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ABSTRACT 

Analysis of environmental variables require accurate sampling of locations. To study natural properties 

that are continuous across space, interpolation is required. This is because not all locations can be sampled 

due to various physical and financial constraints. Point data are usually collected from the field and the 

values at the unknown locations are interpolated. Interpolation is defined as the prediction of values 

between a range of numbers. The choice of the interpolation method depends on the objective of the 

study. Broadly, two types of interpolation methods are present – one which cannot derive the error values 

and is based on parametric equations, known as deterministic and the other which considers the spatial 

dependency between random variables, are called geostatistical. Both the methods had been explored in 

this research work, RBF which is a deterministic method and Bayesian kriging, regression kriging and 

copula-based interpolators which are the geostatistical methods. Three soil parameters – pH, Electrical 

Conductivity and Total Organic Carbon were considered to find the best among all the mentioned 

interpolators. In terms of the aforementioned parameters, the soil in the study area was found to be acidic, 

without any salts and sufficient TOC content was present. Cressie’s robust variogram estimator and the 

optimal pixel size for interpolation were also taken into account. Optimal sampling scheme was designed 

for each of the study areas. It was based on minimizing the kriging variance. 96 sampling points were 

considered in Langha-Tauli, and 7 were considered in Barwa. As the Bayesian kriging process considers 

the uncertainty in parameter values, it was used to check if the spatial information could be utilized from 

the first study area to the second. The mean error, mean square error and the residual variance values of 

0.1466, 0.0772 and 0.7306 respectively were quite satisfactory in Barwa as compared to ordinary kriging 

error values. With regards to the application of the interpolation methods, regression kriging 

outperformed all the other methods in terms of the uncertainty measurements at the surface and sub-

surface levels for all the soil parameters. The obtained mean error, mean squared error, root mean square 

error values for pH at the surface and sub-surface levels were 5.78 × 10−6, 3.15 × 10−6, 0.0018 and 1.42 

×  10−7 , 4.22 × 10−7 , 0.0006 respectively. Similarly, the obtained values in the same sequence for 

electrical conductivity were 0.0001, 0.3328, 0.5768 and 0.0368, 805.1854, 28.3758 respectively for the 

surface and sub-surface levels. For TOC, the error values were 0.0031, 0.1594 and 0.3992 for the surface 

level and 0.0004, 0.0138 and 0.1174 for the sub-surface level. Although copulas-based interpolators were 

believed to perform better than the other methods, they performed the worst. This may have been 

attributed to less skewed or near-normal distribution of data. The proceedings from this research work 

may be recommended for future government schemes wherein soil health needs to be assessed. 
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1. INTRODUCTION 

According to Merriam - Webster (2017) interpolation is defined as “the process of calculating an 

approximate value based on the value that is already known”. The prediction value at a location may be 

calculated as the weighted average of the observation value. The predicting parameter is considered as a 

random variable taking into account all possible realizations at that location When samples are collected 

from different locations, they are assumed to be drawn from one particular realization of the random 

experiment (Schabenberger & Pierce, 2001). It is like a photograph being taken of some object in the 

space-time continuum. The weights may have a fixed equation or they may define the dependence 

structure, depending on the objective and the interpolation method being used. Interpolation methods 

may be divided into three types – deterministic, geostatistical and their combination. Methods that depend 

upon certain parameters for prediction of values are defined as deterministic such as Inverse Distance 

Weighting (IDW) and radial basis functions (RBF). Methods that additionally consider random functions, 

including the spatial dependence between points, are called geostatistical methods. Particular examples – 

are Simple Kriging and Cokriging (Sluiter, 2008). The dependence structure may depend on spatial 

coordinates or external variable values. The external variable values may help in improving the prediction 

process (Pebesma, 2006). Some of these methods used in the field of environmental sciences were 

compared by Li & Heap (2014). 

  

Accurate information regarding soil properties is required to address issues related to land and soil quality. 

If a hillslope is to be used for farming purposes [- terrace farming], then a soil quality and soil health 

analysis need to be performed. This governs the type of trees/crops that may grow in that area. Since the 

soil of the whole area cannot be analysed, representative soil samples need to be collected to study these 

effects. A soil survey can be a tedious and costly task. Therefore, an optimal sampling scheme needs to be 

designed for an efficient and economical collection of samples. 

  

A soil study is particularly important in hilly terrains as it is difficult to collect soil information for a whole 

area due to accessibility issues. Interpolation methods can be used to study the spatial variability in soil 

properties since they can address the spatial variation in point data values. The need for monitoring 

changes and assessment of deterioration of soil quality has been presented through a selection of 

indicators in Arshad & Martin (2002). 

  

Multiple methods had been employed to perform soil mapping such as by airborne gamma radiometric 

data (Cook et al., 1996). Although this was used for identifying the presence of material spatially, it did not 

consider its presence at the surface and sub-surface levels. Even satellites had been employed for studying 

soil properties such as soil moisture (Wagner et al., 2007) and organic matter content as well as the 

presence/absence of organic soil (Poggio et al., 2013). Not all properties could be assessed by means of 

these methods. Moreover, these measurements were not too accurate. Thus, the requirement for taking 

representative samples on the ground remains and the subsequent use of interpolation methods. 

 

The following research aimed to derive the most accurate soil information within a hilly terrain. Reducing 

the uncertainty measurements was required to get an accurate measure of the values of soil parameters. 

Topographically similar features had been identified as study areas to understand the transfer of spatial 
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information from one area to another. Deterministic and stochastic interpolation methods were explored 

and compared to best model the prediction surface. 

1.1. Research identification 

This research involved soil sampling and the application of interpolation methods to generate a 

continuous surface of the soil parameters. Values at unknown locations may be required for various 

objectives. For this, optimal sampling schemes were designed such that minimum variation in predicted 

values is there. The interpolation methods may be used for getting the values at different magnitudes. The 

parameters considered for this research were pH, Total Organic Carbon (TOC) and Electrical 

Conductivity (EC). These parameters had been identified by Jones (2016) and Arshad & Martin (2002) as 

primary indicators for the assessment of soil health. Also, the Department of Agriculture under the 

Government of India promoted them as the physical and basic parameters for assessing the soil health by 

providing Soil Health Cards (SHCs) to the farmers (National portal of India, 2017). Also, the parameters 

were tested for correlation among themselves and between each other. External variables such as elevation 

data and its derivatives were employed in geostatistical methods to make better sampling schemes. 

1.2. Research objectives 

The main objective of this study is to perform a comparison of deterministic and geostatistical 

interpolation methods on two hillslopes of Sitlarao watershed area in Dehradun region of India. 

The specific objectives are:  

i. Conduct a literature review of different sampling strategies and a comparison of interpolation methods.  

ii. Develop a suitable sampling strategy for collecting soil data.  

iii. Apply different interpolation methods for the sample point data.  

iv. Critically analyse the soil properties variability and its effects in the study area.  

v. Make a solid comparison of the interpolation methods. 

1.3. Research questions 

With reference to the objectives mentioned above, following are the questions that need to be answered:  

Specific objective 1  

i. What are the different sampling strategies and the differences between them?  

ii. What are the different interpolation methods and the differences between them? 

Specific objective 2  

i. What are the criteria to select a suitable sampling strategy for collecting the data?  

ii. How many samples need to be collected for statistically significant analysis? 

Specific objective 3  

i. Which interpolation methods need to be applied to the sample data and why?  

ii. What external variables/covariates needs to be used for application with respect to 

geostatistical methods?  

iii. How to obtain the values of covariates at unvisited locations?  

Specific objective 4  

i. What is the effect of the presence of soil parameter values on soil health in the study area?  

ii. Can a correlation be made between the topographical features and the soil parameter value? 
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Specific objective 5  

i. What measures of uncertainty are to be used to analyse the quality of interpolation methods 

and why?  

1.4. Innovation aimed at 

This research tried to find out the better interpolation method among various deterministic and 

geostatistical methods for a hilly terrain. The soil parameter values may have had highly varied values 

depending upon the terrain structure which increased the complexity in the application of these methods. 

Copulas which have been previously used in the field of financial mathematics were used as an 

interpolator. This has been a recent application in the field of spatial statistics. Also, no previous 

application of copula-based interpolator had been applied in a hilly terrain in Indian soils. 

Additionally, the use of spatial information from one study area to another was examined. The 

information collected from an area could be utilized for another area with similar characteristics without 

losing many details. Then it could help in designing an optimal sampling scheme and thereafter prediction 

surfaces without any prior survey. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMPARISON OF DETERMINISTIC AND STOCHASTIC INTERPOLATION METHODS BY ASSESSING SPATIAL VARIABILITY IN SOIL PROPERTIES IN A HILLY TERRAIN 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMPARISON OF DETERMINISTIC AND STOCHASTIC INTERPOLATION METHODS BY ASSESSING SPATIAL VARIABILITY IN SOIL PROPERTIES IN A HILLY TERRAIN 

5 

2.   LITERATURE REVIEW 

Environmental variables can be best modelled by taking representations from the real world. This is due 

to various economic and geographical constraints. Various density distribution functions may be studied 

in turn to assess the variation in soil information. Soil variables have been generally found to follow a 

positively skewed distribution. Some of the most commonly used distributions for their modelling are – 

Poisson, Weibull, gamma, exponential, and lognormal (Becker et al., 1992). For the density distribution 

functions to be generated, point samples are required. Representative samples require careful sampling 

design for generating accurate and precise data (United States Environmental Protection Agency, 2002). 

Since data forms the backbone of any mathematical analysis, designing a good sampling scheme becomes 

a necessity. 

2.1. Spatial sampling 

Various sampling methods and statistical techniques for soil-survey data have been defined by Webster & 

Oliver (1990). They mention the advantages and disadvantages of each of those methods. Also, they 

explain the greater efficiency of stratified and unaligned sampling methods over simple random sampling 

methods for soil survey. The choice of the sampling method usually depends on the desired objective of 

the study. Sampling considers various objectives – such as for independent and identically distributed (iid) 

population, considering correlation and heterogeneity, which have been mentioned by Wang et al. (2012). 

They explain various design (such as simple and stratified random, systematic and two-step random 

sampling) and model-based sampling methods. Design based sampling methods are those that have their 

population (single realization of the random experiment) unknown but fixed. Model-based sampling 

methods have been described as those that have their population unfixed but as a set of values 

(superpopulation) representing a single realization of the random experiment. They involve minimizing a 

single objective function. 3 criteria for objective functions – minimization of estimation error variance, 

equal spatial coverage for irregular polygons and equal coverage in feature space have been discussed.  

2.1.1. Soil and geostatistics 

The uncertainties associated with predicted values are required as errors might be present due to 

instrumental or measurement errors. The deterministic interpolation methods cannot report these error 

values. The stochastic processes [geostatistical processes] may be considered to get the uncertainty 

measures at these locations. Lark (2012) concluded that geostatistics and soil science were closely 

interlinked. Although there are lots of factors at play for soil processes, he was hopeful for a further 

development of soil processes being linked to statistical distributions. Geostatistics has been used in the 

past for generating optimal sampling schemes. It was found that they generated more efficient schemes in 

terms of cost [measurement time] than the traditional sampling schemes (Xiao et al., 2005). 

Yfantis et al. (1987) found out that among the square, equilateral and hexagonal grids, equilateral grid 

sampling scheme gave the most reliable estimate of the variogram. The variogram defines the spatial 

dependence of a random variable. It is visualised as the variance between spatial observations of a random 

variable at different lag/distance classes. The variogram estimator (𝛾𝑘 ) was defined in the following 

manner (Müller, 1999; Matheron, 1963): 

 

2𝛾𝑘 =  
1

𝑁𝐻𝑘

∑ (𝑧(𝑠𝑖) − 𝑧(𝑠𝑖 + ℎ))2
𝑠𝑖, 𝑠𝑖+ℎ ∈ 𝐻𝑘

;                                  (2.1) 
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In equation 2.1, 𝐻𝑘 denotes the distance bins containing all the point pairs; 𝑁𝐻𝑘
 denotes the number of 

point pairs falling in each bin and h denotes the lag distance. Also, 𝑧(𝑠𝑖) and 𝑧(𝑠𝑖 + ℎ) denotes the 

observation values at locations 𝑠𝑖 and 𝑠𝑖 + ℎ respectively. 

2.1.2. The spatial simulated annealing method 

Annealing [in metallurgy] is the process of heating a metal above a certain recrystallization temperature 

and then cooling either rapidly or slowly depending on the desired product. The lattice structure starts to 

come to its equilibrium state with cooling, hence increasing the workability of the metal. Simulated 

Annealing (SA) is a similar process to find the global minima/maxima wherein perturbations analogous to 

heating and cooling processes are given to the mathematical function. It was first proposed by Metropolis 

et al. (1953), which later came to be known as the Metropolis criterion. Spatial Simulated Annealing (SSA) 

is the extension of SA method in the geographical domain. Van Groenigen et al. (1999) explained this in 

the following way. 

