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ABSTRACT 

Extraction of individual trees in urban environment and developed cities using satellite imageries has been 

quite challenging with many approaches to it. However, much more challenging is the mapping of this 

information in rural areas and developing countries. A number of reasons could be attributed to this 

ranging from indiscriminate planting of trees dispersed within heterogeneous and indistinct fields, to 

widespread shortage of up to date agricultural data which is partly due to lack of funds or limited 

government capacity and finally poor government policies and restrictions to finer resolution imageries.  
 

With the launching of Sentinel satellite missions by the European space agency (ESA); medium and coarse 

resolution imageries have become freely and readily available. Most developing countries will like to 

leverage on this opportunity for up to date mapping and monitoring of their environment. A general 

limitation however exists in the spatial distribution of landcover data sets derived from most of these 

imageries due to varying contrast sensitivity. At coarse resolution and depending on the area of study, a 

row of trees may appear as individual trees, while single trees are much more visible at finer scale. This 

effect made some researchers to suggest that coarse resolution images are improper for tree detection. 

Although finer resolution images have improved the visibility and identification of both spectral and 

spatial information, it also has some limitations. The main limitation is due to the sensors large dynamic 

range which captures complex models making it difficult for spectral classifiers to deal with spectral 

separability between tree objects and other similar background classes. All these challenges further limit 

efforts to map or monitor individual trees in this data-sparse regions of the world.  

 

This research is therefore focused on quantifying and comparing the detection of tree objects at different 

scale (coarse and fine) using super resolution mapping (SRM). To achieve this, we applied the pixel based 

MRF-SRM and partitioned the classified SRM thematic results into objects (segments) using region 

growing segmentation algorithm as post a classification procedure. The limitation of spectral information 

available in finer resolution images was addressed by the contextual approach of MRF; while the spatial 

resolution limitation for coarse images was reduced using SRM. The aim is to substantiate the reliability of 

individual tree crowns detected from coarse resolution images against the backdrop that suggests it’s 

improper for tree detection. Also, the study will assist efforts to improve the capacity of monitoring 

agricultural change in data sparse regions and developing countries of the world. The results of our 

method extended beyond the norm of existing spatial dependence principle evident in pixel based SRM 

analysis, identified and validated individual trees taking cognisance of its range of characteristics.  

 

Key words: Extraction of individual trees, Super resolution mapping, Markov random fields, Class separability, 

Simulated annealing, Object-based image analysis, Image segmentation. 
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1. INTRODUCTION 

 Motivation and problem statement 1.1.

Extraction of individual trees in urban environment and developed cities using satellite imageries has 

been quite challenging and a subject of active research with many approaches (Ardila et al., 2012). 

There are so many reasons that can be attributed to this depending on the image scale (coarse or fine), 

algorithm used and the different types of tree in question (Ardila et al., 2012). However, much more 

challenging is the mapping of this information in developing countries and rural areas. There are quite a 

number of reasons for this. In Africa and most developing countries, individual trees are dispersed at 

random within heterogeneous and indistinct fields (Debats et al., 2016), while in developed countries 

and cities they are planted in fields which are organised in rows and specific patterns. The second 

reason is the widespread shortage of up to date agricultural data in these areas (World Bank, 2013). 

This is partly due to lack of funds and limited government capacity. The third reason is that most fine 

resolution satellite imageries are restricted and unmanned aerial vehicles (UAV) are prohibited by law in 

most of these regions. These challenges greatly limit efforts to map or monitor individual trees in this 

data-sparse regions of the world.  

 

With the launching of Sentinel satellite missions by the European space agency (ESA); medium and coarse 

resolution imageries have become freely and readily available. Therefore, most developing countries will 

like to leverage on this opportunity as satellite imageries still remains the alternative option to mapping 

agricultural information. A general limitation however exists in the spatial distribution of landcover data 

sets derived from most of these imageries due to varying contrast sensitivity (Frampton et al., 2013). At 

coarse resolution and depending on the area of study, a row of trees may appear as individual trees, while 

single trees are much more visible at finer scale. The effects of individual tree spatial patterns (shape, size, 

location etc.) from coarse remote sensing images has made it very difficult and challenging to detect tree 

crown objects. This has made some researchers to suggest that coarse resolution images are improper for 

tree detection (Ardila et al., 2012). Although finer resolution remotely sensed images have improved the 

visibility and identification of both spectral and spatial information, it also has some limitations. Tolpekin 

et al., (2010) identified three fundamental factors that prevent the effective identification of tree crowns 

from very high resolution (VHR) imagery. First, they identified the variation between the Low and High 

resolution scene models with respect to the size of the tree objects. Secondly, the identified the limitations 

of classifiers in dealing with spectral separability between tree objects and other similar background classes 

e.g. shrubs, grasses etc. This is also affected by the sun illumination angle which projects shadows of tall 

buildings. Finally, some sensors have large dynamic range which captures complex models resulting in 

incoherent pixel-based classification outputs that doesn’t represent the object of interest.  
 

Super resolution mapping (SRM) refers to a technique for classification where hard classification maps 

are produced which have a resolution finer than that of the original image (Foody & Atkinson, 2002). 

The concept was introduced on the assumption that pixels are made up of matrices of sub-pixels 

whose location can be predicted based on the spatial dependency between them (Atkinson, 2004). In 

this process, a fraction of classes is generated with soft classification method and subsequently a spatial 

optimization model is used to predict the location of those class fractions producing a fine resolution 

map from coarse input images (Atkinson, 2009). There are two modes of application of SRM methods; 

first is on high resolution (HR) and second is on low resolution (LR) images in relation to the size of 

objects. For the HR scenario (where pixels are smaller than object of interest),  the goal is to maximize 
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the spatial correlation between neighbouring pixels; while for the LR scenario (where pixels are much 

larger than object of interest), the goal is to match the spatial correlation to some prior model 

(Atkinson, 2009). When applying SRM for the HR case, the objective is to increase the accuracy of 

prediction on a sub-pixel by sub-pixel basis which in turn increases the accuracy and spatial resolution 

of the output map; while for the LR case, the objective is to predict the pattern of the object of interest 

which are smaller than pixels (Atkinson, 2009).  

 

Several algorithms have been proposed in literature for SRM, adapted to various applications and work 

well in pixel based image analysis. For example, Jin et al. (2012) proposed geostatistical based method 

for SRM using local indicator variogram, Atkinson developed spatial pixel swapping method (Atkinson, 

2005), (Sriwilai et al., 2013) developed an SRM algorithm based on level set method and (Kasetkasem et 

al, 2005) proposed Markov random field (MRF) based SRM with simulated annealing. Markov random 

field (MRF) has developed and become a very useful tool to characterize contextual information using 

prior and conditional distribution of original image (Geman & Geman, 1984). Ardila et al., (2011) 

“identified the attractiveness of MRF approach for image analysis as it addresses two main issues; first, 

it produces classification maps with finer resolution than the input image and secondly, incorporating 

contextual information using MRF approach produces results which overcome the mixed pixel effect 

and within-class spectral variation evident with some other techniques.” Markov random field (MRF) 

based SRM has been applied to remote sensing imageries (Kasetkasem et al., 2005); the goal however is 

not limited only to obtaining class proportion, but to model image spectral and land cover spatial 

information’s respectively (Li et al., 2016). Although incorporating MRF with SRM has improved the 

quality of classification outputs, most features in reality are still not well represented as they still rely on 

information from pixels alone. 

 

Over the years, the concept of Object based image analysis (OBIA) has evolved and widely suggested 

as probably one of the ways to handle the limitations and challenges of pixel based image analysis. In 

this process, remote sensing imageries or thematic outputs are partitioned into regions or objects and 

subsequently their characteristics are analysed at various scales (Hay & Castilla, 2006). This technique 

takes cognisance of the temporal, spectral and spatial characteristics of objects during processing while 

also providing the ability to query and link individual objects (Blaschke, 2010). Where spectral 

properties are not unique, but shape and neighbourhood relations are distinct, OBIA technique is very 

useful in capturing reliable information (Blaschke et al., 2014). This is very useful in overcoming 

ambiguities caused by limited evidence during classification. 

 

In this research, we applied SRM to quantify and compare tree detection using remote sensing 

imageries at different scales (coarse and high resolution). To achieve this, we applied the pixel based 

MRF-SRM of (Tolpekin & Stein, 2009), and partitioned the classified SRM thematic results into objects 

(segments) using region growing segmentation algorithm as post a classification procedure. At this 

stage and depending on size, some segments (objects) may get bigger, smaller or even disappear. 

Finally, we analysed the resulting thematic object characteristics using object based image analysis. The 

limitation of spectral information available in finer resolution images was addressed by the contextual 

approach of MRF; while the spatial resolution limitation for coarse images was reduced using SRM 

(Tolpekin et al., 2010). The novelty in this research is the comparison of the detected tree objects at 

different scale and spatial resolution using our method. The aim is to substantiate the reliability of 

individual tree crowns detected from coarse resolution images against the backdrop that suggests it’s 

improper for tree detection. Again, the study will assist efforts to improve the capacity of monitoring 

agricultural change in data sparse regions and developing countries. The results of our method 

extended beyond the norm of existing spatial dependence principle evident in pixel based SRM 

analysis, identified and validated image objects taking cognisance of its range of characteristics.  
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 Research identification 1.2.

The primary focus in this research can be identified through the following research objectives and 

research questions stated below; 

1.2.1. Research objectives 

The main objective of this research is to quantify and compare tree detection from satellite images 

(medium and high resolution) at different scale by applying SRM in HR scenario. Below are the 

subsequent sub-objectives; 

 To perform super resolution mapping in HR scenario for tree detection. 

 To analyse the characteristics of the detected tree object using object based image analysis. 

 To compare the performance of the applied method at different scale and spatial resolution 

(Sentinel-2 MSI at 10m and Worldview-3 MSI at 2m). 

1.2.2. Research questions 

The research questions are outlined below; 

 How can we apply SRM in HR scenario to detect tree objects at different scale? 

 How can one determine the most appropriate parameters for optimizing the SRM model for 

each scale? 

 How can we evaluate and quantify the detected tree objects? 

 How should the assessment of the results be performed? 

 Innovation 1.3.

The novelty of this research is; 

 Quantifying and comparing the detected tree objects at different scale and spatial resolution 

by applying SRM in HR scenario. 
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2. LITERATURE REVIEW 

 Object-based image analysis 2.1.

Over the years, the concept of Object based image analysis (OBIA) has evolved and widely suggested as 

probably one of the ways to handle the limitations and challenges of pixel based image analysis. The 

concept was introduced mainly as a result of the increasing commercially available high resolution 

imageries, ever-increasing sophisticated user needs which has to be met and the existing limitations with 

pixel-based image analysis (Hay & Castilla, 2006). OBIA builds on older techniques of remote sensing 

image analysis such as segmentation, feature extraction and edge detection. In this process, remote 

sensing imageries or thematic outputs are partitioned into regions or objects and subsequently their 

characteristics are analysed at various scales (Hay & Castilla, 2006). This technique takes cognisance of 

the temporal, spectral and spatial characteristics of objects during processing while also providing the 

ability to query and link individual objects (Blaschke, 2010). When applying object based image analysis, 

the image-object is the central methodological element and the object of investigation, therefore image 

context is well documented for object recognition (Baglioni et al., 2009). This is very useful in 

overcoming ambiguities caused by limited evidence during classification. Where spectral properties are 

not unique, but shape and neighbourhood relations are distinct, OBIA technique is very useful in 

capturing reliable information (Blaschke et al., 2014). The major aim is to incorporate the concept of 

human visual interpretation of objects during or after classification to obtain more accurate 

representation that will result in increased repeatability, while reducing labour subjectivity and time cost 

(Hay & Castilla, 2006). 

 Image segmentation 2.2.

Segmentation refers to the partitioning or grouping of pixels into connected regions based on 

homogeneity criteria (Hay et al., 2005). A good segmentation is identified by uniform and homogenous 

or adjacent region which is clearly separated by a simple boundary that has a contrast with respect to 

their characteristics (Fleet & Jepson, 2007). Image segmentation plays an important role in OBIA where 

features are extracted with respect to their various characteristics to distinguish one region from another. 

“This is because, segmentation is the customary technique used to derive initial units within OBIA, at 

least from the point of view of the segmentation algorithm (Baglioni et al., 2009).” As important as 

segmentation is to OBIA, it cannot be completely relied on alone because of its major limitation of over 

segmentation and under segmentation. Furthermore, the traditional image segmentation algorithm 

works on the rigid grid of pixels which produces homogenous segmented regions whose boundaries are 

unrealistic as it appeals to the structure of the square grid cells and mostly does not conform to real 

object boundaries (Baglioni et al., 2009). This has prompted so many researchers to seek for more 

realistic and probabilistic techniques to improve segmentation such as super pixel methods (Achanta et 

al., 2012).  

