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ABSTRACT 

Glacier displacements play a vital role in the monitoring and understanding of glacier dynamics. Glacier 

displacement fields are typically retrieved from pre- and post-event SAR images using DInSAR. The 

glacier displacement map produced by DInSAR contains missing values due to decorrelation of the SAR 

images. This study demonstrates the utility of multiple-point geostatistics to reconstruct these missing 

values. Amongst several well-established multiple-point geostatistics methods, direct sampling is used for 

deriving those missing values. Univariate and bivariate implementations of direct sampling are employed. 

In the univariate implementation, missing values are derived in single displacement map, whereas in 

bivariate implementation gaps in two displacement maps are filled simultaneously. Evaluation is carried 

out by artificially generated missing values on the displacement map of different shapes and sizes at 

different locations with known values. Imposed missing values are then reconstructed and compared with 

the original values. Reconstruction results of the two direct sampling implementations were compared 

with ordinary kriging using the RMSE, a histogram of the residuals, scatterplots and the residual 

distribution map. The study shows that with an increase in the size of such discontinuities, ordinary 

kriging predictions deteriorate significantly, whereas only slight decrease in reconstruction accuracy is 

observed for direct sampling. The results of both direct sampling implementations are similar. The 

univariate implementation shows a slight performance increase as compared to the bivariate 

implementation because the information from the ancillary data is only partly complementary to enhance 

bivariate reconstructions. Direct sampling performed better than ordinary kriging with accuracy below the 

DInSAR detection limit. The study concludes that multiple-point geostatistics is an effective method for 

deriving missing values in a DInSAR derived displacement map. Direct sampling based reconstruction is 

straightforward to implement and parameters can be fine-tuned with minimum user intervention.  

 

Keywords 

Glacier displacements, DInSAR, Kriging, Multiple-point geostatistics, Direct sampling 



ii 

 

 

ACKNOWLEDGEMENTS 

First of all, I would also like to express my sincere gratitude to my supervisors, Dr. V. A. Tolpekin and 

Prof. Dr. Ir. A. Stein, for their critical analysis, feedbacks, guidance, suggestions and encouragement 

throughout the thesis period. Without their guidance, this work would not have come to this form.  

I would like to thank Netherlands Fellowship Programmes (NFP) for granting me the scholarship to 

pursue my M. Sc. degree at ITC. I am also thankful to my employer, Ministry of Land Reform and 

Management, Government of Nepal, for allowing me an opportunity to study in ITC on study leave.  

I am grateful to Gregoire Mariethoz, Philippe Renard and Julien Straubhaar for providing the DeeSse 

software for this academic research. Especial thanks to Julien Straubhaar, University of Neuchatel, for 

providing technical guidance on the software. I also deeply appreciate the help from all the authors of 

different literatures for answering my queries on the subject.  

I am thankful to my friends for keeping me moving forward. Finally, I would like to express my thanks to 

my family back home and my extended family here, Enschede Nepali Family, for their continuous support 

and encouragement throughout the study. 



iii 

 

 

TABLE OF CONTENTS 

Abstract                 i 

Acknowledgements               ii 

1. Introduction ................................................................................................................... 1 

1.1. Motivation and Problem Statement ......................................................................................................... 1 

1.2. Research Identification ............................................................................................................................... 3 

1.3. Research Objectives .................................................................................................................................... 3 

1.4. Research Questions ..................................................................................................................................... 4 

1.5. Innovation Aimed At.................................................................................................................................. 4 

1.6. Thesis Outline .............................................................................................................................................. 4 

2. Literature Review .......................................................................................................... 5 

2.1. SAR Interferometry .................................................................................................................................... 5 

2.1.1. DInSAR application in glaciology ................................................................................................... 6 

2.1.2. Potential of S1 interferometry to derive glacier surface displacements ..................................... 7 

2.1.3. Decorrelation in InSAR .................................................................................................................... 7 

2.2. MPS Algorithm Selection ........................................................................................................................... 8 

2.2.1. Background of MPS .......................................................................................................................... 8 

2.2.2. MPS algorithms .................................................................................................................................. 9 

2.2.3. Direct Sampling algorithm ................................................................................................................ 9 

2.3. Conventional Geostatistics for Benchmarking .................................................................................... 11 

3. Study Area and Materials ............................................................................................. 13 

3.1. Study Area ................................................................................................................................................. 13 

3.2. Data Description ...................................................................................................................................... 14 

3.3. Software Description ............................................................................................................................... 15 

4. Methods ........................................................................................................................ 17 

4.1. Procedure of SAR Interferometry ......................................................................................................... 17 

4.2. Ordinary Kriging ...................................................................................................................................... 20 

4.2.1. Variogram analysis .......................................................................................................................... 20 

4.2.2. Ordinary Kriging interpolation ..................................................................................................... 20 

4.3. Direct Sampling ........................................................................................................................................ 20 

4.3.1. Construction of the Training Images ........................................................................................... 22 

4.3.2. Mask Image ...................................................................................................................................... 23 

4.3.3. Parameters of DS ............................................................................................................................ 23 

4.3.4. DS cases ............................................................................................................................................ 25 



iv 

 

 

4.4. Accuracy Assessment ............................................................................................................................... 25 

5. Results ......................................................................................................................... 27 

5.1. DInSAR ...................................................................................................................................................... 27 

5.2. Description of the Actual Gaps in the Glacier Displacement Map .................................................. 29 

5.3. Formation and description of artificial gaps ......................................................................................... 30 

5.4. Twelve Shifted Polygons.......................................................................................................................... 31 

5.4.1. Ordinary Kriging .............................................................................................................................. 31 

5.4.2. Direct Sampling ................................................................................................................................ 33 

5.4.3. Quantitative measures of error ...................................................................................................... 35 

5.5. Three Shifted Polygons ............................................................................................................................ 39 

5.5.1. Ordinary Kriging .............................................................................................................................. 39 

5.5.2. Direct Sampling ................................................................................................................................ 39 

5.5.3. Quantitative measures of error ...................................................................................................... 39 

5.5.4. Qualitative assessment .................................................................................................................... 42 

5.6. Displacement Maps .................................................................................................................................. 43 

6. Discussion ................................................................................................................... 47 

6.1. DInSAR ...................................................................................................................................................... 47 

6.2. OK and DS Gap Filling ........................................................................................................................... 47 

7. Conclusion and Reccomendation ................................................................................ 51 

7.1. Conclusion ................................................................................................................................................. 51 

7.2. Recommendation ...................................................................................................................................... 53 

Appendix A: R Codes ......................................................................................................... 67 

A.1 Conversion of file format between .GSLIB and .TIF ............................................................................... 67 

A.2 Bivariate TI ....................................................................................................................................................... 69 

A.3 Accuracy Assessment ...................................................................................................................................... 70 

A.4 Ordinary Kriging ............................................................................................................................................. 71 

 

 



v 

 

 

LIST OF FIGURES 

Figure 3.1: Location of Ngozumpa glacier, Nepal.  .............................................................................................. 14 

Figure 4.1: Adopted workflow of DInSAR to obtain glacier displacement map. ............................................ 17 

Figure 4.2: Graphical illustration of DS method. .................................................................................................. 22 

Figure 5.1: Results from DInSAR. .......................................................................................................................... 28 

Figure 5.2: Ngozumpa glacier displacement (m) (a) from SAR image pair I; (b) from SAR image pair II.. 29 

Figure 5.3: Twelve shifted polygons on the displacement maps from (a) pair I and (b) pair II.  .................. 31 

Figure 5.4: The polygons of increasing size imposed in key location of displacement map from pair II. ... 31 

Figure 5.5: Histograms of sample points for displacements from pair I and pair II. . .................................... 32 

Figure 5.6: Fitted variogram (OK) for pair I and pair II.  .................................................................................... 32 

Figure 5.7: Scatterplots and histograms of residuals of all three cases—OK, DSu and DSb—for 

displacements from pair I. ......................................................................................................................................... 37 

Figure 5.8: Scatterplots and histograms of residuals of all three cases—OK, DSu and DSb—for 

displacements from pair II.  ...................................................................................................................................... 38 

Figure 5.9: Fitted variogram (OK) for three shifted polygons.  .......................................................................... 39 

Figure 5.10: Scatterplots and histograms of residuals of OK and DSu for displacements from pair II.  ..... 41 

Figure 5.11: Residual distribution maps of the reconstructions in three shifted polygons.  .......................... 42 

Figure 5.12: The reconstructed displacement map (pair I) for OK, DSu and DSb. . ....................................... 44 

Figure 5.13: The reconstructed displacement map (pair II) for OK, DSu and DSb.  ...................................... 45 

 



vi 

 

 

LIST OF TABLES 

Table 3.1: List of S1 SAR image pairs used for InSAR of the Ngozumpa glacier.  ......................................... 15 

Table 4.1: The fixed and varied DS parameters. .................................................................................................... 23 

Table 5.1: Statistics of the gaps caused by low coherence in displacement maps.  .......................................... 30 

Table 5.2: Variograms for OK of displacements from image pair I and pair II. .............................................. 33 

Table 5.3: DSu parameter experimentation for displacement maps from pair I and pair II. .......................... 34 

Table 5.4: DSb parameter experimentation for displacement maps from pair I and pair II.  ......................... 35 

Table 5.5: The best parameters used for reconstruction of the displacement maps shown in Figure 5.3. ... 35 

Table 5.6: Validation results—RMSE of OK prediction, DSu and DSb cases. ................................................. 35 

Table 5.7: Variograms for OK of displacements from image pair II for three shifted polygons. ................. 39 

Table 5.8: Validation results – RMSE of OK prediction and DSu cases. ........................................................... 40 

  



vii 

 

 

LIST OF ABBREVIATIONS 

AOI   Area of Interest 

CCSIM   Cross Correlation based Simulation 

CIQ   Conditional Image Quilting 

CK   Co-kriging 

DeeSse   DS: Multiple-Points Simulation by Direct Sampling 

DEM   Digital Elevation Model 

DInSAR  Differential Interferometric Synthetic Aperture Radar 

DS   Direct Sampling 

DSb   Direct Sampling Bivariate Simulation 

DSu   Direct Sampling Univariate Simulation 

DTAR   Distributed Target Ambiguity Ratio 

ESA   European Space Agency 

EW   Extra Wide Swath Mode 

GLOF   Glacier Lake Outburst Flood 

GRD   Ground Range Detection 

IDW   Inverse Distance Weighting 

IK   Indicator Kriging 

InSAR   Interferometric Synthetic Aperture Radar 

IQ   Image Quilting 

IW   Interferometric Wide Swath Mode 

LOS   Line of sight 

MCF   Minimal Cost Flow 

MLC   Maximum Likelihood Classification 

MPS   Multiple Point Geostatistics 

MRF   Markov Random Field 

NESIM   Normal Equation Simulation 

OK   Ordinary Kriging 

POD   Precise Orbit Determination 

RBF   Radial Basis Function 

RCM   Regional Climate Model 

RF   Random Function 

RMSE   Root Mean Square Error 

S1   Sentinel-1 

SAR   Synthetic Aperture Radar 

SG   Simulation Grid 

SGeMS   Stanford Geostatistical Modeling Software 

SLC   Single Look Complex 

SM   Stripmap Mode 

SNAP   Sentinel Application Platform 

SNESIM  Single Normal Equation Simulation 

SNR   Signal to Noise Ratio 

SRTM   Shuttle Radar Topography Mission 

TI   Training Image 

TIN   Triangulated Irregular Network 



viii 

 

 

TOPSAR  Terrain Observation with Progressive Scans SAR 

UK   Universal Kriging 

UTM   Universal Transverse Mercator 

WGS   World Geodetic Co-ordinate System 

WV   Wave Mode



MULTIPLE-POINT GEOSTATISTICS TO DERIVE MISSING SURFACE DISPLACEMENT VALUES OF A GLACIER INFERRED FROM DINSAR 

1 

1. INTRODUCTION 

1.1. MOTIVATION AND PROBLEM STATEMENT 

Mountain glaciers, an integral part of the cryosphere, cover 10 % of Earth’s surface and play a vital role in 

Earth’s natural system (Leibowitz, 2009). They are an important source of fresh water to downstream 

population and glacier melt contributes to the river flow. In mountains surrounded by arid plains, 

meltwater from the glaciers are crucial for use in irrigation (Petrakov et al., 2016). They serve as the main 

indicator of climate change. Global temperature increase is causing glacier retreat in an alarming rate and 

some are on the verge of disappearance (Kaltenborn et al., 2010). Due to glacier retreat, unstable lakes are 

formed, which burst when triggered by earthquakes, landslides and avalanche. Such Glacier Lake Outburst 

Floods (GLOFs) claim lives of many and destroy agriculture and infrastructures such as hydropower, and 

roads. Nepal alone has suffered 15 GLOFs during the last century (Richardson & Reynolds, 2000), for 

example, the Dig Tsho GLOF of 1985 (Mool et al., 2011). Therefore, mapping glacier extent and 

monitoring temporal changes are essential for planning and management of water resources. 

Glaciers are masses of ice formed by the accumulation and compaction of snow over a long duration of 

time. They constantly move because of stresses induced by their weight and gravity. Information on 

glacier velocity is essential for studying the glacier dynamics and is required for verification of models 

dealing with this subject. Glacier surface velocity is a vital part of the mass balance models and therefore, 

glacier surface velocity determination is important for monitoring the glacier response to climate change 

(Wangensteen et al., 2005). Further, glacier velocity helps to understand the internal stresses and strains 

caused by gravity-induced flow (Joughin et al., 2010). Glacier velocity is also necessary for better 

knowledge of seasonal variability, acceleration and deceleration of glaciers (Wuite et al., 2015) and hazard 

prediction (Quincey et al., 2007). Hence, there is a dire need for monitoring and assessing the glacier 

velocity. 

The most accurate and reliable method of glacier velocity measurement is to conduct in situ 

measurements. But these methods are costly, time-consuming and limited over a small geographical area. 

Furthermore, these methods are impractical to perform regularly due to the inaccessibility, remoteness and 

vastness of the mountain glaciers. Thus, satellite remote sensing is an effective and efficient technique for 

deriving surface velocity of glaciers (Joughin et al., 2010; Wangensteen et al., 2005).  

For many years, feature tracking in optical sensors has been exploited for deriving glacier velocity 

remotely. But cloud cover in this imagery, especially in the mountainous region, is a major problem 

limiting its use ( Kääb, 2005; Li et al., 2004). Recently developed microwave remote sensing systems 

eliminate this limitation for surface velocity determination because they are independent of sun-

illumination, penetrate cloud and can function day and night in all-weather condition (Lee et al., 2009). 

From Synthetic Aperture Radar (SAR) images, SAR interferometry and feature tracking are two 

extensively used techniques to determine glacier velocity. SAR interferometry is capable of providing 

velocity estimates at any point on the glacier, whereas feature tracking relies on detectable surface features 

in the both images and fails in the area where distinct surface features like crevasses are not present 

(König et al., 2001). In addition, temporal baseline of few days between the images is applied for InSAR, 

while feature tracking uses longer repeat-pass periods, usually a year between the images (König et al., 
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2001; Luckman et al., 2007)—but will not be able to characterize seasonal surface velocity of glacier. 

Another constraint of feature tracking is that its detection limit depends on the pixel size of the SAR 

images (González et al., 2009). Above all, glacier displacement estimates from the SAR interferometry is 

considerably more accurate and precise—in the order of few centimetres—compared to feature tracking. 

Thus, InSAR technique is greatly valued for glacier velocity studies. 

SAR interferometry uses the phase information of the radar images of the same scene acquired from two 

positions using two receiving antennas. The two SAR images must be coherent to form interferogram 

which comprises phase difference information. The two receiving antennas are either separated in time 

(repeat pass acquisition) or space (along-track or across-track acquisition). Since most of the SAR sensors 

provide images of same scene acquired at some time apart, repeat pass SAR interferometry has been 

widely used and proven to be suitable technique for glacier surface velocity estimation. For the first time, 

Goldstein et al. (1993) successfully mapped glacier surface velocity of the Rutford Ice Stream, Antartica by 

combining two SAR images with 6-day separation. Since then, many researchers have extensively applied 

InSAR technique to retrieve the glacier velocity (König et al., 2001; Massonnet & Feigl, 1998; Rott, 2009; 

Schneevoigt et al., 2012; Wangensteen et al., 1999; Wangensteen et al., 2005).  

Temporal decorrelation is the major factor limiting the use of InSAR caused by snow and ice melting, 

wind induced snow drift, precipitation in form of snow or rain and gradient of displacement greater than 

half a fringe per pixel (Strozzi et al., 1999; Strozzi et al., 2002; Zebker & Villasenor, 1992). Thus, time 

interval between acquisitions is crucial to preserve coherence between the SAR image pair. Few studies 

attempted to use image pairs of longer time interval such as Mohr & Madsen (2000) tried ERS-1/2 with 

35 days temporal baseline in Greenland glaciers, Joughin et al. (1999) attempted RADARSAT-1 having 

time interval of 24 days ice sheet of West Antartica and Strozzi et al. (2008) used JERS-1 having time 

interval of 44 days in East Antartica. But in these studies, decorrelation was observed mainly in areas of 

rapid flow. For these reasons, scenes from ERS-1 and ERS-2 with one or three days temporal baseline 

during ice mission in 1992 and 1994, and tandem phase from 1995 to 2000 were widely used for mapping 

glacier movement, but these missions are no longer in operation. Amongst current satellite sensors, 

Sentinel mission is the latest and most promising source for repeat pass SAR data. Sentinel-1 (S1) is C-

band SAR system built on heritage SAR systems of European Space agency (ESA)’s ERS-1, ERS-2 and 

Envisat, and Canada’s Radarsat-1 and Radarsat-2, with enhanced reliability, revisit time, geographical 

coverage and rapid data dissemination (ESA, 2013a).  