A collection of possible sampling schemes 𝑆𝑛  consisting of n observations was considered. An 

objective/fitness function 𝜙(𝑆𝑖) ∈  𝑆𝑛  was defined which was to be minimized. Initially, a random 

sampling scheme 𝑆0  was taken and then random perturbations added to it such that a new sampling 

scheme 𝑆𝑖+1 was generated. It had a probability 𝑃𝑐(𝑆𝑖 → 𝑆𝑖+1) of being accepted which was defined in 

the form of Metropolis criterion as: 

 

𝑃𝑐(𝑆𝑖 → 𝑆𝑖+1) = 1,                                                           𝑖𝑓 𝜙(𝑆𝑖+1) ≤  𝜙(𝑆𝑖) 

 

𝑃𝑐(𝑆𝑖 → 𝑆𝑖+1) = exp (
𝜙(𝑆𝑖) −  𝜙(𝑆𝑖+1) 

𝑐
) ,                𝑖𝑓 𝜙(𝑆𝑖+1) >  𝜙(𝑆𝑖); 

(2.2) 

Here, 𝑐  denotes the control parameter which decreases as the optimization progresses. The random 

perturbations were added to the sample points such that the points moved to the new location in random 

direction and at a random distance ℎ ∈ (0, ℎ𝑚𝑎𝑥). The distance ℎ𝑚𝑎𝑥 was initially considered to be half 

the length of the study area in the two dimensions. It gradually decreased with each optimization step.     

van Groenigen (1997) showed that SSA could be used for generating optimal sampling schemes. He found 

out that it gave better sampling scheme than the equilateral triangular grid. 

2.1.3. Optimal sampling schemes 

In the case of model-based sampling methods, SSA has been used in the past for generating the optimal 

sampling scheme with minimal kriging variance as the criterion (Van Groenigen et al., 1999; van 

Groenigen & Stein, 1998). They used ordinary kriging (OK) variance as the objective function to be 

minimized. SSA with Minimization of the Mean of Shortest Distances (MMSD) was used as a criterion for 

determining the global minima as the sampling configuration was changed in each iteration. Even 

spreading of points over an area was achieved through MMSD. Also, regression kriging (RK) variance has 

been used as the objective function in cases where there were a lot of constraints involved (Szatmári et al., 

2015).  

The generation of the objective function with regards to kriging variance requires the variogram to denote 

the variation of soil properties. For a fair computation of the variogram, at least 100 samples need to be 

collected, 150 samples for satisfactory and 225 for a reliable computation of a normally distributed 

isotropic variable (Webster & Oliver, 1992). The variable whose properties does not depend on the 

direction is isotropic. 
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Guidelines for collecting soil samples and their description have been provided by the Food and 

Agricultural Organization (FAO) of the United Nations (Jahn et al., 2006). These help in the proper 

management and handling of the collected soil samples. 

2.2. Usage of spatial information from one study area to another 

For generating prediction surfaces, spatial information may be used from one area to another if the two of 

them are found to be similar in properties. This may be done to save on any additional costs for sampling 

as well as for conducting laboratory tests. A procedure was developed by Cui et al. (1995) for generating 

continuous surfaces of soil parameters by using the Bayesian form of kriging. They had compared whether 

Bayesian kriging performed any better than ordinary kriging. The results of their study led them to 

conclude that although ordinary kriging performed better for a large number of observations, Bayesian 

kriging predicted values of approximately the same precision as ordinary kriging for a smaller number of 

observations.  

2.2.1. Bayesian Kriging (BK) 

Bayesian kriging involves specification of prior distributions for the parameters instead of them being 

estimated. These distributions are updated regularly based on the data, using Markov chain Monte Carlo 

(MCMC) simulation. Thus, leading to posterior distributions for each of the parameters. The advantage of 

BK over other forms of interpolation methods is that it quantifies the uncertainty in the estimation of 

model parameter values (Verdin et al., 2015). Diggle & Ribeiro (1999) explained the Bayesian form of 

kriging in the following manner: - 

Considering the spatial observations 𝑍(𝑠1) … 𝑍(𝑠𝑛) as being the single realisation of a random variable 𝑍 

at the set of locations 𝑠𝑖, 𝑖 𝜖 [1, 𝑛]  and 𝑠𝑖 𝜖 ℝ𝑑  with positive 𝑑  - dimensional volume. The model 

considers the variable 𝑍 being a “noisy” version of a latent spatial process, the signal 𝑄(𝑠), 𝑠 denoting the 

vector of locations 𝑠1 … 𝑠𝑛 . The “noises” are assumed to be Gaussian and conditionally independent 

given 𝑄(𝑠). According to the given definitions and assumptions, the model is specified in a hierarchical 

scheme. The signal 𝑄(𝑠) is considered to be decomposed into a sum of latent processes 𝑇𝑘(𝑠) scaled by 

𝜎𝑘
2. Thus, the model is written as follows: 

 

Level 1 : 𝑍(𝑠) = 𝑋(𝑠)𝛽 + 𝑄(𝑠) +  𝜀(𝑠) 

           = 𝑋(𝑠)𝛽 +  ∑ 𝜎𝑘𝑇𝑘(𝑠) +  𝜀(𝑠);𝐾
𝑘=1                                                            (2.3) 

Level 2 : 𝑇𝑘(𝑠) ~ 𝒩 (0, 𝑅𝑘(𝜙𝑘)), 𝑇1 … 𝑇𝐾 are mutually independent and 

   𝜀(𝑠) ~ 𝒩 (0, 𝜏2I);                                 (2.4) 

Level 3 : (𝛽, 𝜎2, 𝜙, 𝜏2) ~ 𝑝𝑟(∙), a prior distribution                (2.5)  

 

Here, the model components are described as: 

 𝑍(𝑠) is a random vector stating the sample location measurements; 

 𝑋(𝑠)𝛽 =  𝜇(𝑠) is the expectation of 𝑍(𝑠). 𝑋(𝑠) is the matrix of fixed covariates at locations 𝑠. 𝛽 

is a vector parameter. If, there are no covariates, 𝑋(𝑠) =  1 and the mean becomes a constant 

value at all the locations. In geostatistical terms, the term trend refers to the mean part of the 

model 𝑋(𝑠)𝛽; 
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 𝑇𝑘(𝑠) is the random vector at sample locations, of a standardised latent stationary spatial process 

𝑇𝑘. It has zero mean, variance one and correlation matrix 𝑅𝑘(𝜙𝑘). The elements of 𝑅𝑘(𝜙𝑘) are 

given by a correlation function 𝜌𝑘(ℎ; 𝜙𝑘). If the process is isotropic this parameter is denoted by 

𝜙𝑘 and ℎ is reduced to a scalar h i.e. the Euclidean distance between two locations.𝑇𝑘 refers to a 

structure in a variogram; 

 𝜎𝑘 is a scale parameter. The value 𝜎𝑘
2 corresponds to the partial sill of a variogram; 

 𝜀(𝑠) denotes the error vector at the sample locations 𝑠. It has zero mean and variance 𝜏2 at the 

sample locations. The nugget effect in a variogram is denoted by 𝜏2; 

 In a Bayesian approach to inference, the specification of the prior for the model parameters is 

given in the third level. Conjugate priors are taken into account. These refer to the same family of 

distributions in the posterior as the ones specified in prior.     

Now, considering the probability distribution of 𝑍 by the function 𝑝𝑟(𝑧|𝜗), indexed by the unknown 

vector parameter 𝜗 = (𝛽, 𝜎2, 𝜙, 𝜏2). 𝑧 is the sample observed and 𝐿(𝜗|𝑧) ≡ 𝑝𝑟(𝑧|𝜗), 𝐿(⋅) is a function 

of 𝜗  and is called the likelihood function. In the Bayesian approach, variable 𝑍  and parameters 𝜗  are 

considered as random with joint distribution 𝑝𝑟(𝑧, 𝜗) = 𝑝𝑟(𝑧|𝜗)𝑝𝑟(𝜗) . Here, 𝑝𝑟(𝜗)  is the prior 

distribution and | denotes conditionality. Bayes’ Theorem (Weisstein, n.d.) updates the prior knowledge 

about the parameters using the relation: 

 

        𝑝𝑟(𝜗|𝑍) ∝ 𝑝𝑟(𝜗)𝑝𝑟(𝑍|𝜗);                                                       (2.6) 

 

The distribution 𝑝𝑟(𝜗|𝑍) is called posterior distribution which forms the basis for Bayesian inference of 

model parameters. 

Let 𝑧0 and 𝑝𝑟(𝑧0|𝑧) denote the vector of prediction locations and the predictive distribution respectively. 

The predictive distribution may be written as follows: 

 

                                                  𝑝𝑟(𝑧0|𝑧) =  ∫ 𝑝𝑟(𝑧0, 𝜗|𝑧)𝑑𝜗          

                       =  ∫ 𝑝𝑟(𝑧0|𝑧, 𝜗)𝑝𝑟(𝜗|𝑧)𝑑𝜗;                                   (2.7) 

 

In equation (2.7), 𝑝𝑟(𝑧0|𝑧, 𝜗) refers to the conditional distribution with weights given by the posterior 

distribution 𝑝𝑟(𝜗|𝑧). In terms of the Bayesian inference, the predictive distribution may also be written as: 

 

𝑝𝑟(𝑧0|𝑧) =  ∫
𝑝𝑟(𝑧, 𝑧0|𝜗)𝑝𝑟(𝜗)

∫ 𝑝𝑟(𝑧|𝜗)𝑝𝑟(𝜗)𝑑𝜗
𝑑𝜗;                                           (2.8) 

2.3. Right pixel size for interpolation 

Before performing interpolation, the scientific justification for choosing the grid resolution (pixel size, in 

case of raster images) needs to be presented. One should not randomly choose the grid resolution without 

any sound proof. Hengl (2006) explained methods to choose grid resolution based on various aspects. 

According to him, no ideal pixel size existed, but it could be chosen in such a way that compliance with 

the input datasets may be maintained. The equations for the range of resolutions and a possible 

compromise were as given in Table 2-1. 
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Table 2-1: Summary equations to select grid resolution: 𝑆𝑁 is scale factor,  𝑟𝐸 is positioning error, 𝑟𝐸  is average 

positioning error, �̅� is average size of delineations, 𝑎𝑀𝐿𝐷 is area of the minimum legible delineation, 𝑤𝑀𝐿𝐷 is width 

of narrowest legible delineation, 𝐴 is surface of study area in 𝑚2, 𝑁 is number of sampled points in study area, ℎ𝑖𝑗 is 

spacing between closest point pairs, ℎ̅𝑖𝑗 is average spacing between closest points, ℎ𝑅 is range of spatial dependence, 

𝑚 is number of point pairs within range of spatial dependence, and 𝑙 is the total length of contours (Hengl, 2006). 

Aspect Coarsest legible 

resolution 

Finest legible 

resolution 

Recommended 

compromise 

Working scale 
≤ 𝑆𝑁 ∙ 0.0025 ≥ 𝑆𝑁 ∙ 0.0001 = 𝑆𝑁 ∙ 0.0005 

GPS positioning error 
≤ 1.8 ∙  𝑟𝐸(𝑃=99%) ≥  �̅�𝐸 ∙ √𝜋 = 1.8 ∙  𝑟𝐸(𝑃=95%) 

Size of reference 

objects ≤  
√�̅�

4
 ≥

√𝑤𝑀𝐿𝐷

2
 =

√𝑎𝑀𝐿𝐷

4
 

Inspection density 

≤ 0.1 ∙ √
𝐴

𝑁
 ≥ 0.05 ∙ √

𝐴

𝑁
 = 0.0791 ∙ √

𝐴

𝑁
 

Distance between 

points ≤
ℎ̅𝑖𝑗

2
 ≥ ℎ𝑖𝑗(𝑃=5%) = 0.25(0.5) ∙ √

𝐴

𝑁
 

Spatial dependence 

structure 
≤

ℎ𝑅

2
 ≥ ℎ𝑖𝑗(𝑃=5%) = ℎ𝑅 ∙ 𝑚

−1
3  

Complexity of terrain 
≤

𝐴

∑ 𝑙
 ≥

𝑤𝑀𝐿𝐷

2
 =

𝐴

2 ∙ ∑ 𝑙
 

 

2.4. Interpolation methods 

Values at all locations cannot be sampled. They can only be predicted otherwise it would become 

infeasible to collect samples at each and every location. Different interpolation methods are used to 

generate a continuous surface. Jasiński (2016) demonstrated its usage for modelling environmental data 

such as air temperature and SO2 (Sulphur dioxide) concentration. He concluded that the interpolation 

methods can be used satisfactorily for modelling environmental data. Also, he suggested that interpolation 

is preceded by an assessment of the modelling accuracy, for different ways of filling in the unknown 

values, for getting the best results. 25 of these methods had been compared by Li & Heap (2014) and the 

similarities amongst each other discussed. They also stated the software packages that may be used for 

performing interpolation. Some of the deterministic (radial basis function), as well as geostatistical 

(regression kriging, copulas as interpolators) interpolation methods, have been discussed below. 