 

Within the last few decades, there has been an increasing adoption of super pixel based methods in 

image processing (Ladický et al., 2014). These tend to perform a priori segmentation of the images before 

subsequently been applied to various image analyses such as classification. Super pixels algorithms group 

pixels into meaningful regions which can be used to replace the rigid structure of pixel grid (Achanta et 

al., 2012). They rely on an initial partitioning of an image capturing redundancy and provide a primitive 

to compute various image features taking cognisance of spatial location and colour/texture of 

distribution (Sriwilai et al., 2013). Various super pixel algorithms applied on an image produces different 
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results. This depends on the category of algorithm method used (Graph-based or Gradient-based) and 

the purpose for which the algorithm is developed (adherence to image boundary, speed and impact on 

segmentation performance) (Achanta et al., 2012). When choosing super pixel algorithm it is desired that 

it should at least adhere to image boundary and reduce computational complexity. 

 Maximum likelihood classification 2.3.

Maximum likelihood is a classification procedure which has been in existence for decades now. It is 

based on the assumption that using the probability distribution in spectral space, one can be able to 

describe the distribution of pixels in a given class or group of classes (Richards & Jia, 2006). To achieve 

this, the classifier assigns pixels to the class with highest probability of membership, while assuming the 

multidimensional normal distribution for all classes (Strahler, 1980). Here the normal or Gaussian 

distribution is mostly used because its properties are well known for any dimensionality and its 

parameters are easily estimated (Maselli et al., 1994). To model the normal distribution for each class’s 

dispersion of pixels, one has to estimate the mean and covariance matrix. This is because the normal 

distribution is specified by its mean vector and covariance matrix. It is expected that pixels in spectrally 

distinct cluster or class should lie around the centre and less likelihood to be far away where pixels do 

not cluster (Richards & Jia, 2006). Therefore, if the mean and covariance matrix is known or estimated 

correctly for all classes, then a set of probabilities can be computed which shows the likelihood of a 

pixel or pattern in space belonging to a particular class (Richards & Jia, 2006). 

 Super resolution mapping 2.4.

Super resolution mapping (SRM) refers to a technique for classification where hard classification maps 

are produced which have a resolution finer than that of the original image (Foody & Atkinson, 2002). 

The concept was introduced on the assumption that pixels are made up of matrices of sub-pixels whose 

location can be predicted based on the spatial dependency between them (Atkinson, 2004). In this 

process, a fraction of classes is generated with soft classification method and subsequently a spatial 

optimization model is used to produce a fine resolution map from coarse input images (Atkinson, 2009).  

 

There are two modes of application of SRM methods; first is on high resolution (HR) and second is on 

low resolution (LR) images in relation to the size of objects. For the HR scenario (where pixels are 

smaller than object of interest),  the goal is to maximize the spatial correlation between neighbouring 

pixels; while for the LR scenario (where pixels are much larger than object of interest), the goal is to 

match the spatial correlation to some prior model (Atkinson, 2009). When applying SRM for the HR 

case, the objective is to increase the accuracy of prediction on a sub-pixel by sub-pixel basis which in 

turn increases the accuracy and spatial resolution of the output map; while for the LR case, the objective 

is to predict the pattern of the object of interest which are smaller than pixels (Atkinson, 2009). Along 

and within the extremes of each scenario, lie a particular SRM goal and its application. 

 

Several algorithms have been proposed in literature for SRM, adapted to various applications and work 

well in pixel based image analysis. For example, Jin et al. (2012) proposed geostatistical based method 

for SRM using local indicator variogram, Atkinson developed spatial pixel swapping method (Atkinson, 

2005) and (Sriwilai et al., 2013) developed an SRM algorithm based on level set method. Previous 

researches has demonstrated that using different SRM methods may produce varied land cover 

representations from the same coarse input image and therefore the identification of an optimal SRM 

method in advance is difficult (Li et al., 2016). This is because each SRM algorithm has its own strengths 

and weaknesses depending on the technique used to develop it. Some has suggested the combination 

and of use multiple SRM algorithms to utilize information from each method while also addressing the 

drawbacks in using an individual method. 
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Markov random field (MRF) based SRM has been applied to remote sensing imageries (Kasetkasem et 

al., 2005); the goal however is not limited only to obtaining class proportion, but to model image 

spectral and land cover spatial information’s respectively (Li et al., 2016). Also, MRF based SRM has 

been applied to quantify the accuracy of land cover class separability and the accuracy of such methods 

is highly influenced by the scale factor used and class separability in the image (Tolpekin & Stein, 2009). 

An advantage of MRF based SRM is that it does not strictly rely on soft classification results and can 

allow one represent spectral variation of class separability values. However, it has also been identified to 

have some spectral and land cover spatial constraints. The spectral constrain is the assumption that 

coarse pixel has a spectral response generated from combined spectra of classes in sub-pixel map, while 

the land cover spatial constrain assumes that neighbouring sub-pixels are more likely to affect a certain 

land cover class than a different class which is farther apart (Tolpekin & Stein, 2009). Incorporating 

MRF with SRM has improved classification output as well as overcome the problem of mixed pixel 

which is a limitation of some other techniques. 

 Detection of trees from remote sensing imagery 2.5.

Remotely sensed imageries and remote sensing technology afford us the possibility of monitoring our 

planet at various scales. Various researches have been conducted using different methods and 

techniques developed to effectively extract useful and reliable information from these imageries which 

are increasingly available on daily basis. Extraction of individual trees from remotely sensed imageries 

has been quite a challenging subject of research for many decades now. There are so many reasons that 

can be attributed to this depending on the image scale (coarse or fine), algorithm used and the different 

types of tree in question (Ardila et al., 2012). At coarse resolution and depending on the area of study, a 

row of trees may appear as individual trees, while single trees are much more visible at finer scale. The 

effects of individual tree spatial patterns (shape, size, location etc.) from coarse remote sensing images 

has made it difficult and very challenging to detect tree crown objects.  Based on these, some researchers 

suggests that it is improper to use coarse resolution images to identify tree crown boundaries (Ardila et 

al., 2012).  

 

Although finer resolution (VHR) remotely sensed images have improved the visibility and identification 

of both spectral and spatial information, it also has some limitations. Tolpekin et al., 2010 identified 

three fundamental factors that prevent the effective identification of tree crowns from VHR imagery. 

First, they identified the variation between the Low and High resolution scene models with respect to 

the size of the tree objects. Secondly, they identified the limitations of classifiers in dealing with spectral 

separability between tree objects and other similar background classes e.g. shrubs, grasses etc. This is 

also affected by the sun illumination angle which projects shadows of tall buildings. Finally, some 

sensors have large dynamic range which captures complex models resulting in incoherent pixel-based 

classification outputs that doesn’t represent the object of interest. To address some of these issues 

above, Tolpekin et al., (2010) extended the contextual MRF based SRM method for multispectral image 

to incorporate a panchromatic band with higher spatial resolution. They applied these to identify and 

extract tree from VHR imageries in urban areas. Ardila et al., (2012) employed context-sensitive 

extraction of tree crown objects from VHR images in urban scenes. Also, Wolf & Heipke, (2007) 

developed an approach for automatic tree detection from remote sensing data using scale-invariance and 

a digital surface model (DSM). With continuous technological advancements, different datasets have 

become readily available ranging from active sensor data, UAV data and point cloud datasets. The 

application and use of these datasets require a different approach, technique and methodology for 

identification and detectability of various objects including trees. They are also not without their various 

limitations. Whichever methods is used, detection of tree object from remote sensing imagery or other 

datasets still remain an interesting sphere of research in the field of remote sensing as improvement is 

still needed to overcome the challenges with existing techniques. 
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3. STUDY AREA AND DATA 

This chapter provides information about the study area, available data and proposed software that will 

be used in this research. Below are the details; 

 Study area 3.1.

The study area for this research is a part of Sukumba village located at latitude 12°12'55.45" and 

longitude -05°13'04.82" in Koutiala district, Mali. It is a rectangular area with dimension of 1312 m x 

777 m. The settlement is characterized by small holder farms and heterogeneous fields, and in most 

places trees partially cover the area. Kofa Village is built on a rocky terrain, with a number of large 

valleys. The general planting season is around May to Sep/Nov and most cropping system is mono-

cropping. The trees here are evergreen, most of them being Shea trees which grow up to 35–40 m tall; 

with a crown radius between 8-10 m. Mango trees are also found in most places within the fields.  These 

Shea trees were of interest in this research because of their economic importance. Their fruits are 

principal exported variety and mostly serve as food and source of revenue for occupants in the area 

(Vayssières et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overview of study area (yellow boundary) using Sentinel-2 multispectral image displayed in NIR (band8), Green 
(band3) and Blue (band2). 
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 Available data 3.2.

The available data for this research project is outline below; 

 10m Sentinel-2 multispectral image of the study area captured on the 8th of May 2016. This was 
used for generating the training and test sets. 

 2m Worldview-3 multispectral image acquired between 8th of May 2015 to 21st November 2015. 
This was used for generating the training and test sets. 

 0.5m Worldview-3 panchromatic image acquired between 8th of May 2015 to 21st November 
2015. This was used for generating the reference data for validation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

The Sentinel-2 multispectral image subset used in this research has 10m spatial resolution, with 4 

bands (near infra-red, red, green and blue) of false colour composite. The Worldview-3 image on the 

other hand has 2m spatial resolution, with 8 bands (coastal, blue, green, yellow, red, red-edge, near 

infra-red_1 and near infra-red_2). These images capture both man-made and natural features which 

contain mixed pixels making SRM an ideal technique for application and interesting for my study. 

Here, the tree object is the main subject of investigation and as such, other information in the image is 

of less importance. Therefore, what is not a tree object is heterogeneous and as such will not be 

considered in the course of the research. The Sentinel-2 multispectral image contains 1.953% cloud 

cover and is assumed to have been geometrically corrected of all possible distortions during 

acquisition and therefore suitable for classification. 

 

 

 

Figure 3.2: Sentinel - 2 multispectral image subset of the study area displayed in NIR (band8), Green (band3) and Blue (band2). 
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 Reference data 3.3.

Reference data is required in this research to implement accuracy assessment and validate the final 

classification result. The accuracy assessment is a statistical measure of how well the applied method 

performs compared to the reference data. The reference data is a vector layer of tree objects derived 

from digitizing the tree crowns objects from 0.5 m panchromatic Worldview-3 image of the study 

area. This reference vector was derived only on standalone trees within the fields. All other trees that 

are found around similar background classes like shrubs and rocks were ignored. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Software 3.4.

In this research, different software and algorithm was used for applying the proposed methodology and data 
visualization which are; 

 

 ArcGIS 10.4.1 

 Erdas Imagine 2016. 

 R version 3.2.2.  

 MRF-SRM algorithm which was optimized using C++ library. 

 Region-growing segmentation algorithm. 
 
Both ArcGIS 10.4.1 and ERDAS Imagine 2016 are well known commercial software for GIS and remote 
sensing. R software on the other hand is open source software that is able to compute and visualize 
statistical data developed by R Core Team (2016). It has some packages which were used in this research 
which are outline below; 
 

 rgl developed by Adler et al., (2016) 

 rgdal developed by (Bivand et al., 2016) 

 e1071 developed by (Meyer et al., 2015) 

 kernlab developed by Karatzoglou et al., 2010) 

 MASS developed by (Venables and Ripley, 2003) 

 Rcpp developed by (Eddelbuettel, 2013) 

Figure 3.3: Reference vectors of tree crowns (yellow) extracted from Worldview-3 panchromatic image of the study area. 
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4. METHODOLOGY 

 Spectral class definition 4.1.

When performing supervised classification, user defined spectral classes are required to estimate statistics 

and extract reliable information from the remotely sensed image. These classes are defined based on a visual 

interpretation of pixel spectral reflectance that is identified which corresponds to information in reality. Pixel 

values were modelled with normal distribution and labelled to represent the various classes. Optimal 

estimation for class mean and covariance matrix requires sufficient number of training samples across the 

image with respect to the number of bands in the image. Visual interpretation is one of the key ways of 

identifying and defining land cover classes in remote sensing image analysis. This technique was employed in 

this research to identify various classes from our image subset. To prevent overfitting, training sets were 

generated outside the image subset of the study area, while the test sets were generated within the image 

subset of the study area. The training sets were used to estimate the class mean and covariance matrix values 

from the image, while test sets were used for statistical analysis of the classification accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The land cover classes defined with respect to the spectral values of pixels in the images were; 

 Sentinel-2 multispectral image – The landcover classes are trees, rock, barsoil_1, baresoil_2 and shrub. 

 Worlview-3 multispectral image – The landcover classes are trees, road, built_up, field_1, field_2, field_3, 

baresoil, and shrub. 

