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ABSTRACT 

Accurate information on agricultural field boundaries is important for precision agriculture and can serve as 

a basis for establishing cadastral information in countries which do not yet have. Though previous works 

have shown promising results, automatic extraction of agricultural field boundaries remains a nontrivial task, 

especially in the case of smallholder farms in Africa. The field boundaries are often irregularly shaped and 

have a poor spectral contrast between internal and external parts of the fields. The internal parts of most 

smallholder farms are heterogeneous with mixed crops and trees.  In this research, we investigate a deep 

feature learning approach based on Fully Convolutional Networks(FCNs) for the detection of agricultural 

field boundaries in Kofa region, located in Kano state in the northern parts of Nigeria. FCNs are powerful 

visual models that learn a hierarchy of spatial-contextual features and have proven to be very successful in 

characterising complex patterns. To this aim, we optimised an FCN architecture and trained it to detect 

visible boundaries from VHR satellite imagery. The obtained results were compared against state-of-the-art 

methods which included the globalized probability of a boundary (gPb) detection, multi-resolution 

segmentation in eCognition and Canny detector. Experimental results show that the proposed method 

outperforms the other contenders in all the performance metrics considered apart from computational time 

and complexity. We conclude that our FCNs were able to effectively learn spatial-contextual features for 

accurate discrimination of the boundary class from a very complex dataset.  

 

 

 

 

 

Keywords: convolutional networks, agricultural boundary, deep learning, very high resolution satellite 

imagery.   
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1. INTRODUCTION 

1.1. Motivation and problem statement 

 

Alleviating food insecurity is a top global agenda which can be achieved by improving the productivity of 

smallholder farming (FAO, 2016). Smallholding is characterised by farmers owning small pieces of land on 

which subsistence crops and sometimes a few varieties of cash crops are grown relying almost entirely on 

family labour (Lowder et al., 2016). Studies have shown that proper boundary information records can lead 

to improved food security (Rockson et al., 2013). 

 

Delineation of agricultural farms has been addressed using different approaches for a long time. Land 

surveyors have been measuring boundaries and recording the information on cadastral maps for many 

centuries (Swetz, 2008). Modern surveying involves carrying out field measurements using theodolites, total 

stations and RTK GPS receivers followed by calculations to determine the precise location of boundaries. 

This process is however time-consuming, and the costs involved are quite high especially if the area to be 

surveyed is large. Manual digitization is another popular approach for boundary information acquisition 

from aerial photographs and satellite images. Although the approach is faster than direct field surveys, it is 

still time-consuming and dependent on the operator's subjectivity.  

 

Availability of very high resolution (VHR) satellite images and UAV images have provided a cheaper and 

faster alternative for carrying out surveys for large areas. Satellite images have also presented other 

opportunities like crop monitoring. Utilization of VHR remote sensing data is however still low in Africa, 

especially in smallholding applications. Apart from the highly heterogeneous fields and landscape which 

make it difficult to extract information from the VHR remotely sensed images; the cost of acquisition of 

these images is quite high for the farmers. To overcome these challenges, there is a need for accurate, low-

cost innovative methods for information extraction to help farmers in these regions. To this effect, there 

has been research on initiatives in the last couple of years focusing on the exploitation of VHR remote 

sensing technology in improving crop production and consequently improving the livelihoods of farmers. 

One of those initiatives is “Spurring a Transformation for Agriculture through Remote Sensing”, the STARS 

project (de By & R.A., 2015).  

 

Earlier automatic and semi-automatic techniques for boundary delineation were based on edge detection 

techniques (Mathias & Lemmens, 1996).  Edge detectors (e.g., Roberts detector, Sobel edge detector, Zero 

crossing, Laplacian of Gaussian, Canny and Gaussian) extract edges by calculating gradients of local 

brightness (Bowyer et al., 1999). The Canny detector outperforms the rest with regards to simplicity, 

accuracy and its capability to reduce noise (Canny, 1986). A more recent agricultural boundary detection 

technique used by Alemu (2016) is the line segment detection algorithm (LSD), aimed at detecting straight 

contours in images (Grompone von Gioi et al., 2012). These methods perform reasonably well in regularly 

shaped agricultural fields but fail when presented with heterogeneous datasets as is the case of most farms 

in Sub-Saharan Africa. Another shortcoming is their inability to detect boundaries contextually, leading to 

many false detections.  

    

Researchers have also proposed approaches based on image segmentation. Segmentation involves 

partitioning an image into segments which share similar attributes like texture, intensity, etc. with the aim of 

extracting the object of interest in the background. Mueller et al. (2004) proposed an object-oriented 
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segmentation approach for extracting large, man-made objects, especially agricultural fields, from high 

resolution satellite imagery. This approach involved integrating region- and edge-based segmentation 

techniques to extract straight edges. Image segmentation algorithms, however, are generally sensitive to 

intra-class variability which leads to over-segmentation. Smallholder farms mostly contain multiple crop 

types, therefore, have a high within-field variability. Secondly, image segmentation methods are highly 

dependent on a correct parameter selection, meaning they require a prior understanding of the scene or one 

may perform parameter tuning through trial and error (García-Pedrero et al., 2017). 

 

Machine learning approaches have in recent years gained popularity in detection, segmentation and 

recognition of objects and regions in images (LeCun et al., 2015). These approaches include the conventional 

hand engineered feature extracting approaches which consume a considerable amount of time and the 

general-purpose learning frameworks like deep learning approaches. Deep learning approaches learn a 

hierarchy of features by automatically constructing high-level features from low-level ones (Nogueira et al., 

2015).  

 

In deep learning approaches like Convolutional Neural Networks(CNN), agricultural boundary detection 

can be defined as a classification problem which requires the definition of classes with a higher level of 

semantic abstraction. A boundary class takes different orientations, scale and spectral properties (bare soil, 

stones, trees, vegetation). This is a complex task which cannot rely on spectral signature alone but needs 

better features to discriminate classes (Scott et al., 2017). In deep learning, feature learning refers to a set of 

techniques that enable a framework to automatically find representations required for feature detection or 

classification from input data (Bengio et al., 2013).  

 

A feature can be loosely defined as an “interesting” part or property of an image like edges, corners or blobs. 

Features can be local or global. Global features can be interpreted as a particular property of an image 

involving all pixels e.g. colour histograms, texture, edges etc. Local features on the other hand are patterns 

or a distinct structure associated with an image patch that differs from its surroundings by texture, colour 

or intensity (Salahat & Qasaimeh, 2017). The term “feature” in the context of agricultural boundary 

detection has different meanings in literature. This term has been used by some authors to mean physical 

objects which can be identified in an image like fences, walls, ditches etc. In this thesis, the term feature 

refers to both the local and global features which are automatically learnt by CNNs to enable them perform 

classification.    

 

 

1.2. Research Identification 

 

This research will focus on the design, analysis and evaluation of a per-pixel feature learning approach, based 

on Fully Convolutional Networks (FCNs), that can automatically detect and extract visible boundaries of 

agricultural fields in a Sub-Saharan Africa set-up. Most fields in Sub-Saharan Africa are small, irregular and 

with mixed crops hence high within field variability is inherent. The effect of varying the model’s 

hyperparameters to the classification results will be examined in order to come up with an optimal FCN. 
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1.3. Research objectives 

 

The main objective is to formulate a methodology for detection of visible agricultural field boundaries from 

VHR satellite images using Fully Convolutional Networks (FCN).   

 

The main objective is achieved through the following specific objectives: 

 

1. To review and evaluate state-of-the-art CNN/FCN architectures  

2. To develop a methodology for detection of visible agricultural field boundaries from VHR images. 

3. To compare the performance of the method against other state-of-the-art boundary detection 

methods. 

 

1.3.1. Research questions 

 

The following questions will be answered for the specific-objectives above. 

 

Specific-objective 1:  

 

1. Which CNN/FCN architectures have been proposed in literature and how do they work?  

2. Which CNN/FCN architecture is appropriate for detection and extraction of agricultural field 

boundaries? 

 

Specific-objective 2: 

 

1. How should the classes be defined? 

2. What are the optimal dimensions of the network and learning hyperparameters? 

3. Which is the most suitable method for accuracy assessment of classification results? 

 

Specific-objective 3: 

 

1. Which alternative state-of-the-art approaches exist?   

2. Which approach performs better and in which aspects of the performance measures? 

 

1.4. Innovation aimed at 

 

CNNs were introduced by LeCun and colleagues who applied back-propagation in recognizing handwritten 

zip code digits provided by the U.S postal service (LeCun et al., 1998). Convolutional Neural Networks 

(CNNs) is a class of deep learning architectures inspired by the structure of mammals’ visual cortexes. Deep 

CNNs became famous thanks to the work of  Krizhevsky et al. (2012) in the LSVRC-2010 image 

classification contest. Although more popular in computer vision and pattern recognition, researchers 

involved in the analysis of remotely sensed images have applied CNNs with considerable successes (Danilla, 

2017;  Mboga et al., 2017; Alshehhi et al., 2017). There are no publications found in literature dealing with 

agricultural boundary detection using FCNs. This research is motivated by the recent successes of CNNs in 

solving problems where individual classes take different scales, orientations, texture and spectral properties.  
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2. LITERATURE REVIEW 

This chapter explores the theoretical background for this research. Section 2.1 presents the definitions of a 

boundary in different domains. A brief review of existing edge detectors, state-of-the-art contour detectors 

and segmentation algorithms is presented. Existing CNN and FCN architectures are also discussed in this 

chapter. Finally, other relevant studies in remote sensing domain are highlighted. 

2.1. Boundary concepts 

 

In a legal perspective, a boundary can be defined as "the utmost limit of lands, whereby the same are known 

and ascertained; the imaginary line which divides two pieces of land from one another (Duhaime, 2017). 

"The line is generally, but not necessarily, marked or indicated on the surface of the land by a wall, fence, 

ditch or another object". The Oxford English Dictionary (2017) defines a boundary as a line which marks 

the limits of an area; a dividing line.  A more precise definition is given by Crommelinck et al. (2016) as a 

“dividing entity with a spatial reference that separates adjacent land plots”. In this research, we disregard 

imaginary boundaries and focus on visible boundaries which can be detected from VHR satellite imagery.  

 

In the land administration domain, boundaries are divided into two broad categories, fixed boundaries and 

general boundaries (Dale & McLaughlin, 1988).  Fixed boundaries have their spatial positions determined 

and recorded with a higher level of accuracy. Direct surveying techniques are used to determine fixed 

boundaries. Direct surveys involve ground measurements using theodolites, total stations and global 

navigation satellite system (GNSS). The second category, general boundaries, have their precise spatial 

position left undetermined. Indirect techniques are applied in the determination of general boundaries which 

are visible from remotely sensed data such as aerial or satellite imagery. 

 

Common boundaries between agricultural fields include fences, roads, hedges, footpaths, open areas, certain 

crop types, rivers, canals and water drainages  (Bennett et al., 2010). Information on these boundaries can 

play an important role in various agricultural applications such as precision farming and yield forecasting 

(Jain et al., 2013). 

2.2. Methods of boundary detection 

2.2.1. Edge and Contour detection 

 

An edge can be defined as a discontinuity in grey-level, colour, texture, etc. in an image (Sonka et al., 1999). 

Detecting contours refers to finding boundaries between objects or segments in images. Edge detection 

approaches can be classified into two; search-based and zero-crossing based edge detectors. Search based 

methods are also known as first-order derivative-based edge detection methods. They detect edges by 

measuring the intensity gradient at a point in the image in two steps; firstly by the gradient magnitude, which 

gives the strength of the edge as the amount of the difference between pixels in the neighbourhood and 

secondly by gradient orientation which is the direction of the greatest change. The Canny (1986) is one of 

the most outstanding search-based edge detectors because of its noise reduction capabilities. Canny consists 

of a Gaussian blur which removes small texture artefacts, a non-maximum suppression which makes edges 

more precise by thinning them, and a double threshold hysteresis that categorizes edges as weak or strong. 

Weak edges are eliminated if they do not meet the set threshold. A more detailed elaboration of the Canny 

detector is done in Section 4.3.2. Other first-order edge detectors include the Roberts (1965), Sobel and 

Prewitt (Parker, 2010).  
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Zero-crossing based, also known as the second order derivative-based edge detectors, search for zero 

crossings in the second derivative of the image to find edges. Zero crossings have the advantage of providing 

closed contours. They are, however, extremely sensitive to noise.  The Laplacian of Gaussian stands out in 

this category of edge detectors. It applies a Gaussian smoothing filter followed by a derivative operation 

(Juneja & Sandhu, 2009). 

 

While previous contour detection approaches quantify the presence of an edge at a given image location 

through local measurements alone, more recent methods take into account colour, brightness and texture 

information. These multiple cues were taken into consideration by Maire et al. (2008) at a local and global 

image scales through spectral partitioning. Contours which were unrecognisable using image information at 

a local scale were able to be detected on a global scale.  