2.4.1. Radial Basis Functions (RBF) 

RBFs have been used in the past for multivariate interpolation (Lazzaro & Montefusco, 2002). It is a 

mathematical function whose values depends on the distance from an absolute centre. The basis is a set of 

elements in the vector space which are linearly independent. All the other vectors may be written as a 

linear combination of these vectors. Wright (2003) explained their usage in generating continuous surfaces 

by stating them as a generalised version of the multiquadric equations given by Hardy (1971). He gave the 

following definition for the basic RBF method: 
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Given 𝑛  distinct data points {𝑥𝑗}𝑗=1
𝑛  and their corresponding data value  {𝑓𝑗}𝑗=1

𝑛 , the basic RBF 

interpolant was given as, 

 

𝑠(𝑥) =  ∑ 𝜆𝑗𝜙(‖𝑥 −  𝑥𝑗‖)𝑛
𝑗=1 ;                                       (2.9) 

 

where  𝜙(𝑟) = 𝜙‖𝑥 − 𝑥𝑗‖, 𝑟 ≥ 0  is some radial function. Coefficients 𝜆𝑗  are determined from the 

conditions      𝑠(𝑥𝑗) =  𝑓𝑗, 𝑗 = 1, … . , 𝑛 leading to the following linear equation: 

 

[𝐴][𝜆] =  [𝑓];                                                              (2.10) 

 

Here, the entries of A is described by 𝑎𝑗,𝑘 =  𝜙(‖𝑥𝑗 − 𝑥𝑘‖). Also, ‖∙‖ refers to the norm of the equation. 

Generally Euclidean norm is used for RBF. Some of the most commonly used radial basis functions are as 

given in Table 2. The parameter 𝜀 is a fixed non – zero value used for controlling the shape of functions.  

 

Table 2-2: Commonly used RBFs (Wright, 2003) 

Type of basis function 𝝓(𝒓), 𝒓 ≥ 𝟎 

Infinitely smooth RBFs  

Gaussian 
𝑒−(𝜀𝑟)2

 

Inverse quadratic 1

1 +  (𝜀𝑟)2
 

Inverse multiquadric 1

√1 + (𝜀𝑟)2
 

Multiquadric 
√1 + (𝜀𝑟)2 

Piecewise smooth RBFs 

Linear 
𝑟 

Cubic 
𝑟3 

Thin Plate Spline (TPS) 
𝑟2 log 𝑟 

2.4.2. Regression Kriging (RK) 

Spatial observations 𝑍(𝑠1), … , 𝑍(𝑠𝑛) of a random variable 𝑍 are not the same as being observed 𝑛 times 

over, but the variables at locations 𝑠𝑖, 𝑖 𝜖 [1, 𝑛] observed once. Random variable value 𝑍(𝑠0) is usually 

considered by taking the distribution of all possible realizations at that location (Schabenberger & Pierce, 

2001). When these observations have a constant spatial mean at all locations, these are termed to be 

stationary. It is not always reasonable to assume that the mean is constant. It may vary with respect to 

covariates or coordinates.  

To address the non-stationarity of mean in ordinary kriging, regression kriging is used. Hengl et al. (2007) 

explained this in the following manner. 
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In a geostatistical approach, predictions at unknown locations are usually given as the weighted average of 

the observations: 

 

�̂�(𝑠0) = ∑ 𝜆𝑖
𝑛
𝑖=1 ⋅ 𝑧(𝑠𝑖);                                                   (2.11) 

 

Here, �̂�(𝑠0) denotes the prediction value. The observation values at different locations is given by the data 

values 𝑧(𝑠1), 𝑧(𝑠2), … , 𝑧(𝑠𝑛). RK uses the values of the auxiliary variable at unknown locations to predict 

the predictor variable values. In RK, regression is used to fit the explanatory variation and simple kriging 

with expected value 0 is used to fit the residuals (unexplained variation) (Hengl et al., 2004): 

 

�̂�(𝑠0) =  �̂�(𝑠0) + �̂�(𝑠0) 

 

            =  ∑ �̂�𝑘. 𝑞𝑘(𝑠0) +  ∑ 𝜆𝑖
𝑛
𝑖=1 ⋅ 𝑒(𝑠𝑖); 𝑝

𝑘=0                (2.12) 

 

In equation 2.12, �̂�(𝑠0) is the fitted drift, �̂�(𝑠0) is the interpolated residual, �̂�𝑘 are estimated drift model 

coefficients or the regression coefficients, 𝑞𝑘(𝑠0) is the predictor at location 𝑠0, 𝜆𝑖  are kriging weights 

determined by the spatial dependence structure i.e. the variogram parameters (Matheron, 1969) of the 

residual where 𝑒(𝑠𝑖) is the residual at location 𝑠𝑖. The regression coefficients �̂�𝑘 are estimated from the 

samples by either the ordinary least squares (OLS) method or the generalized least squares (GLS), the 

latter being more optimal. This takes into account the spatial correlation between observations (Cressie, 

2015): 

 

�̂�𝐺𝐿𝑆 =  (𝑞𝑇 . 𝐶−1. 𝑞)−1. 𝑞𝑇 . 𝐶−1. 𝑧;            (2.13) 

 

In equation 2.13, �̂�𝐺𝐿𝑆 is the vector of estimated regression coefficients, 𝐶 is the covariance matrix of the 

residuals, 𝑞 is a matrix of predictors and 𝑧 is the vector of measured values of the predictor variable. In 

matrix notation, the equation for the predicted value at location 𝑠0 is written as follows (Christensen, 

2001): 

 

�̂�(𝑠0) =  𝑞0
𝑇 . �̂�𝐺𝐿𝑆 +  𝜆0

𝑇 . (𝑧 − 𝑞. �̂�𝐺𝐿𝑆);                        (2.14) 

 

In equation 2.14, 𝑞0 is the vector of 𝑝 + 1 predictors, and 𝜆0 is the vector of 𝑛 kriging weights used to 

interpolate the residuals. The RK prediction error variance is given as follows: 

 

𝜎𝑅𝐾
2 (𝑠0) = (𝐶0 +  𝐶1) −  𝑐0

𝑇 . 𝐶−1. 𝑐0 +  (𝑞0 −  𝑞𝑇 . 𝐶−1. 𝑐0 )
𝑇. (𝑞𝑇 . 𝐶−1. 𝑞)−1. (𝑞0 −  𝑞𝑇 . 𝐶−1. 𝑐0 );   

(2.15) 

 

In the above equation, 𝐶0 +  𝐶1 is the total sill value of the variogram and 𝑐0 is the vector of covariances 

of residuals at locations with unknown values. 

The estimation of the residuals is an iterative process wherein the drift model is firstly estimated using 

OLS. Next, the covariance function of the residuals is used to obtain the GLS coefficients, which are 

further used to calculate the residuals and then the covariance function and so on (Hengl et al., 2007). 

2.4.3. Copulas 

Copulas were first proposed by Sklar (1959), who described them in the following form: 
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Let 𝐻(𝑥1, … , 𝑥𝑛) be a joint n – variate distribution function with margins 𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛). Then there 

exists a 𝑛 - dimensional copula 𝐶𝑛 such that ∀ 𝑥1, … , 𝑥𝑛 in ℝ, 

 

               𝐻(𝑥1, … , 𝑥𝑛) =  𝐶𝑛(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛);                                             (2.16) 

 

Copulas may be defined as functions that join the joint distribution function to their one – dimensional 

margins (Nelsen, 2006). In other words, their one – dimensional marginals are uniform in the interval 

[0,1]. 

Geostatistical methods like kriging require the data to be normally distributed for giving the best results. 

In the real world, data may not always be normally distributed. Although data transformations may be 

applied, still it may not be distributed normally. The process of interpolation using copulas does not 

necessarily require the data to be normally distributed, which forms the strength of the model. They help 

by separating the dependence structure from the marginal distribution (Bárdossy & Li, 2008). Thereby, the 

margins can be estimated separately and the dependence structure is explained by copulas. The interest in 

these generated out of their capability to model non – Gaussian distributions (Kazianka & Pilz, 2010).  

They have been used in the past for predicting groundwater quality parameters (Bárdossy & Li, 2008), 

precipitation at different time scales (Bárdossy & Pegram, 2013) and soil properties (Marchant et al., 2011). 

Copulas as interpolators performed better than most of the other geostatistical methods. Analogous to the 

semivariance values in a variogram, interpolation using copulas have a copula structure in a correlogram 

(plot of correlation with distance classes/lags). Some of the most commonly used copula families are as 

shown in Table 2-3. 

 

Table 2-3: Some commonly used copula functions. 𝑢 and 𝑣 are the random variables, θ is the probability 

mass/parameter value, 𝜙
2
 is the bivariate normal distribution function with correlation coefficient 𝜌, 𝜙−1 is the 

inverse of a univariate normal distribution function, 𝑡𝜈 is the degree of freedom of 𝜈, 𝑡𝜈
−1 denotes the inverse of 

Student t distribution, Γ(⋅) is the gamma function, 𝑃 is the correlation matrix and 𝑥 is the integral variable (Nelsen, 
2006; Li, 1999; Demarta & McNeil, 2005) 

Copula family Cumulative distribution function (𝑪(𝒖, 𝒗)) Domain 

Gaussian 
𝜙2(𝜙−1(𝑢), 𝜙−1(𝑣), 𝜌) −1 ≤  𝜌 ≤ 1 

Student’s t 

∫ ∫
Γ (

𝜈 + 2
2 )

Γ (
𝜈
2) √(𝜋𝜈)2|𝑃|

(1 +  
𝑥′𝑃−1𝑥

𝜈
)

− 
𝜈+2

2

𝑑𝑥
𝑡𝜈

−1(𝑣)

−∞

𝑡𝜈
−1(𝑢)

−∞

 𝜈 > 0 

Clayton 

[𝑚𝑎𝑥(𝑢−𝜃 + 𝑣−𝜃 − 1,0)]
− 

1
𝜃 𝜃 ∈ [−1, ∞)\{0} 

Gumbel 

𝑒−[(− ln 𝑢)𝜃+ (− ln 𝑣)𝜃]
1
𝜃
 𝜃 ∈ [1, ∞) 

Frank 

− 
1

𝜃
 ln (1 +  

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 𝜃 ∈ (−∞, ∞)\{0} 

Independence 
𝑢 × 𝑣 𝜃 ∈ (−∞, ∞) 
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The copula family is selected by using the maximum likelihood method. Prediction at unvisited location 𝑠0 

can be obtained by calculating the mean or the median (Gräler, 2014a): 

 

�̂�𝑚𝑒𝑎𝑛(𝑠0) =  ∫ 𝐹−1(𝑢). 𝑐𝑘+1(𝑢|𝐹(𝑥1), … , 𝐹(𝑥𝑘))𝑑𝑢
1

0
;                       (2.17) 

�̂�𝑚𝑒𝑑𝑖𝑎𝑛(𝑠0) =  𝐹−1(𝐶𝑘+1
−1 (0.5|(𝑥1), … , 𝐹(𝑥𝑘)));                                  (2.18) 

 

In the above equations, �̂�(𝑠0)  represents the random variable value at location 𝑠0,  that follows the 

distribution 𝐻(𝑥0|𝑥1, … , 𝑥𝑘)  conditioned under the observed values of the 𝑘  nearest 

neighbours 𝑥1, … , 𝑥𝑘. 𝐹 is the marginal cumulative distribution function, 𝑘 denotes the nearest neighbours 

to the point at location 𝑠0, 𝑐𝑘+1 is the conditional density of the copula 𝐶𝑘+1 given as: 

 

𝑐𝑘+1(𝑢0|𝑢1, … , 𝑢𝑘) =  
𝑐𝑘+1(𝑢0,𝑢1,…,𝑢𝑘)

𝑐𝑘(𝑢1,…,𝑢𝑘)
;                                           (2.19) 

 

Here, 𝑢𝑖, 𝑖 𝜖 [0, 𝑘] represents the variables. The copula density reflects the strength of dependence of the 

variables. 

2.5. Comparison of interpolation methods 

Many comparative studies of different interpolation methods have been performed for different soil 

parameters such as pH (Liu et al., 2013) and OC (organic carbon) content (Piccini et al., 2014). Study for 

comparison of interpolation methods in complex terrain has also been performed (Yao et al., 2013). 

