible to encounter a case where a field has rows with two main orientation dominance. For 

instance, a section of the field having crop rows with horizontal orientation and another section with 

vertical orientation. In such a case, one would then have to decide to either divide the field into two 

sections and apply LSD on each section separately, or apply LSD on the whole field and plot the 

orientation angle of the detected line segments in a histogram. The ranges in the histogram with the two 

highest peaks would then be regarded as the correctly detected crop rows. 

Texture is an important property used for distinguishing features of interest in an image. The crop row 

detection was carried out using the UAV images with texture features extracted at different orientations, 

lag distances and window size as discussed in Section 4.1. The use of texture features did not help in 

improving the detection results. 

6.1.2. Crop row detection on VHR satellite images 

The detection using VHR satellite images in Mali was unsuccessful. For all the satellite images available 

throughout the entire growing season, there is not one imagery where the crop rows could be detected. As 

discussed in Section 5.5, the satellite images could have failed in detection due to the field characteristics in 

Mali. The crops are planted at very narrow spacing, hence, hard to identify the rows in satellite images at 2 

m resolution. As the growing season progresses from planting to mid-season until harvesting, it was 

expected that the crop rows would be identified especially during mid-growing season when the crops 

have higher densities. According to the information provided by the STARS project, weeding was only 

carried out once in field 23, which was on 10th July 2014 but no more weeding was done after that. For 

field 18, no weeding was done during the entire growing season. This could result in weeds growing as tall 

as the crops, making it more for difficult to identify the crop rows at 2 m resolution.  

The analysis of the WV-2 satellite image of Nigeria and also the work of Alemu (2016) on crop row 

detection in Nigeria, proved that the resolution of the satellite image could not be the reason for the 

failure in detection on its own. This is because the spatial and spectral characteristics of the WV-2 satellite 

imagery of Nigeria are the same as those of the WV-2 satellite imagery used in Mali.  

6.2. Weeds analysis 

The analysis of weeds was carried out after detection and masking of the detected crop rows from the 

UAV images. This was to ensure reduced confusion between crops and weeds in the fields. The SVM 

classifier requires tuning of parameters for each kernel, with each classification analysis (Lorena & De 

Carvalho, 2008). A grid search strategy was used for tuning of parameters where the algorithm was set to 

pick the same training samples for each iteration to give the best 𝐶 value for Linear SVM and best 𝐶 and 𝛾 
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values for RBF SVM. The best parameter values obtained after the tuning process were used in 

classification of SVM maps 

The weed detection results were affected by the initial detection of crop rows. There were some crop rows 

that were missed by the LSD algorithm and therefore, classified as weeds in the SVM classification. The 

missed detections on crop rows was mostly observed in late stages of the crop growing season. Looking at 

the weeds classification results of these dates, it was observed that the weed percentage cover was high, 

which was attributed to the classification of the missed crop rows as weeds. 

Detection of weeds was also carried out on UAV images with texture features. This did not help in 

improving the classification results in weed detection, where the detection without texture features was 

observed to give more correct classification maps than with texture features.  

The accuracy assessment using the overall accuracy and kappa coefficient values obtained did not prove to 

match up with some of the classification map results. This was observed in the detection of weeds before 

masking out of trees. The confusion between weed and tree classes was evident especially in subset 2 

using the UAV image for the month of August. For the Linear SVM, most of the vegetation on the 

ground was classified as trees with very little classified as weeds while in RBF SVM for the same subset 

image, all pixels with vegetation were classified as vegetation. Even with these poor classification maps, 

the overall accuracy and kappa coefficient values were still high indicating that the result was acceptable 

yet it was not. 

The overall weeds analysis from August to November showed an in increase in weeds cover in the farms 

every month. Although in some months the classification map results were poor due to the initial poor 

detection of crop rows, the increase in weeds every month could be true even though not by the values 

produced by the SVM algorithm. This is because of lack of weeding throughout the season as indicated 

earlier. The study by Njenga, (2016) of the same study area also showed increase in weeds in cotton fields 

every month and more weeds spread widely in November, towards the end of the crop season. 