 

The globalized probability of a boundary (gPb) is often considered a state-of-the-art contour detection 

method in computer vision domain (Jevnisek & Avidan, 2016; Zhang et al., 2013). gPb involves detecting 

contours and assigning probabilities (Arbeláez et al., 2011). Crommelink et al. (2017) studied the 

transferability of gPb contour detection to remote sensing applications. Their study involved detecting 

visible cadastral boundaries on RGB images captured using UAV platforms. The whole processing pipeline 

(gPb-owt-ucm) was considered in their study which is what they referred to as gPb contour detection. Object 

contours were detected at impressive completeness and correctness rates of up to 80%. Motivated by this 

work, we use this technique (gPb-owt-ucm) as one of our comparison algorithms.  

 

2.2.2. Image segmentation 

 

Segmentation refers to the process of subdividing images into spatially continuous, disjoint and 

homogenous regions with regard to spatial or spectral characteristics (Blaschke et al., 2004). Many image 

segmentation procedures have been proposed for different applications. However, only a few lead to 

quantitatively convincing results (Sourav et al., 2016; Kaur, 2015). The reason is that in most cases, the 

regions of interest are highly heterogeneous. Image segmentation methods can be divided into pixel- based, 

edge-based and region-based segmentation methods (Blaschke et al., 2004).  

 

Pixel-based methods include image thresholding and segmentation in feature space.  Edge-based 

segmentation methods find edges between regions and determine segments as regions within these edges. 

The first step in edge-based segmentation is edge detection, which has been described in detail in Section 

2.2.1. The difference between edge-based segmentation and contour detection is that the later uses abrupt 

discontinuities in pixel values(edges) to define the extents of regions, which is the output. Contour detection, 

on the other hand, aims at finding the boundary between two regions and involves postprocessing edge 

detection results.  

 

Region-based segmentation algorithms can be divided into region growing, merging and splitting techniques 

and their combinations. Region growing techniques aggregate pixels starting with a set of seed points. 

Neighbouring pixels are joined to the initial regions until a specific set threshold is achieved.  The threshold 

is a homogeneity criterion or a combination of size and homogeneity. Region growing algorithms often 

suffer from lack of control over break off criterion for the growth of a region (Aguilar et al., 2016). In region 

merging and splitting, the image is divided into sub regions which are joined or split based on their 

properties. The idea behind region merging is joining segments starting with their initial regions. Region 

splitting algorithms divide segments into smaller units if they are not homogenous as required starting from 

the input which normally consists of large segments.  
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2.2.3. Convolutional Neural Networks (CNNs or ConvNets) 

 

CNNs are made up of one or more convolutional layers that have learnable weights and biases. Standard 

architectures use a series of convolutional layers that extract feature maps, which are then flattened into a 

one-dimensional vector and fed to a fully-connected network  (Goodfellow et al., 2015).  The input to a 

convolutional layer is an image of dimensions 𝑊 × 𝑊 ×  𝐷 where 𝑊 × 𝑊 is the height and width of the 

image and 𝐷 is the number of channels. The convolutional layer is made up of 𝐾 filters of size 𝐹 × 𝐹 where  

𝐹 is smaller than the dimensions of the image 𝑊. The filters are convolved with the image to produce 

feature maps which are equal to the number of filters (𝐾). Each feature map is subsampled with average of 

max pooling with a stride 𝑠, where the value of 𝑠 > 1 . Subsampling with a stride = 1 leads to feature maps 

equal to the input image. After the subsampling layers (pooling layers), a bias is added and non linearity is 

applied to each feature. Non-linearities are also called activation functions and include Relu, Sigmoid, tanh 

etc. At the end of the networks, fully connected layers are inserted in standard CNN architectures. A more 

detailed description of the building blocks is found in Section 4.1.  

 

CNN architectures 

 

In the remote sensing domain, Bergado et al. (2016) proposed a CNN architecture for urban scene 

classification using high resolution aerial images. Alshehhi et al. (2017) suggested a single-patch CNN 

architecture for extraction of roads and buildings from high resolution remote sensing imagery. Mboga et 

al. (2017) proposed an architecture for detecting informal settlements from VHR satellite imagery. The 

authors compared their method with other state-of-the-art methods like SVM with RBF kernel and recorded 

better performance after presenting their method with many training samples and a large number of 

convolutional layers.  

 

Other popular architectures in the literature include AlexNet developed by Krizhevsky et al. (2012), 

VGGNet by Simonyan & Zisserman (2014), LeNet, ZF Net, GoogLeNet and ResNet (Li et al., 2017). We 

begin by presenting the two most popular architectures.  

 

AlexNet  

Table 2.1: Representation of AlexNet architecture. 

Layer Dimensions Parameters 

No. of filters Filter dimensions Stride Pad 

Input 227×227×3 - - - - 

CONV -1 55×55×96 96 11 × 11 4 0 

Max pool 1 27×27×96 - 3×3 2 - 

Norm 1 27×27×96 - - - - 

CONV -2 27×27×256 256 5×5 1 2 

Max pool 2 13×13×256 - 3×3 2 - 

Norm 2 13×13×256 - - - - 

CONV -3 13×13×384 384 3×3 1 1 

CONV -4 13×13×384 384 3×3 1 1 

CONV -5 13×13×256 256 3×3 1 1 

Max pool 3 6×6×256 - 3×3 2 - 

FC6 4096 neurons - - - - 

FC7 4096 neurons - - - - 

FC8 1000 neurons - - - - 
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Table 2.1 summarises the AlexNet architecture developed Krizhevsky and colleagues (Krizhevsky et al. 

2012). This architecture is perhaps the most popular CNN architecture to date. It was submitted in 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) outperformed other models by big margins. 

Their top 5 error was recorded as 16% compared to the closest challenger with 26%.  

 

Other hyperparameters used in the AlexNet included; use of the Relu activation function, a dropout of 0.5, 

batch size 128, Stochastic Gradient Decay (SGD) Momentum of 0.9, a Learning rate of 0.01 then reduced 

it to 0.1 manually upon plateauing of validation accuracy and L2 weight decay of 0.0005. 

 

VGGNet  

 

Simonyan & Zisserman (2014) shown that the depth of the network is a critical component for good 

performance of a CNN. Increasing the depth of a network is, however, more expensive because it increases 

the number of parameters, therefore, using more memory. Table 2.2 shows a brief illustration of VGG16 

architecture submitted at ILSVRC in 2014. 

 

Table 2.2: Representation of VGG16 architecture 

Layer Dimensions Parameters 

No. of filters Filter dimensions 

Input 224×224×3 - - 

Conv 1-1 224×224×64 64 3×3×3 

Conv 1-2 224×224×64 64 3×3×64 

Max pool 1 112×112×64 - - 

Conv 2-1 112×112×128 128 3×3×64 

Conv 2-2 112×112×128 128 3×3×128 

Max pool 2 56×56×128 256 3×3×128 

Conv 3-1 56×56×256 - - 

Conv 3-2 56×56×256 256 3×3×256 

Conv 3-3 56×56×256 256 3×3×256 

Max pool 3 28×28×256 - - 

Conv 4-1 28×28×512 512 3×3×256 

Conv 4-2 28×28×512 512 3×3×512 

Conv 4-3 28×28×512 512 3×3×512 

Max pool 4 14×14×512 - - 

Conv 5-1 14×14×512 512 3×3×512 

Conv 5-2 14×14×512 512 3×3×512 

Conv 5-3 14×14×512 512 3×3×512 

Max pool 5 7×7×512 - - 

FC6 1×1×4096 - - 

FC7 1×1×4096 - - 

FC8 1×1×1000 - - 

 

2.2.4. Fully Convolutional Networks (FCN) 

 

As described in section 2.2.3, traditional CNNs have fully connected layers with fixed dimensions. One 

shortcoming of the fully connected layers is that they discard the spatial information. The output of a CNN 

is a 1-dimensional distribution over classes (for Softmax regression) i.e they predict a single label. The idea 
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in a patch-based CNN is to extract small patches or subsets of the image then apply a CNN model on each 

patch to predict their central pixel. These labels are then arranged in a 2-D layout as the outputs (Fu et al., 

2017).  

 

Long et al. (2015) proposed an FCN model replacing the fully connected layers in a CNN with convolutional 

layers. The FCN models can be trained to predict all the pixels in an image or patches, therefore, the 2-D 

structure is preserved. A patchwise trained FCN predicts the labels of all the pixels of the entire patch, unlike 

the CNN which predicts the label of the central pixel. Experiments have shown that FCN performs better 

than CNN (Fu et al., 2017; Persello & Stein, 2017). Other advantages of FCN over CNN are : FCNs are 

easy to implement since its possible to train an entire image at a time. Lastly FCNs are less computationally 

expensive. CNNs predict the label of a pixel per patch therefore more computations are required to predict 

the labels of all pixels in a patch and the entire image.  

 

FCN-DKs 

 

Persello & Stein (2017) introduced a novel deep FCN for the detection of informal settlements in VHR 

images. Their proposed FCN consisted of dilated kernels of increasing spatial support. Using large filters 

increases the number of parameters therefore increasing the cost of training the networks. A high number 

of parameters also reduces the generalization capability of the networks. Downsampling technique is one of 

the strategies of correcting this problem. Persello & Stein proposed using dilated kernels (DKs) instead of 

downsampling. Using dilated kernels increases the spatial support without increasing the number of memory 

parameters. This increases the number of learnable parameters per layer without increasing the 

computational cost. Table 2.3 summarises the work on FCN-DKs. 
 

Table 2.3: Architecture of FCN-DKs 

Layer Module type Dimension Dilation Stride Pad 

DK1 Convolution 5 ×5 ×8 ×16 1 1 2 

lReLU     

Max-pool 5 ×5  1 2 

 

DK2 

Convolution 5 ×5 ×16 × 32 2 1 4 

lReLU     

Max-pool 9 ×9  1 4 

 

DK3 

Convolution 5 ×5 ×32 ×32 3 1 6 

lReLU     

Max-pool 13 ×13  1 6 

 

DK4 

Convolution 5 ×5 ×32 ×32 4 1 8 

lReLU     

Max-pool 17 ×17  1 8 

 

DK5 

Convolution 5 ×5 ×32 ×32 5 1 10 

lReLU     

Max-pool 21 ×21  1 10 

 

DK6 

Convolution 5 ×5 ×32 ×32 6 1 12 

lReLU     

Max-pool 25 ×25  1 12 

 

Class 

convolution 1×1 ×32 ×2 1 1 0 

Softmax     
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2.3. Relevant studies in agricultural boundary detection 

 

Alemu (2016) proposed a line segment detection (LSD) algorithm for delineating farm field boundaries and 

detecting crop rows from very high-resolution satellite images. He performed an accuracy assessment by 

defining two error ratios; a ratio for missing detections and a ratio for false detection for boundaries. He 

obtained 0.78 and 0.73 respectively. He made a conclusion that the errors were too high to be acceptable in 

practical applications. 

Davidse (2015) experimented with different approaches to extract agricultural field boundaries from 

WorldView-2 satellite imagery. He applied techniques from PCA (Principal component analysis), Image 

segmentation and edge detection. His study area was in Sougoumba, Mali, West Africa. He noted that the 

study area was difficult because of a highly heterogeneous landscape. Image segmentation performed better 

than the other methods, but he also noted there was the risk of over-segmentation.  

Machine learning approaches have also been proposed for agricultural parcel delineation. García-Pedrero et 

al. (2017) proposed an agglomerative segmentation methodology using the SLIC (Simple Linear Iterative 

Clustering) algorithm. Experiments were done on a WorldView-2 satellite imagery acquired on 3 December 

2011 for agricultural fields in the Chilean central valley. They noted a huge potential for training machine 

learning algorithms to do what a human operator would do in a boundary delineation task. One of their 

main suggestions for future research involves determining optimal features to train a machine learning 

methodology. 

Turker and Kok (2013) used a perceptual grouping approach to develop a methodology for extraction of 

boundaries within agricultural fields from SPOT imagery for a region in north-west Turkey. They used the 

Canny edge detector to detect edge pixels. Validation of their approach was done on SPOT4 and SPOT5 

images. The overall matching accuracies between the reference data and the automatically extracted 

boundaries were 82.6% and 76.2% for SPOT5 and SPOT4 images respectively. 
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3. DATA AND SOFTWARE 

This chapter describes the study area, raw datasets, ground reference data and software used.  

