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ABSTRACT 

To elucidate the information present in a remote sensing image, classification has helped significantly. 

With the presence of uncertainties in remotely sensed images, soft classification techniques are often 

considered. The desideratum for good classification accuracies with minimized efforts has led to the 

options where a few labeled data could enhance the classification accuracies. In this research, a semi-

supervised approach is considered to minimize the efforts in collecting huge labeled training samples 

which is often strenuous and time-consuming. To handle uncertainties better, a Possibilistic c Means 

classifier is used and considered with different approaches as per the labeled training data. The similarity 

between two pixel vectors becomes important when it comes to collecting unlabeled data in a semi-

supervised approach, or when the classification is performed based on assigning more membership values 

to similar pixels. The hybrid spectral similarity measures, Spectral Information Divergence with Spectral 

Angle Measure and Spectral Information Divergence with Spectral Correlation Angle are used to measure 

the similarity between two pixel vectors due to their proven capabilities for capturing high band-to-band 

variability for a hyperspectral imagery. Their roles are studied in view of a multispectral imagery. The 

Possibilistic c Means classifier is used with semi-supervised training data using different hybrid measures. 

Due to the availability of a few labeled training samples, Mean Shift algorithm is employed to refine the 

training data and to shift the mean for a Possibilistic c Means classification algorithm to a higher density 

region. In addition, the proposed methods relate the bandwidth parameter from Mean Shift algorithm to 

the bandwidth or resolution parameter of Possibilistic c Means classifier with an iterative procedure to 

capture the class variances. The methods are applied to an input LANDSAT-8 imagery with 30 m spatial 

resolution. The classification accuracies for the proposed methods are tested in reference to a higher 

resolution FORMOSAT-2 image (8 m spatial resolution), classified with Support Vector Machine and are 

reported with the Root Mean Square Error (RMSE) and Fuzzy Error Matrix (FERM). The proposed 

methods are compared with the conventional methods such as supervised approach and Euclidean 

distance as a similarity measure.  

 

It is found that the results from a completely supervised approach are comparable with the results of 

semi-supervised approach when a Possibilistic c Means classifier is incorporated with the respective 

distance measures. In comparison to hybrid measures, Euclidean distance is found to be the best in terms 

of capturing the high inter-class and intra-class variability when incorporated as a distance measure in a 

Possibilistic c Means classifier and also when measuring the similarity between two pixels with highest 

overall accuracies and lowest Global Root Mean Square Error. Among hybrid measures, Spectral 

Information Divergence with Spectral Correlation Angle works best in terms of measuring the similarity 

between pixel vectors and as a distance measure in a Possibilistic c Means classifier. Also, the hybrid 

measure, Spectral Information Divergence with Spectral Angle Measure works best for Eucalyptus class 

where intra-class variability is low. 

 

In addition, the classification methods with just a few labeled samples, after shifting the mean to a higher 

density region using Mean Shift algorithm gives comparable results to both supervised (large labeled data) 

as well as semi-supervised approaches, with respective distance measures. Also, it is possible to capture 

variance and achieve higher classification accuracies with a few labeled training samples using Mean Shift 

algorithm, and a Possibilistic c Means classifier.   

 

Keywords: Possibilistic c Means, Semi-supervised learning, Mean Shift algorithm, Spectral similarity measures 
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1. INTRODUCTION 

A crisp boundary is a subset of vague interpretation by human minds. 

 

- Anonymous 

1.1. Motivation and Problem Statement 

A picture helps to explicate more than a million words. It elucidates complex relationships between 

objects with their sizes and spatial positions. The field of remote sensing has grown to derive these 

relationships with ease and has become an indispensable part for obtaining valuable information by means 

of observing an object, scene or phenomenon without any physical contact (Richards & Jia, 2013). It is 

one of the ways of obtaining information about the surface of the Earth, atmosphere, and oceans to map 

remote areas cheaply and efficiently with the help of satellites or aircraft (Campbell, 1996). The ongoing 

advancements in spatial, spectral, temporal and radiometric resolutions of sensors have increased the 

applicability of data for mapping and classification of land use land cover, mining, climate change, urban 

planning, oceanography and many more.  

Classification is an image processing technique for translating the reflectance or digital numbers (DN) to 

thematic information (Richards & Jia, 2013). The objects on images are classified into themes or classes in 

order to reduce the complexity of information present in remotely sensed images for analysis. It can be 

unsupervised, supervised, or semi-supervised (Olivier et al., 2006; Richards & Jia, 2013). In unsupervised 

classification data is divided into a set of spectral clusters or similar group or cluster albeit labels are 

symbolic and does not represent ground cover or information classes. The clusters or groups are then 

classified into information classes by the users. On the other hand, supervised classification needs a 

sufficient amount of training data as a representative of a specific class based on prior knowledge. In case 

of supervised learning, a collection of pure training or labeled samples, both in terms of quality and 

quantity is usually expensive, time-consuming and require a lot of manual work (Persello & Bruzzone, 

2014). There may be the presence of outliers in training samples or insufficiency of pure training samples. 

 

The semi-supervised approach, on the other hand, is in between unsupervised and supervised learning 

approaches in which partial supervision is provided (Olivier et al., 2006). It works with a large number of 

untrained data (unlabeled data) and a minimum number of training samples (labeled data). Based on 

smoothness, cluster and manifold assumptions, it is a better classification approach than supervised 

classification to achieve higher accuracies with limited availability of training samples (Persello & 

Bruzzone, 2014). Semi-supervised learning algorithm uses various models, features, kernel, and similarity 

functions that help to classify data with least number of labeled training samples that are pure and captures 

intra-class variability (Olivier et al., 2006).  

Often present uncertainties and vagueness in collecting pure samples lead to low classification accuracies, 

poor analysis, and decision-making. Their existence in remote sensing images makes it difficult to 

comprehend the veracious nature of information. The uncertainties can be due to vague class definition, 

mixed pixels, and transition zones or fuzzy boundaries (Lucieer, 2004). The vagueness and imprecision 

also called fuzziness that arises from complex real-world phenomenon may be dealt with by means of 

applying Fuzzy Set Theory (Zadeh, 1965). 
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The fuzzy set as introduced by Zadeh (1965) has a fuzzy membership function with flexible membership 

values varying between zero and one. This is in comparison to crisp set, a part of well-known and 

established classical set theory has an advantage of representing vague classes (Enderton, 1977; 

Zimmermann, 2010). The classical set theory as used in hard classification has sharp and crisp boundaries 

and is unable to deal with fuzziness and or complexity of real-world phenomena. It assigns a fixed 

membership value, either zero or one to a pixel. The soft classification technique, on the other hand, is 

more helpful in classifying the images into a set of themes for further analysis.  

Soft classification approaches have been successful in classifying and quantifying uncertainties present in 

the images due to both vague class definitions as well as mixed pixels (Foody, 1996). As per definition, a 

mixed pixel is a pixel having multiple classes within itself. Many sub-pixel classification approaches such as 

Linear Spectral Unmixing have been used to quantify uncertainties due to mixed pixels (Foody & Cox, 

1994). However, uncertainties due to poorly defined classes are often dealt with fuzzy classification 

approaches (Foody, 1996; Lucieer, 2004). In many cases, it has been found that fuzzy classifiers 

incorporate fuzziness in assigning membership values and are suitable for modeling uncertainties (Stein, 

2010). 

 

Fuzzy classifiers can be used to classify remote sensing images and can be based on supervised, 

unsupervised or semi-supervised learning approaches. Semi-supervised fuzzy classifiers are fuzzy 

classifiers with a semi-supervised learning approach that works with a limited amount of labeled data and a 

large number of unlabeled data. The semi-supervised approach can be applied in the pre-classification 

stage, or it can be integrated with an objective function of the classifier at the time of classification. As a 

part of pre-classification step, semi-supervision takes into consideration a small amount of pure labeled 

training samples and then builds upon by increasing the number of unlabeled training samples by 

following one of the assumptions of semi-supervised learning approaches such as Continuity, Cluster or 

Manifold (Zhu, 2008). On the other hand, integrating the semi-supervised approach at classification stage 

needs modification and optimization of the objective function of a classifier with the available labeled 

training set information (Macario & Carvalho, 2010; Pedrycz & Waletzky, 1997).  

In fuzzy classification, representation of similarity of each pixel to a cluster is of key importance. It is 

often expressed in terms of membership function whose value lies in between zero or one. The values 

close to one represents higher similarity between a pixel and a cluster and vice versa (Bezdek et al., 1984). 

Pixels are clustered precisely based on their value of similarity. To enhance the accuracy of classification 

further, a conventional distance measure (Euclidean distance) may be replaced by a more effective 

similarity measure that can meticulously evaluate the distance from a pixel to cluster (mean) (Macario & 

Carvalho, 2015). Therefore, an effective distance measure (statistical distance), or similarity measure can 

further enhance the classification accuracy. Various spectral similarity measures have proved to work for 

hyperspectral imagery such as Spectral Angle Measure as introduced by Kruse et al. (1993), Spectral 

Correlation Measure by van der Meer & Bakker (1997), Spectral Information Divergence by Chang (2000) 

that calculate the similarity between two pixels based on their spectral information.  

Spectral Information Divergence (SID) is a stochastic spectral similarity measure in which spectrum of a 

pixel vector is modeled as a probability distribution, and spectral similarity is defined by measuring the 

discrepancy between the probability distribution of two pixels spectra (Chang, 2000). It relies on the 

concept of Statistical Divergence (Fano, 1961) and Kullback–Leibler divergence (Kullback, 1997). Spectral 

Angle Measure (SAM) and Spectral Correlation Angle (SCA) are deterministic approaches that calculate 

spectral angle and spectral correlation between the spectral signatures of two pixel vectors respectively. 

For smaller distances, the values of Spectral Angle Measure and Euclidean distance are close to each other 

(Du et al., 2004; van der Meer, 2006). The combination of deterministic and stochastic approaches such as 
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Spectral Information Divergence with Spectral Angle Measure and Spectral Correlation Angle as used by 

Du et al. (2004), van der Meer (2006) and Kumar et al. (2011) make two similar spectra even more similar 

and two dissimilar spectra more distinct. In addition, another parameter defined as Spectral 

Discriminatory Power, described by Chang (2000) compares the effectiveness of different spectral 

similarity measures among themselves. It discriminates one pixel from another relative to a reference pixel. 

These hybrid spectral similarity measures work well with high spectral information that is generally present 

in hyperspectral images and proved to have a relatively high spectral discriminatory power than individual 

(non-hybrid) measures (van der Meer, 2006).  

 

Due to the advantages of these hybrid spectral similarity measures in distinctly identifying the spectral 

similarities in hyperspectral imagery, they can also be used to generate precise spectra or pure samples for 

multispectral image classification by precisely refining the training set outliers by measuring similarity 

among them. Work presented by Chauhan & Krishna Mohan (2014) has shown that these hybrid 

measures were successful in generating precise spectra from hyperspectral field spectra by capturing band 

to band variability. In case of semi-supervised learning approach, these hybrid measures can be beneficial 

in identifying the unlabeled data by encapsulating the similar features from the limited labeled training 

data. 

 

The hybrid spectral similarity measures can be used in a fuzzy classifier as a statistical distance measure 

which captures the spectral band to band variability of a pixel vector of which the conventional distance 

and similarity measures such as Euclidean distance are insensitive to. These hybrid spectral similarity 

measures have been studied with respect to hyperspectral remote sensing images due to their higher 

spectral resolution. However, hyperspectral images are very much sensitive to spectral variability due to 

atmospheric effects at the time of data acquisition. On the other hand, multi-spectral images have high 

within-class variability but are less sensitive to atmospheric variations. Therefore, the study on the 

behavior of multispectral imagery with these hybrid measures is a part of this research.  

 

Amidst a lot of research on remote sensing digital image classification, this research aims to study the role 

of these hybrid spectral similarity measures for a semi-supervised fuzzy classifier for classifying multi-

spectral remote sensing imagery and to study their behavior in improving the classification accuracies. 

1.2. Research Identification 

This research addresses the following problems: 

1. Uncertainties due to mixed pixels or vague classes. 

2. An insufficient number of labeled training samples. 

The identification of research lies in the following components: 

1. To handle uncertainties, fuzzy classifiers are used. 

2. To handles noise more effectively, a Possibilistic c Means classifier is used. 

3. Semi-supervised learning is incorporated to deal with an insufficient number of labeled samples. 

4. Hybrid spectral similarity measures are used since they are more sensitive to spectral variations. 

The two major roles of hybrid spectral similarity measures have been identified: 

1. To generate unlabeled training data for applying semi-supervised learning approach. 

2. Replacing the conventional Euclidean distance with hybrid measures in a semi-supervised 

Possibilistic fuzzy classifier as a distance based similarity measure. 

Therefore, the following research studies the effectiveness of the proposed hybrid spectral similarity 

measures in solving the aforementioned problems. 
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1.3. Research Objectives 

The main objective of the proposed research is to study the role of hybrid spectral similarity measures for 

a semi-supervised Possibilistic fuzzy classifier in classifying multispectral imagery. 

The sub-objectives proposed to reach the main objectives are as follows: 

1. To study the effectiveness of the proposed hybrid spectral similarity measures for multispectral 

imagery. 

2. To develop a precise spectrum by using hybrid spectral similarity measures for a multispectral 

image. 

3. To identify and apply a suitable approach for incorporating semi-supervised learning method in a 

Possibilistic fuzzy classifier.  

4. To develop and optimize an objective function for semi-supervised Possibilistic fuzzy classifier 

with hybrid spectral similarity measures. 

5. To compare the performance of hybrid spectral similarity measure with conventional similarity 

measures (Euclidean distance). 