All these classes were defined because of the spectral classifier we are using which requires sufficient training 

samples to estimate the mean and covariance matrix of the distribution. If we have only one class, it is not 

possible to compute the mean, covariance matrix or invert of the matrix. This will make it impossible to 

apply our classification or to assign class labels to pixels in the image. For Sentinel-2 multispectral image, the 

total number of pixels used for training is 1011 pixels and 1010 for test. Also, for the Worlview-3 

multispectral image, the total number of pixels used for training is 4271 and 1739 for test. Both training and 

test samples were sufficient enough for estimation of class mean and covariance matrix and provided a 

homogenous representation for the entire image subsets. 

Figure 4.1: Example of Sentinel-2 multispectral image showing the study area (yellow rectangle) and training sets (green polygons and points). 
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To evaluate the data value of one band plotted against another, feature space was used. It is basically 

represented or displayed as a 2D or 3D raster image of scatterplot with a dot for every pixel in an entire 

image or subset. For the 2D feature space, the pixel position represented shows the spectral values of the 

two chosen bands. The feature space image has a colour associated with each pixel dot plotted. The colours 

of the feature space represents the cumulative frequency (i.e. the number of pixels in the original image 

which have the given 2D or 3D combination). The 3D feature space is a graphical representation of three 

bands of image spectral values. It is dynamic and each class is represented with a coloured ellipse or 

clustered points. When analysing the feature space plot, it is expected that each ellipse is distinct from one 

another to achieve high classification accuracy. If the classes overlap, there is spectral confusion and the 

accuracy of the classification will subsequently be low. However, overlapping ellipse may not necessarily 

mean that training samples are wrong, sometimes it is natural and expected because some landcover spectral 

classes are highly correlated and overlap in reality. 

 Markov random field 4.2.

When interpreting remote sensing image using visual interpretation, context is very important. In this 
concept, pixels are treated in relation with their neighbours and not in isolation. Markov random field (MRF) 
is a useful tool to characterize contextual information using prior and conditional distribution of original 
image (Geman & Geman, 1984). It allows for elimination of ambiguities caused by limited evidence, 
eliminates possible errors and generates smooth image classification output. Let a set of random variable t = 
{t1, t2 … tm} be defined on the set S containing m number of sites in which each random variable tr (1≤ i ≤ m) 
takes a label from a set of labels L. The set S is equivalent to an image containing m pixels; t is a set of pixel 
DN values, and the label set L depends upon the application. A random field that takes cognizance of its 
neighbours is a Markov random field if its probability density function satisfies the following properties; 
 
1) Positivity:   P(t) > 0 for all possible configurations of t, 
2) Markovianity:   P(tr| tS-r) = P(tr| tNr) and  
3) Homogeneity:   P(tr| tNr) is the same for all sites r. 
 
From the equations above, S − r is the set difference (i.e., all pixels in the set S excluding r), tS−r denotes the 
set of labels at the sites in S − r, and Nr denotes the neighbors of site r. Positivity property of MRF is usually 
satisfied and sustains the local conditional properties which is determined by the joint probability P(t). 
Markovianity deals with the dependency of pixels on its neighbourhood with respect to the whole image. 
Homogeneity specifies the conditional probability for the label of a site r, given the labels of the neighboring 
pixels, regardless of the relative position of site r in S. In image analysis, neighbourhood system plays a vital 
role. The first order neighbourhood has four pixels which shares sides with the given pixel. The second 
order neighbourhood shows four pixels having corner boundaries with the pixel of interest. Subsequently, 
higher order neighbourhood can be formulated by extending the second order neighbours in the same 
manner. A clique is a subset of mutual neighbours for all pair of sites. The sites can be single, double, triples 
and so forth. As the number of cliques increases as a result of an increase in the neighbourhood system, the 
computational complexity increases also. The first order neighbourhood system was applied for our study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.2: Showing (a) first order neighbourhood system; (b) second order neighbourhood system; (c) cliques corresponding to neighbourhood 
system. 
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 Pixel based MRF-SRM  4.3.

Pixel based MRF-SRM model adopted by (Tolpekin & Stein, 2009) was selected. Here, SRM image 

classification of a multispectral image 𝑦 that consists of K spectral bands and R spatial resolution which 

corresponds to a square area of R2 on the ground and a scale factor  . We denote the pixel location as      

 , where   is the  1 ×  2  pixel matrix. The output of SRM is a fine resolution classified map c and it has a 

spatial resolution r < R, where R is for coarse resolution and r for fine resolution image, respectively. It is 

assumed that the scale factor  =𝑅/𝑟 is an integer. The area of ground  2 covered by pixel    has a finer 

resolution      and the pixel matrix   = {    } has a size of (        ). The (SR map) c is defined on a 

pixel location   which has the same area as the multispectral image 𝑦. For our study, a scale factor of     

was used for Sentinel-2 multispectral image to obtain an (SR map) c and a scale factor of      for 

Worldview-3 multispectral image.  

 

A multispectral image 𝑥 is assumed which has the same spectral bands   as image 𝑦 and acquired at the same 

spatial resolution c. Image 𝑦 which is directly observed by satellite is assumed to be a degraded observation 

of image 𝑥 which is not observed by satellite. Again, we further assume that each pixel in image 𝑥 can be 

assigned to a unique class         = α           ,         . A degradation model      is used to establish a 

relationship between 𝑦 at pixel    and image 𝑥; 

 

𝑦       
 

  
∑𝑥                                                                                                                                                           

  

   

 

 

A symmetric neighbourhood         on   is defined for each pixel     . This is the set of all pixels inside a 

square window with centre on the pixel     , excluding pixels for itself. Therefore, a classified image c is 

modelled as an MRF with neighbourhood system        , where the prior probability for the (SR map) c is 

    , the conditional probability that image 𝑦 is observed, given the c is   𝑦   , and the posterior probability 

for the (SR map) c is     𝑦 , given that image 𝑦 is observed; 
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From equations (4.5, 4.6 and 4.7); 

      = Prior energy function of (SR map) c 

   𝑦    = Likelihood energy function to observe image 𝑦 given the true (SR map) c 

     𝑦  = Posterior energy function of (SR map) c given the observed image 𝑦 

         and    are normalizing constraints, while T is the constant temperature 

 

Based on Bayes theorem: 

    𝑦        𝑦                                                                                                                                                

 

Therefore, the energy function is expressed as: 

 

    𝑦         𝑦                                                                                                                                         
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4.3.1. Prior energy function 

When we consider the pair of sites interactions, the prior energy can be modeled as follows; 

 

     ∑ (       )                                                                                                                                                      

   

 

 

                     ∑  ∑       

         

 ( (    )       )                                                                                                         

   

 

 

From equation (4.10); 

            (       )  = the local contribution of the prior energy from pixel   (    ). 

                  = the weight of contribution from neighbouring pixels     (    ). 

               (    ) = the neighbourhood system of pixels     . 

                    ; takes the value 0 if        and 1 if otherwise. 

 

The weight of the contribution to the equation (4.10) above can be modeled as; 

 

                

 

The overall magnitude of all weights and the prior energy term is controlled by ∑                        

     For       an isotropic expression is employed and which depends on the distance  (       ) 
between pixels      and   . Again, as the value of   increases, a smoother result is achieved which reduces the 

variation between different classes in the neighbourhood system. 

4.3.2. Likelihood energy function 

The configuration of the likelihood model is dependent on the pixel composition. For our study, we treat 

image 𝑦 as consisting of mixed pixels. Therefore, a single pixel    which has a value 𝑦     is assumed to be 

normally distributed with mean vector    and covariance matrix   . Both are defined below; 

 

     ∑                                                                                                                                                                       

 

   

 

 

      
 

  
∑                                                                                                                                                                  

 

   

 

 

From equations (4.11 and 4.12),      is the proportion of the class α in the pixel     It is assumed that the 

spectral value 𝑥(    ) of the    fine resolution pixels      are independent and identically distributed based on 

Gaussian normal distribution. This means that spectral values of neighbouring pixels which are of the same 

class are not spatially correlated. But the model of our study as seen in equation (4.10) which describes the 

prior energy allows fine resolution pixels to be spatially correlated and this is the case in real images where 

spectral values of pixels are dependent on each other. The likelihood probability of 𝑦    , given          is 

expressed as; 

 

  𝑦    ∏ (𝑦    | (    ))                                                                                                                                                                     

   

 

 ∏
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 𝑦              𝑦        )                                                                         
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The corresponding likelihood energy function is expressed as; 

 

  𝑦    ∑ (𝑦            )                                                                                                                                                                          

   

 

 

 ∑ [
 

 
 𝑦        

      𝑦         
 

 
      ]                                                                                                       

   

 

 

where;  (𝑦            ) is the local contribution to the likelihood energy from pixel        . 

4.3.3. Posterior energy function 

Most labelling problems in computer vision are formulated as a pairwise random field (a probabilistic model 

which combines the unary and pairwise potential). For MRF pixel class labelling, it’s a sum or combination 

of the prior and likelihood models.     𝑦  is the posterior probability distribution of MRF pixel class 

labelling whose energy function is expressed as; 

 

    𝑦    ∑  ∑           
   (    )   

( (    )      )    𝑦                                                                                                         

 

From equation (4.15), the maximum a posteriori (MAP) probability solution for (SR map) c is that which 

minimizes the posterior energy function     𝑦 . Dividing equation (4.16) by a factor of     and defining 

the smoothness parameter                , the posterior energy is expressed further as; 

 

    𝑦     ∑  ∑           
   (    )   

( (    )      )         𝑦                                                                                         

 

The smoothness parameter   in equation (4.16) controls the contribution from the prior and likelihood 

models. Assigning a value    , neglects the likelihood term in the equation and the resulting minimal 

posterior energy is obtained where all pixels is assigned to one class. For our study, the (SR map) c that 

corresponds to the MAP of the posterior energy is our interest; therefore the expression on the right hand 

side of equation (4.17) is optimized. 

 

 Parameter estimation 4.4.

4.4.1. Smoothness parameter  

The maximum a posteriori (MAP) probability solution for the SRM problem is achieved by minimizing the 

posterior energy of (Fig 4.16). The smoothness parameter lambda ( ) in this equation is what controls the 

contribution from the prior and conditional distribution. This parameter which is scale dependent, ranges 

from 0 – 1 and needs to be estimated before the method can be applied. If we assign a value    , the 

likelihood term in the equation is neglected and the resulting minimal posterior energy is obtained where all 

pixels is assigned to one class (Tolpekin & Stein, 2009). Optimal selection of   for a given image subset used 

for MRF-based analysis is achieved by several experiments (trial and error); this is computationally expensive 

and time consuming. Both visual inspection of results as well as the value of kappa k was used to make the 

choice for optimal   in this research.  
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4.4.2. Simulated annealing  

In remote sensing image analysis, optimization by simulated annealing (SA) is a stochastic relaxation process 

that generates a sequence of images which in essence converges to the MAP estimate (Geman & Geman, 

1984). Because of the large configuration space of image labeling problems, achieving a global energy 

minimization is not easily obtainable (Tolpekin & Stein, 2009). However, in simulated annealing, Geman & 

Geman, (1984) identified a solution to the MAP estimate of optimal image labeling problem by employing 

the Metropolis sampler algorithm to sequentially decrease the temperature of the solution. Here, the 

annealing schedule is the sequence and time spent as temperature decreases until it reaches equilibrium. The 

idea or concept originates from the cooling, solidification and crystallization of hot metals and some liquids. 

A random starting point is required when implementing the annealing schedule; however this slows down 

the process (Tolpekin & Stein, 2009). Kirkpatrick et al., (1983) implemented a faster annealing schedule after 

studying its computational efficiency and introduced a solution showing that a good estimate for the starting 

point will improve the quality of the solution. Two parameters initial temperature (          updating 

parameter        control the energy optimization in simulated annealing process. The cooling schedule is 

   where the temperature at the iteration   is changed according to             . Updating parameter 

           controls the rate of temperature decrease and the annealing process stops after all pixels have 

been updated. The value of   also needs to be carefully defined as this affects the final classification 

outcome.  

 Object based image analysis of SRM result 4.5.

In pixel based image analysis, MRF has been successfully applied to model contextual information using 

prior and conditional distribution of original image. Therefore, pixels of the same class are grouped together 

and directly assigned specific information classes at this level. However, in object based image analysis, the 

image-object is the central methodological element and the object of investigation. Image segmentation plays 

an important role in OBIA where features are extracted with respect to their various characteristics to 

distinguish one region from another. In most OBIA procedures, remote sensing imageries or thematic 

outputs are partitioned into regions (objects) and subsequently their characteristics are analysed at various 

scales (Hay & Castilla, 2006). Spectral classification applied on pixel basis using remote sensing images tends 

to ignore useful spatial information between pixels (Lucieer & Stein, 2002). This becomes a cause for 

concern in sub-pixel level classification like SRM whose output is also probabilistic. Segmentation however 

addresses this concern as it helps to extract spatial objects from image scene. Therefore, the classified SRM 

thematic results, was partitioned into raster objects (segments) using region growing segmentation algorithm 

as post a classification procedure and the resulting thematic object characteristics are analysed. At this stage 

and depending on size, some segments (objects) may get bigger, smaller or even disappear with respect to 

the neighbouring classified landcover information.  