Studies have also been conducted for comparing methods in spatial-temporal context (Adhikary & Dash, 

2017). 

2.5.1. Measures of uncertainty 

Cui et al., (1995) mentioned the following three statistics for measuring the uncertainty in predicted values 

– the mean error (𝜖) , the mean squared error (MSE), and the variance of the reduced error (𝜎𝑅𝐸
2 ). 

Additionally, the root mean squared error (RMSE) has also been mentioned. They are defined as follows: 

 

𝜖 =  
1

𝑛
∑ (�̂�(𝑠𝑖)  −  𝑧(𝑠𝑖))𝑛

𝑖=1 ;                                                   (2.20) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (�̂�(𝑠𝑖)  −  𝑧(𝑠𝑖))2𝑛

𝑖=1 ;                                                 (2.21) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (�̂�(𝑠𝑖)  −  𝑧(𝑠𝑖))2𝑛

𝑖=1 ;                                               (2.22) 

𝜎𝑅𝐸
2 =  

1

𝑛
∑

(�̂�(𝑠𝑖) − 𝑧(𝑠𝑖))2

𝑣𝑎𝑟(�̂�(𝑠𝑖)−𝑍(𝑠𝑖))

𝑛
𝑖=1 ;                                                     (2.23) 

 

In the above equations, 𝑛 denotes the total number of observations, �̂�(𝑠𝑖) is the prediction and 𝑧(𝑠𝑖) is 

the observation at the 𝑖𝑡ℎ test point. For assessing the certainty of the value to the observed value, the 

mean error should be close to zero, the MSE and RMSE value should be small and the variance of the 

reduced error should be close to one. 

In addition to that, the coefficient of determination 𝑅2  value, that defines the amount of variance 

explained by the model is given as follows (Coster, n.d.): 
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𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇
;                                                                            (2.24) 

 

In the equation 2.24, SSE denotes the sum of squares of the residuals and SST denotes the total sum of 

square errors. Its value ranges from 0 to 1 with a value closer to 1 indicating that a large amount of 

variance is explained by the model.  
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Figure 2-1: Study Area - (a) India; (b) Uttarakhand; (c) Langha – Tauli (in red boundary); (d) Barwa (in red boundary). 
Image Source – (a) and (b) Indian Institute of Remote Sensing, (c) and (d) Esri, DigitalGlobe, GeoEye, Earthstar 
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and the GIS User Community 

3. STUDY AREA 

The study area lies within the Sitlarao watershed area in the western part of Dehradun district of 

Uttarakhand. It belongs to the Asan river system which is a tributary of Yamuna river and covers an area 

of 8.05 km2 . The climate of the area is humid sub-tropical with mean temperature ranging from 15 °C in 

winter to 35 °C in summer. The soil texture is predominantly sandy loam to loam (Kumar & Singh, 2016). 

Langha-Tauli lies in the north – western direction from Dehradun city at a distance of about 45 km, in the 

Dehradun district of Uttarakhand state of India. The first study area, as shown in Figure 3-1(c) covers an 

area of approximately 0.4 km2. It lies between 30˚28´5˝ N and 30˚28´35˝ N latitude and, 77˚53´20˝ E and 

77˚54´4˝ E longitude. Also, due to non – availability of any irrigation systems except at a few locations, 

(b) (a) 

(c) (d) 
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farmers were quoted as saying that their crops were dependant on rainfall. The terrain was observed to be 

consisting of many stones. This observation was made during the site visit for collecting soil samples. The 

elevation in the area varied from 668 m in the North-West direction, forming the downslope region, and 

774 m in the South-East direction, the upslope region. Both the stated elevation values were above mean 

sea level.  

Barwa lies in the South-East direction to Langha-Tauli. The chosen study area, as shown in Figure 3-1(d) 

had an area of approximately 0.1 km2. It lies between 30˚27´25.6˝ N and 30˚27´34.8˝ N latitudes and, 

77˚53´20˝ E and 77˚54´38.3˝ E longitudes. The elevation values varied from 798 m in the North-West 

direction to 868 m in the South-East direction. 

The highest slope value observed in the Langha-Tauli was 40.52˚ whereas it was 37.74˚ in Barwa. A 

gradual decrease in elevation was observed from the South-East direction to North-West for both the 

study areas. Both were observed to be topographically flat wherever the land was used for agricultural 

purposes, with sudden rises and falls at regular intervals. This was a typical case of the farming style in hilly 

areas. Figure 3-2 (a) shows the slope of the first study area of Langha – Tauli, whereas Figure 3-2 (b) 

shows the gradient in Barwa.  

 

 

 

 

 

 

(a) 

Figure 3-2: Slopes of (a) Langha-Tauli, and (b) Barwa 

(b) 

Figure 3-3: Collection of soil samples in the first study 
area - Langha-Tauli 
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4. METHODOLOGY 

Variogram usage from 
Langha – Tauli to 

Barwa 
Field visit for collecting soil samples 

Data from 
laboratory tests 

Optimal 
Sampling 
Scheme 

SSA with minimal kriging 
variance as criterion 

Literature Review 

Exploratory 
Data 
Analysis 

Interpolation using different 
methods 

Comparative analysis using measures of 
uncertainty – RMSE, goodness of prediction 

Radial Basis 
Function Copulas 

Regression 
Kriging 

Interpolation of 
regressor variables 

TOC EC pH 

Langha - Tauli 

TOC EC pH 

Barwa 

Figure 4-1: Methodological Flowchart 
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The overall research methodology is as given in Figure 4-1. 

4.1. Data used 

The data for the study was obtained through the analysis of collected soil samples in laboratory. The slope 

map was generated from DEM (Digital Elevation Model) from Cartosat – 1 satellite. The spatial 

resolution of the same was 10 m and the vertical accuracy is 8 m (Muralikrishnan et al., 2011). Also, the 

boundary of the study area was digitized by the researcher. 

The selected parameters (pH, EC and TOC) were so chosen according to the suggestions by Jones (2016) 

and Arshad & Martin (2002). These were indicated as one of the primary indicators of soil health. 

4.2. Sampling Strategy 

The sampling scheme was designed, and the soil samples were collected according to the steps in the 

flowchart as shown in Figure 4-2. 

Selection of parameter for 
soil sampling from 

literature  

Variogram 
parameters from 

literature 

Selection of SSA (Spatial 
Simulated Annealing) parameters 

Field visit and collection of soil samples 
in Langha - Tauli 

Optimal Sampling Scheme 

Variogram parameters for Barwa 

Field visit and collection of soil 
samples in Barwa 

Figure 4-2: Sampling Strategy Flowchart 
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4.2.1. Selection of parameter for designing sampling scheme 

pH was selected as the soil parameter whose variogram parameters (i.e. nugget, partial sill and range) were 

considered for designing the sampling scheme. This was because of its relationships with other parameters 

– EC and TOC. 

EC involves a measure of the flow of ions in a solution, and pH is a measure of the hydrogen (𝐻+) or 

hydroxyl (𝑂𝐻−) ions in a solution. Since 𝐻+ ion is the most mobile cation (Moore, 1999) therefore, pH 

had a direct relationship with EC. According to Pietri & Brookes (2008) as the soil pH decreased, soil 

TOC generally decreased. 

4.2.2. Selection of variogram parameters 

Since no prior geostatistical information was present for the study area, it was necessary to pick the 

information from either a similar area or an averaged-out variogram parameter values. McBratney & 

Pringle (1999) chose 19 different variogram from journal articles for pH and plotted the average 

variogram of them. For calculating the mean of the variogram, fourth root transformation of the data was 

performed to bring them to normality. This was done because the variogram followed a chi-square 

distribution. The 4th roots minimize the Pearson’s index of kurtosis for a chi-square variable (Goria, 1992). 

The average exponential variogram model was selected based on the AIC (Akaike Information Criterion) 

value. AIC describes the relative quality and depends on the number of estimated parameters and the 

maximum likelihood value of the models. These values were used for fitting the variogram in the first area, 

Langha – Tauli. 

Initially, the variogram parameters were required for designing the sampling scheme in Barwa as explained 

in the following sections. Therefore, the variogram parameter values used for the second area, Barwa were 

based on the variogram fit of the pH data from Langha – Tauli. The selected variogram parameter values 

are as shown in Table 4-1. 

Table 4-1: Model and model parameter values for Langha - Tauli (McBratney & Pringle, 1999) and Barwa 

Area Model selected Nugget Partial sill Range (m) 

Langha - Tauli Exponential 0.0358 0.0841 62.073 

Barwa Matérn 0.1572 0.0951 47.808 

4.2.3. Selection of SSA parameters 

The slope values of the study area were used as the covariate in RK for calculating the kriging variance 

(objective function value). 

According to Tso & Mather (2001), the initial temperature for SSA was usually set to a value of 2 or 3. So, 

three different initial temperature values of 3, 3.5 and 4 and a different number of iterations were chosen 

to find out the sampling configuration with the least kriging variance/objective function value for Langha 

– Tauli and Barwa. Figures 4-3 (a-c) depict the plots of objective function value with the number of 

iterations for Langha - Tauli. Also, the maximum distance that the sample point may move in the 

horizontal, as well as the vertical direction, was taken as half the area size (van Groenigen et al., 1999).  

For the first area, Langha – Tauli, the initial temperature for SSA algorithm was chosen as 4 with the 

number of iterations being 550 as per the minimum objective function value of 0.06475. Similarly, the 

initial temperature for Barwa was selected as 3.5 with the number of iterations being 127 and a minimum 

objective function value of 0.23163. The objective function values against the number of iterations are as 

shown in Appendix A for both the study areas. Since the selected initial temperature was quite low, a 
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higher probability of acceptance as 0.95 was taken. This was because a low initial temperature value with a 

low initial acceptance value resulted in the algorithm to behave as greedy algorithm wherein local minima 

may be selected (Samuel-Rosa et al., 2017).  

 

Figure 4-3: Graphical plots of objective function v. number of iterations for initial temperature (a) 3, (b) 3.5 and (c) 4 

(a) 

(b) 

(a) 

(c) 

(b) 
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4.2.4. Field visit and collection of soil samples   

The field visit was done during the first week of November 2017 for Langha – Tauli, just after the 

summer crops (Kharif crops) had been harvested. Whereas, the same was done during the first week of 

January 2018 for Barwa. Saplings had already started growing in Barwa while the samples were collected. 

Firstly, the top thin layer of soil consisting of grass or stones was cleared. Then the soil was collected in 

plastic bags using an auger till 15 cm which formed the surface sample. The soil sample for the sub – 

surface layer (15 – 30 cm) was further collected. 

Precautions were taken while collecting the soil samples. A sample point (number 66, in Langha – Tauli 

area) was falling inside the valley region. So, no soil sample collection was performed at that point due to 

inaccessibility. Also, if any sample point fell within the crop region, samples were collected from the 

vicinity so as to not disturb the crops growing in the field.    

4.3. Performance of chemical tests 

The soil samples were put to dry in open air for a week. It was further passed through a sieve of 2 mm 

aperture and the soil was stored in polypropylene (PP) containers. They were numbered according to the 

sites visited. The tests for pH and EC were conducted according to Singh et al. (n.d.) and Ghotekar 

(2016). 

4.3.1. pH 

The soil pH was determined through a soil – water suspension prepared in 1:2 ratio. The following 

procedure was followed: - 

i. 20 g of soil sample was taken in a 100 mL beaker. 

ii. 40 mL of distilled water was added to it, the solution was stirred well for about 3 minutes with a 

glass rod and kept still for half an hour. 

iii. The solution was again stirred just before immersing the electrodes of the pH meter and the 

reading was noted.  

4.3.2. Electrical Conductivity 

i. After the pH reading was taken, the solution was kept aside for another half an hour until a clear 

supernatant liquid was obtained. 

ii. The conductivity of the supernatant liquid was determined with the help of the conductivity 

meter. The unit of measurement was µS/cm. 

4.3.3. Total Organic Carbon 

i. The soil samples were made to pass through a sieve of 0.2 mm aperture. 

ii. A small quantity (~ 30 – 50 mg) of soil sample was measured in 2 different ceramic boats. 

iii. The first boat was kept in the combustion tube for TC (Total Carbon) measurement, whereas the 

second one was kept in the IC (Inorganic Carbon) combustion tube in the Solid Sample Module 

of the TOC analyzer. 

iv. The TOC value was obtained as the difference of the values of TC and IC. It was measured as 

percentage content of the soil. 

4.4. Right pixel size for interpolation 

The optimal grid resolution according to the equations mentioned in Section 2.3 for Langha – Tauli and 

Barwa region were calculated as shown in Table 4-2. The recommended compromise in grid resolutions as 
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suggested by Hengl (2006) was considered for further processing. Considering the aspects of inspection 

density, the distance between sample points and the complexity of terrain for interpolation using RBF, RK 

and interpolation using copulas, a grid resolution of 16 m for Langha –Tauli and 20 m for Barwa was 

considered. 