6. To compare the performance of a semi-supervised approach with the supervised approach. 

1.4. Research Questions 

The research questions identified to meet the objectives and sub-objectives of the research are as follows: 

1. Are the proposed hybrid spectral similarity measures effective in identifying the similarity between 

pixels for a multi-spectral image? 

2. Is semi-supervised approach applied before classification better than optimizing the objective 

function of the classifier? 

3. What will be the effect of hybrid spectral similarity measures on classification accuracy as 

compared to conventional similarity measures? 

4. Is proposed semi-supervised Possibilistic fuzzy classifier with hybrid spectral similarity measures 

better in dealing with uncertainties than supervised classifier? 

1.5. Innovation Aimed At 

This research attempts to apply a combination of probabilistic and deterministic approaches as a similarity 

measure in Possibilistic fuzzy classifiers for classifying a multispectral image. Several studies are based on 

similarity measures with their applications on the fuzzy classifier, but they are either based on probabilistic 

or deterministic measures separately. In addition, these hybrid spectral similarity measures have not been 

applied in identifying unlabeled data as a part of semi-supervised learning for multi-spectral imagery. 

1.6. Research Approach 

The generalized methodology has been shown in Figure 1.1. 

1.7. Thesis Structure 

The whole thesis has been organized into seven chapters. Chapter 1 introduces some basic information 

on the background of the topic, research identification, objectives and associated research questions with 

an overview of a generalized methodology. Chapter 2 briefs about the related literature on various 

classification techniques as well as the spectral similarity measures. Chapter 3 discusses the methods 

adopted and classification approaches. Chapter 4 documents the study area, dataset and software used for 

this research. Chapter 5 shows the results obtained during the research. Chapter 6 discusses the results 

obtained. Chapter 7 concludes the research with answers to the research questions and future 

recommendations. 
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Figure 1.1. Generalized Methodology 

Input multi-spectral data 

Semi-supervised signature data 

Labeled data 

Unlabeled data 

Region growing using hybrid spectral 
similarity measures 

Possibilistic c means algorithm 

Accuracy assessment 

Hybrid spectral similarity 
measures 

SID(SAM)
tan, 

SID(SAM)
sin

 

SID(SCA)
tan, 

SID(SCA)
sin

 

Mean Shift algorithm 

Comparison with conventional approaches 

Feature space 
thresholding 

Geometric 
thresholding 

Data refinement Mode estimation 



ROLE OF HYBRID SPECTRAL SIMILARITY MEASURES FOR SEMI-SUPERVISED FUZZY CLASSIFIER 

 

6 

  



ROLE OF HYBRID SPECTRAL SIMILARITY MEASURES FOR SEMI-SUPERVISED FUZZY CLASSIFIER 

 

7 

2. LITERATURE REVIEW 

This chapter presents the survey on the required literature to understand the research and reviewing the 

possible solutions. Section 2.1 discusses the background knowledge of the available classification 

approaches and methods. Section 2.2 provides the literature on the related works. 

2.1. Background Review 

2.1.1. Land cover classification techniques 

Land cover designates both vegetative and non-vegetative features in a concrete form (Campbell, 1996). 

The remote sensing images are capable of providing accurate land cover information directly from 

features or visible evidence available on images. With broadly available literature on various image 

classification techniques to map land cover, various parametric & non-parametric algorithms, supervised, 

unsupervised, soft or hard classification techniques are widely used (Campbell, 1996; Jensen & Lulla, 

1987). These methods could be used to classify images into spectral or informational classes and to 

generate thematic maps for further analysis (Richards & Jia, 2013; Tso & Mather, 2009).  

Supervised classification technique such as Maximum Likelihood Classification is a parametric approach 

and requires effective estimations of mean and covariance. In cases where a reliable estimate of covariance 

matrix is not possible due to limited availability of training data, other non-parametric methods such 

Minimum Distance to mean classification is an effective approach for classification. But the technique has 

a drawback of being insensitive to spectral variances (Lillesand & Kiefer, 2015). Despite limitations of 

classes being normally distributed, Maximum Likelihood Classifier is most commonly used classifier 

(Davis et al., 1978).  

Several other non- parametric classification techniques allow classifying and analyzing data with no pre-

assumed distribution. Simplest of the techniques are kNN (nearest Neighbour) classification approach and 

Look Up tables but are often impractical and inefficient to obtain accurate and reliable results (Richards & 

Jia, 2013). Advanced techniques such as Artificial Neural Networks (ANN) with its commonly used Multi-

Layer Perceptron (MLP) and Support Vector Machines (SVM) are effective in dealing with complex 

networks by incorporating advanced learning mechanisms (Atkinson & Tatnall, 1997; Mountrakis et al., 

2011). However, a large training data set is required for such complex learning procedures to produce 

generalized outcomes. 

In terms of dealing with uncertainties, fuzzy clustering being the most widely used clustering algorithm 

helps in classifying data with vague definitions (Tso & Mather, 2009). Several sub-pixel classification 

techniques have also been used for handling mixed pixels. 

2.1.2. Clustering and fuzzy classification 

Grouping of spectrally similar pixels in a multispectral or a hyperspectral space is often known as 

Clustering (Richards & Jia, 2013). It is a process in which pixels that are more spectrally similar are put 

into similar clusters, by means of applying a similarity criterion. It is also known as unsupervised 

classification approach for classifying data based on the available spectral information as shown in Figure 

2.1. 

A crisp boundary or a statement is itself a subset of a vague concept (Fisher, 1997). A source deriving 

some information is often poorly defined and is limited to the perception of an observer. The 



ROLE OF HYBRID SPECTRAL SIMILARITY MEASURES FOR SEMI-SUPERVISED FUZZY CLASSIFIER 

 

8 

geographical information, scientific facts, human-interpreted behaviors are themselves falsifiable in order 

to ameliorate the existing theories and facts. 

 

 

 

 

 

 

In the field of remote sensing, a few causes for uncertainties in remote sensing comes from the techniques 

and sources of data acquisition such as sensor resolution, sensor sensitivity, geometric calibration and 

atmospheric conditions (Lucieer, 2004). Furthermore, information obtained has uncertainties derived 

from poorly defined boundaries, often represented as fuzzy boundaries or fuzzy transition zones. Presence 

of mixed pixels and vague classes often results in uncertainties which can restrain the anatomization of 

remotely sensed image at the time of image classification (Shi et al., 2005). 

Fuzzy set theory as proposed by Zadeh (1965) provides a framework for modeling vagueness. A lot of 

work has successfully substantiated the use of fuzzy approaches in quantifying the uncertainties present in 

remotely sensed images. A process of visualization of uncertainties as a qualitative approach manifests 

spatial behaviors and patterns of uncertainties (Cheng, 2002). 

Clustering can be categorized as Soft Clustering and Hard Clustering. Soft clustering approach is better 

where the classification is based on membership values lies in between zero and one and has been applied 

in various applications to improve classification accuracies (Belohlavek & Vychodil, 2005; Shepard, 2005). 

Hard clustering approaches are on the other hand inappropriate in accounting reliable information where 

boundaries are vaguely defined, and pixels are mixed. Out of various fuzzy classification algorithms, Fuzzy 

c-Means (Bezdek et al., 1984) works well with various land cover classification. It can be implemented by 

applying both supervised and unsupervised procedures. It is a widely applied soft classification approach. 

It gives a membership value which is shared among different clusters. It is based on the concept of fuzzy 

logic and fuzzy set theory (Zadeh, 1965). In the literature, different work on mapping and estimating sub-

pixel level information using Fuzzy c Means algorithm is available (Fisher & Pathirana, 1990; Foody, 

2000). The Fuzzy c-Means algorithm is however sensitive to noise and outliers (Chawla, 2010). 

2.1.3. Possibilistic c Means classification 

In the domain of pattern recognition and computer vision, clustering methods have been one of the 

foremost choice for analyzing inherent features in images. Due to limitations of fuzzy clustering 

algorithms such as Fuzzy c Means, a possibilistic framework for clustering has been presented by 

Krishnapuram & Keller (1993). A possibilistic approach to clustering provides an intuitive way of dealing 

with class memberships, and the conceptual framework abides the constraint of the degree of 

compatibility or belongings than of degree of sharing. A possibilistic view of clustering is based on the 

idea of modeling vagueness by generating membership distribution of a feature vector in a class which is 

unique for a class and is independent of the distribution of membership in other classes. 

The Possibilistic c Means algorithm characterize data with partitions that are able to handle noise and 

outliers more effectively than the conventional algorithms. Having an advantage of flexible hyperplane 

Figure 2.1. Clustering, showing grouping of similar features together. The features are represented by different 
shapes. 
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constraint that can handle noise and outliers, it produces coincident clusters and needs proper initialization 

values (Krishnapuram & Keller, 1996). 

The Possibilistic c Means algorithm ameliorate the results of Fuzzy c Means algorithm by assigning pixels 

to more than one cluster by relaxing the hyperplane constraint and producing memberships as per the 

belongingness of a pixel to a cluster. As described by Krishnapuram & Keller (1993), noise points are 

assigned very low membership values in all clusters, and the closest point has a greater membership value 

than the farther ones which helps in obtaining more accurate cluster centers. In case of a single cluster, the 

Possibilistic c Means algorithm tend to outperform the Fuzzy c Means algorithm (Krishnapuram & Keller, 

1996; Wu & Zhou, 2006). 

2.1.4. Spectral similarity measures 

Spectral Similarity measures are used to measure the similarity between the spectral signatures of the two 

pixels. In the literature, most commonly used measure is Euclidean distance. Other commonly used 

distance-based similarity measures include Manhattan, Chessboard, Cosine, Bray Curtis, Canberra, Mean 

Absolute Difference, etc. (Dongre, 2016; Mukhopadhaya, 2016) are able to define distance-based similarity 

between the pixels. Various other spectral similarity measures such as Spectral Angle Measure, Spectral 

Correlation Angle, and Spectral Information Divergence have been identified and are proved better in 

finding the similarity between pixels for a hyperspectral image (van der Meer, 2006). As a distance based 

metric, a similarity measures must follow the following axioms (Goshtasby, 2012). 

Distance-Based Similarity Measures follows four distance axioms: 

The relation between the distance (D) and Perceived Similarity (S) 

Let 𝑎 = {𝒶1, 𝒶2, … 𝒶𝑁} and 𝑏 = { 𝑏1,  𝑏2, …  𝑏𝑁} be any two measurements. 

 Equal self-similarity: 

𝐷(𝑎, 𝑎) = 𝐷(𝑏, 𝑏) ∀𝑎, 𝑏 

𝑆(𝑎, 𝑎) = 𝑆(𝑏, 𝑏) ∀𝑎, 𝑏 

 Minimality: 

𝐷(𝑎, 𝑏) > 𝐷(𝑎, 𝑎) ∀𝑎 ≠ 𝑏 

𝑆(𝑎, 𝑏) < 𝑆(𝑎, 𝑎) ∀𝑎 ≠ 𝑏 

 Symmetry: 

𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑎) ∀𝑎, 𝑏 

𝑆(𝑎, 𝑏) = 𝑆(𝑏, 𝑎) ∀𝑎, 𝑏 

 Triangle Inequality: 

𝐷(𝑎, 𝑏) + 𝐷(𝑏, 𝑐)  ≥ 𝐷(𝑎, 𝑐) ∀𝑎, 𝑏, 𝑐 

If a and b are similar, b and c are similar implies that a and c should also be similar. 

2.1.5. Semi-supervised approach to image classification 

The semi-supervised approach is a technique in which a classifier takes into consideration only a small 

number of training data (labeled) all together with a large amount of untrained (unlabeled) data. This 
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technique is effective and efficient as it does not have to deal with the problems related to a collection of a 

large number of labeled training samples. 

In literature, there are many methods available for implementing the semi-supervised learning such as 

kernels, similarity measures, models, features, etc. (Zhu, 2008). The methods can be transductive or 

inductive. Some of the methods include co-training, self-training, expectation-maximization with 

generative mixture models, transductive Support Vector Machines, graph-based methods, etc. (Olivier et 

al., 2006). The choice of technique or model chosen depends upon clustering process and data 

characteristics such as similarity and features present in the data. 

In case of semi-supervised clustering, a distance-metric is often used to provide some constraints on data 

to define whether a pixel or data would belong to a particular cluster or not. There are metric based 

models to detect inconsistency with labeled data (Schuurmans & Southey, 2002). The distance-based 

learning approach has many applications in semi-supervised, non-linear interpolation and clustering 

(Orlitsky, 2005). 

 
The semi-supervised learning approach uses one of the following assumptions in order to use the 

unlabeled training data (Zhu, 2008): 

1. Continuity Assumption: The likelihood of sharing a label is higher for closer points than the farther 

points. 

2. Cluster Assumption: The likelihood of sharing a label is higher for points that are in a set of a 

common discrete cluster of data. 

3. Manifold Assumption: The input space or input dimensions could be much larger than the actual 

data which tend to lie on the manifold of dimensions which are much lower. 

2.1.6. Assessment of Accuracy  

Accuracy is defined on the basis of how closely the test value is in agreement with the true value. It 

involves estimating the errors related to the sources. The sources of errors differ with the data, 

environmental conditions of experiments and measurement techniques. In the field of remote sensing, the 

different sources of collection of data have different scales of errors and can be accessed qualitatively and 

quantitatively in different ways by observing the difference in the obtained and true value. 

One of the major requirement of assessing the quality of classified products of the remote sensing images 

comes with the largely available data for interpretation. Accuracy assessment has a major role in assessing 

the quality of different classification algorithms by quantifying the output of the classified products. It 

allows to have confidence in the obtained results and serves as an indication whether the objectives of the 

proposed analysis have been achieved or not. In terms of classification, there are various ways in which 

accuracies can be computed which include estimation of error matrix or confusion matrix or sometimes 

also called as contingency matrix. It also gives information about User’s Accuracy, Producer’s Accuracy, 

Overall Accuracy and kappa coefficient (Campbell, 1996).  