4.5.1. Segmentation of (SR map) c 

Segmentation refers to the partitioning or grouping of pixels into connected regions based on homogeneity 

criteria. Using region growing segmentation algorithm, we partitioned the classified SRM thematic results 

into objects (segments). The segmentation technique chosen for any analysis depends on the type of data 

and the application of interest. We chose region growing because the location of the initial seed is automatic 

and free of any parameter tuning or optimization; this does not affect the outcome of the segmentation 

result. Region growing segmentation is a simple and effective segmentation process that partitions images 

into regions based on attributes such as area, shape, statistical parameters and texture (Bins et al.,  1996). In 

this process, a list of regions is first created which is composed of only one pixel (seed). By adding pixels to 

the seed which is the starting point, each region is compared with its neighbour to determine if they are 

similar or not, joins and label similar pixels into one region and leave out dissimilar ones. As regions are 

merged to each other, they are removed from the list. This process iteratively continues from one region to 

another until there is no joinable region.  
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When segmentation is applied to a classified image, the initial class labels are changed and a homogenous 

region which represents objects of interest is formed. Local changes may change the size of segments and 

isolated pixels might disappear. The neighbourhood system determines the neighbouring pixels that will be 

taken into consideration and also the computational time required for the iteration to complete. The size of 

the image subset and spatial resolution of the image that is analysed also affects the computational time (Fan 

et al., 2005). Again, the size of the object of interest is also considered and affects the neighbourhood system 

chosen. For this research, since the tree object is of interest with an approximate crown radius of 8-10 m, a 

first order neighbourhood system (Fig 4.2a) was chosen. This is good because the tree objects are isolated 

randomly within the fields and a first order neighbourhood system considers only a small area surrounding 

the pixel of interest. 

 

 Accuracy assessment 4.6.

Accuracy assessment in image analysis (classification) is a measure of reliability of the results and which 

indicates if the objectives of the analysis have been achieved (Richards & Jia, 2006).  We performed both 

pixel based and object based accuracy assessment in this research 

 

4.6.1. Pixel based accuracy assessment 

There are various methods of quantifying pixel based accuracy of thematic maps based on various statistics 

but the most widely used is the error matrix (confusion or contingency matrix) (Jong & Meer, 2006). The aim 

of the error matrix is to estimate the number of correctly mapped pixels in an image. This is achieved by 

comparing the classified thematic map against the reference (ground truth or verification). The authenticity 

of the reference information used to perform the accuracy assessment determines the reliability of the 

classified map. When applying the error matrix, the reference data classes are listed by column, while the 

classes indicating the thematic map are listed by row. The diagonal of the matrix indicates agreement (i.e. the 

number of correct class label between the two data sets). For all classes, the ratio of the sum of the correctly 

classified pixels to the sum of the total pixels tested is determines the overall accuracy (Richards & Jia, 2006). A 

large number within the diagonal of the matrix shows good class agreement between both data and leads to 

a high accuracy; however, the reverse is the case with poor class agreement. Again, using the error matrix, 

one can also compute the kappa k, error of commission and error of omission respectively. Kappa statistics k is a 

measure of the quality of the thematic output (Congalton, 1991). The error of commission refers to pixels 

that belong to the reference classes which the classifier placed in their respective class of interest, while the 

error of omission corresponds to those pixels belonging to the reference classes which the classifier failed to 

correctly recognize (Richards & Jia, 2006). By dividing the total counts in the cell by the column sum, all the 

errors were converted to percentage. The error matrix was the pixel based accuracy assessment measure employed 

in this research. For both images, the tree crown classes as well as other classes identified were assessed 

against the reference classes generated using sampled test sets. Their results were compared against each 

other respectively to ascertain the performance of the applied method in different scale.  

 

4.6.2. Object based accuracy assessment 

In addition to the error matrix, another accuracy assessment measure performed in this research was on object 

level validation of the tree crowns because the tree crowns were of interest in our study. To achieve this, first we 

converted the segmented thematic (SR map) c into polygon shapefiles (vector). Then we isolated the tree 

shapefiles from other background classes. With both detected tree object and reference data (Fig 3.3) 

available as vector, we establish a one-to-one comparison between the identified tree crowns and reference 

tree objects respectively using three accuracy measures; (a) existential (b) extensional (c) positional accuracy 

measures (Mahour et al., 2016). All three accuracy measures are essential to evaluate the quality of our 

detection.   



SUPER RESOLUTION MAPPING OF TREES FROM SATELLITE IMAGES AT DIFFERENT SCALES 

 

 

 
18 

a) Existential accuracy: The existential accuracy helps to ascertain the presence of the object (if they 

exist). Two accuracy indicators were estimated that concerns the existence of tree objects;  

i. Total detection or True positives (TP) – This is where detected trees exist in the polygon reference 

layer. 

ii. False negatives (FN) – This is where there is failure to detect tree objects in the reference layer. 

 

Note: The false positive (this concerns improper detection trees which does not exist in the polygon 

reference layer) was ignored because our interest was on individual tree objects. We therefore generated our 

reference from standalone trees and left out trees that are found around similar background classes like 

shrubs and rocks (Fig 3.3). Any attempt to compute the false positives will give a bias result. 

 

b) Extensional accuracy: The extensional accuracy determines the spatial extent of the existing tree 

object. We adopted a method developed by Clinton et al., (2010) for assessing the goodness of spatial 

objects segmented from satellite sensor imagery. To achieve this, first we used a spatial join overlay tool 

in ArcGIS to intersect both detected tree object and reference data (Fig 3.3). Secondly we computed the 

area of both detected tree object and reference tree crown. Finally, we exported them in excel and 

calculated the overestimation, underestimation and total detection errors using equations (4.18, 4.19 and 

4.20) respectively. The quality of detection depends on the extent of agreement between the detected 

tree object and reference data. 

 

For a given (SR map) c, the local area tree object difference (    ; 

       -                                                                                                                                                                                              

  

where;   = measure for a single tree object. 

     = area of the identified tree object. 

             = area of the reference tree objects. 

                     = difference in the local area tree object. 

 

Below is an error matrix indicator which was proposed by (Clinton et al., 2010) and used in this study to 

evaluate the extential or spatial extent accuracy of identified tree crown objects; 

 

                           
  
    

∑  𝑟        𝑅  

∑  𝑟       
                                                                                                                      

 

                            
  
    

∑  𝑟        𝑅  

∑  𝑟    𝑅  
                                                                                                                    

 

With the index     also ranging between 0 and 1, the total detection error can be identified as; 

                                        √
                  

                     
 

 
                                             

 

Note: Overestimation and underestimation values range between 0 and 1. A good match is said to be 

achieved between the reference and the identified tree crowns if the values of equations (4.24 and 4.25) are 

close to zero. The reference tree object (𝑅   is overestimated if                  and underestimated if 

     . 

 

 

c) Positional accuracy: The positional accuracy measures the variation of the detected tree object 

centroid from the reference tree objects. Again, the spatial join overlay tool in ArcGIS was used to 
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overlay both detected tree object and reference data (Fig 3.3). Acceptance of agreement is based on 

having the centroid in between identified tree crown object and reference tree objects. We evaluated 

the distance between two centroids of reference tree crown         and detected tree objects   

     . Their Euclidean distance and positional error is computed as;  
 

                       √                                                                                                                                                                                                                                                                        

 

                      ∑ 

 

   

                                                                                                                                             

where;   = the Euclidean distance for one individual tree object. 

   = the average positional error for all detected tree objects. 

  = the total number of tree objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A B

Figure 4.3: Example of accuracy measure of tree crown objects; (A) existential accuracy measure, (B) extensional accuracy measure (C) positional accuracy measure. 

C  
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5. RESULTS  

This chapter shows the results of our method as implemented in this research. It is divided into three 

sections; the first section shows the results of application on Sentinel-2 multispectral image, the second 

section shows the results of application on Worldview-3 multispectral image and the third section is the 

comparison of the results at different scale and spatial resolution.  

 Section - 1: Sentinel-2 multispectral image 5.1.

5.1.1. Spectral class definition 

We defined four (4) landcover classes for the Sentinel-2 multispectral image; which are trees, rock, barsoil_1, 

baresoil_2 and shrub. To get a reliable estimate for the class conditional mean and co-variance matrix for this 

classification, a sufficient number of training samples is required for each class. For an   dimension spectral 

space with mean vector of   elements and a symmetric covariance matrix of size    , the minimum 

number of independent training samples is 10   and the maximum is 100   and above if possible (Richards 

& Jia, 2006). This rule of thumb was applied in this research to generate the number of training samples for 

all the classes. For the tree class, point shapefile was generated, while polygon shapefile was used for other 

classes. The total number of pixels used for training is 1011 pixels and the individual number of pixels for 

each class is shown in Table 5.1; 

 
Table 5.1: Showing the total number of training samples for each class using the Sentinel-2 multispectral image. 

Class Name Tree Rock Barsoil_1 Baresoil_2 Shrub 

No. of pixels for training 413 215 113 221 49 

 

A. Contingency matrix 

Table 5.2 shows the contingency matrix of the Sentinel-2 multispectral image. The contingency (error 

matrix) in supervised classification is achieved by comparing the classified thematic map against the 

reference. The reference data classes are listed by column, thematic map classes are listed by row and the 

diagonal of the matrix indicates agreement. The number of training samples selected and the classification 

method applied influences the result of the contingency matrix. The correctly classified pixels are quite high 

for each class as seen from the diagonal matrix. There is also confusion between the classes showing that 

some pixels are misclassified. The reason for this is that the tree class and other background class like shrubs 

are spectrally similar; to distinguish them is a challenge for spectral classifiers. Again, because of the coarse 

resolution of this image, we couldn’t get sufficient training samples for some classes (rock, baresoil_1, 

baresoil_2, and shrub); this made it difficult for the classifier to clearly distinguish one spectral class from 

another. 

 

Table 5.2: Showing the contingency matrix for the Sentinel-2 multispectral image. 

 Tree Rock Barsoil_1 Baresoil_2 Shrub 

Tree 734 5 10 60 11 

Rock 104 1200 11 688 84 

Barsoil_1 26 34 2772 850 52 

Baresoil_2 6 3 0 3679 14 

Shrub 15 3 13 216 1396 
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B. Feature space 

Fig 5.1 shows the results of both 2D and 3D feature space plots of the Sentinel-2 multispectral image. The 

2D feature space of figure 5.1(A), show a plot of near infra-red and green band. The classes are clearly 

separated from each other. However, within class variance of tree class is quite high. The reason is that most 

pixel reflectance value from coarse resolution images forms a spectral mixture with background classes. This 

produces mixed pixels and spectrally distinct tree samples of which some were selected for training. To 

compensate for this, the covariance matrix was divided by a factor of 2 so as to reduce the within class 

variance while still maintaining sufficient cluster to estimate the distribution for the classifier. Fig 5.1(B), show 

the feature space plot in near infra-red and blue band. It is similar to fig 5.1(A). The position of the tree class 

is lower here because the spectral reflectance of the blue band has a shorter wavelength than that of the green 

band in the electromagnetic spectrum. Fig 5.1(C) shows the feature space plot in green and blue band. There 

is an overlap between class tree, rock and shrub. Tree class is lowest in band 3 because blue band has a shorter 

wavelength than the green band in the electromagnetic spectrum. Other classes’ rock and shrubs is also closely 

overlapped with the tree class. The 3D feature space plot of figure 5.1(D) is similar to that of figure 5.1(A) 

with classes clearly separated. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

C. Class separability 

Class separability is a measure of how well classes can be separated from each other. It is determined using 

the class mean and covariance matrix estimated from training samples for classifiers that estimates class 

probability distribution. Table 5.3, shows the class separability of Sentinel-2 multispectral image using Jeffries-

Matusita distance. The class with the lowest class separability is between rock and shrub with a value of 

1.996.This is followed by class rock and baresoil_2 with a value of 1.998 and finally class tree and shrub with a 

value of 1.999. The highest class separability value is 2 showing that those classes are clearly separated. All 

these class separability values are quite high and close to perfect. Class separability in SRM is dependent on 

A B

C D

Legend  

Figure 5.1: Showing feature space plots of Sentinel-2 multispectral image. 
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the class spectral variation, which also depends on scale (Tolpekin & Stein, 2009). Because the resolution of 

this image is quite coarse, we couldn’t generate sufficient number of training pixels in some classes (rock, 

baresoil_1, baresoil_2, and shrub) due to poor class spectral variation. This is why class separability values are 

high and close to perfect. 

 
Table 5.3: Showing the class separability for the Sentinel-2 multispectral image using Jeffries-Matusita distance. 