 

3.1. Study area  

 

This research was applied on a dataset involving agricultural farms in a village called Kofa in Kano state, 

Northern parts of Nigeria. Kofa area is characterised by a highly heterogeneous landscape. Farmers practice 

mixed farming; the fields are small in sizes with irregular shapes, there are variable planting dates and trees 

are present in nearly all the fields.  Crops in this region include sorghum, rice, beans, millet, groundnut, 

pepper, maize, soybeans, moringa and cowpea (Agro News Nigeria, 2018).  The rainy season is experienced 

in May, June, July and September. Dry periods are in January, February and August. The warmest month is 

April while the coolest month is August. September is the wettest month while January is the driest month.  

The fields are located approximately between 8° 14' 30'' E to 8° 16' 0'' E and 11° 34' 0'' N to 11° 32' 30'' N. 

 

 

 

  

 

 

 

Figure 3.1: Study area: (a) Location of Nigeria in West Africa (b)Location of Kofa in Kano state, Nigeria. 
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(a) (b) 

 

Figure 3.2: Study area: (a) A tile extracted from WorldView3(bands 7, 5, 3) satellite image captured over 

Kofa, Nigeria on 25-Sep-2015 (b)A photograph captured in one of the agricultural fields in Kofa showing 

mixed crops with trees between the fields 

 

 

3.2. VHR Satellite imagery 

 

A total of 9 WorldView-3 satellite images acquired during different stages of the cropping period (May – 

November) were available as shown in Table 3.1. This data was acquired in the STARS project for the years 

2014 - 2015. The images were renamed using their acquisition dates for easier identification. WorldView-3 

sensor specifications are listed in Table 3.2.  

 

Table 3.1: Available WorldView-3 satellite images 

 

 Image ID Bands GSD pan(m) GSD ms (m) 

1 WV3_26-Nov-2014_ms 8 0.5 2.0 

2 WV3_8-May-2015_ms 8 0.3 1.2 

3 WV3_22-May-2015_ms 8 0.3 1.2 

4 WV3_3-Jun-2015_ms 8 0.3 1.2 

5 WV3_24-Jul-2015_ms 8 0.3 1.2 

6 WV3_10-Sep-2015_ms 8 0.5 2.0 

7 WV3_12-Sep-2015_ms 8 0.5 2.0 

8 WV3_25-Sep-2015_ms 8 0.5 2.0 

9 WV3_21-Nov-2015_ms 8 0.5 2.0 

 

 



AUTOMATIC DELINEATION OF SMALL HOLDER AGRICULTURAL FIELD BOUNDARIES USING FULLY CONVOLUTIONAL NETWORKS 

12 

Table 3.2: WorldView-3 Sensor Specifications (DigitalGlobe, 2017) 

Sensor Bands Sensor Resolution 

(GSD) 

Swath 

Width 

Revisit Frequency 

 (at 40°N Latitude) 

• Panchromatic: 450-800 nm 

• 8 Multispectral:  

Coastal: 400 - 450 nm  

Blue: 450 - 510 nm   

Green: 510 - 580 nm  

Yellow: 585 - 625 nm  

Red: 630 -690 nm 

Red Edge: 705 - 745 nm 

Near-IR1: 770 - 895 nm 

Near-IR2: 860 - 1040 nm  

• 8 SWIR: (1195 nm - 2365 nm) 

• 12 CAVIS Bands: (405 nm - 2245 nm)  

desert clouds, aerosol-1, aerosol-2, 

aerosol-3, green, water-1, water- 2, water-

3, NDVI-SWIR, cirrus, snow 

 

 

 

Panchromatic: 

0.31 m GSD at Nadir 0.34 

m at 20° Off-Nadir 

 

Multispectral:  

1.24 m at Nadir,  

1.38 m at 20° Off-Nadir 

 

 

 

 

At nadir: 

13.1 km 

 

 

 

 

Less than one day at 1 

m GSD 

or 4.5 days at 20° off-

nadir or less 

 

 

 

 

3.3. Pre-processing 

 

A selection had to be made for the most appropriate image. Images taken during the early stages of cropping 

period, when the fields are almost bare, had little information therefore could not be used for analysis. One 

WorldView-3 satellite image (WV3_25-Sep-2015_ms) was chosen as the most appropriate for experiments 

leading to extraction of visible boundaries. The reference shapefile was overlaid in this image and the visible 

boundaries in the image seen to be coinciding perfectly. 

  

Multi spectral datasets were pan sharpened using the Gram-Schmidt algorithm. Resampling was based on 

nearest neighbour because it is less computationally expensive. Gram-Schmidt integrates the geometric 

information of the panchromatic band (the higher spatial resolution image) with spectral information of the 

multi-spectral bands (higher spectral information images). The resulting image (pan sharpened) is an image 

with the best properties of both images types, high spatial and high spectral resolution.  Image WV3_25-

Sep-2015_ms had a GSD of 0.5 m for its panchromatic band and 2.0 m for its multi spectral bands. The 

resulting image after pan sharpening had a spatial resolution of 0.5 m. Other pan-sharpening algorithms 

include NNDiffuse, SPEAR pan sharpening and PC spectral sharpening. Gram-Schmidt pan-sharpening 

outperforms the other pan sharpening methods in maximising image sharpness and minimising colour 

distortion, however, it is more computationally expensive (Maurer & Street, 2013). 

We extracted 5 tiles from Image WV3_25-Sep-2015_ms and labelled them as TR1,TR3,TR4 TS2 and TS5, 

where TR means the tiles were used to train the networks and TS for testing. Each tile has dimensions 1000 

×1000 pixels and covering an area on the ground of 0.5 × 0.5 km. 
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Figure 3.3: Location of tiles TR1, TR3, TR4 and TS2, TS5 in Kofa region 
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3.4. Reference datasets 

 

Ground truth data for the 5 tiles was available from the STARS project. This data was availed as polygons 

with fields information in shapefile (.shp) format. The information includes crop types and field boundaries. 

Fields which had more than 1 crop planted had that information included. Table 3.3 gives an overview of a 

total number of agricultural fields in each tile.  

 

 

Table 3.3: Number of farms in each tile 

 

Tiles  No. of fields 

TR1 214 

TS2 188 

TR3 151 

TR4 244 

TS5 232 

 

Figure 3.4 shows the raw reference data for TR1, which is the same case for the other tiles. 

 

 

 

 
Figure 3.4: TR1 raw reference data 

The reference dataset had to was converted to a raster format with equal thickness for the boundary class 

and a spatial resolution corresponding to that of the pre-processed VHR image. Visible boundaries in the 

VHR image are not of uniform width. Some boundaries are broad, e.g. boundaries coinciding with paths 

and others are thin e.g. boundaries at the transition between two adjacent agricultural fields. A choice for 

                  Agricultural fields 

Boundaries 
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the thickness of buffering had to be made to consider the variations in thickness of boundaries and ensure 

positional accuracy of detections. FCNs accept as input raster images inorder to make pixel-wise reference 

to the labels. Two techniques were used to obtain a raster image of boundary and non boundary labels from 

the raw shapefile. The first technique involved converting the raw shapefile from polygons to lines which 

generated dual lines for adjacent plots giving a false impression of the true thickness of the boundaries.  

“Collapse dual lines to centreline technique” in ArcMap was used correct this. The second technique 

involved converting the raw shapefile to raster format(tiff) directly then applying morphological thinning to 

obtain the central pixel in the boundary pixels. The raster was again converted to vector to enable buffering 

to a desired thickness. Morphological thinning was faster than the previous strategy especially when FCN 

experiments demanded more data. The resulting single lines in both strategies were buffered using 0.5 m, 1 

m and 2 m radius. A decision was made to use 1 m buffer for further analysis because of accuracy 

requirements and spatial resolution of the available VHR satellite image. The buffer was labelled as the 

boundary class (Class 1) and the region not covered by the buffer (the agricultural fields) labelled as the non-

boundary class (Class 2). New shapefiles covering the extents of each tile were created and a union 

performed with their corresponding 1 m buffer outputs from the previous step. Sections of fields outside 

the coverage were cropped out. The result was vector files with the same spatial coverage as the VHR image 

tiles. The next step involved converting the vector files to raster format(.tiff). Feature to raster conversion 

tool in ArcMap was used to perform this. The output cell size was set as 0.5 m, same as the pre-processed 

VHR image. Figure 3.5 shows the prepared reference images of the tiles considered in this research. 

 

 

 

Figure 3.5: (a) GT1 (b) GT3 (c)GT4 (d)GT2 (e)GT5 are the ground truth images for tiles TR1, TR3, TR4, 
TS2 and TS5 respectively.  
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3.5. Software  

 

The deep learning framework was based on MatConvNet-1.0-beta23. MatConvNet is a third party Matlab 

toolbox developed by Vedaldi & Lenc (2015) implementing CNNs for different applications.  

 

The networks were trained using NVIDIA’s CUDA GPUs (Quadro M1000M). 

 

ArcGIS version 10.5.1 was used for the preparation of the reference data.  

 

Morphological thinning  was performed using C++ and called from R using package Rcpp. 

 

ENVI version 5.3.1 was used for pan-sharpening the VHR satellite imagery. ENVI was also used to convert 

raw RGB bands extracted from the multispectral images to tiff image format for experiments on contour 

detectors.  

 

ERDAS imagine 2016 was used for sub-setting data.  

 

eCognition software version 9.3 was used to implement multi-resolution segmentation algorithm.  

 

Linux operating system was used to run the Matlab precompiled open-source package for globalised Pb 

experiments developed by UC Berkeley Computer Vision Group (Arbeláez et al., 2013).  
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4. METHODS 

This chapter gives a detailed description of the methods and experiments carried out towards achieving 

the main objective of detecting visible agricultural field boundaries from VHR satellite images.  

 

 

4.1. FCN Design experiments 

The architecture was developed from FCN-DKs, described in Table 2.3 by Persello & Stein (2017) as the 

foundation.   

 

4.1.1. Data on hand 

 

Figure 3.5 shows the available VHR satellite images and Figure 3.5 shows the prepared data for experiments. 

All the tiles (TR1, TS2, TR3, TR4, TS5) have dimensions 1000 x 1000 pixels for both the raw VHR satellite 

data and the reference data. The reference raster grid was derived from the input image. Tiles TR1, TR3 and 

TR4 were used for training and validation while tiles TS2 and TS5 were used for testing the performance of 

the implemented algorithms. In this research, tiles used for training the networks are abbreviated as TR 

while those used for testing are abbreviated as TS. 

  

4.1.2. Hyper-parameter optimization 

 

Preliminary experiments were carried out to help in fine-tuning parameters and design an optimal 

architecture. TR1 and TR2 were used for the initial experiments to minimise the training time. FCN-DK3 

illustrated in Table 2.3 was used as the starting point. Training and validation sets were generated from TR1 

while TS2 was used for testing. Patches were used as inputs to the networks. Figure 4.1 shows an overview 

of an FCN architecture in the context of agricultural field boundary detection. 

 

Figure 4.1: Overview of the adopted FCN architecture: patch samples were used as inputs in the networks. Each 

convolutional layer has a bank of filters which convolve with the inputs producing feature maps of dimensions 

equal to the inputs.  
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Input layer 

 

The input layer holds the raw pixel values of the input patches. This layer has dimensions 𝑊 × 𝑊 ×  𝐷 

where 𝑊 × 𝑊 is the patch size and 𝐷 is the depth of a patch, which is equal to the number of channels of 

the multi spectral VHR satellite image.   

 

Convolutional layers 

 

The convolutional layer (Conv layer) is the core building block in a convolutional neural network. A 

convolutional layer consists of 𝐾 learnable filters (a set of weights) of dimension 𝐹 × 𝐹. A filter on the first 

layer would have smaller dimensions than the dimensions of the input patch.  

 

Each filter is convolved across the width and height of the input volume during the forward pass. A 2D 

activation map of filter responses of every spatial position is output. The total number of the activation 

maps is equal to the total number of filters. The network learns filters which activate when they detect some 

visual feature such as edges of some orientation.  

 

The hyper-parameters of a convolutional layer include; the number of filters which corresponds to the depth 

of the output volume, the filter dimensions, the stride, 𝑆 , which is the step by which we slide the filter. A 

stride of 1 moves the filter 1 pixel at a time resulting in an output of the same dimensions as the input. A 

stride greater than 1 produces smaller output volumes. Another hyperparameter is zero-padding, P, which 

refers to filling border rows and columns of an input patch with zeros. It is useful because we can control 

the size of output feature map.  

 

Setting zero padding as 𝑃 =
(𝐹−1)

2
  when the stride is 𝑆 = 1 ensures that the input volume and output 

volume have the same size. The last hyperparameter of convolutional layers is dilation, d, which involves 

inserting spaces between cells of filters. Dilated convolutions increase the effective receptive field without 

increasing the number of parameters in the networks.  

 

A convolutional layer 𝑁 accepts a volume of size 𝑊𝑛−1 × 𝑊𝑛−1 ×  𝐷𝑛−1    and outputs a volume of size 

𝑊𝑛 × 𝑊𝑛 × 𝐷𝑛   where, 𝑊𝑛 =  
 𝑊𝑛−1−F+2P

𝑆+1
  and  𝐷𝑛 = 𝐾𝑛−1.  