The error matrix has been used successfully in case of hard classified outputs and gives the estimation of 

misclassification based on the reference data.  The reference data can be higher resolution imagery, ground 

truth information, reference maps for the same area. For soft classified outputs, i.e., where a single pixel 

belongs to more than one class, the concept of Fuzzy Error Matrix (Binaghi et al., 1999) has been 

successfully put forth and implemented in accessing the accuracy of remotely sensed images.Various other 

accuracy assessment techniques involve Entropy, Root Mean Square Error, Sub-pixel Confusion 

Uncertainty Matrix at the pixel level or class level, and many more (Campbell, 1996; Kandpal, 2016). 
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2.2. Recent Related Work 

In literature, various work has been done in the field of soft classification for various applications to 

improve classification accuracies (Belohlavek & Vychodil, 2005; Shepard, 2005). Out of various fuzzy 

classification algorithms, Fuzzy c-Means works well with various land cover classification but is sensitive 

to noise and outliers (Chawla, 2010). A possibilistic counterpart of Fuzzy c-Means is Possibilistic c-Means 

that have membership values representing “degree of belongingness” of a pixel instead of “degree of 

sharing” (Chawla, 2010; Dongre, 2016; Krishnapuram & Keller, 1993). Having an advantage of flexible 

hyperplane constraint that can handle noise and outliers, it produces coincident clusters and needs proper 

initialization values (Krishnapuram & Keller, 1996). Various improvements and modifications have been 

proposed such as Improved Possibilistic c-Means (IPCM) algorithm by Zhang & Leung (2004), Enhanced 

Possibilistic c-Means (EPCM) by Xie et al. (2008) earlier that proved to work better than both Fuzzy c-

Means and Possibilistic c-Means.  

 

Miyamoto et al. (2008) describe various fuzzy clustering algorithms with their modifications based on 

kernels, similarity and dissimilarity measures. Similarity and dissimilarity measures were incorporated as 

distance measure in fuzzy classifiers as proposed by Lee et al. (2009). Zwick et al. (1987) demonstrated the 

measure of similarity among fuzzy concepts. Goshtasby (2012) shows different similarity and dissimilarity 

measures and their properties. In addition, various different distance, as well as similarity measures such as 

Euclidean, Mahalanobis, Cosine, Chessboard, were studied with Fuzzy c-Means by Mukhopadhaya (2016), 

with Possibilistic c-Means, Improved Possibilistic c-Means, Modified Possibilistic c-Mean by Dongre 

(2016) and with Noise Classifier by Panda (2017).  

 

A discriminatory measure as defined by Kumar et al. (2011) includes hybrid approaches for Spectral 

Information Divergence (SID) with Spectral Angle Measure (SAM) and Spectral Correlation Angle (SCA) 

with sin and tan functions that make two similar and dissimilar spectra more similar and dissimilar 

respectively. Hybrid measures such as Jefferies-Matusita and Spectral Angle Measure has been successful 

in classifying mangroves using hyperspectral imagery (Padma & Sanjeevi, 2014). 

 

In addition, the semi-supervised approach has been applied in hard and soft  classification applications 

with soft, sparse multimodal regression model (Li et al., 2011). They have been extensively used along with 

active learning approaches, as shown by Drews et al. (2013). Bouchachia & Pedrycz (2006) and 

Shanbehzadeh (2013) have shown various improvements of fuzzy classifiers in semi-supervised learning 

approach with the integration of semi-supervised approach in the objective function of a classifier. 

Modification of objective function for possibilistic classifiers with semi-supervised approach has also been 

studied (Liu & Wu, 2013). 
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3. METHODS AND CLASSIFICATION APPROACHES 

This chapter describes the methods and approaches used in this research to achieve the desired objectives. 

Section 3.1 presents the conceptual review of various spectral similarity measures. Section 3.2 discusses 

the Possibilistic c Means classifier. Section 3.3 provides a review of the algorithms used in this research 

for Possibilistic c Means classifier. Section 3.4 discusses the semi-supervised approach, and the roles of 

hybrid measures for a Possibilistic c Means classifier. It also discusses the application of mean shift for 

improving the classification results. This section also discusses the accuracy assessment techniques used in 

this research. Section 3.5 discusses the comparison techniques. 

3.1. Spectral similarity measures 

3.1.1. Euclidean Distance 

Euclidean distance (𝐸𝐷) is a well-known spectral similarity measure that calculates the similarity between 

two spectral signatures by calculating the square root of the squared difference between them (van der 

Meer, 2006).  

 
𝐸𝐷(𝑠, 𝑠 ′) = ‖𝑠 − 𝑠 ′‖ = √∑ (𝑠𝑗 − 𝑠𝑗

′)
2𝐿

𝑗=1      
(3.1) 

In equation (3.1), 𝑠 and 𝑠′ are the spectral signature vector of two pixel vectors 𝑋 and 𝑋′ and 𝐿 is a set of 

wavelengths corresponding to spectral band channel. 

3.1.2. Spectral Angle Measure 

Spectral Angle Measure (𝑆𝐴𝑀) is a widely used hyperspectral similarity measure that calculates the 

similarity between two spectral signatures by measuring the angle between them with dimensionality 

equals to  number of spectral bands (Kruse et al., 1993). It calculates angle between two spectral signatures 

𝑠 and 𝑠′ for pixel vectors 𝑋 and 𝑋′.  

 
𝑆𝐴𝑀(𝑠, 𝑠′) = cos−1

(
∑ 𝑠𝑗𝑠𝑗

′𝐿
𝑗=1

(√∑ 𝑠𝑗
2𝐿

𝑗=1 √∑ 𝑠𝑗
′2𝐿

𝑗=1 )
)      

   (3.2) 

In equation (3.2),  𝐿 is a set of wavelengths corresponding to spectral band channel. It has a lower bound 

of 0 and values greater than 1, with a maximum of 1.57, and is insensitive to Albedo and illumination 

effects.  

3.1.3. Spectral Correlation Angle 

Spectral Correlation Angle (𝑆𝐶𝐴) as described by van der Meer & Bakker (1997) calculates the Pearsonian 

Correlation coefficient between the spectral signatures of two-pixel vectors. 

 
𝑟(𝑠, 𝑠′) =

𝐿 ∑ 𝑠𝑗𝑠𝑗
′−∑ 𝑠𝑗 ∑ 𝑠𝑗

′𝐿
𝑗=1

𝐿
𝑗=1

𝐿
𝑗=1

√[𝐿 ∑ 𝑠𝑗
2−(∑ 𝑠𝑗

𝐿
𝑗=1 )

2
𝐿
𝑗=1 ][𝐿 ∑ 𝑠𝑗

′2−(∑ 𝑠𝑗
′𝐿

𝑗=1 )
2

𝐿
𝑗=1 ]

    
   (3.3a) 
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In equation (3.3a), 𝑠 and 𝑠′ are the spectral signature vector of two pixel vectors  𝑋 and 𝑋′ and 𝐿 is a set 

of wavelengths corresponding to spectral band channel.  

The coefficient reflects the extent of the linear relationship between two spectra and has a value in 

between -1 to 1.  

 𝑆𝐶𝐴(𝑠, 𝑠′) = cos−1 (
𝑟(𝑠,𝑠′)+1

2
)    

   (3.3b) 

It is converted into an angle (in radians) for comparison to other measures and is described by equation 

(3.3b). 

3.1.4. Spectral Information Divergence 

Based on the concept of statistical divergence (Fano, 1961) and Kullback–Leibler divergence (Kullback, 

1997), Spectral Information Divergence is a stochastic spectral similarity measure in which spectrum of a 

pixel vector is modeled as a probability distribution. The spectral similarity is defined by measuring the 

discrepancy between the probability distribution of two pixels spectra (Chang, 2000). It relies on the 

theory and concept of Spectral Information Measure (𝑆𝐼𝑀) which is an information-theoretic measure 

(Chang, 2000). As per  𝑆𝐼𝑀, the spectral signature histogram is used as the desired probability distribution 

after normalizing it to unity and each pixel is treated as a random variable. It models spectral band to band 

variability. 

The concept of Spectral Information Measure is explored to understand the derived Spectral Information 

Divergence. Let 𝑋 be a pixel vector defined as (𝑋1, 𝑋2, … . , 𝑋𝐿)𝑇, where 𝑋𝑖  is a pixel in Band 𝐵𝑗 , acquired 

at a wavelength 𝜔𝑗, where {𝜔𝑗}
𝑗=1,…𝐿 

, where 𝑗 represents 𝐿 wavelengths and 𝑖 represents 𝑁 pixels. Let 

𝑆 = (𝑠1, 𝑠2, … . , 𝑠𝐿)𝑇 be the spectral signature of a pixel vector 𝑋, represented as the spectrum of 

reflectance or radiances. 

Assuming, the components of 𝑆 (reflectance and radiances) as non-negative, we define probability 

measure in probability space (Ω, Σ, Α), where Ω is sample space and defined as (𝜔1, 𝜔2, … . , 𝜔𝐿), Σ is an 

event space which is a set of all subsets of Ω and Α is a probability measure whose values lies in 

range [0,1]. 

 𝐴𝑗 =
𝑠𝑗

∑ 𝑠𝑙
𝐿
𝑙=1

 
   (3.4) 

In equation (3.4), 𝐴 = (𝐴1, 𝐴2, … . , 𝐴𝐿)𝑇 is the desired probability vector for pixel vector 𝑋.  

 𝐼𝑗(𝑋) =  − log(𝐴𝑗)      (3.5) 

 

𝐻(𝑋) =  − ∑ 𝐴𝑗 log(𝐴𝑗)

𝐿

𝑗=1

=  ∑ 𝐴𝑗𝐼𝑗(𝑋)

𝐿

𝑗=1

 

   (3.6) 

The equation (3.5) and equation (3.6) shows the self-information 𝐼𝑗(𝑋) for a particular band 𝐵𝑗 and the 

entropy 𝐻(𝑋) of each pixel 𝑋. 
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Spectral Information Divergence (𝑆𝐼𝐷) calculates spectral correlation between two pixel vectors. Let 𝑋′ 

be another pixel vector defined as (𝑋1
′ , 𝑋2

′ , … . , 𝑋𝐿
′ )𝑇 with spectral the signature 𝑆′ = (𝑠1

′ , 𝑠2
′ , … 𝑠𝐿

′ )𝑇 and 

probability vector 𝐴′ = (𝐴1
′ , 𝐴2

′ , … 𝐴𝐿
′ )𝑇 . 

 

 
𝐷(𝑋 ∥ 𝑋′) = ∑ 𝐴𝑗𝐷𝑗(𝑋 ∥ 𝑋′)𝐿

𝑗=1 =  ∑ 𝐴𝑗 (𝐼𝑗(𝑋) − 𝐼𝑗(𝑋′))𝐿
𝑗=1 = ∑ 𝐴𝑗 log (

𝐴𝑗

𝐴𝑗
′)𝐿

𝑗=1   
   (3.9) 

 

The equation (3.7) shows the self-information and equation (3.8) shows the relative entropy of 𝑋′ with 

respect to 𝑋. 𝐷(𝑋′ ∥ 𝑋) is also known as cross-entropy, directed divergence or Kullback-Leibler 

information measure. The relative entropy of 𝑋 with respect to 𝑋′ has been described in equation (3.9) 

 𝑆𝐼𝐷(𝑋, 𝑋′) = 𝐷(𝑋 ∥ 𝑋′)  + 𝐷(𝑋′ ∥ 𝑋) 

 

   (3.10) 

Spectral Information Divergence (𝑆𝐼𝐷) as given by Chang (2000) is defined as shown in equation (3.10), 

where, 𝐷(𝑋 ∥ 𝑋′) ≠ 𝐷(𝑋′ ∥ 𝑋) 

Lesser the value of  𝑆𝐼𝐷, more similar the spectral signatures are to each other. 

 

3.1.5. Hybrid Spectral Similarity Measures 

3.1.5.1. Spectral Information Divergence-Spectral Angle Measure 

The hybrid approach for Spectral Information Divergence (𝑆𝐼𝐷) with Spectral Angle Measure (𝑆𝐴𝑀) has 

been proposed by Du et al. (2004) as a hyperspectral similarity measure that performs better than 𝐸𝐷, 

𝑆𝐴𝑀 and 𝑆𝐼𝐷 if, applied individually. The hybrid approach of Spectral Angle Measure as deterministic 

approach and Spectral Information Divergence as the stochastic approach multiplies the spectral ability of 

two signatures that make two similar and dissimilar spectra more similar and dissimilar respectively. The 

discriminatory ability of the hybrid approach has been proved better than the individuals as the hybrid 

approach combines the strengths of the two measures (Chang, 2000; Du et al., 2004; Kumar et al., 2011). 

Let 𝑆 = (𝑆1, 𝑆2, … . 𝑆𝐿)𝑇and 𝑆′ = (𝑆1
′ , 𝑆2

′ , … . 𝑆𝐿
′ )𝑇be the spectral signature of two pixel vectors 𝑋 =

(𝑋1, 𝑋2, … . , 𝑋𝐿)𝑇and 𝑋′ = (𝑋1
′ , 𝑋2

′ , … . , 𝑋𝐿
′ )𝑇.  