For determining the minimum contour interval for the optimal pixel size, the legacy National Map 

Accuracy Standard (NMAS) of 1947 of the United States Geological Survey (USGS) was considered 

(ASPRS Map Accuracy Standards Working Group, 2015). It states that the minimum contour interval is 

twice the vertical accuracy of the DEM. Since, the vertical accuracy of CartoDEM (Cartosat – 1 DEM) 

was 8 m (Muralikrishnan et al., 2011), the minimum contour interval was taken as 16 m. 

 

Table 4-2: Recommended pixel size for interpolation in Langha – Tauli. 𝐴1 = 400000 𝑚2, 𝑁1 = 96, ∑ 𝑙1 =
 5869 𝑚; 𝐴2 = 100000 𝑚2, 𝑁2 = 7, ∑ 𝑙2 = 1399 𝑚 

Aspect Recommended compromise 

Langha-Tauli 

Inspection 

density 0.0791 ∙ √
𝐴1

𝑁1
= 5.11 𝑚 

Distance 

between points 0.25(0.5) ∙ √
𝐴1

𝑁1
= 8.06 𝑚 

Complexity of 

terrain 

𝐴1

2 ∙ ∑ 𝑙1
=  34.08 𝑚 

Barwa 

Inspection 

density 0.0791 ∙ √
𝐴2

𝑁2
= 9.45 𝑚 

Distance 

between points 0.25(0.5) ∙ √
𝐴2

𝑁2
= 14.94 𝑚 

Complexity of 

terrain 

𝐴2

2 ∙ ∑ 𝑙2
=  35.74 𝑚 

4.5. Robust variogram estimation and fitting 

A variogram in geostatistical methods describes the dependence structure of the random variable. For 

normal – like distributions which have heavier tails, a robust estimation of variogram had been discussed 

by Cressie & Hawkins (1980). Robustness against outliers and non – normal values had been considered.  

They concluded that the arithmetic mean of the fourth root of (𝑍𝑡+ℎ −  𝑍𝑡)2 gave a robust estimate of 

the variogram. Here, 𝑍𝑡 is the value of the random variable 𝑍 at location 𝑡 and ℎ is the lag distance. As 

observed in Figure 4-4, the soil parameter values were found to be positively skewed and had slightly 

heavier than normal tails. Variogram parameters were estimated both by the conventional moment’s 

method as well as the Cressie’s robust variogram estimation. Also, different bin widths were experimented 

from 10 to 1000 with an increment by 5. The estimated variogram with the bin width having minimum 

SSErr was selected for further analysis. 
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For fitting the soil variogram models, the Matérn model was used (Minasny & McBratney, 2005). This was 

because the smoothness parameter in the Matérn function may be adjusted such that it represents 

different variogram models. It may be considered as a generalization of many theoretical variogram 

models. Minasny & McBratney (2005) observed in their study that the smoothness parameter within the 

range of 0.25 – 0.5 was considered to be rough (unsmooth) whereas, a value of 3 suggested a smooth 

process. 

4.6. Using Bayesian kriging to extend spatial information from one area to another 

The methodology developed by Cui et al. (1995) was followed for spatial information extension. The 

following steps were followed: - 

1. Out of the 96 observations in Langha – Tauli area, 33 pseudo-random (since the samples were 

randomly picked using an algorithm, the term pseudo-random was used) observations were 

selected. Varying widths/lag distances were experimented and the one with the least Sum of 

Square Error (SSErr) was selected for variogram estimation. After the variogram was fitted to the 

subset, the range and inverse of partial sill values were stored in a variable. 

2. 59 iterations were run for the above step.  

3. Different distributions functions were fitted to the range and inverse partial sill values. The best 

fit of the distribution function was assessed using the goodness of fit statistic – Anderson Darling 

statistic (Anderson & Darling, 1952) and the goodness of fit criteria – Akaike Information 

Criterion (AIC) (Akaike, 1974). The distribution with the least statistical value was considered to 

be the best fit. Since AIC measures the relative quality of models, Anderson Darling statistic was 

given preference. 

4. As shown in Table 4-3, the best fit for the inverse sill was found to be the chi-square distribution 

and the lognormal distribution for range values. 

 
 

 

 

Figure 4-4: Density functions of soil parameters for Langha - Tauli area 
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Table 4-3: Goodness of fit statistic/criterion values for various distributions for range and inverse sill values 

Goodness of fit 

statistic/criterion 

Log-

Normal  

Gamma  Normal  Weibull  Exponential  Chi-

Square 

Inverse sill  

Anderson Darling 

statistic 

5.332 2.789 4.424 2.812 2.754 1.803 

AIC 336.939 308.850 356.713 309.959 308.490 303.366 

Range 

Anderson Darling 

statistic 

2.722 7.917 17.879 4.139 Infinite - 

AIC 789.664 846.139 1222.81 815.391 984.164 - 

 

5. ‘krige.bayes’ function (Diggle & Ribeiro, 2002) from the ‘geoR’ package (Ribeiro & Diggle, 2016) 

of the R language (R Core Team, 2017) was used to perform Bayesian kriging. The surface level 

dataset of pH was considered for the interpolation process. Box-Cox transformation (Box & Cox, 

1964) of data was performed with varying lambda values. The lambda value with the highest log 

likelihood value was selected for data transformation. For the specifications of the model control 

parameters, a Matérn covariance model and λ = -2.5 was selected. Scaled inverse chi-square 

distribution with degree of freedom value as 58 was set as the prior for sill (𝜎2). Since, there was 

no provision for providing a log normal distribution as the prior for range (𝜙), an approximation 

to it was considered. The function allowed for describing a user defined discrete distribution. So, 

equally spaced numbers from 5 to 100 with an increment of 5 were defined as the support points 

and their corresponding probability values were stored. The log normal distribution function was 

defined with the meanlog (mean) value of 4.56 and sdlog (standard deviation) value of 1.97. The 

parameter values were estimated by maximum likelihood estimation. The probability values were 

scaled down by dividing each of them by the sum of all the probabilities such that the sum of 

probabilities was 1. This became the prior distribution for 𝜙. Default value was accepted for the 

relative nugget value (𝜏2/𝜎2).     

6. The obtained posterior distribution from Langha-Tauli was considered as the prior distribution 

for Barwa. A Matérn covariance model and λ = 4 was selected for transforming the data to 

normality in Barwa. BK was performed using the mentioned parameters. 

7. The variogram was estimated, fitted and ordinary kriging (OK) performed for Barwa using the 

already collected sample data. 𝜖, MSE and VRE were calculated as the measures of uncertainty. 

8. The parameters for prior of Barwa were adjusted in such a way that the expectation of the 

distribution of partial sill values was the same as the partial sill value obtained while performing 

OK. Similarly, the parameters of prior for range values were adjusted such that their mean 

matched the range obtained from OK. 

9. BK was again performed for Barwa with the modified prior distribution and the uncertainty 

measures were compared with the previous BK interpolation and OK.     

4.7. Interpolation and Comparison 

The following interpolation methods were chosen and the methodology adopted to obtain the final soil 

parameter surfaces. 
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4.7.1. RBF interpolation 

RBF interpolation was performed using ArcMap 10.1 (ESRI, 2012). The ‘Geostatistical Wizard’ tool was 

used to find the optimal kernel function and the parameter values. It determines the parameter value by 

finding the value with the minimum root mean square prediction error (RMSPE). Table 7 shows the 

parameters selected for RBF interpolation for different soil variables for the surface as well as subsurface 

layers for Langha - Tauli. 

Table 4-4: Kernel functions and parameter values for different soil parameters for Langha - Tauli 

 Soil variables Kernel Function Kernel Parameter 

Surface pH  Spline with Tension 0.1865 

EC Inverse Multiquadric 1.1754 ∙ 𝑒−38 

TOC Spline with Tension 0.2236 

Sub - Surface pH Spline with Tension 0.2236 

EC Inverse Multiquadric 1.1754 ∙ 𝑒−38 

TOC Inverse Multiquadric 12.3142 

  

4.7.2. Regression kriging interpolation 

Regression kriging was performed using the ‘gstat’ package (Pebesma, 2004; Gräler et al., 2016) in R 

language. The generation of the interpolated maps for the surface as well as subsurface layers was 

performed by the following steps. Here, the pixel size was considered as 16 m for Langha – Tauli as 

mentioned in Section 4.4. Variogram parameters were estimated according to the methodology mentioned 

in Section 4.5. 

1. While performing RK, covariate values were required at prediction locations. OK, being a simple 

geostatistical model as compared to others was preferred for this operation. Similar pixel size as 

the one used for RK was considered. 

2. Box-Cox transformation was performed for each of the soil variables to coerce them to 

normality. The 𝜆 (lambda) value was allowed to vary from -6 to 6 with a difference of 0.1. Log 

likelihood values were calculated in each of the iterations. The 𝜆 value with the maximum log 

likelihood value was selected for data transformation. Histograms and quantile – quantile (q-q) 

plots against the normal distribution were plotted to check the normality of the dataset. For linear 

geostatistical models such as kriging, normality becomes a requirement for the interpolation 

process to give the best results (Pebesma, 2006). Even the predictor variable was transformed to 

normality for checking the best possible linear model fits. 

3. A linear model was then fitted to the target variable with its predictor variable. Different 

combinations of the target, as well as predictor variables, were considered as either the original or 

the transformed dataset. The corresponding 𝑅2 (Coster, n.d.) and the adjusted 𝑅2 (Frost, 2013) 

values were then compared. The combination of the target and the predictor variable with the 

highest statistical values were further selected for kriging. 

4. Cross-validation of the target values was performed with the relevant combination between the 

target and predictor variables. 

5. 𝜖 (Mean error), MSE, RMSE and 𝑅2 values were calculated for each of the target variables for 

surface and sub – surface levels. These were used for comparing the better of the interpolation 

methods.     
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4.7.3.  Interpolation using copulas 

The R packages used for performing interpolation using copulas were – rgdal (Bivand et al., 2017), gstat, 

geoR, sp (Pebesma & Bivand, 2005; Bivand et al., 2008), RColorBrewer (Neuwirth, 2014), raster (Hijmans, 

2017), VineCopula (Schepsmeier et al., 2018), spcopula (Gräler, 2014b), vines (Gonzalez-Fernandez & 

Soto, 2016) and fitdistrplus (Delignette-Muller & Dutang, 2015). In addition to the aforementioned R 

packages, functions for performing interpolation with covariates were also considered (Alidoost & Stein, 

2016). The same pixel size was considered as for the cases of RK and BK. The prediction grid was then 

clipped to the study area polygon to constraint the interpolation process to the study area. A similar 

methodology was followed for the surface as well as subsurface level data. The following methodology 

was followed to implement the interpolation method without considering the covariates: 

1. Different theoretical distribution functions – lognormal, gamma, normal, weibull and exponential 

were fitted to the target variable (interpolated variable). For identifying the distribution that the 

target variable followed, Cullen and Frey graphs (Cullen & Frey, 1999) were plotted. The 

distributions lying close to the observation were checked for fitness. The goodness of fit statistics 

(Anderson Darling statistic) and criteria (AIC) were obtained for each of the aforementioned 

distributions. As mentioned in Section 4.6, Anderson Darling statistic (AD) was given preference. 

The cumulative inverse distribution functions were used to transform the data into a uniform 

distribution. The quantiles of the data were obtained using the inverse cumulative distribution 

function. The goodness of fit statistics for the variables at surface and subsurface levels are as 

shown in Table 4-5. 

 

Table 4-5: Goodness of fit statistics/criteria for the target variable 

Goodness of fit 

statistic/criteria 

Lognormal  Gamma Normal Weibull Exponential 

Surface  

pH AD 0.618 0.761 1.096 2.516 - 

AIC 100.734 102.372 106.379 122.991 - 

EC AD 0.752 0.828 2.542 0.864 - 

AIC 787.197 788.696 817.968 790.680 - 

TOC AD 0.609 0.984 2.062 2.328 - 

AIC 117.121 120.737 132.524 135.666 - 

Sub – Surface  

pH AD 1.430 1.614 2.024 3.642 - 

AIC 99.713 102.279 108.124 129.356 - 

EC AD 0.707 1.595 4.791 1.930 4.286 
AIC 687.256 697.844 744.882 704.382 716.582 

TOC AD 1.0468 1.582 2.991 3.539 18.887 

AIC 70.405 76.626 93.911 98.716 208.621 
 

2. As shown in Table 4-5, lognormal distribution was selected as the marginal distribution for all the 

soil parameters. This was in concordance with the least Anderson Darling statistic and AIC value 

among different distributions. 