 Tree Rock Barsoil_1 Baresoil_2 Shrub 

Tree 0 2.000 2.000 2.000 1.999 

Rock 2.000 0 2.000 1.998 1.996 

Barsoil_1 2.000 2.000 0 1.999 2.000 

Baresoil_2 2.000 1.998 1.999 0 1.999 

Shrub 1.999 1.996 2.000 1.999 0 

 

5.1.2. Parameter estimation 

A. Simulated annealing 

Two parameters initial temperature (     and updating parameter        control the energy optimization in 

simulated annealing process (4.5.2). The complexity of SRM problem which depends on scale factor and class 

separability affects the annealing schedule (Tolpekin & Stein, 2009). As the value of      increases, the 

annealing schedule increases as it takes more time to update. Figure 5.2, shows the plot of      and    

parameter tuning for Sentinel-2 multispectral image. We plot the mean energy against the      in Fig 5.2 (A) 

and mean energy against    in Fig 5.2 (B). Both plots show a gradual reduction of the mean energy. If the 

final energy is lowest, we obtain a global minimum. Also if the standard deviation is low, it shows stability and 

that results are reproducible. In Fig 5.2 (A), we see that the mean energy changes as we experimented with 

varying the      parameter (Table 5.4). The lowest mean energy was the basis for selecting our optimal      

at 0.8. The standard deviation also varies as well, but the difference between their standard deviations is 

insignificant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

Figure 5.2: Showing gradual reduction of mean energy using Sentinel-2 multispectral image (A) Tupd parameter is plotted against mean 
energy (B) T0 parameter is plotted against mean energy. The red line shows the mean energy and the bars show the standard deviation from 
the mean. 
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In Fig 5.2 (B), we also see that the mean energy changes as we experimented with varying the    parameter 

(Table 5.5). The standard deviation also varies as well. A high    value is required as to achieve the required 

global minimum of the solution. A lower    value will achieve a local minimum which is not optimal. 

Between    values 1 – 10, we observe that the mean energy values are consistently stable with little variation. 

Any value for    is optimal within this range. Optimal    value is therefore chosen at 4. The difference 

between their standard deviations is also insignificant. 

 

 
Table 5.4: Showing the updating temperature parameter Tupd estimation for Sentinel-2 multispectral image. 

      Mean energy   energy 

0 2.70 0.015 

0.1 2.695 0.009 

0.5 2.675 0.010 

0.8 2.673 0.010 

0.9 2.675 0.013 

0.95 2.676 0.010 

0.99 2.677 0.012 

 

Table 5.5: Showing the initial temperature parameter T0 estimation for Sentinel-2 multispectral image. 

    Mean energy   energy 

0 2.701 0.013 

1 2.677 0.006 

2 2.673 0.009 

3 2.674 0.010 

4 2.674 0.008 

5 2.666 0.007 

10 2.678 0.009 

 

B. Smoothness parameter 

Both visual inspection of results as well as the value of k was used to make the choice for optimal   in this 

research. The optimal   in SRM problem depends on scale factor. For the Sentinel-2 multispectral image, we 

used a scale factor of S=5. We obtained less noisy results as we applied   value ranging from 0.50 – 0.55 

(Table 5.6). At a higher   value from 0.56 and above, the mean value of k increased, but the results (based on 

visual inspection) of the solution was too smooth. While other parameters like (                  ) 

remained fixed, the optimal   was selected at        having a k value of 0.792 (Table 5.6). 

 
Table 5.6: Showing the smoothness parameter estimation using the Sentinel-2 multispectral image. 

  0.50 0.51 0.52 0.53 0.54 0.55 0.56 

 k 0.764 0.770 0.772 0.769 0.767 0.792 0.802 

 

5.1.3. Classification results 

Here, we present the results in three parts. The first part is the result of maximum likelihood classification, 

the second part is the results of pixel based MRF-SRM and the third part shows the result of object based 

image analysis. 
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A. Maximum likelihood classification 

Fig 5.3 shows (A) Sentinel-2 multispectral image subset and (B) result of maximum likelihood classification of 

the Sentinel-2 multispectral image subset. Based on visual inspection, the result looks clumsy; tree class is 

clustered and smaller trees were merged with background class like shrub. The reason for this is that maximum 

likelihood assigns pixels to a class with the highest probability of membership. Looking at (Table 5.1), we see 

that only the tree class has sufficient number of training samples while other classes had insufficient training 

samples. This made it difficult for the classifier to clearly distinguish one spectral class from another. There is 

confusion between tree and shrub classes (Table 5.7). Also some confusion exists between rock and shrub 

classes. The reason for this is that tree class and background class like shrubs are spectrally similar; to 

distinguish them is a challenge for spectral classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7 shows the confusion matrix of the MLC classification with various accuracy measures. Other parts 

of error matrix accuracy measure include producer accuracy, user accuracy, error of omission and error of commission 

respectively. The classes with has the highest producer accuracy is tree, rock, baresoil_1 and baresoil_2 at 100%, 

while baresoil_1, baresoil_2 and shrub has the highest user accuracy at 100%. Also, class shrub has the highest 

error of omission at 14.28%, while the class tree has the highest error of commission at 15%. The overall 

accuracy of the classification is 98% while the k value is 0.976. 

 

Table 5.7: Showing the confusion matrix of MLC result using the Sentinel-2 multispectral image with accuracy assessment. 

 Tree Rock Barsoil_1 Baresoil_2 Shrub Error of  

Commission (%) 

User  

Accuracy (%) 

Tree 35 0 0 0 6 15% 85% 

Rock 0 71 0 0 3 4% 96% 

Barsoil_1 0 0 130 0 0 0% 100% 

Baresoil_2 0 0 0 249 0 0% 100% 

Shrub 0 0 0 0 54 0% 100% 

Error of 

Omission (%) 

 

0% 

 

0% 

 

0% 

 

0% 

 

14.28% 

Producer  Accuracy 

 (%) 

 

100% 

 

100% 

 

100% 

 

100% 

 

86% 

 

BA

Legend  

Figure 5.3: Showing subset of (A) Sentinel-2 multispectral image and (B) MLC result of Sentinel-2 multispectral image. 
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B. Pixel based MRF-SRM 

Fig 5.4 shows (A) Sentinel-2 multispectral image subset and (B) the result of pixel based MRF-SRM of the 

Sentinel-2 multispectral image subset. Based on visual inspection, the result looks smooth and shows a good 

representation of the input image than the maximum likelihood result. Both big and small trees were well 

identified. The smoothness of the result is because of the incorporation of   in the solution (4.17). The initial 

spatial resolution is 10m. The final output reduced to 2m after we applied a scale factor of S=5 based on the 

degradation model (4.4). There are however some misclassifications between all the classes. Because the 

image has a coarse resolution, we couldn’t get sufficient training samples for some classes (rock, baresoil_1, 

baresoil_2, and shrub); this made it difficult for the classifier to clearly distinguish one spectral class from 

another. This led to the misclassification between these classes. Again, the tree class and background class like 

shrubs are spectrally similar; to distinguish them is a challenge for spectral classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8 shows the confusion matrix of the classification with various accuracy measures. Other parts of 

error matrix accuracy measure include producer accuracy, user accuracy, error of omission and error of commission 

respectively. The class with has the highest producer accuracy is baresoil_1 at 99%, while baresoil_2 has the 

highest user accuracy at 99%. Also, the class rock has the highest error of commission at 43%, while the class 

baresoil_2 has the highest error of omission at 33%. The overall accuracy of the classification is 82% while the 

k value is 0.79. 

 
Table 5.8: Showing the confusion matrix of pixel-based MRF-SRM classification result using the Sentinel-2 multispectral image with 
accuracy assessment. 

 Tree Rock Barsoil_1 Baresoil_2 Shrub Error of  

Commission (%) 

User  

Accuracy (%) 

Tree 734 5 10 60 11 10% 90% 

Rock 104 1200 11 688 84 43% 57% 

Barsoil_1 26 34 2772 850 52 26% 74% 

Baresoil_2 6 3 0 3679 14 1% 99% 

Shrub 15 3 13 216 1396 15% 85% 

Error of 

Omission (%) 

 

17% 

 

4% 

 

1.2% 

 

33% 

 

10% 

Producer 

Accuracy (%) 

 

83% 

 

96% 

 

99% 

 

67% 

 

90% 

Legend  

A B

Figure 5.4: Showing subset of (A) Sentinel-2 multispectral image and (B) pixel-based MRF-SRM classification result of Sentinel-2 
multispectral image. 
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C. Result of object based image analysis 

Fig 5.5 shows the result of applying object based image analysis on the output of pixel based MRF-SRM using 

the Sentinel-2 multispectral image. Based on visual inspection, the result looks smooth and shows a good 

representation of the input image. Both big and small trees were well identified. However, because of the 

segmentation applied, some of the smaller trees have disappeared and are merged into larger homogenous 

segments. Other classes like rock, baresoil_1, baresoil_2, and shrub were also well identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.6 we show the accuracy map after applying object-based image analysis on the output of pixel based 

MRF-SRM using the Sentinel-2 multispectral image. Fig 5.6 (B) shows overestimated, underestimated and 

agreement between the identified tree crowns and the reference tree crown overlaid on the Sentine-2 

multispectral image. Fig 5.6 (C) shows only overestimated, underestimated and agreement between the 

identified tree crowns and the reference tree crown. It can be seen that the identified tree crown matched the 

reference tree object in some areas. There are also areas where both the identified tree crowns and reference 

do not agree and areas where they partly agree. The spatial join overlay served as a basis for computing the 

object based accuracy assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend  

A B

A B
C

Figure 5.5: Showing subset of (A) Sentinel-2 multispectral image and (B) object-based image analysis SRM result using Sentinel-2 
multispectral image. 

Figure 5.6: Showing the accuracy map for object-based image analysis of SRM classification result using the Sentinel-2 multispectral image. 
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Table 5.9 shows the results for all three accuracy measures (existential, extensional and positional) for 

validating detected tree objects in Sentinel-2 multispectral image. A total of 1214 (TP) individual tree crown 

objects were successfully detected out of 1787 reference objects, while a total of 573 (FP) were not detected 

out of the reference objects. The reason for missing some tree objects which were not detected in the 

reference could be because those trees are smaller in size. The positional accuracy between the detected tree 

objects and reference tree objects is 6.504 m. This is less than one pixel considering the spatial resolution of 

the input image which is 10 m.  The table also shows the results of local area tree difference, overestimation, 

underestimation and total detection error respectively. Recall that the reference tree objects ( 𝑅   is 

overestimated if       and underestimated if      . Therefore the reference tree object ( 𝑅   is 

underestimated here because the local area tree difference is -0.5061 which is less than zero. The reason for 

underestimation may be because of the sun illumination angle during image acquisition and considering that 

trees are elevated objects; these can cause occlusion casting shadow and misplacement of the position of the 

trees. This may be verified by visual interpretation of the results (Fig 5.6). Another reason is that most pixel 

reflectance value from coarse resolution images forms a spectral mixture with background classes. This 

produces the mixed pixel effect which might cause some misplacement in the actual position of the trees. The 

total detection error at 0.4669 is also greater than zero. This also signifies that the reference tree object (𝑅   is 

underestimated. Finally, the detection accuracy is still acceptable at 68%. This shows good percentage 

detection between the reference tree object and the detected tree crown object. 

 
Table 5.9: Showing results of object based accuracy measure applied on the Sentinel-2 multispectral image (total detection, false negative, positional 
accuracy, local area difference, overestimated, underestimated total detection error). 

Image Total  

detection (%) 

False  

negative (%) 

Positional  

accuracy (m) 

Local area  

difference 

Overestimated  

 

Underestimated 

 

Total detection  

error 

Sentinel-2  1214 (68%) 573 (32%) 6.504 - 0.5061 0.6455 0.1394 0.4669 

 

 

 

 Section - 2: Worldview-3 multispectral image 5.2.

5.2.1. Spectral class definition 

We defined eight (8) landcover classes for the Worldview-3 multispectral image; which are trees, road, built_up, 

field_1, field_2, field_3, baresoil and shrub. The total number of pixels used for training is 4271 pixels and shown 

in Table 5.10. 

 
Table 5.10: Showing the total number of training samples for each class using the Worldview-3 multispectral image. 

Class Name Tree Road Built_up Field_1 Field_2 Field_3 Baresoil Shrub 

No. of pixels for training 1192 65 74 1158 960 254 363 205 

 

A. Contingency matrix 

Table 5.11 shows the contingency matrix of Worldview-3 multispectral image. The correctly classified pixels 

are quite high for each class as seen from the diagonal matrix. The spatial resolution of the image is high and 

most landcover classes were spectrally distinct. This availed us to get sufficient number of training samples 

in classes’ tree, field_1 and field_2 (Table 5.10). There is however confusion between classes tree, shrub and 

field_3. The reason is that the tree class and these background classes like shrubs, field_3 are spectrally similar; to 

distinguish them is a challenge for spectral classifiers. Some confusion also exists between class road and 

baresoil which still show spectral similarity; this is challenging to distinguish.  
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Table 5.11: Showing the contingency matrix of the Worldview-3 multispectral image. 