 Looking at the field reference data available, the result of weeds percentage cover for both fields agreed 

with it. The available field reference data was not adequate for the validation of the weeds as the analysis 

was done for the UAV images from the month of August to end the of November but, only field data for 

August and September was available. It was therefore not possible to validate the detected weeds for the 

other months. 
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion 

The main objective of this study was to develop a methodology for between-row weed detection in the 

fields using pattern and textural measures from UAV and VHR satellite images. The LSD algorithm was 

adopted for the detection of the crop rows. The SVM was then used to detect weeds between the rows. 

GLCM texture features were also extracted and used to assess the detection of the crop rows and weeds. 

From the detection of crop rows using the LSD algorithm, it can be concluded that getting the optimal 

parameters is very important to ensure accurate detection results. The main internal parameters in the 

LSD algorithm are considered to be the scale, angle tolerance and epsilon. It is important to tune all the 

parameters including the gradient magnitude threshold and smallest region area threshold as not any 

parameter value used could give the expected results. 

The efficiency of the LSD algorithm in terms of accuracy is input data dependent. The detections are not 

only affected by the spatial resolution of the imagery but also by the field characteristics. Not all images 

can have features being detected using this algorithm. Features in regions with low contrast that are 

homogenous in nature are hard to detect. This is the more reason why the detection on the VHR satellite 

images failed in this study. This could also be the reason for poor detection towards the end of the crop 

growing season on the UAV images. This is because the crops are dried up thus, low densities along the 

rows. There are also more weeds on the fields covering the crops, making the fields to appear more 

homogenous. 

Texture features do not always improve detection and classification results. This could be due to the 

regions in the UAV images being homogeneous with low contrast. In this study, the texture features did 

not help improve the detection of crop rows and weeds. 

An efficient algorithm should not only be accurate but also not time costly. In this study the LSD 

algorithm can be considered to be quite fast in terms of processing time. It worked well for the analysis 

with the longest time taken for an analysis done on the whole field being just above 1 hour. Some 

algorithms may take up to more than a day to produce a result and some would require high performance 

computer hardware for an analysis. 

The optimal parameters for SVM classifier depend on the characteristics of the input data and also the 

training samples. It is therefore, important to tune parameters for each classification analysis. Using the 

search strategy set in the algorithm, the best parameters are selected and used in the classification of the 

maps. It can also be concluded from this study that, without successful detection of crop rows, the 

subsequent analysis of weeds is affected. This is because the crop rows that are missed to be detected in 

the LSD algorithm are classified as weeds in the weeds analysis. 

The accuracy assessment of any analysis cannot be only verified using the various accuracy assessment 

methods in the algorithm. Visual verification is very important as some accuracy assessment results could 

show successful results which could be contrary to the actual results obtained. The reference data 

collected from the field is the most important in the verification of the results, otherwise it is hard to make 

conclusive observations. 
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7.2. Recommendations 

The quality of the input data has a large effect on the results for both crop row and weed detection. The 

UAV images used in the study are not of very high quality as the vegetation in the image appear to have 

the same colour. This means that the DN values for all types of vegetation in the image are similar. To 

curb this problem, colour correction could be performed on the UAV images to make them have more 

natural colour for various vegetation types on the ground. This may assist in improving analysis of weeds 

using the SVM classifier. 

The manual masking of trees was observed to improve the classification results in the analysis of weeds. 

An automated way of masking of the trees on the UAV images could also be of great advantage to the 

successful weeds detection, especially when dealing with larger study areas. 

More information on the field data would assist in better analysis of crop rows and weeds. Information on 

the row spacing and row widths for the different crop types at different growth stages would have assisted 

in determining the offset to be used when approximating the undetected edges of crop rows.  

The reference data for weed cover provided was not adequate for analysis of weeds for the dates analysed. 

The reference data should be available, preferably for every month within the entire growing season to 

ensure more conclusive validation of the obtained results. 
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Result of RBF SVM for field 23 before unmasking of trees and after tree masking on the UAV image of 25th August 

2014 

   

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 
 

Result of RBF SVM for field 18 before unmasking of trees and after tree masking on the UAV image of 11th 

September 2014 