The first S1 satellite (S1-A) was launched on 3 April 2014 followed by second (S1-B) on 25 April 2016 

completing the S1 constellation (ESA, 2014). S1-A provided 12 days repeat image pair, which shortened to 

6 days once S1-B became operational. S1 image pair of 6 days temporal baseline is an excellent dataset 

compared to 35 days image pair from Envisat.  This decrease in time interval between the acquisitions of 

the two S1 images reduces the constraint of temporal decorrelation. Thus, the prospect of using freely 

available S1 data for InSAR is promising and has been explored in this study. The enhanced 

interferometric capability of S1 is a reliable source for glacier monitoring. In addition, seasonal patterns 

can be assessed as huge sets of S1 SAR data are available. 

Coherence serves as an indicator of how good an interferogram is. The quality of an interferogram formed 

from co-registered SAR image pair is characterized by coherence. Loss of coherence produces unreliable 

interferometric results. Thus, the area with low value of coherence should be avoided and are masked out 

during phase unwrapping process (Schneevoigt et al., 2012).  

As a consequence, the glacier surface displacement map derived from InSAR consists of missing values 

(gaps) in incoherent areas. Reconstruction of these spatial discontinuities is of high importance in glacial 
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studies for example: to integrate these data with modelling frameworks requiring continuous data fields 

(Mariethoz et al., 2012), to assess the spatial and temporal patterns of the glacier displacement (Mair et al., 

2001; Persk et al., 2004) and to locate supraglacial lakes (Quincey et al., 2007). 

Several popular approaches available for gap-filling can be categorized into either deterministic or 

geostatistical interpolation methods. In the deterministic techniques, mathematical functions are used to 

interpolate the values at unsampled location, based on either the degree of similarity (for example: Inverse 

Weighted Distance (IDW)) or the degree of smoothing (for example: Radial Basis Function (RBF)) in 

relation with neighbouring data points (Peralvo & Maidment, 2003). However, these deterministic 

methods are unable to provide uncertainty estimates. Geostatistical methods are based on statistical 

models performing stochastic predictions of values at unknown locations, and therefore can provide 

spatial model of uncertainty or estimates of prediction accuracy (Johnston et al., 2001). 

In several studies, kriging, a parametric geostatistical approach, has been used to fill gaps (Zhang et al., 

2012).  Zhang et al. (2009) applied this method to fill gaps in multispectral images by imposing correlation 

with the gap free image acquired four months before. However, traditional geostatistics is based on 

Random Function (RF) model parameterized by semi-variogram and covariance. Therefore, spatial 

variability is captured by only considering two spatial locations at one time. This results in smoothing 

effect and only considers linear relationship with covariates (Goovaerts, 1997). So, the spatial dependency 

of phenomenon exhibiting a much stronger correlation at higher order cannot be described by two-point 

statistics (Mariethoz & Caers, 2015). This is why traditional geostatistics fail to reproduce geometries of 

curvilinear structures, such as meandering river channels, incised valleys etc. (Strebelle, 2002). Recently 

developed Multiple-point geostatistics (MPS) method, belonging to family of non-parametric geostatistical 

methods, can solve this problem because spatial variability is modelled using training images (TIs), from 

which  spatial structures and patterns are borrowed (Strebelle, 2002).  

Thus, it is necessary to study the possibility of the reconstruction of the gaps caused by loss of coherence 

in InSAR derived displacement maps of glaciers and predict the missing data by using MPS. 

1.2. RESEARCH IDENTIFICATION 

Use of S1 image pair in the Himalayan glacier has not been studied so far, although there has been 

extensive research regarding SAR interferometry for glacier displacement determination. Recently, Sentinel 

has received much attention in glacial applications. This research aims to investigate the potential of S1 

image pairs for glacier displacement studies in the Himalayas. S1 datasets are freely available and rich, and 

they are the most economical and promising data source for long-term glacier monitoring, especially for 

developing countries around the Himalayas. 

To our best knowledge, no research has been carried out yet to apply MPS for predicting the missing 

values in gaps caused by incoherent data in InSAR derived glacial surface displacement map. Therefore, in 

this research MPS approach shall be investigated for filling up those gaps to obtain glacial surface 

displacement map without any spatial discontinuities. 

1.3. RESEARCH OBJECTIVES 

The main objective of this research is to implement multiple-point geostatistics (MPS) to derive the 

missing surface displacement values of a glacier inferred from DInSAR. This is achieved through the 

following specific objectives: 
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1. To review, evaluate and select a MPS method that reproduces the pattern both complex and 

small-scale in the gaps of glacier surface displacement map derived from DInSAR. 

2. To perform pattern reconstruction in the gaps by implementing the chosen MPS method. 

3. To assess the reconstructed results of the missing values in the glacier surface displacement map. 

4. To compare the performance of the MPS gap filling against conventional geostatistical method. 

1.4. RESEARCH QUESTIONS 

For the fulfilment of the aforementioned objectives, the following research questions are formulated: 

1. Which MPS method is most suitable to reconstruct the missing surface displacement values 

inferred from DInSAR? 

2. What are the optimal parameter settings for implemented MPS method to obtain the best pattern 

reproduction? 

3. How fully informative training images (TIs) can be made for reconstruction of pattern and spatial 

structure in the gaps? 

4. What are the effective methods for assessment of the reconstructed results in the missing area? 

5. Which conventional geostatistical method is appropriate for benchmarking the MPS results? 

6. Does MPS perform better gap filling compared to the conventional geostatistical method? If yes, 

in which aspect of performance measures is MPS superior to conventional geostatistical method?  

1.5. INNOVATION AIMED AT 

This research shall be carried out to derive the surface displacement of Himalayan glacier, one of the 

toughest topography, from novel S1 SAR data applying SAR interferometry technique. Most importantly, 

S1 data are available free of charge (ESA, 2013). So, the exploration of this novel dataset for glacial 

monitoring is promising. 

The other novelty of this research is aimed at reconstruction of gaps in the glacier displacement maps 

derived from InSAR technique using MPS. An appropriate MPS algorithm shall be chosen and used to 

reproduce the complex patterns and spatial structure in the missing area of glacial surface displacement 

map which traditional two-point geostatistical methods are unable to reconstruct. Finally, the accuracy of 

the reconstructed gaps shall be evaluated.  

1.6. THESIS OUTLINE 

The structure of the thesis is outlined here. It is divided in 7 chapters. Chapter 1 introduces the 

motivation, problems, objectives, questions and innovations of this research work. In Chapter 2, review of 

DInSAR technique, their applications in glacier studies and the existing problem focusing on S1 dataset 

are presented. Then, Chapter 2 continues with the review of several MPS algorithms and their potential to 

solve the problem at hand. At the end of Chapter 2, the chosen MPS algorithm to be implemented for gap 

filling is described. Chapter 3 deals with the information about the study area, the data and software. 

Chapter 4 explains the methodology adopted for DInSAR and MPS. Chapter 5 presents the results of the 

work done. The discussion of the findings from the implementation, accuracy assessment and 

comparative analysis conducted as given in Chapters 6. Finally, Chapter 7 concludes with insights gained 

from the research, addresses the research questions and recommendations for the future research.  
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2. LITERATURE REVIEW 

This chapter presents a brief review of SAR interferometry and MPS. The first section focuses on the 

fundamentals of SAR interferometry, its applications in glaciology, potential of S1 interferometry to derive 

glacier surface displacements and missing values in DInSAR derived displacement maps caused by 

decorrelation in InSAR. The second section describes briefly the background of MPS, existing MPS 

algorithms and the selected MPS algorithm to be implemented for reconstructing gaps in the LOS 

displacement map. At last, a conventional geostatistical method chosen to benchmark the MPS 

reconstruction is explained. 

2.1. SAR INTERFEROMETRY 

SAR data have been successfully applied in earth sciences for more than 20 years. One of the 

characteristic that makes SAR systems stand out is their capability to acquire images both day and night, 

and in all weather conditions. This is because SAR sensors are active microwave remote sensing systems. 

SAR sensor illuminates targets on the earth surface by transmitting a series electro-magnetic microwave 

pulses. The SAR sensor extracts information about illuminated target by measuring the reflected radar 

echoes. The received signal are complex having both amplitude and phase information. The amplitude is a 

measure of strength of the backscattered signal and is characterized by the geometrical properties of the 

target, while the phase is record of the fraction of last wavelength received by the SAR sensor. 

In SAR interferometry (also known as Interferometric Synthetic Aperture Radar (InSAR)), the phase 

difference between two SAR images acquired from a slightly different position at different times are used 

to determine surface topography and the displacement on the earth’s surface (Massonnet & Feigl, 1998). 

The two different InSAR techniques used are: single-pass SAR interferometry and repeat-pass SAR 

interferometry. 

In single-pass interferometry, two SAR images are simultaneously acquired from two antennas/receivers 

mounted on a single platform separated by a known distance called baseline. Whereas, repeat-pass 

interferometry involves two images of the same area being acquired by a single antenna in different passes 

of the satellite. In the former technique, there is no temporal separation between two acquisitions referring 

no surface deformation between the two images; leaving only topographic component in the phase 

difference. So, this technique is mostly used for creating high resolution digital elevation models (DEMs) 

because of less error than repeat-pass (Zhong et al., 2003). For example: there is no error caused by 

atmospheric variation in single-pass, whereas any change in atmospheric condition between two 

acquisitions affects repeat-pass. The single-pass interferometry was first used by Zebker & Goldstein 

(1986) for topographic mapping. Famous implementation of single-pass interferometry is the space borne 

Shuttle Radar Topography Mission (SRTM), which generated global high-resolution topographic data 

(Farr & Kobrick, 2000). In the latter technique, the antenna position is spatially as well as temporally 

separated between the two acquisitions, so the phase difference has contribution from both surface 

topography and possible surface displacement. Thus, the repeat-pass interferometry involves removing the 

topographic phase contribution to obtain the displacement that may have occurred between the two 

acquisitions (Rosen et al., 2000). This approach is generally referred to as differential InSAR (DInSAR) 

and has the potential to detect ground deformation with millimetre to centimetre scale precision. DInSAR 

was first demonstrated by Gabriel et al. (1989) to detect the earth’s surface displacement of many 

geophysical phenomena such as swelling and buckling in fault zones, displacement caused by earthquake 



MULTIPLE-POINT GEOSTATISTICS TO DERIVE MISSING SURFACE DISPLACEMENT VALUES OF A GLACIER INFERRED FROM DINSAR 

6 

and volcanic activities. Repeat-pass interferometry is the typical implementation for most of the satellite 

based sensors such as ERS-1, ERS-2, JERS-1, Radarsat and Envisat. Sentinel-1 also functions in repeat-

pass mode which is why repeat-pass interferometry technique has been utilized in this research. 

In DInSAR approach, one can take three images and construct two interferometric phase measurements. 

One image pair is considered to contain only the topographic signature, while the other pair comprises of 

both topography and surface displacement. The topographic contribution obtained from first pair is 

deducted from second such that the resulting interferometric phase is only from surface deformation 

(Rosen et al., 2000). Instead of 3-pass DInSAR, when only two SAR images are available, an external 

DEM can be used to deduct the topographic phase to obtain surface deformation between the two 

acquisitions (Schneevoigt et al., 2012). Since the temporal resolution of S1 is of 6 days, all image pairs on 

the glacier will contain both topographic and surface displacement signature. Thus, 2-pass DInSAR with 

external DEM is the implementation used in this research. 

2.1.1. DInSAR application in glaciology 

The ESA’s first SAR mission ERS-1 was launched in 1991, which gathered large amount of data over wide 

area of the globe. This triggered the application of InSAR in earth sciences to study surface deformation 

due to volcanic eruption (Amelung et al., 2000; Massonnet et al., 1995), earthquakes (Massonnet et al., 

1993; Massonnet & Feigl, 1998) and landslides (Berardino et al., 2002; Colesanti & Wasowski, 2006; Hilley 

et al., 2004; Rott & Nagler, 2006). Further applications of InSAR are in hydrology for soil moisture 

monitoring (Makkeasorn et al., 2006; Smith et al., 2000) and water level measurement and monitoring in 

lakes and reservoirs (Alsdorf et al., 2001; Romeiser et al., 2007; Wdowinski, 2004), in forestry for canopy 

height estimation which is used to quantify the forest biomass (Askne et al., 1999; Balzter et al., 2007; 

Wegmüller & Werner, 1997). Goldstein et al. (1993) pioneered the application of DInSAR in glacier 

monitoring by successfully applying ERS-1 images for glacier displacement of Antarctic ice stream over 6 

days between the images. After him, several scientists have successfully implemented DInSAR technique 

for glacier studies. 

The ERS-1 ice phase data acquired during 3-day repeat orbit (1992 and 1994) opened up the opportunity 

of using DInSAR for glacier studies with reduced temporal separation. One of the publications dealing 

with three days interferometry with glacier displacement applications is by Strozzi et al. (2002). The ESA 

ERS-2 launched in 1993 is an identical satellite system to ERS-1, which allows interferometry between 

them. The ERS-1/-2 tandem mission operated only in 1995/1996 and provided SAR images of 1 day 

repeat-pass data. Because of which ERS-1/-2 tandem images were the most exploited data source for 

glaciological analysis. Several researchers have carried out 2-pass DInSAR for glaciological studies using 

ERS-1/-2 tandem images (Eldhuset et al., 2003; Rott, 2009; Schneevoigt et al., 2012; Wangensteen et al., 

1999; Wangensteen et al., 2005). 

The glacier velocity derived from SAR interferometry can help in identifying the causes of the ice shelf 

acceleration (Vieli et al., 2007). The displacement and velocity field of glaciers obtained through SAR 

interferograms has been used successfully to monitor uplifting (Jónsson et al., 1998) and infilling 

(Björnsson et al., 2001) of the ice cauldrons, estimating snow accumulation (Oveisgharan, 2007), motion 

patterns (Li et al., 2008), redistribution patterns of wind-drifted snow (Li & Sturm, 2002), glacier surface 

topography (Joughin et al., 1996; Kwok & Fahnestock, 1996; Mohr et al., 1998), mass flux (Rott et al., 

1998), surface lowering of the glaciers (Muskett et al., 2008) and glacier surges (Fischer et al., 2003).  Gray 

et al. (2005) used vertical displacement field derived from SAR interferometry to infer subglacial water 

movement. Furuya & Wahr (2005) inferred the water level change of supraglacial lakes by assessing height 

changes from the DEMs derived from InSAR. Joughin et al. (1998) and Mohr et al. (1998) derived 3-

dimentional glacier velocity using ascending and descending passes assuming flow parallel to the surface.  
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ERS-1/-2 tandem images have been widely used for glacier studies in Himalaya range. Kumar et al. (2008) 

studied the movement of the two Himalayan glaciers: Siachen and Gangotri using ERS-1/-2 images. The 

surface velocities of the two famous glaciers in Everest region of Himalayan range—Khumbu and 

Kangshung were derived from ERS-1/-2 images applying DInSAR technique by Luckman et al. (2007). 

Quincey et al. (2007) demonstrated the potential of SAR interferometry derived glacier velocity for early 

detection of the potential glacial lake hazards in Himalayan glacier. The study area covered five glaciers in 

the Tama Koshi and Dudh Koshi river basins and showed that development of the lakes in the debris-

covered tongue takes place in stagnant region with displacement less than 5 m a-1
.  Quincey et al. (2009) 

applied DInSAR approach derived glacier surface velocity to extract information on the stagnation extent 

which is an indicator of glacier retreat in 20 glaciers across the Everest region of Himalayas. 

ERS-1/2 SAR images were excellent dataset for InSAR glacier studies, but they are no longer operational. 

For the continuity of C-band SAR data, S1 was built on ESA’s and Canada’s the heritage SAR systems 

namely ERS-1, ERS-2, Envisat and Radarsat (ESA, 2014). S1 mission has been optimized for InSAR 

application. At present, S1 is the satellite mission providing global open data with short repeat acquisition 

plan of 6-day. Thus, with this newest SAR mission, researchers are presented huge opportunities to 

explore S1 data for various InSAR applications, including glacier study which is this research’s application 

of interest. 

2.1.2. Potential of S1 interferometry to derive glacier surface displacements 

Several scientists have investigated the potential of C-band SAR mission with 12 days repeat-pass—

Sentinel-1—to derive glacier surface velocity using DInSAR. Before the launch of S1 mission, equivalent 

ERS-1/2 C-band SAR data was used to study the future prospect of S1. Strozzi et al. (2007) used ERS-1 

ice mission data with 3-day repeat orbits acquired in 1992 and 1994 at Nordaustlandet and computed five 

12 days interferograms. They successfully derived LOS surface displacement maps out of two coherent 

interferograms.  

Interferometric wide (IW) swath mode is the standard acquisition mode over land. Yague-Martinez et al., 

(2016) provided recipe-like description of interferometric processing of S1 IW data and demonstrated the 

interferometric capabilities of S1 data for geophysical applications.  Similarly, Prats-Iraola et al. (2015) 

investigated the interferometric performance of S1 IW 12-day repeat pass data over glacier scenario and 

demonstrated excellent results over a Greenland glacier. All these studies confirm the promising 

interferometric capabilities of the S1 data acquired in IW mode for glacier displacement studies. 