3. Spatial bins were calculated for different lag distance classes with their respective correlation 

measures. Kendall’s Tau (Kendall, 1938) was used as the correlation method for this case. This 

was because of the need for correlation coefficient being independent of the marginal 
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distributions (Li, 1999). The number of bins was fixed such that the number of point pairs was 

approximately 100 or greater than that. Also, a decreasing trend in the correlation values with 

distance was preferred. Low correlation value with each lag distance was the reason behind less 

number of bins. Thus, a correlogram was generated for the soil parameters. 

4. The next step involved fitting a correlation function to the correlogram. In this case, a cut-off bin 

was set such that the correlation value showed an increase in value with an increasing distance 

class/bin. This was done because correlation value generally decreases with distance and a sudden 

increase would indicate deviation from this rule. Also, the degree of function was set as either 1 or 

2 depending on the cut-off bin. As less number of curve parameters needed to be estimated, a 

lower degree function was selected.  

5. Spatial copulas were then fitted to the correlogram at corresponding bins. For this, the log 

likelihood values for given copula families was calculated for each lag/distance class. The families 

of copulas considered for fitting were – normal copula, t – copula, frank copula, clayton copula, 

gumbel copula and an independence copula (Table 2-3, Section 2.4.3). The copula family with the 

highest log likelihood value was assigned to the corresponding bin until the cut-off bin. The 

independence copula was assigned to the remaining bins. Gumbel and clayton copulas are used 

only for bins with positive correlation values. Therefore, their values were coerced to zero if 

found to be negative. The spatial copulas were thus constructed.   

6. The non – spatial dependence structure of the random variables was considered subsequently. C – 

vine structures that considered the conditional dependence structure was created (Bedford & 

Cooke, 2002). For fitting the vine structure, a local neighbourhood of size 8 around the sample 

point was defined. The conditional copula density was calculated. Copulas in the vine structure 

were fitted to the data and the pair – copula families were selected based on AIC value. The 

parameters for vines were estimated by maximum likelihood method.  

7. Finally, the spatial copula and the vine copula structures were joined together into one superclass. 

The neighbourhood for prediction locations was defined and the interpolation process for the 

target variable was performed.  

For executing the interpolation process considering the covariates i.e. the other two soil parameters than 

the one being predicted, the following methodology was adhered to:  

1. For obtaining the covariate values at prediction locations, similar methodology as in Section 4.7.2 

was followed i.e. using OK. 

2. The rank transformation was performed for the combined dataset of the sampled and prediction 

locations. The ranks of sampled and prediction locations were then further separated to their 

respective variables.  

3. An appropriate copula family was selected for the combinations of the ranks of the target variable 

with each of the covariates. The selection criteria were AIC and the parameters were estimated 

using the maximum likelihood method. 

4. For fitting the non – spatial vine structures, the covariate ranks that were stored at the prediction 

locations were added to the existing neighbourhood. The existing neighbourhood was created 

while performing interpolation without covariates. This was defined for the case concerning the 

sample locations. The conditional density for the covariates’ copula families was calculated. These 

were then appended to the conditional density calculated for the target variable. The copulas were 

then fitted to the vine structure and the parameter values were estimated using the maximum 

likelihood method. 

5. The covariate copulas, spatial copulas and the vine copulas were then joined together into one 

superclass. A prediction neighbourhood for covariates was created and appended to the existing 
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prediction neighbourhood. Lastly, the interpolation process using covariates was executed for the 

target variable. 

4.7.4. Comparison of interpolation methods 

The measures of uncertainty as mentioned in Section 2.5.1 were calculated by performing leave one out 

cross-validation (LOOCV) of the full dataset. The obtained values were then compared and assessed 

accordingly.    
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5. RESULTS 

5.1. Optimal sampling scheme 

The ‘spsann’ package (Samuel-Rosa et al., 2017) of R language was used to perform the optimization 

process. Figure 5-1 displays the obtained optimized sampling schemes for Langha – Tauli and Barwa. In 

total, 96 sampling points were present in Langha – Tauli and 7 points in Barwa.  

5.2. Descriptive statistics 

It can be observed from Table 5-1 that the density curves of all the variables were slightly positively 

skewed with the skewness coefficients ranging from 0.9194 for surface level pH data to 1.6251 for sub – 

surface level EC data. It also indicated a deviation from normality since a skewness coefficient close to 

zero denotes a normal distribution. The data was found to be rather homogeneous with the highest 

variation in sub surface level TOC data having a mean value of 1.58 % and ranging from 0.96 % to 3.44 % 

(the range of values varying approximately from twice the standard deviation away from the mean at the 

lower limit to four times the standard deviation away from mean at the upper limit). For the other soil 

variables, the range of variation was approximately four times the standard deviation. Also, the sub surface 

level data had more variation as compared to the surface level data. 

The descriptive statistics for Barwa are as shown in Table 5-2. The density curves in Barwa were positively 

skewed for the soil variable EC and negatively skewed for pH and TOC at the surface and sub surface 

levels. The variable pH at sub surface level was found to be the most skewed with a skewness coefficient 

Figure 5-1: Optimal sampling schemes for (a) Langha - Tauli and (b) Barwa 

(a) (b) 
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of -0.9674. The least skewed or the variable closest to normality was TOC at sub surface level with a 

skewness coefficient of -0.0659. The variables were observed to be similarly varying across their respective 

mean values with respect to their standard deviations.   

 
Table 5-1: Descriptive statistics of the dataset in Langha - Tauli 

 Range of 

values 

Mean Standard 

Deviation 

Skewness 

Coefficient 

Surface 

pH 3.627 – 5.966 4.4944 0.4754 0.9194 

EC (µS/cm) 17.02 – 287.70 88.9166 64.1478 1.1498 

TOC (%) 1.151 – 3.752 2.0075 0.5601 1.1574 

Sub Surface 

pH 3.726 – 6.153 4.5406 0.4972 1.1176 

EC (µS/cm) 13.04 – 198 54.6914 42.5808 1.6251 

TOC (%) 0.956 – 3.446 1.5801 0.4902 1.5534 

 
Table 5-2: Descriptive statistics of the dataset in Barwa 

 Range of values Mean Standard 

Deviation 

Skewness 

Coefficient 

Surface 

pH 3.661 – 4.803 4.3126 0.3534 -0.4951 

EC (µS/cm) 25.40 – 67.79 39.2228 16.2949 0.5825 

TOC (%) 1.8235 – 2.6213 2.3119 0.3089 -0.3852 

Sub Surface 

pH 3.666 - 4.573 4.257 0.2932 -0.9674 

EC (µS/cm) 20.94 - 104.20 47.9728 34.0284 0.6377 

TOC (%) 1.7476 - 2.4694 2.1112 0.2747 -0.0659 

 

5.3. Using spatial information from one area to another - Bayesian kriging implementation 

The interpolated and variance maps for pH in Langha – Tauli are as shown in Figure 5-2 (a-b). The 

predicted pH values ranged from 3.74 to 5.73 whereas the variance spanned from 0 to 0.26. Higher 

prediction values have been displayed in a lighter shade of red as the pH value close to 7 is considered 

neutral and lower values indicated an acidic nature. Areas of higher acidic nature were found in pockets of 

areas. These were mainly concentrated in the North-West direction. Although the north-central part of the 

study area was observed to have higher pH values, the relatively higher variance was present at that 

location. In a broader perspective, the low variance was observed after performing BK. The sampling 

locations had a lower variance value.  

While considering the posterior distribution of Langha – Tauli as the prior distribution in Barwa, similar 

maps were generated for the second study area. These maps are as shown in Figure 5-4 (a-b). The 

predicted pH values ranged from 3.21 to 4.71. The variance was not very high in the second study area 

with values ranging from 0 to 0.12. Lower pH values and relatively higher variance was observed in the 

western part of Barwa. The maps, after updating the prior are presented in Figure 5-3 (a-b). The range of 

predicted values reduced after updating the prior. The pH value varied from 4.22 to 4.32 with a relatively 

higher upper variance value of 0.16 than the previous case. The lower variance value was 0.14.  
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The uncertainty measurements as shown in Section 2.5.1 for Langha – Tauli and Barwa using OK and BK 

are as provided in Table 5-3. The 𝜖 and MSE values were lesser in case of interpolation by OK as 

compared to BK. The 𝜎𝑅𝐸
2  value was also much closer to 1 for OK . OK initially performed better than 

BK, with the mean error of 0.0096, the mean squared error of 0.1519 and the residual variance of 1.4076 

against the respective values of 0.4078, 0.3064 and 10.4199 using BK for Barwa. The degree of 

freedom (𝑑𝑓), after updating the chi-square distribution was 1 for the partial sill values. Whereas, the 

parameter values were 0.007 as the mean and 0.016 as the standard deviation of the lognormal 

distribution for range. The mean error 𝜖, MSE and 𝜎𝑅𝐸
2  with the updated priors for BK were better than 

OK.    

 

Table 5-3: Values for mean error 𝜖, the mean squared error MSE and the residual variance 𝜎𝑅𝐸
2  with ordinary and 

Bayesian kriging for different parameter values. Here L(a,b) is the lognormal distribution with parameter a as 
meanlog value and b as the standard deviation of log value. Area 1 = Langha-Tauli, Area 2 = Barwa 

Method of interpolation 𝝈−𝟐 𝝓 𝝐 MSE 𝝈𝑹𝑬
𝟐  

Ordinary (Area 1) 
6.58 220 0.0019 0.2035 1.1641 

Bayesian (Area 1) 𝜒58
2  L(4.56,1.97) 0.0336 0.2045 1.9860 

Ordinary (Area 2) 0.103 11.3 0.0096 0.1519 1.4076 

Bayesian (Area 2) 
𝜒153

2  L(-6.46,4.24) 
0.4078 

 

0.3064 

 

10.4199 

 
Bayesian (Area 2, after updating prior) 

𝜒1
2 L(0.007,0.016) 

0.1466 

 

0.0772 

 
0.7306 

(a) (b) 

Figure 5-2: Surface level (a) interpolation and (b) variance map, for pH in Langha-Tauli using Bayesian kriging. The 
pixel size is 16 m and the projected coordinate system is Universal Transverse Mercator (UTM) 44 N. 
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Figure 5-3: Surface level (a) interpolation and (b) variance map, for pH in Barwa using Bayesian kriging. The pixel size 
is 20 m and the projected coordinate system is Universal Transverse Mercator (UTM) 44 N. 

Figure 5-4: Surface level (a) interpolation and (b) variance map, for pH in Barwa using Bayesian kriging post updating 
the prior. The pixel size is 20 m and the projected coordinate system is Universal Transverse Mercator (UTM) 44 N. 

(a) (b) 

(b) (a) 
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5.4. Interpolation maps 

All the interpolated maps had their values displayed in shades of red with the lower value being shown by 

the lighter shade and the higher value by the darker shade. This was excluding the maps of pH where the 

lighter shade meant a higher pH value and the darker shade, lower pH value. 

5.4.1. RBF 

The interpolation maps for surface and sub-surface level for different soil parameters in Langha – Tauli 

are displayed in Figure 5-5 (a-f).  

The predicted values for pH ranged from 3.71 to 5.80 at surface level and between 3.81 and 5.87 at sub 

surface level. Lower values of pH were observed in the majority portion of the study area, particularly in 

the North – West direction of Langha – Tauli. This observation was similar for the surface as well as the 

sub surface level pH prediction map. Areas of high values were mainly observed in the north-central part 

except for a few pockets in the whole region. 

The spatial variation for EC was almost similar for the surface and the sub surface level map. The range 

was between 37.69 µS/cm and 140.73 µS/cm for surface level EC data, whereas it was between 22.28 

µS/cm and 83.58 µS/cm for sub surface level data. The change in values didn’t appear to be gradual and a 

sudden change in values was observed. Lower values in their respective ranges for surface and sub surface 

level maps were noted in the south-central part of the area. The higher values were concentrated at the 

edges, particularly in the northern and northern – central part of the map. 
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The TOC value varied from 1.24 % to 3.52 % at surface level and from 1.02 % to 3.25 % at sub surface 

level. They were higher in the south – eastern part i.e. the upslope of the study area. Small portions of high 

concentration were observed for the surface and the sub surface level.    

5.4.2. Regression kriging 

The interpolation and variance maps for surface and sub-surface level for different soil parameters in 

Langha – Tauli are as shown in Figure 5-6 (a-f) and Figure 5-7 (a-f) respectively. The spatial variation for 

all the soil variables was gradual. No sudden changes were visible in the interpolated maps. Also, the 

variance did not change much across space and when it changed, the difference was quite small. The 

higher variance value was present at the edges of the study area. 

The pH value varied from 4.06 to 4.73 for the surface and from 4.09 to 4.91 at the sub surface level. 