We applied a stride of 1 to obtain output volumes with the same spatial dimensions as the input volumes 

throughout the networks. Zero padding the input volumes in the convolutional layers was done equal to 2 

× dilation factor to ensure full coverage of input volumes with the dilated kernels. The filter dimensions 

were kept consistent as 5 × 5 for all convolutional layers apart from the output convolutional layer which 

was reduced to 1 × 1. The number of kernels in the first convolutional layer was set as 16, then increased 

to 32 from the second layer then retained constant for the next Conv layers. The output layer had 2 filters 

for the two classes.   

 

Pooling layer 

 
Pooling (also called subsampling or downsampling) reduces the dimensions of each feature maps but retains 

the learned information from the convolutional layers. Pooling layers are embedded between successive 

convolutional layers in an FCN architecture. There are different types of pooling: max pooling, average 

pooling etc (Li et al., 2017). In Max pooling, a  window is defined e.g 2 × 2 . The largest element from the 
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feature map is picked within that window. Average pooling averages the elements in that window instead of 

picking the maximum element. Pooling continually reduces the spatial size of the inputs, therefore reducing 

the number of parameters and computation in the network. Pooling layers control overfitting. Apart from 

max pooling, other functions include average pooling, which returns the arithmetic mean of received signals 

and L2-norm pooling. A pooling layer requires 2 hyperparameters: 1) Spatial extent, 𝐹, and 2) Stride, 𝑆. This 

layer accepts a volume of size 𝑊1 × 𝐻1  ×  𝐷1 and outputs a volume of size 𝑊2 × 𝐻2  ×  𝐷2 where 

 𝑊2 =  
𝑊1−𝐹

𝑆+1
 , 𝐻2 =  

𝐻1−𝐹

𝑆+1
 and 𝐷2 = 𝐷1.  

Springenberg et al. (2014) proposed CNNs without pooling layers in a bid to achieving a simple architecture 

which consists of convolutional as the only heavy computational layers.  

 

 

Batch Normalization layer 

 

During training, the distribution of each layer inputs changes since the parameters of the previous layers 

change. This leads to a slow training process making it a necessity to use lower learning rates and precise 

parameter initialization. Ioffe & Szegedy (2015) proposed incorporating normalization for each training 

mini-batch as a feature of the architecture. Batch normalization permits use of higher learning rates and less 

attention on initialization. Batch normalization also acts as a regularizer eliminating the need for Dropout. 

We leveraged on these benefits and introduced batch normalization layer after every convolutional layer 

throughout the networks.   

 

Activation Functions 

 

Activation functions are nodes added to the output of any layer in an FCN (Sharma, 2018).  Activation 

functions define the output given a set of inputs. Non-linear activations are used because they are capable 

of approximating any function. They break linearities in the network, allowing it to learn more complex 

functions than a linear activation would do. The most common non-linear activation functions include the 

Sigmoid, ReLU and Leaky ReLU.  

The sigmoid, also called Logistic activation function, takes an S-shape and is expressed as: 

  f(x) =
1

1+𝑒−𝑥          4.1 

Sigmoid activation functions take a real number and normalize it into the range between 0 and 1. Large 

negative numbers become 0 and large positive numbers become 1.  

 

 

Figure 4.2: Sigmoid function 

Sigmoid non-linearity, however, suffers some drawbacks: they saturate and “kill gradients”. The gradient at 

either tail, 0 or 1 is zero therefore when the activation of the neuron saturates at those regions, no signal 

will flow through it to its weights and to data. Secondly, sigmoid outputs in the later stages of an FCN are 

not zero-centred. This introduces zig-zagging effect during gradient descent, such that its either all positive 
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or negative gradient on the weights.  It is because of these short-comings that the sigmoid non-linearity is 

less popular in recent research outputs. 

 

Most recent CNNs and FCNs use Rectified Linear Units(Relu) non-linearities (Krizhevsky et al., 2012; Li 

et al., 2017). ReLU is expressed as; 

𝑓(𝑥) = {
0, for  𝑥 < 0

𝑥, for   𝑥 ≥ 0
        4.2 

It has an output equal to 0 if the input is less than 0 and an output equal to input if its greater than 0. 

Krizhevsky et al. (2012) found ReLU to accelerate the convergence of stochastic gradient descent by a factor 

of 6 compared to sigmoid function. This was attributed to its linear, non-saturating form. Relu activation 

functions have however been known to be sensitive to large gradients. Setting a high learning rate may ‘kill’ 

many neurons such that they will never activate over the entire training dataset (Li et al., 2017).   

 

Figure 4.3: Relu activation function 

 

 

Leaky Rectified Linear Units (Leaky ReLU) fixes the “dying ReLU” problem(Maas et al., 2013). When 𝑥 <

 0, the function computes a small negative slope (leak). The leak increases the range of the Relu function. 

Leaky Relu is expressed as: 

 

 𝑓(𝑥) = {
𝑐 𝑥,  for 𝑥 < 0

𝑥,  for 𝑥 ≥ 0
         4.3 

Where, 𝑐 is the leak factor  

 
Figure 4.4: Leaky ReLU activation function 

 

We used the Leaky ReLU non-linearities in our networks because of its agility over the other activations.   

 

Softmax layer 

 

The Softmax layer is an activation function added as the final (output) layer to perform classification 

(Bishop, 2013). This function takes in a number of score values equal to the number of classes 𝑧𝑘 , 𝑘 =

1 … 𝐾, then squashes them into values in the range between 0 and 1. The sum of these values equal to 1, 

representing a probability distribution over K possible outcomes.  
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𝜎(𝑧𝑗) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

         4.4 

Where z is a vector of the class inputs (in our case we had 2 classes, therefore, the elements in z were 2). c 

indexes the output classes, therefore j = 1, 2.  

 

 

Dropout layer 

 

Overfitting is a big challenge in deep neural networks. Dropout is a regularization technique used during 

training to address this problem by dropping units, along with their connections, with a probability 1 –  𝑝 

or keeping them with a probability 𝑝, so that a reduced network is left (Srivastava et al., 2014). Training on 

data is done on the reduced network.  

 
Figure 4.5: Applying dropout to a neural network 

In practice, dropout improves the performance of FCNs. Training speed is improved significantly. Dropout 

can also enable a model to learn more robust features that can better generalize new data. We applied 

dropout with a rate of 0.5 in the last classification layer. 

 

4.1.3. Training the networks on the full dataset 

 

In section 4.1.2, we have shown how we investigated the various components of our FCN. We performed 

hyperparameter sensitivity experiments which included varying the patch size, sample size, depth of the 

network and discarding the pooling layers. These experiments were done using TR1 for the training set and 

TS2 for testing, to minimise computational cost. We rolled out our final implementation on the whole 

dataset to investigate the effect of adding more data on the networks.  We train with 3 tiles (Tiles1,3 and 4 

and test with 2 tiles (TS2 and 5).  

 

4.1.4. Augmenting the full dataset 

 

Data augmentation techniques aim at creating more training data artificially from real data by applying 

invariances.  Augmentation techniques include cropping, rotating and flipping input images. We perform a 

rotation of 900 followed by a vertical flip for the 2000 training patches for each training tile.  The result is a 

training dataset with 6000 training samples of 3 different orientations. The networks trained with the 

augmented dataset to increase rotational invariance.   
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4.2. Final Implementation 

4.2.1. Network Architecture; FCN-DKConv6 

 

Table 4.1shows our proposed architecture. The architecture is composed of convolutional layers followed 

by batch normalizations and Leaky Relu non-linearity. 6 convolutional layers were used in the final 

implementation. A 1×1 convolutional filter is used in the classification layer to predict labels. 

 
Table 4.1: Final implementation; FCN-DKConv6 

Networks Layer Weights(W×W×D×K) Stride Pad Dilation Receptive field 

 

FCN-DKConv1 

Conv1 5 ×5 ×8 ×16 1 2 1 5 

bnorm1 - 1  -  

lReLU1 - 1  -  

 

FCN-DKConv2 

Conv2 5 ×5 ×16 × 32  1 4 2 13 

bnorm2 - 1  -  

lReLU2 - 1  -  

 

FCN-DKConv3 

Conv3 5 ×5 ×32 ×32 1 6 3 25 

bnorm3 - 1  -  

lReLU3 - 1  -  

 

FCN-DKConv4 

Conv4 5 ×5 ×32 ×32 1 8 4 41 

bnorm4 - 1  -  

lReLU4 - 1  -  

 

FCN-DKConv5 

Conv5 5 ×5 ×32 ×32 1 10 5 61 

bnorm5 - 1  -  

lReLU5 - 1  -  

 

FCN-DKConv6 

Conv6 5 ×5 ×32 ×32 1 12 6 85 

bnorm6 - 1  -  

lReLU6 - 1  -  

 

Classification 

conv 1×1 ×32 ×2 1  1  

dropout      

Softmax      

 

 

 

4.3. Alternative approaches 

 

In this section, we present the alternative approaches for boundary detection that were compared with FCN. 

Several factors were taken into account during the algorithm comparisons because in most real-world 

applications the quality of the results is not the only important measure of performance. Other important 

factors considered were speed and memory consumption. A trade-off exists between the quality of results 

and the time taken by an algorithm to produce them. In practice, to produce better results more complex 

models are required which means more computational costs and a longer runtime. Testing tiles TS2 and 

TS5 (used for testing FCN) were used in experiments of the alternative methods for a fair comparison of 

all the algorithms. 
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4.3.1. Global Probability of Boundary (gPb) 

 

The globalized probability of a boundary(gPb) involves linearly combining multiscale probability of a 

boundary (mPb) with Spectral probability of a boundary (sPb). These 2 methods are developed from the 

original probability of a boundary (Pb) by Martin et al., (2004), which uses an oriented gradient signal to 

evaluate the strength of a contour through a set of pixels. Each pixel is examined locally. A region of pixels 

in a radius around the target pixel is located in the image, then divided into two with a straight line. The 

orientation of this line is set at angle  𝜃 . The two halves of the circular region are then examined 

independently. Pixel intensity histograms are generated from each half and the 𝜒2 distance between the two 

histograms calculated, whereby the result is called the gradient magnitude.  

The probability of a boundary (Pb) is then extended to the multiscale probability of a boundary (mPb) which 

uses 4 different channels (intensity, colour a, colour b and textons) and 8 different orientations 𝜃 to perform 

boundary probabilities. The texture channel (texton) is produced by convolving the input image with 17 

Gaussian derivative filters. K-means clustering is used to gather the pixels. The resulting cluster assignments 

replace pixel intensity information to form a new image, called a texton image, which shows the strongest 

edges. mPb is performed by linearly combining the 4 cues: 

 

𝑚𝑃𝑏(𝑥, 𝑦, 𝜃) = ∑ ∑ 𝛼𝑖,𝑠𝐺𝑖,𝜎(𝑖,𝑠)𝑖𝑠 (𝑥, 𝑦, 𝜃)      4.5 

where 𝑠 shows the scales, 𝑖 indexes the 4 feature channels, 𝛼 is a constant and 𝐺(𝑥, 𝑦, 𝜃)  is the gradient 

magnitude. This algorithm can be compressed to take the maximum 𝜃 at any particular pixel. The mPb is 

therefore defined as: 

 

𝑚𝑃𝑏(𝑥, 𝑦) = 𝑚𝑎𝑥𝜃{ 𝑚𝑃𝑏(𝑥, 𝑦, 𝜃) }        4.6 

The spectral probability of a boundary (sPb) is coined from Pb (Arbeláez et al., 2011). It incorporates global 

image information to determine the strength of each contour. A radius of local pixels around a target pixel 

is examined. Pixels which have a strong contour as determined by Pb are considered:  

 

𝑊𝑖𝑗 = exp (−𝑚𝑎𝑥𝑝𝜖𝑖𝑗̅{ 𝑚𝑃𝑏(𝑝) } 𝜌⁄ )       4.7 

 

Where 𝑊 is a sparse symmetry affinity matrix, 𝜌 a constant and 𝑖𝑗̅ is the line segment connecting pixels 𝑖 

and 𝑗.   

 

To factor global image information, 𝐷𝑖𝑖 =  ∑ 𝑊𝑖𝑗𝑗  is defined and eigenvectors {𝑣0, 𝑣1, … , 𝑣𝑛} of equation  

(𝐷 − 𝑊)𝑣 =  𝜆𝐷𝑣 solved. 

The solution is factored in the final formulation of sPb detector; 

 

𝑠𝑃𝑏(𝑥, 𝑦, 𝜃) =  ∑ (1
√𝜆𝑘

⁄ ) ∇𝜃
𝑛
𝑘=1 v𝑘(𝑥, 𝑦)      4.8 

 

Where,  v𝑘 is an eigenvector and 1
√𝜆𝑘

⁄   is the weighting based on the entire image. 