For mountain glaciers, short repeat acquisitions are desired because of their larger deformation rates 

compared to Greenland and Antarctic ice sheets (Berthier et al., 2005; Li et al., 2008). After the launch of 

S1 B on 25 April 2016, the S1 constellation is complete. The two satellites S1 A and B fly in coordinated 

orbits delivering 6-day repeat pass images with improved coverage. The 6 day repeat pass images provides 

much better interferometric results than the 12 day repeat pass images by reducing temporal decorrelation. 

S1 provides dense time series of free SAR data with shorter repeat cycle compared to previous SAR 

missions (for example: 35 day for Envisat). Thus, it is worthwhile to investigate potential of S1 data to 

deriving surface displacement field of Himalayan glacier. 

2.1.3. Decorrelation in InSAR  

InSAR works only under coherent conditions. Coherence is the complex correlation coefficient of two 

complex SAR images. The values of coherence are within the range of [0, 1], where 0 indicates completely 

decorrelated signals and 1 refers to perfectly correlated signals. Coherence is an indicator of the quality of 

interferogram. Low coherence value produces unreliable interferometric results.  

The changes in the position or the properties of the backscattering elements over the time span between 

the SAR acquisitions results in the decrease of the coherence value. The main causes of the temporal 
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decorrelation are meteorological events such as snowfall and rainfall, wind induced surface snow 

redistribution, and melting of snow and ice (Strozzi et al., 1999; Strozzi et al., 2002; Zebker & Villasenor, 

1992). Another restriction for the application of InSAR arises due to it’s the displacement gradient 

threshold.  The displacement gradient threshold of InSAR is half a fringe per pixel. When the surface 

displacement is greater than the threshold, the individual phase cycles cannot be resolve. Thus InSAR 

technique fails in zones of strong displacement gradient ( Nagler et al., 2015; Zhou et al., 2009).  

Additional source of decorrelation is the mismatch in the properties of the two imaging systems caused by 

volumetric scattering, processing errors, large interferometric baseline (i.e. perpendicular baseline greater 

than critical baseline) and geometric (orbit errors). Due to high penetration of the SAR signals in the snow 

and ice of glaciers, volumetric decorrelation occurs (Langley et al., 2007). Processing error can be avoided 

by applying correct processing chain. For S1, precise orbit parameters are provided by ESA. Based on the 

precise orbit data, the geometry is more accurate which eliminates the geometric errors (for example: 

accurate coregistration of the two SAR images) (Gens & Genderen, 1996). The S1 orbit maintenance 

strategy ensures small perpendicular baseline on the order of 150 m (Yague-Martinez et al., 2016). Thus, 

the perpendicular baseline is smaller than the critical baseline. The decorrelation caused by interferometric 

baseline are negligible due to small baseline between the interferometric acquisitions (Tamm et al., 2016). 

The complete discussion on the sources of loss of coherence are presented in Hanssen (2001). 

Since phase noise and decorrelation degrades the phase accuracy in SAR interferometry, the phase in areas 

with low coherence values should not be unwrapped (Li et al., 2008).  The incoherent areas are masked 

out and are excluded in the further analysis – conversion of unwrapped phase to surface displacement. 

Thus, InSAR derived glacier surface displacement map comprises of missing values in the areas of 

insufficient coherence. It is necessary to fill these spatial discontinuities in order to obtain continuous 

displacement field for glacier studies like assessing spatial and temporal pattern of glacier displacement, 

integration with modelling frameworks requiring continuous data, glacier hazard monitoring and glacier 

dynamics. 

2.2. MPS ALGORITHM SELECTION 

2.2.1. Background of MPS 

An appropriate method of interpolation is needed to fill missing values in the surface displacement map. 
Traditional geostatistical methods were applied for several gap filling studies (Zhang et al., 2012). They are 
based on the variogram modelling to capture the spatial heterogeneity. For this reason, they are limited to 
reproduction of the two-point statistics. Most natural phenomenon however, exhibit higher order 
dependencies. The inability of the variogram based model to capture continuity of actual phenomena have 
been pointed out by Caers & Journel (1998) and Strebelle (2002). As remedy to the limitations of 
traditional two-point geostatistics, Guardiano & Srivastava (1993) introduced MPS. They proposed to use 
non parametric TIs instead of variogram to obtain prior spatial model. TIs are grids consisting of the 
spatial patterns deemed representative of the spatial structures being simulated. The use of TIs makes it 
possible to consider correlation between multiple spatial locations at a time. As a result, MPS is able to 
replicate the heterogeneity of spatial phenomenon such as curvilinear and/or connected geometries.  

Serious drawbacks known as smoothing effect inherent in the interpolation results obtained from 

traditional geostatistical approaches such as IDW and kriging (Rezaee et al., 2012; Yamamoto, 2005). 

Because of the smoothing effect, estimated histogram is narrower than the sample histogram, meaning the 

low values are overestimated and the higher values are underestimated during estimation process. Hence, 

spatial variability given by the sample variogram is not reproduced by these traditional geostatistical 

methods. The conditional simulations are recognized alternative for reproducing the histogram and 

semivariogram model. MPS is a conditional simulation method so guarantees the global accuracy. MPS 
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can be used to generate multiple equiprobable stochastic realizations of the phenomenon under study. 

Thus, estimates of uncertainty can be obtained. 

It is necessary to capture the magnitude and patterns in spatial variability occurring in the surface 
displacement field for accurate reconstruction of the missing values in surface displacement map. MPS is 
considered an emerging solution to the drawbacks inherent in traditional geostatistical methods. Thus, it is 
opportunistic to investigate if MPS is able to reproduce realistic spatial continuity and higher order 
statistics. 

2.2.2. MPS algorithms 

During the last decade, several MPS algorithms have been developed and further, new ones are being 

proposed regularly. These MPS algorithms can be broadly categorized into two classes either pixel-based 

or patch-based. In pixel-based algorithms each pixel is simulated one by one sequentially. While, in patch-

base algorithm, entire patch of certain size is simulated by quilting simulation values that are next to each 

other in TI. Therefore, patch-based methods are computationally faster than the pixel-based methods. 

The first MPS algorithm called Normal Equation Simulation (NESIM) developed by (Guardiano & 

Srivastava, 1993) belonged to the family of pixel-based algorithms. This algorithm was inefficient and 

impractical because entire TI was scanned at each simulation step. These problem were solved by another 

pixel-based method called Single Normal Equation Simulation (SNESIM) algorithm (Strebelle, 2002). This 

method proceeds by scanning the entire TI for patterns of a certain template size and their statistics 

(frequency) were stored in the tree. Afterwards, when the simulation process starts, conditional 

probabilities at each node is rapidly computed from the search tree. Consequently the computational cost 

of SNESIM is tremendously reduced compared to NESIM. As a result SNESIM is popular MPS 

algorithm. Another reason for SNESIM being widely used is because of its free availability in Stanford 

Geostatistical Modeling Software (SGeMS). Many MPS algorithms essentially similar to SNESIM have 

been proposed. Straubhaar et al. (2011) developed IMPALA by replacing the search tree in SNESIM with 

list to store the spatial pattern. Another algorithm based on SNESIM is HOSIM, in which spatial 

cumulants are used to store patterns instead of frequencies in search tree (Mustapha & Dimitrakopoulos, 

2011). GROWTHSIM is another MPS algorithm similar to SNESIM, only difference is that it applies a 

random-neighbour path (Eskandari & Srinivasan, 2008). Peredo & Ortiz (2011) developed simulated 

annealing pixel-based algorithm. Apart from SNESIM, direct sampling (DS) is another popular pixel-

based MPS algorithm developed by Mariethoz et al. (2010). 

The first patch-based method is FILTERSIM proposed by Zhang et al. (2006). Other techniques based on 

pasting patches are image quilting (IQ) (Efros & Freeman, 2001), SIMPAT (Arpat & Caers, 2007), 

Patchwork Simulation (El Ouassini et al., 2008), Cross Correlation based Simulation (CCSIM) (Tahmasebi 

et al., 2012) and Conditional Image Quilting (CIQ) (Mahmud et al., 2014). 

2.2.3. Direct Sampling algorithm 

The factor that distinguishes DS from other existing MPS algorithms is that instead of counting and 

storing the patterns found in TI, TI is directly sampled in a random order but conditional to the data 

events. For simulating a node, the algorithm randomly scans the TI until the pattern in TI is matched with 

the pattern retrieved from the simulation grid (SG) centred at node to be simulated. Once the match is 

found, the central node value from the TI is copied and pasted to the node being simulated in SG. The 

match between two patterns is computed using distance. Due to this basic distance-based simulation 

principle, DS has become a very flexible method with several advantages over other MPS algorithms.  
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SNESIM employs storage based on the tree structure which ensures computational efficiency while the 

tree structure is replaced by list-based catalogue in IMPALA which reduces memory requirement. Use of 

the pattern database limits these algorithms to consider only categorical variable with few classes and 

patterns of fixed size. Even though multi-grid approach can be employed to capture large structure, these 

methods become memory extensive because of use of large template size.  

As DS does not need to construct pattern database, both categorical and continuous variables can be 

simulated by defining appropriate distance between data events based on the type of variable under study. 

Similarly, another strong feature of DS is that it offers both univariate and multivariate simulations. In 

multivariate framework, different categorical and continuous variables can be co-simulated preserving the 

linear as well as non-linear dependencies between simulated variables. This opens door to diverse 

applications—categorical variables such as geology, soil type, land cover classes etc. and continuous 

variables such as rainfall, concentration, etc. Apart from potential applications, DS is superior over 

traditional MPS techniques in terms of computational efficiency. DS algorithm does not store the 

occurrences of data events. Thus, the memory usage is tremendously reduced and large neighbourhood 

searches can be performed for reconstruction of large spatial structures. Further, DS efficiently capture 

large scale structure without using multi grid approach by varying the geometry of the patterns during the 

simulation itself. 

The patch-based MPS algorithms which do not rely on both the pattern database and multigrid are 

CCSIM and CIQ. In CCSIM algorithm, overlapping patches are pasted along a simulation path by 

minimizing a cross-correlation function in the overlapping region (Tahmasebi et al., 2012). CIQ pastes 

overlapping patches along a simulation path by optimally cutting the patches so that they overlap with 

minimum discontinuity (Mahmud et al., 2014). But the drawback of these methods is they make 

conditioning difficult whereas DS honour conditioning data easily by assigning them to the closest grid 

node in the SG prior to simulation. In addition, DS can perform stochastic simulation using incomplete 

training images (TIs), even in multivariate case (Mariethoz & Renard, 2010). 

Due to aforementioned reasons, DS is well-suited simulations technique for data reconstruction and 

several studies that successfully implemented DS for gap filling further strengthened the choice. 

Researches related to the application of the DS for reconstruction of gaps have been listed below: 

1. Mariethoz et al. (2012) used DS to reconstruct spatiotemporal gaps in multivariate fields caused 

by clouds, atmospheric condition and satellite scan track error. The four variables (latent heat 

flux, surface temperature, soil moisture and shortwave downward radiation) with non-linear 

dependency with each other were used for reconstruction. The authors successfully reconstructed 

complex spatial patterns and fine-scale structure in gaps larger than the spatial structure. 

However, the authors used regional climate model (RCM) simulations as the synthetic proxy for 

remote sensing images. 

2. DS algorithm was implemented by Oriani et al. (2014) for time series simulation of daily rainfall. 

Here, both the occurrence and the amount of the daily rainfall were simulated simultaneously. 

They were able to use incomplete TIs and show DS could successfully handle missing values in 

the TI. 

3. Mariethoz et al. (2015) presented a method to repair gaps in multivariate time-series processing by 

matching patterns from training data to fill in missing data using DS. Linear as well as non-linear 

dependencies between the variables were maintained. Even though the method was presented 

applying geophysical signal processing, the authors claimed potential applications are in various 

environmental variables such as hydrology and meteorology. 
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4. Yin et al. (2015) demonstrated the reconstruction of the gaps in the Landsat ETM+ caused due to 

the failure of Scan Line Corrector applying DS method. The authors tested gap filling process in 

univariate case and bivariate case. In univariate case, the gapped image was filled using 

information coming either from non-gapped image of other date or from non-gapped region of 

the image itself. Reconstruction result using information from non-gapped area of the image was 

acceptable because only small portion of the image was unknown. In bivariate case, the gapped 

image was repaired by taking its own reflectance value as primary variable and reflectance of 

another image of same area acquired at different date as an auxiliary variable. The bivariate 

simulation provided more accurate reconstruction results because information between the 

images was complementary.  

Apart from gap filling purposes MPS has been applied in other applications in RS domain and presented 

here for completeness: 

1. Consensus-based fusion of spectral information from supervised maximum likelihood 

classification (MLC) and spatial structure information from MPS was used by Ge & Bai (2011) to 

extract roads and non-roads. Regardless of the proportion of the fusion of the MLC and MPS 

information, the authors found that classification accuracy of the combination of spatial and 

spectral information is greater than that of MLC. The increased accuracy was attributed to MPS 

being able to mimic complex connectivity pattern of roads from hand-drawn TI. 

2. Tang et al. (2013) applied MPS simulation for post processing of land cover classification result of 

maximum likelihood classifier. An improvement of classification accuracy relative to post-

processing based on traditional spatial filtering and the contextual Markov Random Field (MRF) 

classifier was obtained. These improvements were attributed to the increased classification 

accuracy for curvilinear classes whose spatial patterns cannot be modeled with variogram.  

The study case here deals with the LOS displacement which is a continuous variable and the TIs to be 

employed are gapped displacement maps. As discussed above, DS can handle these situations with 

computational efficiency. 

2.3. CONVENTIONAL GEOSTATISTICS FOR BENCHMARKING 

Extensive literatures on conventional geostatistics are available. Therefore, they are not described here. 

For detailed explanation, the readers are referred to the books by Cressie (1993) and Journel & Huijbregts 

(2003). Discussions of geostatistics in context of remote sensing are provided by  Addink (1999), Curran 

& Atkinson (1998), Van der Meer (2012) and Woodcock et al. (1988). 

Geostatistical methods outperform the other deterministic methods like IDW and spline because these 

methods model the spatial dependence of the variables explicitly using the semivariogram (Addink, 1999; 

Curran & Atkinson, 1998). Kriging is a well-established geostatistical method. There are several kriging 

methods such as Ordinary Kriging (OK), Universal Kriging (UK), Indicator Kriging (IK), Co-kriging (CK) 

and others. OK assumes a stationary unknown mean while UK estimates a trend in data by simple 

functions and removes them before interpolation (Cressie, 1993).  

In this study, OK has been selected for reconstructing the missing values in displacement map derived 

from DInSAR because the model used by OK to capture spatial dependence is simpler than that of UK. 

OK is the most commonly used kriging method (Kis, 2016; Malvic & Balic, 2009). Moreover, in previous 

studies carried out by the Yaseen et al. (2013) and Yaseen et al. (2013), the missing values in the InSAR 

derived LOS displacement map were interpolated using OK.  For these reasons, OK has been used for 

benchmarking the results of MPS. 
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3. STUDY AREA AND MATERIALS  

This chapter provides description of the study area, data and software used during the research. First of 

all, the study area, its local setting and reasons for selecting it are explained in section 3.1. Followed by the 

description of dataset selected and it’s rationale in section 3.2. Lastly, details of software used are 

described in section 3.3.  

3.1. STUDY AREA 

Apart from Polar region, Himalaya is one of the widely glaciated areas in the globe. In recent years, these 

mountain glaciers are becoming vulnerable to climate change. It is becoming important to monitor these 

glaciers’ response to the climate change.  

The study area is Ngozumpa glacier, which is located at 280 00’ N longitude and 860 45’ E latitude.  The 

glacier lies in Dudh Koshi basin and is 25 km west of the world’s highest mountain, the Everest, in Nepal. 

Out of 664 glaciers in this region, Ngozumpa is the longest debris-covered glacier in the Himalayas 

(Higuchi et al., 2010). It is 18 km long and 1.2 km wide, with lower 15 km marked as ablation zone. The 

accumulation area of this glacier is situated on the upper slopes of the Cho Oyu, the world’s sixth highest 

mountain (8188 m asl), and Gyachung Kang, the world’s fifteenth highest peak (7922 m asl). The 

elevation at the terminus of Ngozumpa is 4680 m. It flows towards south-east. Gaunara glacier, a main 

tributaries following from the East, is no more connected to the Ngozumpa glacier (Benn et al., 2000). 

It is shrinking, producing melt water, forming series of moraine-dammed lakes in the western side valleys 

and large supraglacial lakes on its low slope ablation zone. This is creating prominent threat of GLOFs to 

the downstream Sherpa villages (Thompson et al., 2012). This has ignited a lot of scientific interest in the 

area. Studying the glacier as such helps in anticipating possible future catastrophe, monitoring for early 

warning of potential catastrophes, mass balance studies and understand glacier dynamics. Several studies 

of this glacier have already been carried out and these studies would be valuable for comparison purposes 

(Quincey et al., 2009).  

Figure 3.1 shows the study site in band combination used for glacier and snow mapping in the Sentinel-2 

optical image (bands 11,8A, 3 as RGB), as used by (Egbers, 2016), where snow is seen in light blue, glacier 

in dark blue and debris-covered area and surrounding moraine in red. 
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Figure 3.1: Location of Ngozumpa glacier, Nepal shown in Sentinel-2 false colour image (Level-1C bands 11, 8A, 3 
as RGB) date 2016-10-30  

3.2. DATA DESCRIPTION 

For InSAR application, the coherence between the SAR image pair should be preserved. In glacier 

surfaces, precipitation, both in the form of snow and rain, and redistribution of snow by wind causes 

severe loss of coherence in entire area of glacier making InSAR inapplicable (Strozzi et al., 2002; Strozzi et 

al., 1999). To maximize the possibility of maintaining the coherence, SAR images with temporal baseline 

of 6 days (the least possible temporal baseline of S1) and of the coldest time of the year but with no 

precipitation were selected. 