 𝑆𝐼𝐷(𝑆𝐴𝑀𝑡𝑎𝑛) = 𝑆𝐼𝐷(𝑠, 𝑠′) × tan(𝑆𝐴𝑀(𝑠, 𝑠′))    (3.11) 

 𝐼𝑗(𝑋′) =  − log(𝐴𝑗
′)    (3.7) 

 
𝐷(𝑋′ ∥ 𝑋) = ∑ 𝐴𝑗

′𝐷𝑗(𝑋′ ∥ 𝑋) = ∑ 𝐴𝑗
′ (𝐼𝑗(𝑋′) − 𝐼𝑗(𝑋))𝐿

𝑗=1
𝐿
𝑗=1 = ∑ 𝐴𝑗

′ log (
𝐴𝑗

′

𝐴𝑗
)𝐿

𝑗=1   
   (3.8) 
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 𝑆𝐼𝐷(𝑆𝐴𝑀𝑠𝑖𝑛) = 𝑆𝐼𝐷(𝑠, 𝑠′) × sin(𝑆𝐴𝑀(𝑠, 𝑠′))    (3.12) 

Equation (3.11) and equation (3.12) shows the hybrid function for Spectral Information Divergence and 

Spectral Angle Measure with sin and tan trigonometric functions (Chang, 2000). Here, the cosine function 

is not used, since it calculates the projection of one spectral signature along the other instead of 

orthogonal distance, thereby reducing the discriminability. 

3.1.5.2. Hybrid Spectral Information Divergence-Spectral Correlation Angle 

Similar to the hybrid of Spectral Information Divergence and Spectral Angle Measure, Kumar et al. 

(2011), proposed a hybrid approach of the stochastic Spectral Information Divergence with the 

deterministic Spectral Correlation Angle which has the better discriminatory capability for hyperspectral 

signatures. It minimizes the shading effect as caused when using Spectral Angle Measure and eliminates 

the negative correlation. 

Let 𝑆 = (𝑆1, 𝑆2, … . 𝑆𝐿)𝑇and 𝑆′ = (𝑆1
′ , 𝑆2

′ , … . 𝑆𝐿
′ )𝑇 be the spectral signature of two pixel vectors 𝑋 =

(𝑋1, 𝑋2, … . , 𝑋𝐿)𝑇and 𝑋′ = (𝑋1
′ , 𝑋2

′ , … . , 𝑋𝐿
′ )𝑇.  

 𝑆𝐼𝐷(𝑆𝐶𝐴𝑡𝑎𝑛) = 𝑆𝐼𝐷(𝑠, 𝑠′) × tan(𝑆𝐶𝐴(𝑠, 𝑠′))    (3.13) 

 𝑆𝐼𝐷(𝑆𝐶𝐴𝑠𝑖𝑛) = 𝑆𝐼𝐷(𝑠, 𝑠′) × sin(𝑆𝐶𝐴(𝑠, 𝑠′))    (3.14) 

Equation (3.13) and equation (3.14) shows the hybrid function for Spectral Information Divergence and 

Spectral Correlation Angle with sin and tan trigonometric functions (Chang, 2000). Here also, the cosine 

function is not used because of the similar reasons as in 𝑆𝐼𝐷 − 𝑆𝐴𝑀 hybrid approach. 

3.1.6. Spectral Discriminatory Power 

To evaluate the effectiveness of different spectral similarity measures among each other, Chang (2000), 

defines a metric known as relative Spectral Discriminatory Power (𝑆𝐷𝑃). It discriminates the spectral 

signature of one pixel from another relative to a reference pixel. 

Let 𝑝 and 𝑞 be the spectral signature of any pair of pixel vectors, 𝐷 be the spectral signature of a reference 

pixel 𝑑 and 𝑚 is any given spectral similarity measure. 

  

𝑆𝐷𝑃𝑚(𝑝, 𝑞, 𝐷) = max
𝑚>0

{
𝑚(𝑝, 𝐷)

𝑚(𝑞, 𝐷)
,
𝑚(𝑞, 𝐷)

𝑚(𝑝, 𝐷)
}       

 

    

(3.15) 

Higher the 𝑆𝐷𝑃𝑚(𝑝, 𝑞, 𝐷) as described in equation (3.15), the better is the discriminatory power of 𝑚 

with respect to a reference. It is symmetric and bounded below by 1 𝑖. 𝑒. ≥ 1 with equality iff 𝑝 and 𝑞 is 

equal. 

3.2. Possibilistic c Means classifier 

To generate the absolute value of memberships which represents typicality or compatibility with an elastic 

constraint, the modification to the initial Fuzzy c Means algorithm (𝐹𝐶𝑀), equation (3.16a) and equation 
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(3.16b), have been put forth by Krishnapuram & Keller (1993) known as Possibilistic c Means algorithm 

(𝑃𝐶𝑀). 

 

𝐽𝐹𝐶𝑀(𝑣, 𝜇) = ∑ ∑ 𝜇𝑖𝑗
𝑚𝑑𝑖𝑗

2

𝑁

𝑗=1

𝐶

𝑖=1

 

(3.16a) 

Where, 
∑ 𝜇𝑖𝑗 = 1    ∀𝑗

𝐶

𝑖=1
 

(3.16b) 

 𝜇𝑖𝑗 =
1

∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)

2
𝑚−1

𝐶
𝑘=1

      

(3.17a) 

 

  

𝜈𝑖 =

∑ (𝜇
𝑖𝑗)

𝑚
𝑥𝑗

𝑁
𝑗=1

∑ (𝜇
𝑖𝑗)

𝑚𝑁
𝑗=1

 

 

    

(3.17b) 

Here, 𝜇 is membership value of pixel 𝑗 in cluster 𝑖 

𝑁 is the total number of pixels in an image,  

𝑥 is the data present in an image, {𝑥1, 𝑥2, … . 𝑥𝑁}, 

𝑑 is the distance from pixel 𝑗 to cluster 𝑖 

𝑐 is the number of clusters   

𝑚 is the weight parameter that controls the degree of fuzziness, and 

𝑣 is the center for cluster 𝑖 

 

 𝜇𝑖𝑗 ∈ [0,1]    ∀ 𝑖, 𝑗          

(3.18) 

 
0 < ∑ 𝜇𝑖𝑗 < 𝑁    ∀ 𝑖

𝑁

𝑗=1

       
    

(3.19) 

The membership values for the Fuzzy c Means algorithm, as described in equation (3.17a), follows the 

criterion from equation (3.18) and equation (3.19).  

 
𝜇𝑖𝑗 =

1

1 + 𝑑 𝑖𝑗
  

   (3.20) 

 

𝐽𝑃𝐶𝑀(𝑣, 𝜇) = ∑ ∑ 𝜇𝑖𝑗
𝑚𝑑𝑖𝑗

2 + ∑ 𝜂𝑖 ∑(1 − 𝜇𝑖𝑗)
𝑚

𝑁

𝑗=1

𝐶

𝑖=1

𝑁

𝑗=1

𝐶

𝑖=1

 
   (3.21) 
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A model for membership function as described by Zimmermann & Zysno (1985) conceptualizes a 

framework of modeling vague clusters with centers as described in equation (3.17b). Following the 

concept of the model, class memberships of every pixel are defined as shown in equation (3.20) and the 

objective function of Possibilistic c Means algorithm (𝑃𝐶𝑀) is formulated as equation (3.21). In order to 

avoid the trivial solution, when all memberships are zero, a regularization term or a penalty term is added 

to the objective function of 𝐹𝐶𝑀 to have the high memberships of representative feature points. 

Also, 𝑚𝑎𝑥(𝜇𝑖𝑗) > 0  ∀ 𝑗 relaxing the hyperplane constraint on membership values as compared to 

 𝐹𝐶𝑀 in equation (3.16b). 

 
𝜂𝑖 = Κ

∑ 𝜇𝑖𝑗
𝑚𝑑𝑖𝑗

2𝑁
𝑗=1

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑗=1

    
   (3.22) 

 𝜇𝑖𝑗 =
1

1+(
𝑑𝑖𝑗

2

𝜂𝑖
)

1
𝑚−1

     (3.23) 

Here 𝜂 is a positive number known as a resolution parameter or bandwidth of the distribution of 

possibilistic membership function for each cluster. The distance at which the membership value of a point 

in a cluster becomes 0.5, is determined by the value of 𝜂 and is related with the overall shape of a cluster. 

It is estimated as shown in equation (3.22). The membership values are dependent on the estimation of 

this parameter as shown in equation (3.23). 

Advantages: 

Outliers and Noisy data can be handled with Possibilistic c Means algorithm, as it assigns lower 

memberships to the unrepresentative data in all the clusters and in case of supervised classification, 𝑃𝐶𝑀 

works better than 𝐹𝐶𝑀 for untrained classes (Krishnapuram & Keller, 1993; Wu & Zhou, 2006). 

Disadvantages: 

𝑃𝐶𝑀 is highly sensitive towards initialization values and produces coincident clusters (Zhang & Leung, 

2004). 

3.3. Algorithmic review for supervised Possibilistic c Means classifier 

The basic steps for a supervised Possibilistic c Means classifier are as follows: 

1. Collect the training data with the desired number of classes. 

2. Initialize a value of 𝑚, the degree of fuzziness. 

3. Calculate mean from the training data and initial class membership values. 

4. Calculate 𝜂 and final memberships of every pixel to every class. 

The Possibilistic c Means classifier can follow either of the ways as described in Figure 3.1(a) and Figure 

3.1(b) for estimating the parameter values. 

Case 1: When membership values are initialized first. 

Initial membership values: obtained from labeled training data 

𝜂  :  Depends only on labeled training data (initial memberships) 
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The approach has been shown in Figure 3.1(a), and the steps are described as follows: 

1. Initialize the class memberships from the labeled training data. 

2. Calculate Mean and distance of each pixel to this mean. 

3. Calculate 𝜂 using the initialized class memberships. 

4. Calculate final membership values of every pixel to every class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

Input Data (x) 

𝑣𝑖 =  
∑ 𝜇𝑖𝑗

𝑚𝑁
𝑗=1 𝑥𝑖

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑗=1

   ; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

  

𝑑𝑖𝑗
2 = ‖(𝑥𝑗 − 𝑣𝑖)‖

2

𝐴
; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

𝜂𝑖 = 𝐾 
∑ 𝜇𝑖𝑗

𝑚𝑁
𝑗=1 𝑑𝑖𝑗

2

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑗=1

; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

µ𝑖𝑗 =  
1

1 + (
𝑑𝑖𝑗

2

𝜂𝑖 

)

1

𝑚−1

; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

 

µ𝑖𝑗 = 1,  𝑃𝑗 ∈ 𝑘 

µ𝑖𝑗 = 0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

 

𝐶𝑙𝑎𝑠𝑠𝑙𝑎𝑏𝑒𝑙𝑠 = {𝐶𝑖}; 1 ≤ 𝑖 ≤ 𝑘 

 𝑃𝑖𝑥𝑖𝑑 = {𝑃𝑗}; 𝑗 ∈ 𝑁 

 

𝑇𝑅 = {𝑃𝑖𝑥𝑖𝑑 , 𝐶𝑙𝑎𝑠𝑠𝑙𝑎𝑏𝑒𝑙𝑠} 
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(b) 

Case 2: When mean value is estimated first.  

Initial membership values: obtained from all pixels  

𝜂  :  Depends on all pixel values (estimated initial memberships) 

The approach has been shown in Figure 3.1(b), and the steps are described as follows: 

Figure 3.1. Supervised Possibilistic c means approach (a) Case 1 (b) Case 2, where, 𝐴 = 𝐼 (Identity Matrix) = 

Euclidean Norm, 𝐾 = 1, 𝑇𝑅 is the labeled training data which consists of Pixel Id (𝑃𝑗) and class labels (𝐶𝑙𝑎𝑠𝑠𝑙𝑎𝑏𝑒𝑙𝑠), 

𝑘 is the number of clusters, 𝑥 is the data present in an image, 𝑁 is the number of pixels in the image, µ𝒊𝒋 is the 

membership value of pixel 𝑗 in class 𝑖, 𝜂𝑖 is the bandwidth or resolution parameter, 𝑑𝑖𝑗
2  is the squared distance between 

pixel 𝑗 and mean value (𝑣) of cluster 𝑖, 𝑚 is the degree of fuzziness with value = 2. 

Input Data (x) 𝑇𝑅 = {𝑃𝑖𝑥𝑖𝑑 , 𝐶𝑙𝑎𝑠𝑠𝑙𝑎𝑏𝑒𝑙𝑠} 

𝑣𝑖 =  
∑ 𝑥𝑖

𝑁
𝑗=1

𝑁
 ; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

𝑑𝑖𝑗
2 = ‖(𝑥𝑗 − 𝑣𝑖)‖

2

𝐴
; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

µ𝑖𝑗 =  
1

∑ (
𝑑𝑖𝑗

2

𝑑𝑚𝑗
2 )𝑘

𝑚=1

1

𝑚−1

; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

  

𝜂𝑖 = 𝐾 
∑ 𝜇𝑖𝑗

𝑚𝑁
𝑗=1 𝑑𝑖𝑗

2

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑗=1

; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

µ𝑖𝑗 =  
1

1 + (
𝑑𝑖𝑗

2

𝜂𝑖 

)

1

𝑚−1

; 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑖 ≤ 𝑘 

 

𝐶𝑙𝑎𝑠𝑠𝑙𝑎𝑏𝑒𝑙𝑠 = {𝐶𝑖}; 1 ≤ 𝑖 ≤ 𝑘 

 𝑃𝑖𝑥𝑖𝑑 = {𝑃𝑗}; 𝑗 ∈ 𝑁 
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STEP 1: Initialize the class mean values from the labeled training data. 

STEP 2: Calculate the distance of each pixel to this mean. 

STEP 3: Calculate initial membership values using the calculated distance. 

STEP 4: Calculate 𝜂 using the initialized class memberships. 

       STEP 5: Calculate final membership values of every pixel to every class. 

 

Note: The major difference in both the approaches lies in the estimation of initial class membership values 

𝜇 and 𝜂.  

3.4. Semi-supervised Possibilistic c Means classifier 

3.4.1. The semi-supervised approach in classification 

The semi-supervised Possibilistic c Means clustering algorithm uses a very few labeled training samples and 

a large number of unlabeled samples for the calculation of parameters such as mean, memberships and 𝜂. 