Combining mPb and sPb results to the globalized contour detector(gPb), taking advantage of the strengths 

of these two detectors. mPb is capable of extracting many contours while sPb picks the most salient ones. 

gPb is a linear combination of mPb and sPb and is defined as; 
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𝑔𝑃𝑏(𝑥, 𝑦, 𝜃) =  ∑ ∑ 𝛽𝑖,𝑠𝐺𝑖,𝜎(𝑖,𝑠)(𝑥, 𝑦, 𝜃) + 𝛾. 𝑠𝑃𝑏(𝑥, 𝑦, 𝜃)𝑖𝑠      4.9 

Where 𝛽and 𝛾are constants.  

 

 

 
Figure 4.6: An illustration of the stages involved in gPb detector. The four channels used at different 

scales to calculate the probability of a boundary(mPb) are intensity channel (IC), colour a (CCA), colour b 
(CCB) and the texton channel (TC). The output of mPb is fed into sPb stage where they are combined 

into the gPb output. 

After detection using the resulting gPb detector, the image is segmented using 1) an Oriented Watershed 

Transform (OWT), a variant of the watershed transform algorithm which generates regions from the 

oriented contours, and 2) Ultrametric Contour Map(UCM) which defines a hierarchical segmentation. OWT 

and UCM segmentation can be applied to the output of any contour detector. gPb-owt-ucm produces better 

results compared to other approaches like image segmentation (Mean Shift, Normalised Cuts) and edge 

detection (Prewitt, Sobel, Canny and Roberts) (Arbeláez et al., 2011). It is therefore referred to as a state-

of-the-art contour detection method in computer vision (Zhang et al., 2013; Jevnisek & Avidan, 2016). In 

this thesis, we refer gPb-owt-ucm as gPb contour detection. 

 

 

The publicly available open source algorithms from the Berkeley Segmentation Dataset and Benchmark by 

Arbeláez et al. (2013) were used for these experiments. Pansharpened images of WorldView3 prepared as 

explained in Section 3.3. We extract bands 7,5 and 3 to form an RGB composite. We reduce the dimensions 

of both tiles from 1000 x 1000 pixels to 800 x 800 pixels.  These images are further sub-tiled into 4 tiles 

each to reduce computational cost.  
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Figure 4.7: An illustration of TS2 divided into 4 sub-tiles 

We apply gPb contour on each sub-tile, resulting in contour maps of each sub-tile. We then apply 

hierarchical image segmentation at a scale k, within the range [0, 1]. Each value of k generates different 

probabilities of detecting boundaries. The outputs in this stage are binary maps with 2 classes for 

boundary and non-boundary for each value of k tested.  

The binary maps from each sub-tile are merged to form a single binary image of the same size as the input 

tile. This binary image is then vectorized and a 1m buffer applied to the detected boundary. This output is 

rasterised again. The result is a raster file with 2 classes, a boundary class with a uniform thickness of 4 

pixels and the non-boundary class.  

 

4.3.2. Canny detector 

We implement the canny edge detector in 7 steps;  

 

 
Figure 4.8: Procedure for canny edge detector 

The input image is first converted to grayscale. Pixel intensities are 8 bits with a range between 0 to 255. We 

perform a gaussian blur to reduce undesired noise in the image. Presence of noise can lead to detection of 

false edges. We apply a 3x 3 filter and vary the standard deviation through trial and error to see where noise 

is reduced effectively. 

 

1

16
 × ⌈

1 2 1
2 4 2
1 2 1

⌉    

Gradient magnitudes and directions are calculated at around every pixel in the image. A high magnitude of 

gradient means that pixel values are changing rapidly, therefore, implying the possibility that the pixel lies 

on a boundary. The direction of the gradient shows the edge orientation. We determine gradients using a 

Sobel filter.   
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𝐺𝑥 =  ⌈
+1 0 −1
+2 0 −2
+1 0 −1

⌉ ∗ 𝐴 and  𝐺𝑦 =  ⌈
+1 +2 +1
0 0 0

−1 −2 −1
⌉ ∗ 𝐴 

Where * denotes a convolution operation between the filter and the image A 

 

The magnitude and angle of directional gradients are then calculated as;  

|𝐺| =  √𝐺𝑥
2 + 𝐺𝑦

2        4.10 

∠𝐺 = arctan (
𝐺𝑦

𝐺𝑥
)        4.11 

The image magnitude results in thick edges. Non-maximum suppression is performed to thin out the edges. 

It works by finding the pixel with maximum intensity value in an edge. Other pixels which do not meet this 

condition are set to zero.   

 

Double thresholding removes noise further from the result of maximum suppression. Two thresholds are 

set; an upper threshold and a lower threshold. The upper threshold marks the most salient edges. Edge 

tracking hysteresis determines which weak edges are true edges. Weak edges connected to strong edges are 

classified as true edges. Weak edges which are not connected to strong edges are removed.  

 

4.3.3. Multiresolution segmentation (MRS) in eCognition software 

 

We used a technique called multiresolution segmentation in eCognition software version 9.3.  

Multiresolution segmentation is a bottom-up region-merging technique starting with one-pixel objects 

(Rejaur & Saha, 2008). This means starting with the seed pixels, followed by numerous subsequent iterations, 

small pixel objects are merged into larger ones.  

 

 

 
Figure 4.9: Hierarchical structure of image objects (Karakış et al., 2018) 

Figure 4.9 shows a hierarchical frame and how the adjacent objects and the sub or super objects affect each 

other.  The merging decision is based on local homogeneity criterion.  

 

The results of multiresolution segmentation are determined by 3 main factors: the heterogeneity criteria or 

scale parameter, that determines the maximum allowed heterogeneity for the resulting segments, secondly, 

the weight of the colour and shape criteria in the segmentation process, and finally the weight of the 
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compactness and smoothness criteria. The optimal determination of these three often considered abstract 

parameters is not easy to carry out (Aguilar et al., 2016).  

 

The clustering process in multiresolution segmentation is pairwise, whereby the underlying optimization 

procedure minimises the weighted heterogeneity 𝑁ℎ of resulting objects, where  𝑁 is the size of the segment 

and ℎ an arbitrary definition of heterogeneity (Karakis et al., 2004). The smallest growth of the defined 

heterogeneity can be described as the merging of adjacent image objects in each iteration. If this growth 

exceeds the defined scale parameter then the process stops. Multiresolution segmentation is a local 

optimization procedure. 

 

Spectral or colour heterogeneity can be expressed as; 

ℎ =  ∑ 𝑤𝑐𝜎𝑐𝑐           4.12 

where heterogeneity is given by the sum of standard deviations of spectral values in each layer weighted 

with the weights. 

 

Spectral and spatial heterogeneity is combined in order to reduce deviation from a crisp shape. Describing 

heterogeneity in terms of deviation from a crisp shape, the ratio of the border length 𝑙 and the square root 

of the total number of pixels √𝑛 forming this image object can be expressed as:  

ℎ =
𝑙

√𝑁
           4.13 

Furthermore, heterogeneity can be described as the ratio of the de facto border length 𝑙 and the shortest 

possible border length 𝑏 given by the bounding box of an image object parallel to the raster. 

 ℎ =  
𝑙

𝑏
            4.14 

More information about the mathematical formulation of multiresolution segmentation can be found in 

(Baatz & Schäpe, 2000; Tian & Chen, 2007) 

 

4.4. Accuracy evaluation 

 

We used the precision-recall framework to assess the performance of our proposed methodology on the 

selected dataset in comparison to the ground truth.  Precision-recall is best suited for binary classification 

tasks with highly imbalanced classes (López et al., 2013; Hossin & Sulaiman, 2015). The non-boundary class 

had far much more pixels compared to boundary class. The boundary class in the reference dataset was 

prepared with a uniform width of 4 pixels or 2m GSD for both training and testing tiles. Section 3.4 

describes how the reference data was prepared. p, r, F, α, β denotes precision, recall, F-score, false positive 

rate (type I error) and false negative rate (type II error) respectively. TP, FP, FN denotes the total number 

of true positives, false positives and false negatives, respectively. 

 

p =  
TP

TP+FP
         4.15 

r =  
TP

TP+FN
         4.16 

F = 2 ×   
p ×r

p+r
        4.17 

α =   
 FP

FP + TN
          4.18 

β =  
FN 

TP + FN
         4.19 



AUTOMATIC DELINEATION OF SMALL HOLDER AGRICULTURAL FIELD BOUNDARIES USING FULLY CONVOLUTIONAL NETWORKS 

28 

 

True Positives are the boundary pixels predicted correctly by the algorithms i.e. the hits. True Negatives are 

the correct rejections, i.e. non-boundary pixels predicted correctly. False Positives are the false alarms or 

type I error i.e., non-boundary pixels predicted as boundary pixels. False Negatives are the miss or type II 

error, i.e. The boundary pixels predicted as non-boundary pixels. Precision gives an indication of the 

correctly detected boundaries in relation to the total boundaries detected. Precision can be thought of as a 

measure of exactness. A low precision indicates that there is a large number of false positives. Recall gives 

the ratio of correctly detected boundaries to the total number of boundaries in the reference. Recall can be 

thought of as a measure of completeness. A low recall indicates many false negatives. The F-score also 

referred to as the F-measure gives the harmonic mean of precision and recall.  F- score is the more preferred 

measure to avoid treating precision and recall separately since it is possible to increase the value of one at 

the expense of the other.  
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5. RESULTS AND ANALYSIS 

Findings from the experiments done in Chapter 4 are reported in this chapter. We begin by presenting the 

results of hyperparameter sensitivity analysis in section 5.1 which involve varying the patch size and sample 

size, varying the depth of the networks, experiments with pooling and without pooling layers, increasing the 

amount of training data and augmenting the training data. Results from boundary detection alternatives are 

shown in section 5.3 and finally a comparison of all the methods used is presented in section 5.4. 

5.1. Hyper-parameter sensitivity analysis 

 

We begin this section by presenting the results of the initial experiments. These experiments were done on 

a small dataset to minimise computational cost as explained in section 4.1.2. Hyperparameter sensitivity 

analysis experiments involved varying the patch size, number of training samples and number of 

convolutional layers.  Training and validation sets were extracted from tile TR1 while evaluation of the 

algorithms was done on testing tile TS2 for the initial experiments.  

 

The strategy employed in fine-tuning was varying a single parameter while the rest were held constant. The 

first parameter to be investigated was the patch size.  FCN-DK3 was trained with stochastic gradient descent 

with a momentum of 0.9 and 1000 patch samples. The random sampling strategy was used to build training 

and validation sets. A sample represents a patch. The channels were normalized in the range [0,1]. The 

objective function was observed to plateau sufficiently at iteration 200. The first 170 epochs were trained 

with a learning rate of 1.0  × 10−3 and the remaining 30 epochs with a learning rate of 1.0  × 10−4. Error! 

Reference source not found. shows the values of the learning parameters used in experiments on FCN-

DK3.  
 

Table 5.1: Learning hyperparameters for experiments on network FCN-DK3 

Hyper-parameter Values 

Number of epochs  Step1 170 

Step2 200 

Learning rate Step1 - 1.0  × 10−3 

Step2 - 1.0  × 10−4 

Momentum 0.9 

Weight decay 0.0005 

 

5.1.1. Patch size experiments 

 

The patch size defines the extent where contextual information is considered when assigning labels an entire 

patch. Table 5.2 presents the results showing the effect of variation of the patch size fed into network FCN-

DK3. From this table, we observe that patch size 95 × 95 produces the best accuracies and the lowest errors 

among the different experiments on the patch sizes. Increasing the size of the patch led to an improved F-

score up to a maximum of 0.171 and 0.130 for training tile TR1 and testing tile TS2 respectively. Increasing 

the patch size from 95 × 95 to 115 × 115 led to a drop in F-score by 0.074 for TR1 and 0.049 for TS2. This 

is despite the expectation that the F-score would increase since a bigger patch size provides for a bigger 

window for more contextual information.  
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Table 5.2: Patch size experiments for FCN-DK3 
Tiles Patch 

size 
Type I 
error 

Type II 
error 

Precision Recall F-score 

TR1 25 x 25 0.007 0.942 0.552 0.058 0.105 

75 x 75 0.009 0.922 0.561 0.079 0.137 

95 x 95 0.01 0.9 0.58 0.101 0.171 

115 x 115 0.006 0.947 0.548 0.053 0.097 

 

TS2 25 x 25 0.005 0.975 0.375 0.025 0.047 

75 x 75 0.014 0.928 0.387 0.072 0.121 

95 x 95 0.014 0.923 0.414 0.077 0.130 

115x 115 0.007 0.956 0.442 0.044 0.081 

 

 

A patch size of 95 x 95 was therefore fixed to tune the other parameters and was used in the final 

implementation. Figure 5.1Error! Reference source not found. graphically shows the trend generated by 

varying the patch sizes, and Figure 5.2 shows the output maps from these experiments. 