The Sentinel-1 images are captured in four modes, namely, Strip map (SM), Interferometric Wide Swath 

(IW), Extra Wide Swath (EW) and Wave (WV). The default pre-defined acquisition mode of Sentinel-1 

over land is IW. The available images in the AOI are also in IW mode. Each mode produces four data 

products namely Level-0 Raw, Level-1 Single Look Complex (SLC), Level-1 Ground Range Detection 

(GRD) and Level-2 Ocean. Level-1 SLC products comprise of geo-referenced focused SAR data with 

preserved phase information, hence it is suitable for interferometric processing. Whereas level-1 GRD is 

processed further to make square pixel. This process is called multi-looking and it destroys the phase 

information so interferometry is no longer possible (ESA, 2013b). 

Following pre-requisites for InSAR were checked before selecting the image pairs: 
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 Both images have to be acquired by the identical satellite using same acquisition mode 

and properties such as beam, polarization, off-nadir angle, etc.; 

 Both images have to be captured with the satellite in the same nominal orbit; 

 Baseline between the master image and the slave image should not be greater than the 

critical baseline. Further, the baseline should be as small as possible so that the 

topographic contribution in the interferometric phase is minimal. Additionally, the 

shorter baseline results in higher coherence. 

ESA’s archive was inspected to find out images suitable for InSAR application with short repeat pass 

delays (6 days). The images covering the chosen glacier applying the constraints explained above were 

downloaded from Alaska Satellite Facility. The downloaded images were level-1 SLC product. 

The SAR images over AOI were acquired at dual polarization (VV and VH). For glacier velocity retrieval, 

the VV channel was used in this study over cross-polarized VH return because of its higher signal-to-noise 

ratio and less backscattering variation (Nagler et al., 2015). VV-VV polarization yields the highest 

coherence due to higher SNR ratio and less back-scattering variation (Papathanassiou & Cloude, 2014). 

Table 3.1 shows the details of the SAR image pairs used in this study: 

Table 3.1: List of S1 SAR image pairs used for InSAR of the Ngozumpa glacier. 

3.3. SOFTWARE DESCRIPTION 

The following were the software used in the study: 

1. Sentinel Application Platform (SNAP) version 4.0.0: SNAP4.0 is ESA’s the joint architecture 

for Sentinel-1, -2 and -3 toolboxes that is available freely from 

http://step.esa.int/main/download/. Further development is still being carried out jointly by 

Brockmann Consult, Array Systems Computing and C-S (ESA, 2016). SNAP4.0.0 is the latest 

version used during this research.  

2. ArcGIS 10.3.1: For pre-processing of the images such as image mosaicking, sub-setting the study 
area, and cartographic visualization purposes, the aforementioned software was used.  

3. R programming software: R is free software for statistical computing and graphics(R Core 
Team, 2016). For format conversion (i.e. gslib to tif and vice versa) and the quantitative error 
analysis  packages such as raster (Hijmans, 2016) and rgdal (Bivand et al., 2016) were used. For 
ordinary kriging, sp (Pebesma & Bivand, 2005) and gstat (Pebesma, 2004) packages were applied. 

4. DS: Multiple-Points Simulation by Direct Sampling (DeeSse): It is DS executables written in 

C (Straubhaar, 2016). It is the core program implemented for MPS simulations. 

5. Stanford Geostatistical Modeling Software (SGeMS): It is open-source MPS software (Remy, 

2005). This software was employed for visualizing and assessing MPS simulation results. 

 
  

SAR 
Image 
Pairs 

Master 
image 

Slave 
image  

Perpendicul
ar Baseline 
(m) 

Track Temporal 
Baseline 
(days) 

Polarization Ascending
/Descendi
ng Orbit 

Pair I 2016-10-27  

(S1-A) 

2016-11-02 

( S1-B) 

 +32.45 121 6 VV Descending 

Pair II 2016-11-02   

( S1-B) 

2016-11-08 

( S1-A) 

 -42.13 121 6 VV Descending 

http://step.esa.int/main/download/
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4. METHODS 

The methods undertaken chronologically during the research are presented in this chapter. At first, section 

4.1 explains in detail the processing chain of SAR interferometry from the starting—SLC SAR focused 

images to the final—surface displacement maps. Then, section 4.2 describes the OK implementation for 

interpolating the missing values in the displacement maps. Similarly, section 4.3 focuses on MPS 

application for reconstructing the gaps in the displacement maps. Finally, section 4.4 explains the accuracy 

assessment of the reconstruction results of both OK and MPS. 

4.1. PROCEDURE OF SAR INTERFEROMETRY 

The theory of SAR interferometry is given by (Fatland & Lingle, 1998). The adopted workflow of 

DInSAR to derive displacement has been shown in Figure 4.1 and each execution step has been discussed 

in detail below. 

 

Figure 4.1: Adopted workflow of DInSAR to obtain glacier displacement map. 

In order to compute the interferogram, first the image pair needs to be co-registered by moving the pixels 

in the slave image to align with the master image at sub-pixel accuracy. The image acquired at earlier date 

was used as the master, while the one with later acquisition date was taken as slave to get positive 

deformation in time.  
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Due to the TOPS mode of S1 IW data, higher co-registration accuracy is required. Geometric co-

registration was performed using precise orbit data and SRTM 3-sec DEM. This process makes sure that 

each ground target contributes to the same pixel in both images (i.e. the master and the slave). The 

optional procedure to further refine the azimuth shifts is to use enhanced spectral diversity and incoherent 

cross correlation. These procedures are only applicable to TOPS mode interferometry in stationary areas 

and are not applied to glacier due to non-stationary scene. Further, these steps are not required because 

the S1 satellite tracking is highly accurate (Yague-Martinez et al., 2016).  

During the co-registration, precise orbit files provided by the Precise Orbit Determination (POD) service 

for S1 were automatically downloaded by the SNAP Toolbox and applied for precise orbit correction. 

Precise orbit files are made available 20 days after the acquisition. The high geolocation accuracy of S1 

with the precise orbit data enables precise co-registration of repeat-pass image pair without using ground 

control points (Nagler et al., 2015).  

From the co-registered image pair, an interferogram was formed by the multiplication of master SAR 

image with the complex conjugate of the slave image. The resulting interferogram represents the phase 

difference between the two co-registered SAR image pair and is displayed as colour fringes. For C-band 

S1, each fringe (2π) in the interferogram corresponds to half the wavelength i.e. 2.8 cm displacement in 

LOS direction. 

With repeat-pass interferometry, which is the case in this research, interferometric phase (∆𝜑)  is affected 

by both the topography (∆𝜑𝑡𝑜𝑝𝑜) and surface displacement towards or away from radar LOS direction 

(∆𝜑𝑑𝑖𝑠𝑝). Apart from these two deterministic components, other contributors to the interferometric 

phase are atmospheric delay (∆𝜑𝑎𝑡𝑚), flat earth phase (∆𝜑𝑓𝑙𝑎𝑡) and other sources of noise (∆𝜑𝑛𝑜𝑖𝑠𝑒). 

Thus, the interferometric phase equation given by Schneevoigt et al. (2012) is: 

∆𝜑 =  ∆𝜑𝑓𝑙𝑎𝑡 + ∆𝜑𝑡𝑜𝑝𝑜 +  ∆𝜑𝑑𝑖𝑠𝑝 +  ∆𝜑𝑎𝑡𝑚 +  ∆𝜑𝑛𝑜𝑖𝑠𝑒                                                    (4.1) 

In order to obtain ∆𝜑𝑑𝑖𝑠𝑝, the phase contribution from other sources should be eliminated.  

Flat-Earth phase (∆𝜑𝑓𝑙𝑎𝑡) is the phase attenuated in the interferometric signal due to the earth’s curvature. 

The flat-Earth phase is estimated by means of the precise orbital and metadata information and deducted 

from the interferometric phase.  

From the precise DEM, a synthetic interferogram containing only the topographic phase (∆𝜑𝑡𝑜𝑝𝑜) was 

constructed. Then, the synthetic interferogram was subtracted from the real interferogram such that the 

resulting interferogram no longer contains topographic phase term (Joughin et al., 1996; Mattar et al., 

1998). In this study, SRTM 3-sec DEM (90 m spatial resolution) was used to calculate the topographic 

component of the interferometric phase.  

The error in the DEM causes inaccurate removal of topographic phase from the interferogram. But the 

LOS displacement measurement is robust to DEM error. For example: with a perpendicular baseline of 

100 m, a 10 m error in DEM introduces error of only 0.1 cm/day in LOS direction  (Joughin et al., 1996). 

Since the perpendicular baseline is shorter in this study (see Table 3.1); the interferometric phase is less 

sensitive to the reference DEM (Mattar et al., 1999).  Thus, the use of SRTM 3-sec DEM is sufficient for 

this study. 

In an ideal condition, ∆𝜑𝑎𝑡𝑚 is completely removed in the DInSAR process. However, due to changing 

water vapour content in atmosphere, ∆𝜑𝑎𝑡𝑚 may differ between repeat pass acquisitions. This is difficult 
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to account for because the additional data needed should cover the entire atmospheric strata and is rarely 

available (Rott, 2009). 

Finally, phase noise (∆𝜑𝑛𝑜𝑖𝑠𝑒) was reduced applying Goldstein Filter (Goldstein & Werner, 1998) which is 

a non-linear adaptive filter. This process enhances phase unwrapping by improving the fringe visibility in 

the area with low coherence value. After removal of ∆𝜑𝑛𝑜𝑖𝑠𝑒 , the resulting interferometric phase only 

comprises phase due to LOS displacement. 

The InSAR coherence is defined as the complex cross-correlation coefficient of two complex SAR images. 

The coherence value ranges between 0 to 1, where 0 refers to fully decorrelated signals and 1 denotes 

perfectly correlated signals. The InSAR coherence is computed using Equation 4.2. 

𝜌 =
|∑ ∑ 𝐶1(𝑖,𝑗) 𝐶2(𝑖,𝑗)∗𝑀

𝑗=1
𝑁
𝑖=1 |

√∑ ∑ 𝐶1(𝑖,𝑗) 𝐶1(𝑖,𝑗)∗𝑀
𝑗=1

𝑁
𝑖=1 √∑ ∑ 𝐶2(𝑖,𝑗) 𝐶2(𝑖,𝑗)∗𝑀

𝑗=1
𝑁
𝑖=1

                                            (4.2)                       

where 𝐶1 is master complex image, 𝐶2 is slave complex image, 𝐶(𝑖, 𝑗) is complex value at pixel location 

(𝑖, 𝑗)  where 𝑖  and 𝑗  denotes the range and azimuth direction respectively, 𝑥∗ represents the complex 

conjugate of 𝑥, 𝑁 and 𝑀 are the number of pixels in range and azimuth direction respectively (Zhou et al., 

2009). Coherence image was obtained from coregistered SAR image pair. 

Phase unwrapping process of the interferogram is carried out to convert the 2π cyclic fringes into 

continuous signal using Minimal cost flow (MCF) technique with triangulated irregular network (TIN) 

(Costantini, 1998) or region growing technique (Baldi, 2003). During phase unwrapping, integer multiple 

of 2π is added to ∆𝜑 whenever it jumps to 0 from 2π.  As low coherence value cannot be unwrapped, 

Schneevoigt et al. (2012) suggested masking them out during phase unwrapping. The coherence value of 

0.25 was taken as threshold and phases having coherence lower than the threshold were not considered 

for phase unwrapping (Bhattacharya et al., 2012; Wegmuller & Werner, 1997). 

Phase unwrapping was carried out using 1 × 1 tile so that there is no vertical and horizontal linear jumps 

in the colour fringes from tiling in the unwrapped interferogram. MCF technique was applied here. The 

statistical-cost, network flow algorithm SNAPHU was used for phase unwrapping (Chen & Zebker, 2002). 

Permanent markers such as rocks on the sides of the glacier were identified in the image. Since they have 

stable surfaces, they preserve the phase. Thus, the phase difference in the interferogram at these markers 

should always be zero. Atmospheric attenuation was removed from the interferogram by deducting the 

phase value at these markers (Zhou et al., 2009). The other purpose served by these permanent markers is 

for conversion of the relative surface displacement value to absolute. The displacement value obtained so 

far is relative. Reference point either with zero displacement or with known velocity should be identified 

in the interferogram to obtain absolute displacement value. Here, surrounding rock has been used as 

reference point with zero displacement  (Berthier et al., 2005; Strozzi et al., 2007). The value of the chosen 

reference marker was subtracted from the relative displacement map. Finally, absolute displacement map 

was obtained. 

The unwrapped interferogram was geocoded using SRTM DEM and Range-Doppler approach such that 

the map coordinates were projected to Universal Transverse Mercator (UTM) zone 45-north and World 

Geodetic Co-ordinate system 1984 (WGS-84) datum. In this way, geocoded displacement map was 

obtained. 
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4.2. ORDINARY KRIGING 

4.2.1. Variogram analysis 

Ordinary Kriging (OK) is a geostatistical method based on variogram (2𝛾 ) to determine the spatial 

dependence. It is often referred as a semivariogram (𝛾). They are exactly same except that semivariogram 

is half of the variogram. Equation 4.3 mathematically expresses a variogram (Isaaks & Srivastava, 1989). 

2𝛾(ℎ) =  
1

𝑚(ℎ)
∑ [𝑧(𝑢𝑖) − 𝑧(𝑢𝑖 + ℎ)]2𝑚(ℎ)

𝑖=1                                                                              (4.3) 

where 𝑚(ℎ) is the number of data pairs at lag ℎ, 𝑧(𝑢𝑖) is the value at location 𝑢𝑖 and 𝑧(𝑢𝑖 + ℎ) is the 

value at location (𝑢𝑖 + ℎ).  

First, an experimental variogram was calculated. Then, the experimental variogram was approximated by a 

best fitting theoretical model. Most commonly used theoretical models are Spherical, Exponential and 

Gaussian (Webster & Oliver, 2007).  

 𝛾(ℎ) = {
𝑐0 + 𝑐1 [

3ℎ

2𝑎
−  

1

2
(

ℎ

𝑎
)

3
]      𝑓𝑜𝑟 ℎ ≤ 𝑎

𝑐0 + 𝑐1                                𝑓𝑜𝑟 ℎ > 𝑎
              Spherical model                                  (4.4) 

 𝛾(ℎ) =  𝑐0 + 𝑐1 [1 − 𝑒𝑥𝑝 (−
ℎ

𝑎
)]                                 Exponential model                              (4.5) 

 𝛾(ℎ) =  𝑐0 + 𝑐1 [1 − 𝑒𝑥𝑝 (−
ℎ2

𝑎2)]                               Gaussian model                                   (4.6) 

where 𝛾(ℎ) is a semivariance, ℎ is lag, 𝑎 is range, 𝑐0 is nugget variance and  𝑐0 + 𝑐1 is sill. 

4.2.2. Ordinary Kriging interpolation  

OK is used to predict the missing displacement values at a selected location 𝑢0 from a linear combination 

of surrounding known displacement values at locations 𝑢𝑖. A relevant weighting coefficient (𝜆𝑖) is assigned 

to each selected surrounding locations which determines the influence of each known data on the final 

estimation at the selected grid node. The weighting coefficient (𝜆𝑖) sum to 1. The relationship between the 

existing sample data and the estimation point is established by the modelled variogram, or by covariance 

(matrix) in case of second order stationarity. OK equation is written as (Malvic & Balic, 2009): 

 �̂�(𝑢0) =  ∑ 𝜆𝑖𝑧(𝑢𝑖)𝑛
𝑖=1                                                                                                            (4.7) 

4.3. DIRECT SAMPLING 

The implementation of the DS algorithm used in this research is called DeeSse (Straubhaar, 2016). The 

basic principle of DS method is to use TI to identify spatial features and properties which can be used to 

fill the gaps. The missing values of the LOS displacement map are sequentially replaced by matching the 

patterns of the TI with the values of the neighbouring pixels. Hereafter, the glacier displacement image 

with gaps to be reconstructed is addressed as the target image, while the image providing information for 

filling gaps in target image is referred to as the input image.  

Let 𝑍(𝑥) be the variable of interest to be simulated, where the gapped pixel in the target image is denoted 

by 𝑥. Similarly, 𝑁𝑥 is the ensemble of the 𝑛 closest pixels of 𝑥 that are informed. These 𝑛 pixels define the 

neighbourhood. The concept of DS method is to find one possible outcome of 𝑍 conditional to 𝑁𝑥 from 

the conditional cumulative function given in Equation 4.8: 
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𝐹(𝑧) =Prob(𝑍(𝑥) ≤ 𝑧|𝑁𝑥)                                                                                                    (4.8) 

The basic idea is to find another pixel 𝑦 in the TI (in this study case input image) that has neighbouring 

pixels 𝑁𝑦 similar to 𝑁𝑥 . The distance 𝑑(𝑁𝑥 , 𝑁𝑦) is used to compare the similarity between 𝑁𝑥   and 𝑁𝑦 . 

The concept of distance is flexible and can be applied to both categorical and continuous variables. There 

are several possible methods to compute distance 𝑑(𝑁𝑥 , 𝑁𝑦), depending on the type of the variable to be 

reconstructed. For detailed discussion on the different proposed distances for both categorical and 

continuous variable, Mariethoz et al. (2010) and Mariethoz & Kelly (2011) can be referred. 