The following diagram as represented in Figure 3.2 depicts the generalized semi-supervised approach to 

classification using a Possibilistic c Means classifier. 

The semi-supervised Possibilistic c Means classifier can follow any of the cases as described in Section 3.3, 

but in this type of learning approach, the signature data contains both labeled as well as unlabeled data in 

which labeled data are very few in number.  

 

 

 

 

 

 

 

 

 

 

 

3.4.2. Semi-supervised signature/training data 

The semi-supervised data consists of a small number of labeled training samples and a large number of 

unlabeled data. 

 

Figure 3.2. Generalized procedure for semi-supervised Possibilistic c means 

Semi-supervised signature data: both labeled and 
unlabeled 

Calculate mean 𝑣 and initial class memberships 𝜇 

Calculate 𝜂 

STEP: 1 

STEP: 2 

STEP: 3 

Calculate final class memberships 𝜇  
STEP: 4 
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Labeled Data:  

 

The labeled data collected could be limited to a single pixel and could be extended to the 10𝑁 (where 𝑁 is 

the number of bands in a remote sensing image) samples, so as to calculate a complete co-variance matrix 

as in case of a Maximum Likelihood Classifier (Richards & Jia, 2013). A single pixel may not capture the 

variability of a class at all, while the collection of huge labeled samples is always time-consuming. In case 

of a fuzzy classifier, the estimation of full covariance matrix is not required, therefore, the need of labeled 

samples further reduces. Therefore, only a few labeled data for training the semi-supervised Possibilistic 

fuzzy classifier are collected. In the literature, several researches have been done based on different 

number of labeled training dataset, which is usually very little in compared to the unlabeled data, in 

between ten to forty percent (Triguero et al., 2015). This research uses ten percent of the samples of fully 

supervised approach, considering 10𝑁 to be the maximum limit. Therefore, the labeled training data 

collected as a part of semi-supervised approach consists of eight to ten samples per class. 

 

At training stage, the pixels collected should be as pure as possible and should be representative of a 

particular class. They are therefore referenced to the available ground data information. Classes can be 

multi-modal, and this could lead to the collection of poor labeled training data. The labeled data should be 

refined, and outliers must be removed. They are assessed by using Mean Shift Algorithm (Fukunaga & 

Hostetler, 1975).  

3.4.2.1. Mean Shift Algorithm 

The data in the remote sensing images can be considered as a sample of a probability density function. In 

order to find the maxima or mode of a density function, a non-parametric technique, known as Mean Shift 

algorithm is used for finding the maxima or modes (typically a local maximum) of a density function in 

feature space (Fukunaga & Hostetler, 1975). This estimate is iterative and depends upon an initial estimate 

of mean chosen. The weights from nearby points are calculated using a kernel for re-estimation of the 

initial point or mean. A Gaussian Kernel is typically chosen due to its several advantages over others 

(Cheng, 1995; Comaniciu et al., 2002; Fukunaga & Hostetler, 1975). This type of kernel estimation 

requires a scale parameter or a bandwidth which represents the shape of the clusters. 

 

 

𝑓(𝑥) =
∑ exp (−

1

2
‖(𝑥 − 𝑥𝑗) 𝜎⁄ ‖

2
) . 𝑥𝑗𝑥𝑗∈𝑁𝐵(𝑥)

∑ exp (−
1

2
‖(𝑥 − 𝑥𝑗) 𝜎⁄ ‖

2
)𝑥𝑗∈𝑁𝐵(𝑥)

 

   (3.24) 

The modes with Gaussian kernel can be determined using equation (3.24), where 𝑁𝐵(𝑥) is the 

neighborhood of 𝑥 for which the value after applying kernel is non-zero with 𝑥𝑗 neighboring points. The 

neighborhood is defined by applying an appropriate threshold of a suitable window size using Euclidean 

distance measure for the mean value 𝑥. The Mean Shift as defined by Fukunaga & Hostetler (1975) is 

given by 𝑓(𝑥) − 𝑥. The Mean Shift Algorithm repeats the whole estimation by replacing 𝑥 by 𝑓(𝑥) until 

convergence of 𝑓(𝑥). 

 

Choice of standard deviation in Mean Shift (Gaussian kernel): 

 

Bandwidth parameter: ℎ or 𝜎 (sigma/ Standard deviation) in case of Gaussian kernel, can be related to 𝜂 

(resolution or bandwidth parameter in Possibilistic c Means classifier), which also denotes variance and can 

be used in Mean Shift algorithm for mode estimation. 𝜂 represents shape of the cluster.  
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For applying Mean Shift algorithm, a reliable estimate of variance is needed. With just a little labeled 

training data, a reliable estimate of variance or standard deviation could not be obtained due to the 

following reasons: 

 The labeled data is very little in number and may not capture the entire class variances. 

 Also, the parameters such as mean, 𝜂 and class membership values 𝜇 obtained from the semi-

supervised labeled data may or may not be correct. 

Therefore, an iterative approach in a Possibilistic c Means classifier for calculating the parameters (𝜂 and 

class membership values 𝜇) could help to get a reliable estimate described as follows: 

(S1) Apply Case 1 or Case 2 as described in Section 3.3 at steps 𝑖, 𝑖 = 0, … 𝑙𝑚𝑎𝑥. 

(S2) Compute an updated 𝜂𝑖+1 using equation (3.22). 

(S3) Compute an updated 𝜇𝑖+1 using equation (3.23). 

(S4) Compare 𝜂𝑖+1 to 𝜂𝑖. If ‖𝜂𝑖+1 −  𝜂𝑖‖ < 𝜖, Stop. Otherwise return to (S2). 

 

Here, 𝑙𝑚𝑎𝑥 is a very large number taken for iterations and 𝜖 is chosen to be a very small value for 

convergence. In this research, iterations tend to converge within 𝑙𝑚𝑎𝑥 < 1000 and 𝜖 = 1.0𝑒 − 7. 

 

The value for √𝜂 estimate is calculated using Possibilistic c Means classifier with Euclidean as a distance 

measure and is studied with Case 1 and Case 2 as described in Section 3.3. Due to the availability of a few 

labeled training samples, the iteration are applied. The possible values for the bandwidth parameter per 

class are shown in Table 3.1. 

 

Table 3.1.  Possible values for bandwidth parameter when Possibilistic c Means algorithm is applied using Case 1 and 
Case 2 and studied with iterations and without iterations. 

CLASSES STANDARD 

DEVIATION (with 

labeled training data)  

10 pixels per class 

√𝜂 ESTIMATE 

CASE 1 CASE 2 

Without 

Iteration 

 

With Iteration Without 

Iteration 

With 

Iteration 

Wheat Crop 3822.954 3900.291 
 

7119.043 
 

2334.545 7119.043 
 

Riverine Sand 3005.318 3749.129 
 

4196.145 
 

1897.665 4196.145 
 

Dense Forest 1849.632 1754.757 
 

829.737 
 

1351.201 829.737 
 

Grass Land 2375.56 3376.203 
 

2834.927 
 

2289.842 2834.927 
 

Water 1888.927 1548.571 
 

6436.770 
 

1771.217 6436.770 
 

Eucalyptus 1752.290 625.814 
 

2756.503 
 

1801.006 2756.503 
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It can be seen that the 𝜂 from both the cases after iterations (Table 3.1) are almost equal which makes 

sense as if it were a case of completely supervised procedure (with larger training data), in which both the 

cases would tend to give similar results without iterations. Therefore, the values chosen for this research to 

be used as a bandwidth parameter per class in Mean Shift algorithm are shown in the last column of Table 

3.1. 

 

Outlier removal using Mean Shift algorithm: 

The labeled training data can be assessed by using Mean Shift algorithm, by finding the modes of the 

classes, taking each labeled data as a starting point. Those points which end up in completely different 

modes (far from the cluster) are the prominent outliers. These outliers are removed before further 

processing. Also, if modes are in a cluster but very far from each other could represent a multi-modal 

class.  

 

Mean Shift algorithm for shifting the ‘mean’ parameter: 

The semi-supervised approach has a very few number of labeled data, which could lead to a poor estimate 

of the parameters as the training data might not be a complete representation of a particular class due to 

huge inter-class variance in multi-spectral imagery. For this, Mean Shift algorithm could be further utilized 

to obtain a mean in a higher density region as clusters for an image can be categorized by separating the 

regions of different densities. 

 

Unlabeled Data:  

 

The unlabeled data for semi-supervised approach may be obtained by using hybrid spectral similarity 

measures by following the continuity assumption and cluster assumptions. The spectral similarity measures 

such as Spectral Information Divergence with Spectral Angle Measure and Spectral Information 

Divergence with Spectral Correlation Angle are used to measure the similarity between the training 

samples and included as a part of unlabeled data for further classification. 

 

Refinement of unlabeled data using threshold: To avoid mixed pixels or pixels from different classes to be a part 

of training data, careful thresholds are applied both in feature space as well as geometric space while 

collecting the unlabeled data. 

 

Table 3.2. Thresholds in feature space for classes using different spectral similarity measures for region growing 

Identified Classes Spectral Similarity Measures 

SID-SAM(tan/sin) SID-SCA(tan/sin) Euclidean 

Dense Forest 7.9 x 10-8 2.7 x 10-7 90 

Wheat Crop 3.0 x 10-7 4.0 x 10-7 215 

Riverine Sand 3.0 x 10-7 7.5 x 10-7 260 

Water 6.0 x 10-7 1.7 x 10-6 170 

Eucalyptus 2.2 x 10-7 7.0 x 10-7 130 

Grass land 5.0 x 10-7 1.5 x 10-6 260 
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The following steps are taken: 

1. The labeled training data after removing outliers are taken. 

2. Mean is calculated using the labeled data and shifted using Mean Shift algorithm. 

3. Hybrid spectral similarity measures are applied as a part of region growing in feature space, which 

calculates the similarity between pixel values to the shifted mean value (as described in Subsection 

3.1.5). 

4. The similar pixels are chosen by applying an appropriate threshold in feature space (Table 3.2), by 

following the cluster assumption. 

5. The geometric distance (Euclidean distance) is calculated for each of selected pixels with respect 

to each of the labeled training data. 

6. The pixels are then chosen by applying an appropriate threshold in geometric space (Table 3.3). 

The pixels which are far from the labeled data are discarded, by following the continuity 

assumption for identifying the unlabeled data in semi-supervised learning. 

 

Following the cluster assumption of semi-supervised learning approach, thresholds in feature space have 

been set up for approximately 70-80 samples per class as shown in Table 3.2. Table 3.3 presents the 

thresholds in geometric space (spatial domain) by following the continuity assumption of semi-supervised 

learning approach to remove any outliers or samples that are far apart spatially from the labeled samples. 

The thresholds are set from the minimum of the distance obtained between two pixels by applying 

similarity measure in feature and geometrical domain. 

 

Table 3.3. Thresholds in geometric space for classes calculated after applying Euclidean distance in spatial domain 
when feature space thresholds are defined using different spectral similarity measures for region growing 

Identified Classes Euclidean Distance when feature space is calculated using  

SID-SAM(tan/sin) SID-SCA(tan/sin) Euclidean 

Dense Forest 1000 1000 540 

Wheat Crop 800 1000 600 

Riverine Sand 700 1000 700 

Water 2000 1700 800 

Eucalyptus 800 450 200 

Grass land 140 110 91 

 

3.4.3. Hybrid spectral similarity measures for semi-supervised Possibilistic fuzzy classifier:  

 

Instead of Euclidean distance as a distance measure, the hybrid spectral similarity measures such as SID-

SAM (tan/sin) and SID/SCA (tan/sin) have been used in the objective function of a Possibilistic c Means 

classifier. The approach applied has been shown in Figure 3.3. The algorithmic flowchart is similar to 

Section 3.3 with different distance-based hybrid spectral similarity measures as described in Section 3.1.5. 

For the Possibilistic c Means classifier with the semi-supervised approach, the mean is estimated from 
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both labeled and unlabeled training data (collected using different spectral similarity measures, Section 

3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Semi-supervised Possibilistic c Means classifier with hybrid measures 

 

3.4.4. Classification and Accuracy Assessment:  

Classification is performed by using the semi-supervised Possibilistic c Means classifier using various 

hybrid spectral similarity measures, and their accuracies are accessed by using Root Mean Square Error 

and Fuzzy Error Matrix. 

 

Reference Data Preparation: 

The outputs obtained after classifying image is a soft output. To access accuracies, it should be cross-

checked with the true value. Therefore, the reference should be as good as possible and should contain 

minimum errors. To compare the soft outputs, the reference data considered is also a soft output image. A 

higher resolution image of the Formosat-2 satellite is used as a reference. The finer resolution image is 

chosen because it defines the features present on the imagery in a much better way than a coarser 

resolution image. The reference image has been classified using Support Vector Machine (SVM) 

(Appendix A) in soft classification mode, to get the soft membership values (Mountrakis et al., 2011; 

Richards & Jia, 2013).  

 

3.4.4.1. Root Mean Square Error 

Root Mean Square Error (RMSE) discriminates between the membership values of the classified input 

image with the membership values of the classified reference image and is calculated using equation (3.25) 

and equation (3.26). The value for Root Mean Square that is close to zero but always greater than zero 

represents a lesser deviation in memberships of the two classified images (Kandpal, 2016). 