 Tree Road Built_up Field_1 Field_2 Field_3 Baresoil Shrub 

Tree 419 0 0 0 0 0 0 0 

Road 0 41 0 0 0 0 77 0 

Built_up 0 0 88 0 0 0 0 0 

Field_1 0 0 0 386 0 0 0 0 

Field_2 0 0 0 0 495 2 0 0 

Field_3 0 0 0 1 0 37 0 0 

Baresoil 0 36 0 0 1 0 11 0 

Shrub 2 0 0 0 0 60 0 83 

B. Feature space 

Fig 5.7 shows the feature space plots of the Worldview-3 multispectral image. The 2D feature space of Fig 

5.7(A), show a plot of near infra-red and green band. The dots are denser here for the tree class which also 

has a large variance than in the Sentiel-2 multispectral image. This is as a result of high spatial resolution and 

large number of the training samples (Table 5.10). The built_up and road classes also have a large variance. 

But this is because our training samples for both classes were spectrally distinct and insufficient (Table 5.10). 

There is overlap between class tree, shrub, field_3 and field_1 classes. This is because tree class and background 

classes like shrubs, field_3 and field_1 are spectrally similar; to distinguish them is a challenge for spectral 

classifiers. Again, this confusion also exists between class field_2, baresoil and road which still show similar 

spectral characteristics. Fig 5.7(B), show the feature space plot in near infra-red and blue band. It is similar to 

Fig 5.7(A) and the position of the tree class remained almost the same. Fig 5.7(C) shows the feature space 

plot in green and blue band. Most of the classes overlap among themselves. Tree class is lowest here because 

the blue band has a shorter wavelength than green band in the electromagnetic spectrum. The 3D feature 

space plot of figure 5.6(D) is similar to that of figure 5.6(A) with the ellipse of class tree, shrub, field_3 and 

field_1overlapping as well as the ellipse of classes’ field_2, baresoil and road. 
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Figure 5.7: Showing feature space plot using the Worldview-3 multispectral image. 
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C. Class separability 

We show the class separability of the Worldview-3 multispectral image in Table 5.12 using Jeffries-Matusita 

distance. The class with the lowest class separability is between field_3 and shrub with a value of 1.230. This is 

followed by class road and baresoil with a value of 1.460 and finally class field_1and field_3 with a value of 1.990.  

High class separability values are because most of the classes are spectrally distinct. We also had insufficient 

number of training samples for classes’ road, built_up, field_3, baresoil and shrub (Table 5.10) leading to high 

class separability value. The insufficient number of training samples is due to the large configuration of 

image space and spectral dissimilarity between these classes. The reason for a lower separability is because 

spectral classifiers find it difficult to distinguish between spectral similar classes (tree, shrub, field_3 and field_1). 

The highest class separability value is 2. 

 
Table 5.12: Showing the class separability of the Worldview-3 multispectral image using Jeffries-Matusita distance. 

 Tree Road Built_up Field_1 Field_2 Field_3 Baresoil Shrub 

Tree 0 2.000 2.000 2.000 2.000 2.000 2.000 2.000 

Road 2.000 0 2.000 2.000 2.000 2.000 1.460 2.000 

Built_up 2.000 2.000 0 2.000 2.000 2.000 2.000 2.000 

Field_1 2.000 2.000 2.000 0 2.000 1.990 2.000 2.000 

Field_2 2.000 2.000 2.000 2.000 0 2.000 2.000 2.000 

Field_3 2.000 2.000 2.000 1.990 2.000 0 2.000 1.230 

Baresoil 2.000 1.460 2.000 2.000 2.000 2.000 0 2.000 

Shrub 2.000 2.000 2.000 2.000 2.000 1.230 2.000 0 

5.2.2. Parameter estimation 

A. Simulated annealing 

The two parameters which control the energy optimization in simulated annealing process are initial 

temperature (         updating parameter       . Fig 5.8 shows the plot of      and    parameter tuning for 

Worldview-3 multispectral image. We plot the mean energy against the      in Fig 5.8 (A) and mean energy 

against    in Fig 5.8 (B). Both plots show a gradual reduction of the mean energy. If the final energy is lowest, 

we obtain a global minimum. Also if the standard deviation is low, it shows stability and that results are 

reproducible. In Fig 5.8 (A), we see that the mean energy changes as we experimented with varying the      

parameter (Table 5.13). The lowest mean energy and standard deviation was the basis for selecting our 

optimal      at 0.99.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
B

Figure 5.8: Showing gradual reduction of mean energy using Worldview-3 multispectral image (A) Tupd parameter is plotted against mean energy (B) 
T0 parameter is plotted against mean energy. The red line shows the mean energy and the bars show the standard deviation from the mean. 
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In Fig 5.8 (B), we also see that the mean energy changes as we experimented with varying the    parameter 

(Table 5.14). The standard deviation also varies as well. A high    value is required as to achieve the required 

global minimum of the solution. A lower    value will achieve a local minimum which is not optimal. Again, 

between    values 1 – 10, we observe that the mean energy values are consistently stable with little variation. 

Any value for    is optimal within this range. Optimal    value is therefore chosen at 4. The difference 

between their standard deviations is also insignificant. 

 
Table 5.13: Sowing the initial temperature parameter estimation using the Worldview-3 multispectral image. 

     Mean energy   energy 

0.8 1.208 0.0024 

0.9 1.206 0.0020 

0.95 1.202 0.0023 

0.99 1.196 0.0008 

 
Table 5.14: Showing the updating parameter Tupd estimation using the Worldview-3 multispectral image. 

   Mean energy   energy 

0 1.211 0.0030 

1 1.196 0.0007 

2 1.197 0.0010 

3 1.196 0.0013 

4 1.196 0.0007 

5 1.196 0.0012 

10 1.197 0.0013 

B. Smoothness parameter 

Again, both visual inspection of results as well as the value of k was used to make the choice for optimal  . 

We obtained less noisy results as we applied   value ranging from 0.86 – 0.95 (Table 5.15). At a higher   value 

from 0.91 and above, the mean value of k increased, but the results (based on visual inspection) of the 

solution was poor and over smoothened. While other parameters like (                  ) remained fixed, 

the optimal   for the Worldview-3 multispectral image was selected at        having a k value of 0.874 

(Table 5.15). 

 
Table 5.15: Showing the smoothness parameter estimation using the Worldview-3 multispectral image. 

  0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 

k 0.878 0.876 0.876 0.873 0.875 0.874 0.877 0.862 0.880 0.871 0.886 

 

5.2.3. Classification results 

Here, we present the results in three parts. The first part is the result of maximum likelihood classification, 

the second part is the results of pixel based MRF and the third part shows the result of object based image 

analysis. 

A. Maximum likelihood classification 

Fig 5.9 shows (A) Worldview-3 multispectral image subset and (B) result of maximum likelihood classification 

of the Worldview-3 multispectral image subset. Based on visual inspection, the result looks noisy, but most 

classes can still be distinguished. The noise which exists mainly between classes’ tree, shrubs and field_1 is 

because these classes are spectrally similar and challenging to distinguish for spectral classifiers. From (Table 

5.10), we see that the road, built_up, field_3, baresoil and shrub classes have insufficient number of training 
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samples. This made it difficult for the classifier to clearly distinguish them. There is confusion between class 

tree, shrub, field_3 and field_1 classes (Table 5.16). This is because tree class and background classes like shrubs, 

field_3 and field_1 are spectrally similar; to distinguish them is a challenge for spectral classifiers. Again, this 

confusion also exists between class field_2, baresoil and road which still show similar spectral characteristics.  

 

 

 

 

 

 

 

 

 

 

 

Table 5.16 shows the confusion matrix of the MLC classification with various accuracy measures. Other parts 

of error matrix accuracy measure include producer accuracy, user accuracy, error of omission and error of commission 

respectively. The classes with has the highest producer and user accuracy is built_up at 100%. The class shrub 

has the highest error of omission at 14.63%, while the class road has the highest error of commission at 

35.2%. The overall accuracy of the classification is 96.3% while the k value is 0.844. 

 
Table 5.16:  Showing the confusion matrix of MLC result using the Worldview-3 multispectral image with accuracy assessment. 

 Tree Road Built_up Field_1 Field_2 Field_3 Baresoil Shrub Error of  

Commission (%) 

User  

Accuracy (%) 

Tree 1176 0 0 0 0 4 0 7 0.92% 99.1% 

Road 0 57 0 0 0 0 31 0 35.2% 64.8% 

Built_up 0 0 74 0 0 0 0 0 0% 100% 

Field_1 0 0 0 1134 0 4 0 3 0.62% 99.4% 

Field_2 0 0 0 0 958 1 1 0 0.21% 99.8% 

Field_3 1 0 0 20 0 210 0 20 16.33% 83.7% 

Baresoil 0 8 0 0 2 0 331 0 2.93% 97.1% 

Shrub 15 0 0 4 0 35 0 175 23.58% 76.4% 

Error of  

Omission (%) 

 

1.34% 

 

12.31% 

 

0% 

 

2.07% 

 

0.21% 

 

17.32% 

 

8.82% 

 

14.63% 

Producer  

Accuracy (%) 

 

98.6% 

 

87.7% 

 

100% 

 

97.9% 

 

99.8% 

 

82.7% 

 

91.2% 

 

85.4% 

 

B. Pixel based MRF 

Fig 5.10 shows (A) Worldview-3 multispectral image subset and (B) the result of pixel based MRF of the 

Worldview-3 multispectral image subset. Based on visual inspection, the result looks smooth and shows a 

good representation of the input image than the maximum likelihood result. Both big and small trees were 

A B

Figure 5.9: Showing subset of (A) Worldview-3 multispectral image and (B) MLC result of Worldview-3 multispectral image. 

Legend  
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well identified. The smoothness of the result is because of the incorporation of   in the solution (4.17). The 

spatial resolution is 2m and to obtain the nominal scale for the results, we applied a scale factor of S=1 based 

on the degradation model (4.4). There is confusion between class tree, shrub, field_3 and field_1 classes (Table 

5.16). This is because tree class and background classes like shrubs, field_3 and field_1 are spectrally similar; to 

distinguish them is a challenge for spectral classifiers. Again, this confusion also exists between class field_2, 

baresoil and road which still show similar spectral characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.17 shows the contingency matrix of the classification with various accuracy measures. The accuracy 

measure includes producer accuracy, user accuracy, error of omission and error of commission respectively. The classes 

with has the highest producer accuracy is built_up and shrub at 100%, while tree, built_up and field_1 has the 

highest user accuracy at 100%. Also, the class baresoil has the highest error of omission and commission at 

87.5% and 77% respectively. The overall accuracy of the classification is 90% while the k value is 0.87. 

 
Table 5.17 : Showing the confusion matrix of the Worldview-3 multispectral image with accuracy assessment. 

 Tree Road Built_up Field_1 Field_2 Field_3 Baresoil Shrub Error of  

Commission (%) 

User  

Accuracy (%) 

Tree 419 0 0 0 0 0 0 0 0% 100% 

Road 0 41 0 0 0 0 77 0 65.3% 34.8% 

Built_up 0 0 88 0 0 0 0 0 0% 100% 

Field_1 0 0 0 386 0 0 0 0 0% 100% 

Field_2 0 0 0 0 495 2 0 0 0.40% 99.7% 

Field_3 0 0 0 1 0 37 0 0 2.63% 97.4% 

Baresoil 0 36 0 0 1 0 11 0 77% 22.9% 

Shrub 2 0 0 0 0 60 0 83 42.8% 57.2% 

Error of  

Omission (%) 

 

0.47% 

 

46.8% 

 

0% 

 

0.25% 

 

0.20% 

 

62.6% 

 

87.5% 

 

0% 

Producer  

Accuracy (%) 

 

99.5% 

 

53.2% 

 

100% 

 

99.7% 

 

99.7% 

 

37.4% 

 

12.5% 

 

100% 

Legend  

A B

Figure 5.10: Showing subset of (A) Worldview-3 multispectral image and (B) pixel-based MRF classification result using the Worldview-3 
multispectral image. 
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C. Results of object based image analysis 

Fig 5.11 (B) shows the result of applying object based image analysis on the output of pixel based MRF 

classification using the Wordview-3 multispectral image. Both big and small trees were well identified. 

However, because of the segmentation applied, some of the smaller trees have disappeared and are merged 

into larger homogenous segments. All other classes were also well identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.12 we show the accuracy map after applying object-based image analysis on the output of pixel based 

MRF using the Worldview-3 multispectral image. Fig 5.12 (B) shows overestimated, underestimated and 

agreement between the identified tree crowns and the reference tree crown overlaid on the Worldview-3 

multispectral image. Fig 5.12 (C) shows only overestimated, underestimated and agreement between the 

identified tree crowns and the reference tree crown. It can be seen that the identified tree crown correctly 

matched the reference tree object in all areas. There are however small areas where both the identified tree 

crowns and reference do not agree and areas where they partly agree. The spatial join overlay served as a basis 

for computing the object based accuracy assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.18 shows the results for all three accuracy measures (existential, extensional and positional) for 

validating detected tree objects in Worldview-3 multispectral image. A total of 1772 (TP) individual tree 

crown objects were successfully detected out of 1787 reference objects, while a total of 15 (FP) were not 

A B

Legend  

A B
C

Figure 5.11: Showing subset of (A) Worldview-3 multispectral image and (B) object-based image analysis of MRF result using the 
Worldview-3 multispectral image. 