Since the variable of concern in this research is continuous, the distance adopted was the Weighted 

Euclidean distance, as suggested by Mariethoz et al. (2012) to be used for continuous variable. The 

Equation 4.9 is used to compute the distance. 

𝑑(𝑁𝑥 , 𝑁𝑦) =
1

𝜂
√∑ 𝑤𝑖

𝑛
𝑖=1  [𝑍(𝑥𝑖) − 𝑍(𝑦𝑖)]2                                                                           (4.9) 

where 𝑤 is weight of each node and 𝜂 is normalization factor applied so that the value of distance is 

bounded in the interval [0, 1]. It is the maximum difference between the two values of 𝑍 in the TI. 

Apart from the Weighted Euclidean distance, normalized pair wise Manhattan distance can also be 

adopted for continuous variable and can yield comparable results. Even though the results of both 

Manhattan and Euclidean distances are very similar, Weighted Euclidean distance was chosen because it is 

straight-line distance and is invariant to the rotation of the co-ordinate system. 

The path followed in search for 𝑦 in the TI can be random or unilateral. In this study, random search path 

has been used.  

In case of continuous variable, the perfect match between the data events in the TI and SG is often not 

found which is why an acceptable threshold 𝑡 is introduced. During the scanning process of TI, when the 

pixel 𝑦 is found in the TI with the distance smaller than predefined threshold 𝑡, the value 𝑍(𝑦) is picked 

and assigned to 𝑍(𝑥). If the search area has reached a predefined maximum search fraction 𝑓 of the TI 

but unable to find a pixel 𝑦 satisfying the threshold requirement, then the pixel 𝑦 with the lowest distance 

is accepted and its value 𝑍(𝑦) is assigned to 𝑍(𝑥). 

Figure 4.2 graphically illustrates the DS process. The data event is defined in Figure 4.2 (a) and the central 

pixel with a question mark represents the target pixel to be filled, and the black and the two white pixels 

are neighbourhood with known values from either previous simulation or are conditioning data assigned 

to SG prior to the simulation. Here, a categorical case where a pixel can take only two values—0 (white) 

and 1 (black) is dealt with. Figure 4.2 (b) shows how the search window is defined in the TI grid by using 

the dimensions a, b, c, d of the data events from Figure 4.2 (a). Figure 4.2 (c) shows carrying out search in 

the search window of TI using data events. The search moves to next location following random path 

until the simulation data event is matched satisfactorily as shown in Figure 4.2 (d). Then the value of the 

central pixel of the first matching data event is assigned to the target pixel Figure 4.2 (e). In this case, the 

data event in the TI and the data event in the SG match exactly hence the distance is zero and the value 

𝑍(𝑦) =1 is assigned to the SG.  
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Figure 4.2: Graphical illustration of DS method. (a) Define the data event in the target image. (b) Define a search 
window in the TI grid. (c) Scan the TI using the search window until (d) the simulation data event is matched 
satisfactorily. (e) Assign the value of the central pixel of the first matching data event to the target pixel (Mariethoz et 
al., 2010). 

The DS method is easily extended to the multivariate case. The distance between multivariate 

neighbourhoods is computed by a weighted average of the distances taken individually for each univariate 

neighbourhood. Equation 4.10 gives the distance equation for multivariate case.   

𝑑(𝑁𝑥
′ , 𝑁𝑦

′ ) =  ∑
𝛼𝑗

𝜂𝑗

𝑚
𝑗=1 √∑ 𝑤𝑖

𝑘𝑛
𝑖=1  [𝑍𝑘(𝑥𝑖) − 𝑍𝑘(𝑦𝑖)]2                                                         (4.10) 

where 𝑚 is the number of variable,  𝛼𝑗 and 𝜂𝑗 are the weights and the normalization constant for each 

variable respectively. 

4.3.1. Construction of the Training Images  

Since MPS simulations strongly rely on TIs, choosing appropriate TIs is of first priority as is semi-

variogram modelling in traditional two-point geostatistics (Boisvert et al., 2007). Choosing appropriate TIs 

is not straightforward. There are several ways to construct TIs. For example, TIs can be drawn by hand 

then numerically represented by digitization (Ge & Bai, 2011; Strebelle & Remy, 2005). They can also 

come from remote sensing images and remotely sensed classification results (Tang et al., 2013). Both 

custom build TIs that suites the application or TIs from TIs database that have been built for the 

application of interest can be applied. However, in this particular study case the latter is not available yet, 

which is why TIs were specifically custom made taking into account the application in hand. 

Since TIs should contain the variability, connectivity and structural properties of the phenomenon under 

investigation and DS can perform simulations using incomplete TIs, the LOS displacement maps 

generated from the SAR interferometry with the no data values in masked out incoherent area were used 

as the TIs. 

The DS implementation is in the ANSI C language. All the input and output files are in  an ASCII SGeMS 

compatible format (Remy et al., 2009). TIs should be numerically represented in a format such that they 
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are compatible with the software being used. Since SGeMS is the applied software, TIs have to be in either 

in the sgems binary format or in the geostatistical software library (GSLIB) format. The LOS displacement 

maps were in .tif file format. The 2D images can be converted to GSLIB (.txt) format using open source 

software called TiConverter developed by Fadlelmula et al. (2016). Using the software in case of 

continuous variable requires picking up every possible value iteratively which is impractical. Thus, R codes 

were developed and used to convert the .tif to .gslib format (Appendix A. 1). R codes made the 

conversion process easy and practical as numerous files were to be converted.  

The output files format generated from the DS were also in .gslib so R codes were made to convert them 

back to .tif file format. 

4.3.2. Mask Image 

Since the SG is defined by the number of nodes in x- and y-direction, the extent of SG is either 

rectangular or square. But the AOI for simulation is the irregular shape of the glacier. Mask image is 

supplied to the SG to flag the nodes either to be simulated or not. Mask image was constructed and 

applied on the SG such that the nodes outside the glacier extent were flagged not to be simulated. This 

constraints only the nodes corresponding to the glacier regime to be simulated. 

4.3.3. Parameters of DS  

Table 4.1 illustrates the value of the fixed parameters used and the range of values of the parameters 

varied for optimization in the DS algorithm. 

 
Table 4.1: The fixed and varied DS parameters. 

Fixed parameters 

Name Default 

Simulation Method MPS 
Number of realizations 10 
Maximum Search Distance 690 488 0 (1/2 size simulation grid) 
Path Type 0 (random path) 
Type of variable 1 for continuous 
Initial Seed 444 
Parameter Reduction 1 (no parameter reduction) 
Data conditioning Yes 

Weight of conditioning data (𝛿) 5 

Distance Type  2 (Weighted Euclidean distance) 
Post-processing 0 (No post-processing) 

Varied parameters 

Name Default Range 

Distance Threshold (𝑡) 0.05 0.005 - 0.01 - 0.03 - 0.05 - 0.1 - 0.15 - 0.2 

Maximum scan fraction of TI (𝑓) 0.5 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.75 - 1  

Maximum number of points in 

neighbourhood (𝑛) 

30 1 - 5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 

4.3.3.1. Maximum Search Distance 

The neighbourhood 𝑁𝑥  is defined as the 𝑛 informed grid nodes that are closest to 𝑥 within the defined 

search area. The search area is defined by the parameters of maximum search distance, which are the radii 

in the 3 x-, y- and z- directions of a rectangular search area. Normally, it is advised to set the radii to half 

of the SG to ensure the use of a large search area, corresponding to the maximum neighbourhood size 

(Mariethoz et al., 2010; Meerschman et al., 2013). Since the size of the SG in this study is (1379, 975, 0), 
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maximum search distance is set to (690, 488, 0). Due to this, neighbourhood covering large portion of the 

search area is defined when the first unknown grid nodes are simulated. As the number of simulated 

nodes increases, gradually the size of the area covered by the 𝑁𝑥  decreases. This process ensures that 

structures of all sizes are captured from the TI and presented in the simulation. 

4.3.3.2. Conditioning data and weight factor for conditioning data 

In DS algorithm, to honour the conditioning data, they are assigned to the closest grid node in the SG 

before the simulation starts. This assures the local accuracy because the grid nodes at the conditioning data 

locations will have the correct values. The non-gapped portions of the LOS displacement map were used 

as the conditioning data.  

It is important that these fixed grid nodes are included in the spatial pattern or else they will appear as 

noise. Weight factor for conditioning data (𝛿) is parameter used to enforce the consistency of the pattern 

in the neighbourhood of the conditioning data.  During the distance computation between the data events, 

𝛿  is used to weight data event nodes that correspond to conditioning data. Meaning, if a value is a 

conditioning data, its corresponding contribution is multiplied by 𝛿. When 𝛿 is 1, all the nodes are given 

the same weight during distance computation. If 𝛿>1, the data event nodes corresponding to conditioning 

data are given higher weights. Conversely, if 𝛿 <1, they are provided lower weights. Thus, 𝛿  is an 

important parameter when conditioning data are available.  

For 𝛿 =0, the simulation is unconditional because the conditioning data are ignored in distance 

computation between the data events. Thus, simulations show patterns inconsistent with the conditioning 

data. When 𝛿=1, the simulation patterns are approximately consistent with the conditioning data, while 

increasing 𝛿 to 5, the simulation patterns are closely consistent with the conditioning data. It is advised to 

set the value of 𝛿≥1 for honouring the conditioning data. If the expected uncertainty of the conditioning 

data is lower i.e. conditioning data is of high quality with no measurement errors, the higher 𝛿 can be used. 

Since the conditioning data in this study are the displacement values generated from InSAR which can be 

considered to have minimum uncertainty, 𝛿=5 has been used meaning the conditioning data weigh five 

times more than the already simulated grid nodes. 

4.3.3.3. Post processing for noise removal 

Post-processing option in DS is applied to further enhance the simulation quality through noise removal.  

In the post-processing step, each node is resimulated using completely informed neighbourhood obtained 

from previous simulation. There are two post-processing parameters—the number of post-processing 

steps (𝑝) and the post-processing factor (𝑝𝑓). Second parameter, 𝑝𝑓, is the factor used to divide 𝑓 and 𝑛 to 

reduce additional computational cost in the post-processing (Mariethoz, 2009). For example, when 𝑝=3 

and 𝑝𝑓=2 are assigned for post-processing, all the nodes are resimulated thrice using values of parameters 

𝑓 and 𝑛 half of their original values. 

In categorical case, post-processing option results in significant improvement of simulation with noise 

removed entirely for intermediate 𝑡 values such as 0.1 and 0.2. But in continuous case, the post-processing 

step is unable to improve the simulation quality considerably and the CPU cost is very high (Meerschman 

et al., 2013). The quality loss caused by a high 𝑡 in continuous case cannot be regained by applying one or 

more post-processing steps. Further, in both categorical and continuous cases, when small 𝑡  is used, 
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occurrence of noises in simulation is less thus improvement of simulation quality by post-processing is 

not-significant. Due to these reasons, post-processing step has not been applied in this study. 

4.3.3.4. Varied parameters 

The most important user defined parameters of the DS algorithm are (i) the number of neighbour (𝑛), (ii) 

the distance threshold value (𝑡) and (iii) the scan fraction of TI (𝑓). To understand and access their impact 

in the simulation process and results, and the CPU cost, further analysis was conducted.  

The use of the larger 𝑛, the smaller 𝑡 and 𝑓 closer to 1, results in better simulations. However, this might 

cause computational burden. The rule of thumb derived by Meerschman et al. (2013) for continuous TI 

was to use 𝑡≤0.1 and 𝑛≥30. Considering this, the parameters were varied as shown in the Table 4.1.  

If ten unconditional simulations are performed for each parameter combination of 7 𝑡 values, 7 𝑓 values 

and 9 𝑛 values shown in Table 4.1, it would result in 4410 realizations for each DS case. There are three 

DS cases presented in this research (2 univariate and 1 bivariate). Full parameter selection would require 

rigorous search in all dimensions of the 3D parameter space defined by 𝑡, 𝑓 and 𝑛. This will require 

tremendously large amount of time. Further, generating simulations based on the continuous TI such as 

displacement field takes longer (Meerschman et al., 2013). So instead, linear search approach was adopted 

for each parameter keeping the rest two constant. Only 1 realization was considered for parameter 

optimization. 

4.3.4. DS cases 

Two different DS cases were considered during the reconstruction process:  

DS Univariate Case (DSu): No separate TI was employed; the non-gapped area of the target image itself 

was used to reconstruct the gapped regions. When large portion of the target image is informed, non-

gapped regions of the target image consists of sufficient information for filling gaps and can be used 

instead of external training image (Yin et al., 2015). Two displacement maps obtained for pair I and pair II 

were separately reconstructed in univariate fashion.  The known displacement values obtained from each 

pair served as TI to fill in missing values in displacement map obtained from the same pair.  

DS Bivariate Case (DSb): Bivariate simulation, taking two displacement images together. In the bivariate 

situation, both the variables (i.e. displacement maps) to be simulated are partially known. The relationship 

between the variables was established through the TIs instead of expressing in terms of mathematical 

relation. DS co-simulates to reconstruct the gaps in both displacement maps obtained from pair I and pair 

II. To provide equal importance to both gapped displacement maps, identical values of 0.5 for the weights 

associated with each displacement map was used.  

4.4. ACCURACY ASSESSMENT 

To evaluate the performance of OK and DS, artificial gaps were created at locations with known LOS 

displacement values. For evaluating the results of the filled gaps in the target image, both qualitative and 

quantitative measures were employed.  

For validation purposes, the known displacement values prior to the imposition of the artificial gaps were 

used as reference dataset. The values predicted using OK and DS at those artificial gaps were used as the 

measured dataset. From a quantitative perspective, Root Mean Square Error (RMSE) was employed as it is 

widely used performance validation measure in similar simulation studies. The difference between the 

measured/observed displacement value and the predicted displacement value is error (𝑒). The Root Mean 
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Square Error (RMSE =  √
∑ 𝑒𝑖

2

𝑛
)  was computed. However, RMSE alone is not an appropriate accuracy 

assessment metric due to its sensitivity to occasional large error. Additional measures namely histograms 

of simulation errors ( 𝑒 ), scatterplots of the reference displacement values versus the simulated 

displacement values in the artificial gaps and the residuals distribution map (the mean of simulation results 

minus the original values before gap imposition) were applied to evaluate the reconstruction results.  

To qualitatively assess the reconstruction results, visual inspection of existence of artifacts was carried out. 
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5. RESULTS 

This chapter presents the results of DInSAR and reconstruction results of missing values in DInSAR 

derived displacement maps from OK and DS. Similarly, the outcomes of the comparative assessment of 

OK and DS reconstructions are presented in detail. 

5.1. DINSAR  

The procedures discussed in section 4.1 were applied for interferometric processing to create the 

interferograms. The interferograms of Ngozumpa glacier, before unwrapping, computed from SAR image 

pair I and II are shown in Figures 5.1(a) and 5.1(b) respectively.  

Each fringe in the interferogram represents LOS displacement of 2.8 cm. The fringes of the interferogram 

are denser in the upper section of the glacier compared to the lower section, relating to the larger gradient 

of displacement in the higher elevated areas. The fringe pattern disappears gradually while moving towards 

the lower sections indicating that the Ngozumpa glacier is stagnant across its long debris-covered tongue.  

Figures 5.1(c) and 5.1(d) illustrate the coherence images of the SAR image pair I and II. Taking a close 

look at the coherence images, it is observed that the coherence of the interferogram is high in the terminus 

and middle section of the glacier while the coherence gradually decreases as we move further towards the 

upper region of the glacier. The areas where the phase noise is high are the snow covered mountainous 

area in the upper part of the glacier. High coherence is observed in rocks/mountains next to the glacier 

where almost no snow or ice is present. 

Comparing the coherence images in Figures 5.1(c) and 5.1(d) to their corresponding interferograms in 

Figures 5.1(a) and 5.1(b), it can be seen that the areas with fringes in the interferogram correspond to areas 

with high coherence in the coherence images. Similarly, the noise in the interferograms corresponds with 

areas with low coherence in the coherence images. 

The two interferograms, shown in Figures 5.1(a) and 5.1(b), are almost identical; the fringe patterns are 

similar, having same size and location in both interferograms. This indicates that the displacement is 

approximately same in both interferograms. 
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Figure 5.1: Results from DInSAR; Sentinel-1 SAR descending wrapped interferogram presenting LOS surface 
displacement of Ngozumpa Glacier due to ice motion during 6 days (a) between SAR image pair I (27-10-2016 to 02-
11-2016); (b) between SAR image pair II (02-11-2016 to 08-11-2016). (c) The coherence image between the SAR 
image pair I. (d) The coherence image between the SAR image pair II. 

a b 

c d 
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The interferograms shown in Figures 5.1(a) and 5.1(b), after being unwrapped and geocoded, produced 

the glacier displacement maps as seen in Figures 5.2(a) and 5.2(b). Since the time interval between two 

consecutive images used to generate interferogram is 6 days, the displacement during this time interval can 

be measured and is shown in displacement maps. The positive values in the displacement map means the 

displacement is towards the radar’s LOS direction whereas the negative values refers the movement is 

away from the radar’s LOS direction. 

 

Figure 5.2: Ngozumpa glacier displacement (m) (a) from SAR image pair I; (b) from SAR image pair II. Missing 
values are shown in white. The displacement measurements are classified into classes with equal class interval of 0.02 
m. 

Visually comparing the coherence images with the S2 optical image in Figure 3.1, loss of coherence can be 

observed in the regions on the glacier covered by snow/ice (blue coloured part of the glacier in Figure 

3.1). As a result phase noise is high in the interferogram and larger gaps are present at these locations in 

the displacement maps (see Figures 5.2(a) and 5.2(b)).  