 

Calculate final class memberships 𝜇 

Class Means from Semi-supervised training data 

SID(SAM)
tan

 SID(SAM)
sin

 SID(SCA)
tan 

 SID(SCA)
sin  

 

Distance of pixels to Class Means  

Initial Class Memberships 𝜇 

Estimate 𝜂 
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Class wise RMSE: 

 

𝑅𝑀𝑆𝐸(𝜇𝑟, 𝜇𝑐) = √
∑ (𝜇𝑟𝑗𝑖 − 𝜇𝑐𝑗𝑖)𝑁

𝑖=1

2

𝑃 × 𝑄
 

   (3.25) 

Overall RMSE: 

 

𝑅𝑀𝑆𝐸(𝜇𝑟 , 𝜇𝑐) = √
∑ ∑ (𝜇𝑟𝑗𝑖 − 𝜇𝑐𝑗𝑖)

2𝑁
𝑖=1

𝑐
𝑗=1

𝑃 × 𝑄
 

 

   (3.26) 

Where 𝑁 is the number of pixels, 𝑐 is the number of classes, 𝜇𝑟 is the membership value of classified 

reference image and 𝜇𝑐 is the membership value of classified input image, 𝜇𝑟𝑗𝑖 is the membership value of 

classified reference image for pixel 𝑖 in class 𝑗, 𝜇𝑐𝑗𝑖 is the membership value of classified input image for 

pixel 𝑖 in class 𝑗, 𝑃and 𝑄 are the total number of features and feature vectors respectively in the data with 

dimension of the image as 𝑃 × 𝑄.  

3.4.4.2. Fuzzy Error Matrix 

Fuzzy Error Matrix can be used to assess the accuracy of soft classification (Binaghi et al., 1999). It is 

similar to the concept of the traditional error matrix but is based on soft membership values, i.e., it can 

take non-negative real numbers instead of non-negative integer values (Stehman et al., 2007). The layout 

of the concept has been shown in Table 3.4. 

Table 3.4. Fuzzy Error Matrix Layout 

Soft Classification 

Input Data 

Soft Reference Data Total Grades 

Class 1 Class 2 ….. Class c 

Class 1 𝑀(1,1) 𝑀(1,2)  𝑀(1,𝑐) 𝐶1 

Class 2 𝑀(2,1) 𝑀(2,2)  𝑀(2,𝑐) 𝐶2 

…….. ……. …….  ….... …... 

Class c 𝑀(𝑐,1) 𝑀(𝑐,2)  𝑀(𝑐,𝑐) 𝐶𝑐 

Total Grades 𝑅1 𝑅2  𝑅𝑐  

Definitions: 𝑀(𝑝,𝑞) is the member of the Fuzzy Error Matrix in 𝑝 class of classified input image and 𝑞 

class of classified reference image 

 

 𝑀(𝑝, 𝑞) = |𝐶𝑝 ∩ 𝑅𝑞| = ∑ min
𝑥>0

(𝜇𝐶𝑝
(𝑥), 𝜇𝑅𝑞

(𝑥))

𝑥∈𝑋

 

 

   (3.27) 



ROLE OF HYBRID SPECTRAL SIMILARITY MEASURES FOR SEMI-SUPERVISED FUZZY CLASSIFIER 

 

28 

In equation (3.27), 𝑅𝑞 is a set of membership values for reference image in class 𝑞 and 𝐶𝑝 is a set of 

membership values for input image in class 𝑝, 𝜇𝐶𝑝
(𝑥) is the membership of test sample 𝑥 in class 𝑝 of the 

input image and 𝜇𝑹𝒒
(𝑥) is the membership of test sample 𝑥 in class 𝑞 of the reference image, where 𝑋 is 

the set of sample data. The Fuzzy Error matrix uses 𝑚𝑖𝑛 operator to determine the elements of 𝑀. 

 

 
𝑂𝐴 =

∑ 𝑀(𝑗,𝑗)
𝑐
𝑗=1

∑ 𝑅𝑗
𝑐
𝑗=1

 

 

   (3.28) 

Overall Accuracy: This is obtained by dividing the sum of correct estimates of membership values (diagonal 

elements) of a matrix by the total grade of memberships in the reference data, as shown in equation (3.28). 

 

 

 
𝑃𝐴𝑗 =

𝑀(𝑗,𝑗)

𝑅𝑗

 

 

   (3.29) 

Producer’s Accuracy: It is a measure of error of omission, i.e., how well an image can be classified if the value 

of the pixel is omitted from the class where it actually belongs. It is obtained by dividing the element of 

major diagonal of the fuzzy error matrix representing a class by the total grade of memberships in the 

classified reference image for a class 𝑗, as shown in equation (3.29). 

 

 

 
𝑈𝐴𝑗 =

𝑀(𝑗,𝑗)

𝐶𝑗

 

 

   (3.30) 

User’s Accuracy: It is a measure of error of commission when the value of the pixel is included in a class 

where it does not belong. It indicates how well a pixel value represents the actual ground information. It is 

obtained by dividing the element of major diagonal of the fuzzy error matrix representing a class by the 

total grade of memberships in classified input data for a class 𝑗, as shown in equation (3.30). 

 

3.4.5. Spectral Discriminability Power:  

 

In order to check which spectral similarity measure is more effective in differentiating various classes 

among themselves for a multispectral image, Spectral Discriminatory Power (Section 3.1.6) has been 

calculated for three similarly looking classes using equation (3.15). 

1) Dense Forest 

2) Grass Land 

3) Eucalyptus 
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Dense Forest Class is taken as a reference class for which Spectral Discriminatory Power has been 

calculated. 

 

3.5. Comparison 

Comparison of semi-supervised approach is done with supervised Approach. In case of supervised 

approach, training data is collected manually (70-80 samples) per class (based on the assumption of 

maximum training data to be 10𝑁), and the Possibilistic c Means classifier is used to classify the input 

image (Richards & Jia, 2013). The overall accuracies and Root Mean Square errors are compared with the 

results obtained using semi-supervised approach. 

Comparison of hybrid spectral similarity measures is done with the Euclidean Measure. The Euclidean 

distance is used for increasing the training samples and also as a distance measure in Possibilistic c Means 

classifier. The overall accuracies and Root Mean Square errors are compared with the results obtained by 

using hybrid measures. 
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4. RESOURCES AND DATASET USED  

This chapter presents the resources and the data used in this research to reach the desired objectives. 

Section 4.1 provides the details of the study area and datasets used for achieving the objectives of this 

research. Section 4.2 provides the details of the software and other resources used. 

4.1. Study area and data used 

The study area chosen for this research is located in the Haridwar district of state Uttarakhand in India. 

The study area has its boundaries connected to Dehradun from the north, Pauri Garhwal from the east 

and, some districts of Uttar Pradesh from south and west. The central latitude is 29.956˚ N and longitude 

is 78.170˚ E. It is very close to Dehradun and is very diverse in terms of land cover classes. 

The main motivation for the choice of this area was that the satellite images of Landsat-8 and Formosat-2 

and the field data with six identified classes were already available. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Specifications of data used in this research, Landsat-8 and Formosat-2 Satellite Images. 

Specifications LANDSAT-8 FORMOSAT-2 

Spatial Resolution 30 m 8 m 

Spectral Resolution 8 Bands 4 Bands 

Date of Acquisition Feb 12, 2015 Feb 21, 2015 

Scene Size 170 km x 185 km 24 km x 24 km 

Return Interval Every 16 Days Daily 

 

Figure 4.1. Study area used in this research, located in Haridwar district of state Uttarakhand, India. 
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Figure 4.1 shows the study area on the multispectral Landsat-8 satellite imagery and Figure 4.2 shows the 

identified classes on the satellite image (Formosat-2) as per the field data (Appendix B). The specification 

of data used in this research is summarized in Table 4.1. 

4.2. Software Used 

All the methods are applied using R and R Studio (R Development Core Team, 2017). The libraries used 

for processing are Raster (Hijmans, 2016), Rgdal (Rowlingson, 2017), Gstat (Graler et al., 2017; Pebesma, 

2004), Rgl (Adler & Murdoch, 2017), Scatterplot3d (Ligges & Mächler, 2003), e1071 (Meyer et al., 2017). 

For a collection of training data, generation of maps and region of interest, ArcMap (Esri, 2016) is used, 

and the work was done on a standard processing workstation.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Identified classes on the satellite image (Formosat-2) as per the field data 
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5. RESULTS AND ANALYSIS 

This chapter presents the results and analysis done on the input data to achieve the objectives for this 

research by applying the methods discussed in Chapter 3. Section 5.1 shows the usage of Mean Shift 

algorithm for a few labeled samples. Section 5.2 presents the analysis on the choice of Possibilistic c 

Means algorithm. This section also demonstrates the results of Possibilistic c Means algorithm using an 

only limited number of labeled samples using different distance based similarity measures. Section 5.3 

presents the results of semi-supervised Possibilistic c Means classifier with hybrid spectral similarity 

measures. Section 5.4 presents the results of supervised Possibilistic c Means classifier with different 

distance based similarity measures. Section 5.5 shows the results of a Spectral Discriminatory Power for 

different spectral similarity measures. Section 5.6 compares all the supervised and semi-supervised 

approaches with hybrid spectral similarity measures and also compares the results with conventional 

Euclidean distance measure. 

5.1. Labeled data 

This subsection presents the analysis of the collected training data, part of the semi-supervised labeled 

data as described in Subsection 3.4.2. They are analyzed and refined before further processing. 

As can be seen in Figure 5.1 (a), there are 10 labeled samples collected manually as a part of training data 

(Section 3.4.2) for each of the classes identified at the time of field visit on the satellite image of Landsat-8 

as described in Section 4.1. Even though the geographic locations and training data collection has been 

cross-referred with the available field data, there are few outliers in the training data which can be seen in 

Figure 5.1 (b), feature space plots. The spectral values of few labeled pixels denote other classes or are far 

from the originally identified class. These could be possible outliers due to mixed pixels or could be a case 

of multi-modal classes. These training samples are further tested for mode analysis using Mean Shift 

algorithm. 

        

  

 

 

 

 

(a)                                              (b)                                        (c) 

Figure 5.1. Supervised labeled data collected per class (10 training samples per class) based on the field data on 
Landsat-8 satellite image (a) Spatial location of the samples collected per class (b) Plot in feature space for labeled 
samples (d) Legend for feature space plot 
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5.1.1. Analysis of Mean Shift algorithm on the labeled data  

This section describes the Mean Shift analysis on the labeled training data to estimate the correct mean 

and to analyze the accuracy of the labeled training samples as described in Section 3.4.2.1. The Mean Shift 

algorithm is applied for estimating the modes of classes if each training data is taken as a starting point. 

From Figure 5.2, we can see that the modes obtained by each of the labeled training data in each of the 

classes have values which are either overlapping in some cases, or very close to each other, or very far 

from the class cluster in the feature space.  

From Figure 5.2, it could be seen that the training data in classes Wheat Crop and Water has an almost 

overlapping mode with one outlier each. The training data from class Eucalyptus results in an almost 

similar mode with no outlier. The training data from classes Riverine Sand, Dense Forest, and Grass Land 

has one outlier each with the modes which are comparatively close in the feature space. The overlapping 

values of modes in a class signify that the training data results in the same mode value after applying Mean 

Shift algorithm and that the labeled data is a complete representative of a class and the class is unimodal. 

The different mode values which are closer in feature space signifies multimodal class. The training data 

for a class that results in modes which are closer in feature space could be considered as a separate class in 

the spectral domain. The training data that results in closer modes or almost overlapping mode values are 

treated as a part of the class and labeled data in this research. The training data which results in mode 

values that are completely different or are far from the clustered values in feature space are treated as 

potential outliers and are removed from the labeled training data. 

 

 

 

 

 

 

                          

 

 

 

Apart from refining the outliers in the labeled training samples, the Mean Shift algorithm is also used for 

shifting the mean obtained from the refined labeled samples to a higher density region as described in 

     (a)                    (b)              (c) 

                           (d)                     (e)             (f)               (g) 

Figure 5.2. Modes estimated using Mean Shift algorithm for the labeled training data per class (a) Wheat Crop (b) 
Riverine Sand (c) Dense Forest (d) Grass Land (e) Water (f) Eucalyptus (g) Legend 
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Subsection 3.4.2.1. The difference in mean from labeled data (M) and shifted mean using Mean Shift 

algorithm (MS) per class is shown in Table 5.1 and is estimated using Euclidean distance as described in 

Section 3.1.1. 

Table 5.1. Euclidean distance between mean from labeled data (M) and shifted mean using Mean Shift algorithm 
(MS) per class 

Classes Euclidean Distance between Mean (M) and Shifted 

Mean (MS) 

Dense Forest 182.767 

Wheat Crop 266.523 

Riverine Sand 336.572 

Water 184.285 

Eucalyptus 596.743 

Grass land 254.253 

 

The difference in the mean values is highest for Eucalyptus class and lowest for Dense Forest. The higher 

shift in the Eucalyptus class may be related with the fact that locating pure training samples for Eucalyptus 

class manually is comparatively difficult as compared to rest of the classes on Landsat -8 satellite imagery, 

due to the similarity in its spectral values with the neighboring Dense Forest class. In contrast to 

Eucalyptus class, the collection of pure labeled training data is easiest for the Dense Forest class due to its 

larger area and distinctive spectral values. 

5.2. Possibilistic c Means algorithm (with labeled samples) 

This section describes the analysis of the algorithm chosen for applying Possibilistic c Means classification 

as discussed in two cases and described in Section 3.2. The choice of one of the case becomes important 

in case of a few labeled training data, as the initial membership values 𝜇 and estimate of  𝜂 is highly 

dependent upon the number and quality of training data. In case of semi-supervised approach, quality of 

the training data could not be completely ensured as compared to completely supervised training data, 

therefore both the cases for Possibilistic c Means classifier have been checked initially with a little number 

of refined labeled training samples with shifted mean and Euclidean distance as a distance based similarity 

measure in a Possibilistic c Means classifier. 

The global Root Mean Square Error is calculated when a Possibilistic c Means classifier is applied to little 

refined labeled samples with the shifted mean for both the cases. The global RMSE value for Case 1 is 0. 