Lower values were present in the north – western corner of the study area for the surface as well as sub 

surface level. The variance was same across the area except at the edges of the surface level map. Although 

(d) (e) (f) 

Figure 5-5: Surface (a-c) and sub-surface (d-f) level interpolation maps for pH, EC and TOC respectively in Langha 
– Tauli using RBF as interpolator. The pixel size is 16 m and the projected coordinate system is UTM 44 N. 

(a) (b) (c) 

(f) (e) (d) 
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the value in the legend of the map states the low and high value as 1, very small variations in the value may 

be there. The variance for the map at the sub surface level was same everywhere. 

The predicted EC values varied from 48.89 µS/cm to 95.38 µS/cm and 32.36 µS/cm to 90.70 µS/cm at 

the surface and sub surface levels respectively. High EC value was present in the north – eastern part of 

the area. The variance value at the surface level ranged from 1.351 µS/cm to 1.404 µS/cm. It ranged from 

628.319 µS/cm to 770.762 µS/cm at the sub surface level. The pattern of spatial variation was quite 

dissimilar for the two strata for EC. 

The surface level TOC value had a range from 1.60 % to 2.76 %. Whereas it was from 1.15 % to 2.32 % at 

the sub surface level. Higher TOC value was observed at the upslope portion i.e. the eastern edge of the 

study area. Little difference in variance values was there. It varied from 0.146 % to 0.182 % at the surface 

and from 1.014 % to 1.017 % at the sub surface level. Higher variance value was observed at the edges. 

 

 

 

 

 

Figure 5-6: Surface (a-c) and sub-surface (d-f) level interpolation maps for pH, EC and TOC respectively in Langha 
– Tauli using RK. The pixel size is 16 m and the projected coordinate system is UTM 44 N. 

(f) (e) (d) 

(c) (b) (a) 



COMPARISON OF DETERMINISTIC AND STOCHASTIC INTERPOLATION METHODS BY ASSESSING SPATIAL VARIABILITY IN SOIL PROPERTIES IN A HILLY TERRAIN 

36 

 

 

            

            

            

            

            

            

            

            

            

            

  

Figure 5-7: Surface (a-c) and sub-surface (d-f) level variance maps for pH, EC and TOC respectively in Langha – 
Tauli using RK. The pixel size is 16 m and the projected coordinate system is UTM 44 N. 

(f) (e) (d) 

(c) (a) (b) 
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5.4.3. Interpolation using copulas 

The interpolation maps for surface and sub-surface level for different soil parameters in Langha – Tauli 

are as shown in Figure 5-8 (a-f) and Figure 5-9 (a-f) respectively. Maps, generated with copulas as 

interpolators, without using covariates are shown in Figure 5-8 whereas Figure 5-9 shows the maps when 

covariates had been used. The covariates comprised of soil parameters apart from the target variable being 

interpolated. 

For the case of interpolation using copulas without covariates as shown in Figure 5-8, the range of values 

for pH was 3.89 to 5.51 and 3.84 to 5.23 at the surface and sub surface level respectively. The spatial 

pattern at the surface and sub surface levels was slightly similar. It indicated soil area with high acidic 

nature spread across the study area in large pockets mostly concentrated on the downslope region i.e. the 

north – western direction. Most of the area at the sub surface level was found to be less acidic as 

compared to the surface level. The EC value varied from 66.26 µS/cm to 105.08 µS/cm at the surface and 

36.49 µS/cm to 70.60 µS/cm at the sub surface level. A higher EC value was observed along the northern 

border of the area at the surface level. Higher EC values for the sub surface level were found in small 

Figure 5-8: Surface (a-c) and sub-surface (d-f) level interpolation maps for pH, EC and TOC respectively in Langha – 
Tauli using copulas as interpolators. In this case, only the variable to be interpolated had been used. The pixel size is 
16 m and the projected coordinate system is UTM 44 N. 

   

(c) (a) (b) 
(a) 

(f) (e) (d) 

(c) (b) 
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portions. For the predicted TOC values, the range was from 1.32 % to 2.88 % for surface and 1.06 % to 

2.17 % at the sub surface level. The higher values were observed along the eastern edge of the map or the 

upslope part of the study area for both strata – surface and sub surface of the soil. Values were lower 

along the downslope region of the area. 

The interpolated results using copulas as interpolators with covariates are as shown in Figure 5-9. The 

value ranged between 3.88 and 5.52 for the surface, and between 3.84 and 5.34 for sub surface level. 

Lower values were observed in the north – western direction or the downslope part of the area. Also, 

higher values were observed along a small strip on the northern border. The observation was the same for 

both surface and sub surface level values. The higher values were present in small patches for the surface 

level values whereas it was a similar case for low values at the sub surface level. For the predicted EC 

values, the lower and upper limit was 52.91 µS/cm and 191.05 µS/cm for the surface, and 26.43 µS/cm 

and 107.44 µS/cm for sub surface level respectively. Higher values were observed in the north – western 

direction for both the strata. Apart from them, the predicted values were higher on the northern border 

(downward slope) of the region for the surface level. A patch of the area had high value in case of sub 

surface level. The TOC values varied between 1.16 % and 2.75 %, whereas they were between 0.96 % and 

2.46 % for the surface and sub surface level. Higher values were particularly observed in the north – 

western edge and the eastern edge of the study area at the surface and sub surface level. Additionally, 

values were found to be higher on the eastern edge of the study area for the surface level data.   

(a) (b) (c) 

(d) (f) (e) 

Figure 5-9: Surface (a-c) and sub-surface (d-f) level interpolation maps for pH, EC and TOC respectively in Langha – 
Tauli using copulas as interpolators. In this case, the covariates had also been used for interpolation. The pixel size is 
16 m and the projected coordinate system is UTM 44 N. 
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5.5. Measures of uncertainty  

The measures of uncertainties for different interpolation methods that had been used are mentioned in 

Table 5-4 and Table 5-5.  

For the surface level statistics for pH, the absolute value of 𝜖 ranged from 5.78 × 10−6 in case of RK to 

0.0672 for interpolation using copulas with covariates. The MSE and RMSE values for the pH values were 

3.15 × 10−6 and 0.0018 respectively for interpolation by RK at the lower range to 0.2344 and 0.4841 

respectively at the upper range limit for interpolation using copulas with covariates. Also, the 𝑅2 value was 

found to be the least for the case of interpolation with covariates at 0.0025 and the highest for RK having 

a value of 0.4074. This implied that RK was able to explain 40.74 % of the variance when interpolation of 

pH data was performed. Similarly, for EC, the 𝜖 value varied from a minimum of 0.0001 using RK to a 

maximum value of 8.9865 using copulas as interpolators with covariates. The lower MSE and RMSE 

values were 0.3328 and 0.5768 respectively. These values were achieved when RK was used. Respectively, 

the highest MSE and RMSE values were 4568.373 and 67.5897. These were obtained while performing 

interpolation using copulas without covariates. The highest 𝑅2 value of 0.3533 was achieved through RK 

whereas the lowest value of 0.0008 was obtained by using copulas with covariates as an interpolator. The 

least 𝜖 value for TOC was 0.0031 obtained using RK, whereas it was the highest in case of interpolation 

through copulas with covariates having a value of 0.1111. The MSE and RMSE values were least when 

RK method was used having a value of 0.1594 and 0.3992 respectively. The highest values for MSE and 

RMSE were 0.3250 and 0.5701 respectively, when copulas with covariates as an interpolator was used. RK 

was able to explain the maximum variance with the 𝑅2 value of 0.4864 whereas the worst performance 

was for the case of copulas with covariates as interpolators with the 𝑅2 value of 0.0927. 

For the predicted values at sub surface level, RK performed the best among all the interpolators for pH 

with the least absolute 𝜖, MSE and RMSE values of 1.42 × 10−7, 4.22 × 10−7 and 0.0006 respectively. 

The 𝑅2 value was the highest with a value of 0.3068. The worst performer as an interpolator was when it 

was done using copulas with covariates in terms of MSE, RMSE and 𝑅2. The corresponding MSE and 

RMSE values were 0.3070 and 0.5541. The 𝑅2 value was 0.0002. The highest 𝜖 value was observed in the 

case of copulas without covariates as interpolator with an absolute value of 0.0051. In case of EC 

predictions, interpolation was the best when RK was used with the corresponding 𝜖, MSE, RMSE and 𝑅2 

values of 0.0368, 805.1854, 28.3758 and 0.5512. Interpolation using copulas with covariates performed the 

worst with the 𝜖 value of 6.1647, MSE value of 2130.901 and RMSE value of 46.1616. The least 𝑅2 value 

of 0.0058 was observed for the case of RBF as an interpolator. For the predicted TOC values, the best 

among all the interpolation methods was RK with 𝜖, MSE, RMSE and 𝑅2 values of 0.0004, 0.0138, 0.1174 

and 0.5329 respectively. The worst performer in terms of interpolation was when copulas with covariates 

were used. The 𝜖 value was 0.0933, MSE and RMSE values were 0.3064 and 0.5535 respectively and the 

𝑅2 value was 0.0437.   
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Table 5-4: The mean error 𝜖, the mean squared error MSE, the root mean squared error RMSE and 𝑅2 value of soil 
parameters for various interpolation methods for surface level  

Interpolation 

Methods 

Soil 

parameter 

ϵ MSE RMSE 𝑹𝟐 

RBF 

pH -0.0048 0.1879 0.4334 0.1616 

EC -3.7950 4022.9152 63.4264 0.0252 

TOC -0.0142 0.2692 0.5188 0.1389 

RK 

pH -5.7822e-06 3.1506e-06 0.0018 0.4074 

EC 0.0001 0.3328 0.5768 0.3533 

TOC 0.0031 0.1594 0.3992 0.4864 

Copulas 

without 

covariates 

pH 0.0187 0.2144 0.4630 0.0503 

EC -0.1856 4568.373 67.5897 0.0103 

TOC 0.0488 0.2759 0.5252 0.1197 

with 

covariates 

pH 0.0672 0.2344 0.4841 0.0025 

EC 8.9865 4360.239 66.0321 0.0008 

TOC 0.1111 0.3250 0.5701 0.0927 

 

Table 5-5: The mean error ϵ, the mean squared error MSE, the root mean squared error RMSE and 𝑅2 value of soil 
parameters for various interpolation methods for sub-surface level 

Interpolation 

Methods 

Soil 

parameter 

ϵ MSE RMSE 𝑹𝟐 

RBF 

pH -0.0042 0.2115 0.4598 0.1398 

EC -3.8389 1849.4841 43.0056 0.0058 

TOC -0.0366 0.2216 0.4707 0.0792 

RK 

pH -1.4234e-07 4.2187e-07 0.0006 0.3068 

EC 0.0368 805.1854 28.3758 0.5512 

TOC 0.0004 0.0138 0.1174 0.5329 

Copulas 

without 

covariates 

pH -0.0051 0.2428 0.4927 0.0196 

EC 1.2174 1877.853 43.3342 0.0118 

TOC 0.0436 0.2204 0.4694 0.0822 

with 

covariates 

pH 0.0006 0.3070 0.5541 0.0002 

EC 6.1647 2130.901 46.1616 0.0471 

TOC 0.0933 0.3064 0.5535 0.0437 
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6. DISCUSSION 

6.1. Optimal sampling scheme 

As observed in Figure 5-1 (a), the sampling scheme closely matched with that of an equilateral grid for 

Langha-Tauli with an observed mean distance between points of 65.32 m. The sampling scheme had been 

obtained such that the minimum variance value was present in the study area. Also, the slope of the study 

area was gentle and almost flat at some locations with sharp falls. Although, the slope data had been 

considered while generating the optimized scheme, equally distributed points in the form of the equilateral 

grid were derived. This was in conformance with the sampling grid suggested by Yfantis et al. (1987). Due 

to unavailability of prior information in Barwa, the values of the variogram parameters were taken post 

analysis of soil samples in Langha-Tauli. Since sufficient observation locations were not present for Barwa, 

the obtained sampling scheme was sub-optimal and was just an instance of the many possible sampling 

scheme sets.  

6.2. Descriptive statistics and soil health 

Soil variables in the actual world do not ideally follow normality and are usually positively skewed. It had 

been stated by Becker et al. (1992), which was confirmed by the findings presented in Table 5-1 for 

Langha-Tauli. Variables such as pH and TOC were noted to be negatively skewed for Barwa as stated in 

Table 5-2. This may have been due to the smaller number of samples that had been collected in the area. 

Soils in hills were usually observed to be acidic (Reddy, 2011). Nearly 7 % of the total geographical area in 

the state of Uttarakhand was acidic and no area was observed with salinity as shown in Table 3 of Chapter 

2 in Katyal et al. (2016). The soil samples were found to be acidic and without any salinity in nature for 

both the study areas of Langha-Tauli and Barwa. The mean TOC values for surface and sub surface level 

for Langha-Tauli and Barwa were well above the critical values of 1.5 – 2 % as prescribed by Lal (2016). 