High coherence can be seen in debris-covered part of the Ngozumpa glacier (red coloured part of the 

glacier in Figure 3.1) and clear fringes can be observed in the interferograms. Consequently, the gaps in 

the displacement maps (see Figures 5.2(a) and 5.2(b)) at the debris-covered tongue of the glacier are few 

and small in size. This phenomenon can be explained by relatively lower displacement gradient and 

absence of snow/ice melt in the debris-covered part of the glacier. 

5.2. DESCRIPTION OF THE ACTUAL GAPS IN THE GLACIER DISPLACEMENT MAP 

The glacial displacement maps contained missing values. Altogether, there were 11066 and 11064 
polygons of missing values in the displacement maps derived from SAR image pair I and pair II 
respectively and the details of those polygons are in Table 5.1.  

The location of the missing displacement values in displacement maps from pair I and pair II can be seen 
in Figures 5.2(a) and 5.2(b) respectively. The gaps are of different sizes and some are large (thousands of 
pixels). The large gaps occur in the upper region of the glacier. 

 

a b 
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Table 5.1: Statistics of the gaps caused by low coherence in displacement map from SAR image pair I and pair II. 

No. of pixels Pair I  Pair II 

No. of polygons Area (m2)  No. of polygons Area (m2) 

1-14 9770 5476020  9820 5544911 
15-34 706 3024994  645 2718591 
35-84 349 3750797  358 3719767 
85-149 120 2569684  127 2820465 
150-965 117 6988517  108 6586876 
966-2365 4 234095  6 1765230 
      
 11066 22044107  11064 23155840 

5.3. FORMATION AND DESCRIPTION OF ARTIFICIAL GAPS  

Artificial gaps were created for the validation purposes. The gaps that occurred in the displacement maps 

due to loss of coherence were of different sizes and shapes. Small gaps can be repaired easily with high 

quality because the surrounding data provide sufficient information. Bigger gaps with different shapes and 

sizes were picked. They were shifted to non-gapped area and artificial gaps were made. They were treated 

as if they are unknown, and were consequently reconstructed and analysed. 

The size of the gaps caused by the loss of coherence ranged from 1 to 1341 pixels for displacement map 

from pair I and from 1 to 2365 pixels for displacement map from pair II. In displacement map from pair 

II, there was a big jump from second largest gap with size of 1084 to the largest gap. The mean gap size 

was picked for the analysis because most of the occurring gaps were of or around this size and also the 

gaps should not be small as mentioned earlier. To reduce the influence of the outlier, polygon of size 2365 

was ignored during the calculation of the mean gap size. 

For evaluating the performance of the OK and DS, artificial gaps were imposed at 12 locations with the 

known glacial displacement values. To construct the 12 artificial gaps, a polygon consisting of 142 pixels 

was selected (approximately 27713 m2 in area) from pair II. For simplicity, the same polygon was used to 

create artificial gaps at same 12 locations in both displacement maps from pair I and pair II. The 

interpolations were performed at those gaps. The predicted values were compared with the original values 

at each of the artificial gaps and RMSE was computed. These gaps are addressed as 12 shifted polygons in 

the following sections. 

The location of the 12 shifted polygons in the displacement maps from pair I and pair II is shown in 

Figures 5.3(a) and 5.3(b) respectively.  

To assess the impact of the big gaps sizes, additional two large polygons were chosen and artificial gaps 

were created by repositioning them at the same location. The reconstruction was performed one polygon 

at a time. DInSAR results showed that the westerly tributary of Ngozumpa glacier is active. It is a key 

location with comparatively heterogeneous displacement values. So the large gaps were imposed in the 

active part of the western tributary in the displacement map from pair II. Only DSu simulation was 

performed. A polygon with 499 pixels was selected to impose intermediate gap. A polygon consisting 1016 

pixels was chosen to create large gap because it was one of the largest occurring gap with the high number 

of the missing values. Figure 5.4 shows the location of the three shifted polygons of increasing sizes on 

the displacement map from pair II. 



MULTIPLE-POINT GEOSTATISTICS TO DERIVE MISSING SURFACE DISPLACEMENT VALUES OF A GLACIER INFERRED FROM DINSAR 

31 

 

Figure 5.3: Twelve shifted polygons on the displacement maps from (a) pair I and (b) pair II. The actual gaps are in 
white and the 12 artificial gaps imposed are shown in black. 

     

Figure 5.4: The polygons of increasing size imposed in key location of displacement map from pair II (shown in red 
box in Figure 5.3 (b)) for accuracy assessment of growing gap size.  Artificial gaps imposed are: polygon 1 (142 
pixels), Polygon 2 (499 pixels) and Polygon 3 (1016 pixels) from left to right respectively shown in black. 

5.4. TWELVE SHIFTED POLYGONS 

5.4.1. Ordinary Kriging 

The 12 shifted polygons comprises of 1704 pixels. These were used for validation purposes. For OK, 

literature suggests maintaining the ratio of 1:3 for validation and calibration samples (Hamm et al., 2015). 

Thus, the 5100 samples (three times the number of artificially created gapped pixels) were drawn randomly 

from the known parts of the displacement map. Further, the distribution of the samples in the study area 

was assessed. They were evenly distributed across the area of interest.  

Exploratory data analysis performed prior to variogram analysis showed that the distribution of samples 

data for pair I and pair II are sufficiently normal (see Figure 5.5). Some evidence of skew in the pair II was 

seen, but this can be neglected. So, variogram analysis was continued with the untransformed data. 

 

a b 
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Figure 5.5: Histograms of sample points for displacements from pair I and pair II with fitted normal curve (blue). 

The parameters of variograms for displacement variable from both pair I and pair II are given in Table 
5.2. Figure 5.6 graphically shows the experimental variogram and fitted Exponential theoretical model for 
displacements from pair I and pair II. For pair I, experimental variogram was estimated using cutoff value 
8000 and bin width 450 while for pair II, cutoff value 8000 and bin width 500 were used. The spatial 
dependency of the displacement values of both pairs was modelled by Exponential theoretical model. 
Exponential model best fitted the both experimental variograms with the least sum of square error (SSE). 
The small nugget value approaching zero for both fitted variograms indicates variability is highly 
correlated in space.  

The actual and artificially imposed missing values in the displacement maps shown in Figure 5.3 were 
interpolated using OK. The validation results of the OK interpolated values are provided in Table 5.6. 

 

Figure 5.6: Fitted variogram (OK) for pair I and pair II. Variogram names and their parameters are shown in Table 
5.2. 
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Table 5.2: Variograms for OK of displacements from image pair I and pair II. The fitted variograms are shown 
graphically is Figure 5.6. 

Displacement 
map  

Fitted Variogram 

Model Range Sill Nugget SSE 

Pair I  Exponential 3213.69 2.48x10-3 1.18×10-4 4.40×10-9 
Pair II  Exponential 3567.60 3.78x10-3 1.28×10-4 5.14×10-9 

5.4.2. Direct Sampling 

First, the experimentation for both DSu and DSb cases were performed to decide the optimal parameters. 

The values of the fixed and the varied DS parameters used for experimentation are provided in Table 4.1. 

For DSu case, the results of the sensitivity analysis of three user defined parameters 𝑡, 𝑓 and 𝑛 are given in 

Table 5.3. As seen in the table, for pair I, 𝑛=15 resulted in the lowest RMSE value. For pair II, the optimal 

value of 𝑛 is 10. Even though using value of 𝑛 equals 30 results in slight improvement over 𝑛=10 (lower 

RMSE by 0.00005 m), the computational burden exponentially increased (over 10 times). Thus, to balance 

the computational cost as well as the simulation accuracy, 𝑛 =10 was chosen. Regarding 𝑡, the simulation 

quality improved with decrease in 𝑡 for both pairs but the CPU time grew exponentially. The 𝑡 of 0.005 

provided the least RMSE for both pairs. The improvement from 𝑡 0.01 to 𝑡 0.005 was very small (0.0005 

m). So further decrease in 𝑡 would result in insignificant improvement while the computational burden 

would increase by huge amount. Thus, the value of 𝑡 lower than 0.005 was not further experimented. The 

value of 𝑡 equals 0.005 was selected for both pairs. Similarly, simulation accuracy saturated at the value of 

𝑓 equals 0.3 for both pairs. The RMSE remained unchanged even increasing 𝑓 to the maximum possible 

value of 1 but the computation cost increased. This clearly shows that 𝑓 = 0.3 is optimal both in terms of 

accuracy and CPU time.  
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Table 5.3: DSu parameter experimentation for displacement maps from pair I and pair II. 

Distance 

threshold (𝑡) 

Pair I  Pair II 

Time taken for 
simulation (S) 

RMSE (m)  Time taken for 
simulation (S) 

RMSE (m) 

0.2 6 0.04720  15 0.04764 
0.15 7 0.03714  23 0.03752 
0.1 24 0.02507  36 0.02452 
0.05 230 0.01374  549 0.01303 
0.03 3088 0.00861  4620 0.00815 
0.01 24934 0.00480  19813 0.00323 
0.005 24985 0.00439  23048 0.00262 

Maximum Scan 

Fraction (𝑓) 

Pair I  Pair II 

Time taken for 
simulation (S) 

RMSE (m)  Time taken for 
simulation (S) 

RMSE (m) 

0.2 189 0.01383  338 0.01366 
0.3 239 0.01374  370 0.01303 
0.4 248 0.01374  597 0.01303 
0.5 270 0.01374  675 0.01303 
0.6 272 0.01374  632 0.01303 
0.75 282 0.01374  684 0.01303 
1.0 460 0.01374  714 0.01303 

Number of 

nodes (𝑛) 

Pair I  Pair II 

Time taken for 
simulation (S) 

RMSE (m)  Time taken for 
simulation (S) 

RMSE (m) 

1 3 0.02021  21 0.02045 
5 19 0.01372  46 0.01398 
10 43 0.01344  111 0.01308 
15 91 0.01312  233 0.01313 
20 142 0.01337  389 0.01327 
25 192 0.01363  297 0.01311 
30 274 0.01374  772 0.01303 
35 367 0.01384  920 0.01306 
40 480 0.01358  1214 0.01305 

 

For DSb case, the experimentation results of the three user defined parameters𝑡, 𝑓 and 𝑛 are illustrated in 

Table 5.4. The DSb results are same to that of DSu case. The optimal values of 𝑛 for pair I and pair II are 

15 and 10 respectively as they resulted in least RMSE. The value of 𝑓 = 0.3 and 𝑡 = 0.005 were chosen for 

both pairs.  
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Table 5.4: DSb parameter experimentation for displacement maps from pair I and pair II. 

Distance threshold (𝑡) Time taken for 
simulation (S) 

RMSE (m) 

Pair I Pair II 

0.05 5867 0.01264 0.01402 
0.03 26211 0.00835 0.01027 
0.01 53859 0.00485 0.00761 
0.005 67156 0.00454 0.00745 

Scan Fraction of TI (𝑓) Time taken for 
simulation (S) 

RMSE (m) 

Pair I Pair II 

0.2 6208 0.01270 0.01406 
0.3 6317 0.01264 0.01402 
0.4 6825 0.01264 0.01402 
0.5 8202 0.01264 0.01402 
0.6 8379 0.01264 0.01402 

Number of nodes (𝑛) Time taken for 
simulation (S) 

RMSE (m) 

Pair I Pair II 

5 450 0.01297 0.01304 
10 1237 0.01255 0.01268 
15 1877 0.01244 0.01292 
20 3257 0.01272 0.01329 

Table 5.5 summarizes the best parameters obtained from experimentation for the DSu and DSb 

simulations. The combination of the best parameters found by experimentation was used for final 10 

unconditional simulations. The DS method is not a deterministic approach so 10 stochastic realizations 

were generated, which means for each gapped pixel 10 possible displacement values were simulated. The 

mean of the 10 simulated values were taken as final result and used for validation and filling up the 

missing displacement values inferred from pair I and pair II. The accuracy assessment results of DSu and 

DSb gap filling for both pairs are in section 5.4.3. 

Table 5.5: The best parameters used for reconstruction of the displacement maps shown in Figure 5.3. The result 
after reconstruction is shown in Figure 5.12 and Figure 5.13 for pair I and pair II respectively. 

Displacement 
Map 

Number 
of nodes 

(𝑛) 

Scan 
Fraction 

(𝑓) 

Distance 
threshold 

(𝑡) 

Number of 
realizations 

Time taken for 10 simulations 
(Hrs) 

Univariate  Bivariate  

Pair I 15 0.3 0.005 10 56 97 (Both pairs 
together) Pair II 10 0.3 0.005 10 43 

 

5.4.3. Quantitative measures of error 

The predicted values were compared with the original values at the 12 shifted polygons scattered in 
different locations for validation of OK and DS methods. The RMSE of the three cases for both pairs are 
given in Table 5.6. The lower value of the RMSE is the better. The RMSE of both DS cases are much 
smaller than that of OK. The RMSE of both DS cases are over 50% lower than OK. Between DSu and 
DSb, the RMSE of DSu is lower, with slight improvement. 

Table 5.6: Validation results—RMSE of OK prediction, DSu and DSb cases. 

 RMSE 

OK Prediction DS Univariate DS Bivariate 

Pair I 0.00651 0.00213 0.00316 

Pair II 0.00495 0.00164 0.00241 
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In the scatterplots for pair I and pair II presented in Figure 5.7 and Figure 5.8 respectively, the measured 

values were plotted against the reference values. It can be seen that all points fall in and around the 

reference line (shown in red) of slope 1 and intercept 0. Few points with higher displacement values 

spread away from the reference line. The scatter of OK is greater than that of both DSu and DSb. Between 

DSu and DSb, the scatter of DSu is slightly narrower. Hence, DSu case showed the narrowest scatter.  

The histogram of residuals for pair I and pair II are presented in Figure 5.7 and Figure 5.8 respectively. 

The residuals were calculated by subtracting the reference values from the measured values. All histograms 

clearly show steeper and symmetrical distribution—with the two DS cases appearing narrower and more 

normally distributed. For all three cases, most of errors are concentrated in and around 0 and are mostly 

unbiased. For OK, the (95%) most of the errors in the displacement values are within the range of [-0.015 

m, +0.015 m], while the corresponding range for DSu and DSb is [-0.005 m, +0.005 m], with DSu having 

the steepest distribution than OK prediction and DSb simulation.  

From quantitative perspective, both DS cases demonstrated better prediction compared to OK. Among 

the two DS cases, DSu simulation showed slight improvement in reconstruction accuracy compared to 

DSb simulations for both pairs.  
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5.5. THREE SHIFTED POLYGONS 

5.5.1. Ordinary Kriging 

The adopted sampling strategy to calibrate the variogram model was same as of 12 shifted polygons (see 

sub-section 5.4.1). The variograms for displacement variables for three shifted polygons from pair II are 

given in Table 5.7. The Exponential variogram, presented graphically in Figure 5.9, is the best fitted 

authorized model for three shifted polygons with least SSE. For all three shifted polygons, the structure of 

the spatial dependency of the displacements was modelled by Exponential variogram. The fitted 

variograms had very small nugget value (close to 0) meaning that the spatial variability is strongly 

correlated in space legitimizing the use of OK prediction. 

 

 

Figure 5.9: Fitted variogram (OK) for three shifted polygons. Variogram names and their parameters are shown in 
Table 5.7. 

Missing displacement values of the three shifted polygons were interpolated using the modelled variogram. 

The validation results—RMSE of the interpolated displacement values are shown in Table 5.8. Further 

accuracy assessment indicators, histograms of residuals and scatterplots of reference versus measured 

values are shown in Figure 5.10. 

Table 5.7: Variograms for OK of displacements from image pair II for three shifted polygons. The fitted variograms 
are shown graphically is Figure 5.9. 

 Fitted Variogram 

Model Range Sill Nugget SSE 

Polygon 1 Exponential 3567.60 3.78×10-3 1.28×10-4 5.14×10-9 
Polygon 2 Exponential 3745.42 3.56×10-3 1.58×10-4 7.33×10-9 
Polygon 3  Exponential 3798.86 3.71×10-3 1.64×10-4 4.93×10-9 

5.5.2. Direct Sampling 

The fine-tuned parameters for displacement values from pair II given in Table 5.5 were used to generate 

10 stochastic realizations of the displacement values in the three shifted polygons. The average of the 10 

simulated values corresponding to each missing pixel was taken as final result, and was used for validation 

and filling up the corresponding missing value. The accuracy assessment results of DSu gap filling of 

displacement values from pair II in three shifted polygons are presented in section 5.5.3. 

5.5.3. Quantitative measures of error 

Accuracy assessment in terms of RMSE for OK and DSu for the three shifted polygons in a key location 

(see Figure 5.4) is given in Table 5.8. The RMSE of DSu is significantly smaller than that of OK for all 

three shifted polygon. With the increase in the gap size the accuracy degrades for both OK and DSu. Yet, 
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DSu results are still more accurate than OK. With growing gap sizes, the drop in RMSE for OK is sudden; 

while for DSu is small and gradual. The difference in RMSE (OK minus DSu) increases with increasing gap 

size. This suggests OK performance for small gaps are satisfactory but with increasing gap size OK is 

unable to perform accurate prediction. On the contrary, DSu performs accurate prediction even with 

increasing gap sizes.  

Table 5.8: Validation results – RMSE of OK prediction and DSu cases. 