560 and that for Case 2 is 0.202. The value for Case 2 is lower than Case 1 which could be due to the 

reason that the value of initial class memberships 𝜇 are derived differently for the two cases and are highly 

dependent upon the number of labeled data. Since the labeled training data is very small in size, Case 1 is 

more sensitive towards the estimation of 𝜂 (variance or the bandwidth parameter or resolution parameter) 

as 𝜂 is calculated based on the initial 𝜇. Therefore, Case 2 is preferred for further processing with degree 

of fuzziness, 𝑚=2.  

5.2.1. Result of Possibilistic c Means algorithm for labeled training data with shifted mean using different 

distance measures 

This subsection presents the results obtained by applying a Possibilistic c Means classifier in a supervised 

mode with only a few available labeled samples. The mean is calculated from the labeled data and shifted 



ROLE OF HYBRID SPECTRAL SIMILARITY MEASURES FOR SEMI-SUPERVISED FUZZY CLASSIFIER 

 

36 

using Mean Shift algorithm as presented in Subsection 3.4.2.1. The Possibilistic c Means algorithm is 

applied as described in Section 3.2 with different distance based similarity measures as defined in Section 

3.1, following Case 2 from Section 3.3. The accuracies have been assessed as shown in Table 5.2 by using 

global Root Mean Square Estimation and overall accuracy of Fuzzy Error Matrix as described in 

Subsection 3.4.4.2.  

Table 5.2. The result showing global Root Mean Square Error and overall accuracy (in percent) of Fuzzy Error 
Matrix for a Possibilistic c Means classifier applied on labeled data after shifting mean with different distance based 
similarity measures. 

Spectral Similarity Measures as a 

distance measure in PCM 

Global RMSE for PCM (FERM) Overall Accuracy of 

PCM (In percent) 

Euclidean 0.202 85.845 

SID-SAM-tan 0.359 73.997 

SID-SAM-sin 0.358 73.329 

SID-SCA-tan 0.330 81.417 

SID-SCA-sin 0.323 76.789 

FERM: Fuzzy Error Matrix; RMSE: Root Mean Square Estimate; PCM: Possibilistic c Means Classifier 

       Dense Forest               Wheat Crop    Riverine Sand 

 

          Water                Eucalyptus Grass Land 

 

 

0                 𝜇                 1                                                                                𝜇 = Class Membership value 

(a) 
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Dense Forest Wheat Crop Riverine Sand 

 

Membership Value 

 

Water 

Membership Value 

 

Eucalyptus 

Membership Value 

 

Grass Land 

 

Membership Value Membership Value Membership Value 

(b) 

The results in Table 5.2 shows that the global root mean square value for Possibilistic c Means classifier 

with Euclidean as a distance measure is the lowest, and the overall accuracy of Fuzzy Error Matrix for the 

same is the highest than the Possibilistic c Means algorithm with all other hybrid distance measures. The 

fractional images as shown in Figure 5.3 represents membership values in each of the class when 

Possibilistic c Means algorithm is applied to the labeled data with shifted mean and Euclidean as a distance 

measure.  

5.3. Result of semi-supervised Possibilistic c Means algorithm using different distance measures 

This subsection presents the results obtained by applying Possibilistic c Means classifier in a semi-

supervised mode with the mean estimated from the semi-supervised training samples. The unlabeled 

samples are obtained using hybrid spectral similarity measures by following the cluster and continuity 

assumption for which thresholds for different measures. The Possibilistic c Means algorithm is applied as 

described in Section 3.2 with different distance based similarity measures defined in Section 3.1, following 

Case 2 from Section 3.3. The accuracies have been assessed as shown in Table 5.4 by using global Root 

Mean Square Error and overall accuracy of Fuzzy Error Matrix Table 5.5 as described in Subsection 4.3.5.  

Figure 5.3. Fractional Membership values for classes obtained using Possibilistic c means algorithm with few labeled 
samples and shifted mean with Euclidean as a distance measure (a) plot of class memberships (b) histogram of 
membership values 
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Table 5.3. Euclidean distance between mean from labeled data shifted mean (MS) and Mean from semi-supervised 
data (semi-mean) 

Classes Euclidean Distance 

between Mean (MS) 

and Semi-Mean from 

(SID-SAM(tan/sin)) 

Euclidean Distance 

between Mean (MS) 

and Semi-Mean from 

(SID-SCA(tan/sin)) 

 

Euclidean Distance 

between Mean (MS) 

and Semi-Mean from 

(ED) 

Dense Forest 36.974 

 
38.539 63.814 

 

Wheat Crop 45.669 

 
45.223 63.573 

 

Riverine Sand 86.183 

 
83.883 50.056 

 

Water 97.674 

 
99.289 51.249 

 

Eucalyptus 128.519 

 
134.028 93.344 

 

Grass land 101.823 

 
117.524 75.689 

 

 

Table 5.4. The result of global Root Mean Square Error obtained by applying Possibilistic c Means classifier in a 
semi-supervised mode. The columns represent the global RMSE obtained when region growing is done using one of 
the similarity measures. The rows represent Possibilistic c Means classifier when one of the similarity measures is 

used as a distance measure. 

Spectral Similarity 

Measures 

Semi-supervised Possibilistic c Means (RMSE) 

 SID-SAM(tan/sin) SID-SCA(tan/sin) Euclidean 

Euclidean 0.201 0.200 0.201 

SID-SAM-tan 0.355 0.354 0.353 

SID-SAM-sin 0.353 0.352 0.352 

SID-SCA-tan 0.327 0.326 0.326 

SID-SCA-sin 0.319 0.319 0.319 

 

The difference of means obtained from semi-supervised approach applied using different spectral 

similarity measures and the mean obtained from the labeled training data after applying mean shift are 

estimated using Euclidean distance and are summarized in Table 5.3. The means estimated vary with the 

spectral similarity measure used. Higher value or distance represents a higher deviation from the region of 

high density. For all the spectral similarity measures, the shift in Eucalyptus class is maximum and even 

higher with hybrid measures. This suggests that the hybrid measures are able to capture the variance in 

Eucalyptus class. Table 5.4 and Table 5.5 shows that the results from all semi-supervised approach (using 

different similarity measures) are almost equivalent for all the corresponding distance measure in 

Possibilistic c Means algorithm.  Among distance measures, Euclidean has a highest overall accuracy 

computed from Fuzzy Error Matrix and lowest global Root Mean Square Error. The fractional images 
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showing the membership values in each of the class when semi-supervised Possibilistic c Means algorithm 

is applied using Euclidean as a distance measure is shown in Figure 5.4. 

Table 5.5. The result of Overall Accuracy of Fuzzy Error Matrix obtained by applying Possibilistic c Means classifier 
in a semi-supervised mode. The columns represent the overall accuracies obtained when region growing is done 
using one of the similarity measures. The rows represent Possibilistic c Means classifier when one of the similarity 
measures is used as a distance measure. 

Spectral Similarity 

Measures 

Semi-supervised Possibilistic c Means (FERM Overall Accuracy in percent) 

 SID-SAM(tan/sin) SID-SCA(tan/sin) Euclidean 

Euclidean 86.152 86.150 86.309 

SID-SAM-tan 72.476 72.531 71.930 

SID-SAM-sin 71.759 71.814 71.203 

SID-SCA-tan 81.325 81.279 81.293 

SID-SCA-sin 76.405 76.352 76.309 

 

       Dense Forest               Wheat Crop    Riverine Sand 

 

          Water                Eucalyptus Grass Land 

 

 

0                 𝜇                 1                                                                                𝜇 = Class Membership value 

(a) 
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Dense Forest Wheat Crop Riverine Sand 

 

 

Membership Value 

 

Water 

Membership Value 

 

Eucalyptus 

Membership Value 

 

Grass Land 

 

Membership Value Membership Value Membership Value 

 

(b) 

 

5.4. Result of supervised Possibilistic c Means algorithm using different distance measures 

 

This section shows the result of a supervised Possibilistic c Means algorithm, with a maximum of 80 

samples per class collected manually with reference to the field data. The Possibilistic c Means algorithm is 

applied as described in Section 3.2 with different distance based similarity measures as defined in Section 

3.1, following Case 2 from Section 3.3. The accuracies have been assessed as shown in Table 5.6 by using 

global Root Mean Square Error and overall accuracy of Fuzzy Error Matrix as described in Subsection 

3.4.4. The results in Table 5.6 shows that the global root mean square value for a Possibilistic c Means 

classifier with Euclidean as a distance measure is the lowest, and the overall accuracy of Fuzzy Error 

Matrix is highest for the same. 

 

Figure 5.4. Membership values obtained Possibilistic c means algorithm with semi-supervised training data obtained 
using hybrid Spectral Information Divergence and Spectral Correlation Angle (SID-SCA) with Euclidean as a distance 
measure (a) plot of class memberships (b) histogram of membership values 
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Table 5.6. The result showing global Root Mean Square Error and overall accuracy of Fuzzy Error Matrix for a 
Possibilistic c Means classifier applied in a fully supervised mode with different distance based similarity measures. 

Spectral Similarity Measures Global RMSE (FERM) Overall Accuracy (in 

percent) 

Euclidean 0.207 86.764 

SID-SAM-tan 0.351 73.313 

SID-SAM-sin 0.349 72.673 

SID-SCA-tan 0.313 76.851 

SID-SCA-sin 0.312 72.129 

 

5.5. Spectral Discriminatory Power 

This section presents the results of discriminatory power as described in Section 3.4.5 which compares the 

discriminatory ability of different spectral similarity measures to discriminate between classes with respect 

to a reference class.  

Table 5.7. Spectral Discriminatory Power of different spectral similarity measures. 

Spectral Similarity Measure Spectral Discriminatory Power 

ED 2.823    

SAM 1.153          

SCA 1.805 

SID 1.343 

SID-SAM-tan 1.550 

SID-SAM-sin 1.548 

SID-SCA-tan 2.523            

SID-SCA-sin 2.379 

 

Table 5.7 shows that the Spectral Discriminatory Power of the Euclidean measure is the highest and that 

of Spectral Angle Measure is the lowest. From Table 5.7, the Spectral Discriminatory Power of the 

Euclidean measure to discriminate between Forest and Grass Land is almost three times better to 

distinguish Forest from Eucalyptus. Also, the Spectral Discriminatory Power for hybrid Spectral 

Information Divergence-Spectral Correlation Angle (SID-SCA-tan) is also close to the Euclidean. 

5.6. Comparison of semi-supervised with the supervised approach with different spectral similarity 

measures 

This section compares the results of semi-supervised and supervised approaches in a Possibilistic c Means 

classifier as discussed in Section 5.2.1, Section 5.3 and Section 5.4. Figure 5.5 (a) compares the global Root 

Mean Square Error, and Figure 5.5 (b) compares the overall accuracies obtained from Fuzzy Error Matrix. 

This section also shows the trend of results obtained for individual classes.  
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Figure 5.5 shows that for the corresponding distance measure in Possibilistic c Means algorithm, the 

results of supervised and semi-supervised approaches are almost similar with very slight deviations in the 

global Root Mean Square values as well as the overall accuracies of Fuzzy Error Matrix. This shows that 

even a very little number of training data if applied with Mean Shift Algorithm (Section 3.4.2.1), gives a 

similar estimate of mean and variance of the classes as compared to completely supervised approach. In 

this research, the bandwidth parameter of the Mean Shift Algorithm has been related to the bandwidth 

parameter of the Possibilistic c Means algorithm, as discussed in Section 3.4.2.1.  

 

(a) 

(b) 

Figure 5.5. Comparison between supervised and semi-supervised approaches with different spectral similarity 
measures (a) global Root Mean Square Error (b) overall accuracy of Fuzzy Error Matrix 
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Figure 5.5 also shows that among all the spectral similarity measures, Euclidean stands out to be the best 

distance measure when Possibilistic c Means algorithm is applied for classifying multispectral imagery 

irrespective of the supervised or semi-supervised learning approaches in terms of overall accuracies of 

Fuzzy Error Matrix and global Root Mean Square Error. The results obtained in Section 5.2.1 is also 

coherent with the results obtained for Possibilistic c Means classifier with different spectral similarity 

measures. 

 

(a) (b) (c) 

 

 

(d) (e) (f) 

 

Figure 5.6 shows the general trend based on the class-wise implementation of Root Mean Square estimate 

followed by classes after classifying the multispectral imagery with Possibilistic c Means algorithm in case 

of all supervised and semi-supervised approaches. It shows that the hybrid measure works best in case of 

Eucalyptus class. For Dense forest class, the hybrid SID-SCA (tan/sin) is analogous to Euclidean. Figure 

5.7 shows the membership values obtained for Eucalyptus class when supervised Possibilistic c Means 

algorithm is applied with SID-SAM-tan as a distance based similarity measure and Table 5.8 shows the 

User’s and the Producer’s accuracy for Eucalyptus class for the same approach. The User’s accuracies for 

the hybrid measures are higher than for the Euclidean measure, and the Producer’s accuracies are lower 

Figure 5.6. Result of trend followed by classes for supervised as well as semi-supervised approach based on Root 
Mean Square Estimation 
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for hybrid measures than for Euclidean. Figure 5.8 shows the membership values for Eucalyptus class 

when Euclidean is employed as a distance measure instead of SID-SAM-tan in a Possibilistic c Means 

classifier. 