Figure 5.12: Showing the accuracy map f object-based image analysis of MRF classification results using the Worldview-3 multispectral image. 
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detected out of the reference objects. The positional accuracy between the detected tree objects and reference 

tree objects is 1.714 m. This is less than one pixel considering the spatial resolution of the input image which 

is 2 m.  The table also shows the results of the local area tree difference, overestimation error, 

underestimation error and total detection error respectively. Recall that the reference tree objects (𝑅   is 

overestimated if       and underestimated if      . Therefore the reference tree object ( 𝑅   is 

underestimated here because the local area tree difference is -0.1314 which is less than zero. The reason for 

underestimation may be because of the sun illumination angle during image acquisition and considering that 

trees are elevated objects; these can cause occlusion casting shadow and misplacement of the position of the 

trees. This may be verified by visual interpretation of the results (Fig 5.12). The total detection error at 0.3179 

is also greater than zero. This also signifies that the reference tree object (𝑅   is underestimated. Finally, the 

detection accuracy is much higher here at 99%. This shows very high percentage detection between the 

reference tree object and the detected tree crown object.  

 
Table 5.18: Showing results of object based accuracy measure applied on the Worldview multispectral image (total detection, false negative, positional 
accuracy, local area difference, overestimated, underestimated total detection error). 

Image Total  

detection (%) 

False  

negatives (%) 

Positional  

accuracy (m) 

Local area  

difference 

Overestimated  

 

Underestimated 

 

Total detection  

error 

Worldview-3 1772 (99%) 15 (1%) 1.714 - 0.1314 0.3767 0.2453 0.3179 

 

Section - 3 Comparison of the results at different scale  

Here, the results of our method as applied in different scale and spatial resolution is compared. Fig 5.13 

shows the scatter plot of overestimation and underestimation of both (A) Sentinel-2 and (B) Worldview-3 

multispectral images respectively. The scatter plot of Fig 5.13 (A) shows that most of the overestimated and 

underestimated values cluster (agree) around 0. The range of value between the lowest and highest 

overestimation error is very large (0 - 80). This confirms the high overestimation error (Table 5.9). Also, the 

range of value between the lowest and highest underestimation error is smaller (0 - 23). This confirms the 

lower underestimation error (Table 5.9).  The scatter plot of Fig 5.12 (B) is similar to that of Fig 5.12 (A). The 

difference here is that we have a lower range of value for overestimation (0 - 90) and a higher value of 

underestimation (0 - 25). This difference in their respective value ranges confirms the overestimation and 

underestimation errors respectively (Table 5.18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.13:  Showing the scatter plots of overestimation and underestimation for (A) Sentinel-2 multispectral image and (B) Worldview-3 multispectral 
image. 

A B
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In Table 5.19, we compare the detection, positional accuracy, local area difference, overestimated, 

underestimated and total detection error respectively for both images. The positional accuracy between the 

detected tree objects and reference tree objects are 6.504 for Sentinel-2 multispectral image and 1.714 for 

Worldview-3 multispectral image respectively. This is less than one pixel considering the spatial resolution of 

the input images which is 10 m and 2 m respectively.  It signifies that both images have a good positional 

accuracy. We see that the Worldview-3 multispectral image has a higher detection, a lower local area tree 

difference and a lower total detection error. However, both images show that the reference tree object (𝑅   is 

underestimated because their respective local area tree difference at -0.5061 for Sentinel-2 multispectral image 

and -0.1314 for Worldview-3 multispectral image are both less than zero.  Finally, both images have high 

percentage detection accuracy at 68% for Sentinel-2 multispectral image and 99% for Worldview-3 

multispectral image respectively. This shows that they are both suitable for tree object detection using super 

resolution mapping in HR scenario. 

 

Table 5.19: Showing the comparison of results of objects based accuracy assessment between both images (total detection, false negative, positional 

accuracy, local area difference, overestimated, underestimated total detection error). 

 

Image Total  

detection (%) 

False  

negatives (%) 

Positional 

accuracy (m) 

Local area  

difference  

Overestimated 

 

Underestimated 

 

Total detection  

error 

Sentinel-2  1214 (67.94%) 573 (32%) 6.504 - 0.5061 0.6455 0.1394 0.4669 

Worldview-3  1772 (99%) 15 (1%) 1.714 - 0.1314 0.3767 0.2453 0.3179 
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6. DISCUSSION 

Here, the results obtained in preceding chapters are discussed in two sections. The first section covers the 

parameter estimation for both Sentinel-2 and Worldview-3 multispectral images, while the second section 

covers the results and comparison of detected tree objects. 

 Section 1: Parameter estimation 6.1.

The objective of parameter estimation is to determine the optimal values for each of the parameters 

employed. Both images used in this research showed a distinct behaviour for different parameter 

combinations. This is discussed in two sub sections.  

 

6.1.1. Sentinel-2 multispectral image 

The simulated annealing process is stochastic and requires multiple experiments for optimal choice. We 

therefore conducted a systematic experiment and analysed the results. For each     and      parameter, 10 

equal number of runs were made and we recorded the respective result of energy. As we vary the parameters, 

we repeated the same experiment. At the end, the mean as well as the standard deviation of energy was 

computed and plotted against the respectively parameters (Fig 5.2). Statistically, more than 10 runs are 

required for stability, but we were constrained to only 10 runs because of time.  

 

The results of Fig 5.2 (A and B) show a gradual reduction of the mean energy which changes as we 

experimented with varying the    and      parameters. If the final energy is lowest, we obtain a global 

minimum. Also if the standard deviation is low, it shows stability and that results are reproducible. As the 

value of    and      increases, the annealing schedule increases as it takes more time to update. A high    

value is required as to achieve the required global minimum of the solution. A lower    value will achieve a 

local minimum which is not optimal. It is expected that as we vary (increase) the    and      parameters, the 

energy should decrease. But in Fig 5.2 (A), we observe a different trend because the      parameter decreases 

from 0 up to 0.8 and then begins to increase as we moved to 1.0. This is an interesting finding which may be 

attributed to the high contrast sensitivity of this image and/or the complexity of the SRM problem here 

compared to nominal resolution classification. In Fig 5.2 (B) and between    values 1 – 10, we observe that 

the mean energy values are consistently stable with little variation. Any value for    is assumed to be optimal 

within this range. An increase or decrease in the values of    and      parameters did not affect result of k. 

The difference between their standard deviations is also insignificant (very low) and does not affect value of 

k. Our choice for optimal      was 0.8, while    value was chosen at 4. 

 

The smoothness parameter   greatly affects the output of the results. We selected our optimal choice for 

lambda in this image by trial and error experiment. This is not sufficient as it is required to at least conducted 

a systematic experiment and analyse the results. But we were constrained because of time. However, 

depending on our scale factor, we obtained less noisy results as we applied   value ranging from 0.50 – 0.55 

(Table 5.6). A larger range of   value may show a different trend but was not tested. As the value of    

increases, the value of k also increases as well and the result based on visual inspection becomes smoother. 

This also increases the computation time. However, a higher value of   does not necessarily give the best 

output, rather we neglect the likelihood term in the equation (4.16). This also increases the contextual 

dependency of pixel and affects the spectral contribution to the solution. The effect is that the resulting 

minimal posterior energy is obtained where all pixels is assigned to one class leading to an over smooth 

output. A lower value of   allows more isolated pixels to be identified, but the result based on visual 

inspection becomes noisy. Based on visual inspection, the optimal   for this image was selected at     , while 

other parameters like (                 ) remained fixed. 
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6.1.2. Worldview-3 multispectral image 

For the simulated annealing parameters using this image, we repeated the same experiment as we did with the 

Sentinel-2 multispectral image. The results of Fig 5.8 (A and B) also show a gradual reduction of the mean 

energy which changes as we experimented with varying the    and      parameters. If the final energy is 

lowest, we obtain a global minimum. Also if the standard deviation is low, it shows stability and that results 

are reproducible. As the value of    and      increases, the annealing schedule increases as it takes more time 

to update. Again, a high    value is required as to achieve the required global minimum of the solution. A 

lower    value will achieve a local minimum which is not optimal. It is also expected that as we vary (increase) 

the    and      parameters, the energy should decrease. From Fig 5.8 (A), we observe this expected trend 

because the      parameter decreases as we varied from 0.8 up to 1.0. In Fig 5.8 (B) and between    values 1 

– 10, we observe that the mean energy values are consistently stable with little variation. Any value for    is 

assumed to be optimal within this range. An increase or decrease in the values of    and      parameters did 

not affect result of k. The difference between their standard deviations is again insignificant (very low) and 

does not affect value of k. Our choice for optimal      was 0.99, while    value was chosen at 4. 

 

The smoothness parameter   greatly affects the output of the results. Again, we selected our optimal choice 

for lambda in this image by trial and error experiment. This is not sufficient as it is required to at least 

conducted a systematic experiment and analyse the results. But we were constrained because of time. Having 

applied a nominal scale for this image, we obtained less noisy results as we applied   value ranging from 0.86 

– 0.95 (Table 5.15). As the value of    increases, the value of k also increases and also the results based on 

visual inspection becomes smoother. This also increases the computation time. Again, a higher value of   

does not necessarily give the best output, rather we neglect the likelihood term in the equation (4.16). This 

also increases the contextual dependency of pixel and affects the spectral contribution to the solution. The 

effect is that the resulting minimal posterior energy is obtained where all pixels is assigned to one class leading 

to an over smooth output. Again, a lower value of   allows more isolated pixels to be identified, but the result 

based on visual inspection becomes noisy. Based on visual inspection, the optimal   for this image was 

selected at     , while other parameters like (                  ) remained fixed. 

 

 Section 2: Results and comparison of detected tree objects 6.2.

6.2.1. Results of Sentinel-2 multispectral image 

We applied the maximum likelihood assumption which is based on the Gaussian normal distribution to train 

our classifier (2.3). This requires sufficient training samples to be able to estimate correctly the mean and 

covariance matrix for all classes of the distribution. However from (Table 5.1), we see that only the tree class 

had sufficient number of training samples, while other classes rock, baresoil_1, baresoil_2, and shrub has 

insufficient training samples. We couldn’t get sufficient training samples for some classes because of the 

coarse resolution of this image. As a result it was difficult for the classifier to clearly distinguish one spectral 

class from another and affected all the results of our classification applied on this image.  

 

Another challenge faced is that within class variance of tree class was quite high (Fig 5.1). The reason for this 

is that most pixel reflectance value from coarse resolution images forms a spectral mixture with background 

classes. This produced mixed pixels and spectrally distinct tree samples of which some were selected for 

training. However, because maximum likelihood does not deal with mixed pixels, most spectral information 

is lost in the process of transforming the remotely sensed data into thematic maps. The implication of this is 

that it reports a unique attribution of each pixel to a class with highest membership, while ignoring the 

others with low class membership properties. To compensate for this, the covariance matrix was divided by 

a factor of 2 so as to reduce the within class variance; while still maintaining sufficient cluster to estimate the 

distribution for the classifier. The expectation of reduced variance is that classes should be clearly separable 

from each other.  
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The choice of neighbourhood system is another point of emphasis. This system determines the surrounding 

pixels that will be taken into consideration during analysis. For our study, we applied the first order 

neighbourhood system for both classification and segmentation (Fig 4.2). This considers only four pixels 

which shares sides with a given pixel and has effect on the objects detected. Tolpekin & Stein, (2009) 

identified that a large window is essential for result quality. We couldn’t consider the second order 

neighbourhood system because of time constrains. It will be wise to see if this improves our detection of 

tree objects for this image. 

 

In Fig 5.3 (B), we show the result of maximum likelihood classification of the Sentinel-2 multispectral image 

subset. Based on visual inspection, spectral details from input image were not properly distinguished. Most 

of the trees were clustered and smaller trees were merged with background class like shrub. Only a few 

standalone trees were clearly identified. Because only the tree class had sufficient number of training samples, 

it is assumed that most of the pixels in the image might have been wrongly assigned to it. Table 5.7 shows 

the confusion matrix of the MLC classification with various accuracy measures. Despite the visual 

appearance of the classification result, the overall accuracy and k value of the classification was quite high at 

98% and 0.976 respectively. This suggests that most of the spectral classes with insufficient training samples 

were assigned to a wrong class because this classifier assigns pixels to the class with highest probability of 

membership. The inspection of the maximum likelihood result shows that it’s not good for tree detection 

using this image.  