 RMSE  RMSE difference 

(OK – DSu) OK Prediction DS Univariate 

Polygon 1 0.00369 0.00063 0.00306 

Polygon 2 0.00845 0.00141 0.00704 

Polygon 3 0.00834 0.00221 0.00613 

The scatterplots of OK and DSu for all three shifted polygons presented in Figure 5.10 shows that all 

points lie in and around the reference line (shown in red) of slope 1 and intercept 0 for DSu whereas the 

point spread further away from the reference line and the reference line deviation from slope 1 and 

intercept 0 for OK. The scatter from polygon 1 to polygon 3 increased significantly for OK. Even though 

the scatter from polygon 1 to polygon 3 increased for DSu, it is very slight relative to OK.  

The histogram of residuals of OK and DSu for all three shifted polygons shown in Figure 5.10 clearly 

shows steeper, symmetrical and narrower distribution for DSu than OK. In case of OK, the range of the 

errors in the displacement values from polygon 1 to polygon 3 increased notably. In contrast, most of the 

errors in the displacement values are within range of [-0.005, +0.005] for DSu. 

All the accuracy assessment indicators suggested that the performance of DSu is superior to OK with 

growing gap sizes. 
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Figure 5.10: Scatterplots (top) of reference versus measured displacement values with fitted reference line in red and 
histograms of residuals (bottom) of OK and DSu for displacements from pair II. The three columns represent graphs 
for polygon 1 to polygon 3 (from left to right).  
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5.5.4. Qualitative assessment 

The spatial distribution of residuals for three shifted polygons can be clearly seen in Figure 5.11, which 

displays the residuals of OK and DSu, and the difference in residual magnitudes of OK and DSu. In the 

residual maps of OK, some area in all three polygons have zero residuals (green) with increasing positive 

residuals (yellow to red) and negative residuals (cyan to blue) from polygon 1 to polygon 3. The negative 

residuals indicate underestimation of displacements whereas positive residuals imply overestimation. The 

occurrences of negative residuals are higher meaning areas of underestimation are high. On the contrary, 

in the residual maps of DSu, most of the areas in all three polygons have zero residuals with few positive 

and negative residuals, especially in polygon 3.  

With increasing gap size from polygon 1 to polygon 3, the residuals of OK and DSu increased, with OK 

showing significant rise in residual values. For all three shifted polygons, the residuals of OK are greater 

than that of DSu.  

The maps showing the difference in residual magnitudes of OK and DSu mostly reveals neutral (green) 

and positive areas (yellow to red)—where DSu outperforms OK.  

 

Figure 5.11: Residual distribution maps of the reconstructions in three shifted polygons. The three columns represent 
three shifted polygons (from left to right)—polygon 1, polygon 2 and polygon 3. The first two rows describe the 
residuals of OK (the predicted minus the actual displacements) and the residuals of DS (the mean of the 
reconstructed minus the actual displacements). The last row shows the difference in residual magnitude (absolute 
value of the residuals of OK minus the absolute value of the residuals DS). 
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5.6. DISPLACEMENT MAPS 

By combining the predicted results of the missing displacement values with the known values of the glacial 

displacement map for all three cases—OK, DSu and DSb—complete glacial displacement maps were 

produced. The prepared displacement maps from pair I and pair II are shown in Figure 5.12 and Figure 

5.13 respectively.  

To better compare the quality of gap filling of all three cases, a small portion of the filled displacement 

map from pair I and pair II was enlarged and presented at the bottom of Figure 5.12 and Figure 5.13 

respectively. Some noises were seen in the OK interpolated displacement map whereas the results from 

DS were relatively smooth. DS maps showed better preservation of the glacier displacement patterns than 

OK. DSu and DSb filled displacement maps are both similar, with some subtle differences. This visual 

qualitative assessment concurs with the error statistics, with DS providing better gap filling results. 
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6. DISCUSSION 

In the first section of this chapter, the results of the DInSAR inferred glacier displacement maps are 

discussed. In the succeeding section, the analysis carried out for the performance evaluation of the gap 

filling of OK and DS are presented.  

6.1. DINSAR 

This study demonstrated the use of novel S1 SAR data for deriving the glacier displacement map using 

DInSAR.  

Changes in the glacier surface are less intense during the winter period of the year which is why most of 

the successfully analysed interferograms are presenting data on period of lower glacial displacement than 

during the summer season (Perski et al., 2004). The same case occurred in this research. Interferograms 

were constructed from S1 SAR image pairs throughout the year of 2015 and 2016. The temporal 

separation of the image pairs were 6-days, 12-days, 24-days and 36-days. All interferograms were analysed 

but none of them with time interval of 12-days and above were coherent. Thus, they were excluded from 

the study. The coherent image pairs were found in the months of November and December 2016, when 

the temperature and sun-illumination are low and the displacement gradient is minimal. These were also 

the first S1 image pairs of the study area with 6-day repeat orbits found in ESA’s archive. 

The displacement pattern over whole Ngozumpa glacier was calculated and assessed. In previous work by 

Quincey et al. (2009), no flow is recorded in the lowermost 6.5 km of the tongue of Ngozumpa Glacier. 

This report fits with the findings of this study. In the terminus, the glacier displacement close to zero was 

found and the active part of the glacier is several kilometres from the terminus (see Figures 5.2(a) and 

5.2(b)). 

The western tributary is very active with rapidly increasing displacement than the eastern tributary. The 

other major tributary feeding from the east, Garuna (see Figure 3.1) is no longer dynamically connected to 

Ngozumpa glacier. These observations matched with the study carried out by Benn et al. (2000). The 

observed spatial variation and pattern of interferometry derived LOS displacement agrees with the 

previously carried out studies using ERS Tandem images by Quincey et al. (2009). No direct field based 

validation was performed. However, comparative validation with the previous studies of the Ngozumpa 

glacier shows that the DInSAR results are realistic. The DInSAR technique is highly accurate and can be 

applied to retrieve displacement field of mountain glacier, despite the difficulties of rugged topography. 

6.2. OK AND DS GAP FILLING 

Geostatistical methods—especially OK—have been proposed to fill the missing displacement values 

inferred from DInSAR. In this study, the newly developed geostatistical DS method has been 

implemented to fill the missing values in DInSAR derived displacement maps.  

For OK, experimental variograms were approximated using best fitting theoretical models. The 

interpolation results from variograms with small nugget are more accurate than those with larger nugget 

(Karl, 2010). The variogram models used for interpolating missing values in displacement maps form pair 

I and pair II, had small nugget values. This indicates that the data are highly correlated in space and 

semivariance is more useful for predicting missing values. 
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The three user defined parameters 𝑡, 𝑛 and 𝑓 were fine-tuned for each DS case individually. Setting 𝑡=1, 

DS samples the TI unconditionally without any spatial dependence constraints, and therefore only the 

marginal distribution of Z is reproduced. Conversely, setting 𝑡=0, an exact match between the data event 

in the SG and the one of the TI is sought. This would mean that the spatial pattern in the TI is 

reproduced with the highest possible accuracy. As displacement data is a continuous variable, an exact 

match is nearly impossible to find. For this reason, an acceptable threshold 𝑡 close but not equal to 0 

needs to be defined. Also, to avoid a verbatim copy of the TI, 𝑡 should not be 0. Further, CPU time 

increases with decreasing values of 𝑡. The maximum number of nodes 𝑛 controls the size of the data 

event. Large values of 𝑛 expand the size of data events resulting in small search windows. Therefore, only 

the statistical properties of a small central portion of the TI are reproduced resulting in unimproved 

simulation quality. Finally, for the maximum scan fraction f, it is observed that for 𝑓 ≤ 0.2, the simulation 

quality degraded because the probability of finding matching TI pattern is lower.  Even with the increase 

of f from 0.3 to 1.0, the RMSE value remained the same, meaning that DS is able to find a matching 

pattern by scanning less or equals to 0.3 of the TI but the computational cost increases. Hence, variations 

in f have little effect on the simulation quality. These observations fit with those of Meerschman et al. 

(2013) that for the continuous cases 𝑓  has little influence on the simulation quality, and decreasing 𝑡 

results in a substantial decrease in CPU time without a large decrease in simulation quality. The use of 

one-third scan fraction further insures that different parts of the TI are scanned during simulation of 

different nodes, which avoids verbatim copy. Additionally, the conditioning data helped in avoiding the 

verbatim copy (Meerschman et al., 2013). In summary, the selection of the optimal parameters for DS 

simulations depends upon the trade-off between the CPU time and simulation quality. 

The quality of OK, and of DSu and DSb reconstructions were assessed by validating against reference 

values for 12 shifted artificial polygons enforced at different locations. The two DS cases gave better 

results than OK for displacements from both image pairs. This can be attributed to the ability of DS to 

capture internal heterogeneity and multiple point dependencies of the glacier displacement field. 

Applying multivariate multiple-point relationships, gaps in multiple variables can be reconstructed 

accurately using multiple incomplete covariates, provided that the additional information added by the 

auxiliary variables are complementary  (Mariethoz et al., 2012). Bivariate simulation offers improved 

prediction when compared with univariate simulation if information provided by the co-variate is 

complementary (Yin et al., 2015). The results of DSu and DSb were similar, with DSu providing slight 

improvements against DSb. This may be attributed to the insufficient complementarity of the 

displacement characteristics of two maps (high temporal variability). Therefore, the additional data 

provided were not informative enough to outperform DSu. Still, DSb is advantageous as multiple 

displacement maps can be filled jointly preserving the linear and non-linear relationship between them. 

DS is known for its ability to reconstruct larger gaps. Three selected polygons of increasing size were 

shifted to a key location to assess the performance of DS with the increase of the spatial extent of the 

gaps. The reconstruction results of the three shifted polygons of increasing size shows that the accuracy 

degrades for both DS and OK if gap size grows. The entire spatial structure may be missing in large gaps 

causing the reconstruction to be less accurate. Nevertheless, DS performed better than OK for large gaps, 

with only a slight drop in performance. The abrupt decrease in the performance of the OK is due to the 

increase in the degree of spatial heterogeneity in large gap sizes. Some structures present on either side of 

the small gap facilitate gap filling with realistic values (Mariethoz et al., 2012). Thus, OK gave good results 

for small gaps, whereas it cannot reproduce complex spatial patterns of large gaps (Journel & Zhang, 

2007; Olea & Pawlowsky, 1996). In contrast MPS is able to resolve complex spatial patterns even in large 

gap sizes where OK fails. Thus, DS results are superior to OK with growing gap sizes.  
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RMSE values showed that the accuracy of gap filling of DS were at the mm scale, whereas precision of 

DInSAR is at the cm scale. Thus, the obtained accuracy of gap filling by DS is acceptable and below the 

detection limit of DInSAR technique. 

A prominent advantage of an MPS technique like DS as compared with conventional geostatistical 

methods like Kriging is that it is straightforward to implement. In this study, OK was performed for the 

entire displacement map at once, whereas OK performs better locally. For local interpolation, the 

displacement map should be divided into patches. Some research divides a study area manually into 

contiguous patches with sufficient sample points (Yaseen et al., 2013). For each patch, an independent 

variogram analysis is performed during which an experimental variogram is calculated and best fitting 

theoretical model is selected. With numerous patches formed, this process is theoretically as well as 

computationally challenging. In contrast, MPS is simpler with its key concept of sampling spatial patterns 

from within TIs for predicting unknown values. 

For DS, the mean of 10 realizations of reconstruction results was presented. Since all reconstructed values 

are equally probable, the multiple realizations can estimate the uncertainty associated with the 

reconstructions which are not provided by other deterministic reconstruction methods. A Monte Carlo 

framework can be implemented to estimate the uncertainty relate to multiple reconstructions (Jha et al., 

2013; Mariethoz et al., 2012).  

Another advantage of the DS over OK is the reduced computational burden. If the number of sample 

points and the number of weighting coefficients become very large in OK, the covariance matrix grows as 

well, resulting in a computationally expensive matrix inversion. Taking 5100 samples for calibration, OK 

prediction took almost 44.5 hours using on a windows computer with an Intel Core 2.50 i7 GHz 

processor and 8 GB of RAM to reconstruct the gaps in the displacement map from pair II. Using the 

same computer, DSu took 43 hours to fill gaps in the same displacement map.  If all known displacement 

values were taken to calibrate with OK, inversion of the resulting large covariance matrix would require a 

computational cost several times greater than that of DS simulations. 

Most of the proposed gap filling methods are limited to only one unknown variable to be reconstructed 

(Mariethoz et al., 2012). DS demonstrated the potential of bivariate simulation. The conditioning data for 

both variables (here displacement values from pair I and II) were honoured. Only DS has the capability to 

perform bivariate and multivariate simulations among the MPS methods till date. Further, conventional 

geostatistical methods are not capable to perform gap filling in a bivariate and multivariate environment. 
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7. CONCLUSION AND RECCOMENDATION 

7.1. CONCLUSION 

This study concludes that a novel S1 SAR dataset can be successfully used to retrieve the surface 

displacements of a mountain glacier employing a well-established DInSAR technique.  Despite the rugged 

terrain and inaccessibility, due to free availability of high quality SRTM DEM and precise orbital data from 

POD services, DInSAR yielded valuable surface displacement information with comparatively little other 

external input. Since S1 datasets have a worldwide coverage, glacier monitoring can be carried out at 

regional and global scales at medium resolution. The 6 day repeat pass S1 dataset is a valuable resource for 

seasonal variability studies of glacier displacement fields. 

Missing values in glacier displacement map inferred from DInSAR, mainly due to decorrelation of SAR 

images have to be reconstructed. This research demonstrated the implementation of DS univariate and 

bivariate techniques, a newly developed MPS. The parameters were fine tuned for univariate and bivariate 

cases, and their effects on the performance were analysed. Performance of DS was evaluated against 

OK—a conventional geostatistical method. In both qualitative and quantitative assessment, DS performed 

better than OK. A requirement for using MPS is selection of a suitable TI. Even when using the 

information contained within the non-gapped area of the displacement map to be reconstructed, DS 

provided acceptable results, well below the detection limit of DInSAR technique. This study concludes 

that DS can be successfully used for deriving missing displacement values in a glacier. 

The answers to the research questions posed in the first chapter are provided below: 

1. Which MPS method is most suitable to reconstruct the missing surface displacement values inferred from 

DInSAR? 

 

From comparative analysis of the state-of-art MPS methods and related works concisely reviewed 

in Chapter 2, DS was chosen for the reconstruction of gaps in the displacements derived from 

DInSAR.  

 

The surface displacement values inferred from DInSAR are continuous. DS is a pixel-based MPS 

method that can simulate continuous variable employing training images (TIs) that can be fully or 

partially informed. DS applies a distance threshold (𝑡) for pattern matching. The simplicity of the 

distance concept of DS effectively avoids the use of multi grid to capture spatial structures of all 

sizes, avoids the need to construct pattern database prior to simulation, allows an easy data 

conditioning, performs multivariate simulation, and a joint simulation of multiple categorical and 

continuous variables. Since DS has no need to catalogue patterns found in TIs, the memory 

requirement and CPU time are reduced largely. For these reasons, DS is better than other MPS 

methods for this study. 

 

2. What are the optimal parameter settings for implemented MPS method to obtain the best pattern reproduction? 

 

The simulation quality of DS highly depends upon the three main user defined parameters—the 

distance threshold (𝑡), the maximum scan fraction of TI (𝑓) and the maximum number of nodes 

in the neighbourhood (𝑛). For every particular case, the optimal values of these three parameters 
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need to be fine-tuned. In general, decreasing 𝑡  and increasing 𝑛  and 𝑓  result in improved 

simulation quality. However, due to these settings first, the CPU time grows and second, verbatim 

copies of part of TI may occur in simulation results. By choosing 𝑓 < 1 and a slight relaxation of 

𝑡  and 𝑛  values, verbatim copies can be avoided and computational cost can be reduced 

significantly. Thus, the choices should balance between available CPU time and simulation quality. 

The choices made regarding the fixed parameters and the reasons for their selection have been 

discussed in detail in sub-section 4.3. 

 

3. How can fully informative training images (TIs) be made for reconstruction of pattern and spatial structure in the 

gaps? 

As long as TIs capture the spatial variability both at coarse and fine-scale of the missing areas, the 

size of TIs is not of concern. TIs can be smaller or bigger or same size as the target image to be 

filled. The choice of fully informative TIs is not straightforward. TIs can be taken from a TI 

database built for gaps in glacier displacement maps. TIs can come from another glacier area with 

a spatial structure and pattern resembling the study area. Hand drawn TIs or synthetic TIs guided 

by expert knowledge can also be built. For our study, these options are not available and therefore 

custom made TIs suiting the application were constructed.  

The partially gapped displacement map generated from the DInSAR itself can serve as TI. This is 

only possible due to capability of DS to simulate with an incomplete TI. The information from 

the non-gapped area of the displacement map comprises of the spatial variability and structure of 

the glacier displacement phenomenon. Thus, the use of non-gapped area of the displacement map 

itself as TI is informative enough for gap filling. Even if a valid TI is employed, the results will 

not be accurate without conditioning data. They work as a control to constrain the simulation and 

to guide the pattern replication. Thus, the use of known portion of the displacement map as 

conditioning data further improved the reconstruction of pattern and spatial structure in the gaps. 

Other potential TIs are the displacement maps generated on the same season from other SAR 

image pairs. 

 

4. What are the effective methods for assessment of the reconstructed results in the missing area? 

 

The reconstructed results of the missing values were evaluated using several performance 

measures: RMSE, histogram of residuals, scatterplot of the reference versus interpolated 

displacement values and residuals maps. Even though RMSE is a frequently reported accuracy 

assessment measure, it is sensitive to occasional large errors. Ranking performance solely on the 

RMSE might not suffice. Thus, histogram of residuals and scatterplots of reference versus 

simulated values were also employed. The first three measures were used for quantitative 

assessment while the visual inspection of the distribution of the residuals in residuals map 

provided qualitative assessment of the reconstruction results of both OK and DS. 