 

(a) (b) 

 
Figure 5.1: (a) and (b) are the results showing the effects on the accuracies for training tile TR1 and testing 

tile TS2 respectively upon variation of the size of patch for network FCN-DK3. 
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Figure 5.2: A comparison between detected boundaries using a patch size of (c, d) 25×25 and (e, f) 

95×95 for training tile (a, c, e, g) TR1 and (b, d, f, h) testing tile TS2. (a, b) are the raw WV3 imagery 
(bands 7,5,3) and (g, h) are the ground truths.  
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5.1.2. Number of patch samples 

 
We experimented with different sizes of training sets (500, 1000, 2000, 4000 and 6000) extracted from the 

training tile TR1 through random sampling. A small number of patch samples presents insufficient training 

data in the network. Table 5.3 shows that increasing the sample size improves precision, recall and F-score. 

The 2 types of errors are reduced significantly from a sample size of 500 to 6000. There is a slight 

improvement, however, between 4000 and 6000 samples. 

Table 5.3: Results for experiments on sample size variation; Network FCN-DK3. 

Tiles No.  of 
patches 

Type I 
error 

Type II 
error 

Precision Recall F-score 

 
 

TR1 
 

500 0.002 0.990 0.425 0.010 0.020 
1000 0.010 0.900 0.580 0.100 0.171 
2000 0.030 0.685 0.596 0.3152 0.412 
4000 0.039 0.484 0.651 0.516 0.576 
6000 0.039 0.428 0.672 0.572 0.618 

 
 
 

TS2 
 

500 0.001 0.994 0.367 0.006 0.013 
1000 0.014 0.923 0.414 0.077 0.130 
2000 0.028 0.863 0.378 0.137 0.201 
4000 0.062 0.755 0.332 0.245 0.282 
6000 0.062 0.766 0.321 0.234 0.291 

 

Training time increases from about 40 minutes using 500 samples to about 12
1

2
 hours using 6000 samples. 

FCNs are computationally very expensive. It is for this reason that the next hyperparameter optimisation 

experiments we use 2000 samples which is a compromise between accuracy and cost. Other strategies of 

increasing accuracies are investigated while considering cost. In the final implementation, we use 6000 patch 

samples and compare with the other strategies employed.  Figure 5.3. is a graphical visualization of the 

accuracies produced by sample size experiments and the output maps are presented in Figure 5.4. 

(a)  (b) 

Figure 5.3: Accuracies for (a) training tile TR1 and (b) testing tile TS2 produced by the variation of the 
number of patch samples on network FCN-DK3. 
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Figure 5.4: Output maps for sample size experiments for FCN-DK3: (a, c, e, g) training tile TR1 and (b, 
d, f, h) testing tile TS2. (c, d) are maps for patch size 500, (e, f) maps for patch size 2000, (a, b) are the 

raw input WV3 satellite images and (e, f) the ground truths 
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5.1.3. Varying the depth of FCN-DK6 

 

Network depth refers to the number of successive computational layers from the input to the output layer. 

We varied the depth of the networks, keeping the patch size fixed as 95 × 95 and a constant number of 

patch samples as 2000. Table 5.4 shows the results of obtained by these experiments. FCN-DK6 produces 

the highest precision, recall, F-score and the lowest type I and II errors compared to the other networks. 

These experiments show that the depth of a network is crucial for its success. The challenge with deep 

networks is however the cost of training them.  Training FCN-DK6 took around 8 hours and 20 minutes 

while FCN-DK2 took around 2 hours. From the depth of 4 convolutional layers, results appear to change 

by a small margin till the 6th convolutional layer, which was the final depth considered in our experiments. 

Experiments on depth of the network are repeated with the other experiments preceded by this set using a 

different variant of the DKs proposed in this research to investigate the generalization capability of all the 

networks at different levels.   

 
Table 5.4: Results for experiments on the depth of the networks FCN-DK2 to FCN-DK6 

Tiles Layers Type I 
error 

Type II 
error 

Precision Recall F-score 

 
 

TR1 
 

DK2 0.006 0.940 0.570 0.060 0.108 
DK3 0.030 0.685 0.596 0.315 0.412 
DK4 0.029 0.301 0.769 0.699 0.732 
DK5 0.024 0.273 0.806 0.727 0.765 
DK6 0.024 0.242 0.811 0.758 0.784 

 
 
 

TS2 
 
 

DK2 0.012 0.954 0.327 0.046 0.080 

DK3 0.028 0.863 0.378 0.137 0.201 

DK4 0.057 0.768 0.339 0.232 0.275 

DK5 0.049 0.786 0.356 0.214 0.268 

DK6 0.050 0.785 0.357 0.215 0.269 

 

Figure 5.5 shows the trend generated by the accuracies as the network depth was increased from 2 to 6 

convolutional layers. 

(a) (b) 

Figure 5.5: Accuracies for (a) training tile TR1 and (b) testing tile TS2 produced by the variation of the 
depth of the networks FCN-DK2 to FCN-DK6 
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Figure 5.6: Output maps for network depth experiments for (c, d) FCN-DK2 and (e, f) FCN-DK6: (a, c, 
e, g) are results from training tile TR1 and (b, d, f, h) from testing tile TS2. (a, b) are the raw input WV3 

images and (g, h) are the ground truths. 
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5.1.4. Discarding the pooling layers; FCN-DKs vs FCN-DKConvs 

 
We aimed for a more efficient network which is made up of convolutional layers as the only heavy 

computational blocks in the networks. As explained in Section 4.1.2, computation in convolutional layers 

involves convolutions between a bank of filters and the input image. Batch normalization was applied 

immediately after the convolutional layers followed by Leaky Relu non-linearities. The original FCN-DKs 

had max pooling layers inserted after the non-linearities. Max pooling serves to reduce the number of 

parameters by downsampling the inputs which enables detection of features to be scale invariant. Another 

benefit of max pooling is to control overfitting. Although pooling layers have that benefit, it comes at a 

computational cost. The adopted FCN-DKs were designed to output feature maps equal to the input image. 

Upsampling modules were not required. This made investigations on the pooling layers necessary to 

establish their significance in the networks. Experiments involved dropping a few pooling layers and 

eventually dropping them all. This experiment formed the basis of our new variant of FCN-DKs which we 

called FCN-DKConvs.   Table 4.1 illustrates the parameters of this new variant of the DKs. Figure 5.7 

explores outputs from raw predicted labels from both networks. The raw output scores were normalized in 

the range [0 ,1] to produce boundary probability maps.  

 

Figure 5.7: Boundary probability maps of (a, d) FCN-DK6 vs (b, e) FCN-DKConv6. (a, b, c) are training tiles TR1 

and (d, e, f) are testing tiles TS2 and (c, f) are the ground truths 

Table 5.4 shows the results obtained from experiments on networks FCN-DK-Conv1 – 6.  Figure 5.7 shows a 
comparison of the two series of networks. FCN-DKConvs outperformed FCN-DKs on both training TR1 and testing 
TS2 results.  Unlike FCN-DKs which show optimal performance on testing tile TS2 at the 4th convolutional layer 
network, FCN-DKConvs perform optimally at the 6th convolutional layers.    
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Table 5.5: TS1 and TR2 results for FCN-DKConv1 to FCN-DKConv6 

Tiles Networks Type I  
error 

Type II  
error 

Precision Recall F-score 

 
 
 

TR1 
 
 

DKConv2 0.015 0.811 0.645 0.189 0.292 

DKConv3 0.017 0.32 0.85 0.68 0.756 

DKConv4 0.012 0.126 0.909 0.874 0.891 

DKConv5 0.004 0.028 0.976 0.972 0.974 

DKConv6 0.004 0.027 0.975 0.975 0.975 

 

 
 
 

TS2 
 
 

DKConv2 0.026 0.882 0.358 0.118 0.177 
DKConv3 0.053 0.774 0.35 0.226 0.275 
DKConv4 0.056 0.744 0.365 0.256 0.301 
DKConv5 0.062 0.712 0.365 0.288 0.322 
DKConv6 0.068 0.699 0.358 0.301 0.327 

 

Figure 5.8 shows a comparison of the two series of networks. FCN-DKConvs outperformed FCN-DKs 
on both training TR1 and testing TS2 results.   

(a) 
(b) 

(c) (d) 

Figure 5.8: Side by side comparison of the accuracies of FCN-DKs vs FCN-DKConvs: (a, b) are results for training 

tile TR1 and (c, d) testing tile TS2.  (a, c) are results for networks DK2 -DK6 and (b, d) for DKConv1 -DKConv6. 
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Figure 5.9: Outputs maps for (c, d) FCN-DK6 vs (c, d) FCN-DKConv6.  (a, c, e, g) are from training 
tile TR1 and (b, d, f, h) testing tile TS2. (a, b) are the raw WV3 input images and (e, f) are the ground 

truths. 
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5.1.5. Training FCN-DKConvs on 1 tile Vs training on the full dataset -3 tiles  

 

Figure 5.8 (b, d) illustrates results obtained from training FCN-DKConv6 using 1 tile, TR1. We rolled out the whole 

series of the networks, adding more training tiles (TR1, TR3 and TR4) and added an additional testing tile, TS5 in 

addition to TS2. This set of experiments was carried out to investigate the effect of adding even more of training data. 

2000 randomly sampled patches were picked from each of the training tiles. The results obtained are as shown in Table 

5.6. 

Table 5.6: Results of training networks FCN-DKConv2 to FCN-DKConv6 on the full dataset 

 

 

Testing tile TS2 is picked for comparison of the results because the tile has been used in both experiments. 
Accuracies improve significantly using more training tiles and errors are reduced as illustrated in Figure 5.8 
(b, d) illustrates results obtained from training FCN-DKConv6 using 1 tile, TR1. We rolled out the whole 
series of the networks, adding more training tiles (TR1, TR3 and TR4) and added an additional testing tile, 

Tiles Networks Type I 
error 

Type II 
error 

Precision Recall F-score 

 
 
 

TR1 
 
 

DKConv2 0.015 0.862 0.568 0.138 0.222 

DKConv3 0.024 0.577 0.715 0.423 0.531 

DKConv4 0.024 0.223 0.820 0.777 0.798 

DKConv5 0.015 0.122 0.889 0.878 0.883 

DKConv6 0.010 0.069 0.926 0.931 0.929 

 

 
 
 

TS2 
 
 

DKConv2 0.020 0.886 0.407 0.114 0.178 

DKConv3 0.038 0.785 0.416 0.215 0.283 

DKConv4 0.060 0.706 0.378 0.294 0.331 

DKConv5 0.061 0.689 0.389 0.310 0.345 

DKConv6 0.060 0.686 0.394 0.314 0.349 

 

 
 

TR3 

 

DKConv2 0.005 0.940 0.514 0.060 0.107 

DKConv3 0.013 0.716 0.675 0.284 0.400 

DKConv4 0.017 0.256 0.812 0.744 0.777 

DKConv5 0.012 0.128 0.880 0.872 0.876 

DKConv6 0.007 0.072 0.925 0.927 0.926 

 

 
 

TR4 

 

DKConv2 0.010 0.908 0.566 0.092 0.159 

DKConv3 0.020 0.689 0.682 0.311 0.427 

DKConv4 0.024 0.267 0.804 0.733 0.766 

DKConv5 0.016 0.138 0.880 0.861 0.870 

DKConv6 0.010 0.071 0.928 0.928 0.928 

 

 
 

TS5 

 

DKConv2 0.011 0.95 0.363 0.05 0.088 

DKConv3 0.036 0.794 0.413 0.206 0.275 

DKConv4 0.062 0.702 0.371 0.298 0.330 

DKConv5 0.058 0.716 0.378 0.284 0.323 

DKConv6 0.057 0.709 0.385 0.291 0.331 
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TS5 in addition to TS2. This set of experiments was carried out to investigate the effect of adding even 
more of training data. 2000 randomly sampled patches were picked from each of the training tiles. The 
results obtained are as shown in Table 5.6.The F-score for DKCOnv6 increases by 0.022, precision increases 
by 0.036, recall core increases by 0.013, type II error is reduced by 0.014 and type I error is reduced by 0.01.  

 

(a) (b) 

(c) (d) 

Figure 5.10: Results from testing tile TS2: (a, c) DKConvs series trained on tile TR1 only and (b, d) 

DKConvs series trained on tiles TR1, TR3 and TR4. (a, b) shows the obtained accuracies while (c, d) 

shows their corresponding errors. 