 

In Fig 5.4 (B), we show the result of pixel based MRF-SRM of the Sentinel-2 multispectral image subset. 

Based on visual inspection, the result looks smooth and much better representation of the input image (Fig 

5.4) than the maximum likelihood result (Fig 5.3). The smoothness of the result is because of the 

incorporation of   in the solution (4.17). SRM helped to solve the mixed pixel problem and also reduced the 

spatial resolution of the output to 2 m. This helped to properly identify both big and small trees respectively. 

Table 5.8 shows the confusion matrix of the classification with various accuracy measures. The overall 

accuracy and k value of the classification was still substantially high at 82% and 0.79 respectively. The 

inspection of the results shows a better detection of trees objects for this image. 
 

In Fig 5.5 (B), we show the outcome of post processing the result of pixel based MRF-SRM using the 

Sentinel-2 multispectral image. Based on visual inspection, the result looks similar to Fig 5.4 (B). However, 

because of the segmentation applied, some of the smaller trees have disappeared and are merged into larger 

homogenous segments. Also, both big and small trees as well as other classes like rock, baresoil_1, baresoil_2, 

and shrub were also well identified.  

 

Table 5.9 shows the results for all three accuracy measures (existential, extensional and positional) for 

validating the detected tree objects in Sentinel-2 multispectral image. A total of 1214 (TP) individual tree 

crown objects were successfully detected out of 1787 reference objects, while a total of 573 (FN) were not 

detected out of the reference objects. The reason for missing some tree objects which were not detected in 

the reference could be because those trees are smaller in size. Again, considering the temporal variation 

between detection image (Fig 3.2) and validation image (Fig 3.3), there is a possibility that those trees has 

been cut down. The positional accuracy between the detected tree objects and reference tree objects is 6.504 

m. This is less than one pixel considering the spatial resolution of the input image which is 10 m.  The table 

also shows the results of local area tree difference, overestimation, underestimation and total detection error 

respectively. Recall that the reference tree objects (𝑅   is overestimated if       and underestimated if 

     . Therefore the reference tree object (𝑅   is underestimated here because the local area tree difference is 

-0.5061 which is less than zero. The first reason for underestimation may be because of the sun illumination 

angle during image acquisition and considering that trees are elevated objects; these can cause occlusion 

casting shadow and misplacement of the position of the trees. This may be verified by visual interpretation of 

the results (Fig 5.6). The second reason is that most pixel reflectance value from coarse resolution images 
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forms a spectral mixture with background classes. This produces the mixed pixel effect which might cause 

some misplacement in the actual position of the trees. The third reason is that we are dealing with vague 

objects here whose boundaries are not specific. To distinguish these boundaries with spectral classifiers is 

challenging. Finally, considering the temporal variation between detection image (Fig 3.2) and validation 

image (Fig 3.3), there is a possibility that the tree crowns has changed with respect to time leading to 

underestimation. The total detection error at 0.4669 is also greater than zero. This also signifies that the 

reference tree object (𝑅   is underestimated. Finally, the detection accuracy is still acceptable at 68%. This 

indicates good percentage detection between the reference tree object and the detected tree crown object. 

 

6.2.2. Results of Worldview-3 multispectral image 

We also applied the maximum likelihood assumption for training our classifier (2.3). However from (Table 

5.10), we see that classes’ tree, field_1 and field_2 had sufficient number of training samples, while other classes 

classes’ road, built_up, field_3, baresoil and shrub has insufficient training samples. The insufficient number of 

training samples is due to the large configuration of image space and spectral dissimilarity between these 

classes. As a result it was also challenging for the classifier to clearly distinguish one spectral class from 

another and also affected all the results of our classification applied on this image. However, because the 

resolution of this image was finer, spectral details could still be distinguished.   

 

A second challenge faced here was the large class variance (Fig 5.7). The implication of this is that we have 

spectral confusion in classes that overlap leading to some misclassifications (Fig 5.9). This general limitation 

with spectral classifiers was addressed using MRF approach.  

 

Again, the choice of neighbourhood system is another point of emphasis as it determines the surrounding 

pixels that will be taken into consideration during analysis. We also applied the first order neighbourhood 

system for both classification and segmentation (Fig 4.2). This considers only four pixels which shares sides 

with a given pixel and has effect on the objects detected. We couldn’t consider the second order 

neighbourhood system because of time constrains. It will be wise to see if this improves our detection of 

tree objects for this image. 
 

In Fig 5.9 (B), we show the result of maximum likelihood classification using the Worldview-3 multispectral 

image subset. Based on visual inspection, the result looks noisy. However, most classes can still be 

distinguished and trees were identified. The noise which exists mainly between classes’ tree, shrubs and field_1 is 

because these classes are spectrally similar and challenging to distinguish with spectral classifiers. From (Table 

5.10), we see that some classes have insufficient number of training samples. Because this classifier assigns 

pixels to the class with highest probability of membership, it suggests that most of the spectral classes with 

insufficient training samples were assigned to a wrong class. As a result, the identification of trees with 

maximum likelihood result alone using this image is not satisfactory. Table 5.16 shows the confusion matrix 

of the MLC classification with various accuracy measures. The overall accuracy of the classification is 96.3% 

while the k value is 0.844.  

 

In Fig 5.10 (B), we show the result of pixel based MRF of the Worldview-3 multispectral image subset. Based 

on visual inspection, the result looks smooth and shows a better representation of the input image (Fig 5.10) 

than the maximum likelihood result (Fig 5.9). The contextual approach of MRF helped to address the 

limitation of spectral information available in finer resolution images. Both big and small trees were well 

identified and the noise was reduced. The smoothness of the result is because of the incorporation of   in the 

solution (4.17). The inspection of the results shows a better detection of trees objects for this image. Table 

5.17 shows the confusion matrix of the MLC classification with various accuracy measures. The overall 

accuracy of the classification is 90% while the k value is 0.87.  
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In Fig 5.11 (B), we show the outcome of post processing the result of pixel based MRF classification using 

the Wordview-3 multispectral image. Again, based on visual inspection, the result looks similar to Fig 5.9 (B). 

Also, because of the segmentation applied, some of the smaller trees have disappeared and are merged into 

larger homogenous segments. Also, both big and small trees as well as other classes were also well identified.  

 

Table 5.18 shows the results for all three accuracy measures (existential, extensional and positional) for 

validating the detected tree objects using Worldview-3 multispectral image. A total of 1772 (TP) individual 

tree crown objects were successfully detected out of 1787 reference objects, while a total of 15 (FP) were not 

detected out of the reference objects. The positional accuracy between the detected tree objects and reference 

tree objects is 1.714 m. This is less than one pixel considering the spatial resolution of the input image which 

is 2 m. The table also shows the results of the local area tree difference, overestimation error, underestimation 

error and total detection error respectively. Recall that the reference tree objects (𝑅   is overestimated if 

      and underestimated if      . Therefore the reference tree object (𝑅   is underestimated here because 

the local area tree difference is -0.1314 which is less than zero. The reason for underestimation may be 

because of the sun illumination angle during image acquisition and considering that trees are elevated objects; 

these can cause occlusion casting shadow and misplacement of the position of the trees. This may be verified 

by visual interpretation of the results (Fig 5.12. Another reason is that we are dealing with vague objects here 

whose boundaries are not specific. To distinguish these boundaries with spectral classifiers is challenging. The 

total detection error at 0.3179 is also greater than zero. This also signifies that the reference tree object (𝑅   is 

underestimated. Finally, the detection accuracy is much higher here at 99% and implies very high percentage 

detection between the reference tree object and the detected tree crown object. This agrees with the high 

work of Mahour et al., (2016) who also recorded high detection rate between reference object and  detected 

tree crown object  using finer resolution multispectral image . 

 

6.2.3. Comparison of detected tree objects 

In Fig 5.6, we show the accuracy map after post processing the output of pixel based MRF-SRM using the 

Sentinel-2 multispectral image. Fig 5.6 (B) shows overestimated, underestimated and agreement between the 

identified tree crowns and the reference tree crown overlaid on the Sentine-2 multispectral image. Fig 5.6 (C) 

shows only the overestimated, underestimated and agreement between the identified tree crowns and the 

reference tree crown. Likewise in Fig 5.12, we show the accuracy map after post processing the output of 

pixel based MRF using the Worldview-3 multispectral image. Fig 5.12 (B) shows overestimated, 

underestimated and agreement between the identified tree crowns and the reference tree crown overlaid on 

the Worldview-3 multispectral image. Fig 5.12 (C) shows only overestimated, underestimated and agreement 

between the identified tree crowns and the reference tree crown. In both images, we could see that there are 

agreements in some area, overestimation and underestimation respectively. However, the major difference is 

that the identified tree crowns correctly matched the reference tree object in almost all areas for the 

Worldview-3 multispectral image than the Sentinel-2 multispectral image which had a lower match. This 

shows the variation in detection accuracy and other accuracy measure applied (Table 5.19).  

 

In Fig 5.13, we show the scatter plot of overestimation and underestimation of both (A) Sentinel-2 and (B) 

Worldview-3 multispectral images respectively. The scatter plot of Fig 5.13 (A) shows that most of the 

overestimated and underestimated values cluster (agree) around 0. The range of value between the lowest and 

highest overestimation error is very large (0 - 80). This is confirmed by the high overestimation error (Table 

5.9). Also, the range of value between the lowest and highest underestimation error is smaller (0 - 23). This is 

confirmed by the lower underestimation error (Table 5.9).  The scatter plot of Fig 5.12 (B) is similar to that of 

Fig 5.12 (A). The difference here is that we have a lower range of value for overestimation (0 - 90) and a 

higher value of underestimation (0 - 25). This variation in the range of values for overestimation and 

underestimation can be linked to the detectability of tree objects at different scales with respective spatial 
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resolutions of the images. Also, the difference in their respective value ranges confirms the overestimation 

and underestimation errors respectively (Table 5.18).  

 

In Table 5.19, we compare the total detection, positional accuracy, local area difference, overestimated, 

underestimated and total detection error respectively for both images. The positional accuracy between the 

detected tree objects and reference tree objects are 6.504 for Sentinel-2 multispectral image and 1.714 for 

Worldview-3 multispectral image respectively. This is less than one pixel considering the spatial resolution of 

the input images which is 10 m and 2 m respectively.  It signifies that both images have a good positional 

accuracy. We also see that the Worldview-3 multispectral image has a higher detection, a lower local area tree 

difference and a lower total detection error. However, both images show that the reference tree object (𝑅   is 

underestimated because their respective local area tree difference at -0.5061 for Sentinel-2 multispectral image 

and -0.1314 for Worldview-3 multispectral image are both less than zero.  Finally, both images have high 

percentage detection accuracy at 68% for Sentinel-2 multispectral image and 99% for Worldview-3 

multispectral image respectively. Based on the above experiments and analysis conducted, we conclude that 

both images are suitable for tree object detection using super resolution mapping in HR scenario. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 Conclusions 7.1.

 How can we apply SRM in HR scenario to detect tree objects at different scale? 

With respect to the size of individual tree object, we applied MRF based SRM on both images and at 

different scales. The goal of incorporating MRF is to maximize the contextual dependency between 

neighbouring pixels, while SRM reduced spatial resolution limitation for coarse images. 

 

 How can one determine the most appropriate parameters for optimizing the SRM model for each 

scale? 

We determined the most appropriate parameter for optimizing the MRF based SRM model for each 

scale by conducting a systematic experiment and analysed the results (repeated experiments with 

equal number of runs). This was done for both images. 

 

 How can we evaluate and quantify the detected tree objects? 

We evaluated and quantified the detected tree objects using object based image analysis procedure. 

The spatial join overlay tool in ArcGIS was used to compute the area of tree crown objects. 

 

 How should the assessment of the results be performed? 

We performed both pixel based and object based accuracy assessment. Pixel based assessment was 

done using error matrix to determine the value of k and overall accuracy respectively. Object based 

accuracy assessment was done by applying three accuracy measures; (a) existential (b) extensional (c) 

positional accuracy measures. 

 Recommendations 7.2.

 In this research, insitu data was not used because of the scope of the work and limited time available. 

However, insitu data or field information is required to improve the quality of training samples and 

proper verification of test samples for better accuracy assessment. I therefore recommend that these 

should be added to improve the quality of the analysis. 
 

 Sun illumination angle during image acquisition leads to occlusion, thereby casting shadow and 

misplacement of the position of the trees. Again considering that trees are elevated objects, it is 

recommended to add a digital surface model (DSM) to this research. This can be an interesting way 

to improve the quality of detection and analysis of results. 
 

 For transferability of our method to urban or developed cities using Sentinel-2 multispectral image, I 

recommend that a context-sensitivity approach should be considered as part of further studies. This 

approach applies some rules to model the spatial distribution of tree objects taking cognisance of the 

urban elements in the surrounding. This might improve the identification of tree objects and quality 

of results. 
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