 

5. Which conventional geostatistical method is appropriate for benchmarking the MPS results? 

 

Out of numerous conventional geostatistical methods, OK is the most established method in 

literature. It performs superior interpolation compared to deterministic methods like IDW and 

spline. OK uses the variogram to model the spatial dependencies.  There are other kriging 

methods like Universal Kriging (UK), Indicator Kriging (IK) and Co-kriging (CK). OK, however, 

is widely used and utilizes the simplest model to capture spatial dependencies by assuming 
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constant unknown mean. This is a valid assumption unless trend occurs in the data. Literature 

showed that OK has been successfully used for deriving missing values in LOS displacement map 

inferred from DInSAR (see Chapter 2). Thus, OK is the appropriate geostatistical method for 

benchmarking MPS results. 

 

6. Does MPS perform better gap filling compared to the conventional geostatistical method? If yes, in which aspect of 

performance measures is MPS superior to conventional geostatistical method?  

 

The comparative performance analysis of DS with OK clearly showed that MPS results in more 

accurate gap filling. In all employed quantitative measures of performance DS performed better 

than OK, with improvement of more than 50 %. Also, the visual inspection of the reconstructed 

displacement maps and distribution of residuals concur with the quantitative assessment. Further 

superiority of MPS is its reduced computational cost and straightforward implementation as 

compared to conventional geostatistical methods. Even non-expert users can easily understand 

and use MPS because it does not require complex theoretical background and assumptions such 

as positive definite covariance matrices and variography needed for conventional geostatistical 

methods. Another outstanding feature of DS is its provision of multivariate gap reconstruction 

which none of the conventional geostatistical method provide. 

7.2. RECOMMENDATION 

At last, few recommendations for the future research are provided: 

 One limitation faced during this research is the availability of few coherent S1 SAR image pairs 

from which DInSAR based displacement maps could be generated. Two coherent image pairs 

were available till the commencement of this research, so the TIs were limited to only two 

displacement maps. Since then, S1 database has grown so has the prospect of number of coherent 

image pairs for glacier displacement analysis. With the increasing availability of S1 SAR data of a 6 

day temporal baseline, maintaining coherence between the image acquisitions is not difficult as 

before. In future work, large number of displacement maps can be supplied as TIs. Use of large 

training set (multiple TIs) can offer better reconstruction results given the rich supply of spatial 

patterns. 

 Even though this study was limited to bivariate simulation, DS can easily be extended to 

multivariate simulations. Missing values in multiple DInSAR derived glacier displacement maps 

can be filled together preserving even non-linear dependencies between the variables considered. 

Seasonal variability is observed in glacier displacement phenomenon. Provided the displacement 

images of same season, the temporal variability is very small and therefore the data are 

complementary. So, multivariate simulation might have better performance than the univariate 

simulation. The spatio-temporal gap reconstruction in seasonal basis might provide promising 

results. 

 The LOS displacements with spatial discontinuities removed using DS can be converted into the 

glacier surface 3D velocity field. However, due to time constraints, it was not possible in this 

research. Another possible direction for future research, both the ascending and descending mode 

DInSAR results can be combined to obtain 3-dimentional velocity field. Assuming surface parallel 

flow, the LOS displacements can further be converted to the horizontal velocity.  
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APPENDIX A: R CODES 

In this appendix, the R codes used for file format conversion, accuracy assessment and OK are presented. 

A.1 CONVERSION OF FILE FORMAT BETWEEN .GSLIB AND .TIF 

#=================================================== 

# CONVERSION BETWEEN .TIF INTO .GSLIB FORMAT 

#=================================================== 

library(raster) 
rm(list=ls(all=TRUE)) 
setwd(Path) 

 
# Input and output filenames and location 
in_fname <- "GappedDisplacementMap.tif"  
in_raster <- raster(in_fname) 
out_fname <- "GappedDisplacementMap.gslib" 
 
# Number of nodes 
Nx <- in_raster@ncols                    # Number of columns in the .tif image 
Ny <- in_raster@nrows                   # Number of rows in the .tif image 
Nz <- 1        # Number of bands in the .tif image 
 
# Scale in each dimension 
Sx <- res(in_raster)[2]      # Scale in the x-direction 
Sy <- res(in_raster)[1]      # Scale in the y-direction 
Sz <- 1.0       # Scale in the z-direction 
 
# Origin coordinates 
Ox <- in_raster@extent@xmin     # Origin in x-direction 
Oy <- in_raster@extent@ymin     # Origin in y-direction 
Oz <- 0.0       # Origin in z-direction 
 
nvar <- in_raster@file@nbands 
 
# Variable names 
varname1 <- "LOSdisplacement" 
var1 <- values(in_raster) 
 
l1 <- sprintf("%d %d %d %.2f %.2f %.2f %.2f %.2f %.2f", 
              Nx, Ny, Nz, Sx, Sy, Sz, Ox, Oy, Oz) 
l2 <- sprintf("%d", nvar) 
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#========================================================== 

# CONVERSION OF .GSLIB INTO .TIF FORMAT (MULTIPLE SIMULATIONS) 

#========================================================== 

library(raster) 
rm(list=ls(all=TRUE)) 
setwd(Path) 
 
# Input and output filenames and locations 
in_txtname <- "AvgTenSimulations.gslib"   # Input filename 
in_imgname <- "GappedDisplacementMap.tif"  # Displacement map whose gaps were simulated 
in_raster <- raster(in_imgname) 
conn <- file(in_txtname, open="r") 
in_lines <- readLines(conn) 
close(conn) 
varname <- "AvgTenSimulations"   # Output filename 
out_fname <- sprintf("%s.tif", varname) 
 
nvar <- as.double(in_lines[2]) 
 
# Parse DN values 
list_data <- (strsplit(in_lines[-(1:(nvar+2))], " ")) 
matrix_data <- matrix(unlist(list_data), ncol=nvar, byrow=TRUE) 
class(matrix_data) <- "numeric" 
average_data <- rowMeans(matrix_data)   # Mean of simulations  
 
# Overwrite values of the input raster 
in_raster[ ] <- average_data 
writeRaster(in_raster, out_fname, overwrite=TRUE) 
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A.2 BIVARIATE TI 

#============================================================ 
# CREATE BIVARIATE TI FROM TWO .TIF DISPLACEMENT MAPS INTO .GSLIB FORMAT 
#============================================================ 
setwd("Path") 
library(raster) 
rm(list=ls(all=TRUE)) 
 
# Input and output filename and location 
# First input variable (Displacemnt map from Pair I) 
in_fname <- "GappedDisplacementMap1.tif" 
in_raster <- raster(in_fname) 
 
# Second input variable (Displacement map from Pair II) 
in_fname1 <- " GappedDisplacementMap2.tif" 
in_raster1 <- raster(in_fname1) 
out_fname <- "BivariateTI.gslib" 
 
# Number of nodes 
Nx <- in_raster@ncols                    # Number of columns in the .tif image 
Ny <- in_raster@nrows                   # Number of rows in the .tif image 
Nz <- 1        # Number of bands in the .tif image 
 
# Scale in each dimension 
Sx <- res(in_raster)[2]      # Scale in the x-direction 
Sy <- res(in_raster)[1]      # Scale in the y-direction 
Sz <- 1.0       # Scale in the z-direction 
 
# Origin coordinates 
Ox <- in_raster@extent@xmin     # Origin in x-direction 
Oy <- in_raster@extent@ymin     # Origin in y-direction 
Oz <- 0.0       # Origin in z-direction 
 
nvar1 <- in_raster@file@nbands 
nvar2 <- in_raster1@file@nbands 
nvar <- nvar1 + nvar2 
 
# Variable names 
# Variable name 1 
varname1 <- "LOSdisplacement1" 
var1 <- values(in_raster) 
# Variable name 2 
varname2 <- "LOSdisplacement2" 
var2 <- values(in_raster1) 
 
l1 <- sprintf("%d %d %d %.2f %.2f %.2f %.2f %.2f %.2f", 
              Nx, Ny, Nz, Sx, Sy, Sz, Ox, Oy, Oz) 
l2 <- sprintf("%d", nvar) 
datalines1 <- sprintf("%.6f %.6f", var1, var2) 
f <- file(out_fname) 
writeLines(c(l1, l2, varname1, varname2, datalines1), f) 
close(f) 
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A.3 ACCURACY ASSESSMENT 

#======================================================= 

# ACCURACY ASSESSMENT (RMSE, SCATTERPLOTS, RESIDUALS HISTOGRAM) 

#======================================================= 

library(raster) 
require(rgdal) 
 
# Declare filenames 
root <- "Path" 
gapfname <- "gap142.shp"   # Shapefile used to create the artificial gaps 
layername <- "gap142" 
origfname <- "DisplacementMap.tif"  # Original displacement map before imposing artificial gaps 
simfname <- "AvgTenSimulations.tif"   # Simulated results in the artificial gaps 
 
setwd(root) 
 
# Extract values of original and simulated images overlapping the polygon shapefile with the gap info 
gaps <- readOGR(dsn=gapfname, layer=layername) 
orig <- raster(origfname) 
simulated <- raster(simfname) 
masked_orig <- unlist(extract(orig, gaps)) 
masked_simulated <- unlist(extract(simulated, gaps)) 
 
nodata <- -9999999    # No data values used by DS   
 
# Compute RMSE 
deviations <- masked_simulated[masked_orig!=nodata] - masked_orig[masked_orig!=nodata] 
n <- length(deviations[!is.na(deviations)]) 
# Print number of gapped pixels 
sprintf("There are %d pixel gaps", n) 
rmse <- sqrt(sum(deviations^2, na.rm=TRUE)/n) 
me <- sum(deviations)/n 
 
sprintf("The root mean square error is: %.7f", rmse) 
sprintf("The mean error is: %.7f", me) 
 
# Plot the histogram of the residuals in the artificial gaps 
x11() 
x <- deviations 
h <- hist(x, breaks=100, col="dark blue", border="black", 
          main="Histogram of error (DS - Pair I)", xlab = "Displacements (m)", 
          xlim=c(-0.05, 0.05), axes = TRUE) 
 
# Scatterplot of the reference and measured values with linear model  
ref<-masked_orig[masked_orig!=nodata]  # Obtain reference values 
mes<-masked_simulated[masked_orig!=nodata] # Obtain simulated values 
x11() 
plot(mes, ref, main = "Linear Model of Reference ~ Predicted for DS-Pair I", xlab="Measured", 
 ylab="Reference", pch=19, cex=0.2) 
abline(lm(ref~mes), col="red")  
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A.4 ORDINARY KRIGING 

#============================================================ 

# CODES FOR ORDINARY KRIGING 

#============================================================ 

require(gstat) 
require(sp) 
library(raster) 
require(rgdal) 
 
rm(list=ls()) 
set.seed(22011989) 
 
root <- "Path" 
imgfname <- "GappedDisplacementMap.tif" # Gapped displacement map derived from DInSAR 
outfname <- "FilledDisplacementMap(OK).tif" # Output (interpolation) filename 
 
setwd(root) 
gapraster <- raster(imgfname) 
nodata <- -9999999    # NoData values used by DS for gapped pixels 
 
gaptable <- rasterToPoints(gapraster) 
colnames(gaptable) <-  c("x", "y", "disp") 
# Extract X and Y of missing values 
missing.cells <- gaptable[gaptable[,3]==nodata, 1:2] 
missing.cells <- as.data.frame(missing.cells) 
coordinates(missing.cells) <- ~x + y 
# Remove gaps and take a subset of samples 
all.samples <- gaptable[gaptable[,3]!=nodata, ] 
# Number of samples for variogram modelling 
nsamples <- 6800 
idx <- sample(1:nrow(all.samples), nsamples, replace=FALSE) 
sub.samples <- all.samples[idx, ] 
# Proportion of samples to be used for validation 
valproportion <- 0.25 
val.idx <- sample(1:nrow(sub.samples), nsamples*valproportion, replace=FALSE) 
train.samples <- sub.samples[-val.idx, ] 
val.samples <- sub.samples[val.idx, ] 
 
train.samples <- as.data.frame(train.samples) 
val.samples <- as.data.frame(val.samples) 
coordinates(train.samples) <- ~x + y 
coordinates(val.samples) <- ~x + y 
 
# Histogram of the train sample data (calibrate the variogram model) 
x11() 
z <- train.samples$disp 
h<-hist(z, breaks=25, col="gray64", xlab="Displacement (m)",  
        main="Histogram of displacement with Normal Curve (Pair I)", axes = FALSE)  
axis(side = 2, col.axis="black", pos = -0.2, las = 2, tck = -0.01) 
axis(side = 1, col.axis="black", pos = 0, las = 0, tck = -0.01) 
xfit<-seq(min(z),max(z),length=40)  
yfit<-dnorm(xfit,mean=mean(z),sd=sd(z))  
yfit <- yfit*diff(h$mids[1:2])*length(z)  
lines(xfit, yfit, col="blue", lwd=2) 
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abline(v=median(z), col=3) 
abline(v=mean(z), col=2) 
legend("topright", lty = c(1, 1), col = c("red", "green"), legend = c("mean", "median")) 
 
# Experimental Variogram modelling and fitting theoretical model 
disp.ev <- variogram(disp~1, data=train.samples) 
disp.ev 
plot(disp.ev) 
partial.sill <-  var(train.samples$disp) 
model.type <- "Exp"    # Theoretical model to be fitted to experimental variogram 
range <- 4000 
nugget <- 0 
disp.mv <- fit.variogram(disp.ev,  model=vgm(partial.sill, model.type, range, nugget, fit.method=7)) 
str(disp.mv) 
plot(disp.ev, disp.mv) 
 
# Ordinary kriging to predict values at the gaps 
disp.ok  <- krige(disp~1, loc=train.samples, newdata=missing.cells, model=disp.mv) 
write(disp.ok, "OK_predictions") 
 
# Plot kriged predictions and variance 
X11() 
spplot(disp.ok, "var1.pred", sp.layout=list("sp.points", pch=19, col="green", train.samples),  
       main="Kriged predictions of Disp") 
X11() 
spplot(disp.ok, "var1.var", sp.layout=list("sp.points", pch=19, col="green", train.samples),  
       main="Kriging variance of Disp") 
 
# Validation 
# Cross-validation 
disp.cv <- krige.cv(disp~1, train.samples, model=disp.mv) 
str(disp.cv) 
me <- sum(disp.cv$residual) / length(disp.cv$residual) 
mse <- sum(disp.cv$residual^2) / length(disp.cv$residual) 
rmse <- sqrt(mse) 
me 
rmse 
 
# Validate against separate dataset 
disp.val.ok  <- krige(disp~1, loc=train.samples, newdata=val.samples, model=disp.mv) 
# Calculate the mean error and RMSE 
disp.err <- disp.val.ok$var1.pred - val.samples$disp 
me <- sum(disp.err) / length(disp.err) 
mse <- sum(disp.err^2) / length(disp.err) 
rmse <- sqrt(mse) 
me 
rmse 
 
# Rebuild the gapped image 
gaptable[gaptable[,3]==nodata, 3] <- disp.ok@data[, 1] 
predictedraster <- rasterFromXYZ(gaptable, res=res(gapraster), crs=crs(gapraster), digits=7) 
writeRaster(predictedraster, outfname, overwrite=TRUE) 


	1. Introduction
	1.1. Motivation and Problem Statement
	1.2. Research Identification
	1.3. Research Objectives
	1.4. Research Questions
	1.5. Innovation Aimed At
	1.6. Thesis Outline

	2. Literature Review
	2.1. SAR Interferometry
	2.1.1. DInSAR application in glaciology
	2.1.2. Potential of S1 interferometry to derive glacier surface displacements
	2.1.3. Decorrelation in InSAR

	2.2. MPS Algorithm Selection
	2.2.1. Background of MPS
	2.2.2. MPS algorithms
	2.2.3. Direct Sampling algorithm

	2.3. Conventional Geostatistics for Benchmarking

	3. Study Area and Materials
	3.1. Study Area
	3.2. Data Description
	3.3. Software Description

	4. Methods
	4.1. Procedure of SAR Interferometry
	4.2. Ordinary Kriging
	4.2.1. Variogram analysis
	4.2.2. Ordinary Kriging interpolation

	4.3. Direct Sampling
	4.3.1. Construction of the Training Images
	4.3.2. Mask Image
	4.3.3. Parameters of DS
	4.3.3.1. Maximum Search Distance
	4.3.3.2. Conditioning data and weight factor for conditioning data
	4.3.3.3. Post processing for noise removal
	4.3.3.4. Varied parameters

	4.3.4. DS cases

	4.4. Accuracy Assessment

	5. Results
	5.1. DInSAR
	5.2. Description of the Actual Gaps in the Glacier Displacement Map
	5.3. Formation and description of artificial gaps
	5.4. Twelve Shifted Polygons
	5.4.1. Ordinary Kriging
	5.4.2. Direct Sampling
	5.4.3. Quantitative measures of error

	5.5. Three Shifted Polygons
	5.5.1. Ordinary Kriging
	5.5.2. Direct Sampling
	5.5.3. Quantitative measures of error
	5.5.4. Qualitative assessment

	5.6. Displacement Maps

	6. Discussion
	6.1. DInSAR
	6.2. OK and DS Gap Filling

	7. Conclusion and Reccomendation
	7.1. Conclusion
	7.2. Recommendation

	Appendix A: R Codes
	A.1 Conversion of file format between .GSLIB and .TIF
	A.2 Bivariate TI
	A.3 Accuracy Assessment
	A.4 Ordinary Kriging