5.1.6. Augmented training set Vs non-augmented 

 

We trained the networks with augmented datasets to increase rotational invariance. 2000 random patches 

were picked from each tile then rotated by 900 then 1800. Each tile, therefore, generated 6000 samples at 3 

different orientations. Results from training set TR1 and testing sets TS2 and TS5 were picked for 

comparisons with the previous experiments on non-augmented data. Table 5.7 shows that there is an 

improved accuracy in TR1 from an F-score of 0.929 to 0.934. TS2 records an improved F-score as well 

from 0.349 to 0.358. Unexpectedly, TS5 drops its F-score from 0.331 to 0.322. Figure 5.11 show the trend 

generated by the accuracies of the results of augmented dataset experiments. 
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Table 5.7: Results of FCN-DKConvs trained using 3 tiles with patches rotated at 3 different orientations. 

Tiles Layers Type I 
 error 

Type II  
error 

Precision Recall F-score 

 
 

TR1 
 
 

DKConv2 0.008 0.905 0.611 0.095 0.165 
DKConv3 0.022 0.663 0.684 0.337 0.451 
DKConv4 0.024 0.259 0.814 0.741 0.776 
DKConv5 0.014 0.096 0.903 0.904 0.903 
DKConv6 0.010 0.063 0.930 0.937 0.934 

       
 
 

TS2 

DKConv2 0.016 0.922 0.379 0.078 0.129 
DKConv3 0.037 0.806 0.396 0.194 0.261 

DKConv4 0.071 0.684 0.361 0.316 0.337 
DKConv5 0.071 0.677 0.365 0.323 0.343 
DKConv6 0.073 0.655 0.372 0.345 0.358 

       
 
 

TS5 

DKConv2 0.009 0.956 0.370 0.044 0.078 
DKConv3 0.034 0.817 0.401 0.183 0.251 
DKConv4 0.068 0.722 0.336 0.278 0.304 
DKConv5 0.064 0.722 0.350 0.278 0.310 
DKConv6 0.068 0.703 0.351 0.297 0.322 

 

(a) (b) 

(c) (d) 

Figure 5.11: Side by side comparison of the accuracies of networks FCN-DKConv2 to FCN-DKConv6. 
(a, b) are results from testing tile TS2 and (c, d) are from testing tile TS5.  (a, c) are results for networks 

trained using non-augmented data while (b, d) are for networks trained using augmented data. 
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5.2. Final implementation 

 

In section 5.1 we have shown how we investigated the various components of our proposed approach. 

Experiments involved varying the patch size and sample size, varying the depth of the networks, 

experiments with pooling and without pooling layers, increasing the amount of training data by increasing 

the number of training tiles and finally augmenting the training data. We chose the best performing 

experiment for our final implementation. Experiment 5.1.5 emerged as the best implementation. As 

explained in Section 5.1.2, the costs involved in training the networks made it impossible to do all 

experiments using the best performing number of patch samples. In the final implementation we consider 

the 6000 patch samples.  This experiment investigated the effect of increasing the number of training tiles 

from 1 to 3 tiles. Increasing the depth of the networks was also investigated. In terms of network depth, 

network FCN-DKConv6 produced the best results, therefore, we picked this network for our final 

implementation and for comparison with other alternative methods. To begin with, we show the results of 

this network in Table 5.8. 

 
Table 5.8: Final results for network FCN-DKConv6 

Tiles Type I error Type II error Precision Recall  F-score 

TR1 0.008 0.052 0.944 0.948 0.946 

TS2 0.057 0.688 0.407 0.312 0.353 

TR3 0.006 0.051 0.941 0.949 0.945 

TR4 0.007 0.053 0.945 0.947 0.946 

TS5 0.056 0.712 0.389 0.288 0.331 

 

 

Training tiles produce a near perfect performance with an average F-score of 0.946, a very low type I error 

averaging 0.007 and type II error of 0.052. Testing tile TS2 produces a better F-score of 0.353 than TS5 

which produces 0.331. this is because TS5 is a more difficult test tile. A comparison with other competing 

approaches is based on the performance of this network on the two testing tiles. This provides for an 

unbiased evaluation of the network with regard to its generalization capability. Output maps from the 

network are shown in Figure 5.12 and Figure 5.13.  
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Figure 5.12: Results of training tiles (a, d, g) TR1, (b, e, h) TR3, (c, f, i) TR4. (a, b, c) are boundary probability 
output maps from predicted class scores (d, e, f) are the final classified maps from the network and (g, h, i) are 

ground truths. 
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Figure 5.13: Results of testing tiles (a, c, f) TS2 and (b, d, h) TS5. (a, b) are the boundary probability maps (c, d) 
are the classified maps from network and (f, h) the ground truths.  
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5.3. Alternative approaches 

5.3.1. gPb contour detector  

 

The outputs from gPb contour detection are probabilities which are a result of combining mPb and sPb as 

described in section 4.3.1. Testing tiles TS2 and TS5 were used for gPb experiments. The algorithm 

consumes a lot of memory therefore the tiles were reduced to manageable dimensions of 800 × 800 pixels.  

A threshold k, determines the contours transferred from the raw Ultrametric contour maps to output binary 

boundary maps. The parameter k was varied between 0.05 and 0.6. This is because visual inspection of 

outputs of gPb with a value of k below 0.05 transfers so many unwanted contours including tree crowns 

and intra-field crop rows as boundaries as illustrated in Figure 5.14.  A high value of k transfers few contours 

which are the most pronounced in the image as illustrated in Figure 5.15. 

 

 

Figure 5.14: gPb contour detection results for threshold k = 0.05. So many contours are transferred from the ucm to 
boundary map. 

 

To perform accuracy analysis, this output was further post processed. For a fair comparison with the 

previous method, FCN, the output was vectorised then buffered into an equal thickness of 2 m. The new 

file is then converted back to raster format for precision recall calculations. The output raster has its 

boundary class made of 4 pixels thick. Table 5.9 shows the results obtained by comparing the final output 

against the available reference data. 

At a value of k = 0.1, the best performance is recorded in terms of F-score and precision. At this value of k 

however, recall and type II error are higher than values of k = 0.2 and 0.3. This is because at value k = 0.1 

there are many unwanted contours which contribute to additional false positives.  
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 Table 5.9: gPb results obtained by varying the value of parameter k 

Tile Value of k Type I 
error 

Type II 
error 

Precision Recall F-score 

 
 
 

TS2 
 
 
 

0.05 0.093 0.807 0.342 0.193 0.247 
0.1 0.194 0.513 0.190 0.487 0.273 
0.2 0.204 0.441 0.106 0.559 0.178 
0.3 0.21 0.482 0.065 0.518 0.116 
0.4 0.214 0.513 0.041 0.487 0.076 
0.5 0.213 0.588 0.025 0.412 0.046 
0.6 0.215 0.667 0.014 0.333 0.027 

 
 
 

TS5 
 
 
 

0.05 0.094 0.842 0.385 0.158 0.224 
0.1 0.192 0.546 0.192 0.453 0.269 

0.2 0.2 0.467 0.115 0.533 0.189 
0.3 0.207 0.406 0.063 0.594 0.113 
0.4 0.215 0.783 0.013 0.217 0.024 
0.5 0.22 0.795 0.015 0.205 0.027 
0.6 0.22 0.793 0.009 0.208 0.017 

 

Figure 5.15 shows the results of gPb at levels 0.1 and 0.5. the boundaries shown are after the buffering 

process. They have been overlaid on the raw image to improve visibility and make it easy to identify the 

spatial locations where detections have taken place.   

 

 
 

Figure 5.15: gPb detection results for; (a, b, c, d) TS2 and (e, f, g, h) TS5. (a, e) are ultrametric contour 
maps, (b, f) threshold k = 0.1 (c, g) k = 0.5 and (d, h) Ground truths. 
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5.3.2. Canny detector 

 

Canny detector takes as input a grayscale image and produces an output map showing detected intensity 

discontinuities. The canny detector has three hyper-parameters namely, 1) the width of the Gaussian kernel 

used in the smoothing phase, 2) the upper and 3) lower thresholds used by the tracker. Increasing the width 

of the Gaussian kernel diminishes the sensitivity of the detector to noise, but reduces the amount of detail 

which can be detected in the image. 

We started experiments with testing tile TS2 to tune canny detector hyperparameters. Just like we did with 

gPb detector, all the raw canny detection outputs were post processed by converting them to vector, 

thickening the boundary to 2m and then converting them back again to raster for accuracy analysis. 

Therefore, all the results posted are from the final post processed output. Using a Gaussian filter with a 

standard deviation of 1.0 and an upper threshold T1 = 255, and a lower threshold To =1, we obtain; 

 

Table 5.10: Canny detector results; 𝜎 = 1.0 , T1 = 255 and To =1 

Tile Type I error Type II error Precision Recall F-score 

TS2 0.2163 0.7431 0.0216 0.2576 0.0409 

 

The next experiments involved optimizing these 3 hyperparameters. Setting T0 too high extracts the most 

salient edges and drops most weak edges. Setting T1 too low increases quantity weak boundaries, therefore, 

increasing false positives and a very high type 1 error. Maintaining the standard deviation as 1.0 and To =1, 

then reducing T1 to 180, we obtain 

Table 5.11: Canny detector results; 𝜎 = 1.0 , T1 = 180 and To =1 

Tile Type I error Type II error Precision Recall F-score 

TS2 0.2160 0.7440 0.0201 0.2571 0.0406 

 

The three accuracy measures reduce as shown in Table 5.11. This is because many faint edges are detected 

leading to increased false positives, therefore, reducing the accuracies and increasing type II error. The 

difference is however too small because at this level canny detector fails in the highly complicated dataset. 

In the next step, we tune standard deviation which is a component of the Gaussian smoothing. Gaussian 

smoothing in canny edge detector is useful for reducing noise. It reduces noise by controlling the amount 

of detail that appears in the edge image. Since our images are very noisy, we increase the standard deviation 

to 2.0 to check the performance of canny. The other parameters are maintained as To =1, and T1 = 180. 

 

Table 5.12: Canny detector results; 𝜎 = 2.0 , T1 = 180 and To =1 

 Tile Type I error Type II error Precision Recall  F-score 

TS2 0.2160 0.7429 0.0206 0.2571 0.04074 

 

There is a slight improvement from the previous experiment. We set out to investigate the effect of 

increasing the lower threshold, maintaining the standard deviation as 2.0 and T1 as 180.  
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Table 5.13: Canny detector results; 𝜎 = 2.0 , T1 = 180 and To = 60, 100 

Tile To Type I error Type II 
error 

Precision Recall F-score 

TS2 60 0.2165 0.7436 0.0225 0.2582 0.0431 

TS2 100 0.2162 0.7492 0.0206 0.2397 0.0386 

 

In testing tile TS2, the best parameter combination is observed as 𝜎 = 2.0 , T1 = 180 and To = 60. This is 

because increasing To =60 discards unnecessary details. Increasing further to To =100 drops so many edges 

which are true positives hence the decreasing accuracy. We implemented this parameter set to the other 

testing tile TS5 and the results of both tiles are as shown in Table 5.14. 

Table 5.14: Canny detector results for TS2 and TS5 for parameters, 𝜎 = 2.0 , T1 = 180 and To = 60 

Tile Type I error Type II error Precision Recall F-score 

TS2 0.2165 0.7436 0.0225 0.2582 0.0431 

TS5 0.2143 0.7923 0.0488 0.2113 0.0754 

 

Despite the fact that canny edge detector finds the intensity discontinuities in an image, it is not guaranteed 

that these discontinuities correspond to actual edges of the object. Figure 5.16 shows the results obtained 

for both testing tiles hence the dismal performance. Most boundaries in both tiles have been missed by the 

detector. Only the very pronounced boundaries have been detected.  

 

 

Figure 5.16: Canny detector results for (a) TS2 and (c) TS5 and their respective ground truths (b and d) 
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5.3.3. Image segmentation in eCognition software 

 

The multi-resolution segmentation algorithm is able to generate image objects at any chosen resolution. 

MRS aims at minimising the average heterogeneity and maximising its respective heterogeneity, for a given 

number of image objects, to produce meaningful objects. 