The TOC content needed to be above the critical limit for the proper functioning of the soil. 

Approximately 26 % of the land in Uttarakhand was observed to be degraded (Katyal et al., 2016). This 

was attributed to acidic and saline soils. In addition to that, low TOC values meant low water retention 

and use efficiency, resistance to climate change and heat wave, and low nutrient retention (Lal, 2016). 

Therefore, in terms of soil health, the soil was found to be non-degraded in terms of salinity and TOC 

values. It was considered degraded in terms of pH, as the soil was found to be highly acidic. The 

prevailing soil conditions and properties fall under the category of soil health. Continuous monitoring is 

required for assessing soil health. A Soil Health Card (SHC) scheme had been initiated by the Government 

of India, under which the analysed parameters considered in the research work as the physical/basic 

attributes were used for establishing soil health, apart from the biological and chemical ones (National 

portal of India, 2017).  

6.3. Using spatial information from one area to another – a Bayesian kriging implementation 

After comparing the results of OK and BK as stated in Table 5-3, OK outperformed BK. This 

observation was in agreement with the findings by Cui et al. (1995). Webster & Oliver (1992) had 

suggested that at least 100 data points needed to be present for a soil survey. Since the number of 

observations was adequate to properly estimate the variogram, the performance of OK was better in 

Langha-Tauli. 
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One particular point to note in the cross-validation technique of BK results was that the predictions were 

performed for all the locations in Barwa. Only, the observation for which the uncertainty measurement 

was to be performed was excluded from BK process in the Bayesian kriging function of R language. This 

was done because of the presence of less number of observations. Cui et al. (1995) had assumed a chi-

square distribution for the inverse of partial sill values and exponential distribution for the range 

parameter as prior for BK. Although a similar distribution function, i.e. chi-square was obtained for the 

inverse of partial sill values, lognormal distribution was fitted to the various obtained range values. This 

was based on the goodness of fit statistics and criteria. When the posterior distribution of Langha-Tauli 

was considered as the prior distribution for Barwa, the obtained results from OK were found to be better 

than BK. After the priors for inverse partial sill and range values were updated, BK was found to perform 

much better than the case without updating priors. Also, it performed better in terms of MSE, but slightly 

worse 𝜎𝑅𝐸
2  values were observed than OK. Thus, an association between two similar topographic features 

was tried to be established. Due to the constraints in research work, more observations in Barwa could 

not be collected.  

6.4. Interpolation  

Interpolation by all the stated methods – RBF, RK and copula-based were performed only for the first 

study area i.e. Langha-Tauli. It wasn’t implemented in the second study area (Barwa) because a low 

number of observations were present. Although interpolation by RBF doesn’t have any constraint for the 

minimum number of observations, RK requires a variogram to be estimated. Although depending on the 

spatial properties of the variable, a minimum of 30 observations are generally required for satisfactorily 

determining a variogram (Warrick & Myers, 1987). Only 7 observations were present for Barwa. It was a 

similar case with copulas wherein correlogram instead of variogram needs to be estimated. A sufficient 

number of point pairs of observations needs to be present in bins or lag distance classes for a correlogram 

to be reasonably estimated. 

Interpolation using RBF produced decent results as compared to other geostatistical techniques since the 

data was found to be largely homogeneous as stated in Section 5.2. 

Also, RK outperformed RBF and copula-based interpolators as seen from the interpolated maps in Figure 

5-6 (a-f) and the uncertainty measurements in Table 5-4 and Table 5-5 for surface and sub surface levels 

respectively. Kriging the residuals of the Box-Cox transformed variables helped in producing interpolated 

surfaces with low uncertainty measurements. The value of covariates at unvisited locations was obtained 

through OK. The method was used because it considered the spatial variation in data. Additionally, less 

number of parameters needed to be estimated for performing the interpolation process.  

Although it had been established that copula-based interpolators performed better than other geostatistical 

techniques (Marchant et al., 2011; Bárdossy & Li, 2008), they did not perform better than RK and RBF for 

the research. The reason for this may be attributed to the data not being highly skewed or deviating much 

from normality. 

Amongst all the interpolation methods, RK was able to efficiently model the soil variables. This may be 

credited to the variables being accurately transformed to normality.  
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7. CONCLUSION AND RECOMMENDATIONS 

The main objective of the research work was to compare various interpolation methods by studying the 

variation in soil properties in a hilly terrain. For this, the study spanned various stages of research – from 

designing optimal sampling schemes and doing field visits to collecting samples and conducting 

experiments to generating continuous mathematical surfaces using interpolation methods. 

The sampling scheme was based on the model-based method wherein minimization of error variance as 

an objective function had been used. Regression kriging was used as a method to generate the variance 

surface, which was supposed to be minimized. The elevation data from CartoDEM was used to generate 

the slope surface, which in turn was used as a covariate in the kriging process. Spatial simulated annealing 

was used as an optimizer for getting the combination of locations with the minimum variance across the 

whole space. This process was repeated for different starting initial temperature values and the number of 

iterations. Almost 100 locations (97 locations in total, 1 excluded due to non - accessibility) were 

considered for this procedure in Langha-Tauli. The soil samples were then collected post harvesting of the 

summer crops. While collecting soil samples, a location had to be excluded after the sampling scheme had 

been generated because of inaccessibility issues. This would have affected the optimal behaviour of the 

sampling scheme. The soil samples were then tested in the Central Analytical Laboratory of the Indian 

Institute of Remote Sensing. The variogram parameters of the obtained surface level pH data were 

considered for getting the optimal sampling scheme in case of Barwa. Soil samples in Barwa were 

collected when saplings had started growing, so the obtained analysis results may have some bias. This was 

because the soil samples were collected in such a way that the crop wasn’t disturbed.  

For assessing whether spatial information from one area can be utilized to another without actually 

conducting any previous soil sampling, Bayesian kriging was used as an interpolation method. The only 

previous knowledge of the second study area was its topography. This formed a limitation for proper 

analysis. Accurate delineation of the area may have been performed if the soil data regarding any possible 

previous major anthropogenic activity was available. Distribution functions were defined to model 

uncertainties in variogram parameters. These were derived from fixed width random subsets of the 

observations. The inverse of the partial sill and the range values were then checked for fitness distribution 

functions. Inverse chi-square and lognormal distribution gave the best fit for the inverse of partial sill and 

the range values respectively. The posterior distribution information from Langha-Tauli after performing 

Bayesian kriging was used as the prior distribution in Barwa. This prior was further updated such that its 

mean value matched with that of the variogram parameters and the Bayesian kriging was performed again 

using the new priors. The uncertainty measurements denoting the quality of interpolation showed an 

improvement for the case when updating the prior had been done. This was in comparison with the 

ordinary kriging results and when the priors for Barwa were used as the posteriors from Langha-Tauli. 

More observations from Barwa could be collected to test the better of the interpolation methods. Since 

more samples could not be collected, the research was limited to a single iteration of improvement of 

priors.      

A deterministic method – interpolation using radial basis functions and 2 geostatistical methods – 

regression kriging and interpolation using copulas were used to assess the soil variability in the study areas. 

For interpolation by radial basis functions, the root mean squared prediction error value was taken as the 

criterion for choosing the kernel function. The soil variables were Box-Cox transformed to normality. 
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Various combinations of the soil variable and its transformation, to be predicted, and the covariates 

experimented. The combination which gave the least uncertainty measurements was chosen for the kriging 

process. Copula-based interpolation was performed with and without covariates and the uncertainty 

measures noted. The variables for which the prediction was not being performed were chosen as 

covariates. Gaussian, as well as non-Gaussian copulas, were utilized for modelling the dependency 

structure. Contrary to the established proofs in literature, copulas did not perform well for the concerned 

study area. Regression kriging performed the best among all the interpolators at the surface level and sub-

surface levels. Copulas are not a universal solution to the problem of deriving the unknown values. In the 

past, the formula that led to the economic crisis of 2008 has been attributed to the Gaussian copula 

function (Salmon, 2009).  

Similar methodology may be followed for any other study area because of the generic attribute of the 

research. Only the results may vary, as the interpolation process is data dependent.     

Recommendations 

In addition to using the DEM data, remote sensing data may be utilized to get a better understanding of 

the soil properties. In addition to that, proper pre-survey of the study area is recommended so that 

inaccessibility issues such as those observed in the research may be avoided. 

Since the study involved multiple dependent methods, an error propagation study may also be conducted 

to quantify their impact. One such case is in the case of regression kriging, where ordinary kriging had 

been used to interpolate the covariate values at the prediction locations. Uncertainty may propagate with 

each successive method used.   

A Soil Health Card scheme had been launched by the Government of India for helping the farmers know 

their soils better and work on improving soil health. The research work may be utilized to efficiently and 

economically design a sampling scheme. Based on the optimal sampling scheme, the soil samples may be 

collected, tested and a continuous surface is generated. Based on this, the fertilizer recommendations and 

soil amendments required for the land may be suggested. 
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APPENDIX A 

Table A- 1: Table showing objective function value with the number of iterations for different initial temperature 
values for Langha – Tauli 

Number of 

iterations 

Objective function value 

for initial temperature of 

3 

Objective function value 

for initial temperature of 

3.5 

Objective function value 

for initial temperature of 

4 

10 0.08603 0.08771 0.08771 
23 0.08669 0.08645 0.08864 
50 0.08555 0.08537 0.08568 
111 0.08676 0.08871 0.08670 
247 0.06915 0.07016 0.07069 
550 0.06756 0.06791 0.06475 
1224 0.06918 0.06922 0.06844 
2728 0.06741 0.06939 0.06831 
6078 0.07023 0.07022 0.06879 
13542 0.06952 0.06823 0.06883 
30173 0.06831 0.06941 0.06926 
67233 0.06942 0.06920 0.06755 
149810 0.06839 0.06798 0.06917 
333811 0.06954 0.06974 0.06741 
743810 0.06941 0.06888 0.06942 
1657384 0.06960 0.06877 0.06867 
3693046 0.06836 0.06934 0.06891 
8228983 0.06857 0.06911 0.06966 
18336131 0.06926 0.06864 0.06952 
40857260 0.06997 0.07000 0.06843 
91039690 0.06802 0.06823 0.06816 
202858079 0.06831 0.06824 0.06955 
452016040 0.06762 0.06924 0.06949 
1007199229 0.06851 0.06851 0.06832 

 
Table A- 2: Table showing objective function value with the number of iterations for different initial temperature 
values for Barwa 

Number of 

iterations 

Objective function value 

for initial temperature of 

3 

Objective function value 

for initial temperature of 

3.5 

Objective function value 

for initial temperature of 

4 

10 0.28928 0.24651 0.28824 

16 0.24252 0.29101 0.27742 

24 0.56566 0.27491 0.27972 

36 0.31717 0.28608 0.29569 

55 0.27776 0.29782 0.29975 

83 0.29007 0.30331 0.28241 

127 0.27530 0.23163 0.28689 

194 0.25460 0.25959 0.25948 

295 0.25606 0.25139 0.26045 

450 0.25486 0.25765 0.25466 
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687 0.26321 0.25368 0.25646 

1049 0.25918 0.25754 0.25162 

1600 0.30240 0.25570 0.25451 

2443 0.25743 0.25883 0.25672 

3728 0.25730 0.25470 0.25434 

5690 0.26044 0.26284 0.46900 

8686 0.26091 0.25562 0.25683 

13258 0.26325 0.25831 0.26073 

20236 0.23821 0.26008 0.25984 

30889 0.24497 0.25905 0.25627 

47149 0.25753 0.23718 0.26076 

71969 0.25643 0.25636 0.25355 

109855 0.25996 0.26160 0.24975 

167684 0.23784 0.67197 0.23253 

255955 0.26192 0.25805 0.61102 

390694 0.25595 0.25679 0.26349 

596363 0.25708 0.25467 0.25619 

910299 0.25793 0.25406 0.25768 

1389496 0.26119 0.25232 0.25403 

2120951 0.25812 0.25850 0.25773 

3237458 0.68943 0.26170 0.23949 

4941714 0.26020 0.23714 0.25509 

7543121 0.25320 0.25019 0.25478 

11513954 0.25317 0.25997 0.67089 

17575107 0.25619 0.25880 0.25749 

26826958 0.25494 0.25630 0.51409 

40949151 0.25941 0.25642 0.25276 

62505520 0.25768 0.61003 0.26011 

95409548 0.25314 0.26491 0.26288 

145634848 0.53655 0.25729 0.25261 

222299649 0.26012 0.25925 0.25585 

339322178 0.51571 0.26056 0.26164 

517947468 0.25761 0.25930 0.25609 

790604322 0.25528 0.26041 0.26248 

1206792641 0.26346 0.26495 0.25080 

1842069970 0.25486 0.25373 0.25848 

 

 