As described in Section 4.3.3,  the outcome of multi-resolution segmentation is determined by the weights 

of colour and shape, scale parameter, and compactness.  The weight of the colour or image layer weights 

indicates the level to which the bands influence the segmentation process. In these experiments, we were 

using Worldview3 VHR satellite imagery, described in detail in Section 3.2. Agricultural fields and 

boundaries are mostly covered by vegetation which has a high reflectance in the infrared region. It is for 

this reason bands 7( Near-IR1) and 8(Near-IR2) were assigned the highest recommended weight(4) in the 

literature (Rejaur & Saha, 2008; Aguilar et al., 2016). Bands 5 (Red) and 6(Red edge) were assigned an equal 

weight of 2 and bands 1 – 4 set to 1.  The second hyperparameter is shape which factors how the spectral 

values of each multispectral band affect the heterogeneity of segmented objects. A high value of shape 

parameter produces segments which have more spatial homogeneity and less spectral homogeneity. Since 

our study area has a very heterogeneous landscape, the emphasis was less spectral uniformity. The shape 

parameter was therefore set as 0.8 as recommended in the literature for very heterogeneous landscapes. The 

third parameter is Compactness which determines how segments objects are going to be compact. A high 

value creates compact segments. This parameter was set as 5 to create a balance between compact and non-

compact object segments. Lastly, the most sensitive parameter is the scale parameter (SP). The scale 

parameter determines the maximum allowable heterogeneity in segmented objects. A small value of scale 

parameter produces more homogeneous segments as compared to a larger value of the scale parameter. 

Values of SP were varied as 100, 150, 200, 250 and 300. A step size of 50 was chosen to enable a visible 

change in the segmented output. Differences in outputs were not easy to visually tell using a smaller step 

size. Values of SP below 100 led to over-segmentation while values above 300 led to under segmentation. 

Figure 5.17 shows the results obtained by varying the scale parameter.  

 
Table 5.15: Multi resolution segmentation results 

Tile Scale 
Parameter (SP) 

Type I 
error 

Type II 
error 

Precision Recall F-score 

 
 

TS2 

 
 

100 0.081 0.819 0.493 0.181 0.265 

150 0.084 0.784 0.400 0.216 0.280 
200 0.089 0.775 0.336 0.225 0.270 
250 0.091 0.764 0.299 0.236 0.263 
300 0.092 0.755 0.280 0.245 0.261 

       
 

TS5 

 
 

100 0.083 0.836 0.493 0.164 0.247 
150 0.088 0.809 0.374 0.191 0.253 
200 0.090 0.792 0.317 0.208 0.251 
250 0.094 0.770 0.243 0.230 0.236 
300 0.096 0.768 0.216 0.232 0.224 

 

SP = 150 produces the best result for testing tile TS2 and TS5 as indicated in Table 5.15. Segmented results 
match best with reference data at this level of parameter combination. Type II errors are however quite high 
in all the parameter values tested. This is because most detections  
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Figure 5.17: Multiresolution segmentation results; (a, b, c) TS2 and (d, e, f) TS5, (a, d) SP = 100 (b, e) 
SP = 300 (c, f) are the Ground truths for TS2 and 5 respectively. 

 

 

5.4. Performance comparison 

5.4.1. Precision, recall and F-score 

 

As described in section 4.4, precision is a measure of exactness. An algorithm producing a high value of 

precision means it has detected more correct boundaries in relation to the total detected boundaries. Table 

5.16 and Table 5.17 shows that FCN-DKConv6 outperformed the other algorithms in terms of precision, 

followed by multi-resolution segmentation then gPb and finally Canny. Recall is a measure of completeness. 

A high value of recall indicates that an algorithm has identified more boundaries in the reference dataset 

compared with other algorithms. A low recall value indicates presence of many false negatives. gPb 

outperformed the other algorithms in terms of recall. F-score is a combination of these two measures. F-

score is more reliable as an overall measure of quality performance. FCN-DKConv6 produced the highest 

F-score among the considered algorithms therefore proving better when both in both exactness and 

completeness. 
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Table 5.16: Accuracies obtained by the considered algorithms on testing tile TS2 

Algorithm Precision Recall  F-score 

FCN-DKConv6  0.407 0.312 0.353 

MRS 0.400 0.216 0.280 

gPb 0.190 0.487 0.273 

Canny 0.023 0.258 0.043 

 

 

Table 5.17: Accuracies obtained by the considered algorithms on testing tile TS5 

Algorithm Precision Recall  F-score 

FCN-DKConv6 0.389 0.288 0.331 

MRS 0.374 0.191 0.253 

gPb 0.192 0.453 0.269 

Canny 0.049 0.211 0.075 

 

5.4.2. Visual inspection and comparison of output maps 

 

We compared output maps of all the algorithms tested. FCN-DK6 was able to label tree crowns as non-

boundaries as shown in Figure 5.13. Multi-resolution segmentation and gPb on the other hand had many 

false detections in terms of tree crowns and within field detections. Canny detector missed so many 

detections therefore produced dismal results especially in testing tile TS5.  

 

5.4.3. Computational time and complexity 

 

Comparing the performance of the methods in terms in terms of computational time and complexity, 

eCognition’s multi-resolution segmentation was the fastest followed by canny detector. Both executed in 

under a minute per testing tile. gPb is a computational heavyweight although not as complex as FCN. Results 

from each testing tile, of dimensions 800 × 800 pixels, were obtained in about 15 minutes by gPb. FCN 

had the highest computational cost, which is a characteristic of most complex models. Training time ranged 

from 2 – 3 hours for hyper-parameter tuning experiments and 14 – 16 hours for experiments on full datasets 

using NVIDIA’s CUDA GPUs (Quadro M1000M).  
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6. DISCUSSION 

In this chapter, a discussion based on the analysis of the results is presented. We investigated the use of 

FCN for detection of visible agricultural field boundaries from VHR satellite images. Hyperparameter 

optimization experiments demonstrated that the patch size, the number of patch samples and the depth of 

the network have the highest influence on the accuracy of the results. Experiments on a patch size of    

115 × 115 produced a lower accuracy compared to 95 × 95. The reduction in accuracy can be attributed 

to a growing number of parameters with a fixed sample size of 1000 for that set of experiments. Having 

growing number parameters and a fixed training data means the network is likely to underperform when 

the patch is increased further. For this reason, a patch size of 95 × 95 was maintained in all the later 

experiments. We noted the significance of a big training size by experimenting with different sample sizes 

and varying the number of training tiles. FCNs are data hungry. Increasing the number of patch samples 

improved the accuracy of the networks in Section 5.1.2. A large training set enables an FCN to learn more 

complex features and increase its generalization capabilities. For instance, Experiments in Section 5.1.4 

involved training our proposed networks using training tile TR1 only. DKConv6 in this experiment 

achieved the highest F-score of 0.975 compared to the other experiments. On generalization capability at 

this level, the accuracy of testing tile TS2 was low compared to the other experiments involving the full 

dataset.  

We studied the effect of the depth of the networks. FCN depth defines the number of layers doing 

convolutional computations on the dataset from the input layer to the output layer. A deep network allows 

for a hierarchy of useful spatial contextual features to be learnt (Simonyan & Zisserman 2014). We 

increased the dilation factor of the filters as the network grew deeper. For instance, the filters in the 6th 

convolutional layer were dilated with a factor of 6 while the 2nd convolutional layer the filters had a 

dilation of 2. The effective receptive field of filters in the 6th convolutional layer was 85 compared to 13 

for filters in the 2nd layer. This means the deeper network is able to scan a larger area of an input image for 

more spatial-contextual information as opposed to the smaller network.    

Experiments on discarding the pooling layers were very important for our final implementation. An 

improvement in accuracies and a reduced value of errors were noted when the pool was dropped. Max 

pooling with a stride greater than 1 reduces the spatial size of an input data which reduces the number of 

parameters. This helps in reducing the amount of computation in the network and in the process controls 

overfitting. However, pooling with a stride of 1 and maintaining an equal number of filters across the 

network means the input and outputs in each layer are the same, so parameters remain the same. Reducing 

the complexity of the model for the same number of parameters proved efficient in-terms of reducing 

training time from 8 hours 20 minutes for FCN-DK6 of experiment 5.1.3 to about 4 hours in network 

FCN-DKConv6 of experiment 5.1.4.  

Data augmentation experiments unexpectedly did not improve the performance of the networks. We 

made the networks rotational invariant by rotating training data at 3 different angles. We created artificial 

data which was 3 times the original data. Long et al. (2015) tried augmentation by randomly mirroring and 

downscaling images. Their strategy didn’t improve the results as well. Depending on a classification 

problem and the nature of the data, augmentation doesn’t always work.       

Our final implementation was compared with other alternative approaches to contour detection and 

segmentation approaches for boundary extraction. A comparison was drawn based on various factors like 

accuracy of the results, visual quality of the output maps and computational time and complexity. In terms 

of accuracy of the results, our proposed method outperformed the three contenders. Multi-resolution 

segmentation performed second best closely followed by gPb contour detection. Canny detector 
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performed poorest with the lowest accuracy. In terms of visual quality of the output maps, FCN outputs 

appear very regular and in the same thickness as the training data without any post processing technique. 

A few spots of wrong detections are visible within the fields which could be removed by a simple post-

processing procedure. We did not integrate our proposed methodology with a post-processing procedure 

because the focus was more on an end-to-end FCN. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

The main objective of this study was to formulate a methodology for detection of visible agricultural field 

boundaries from VHR satellite images using a deep feature learning approach based on FCNs. We reviewed 

several convolutional networks and chose FCN-DKs.  We used a WorldView-3 satellite image captured over 

Kofa area, in Kano state in the northern parts of Nigeria on the 25th September 2015. The effect of varying 

FCN’s hyperparameters on the performance and ability to generalize, by presenting the networks with 

unseen data during training, were investigated. A detailed comparative analysis of the proposed approach 

against gPb, multi-resolution segmentation algorithm in eCognition and canny detector was conducted. 

Experiments shown that our method performed better than the contending algorithms. 

The answers to research questions posed in section 1.3.1 are as follows: 

1. Which CNN/FCN architectures have been proposed in the literature and how do they work?  

 

In section 2.2.3, we discussed how CNNs work and further discussed in detail two outstanding 

architectures in literature, namely AlexNet and VGGNet.  FCNs were described in sub-section  

2.2.4 as variants of CNN. The architecture of FCN-DKs was also elaborated in detail.  

 

2. Which CNN/FCN architecture is appropriate for detection and extraction of agricultural field 

boundaries? 

 

We adopted FCN-DKs proposed by  Persello & Stein (2017), modified the architecture and 

optimised the hyperparameters to enable the networks solve the problem of distinguishing between 

boundaries and non-boundaries in our dataset. As described in section  2.2.4, FCN-DKs produced 

impressive performance compared to conventional patch based CNNs.  

 

 

3. How should the classes be defined? 

 

In section 3.4, we described how the reference datasets were prepared. Classes were divided into 2, 

the boundary class which was assigned a label =1 and the non-boundary class assigned the label =2. 

After preparations, the final reference dataset had its boundary made up of a raster with 4 pixels 

equal thickness. This was achieved by applying a buffer of 1m to a shapefile and exporting this 

shapefile with a cell resolution of 0.5 m, which was equal to the resolution of pansharpened VHR 

images.    

 

4. What are the optimal dimensions of the network and learning hyperparameters? 

 

Experiments shown that a patch size of 95 × 95, a patch sample size of 6000 and a network depth 

of 6 convolutional layers produced the best results. The amount of training data was key. Using 

three training tiles TR1, TR3 and TR4 produced better results than using just one training tile TR1. 

Training the networks with a stochastic gradient descent with a momentum of 0.9 accelerated the 

training process. Training was divided into two steps for the 200 epochs. The first 170 iterations 
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were done using a learning rate of 1.0  × 10−3 and then reduced to a learning rate of 1.0  × 10−4 

for the remaining 30 iterations. Convergence of training and validation losses was already achieved 

by the 170th iteration. 

 

5. Which is the most suitable method for accuracy assessment of classification results? 

 

Precision, recall and F-score were used to quantify accuracies because they are better suited for 

binary classification tasks with highly imbalanced classes as explained in section 4.4. Values of the 

three measures were given between the range of 0 to 1, 0 being a very low accuracy and 1 being the 

highest attainable accuracy. 

 

6. Which alternative state-of-the-art approaches exist?   

 

Three alternative approaches were selected to compare the performance of our proposed method 

with. They included gPb detector, multi-resolution segmentation algorithm in eCognition software 

and Canny detector. 

 

7. Which approach performs better and in which aspects of the performance measures? 

 

FCN produces a better F-score and Precision than gPb, multi-resolution segmentation and canny 

detector. gPb outperforms the rest with regards to of recall. The F-score was used to determine the 

best performing algorithm since it’s a function of both precision and recall therefore FCN was 

taken the best performer.  Canny detector produced the poorest results.  

 

7.2. Recommendations for future research work 

 

For future works, we recommend the following: 

Investigate integrating the proposed FCN with oriented watershed transform and ultrametric contour 

maps to produce closed contours. 

 

Investigate the performance of the proposed FCN using other coarser resolution, freely available 

satellite images like sentinel-1 and sentinel-2 

 

Investigate techniques of improving accuracy like integrating the FCN with classifiers capable of noise 

reduction like CRF 
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8. APPENDIX 

Precision recall curves 

 

 

Tile2 precision recall curves 

 

 

 

Tile5 precision recall curves 
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