Table 5.8. User's and Producer's Accuracy for Eucalyptus class obtained by applying Fuzzy Error Matrix on 
Possibilistic c mean classifier with SID-SAM-tan as a distance measure 

Spectral Similarity Measures User’s Accuracy (in percent) Producer’s Accuracy (in percent) 

Euclidean 57.361 97.981 

SID-SAM-tan 91.616 51.893 

SID-SAM-sin 92.028 50.457 

SID-SCA-tan 82.176 78.073 

SID-SCA-sin 86.467 69.224 

Eucalyptus  

 

 

 

                                                 

 

                                        

  0         𝜇           1                               (a) 

                  

                          (b) 

Eucalyptus  

 

 

 

 

 

                               

                                        

  0         𝜇           1                               (a) 

                   

                               (b)   
 

 

 

Figure 5.7. Membership values for Eucalyptus class for PCM with SID-SAM-tan as a similarity measure (a) plot of 

membership values 𝜇 (b) histogram of membership values 

Figure 5.8. Membership values for Eucalyptus class for a Possibilistic c Means classifier with Euclidean as a 

similarity measure (a) plot of membership values 𝜇 (b) histogram of membership values 
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6. DISCUSSION 

This chapter discusses the results obtained in Chapter 5 with the objective of analyzing the role of hybrid 

spectral similarity measures for a semi-supervised fuzzy classifier. 

The hybrid spectral similarity measures, Spectral Information Divergence with Spectral Angle Measure 

and Spectral Information Divergence with Spectral Correlation Angle are used to calculate the spectral 

similarity between pixels for collecting unlabeled data for semi-supervised approach and as a distance 

measure in a Possibilistic c Means classifier.  

As a part of collecting unlabeled samples, it has been observed that the individual hybrid measures and 

Euclidean measure collected different unlabeled samples and the mean estimated, is also different from 

them, but the results obtained for all the semi-supervised Possibilistic classifier are analogous to each 

other. The results suggest that the Possibilistic c Means classifier with a particular distance measure is 

independent of the similarity measure used for increasing the training samples if the number of training 

data is a representative of a particular class and the mean estimated from them represents the exact mean 

of a class. This could be seen from the working of Possibilistic c Means algorithm as described in Section 

3.2, which depends upon the initialization of mean, membership values as well estimation of bandwidth 

parameter. As long as the training data is able to capture the intra-class variance (related with bandwidth 

parameter) based on the estimation of mean and initial class memberships, the Possibilistic c Means 

algorithm would give good results.  

As a part of distance-based similarity measure in a Possibilistic c Means classifier, the Euclidean measure 

outperforms all the hybrid measures in terms of overall accuracies for classifying multi-spectral images. 

The observed results suggest that the Euclidean is less sensitive to inter-class and intra-class variations as 

compared to the hybrid measures. This could also be observed from the classified outputs of classes 

Eucalyptus and Dense Forest where hybrid measures performed better than the Euclidean or analogous to 

Euclidean because of the lesser intra-class variability. This means that if there are lesser variations in the 

classes, the hybrid spectral similarity measure can perform better than Euclidean. 

The one of another possible reason could be in terms of measuring band to band spectral variability for 

measuring the similarity between pixels of multispectral images. The hybrid measures are based on the 

concept of Spectral Information Measure (Chang, 2000) which calculates the similarity between two pixel 

vectors by modeling their band to band spectral variability. In case of multi-spectral images, the bands are 

limited, and the band to band variability is not higher because of lower spectral resolution as compared to 

hyperspectral images. With the lower spectral resolution, these measures become equivalent to Euclidean 

or even worse.  

It is observed that the results of semi-supervised approach are analogous to a supervised approach where 

a large training data was collected manually, and Possibilistic c Means algorithm was applied using 

respective distance based similarity measures. The results suggest that the training data collected using 

spectral similarity measures were comparable to the manual supervised samples in terms of calculating a 

reliable estimate of class means and variances. 

In the other supervised approach, when little labeled samples were collected and Mean Shift algorithm was 

applied, the results from the Possibilistic c Means classifier with different distance based similarity 

measures were analogous to the other supervised and semi-supervised approaches. This suggests that the 

estimates of mean and variances for classes obtained from Mean Shift algorithm were comparable to other 
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supervised and semi-supervised training samples. This could be because the Mean Shift algorithm is able 

to correctly refine the labeled data and shift the mean to a higher density region for classification. 

The possible reason of Mean Shift to give better estimates of mean could be related with the usage of the 

bandwidth parameter that was employed from the iterative procedure of Possibilistic c Means algorithm 

performed using a few labeled sample as described in Section 3.4.2.1. This suggests that it is possible to 

get a better estimate of variance with a little training data if the variance for a class is related to the 

bandwidth parameter of Possibilistic c Means algorithm obtained iteratively.  

To analyze the results and this research, SWOT analysis has been done as shown in Table 6.1. 

Table 6.1. SWOT analysis of the research. 

 
Beneficial to achieving objectives Detrimental to achieving objectives 

In
te

rn
a
l 

O
ri

g
in

 

STRENGTHS (S) WEAKNESSES (W) 

 The strength of the project lies in the 

approach and methods which revealed 

that Mean Shift algorithm could be used 

for defining mean for a fuzzy classifier. 

 Even a few labeled training samples can 

give an estimate of variance if bandwidth 

parameter is related to variance and 

estimated iteratively. 

 The semi-supervised approach is 

comparable with the supervised 

approach, therefore, no need for 

collecting large training data manually. 

 The methods can help dealing effectively 

with mixed pixels and vague boundaries 

even with a few labeled training data 

using Mean Shift algorithm. 

 The hyperspectral measures in 

measuring similarity in a 

multispectral imagery were 

comparatively less effective than 

conventional measure (Euclidean 

distance). 

 The hybrid measures are more 

complex than conventional 

measure, still not effective. 

 The hybrid measures as a distance 

measures are not able to handle 

higher class variability of a multi-

spectral image. 

 The fuzzy classifiers with hybrid 

measures as a distance measure are 

less effective in dealing with 

uncertainties due to mixed pixels. 

E
x

te
rn

a
l 

O
ri

g
in

 

OPPORTUNITIES (O) THREATS (T) 

 Methods based on a few labeled samples 

can be applied in dealing with 

uncertainties and where a collection of a 

large training data is not possible. 

 Methods can be effective in the 

classification of remote sensing images 

which has high uncertainties due to 

fuzziness and mixed pixels without the 

need of a large labeled data. 

 The methods may prove less 

effective with very high resolution 

images as provided by Unmanned 

Aerial Vehicles. 

 

 The unavailability of standardized 

assessment tools for the fuzzy 

classification techniques questions 

the applicability of the approaches. 
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To handle uncertainties due to mixed pixels and vague classes, the study reveals that even a very little 

amount of labeled training data can help achieving better classification accuracies for a Possibilistic fuzzy 

classifier if the labeled data is a representative of a class and is able to give a better estimate of class means 

and variances. Various works on semi-supervised learning including objective function modification of a 

Possibilistic c Means classifier as discussed in Section 2.2 substantiate the use of a little labeled samples 

with a large unlabeled samples for achieving classification accuracies, but the results from this research 

with the Mean Shift algorithm eliminates the need for having a large unlabeled data for a Possibilistic c 

Means classifier. 
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7. CONCLUSION AND RECOMMENDATION 

This chapter concludes the research with some recommendation. Section 7.1 presents the conclusion 

drawn from this research. Section 7.2 provides some recommendations for future study. 

7.1. Conclusion 

The classification of multispectral images is always a challenging task because of the uncertainties present 

in the image due to fuzzy boundaries and mixed pixels. In order to improve the quality of classification, 

the choice of methods plays an important role. In this research, the hybrid measures are studied for a 

multispectral imagery. These hybrid measures are applied in increasing the training data as a part of 

unlabeled data in semi-supervised learning to get an improved mean from similar samples. These hybrid 

measures are also used as a distance based similarity measure in a Possibilistic c Means classifier applied 

using semi-supervised training data for improving the classification accuracies by assigning similar pixels to 

classes. Their roles have been studied in view of multispectral imagery that has higher inter-class and intra-

class variance. Due to the uncertainties present in multispectral images, manual collection of pure labeled 

samples becomes challenging. Therefore, the use of semi-supervised approach is emphasized. For 

improving the quality of the labeled samples and increasing the knowledge obtained from the labeled 

training samples, Mean Shift algorithm has been investigated. The bandwidth parameter for the mean shift 

algorithm is related to the bandwidth parameter of the Possibilistic c Means classifier and investigated for 

obtaining a better initial mean for classification. For improving the classification accuracies, a Possibilistic c 

Means algorithm is chosen and investigated with different techniques. Two different cases for employing 

Possibilistic c Means classifier have been studied and experimented with different training data. The 

concept of iterations for estimating variance for a mean shift from a fewer labeled data has been studied. 

The Mean Shift algorithm has been investigated for refining the labeled training data and for shifting the 

mean from the training data to a higher density region. The Possibilistic c Means classifier has been applied 

to different training datasets using various similarity measures and their classification accuracies have been 

recorded and observed.  

From the experiments and study on using the hybrid spectral similarity measures as a distance based 

similarity measures in a Possibilistic c Means classifier, the investigations shows that they are able to 

classify multispectral image, by measuring the similarity between pixels but are not better than the 

conventional Euclidean measure which is easy to use and less complicated than the hybrid measures. As a 

part of the semi-supervised approach, the study shows that the hybrid measures if used to collect the 

training samples for a Possibilistic c Means classifier gives comparable results to Euclidean measure. The 

investigations on Mean Shift algorithm revealed that the Possibilistic c Means classifier with shifted mean 

gives comparable accuracies to both completely supervised and semi-supervised approaches, without the 

need of increasing the size of training data. Among, hybrid measures, SID-SCA measure gives higher 

overall accuracies from Fuzzy Error Matrix, and lower global Root Mean Square Error than other hybrid 

measures and SID-SAM measure works better in assigning memberships to Eucalyptus class which has 

lower intra-class variability. 

 

This study answers the following research questions as proposed: 

 Question: Are the proposed hybrid spectral similarity measures effective in identifying the 

similarity between pixels for a multi-spectral image? 
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Answer: The proposed hybrid spectral similarity measures are not effective in comparison with the 

conventional Euclidean measure in measuring the similarity between pixels for the multispectral 

image. This is because of the higher intra-class and inter-class variability which is often inevitable 

in a multispectral image. The investigation shows that the hybrid measure works better than 

Euclidean only in cases where intra-class variability is lower. 

 

 Question: Is semi-supervised approach applied before classification better than optimizing the 

objective function of the classifier? 

 

Answer: Optimization of the objective function for applying semi-supervised approach requires 

modification of the objective function of a classifier and initializations of memberships that are 

either one or zero, as presented in Case 1 (Section 3.3), as soft membership values for the 

increased and unlabeled samples are unavailable initially. With our study on different cases of 

Possibilistic c Means classifier as described in Section 5.2, it is unable to provide better 

classification accuracies than Case 2. Therefore, not adopted for this research. With modifications 

and optimizations, it may give results but is not within the scope of this research. 

 

 Question: What will be the effect of hybrid spectral similarity measures on classification accuracy 

as compared to conventional similarity measures? 

 

Answer: The classification accuracies are assessed based on global Root Mean Square Error and 

overall accuracies from Fuzzy Error Matrix. The results as described in Section 5.2.1, Section 5.3 

and Section 5.4 shows that the overall classification accuracies are lower and the global Root 

Mean Square Error is higher for a Possibilistic c Means classifier with hybrid measures than the 

conventional Euclidean distance as a distance based similarity measure. 

 

 Question: Is proposed semi-supervised Possibilistic fuzzy classifier with hybrid spectral similarity 

measures better in dealing with uncertainties than supervised classifier? 

 

Answer: The proposed semi-supervised Possibilistic fuzzy classifier with hybrid measures are 

equivalent to their supervised counterpart with the respective hybrid similarity measures. But they 

are not better in comparison to the Euclidean distance as a distance based similarity measure. The 

semi-supervised approach and supervised approach both tend to give similar results. In addition, 

the Possibilistic c Means classifier works with a very little number of labeled samples, without the 

need of large unlabeled samples when Mean Shift algorithm is applied for shifting the mean to a 

higher density region.  

 

 

This research also answers the additional research questions: 

 Question: How to get a better estimate of variance with a little training data? 

 

Answer: This research identifies a method of obtaining an estimate of variance with a little training 

data with an iterative approach using a Possibilistic c Means classifier as described in Section 

3.4.2.1.  
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 Question: How mean shift algorithm can help in estimating an effective mode for classification? 

 

Answer: This estimate of variance (bandwidth parameter of Possibilistic c Means classifier, also 

known as 𝜂) if related to the bandwidth parameter of the Gaussian kernel in Mean Shift algorithm 

and used for shifting the mean of labeled samples, results in the similar classification accuracies as 

of other supervised and semi-supervised approaches. 

 

7.2. Recommendation 

This subsection discusses the recommendations for the future works. 

 The optimization of Possibilistic c Means in terms of degree of fuzziness can be explored. 

 A detailed exploration of the semi-supervised technique with objective function modification can 

be done. 

 A detailed study of the semi-supervised learning assumptions on the choice of a similarity 

measure can be done. 

 The effect of iterations on the modified versions of Possibilistic c Means algorithm can be 

explored. 

 A study on hybrid measures for estimating the variance of a class can be done. 
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APPENDIX A 

Support Vector Machine (SVM) classified outputs of Formosat-2 satellite image as used for reference, are 

shown in Figure A-1 and Figure A-2 respectively. The Formosat-2 (8m) image has been resampled to 10m 

before classifying to compare it with input Landsat-8 image.  

The classification model has the following specifications: Classification: C-classification, Kernel: Linear, 

Cost function: 10, SVM Model Accuracy: 99.513% and 10-fold cross-validation accuracy of 99.352% and 

prediction accuracy on test data for Hard classification as 99.111%. 

 

 

Figure A- 1. Soft Classified Formosat 2 Imagery using Support Vector Machine 
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Figure A- 2. Hard Classified output of FORMOSAT-2 Imagery using Support Vector Machine 
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APPENDIX B 

The classes identified on satellite image at the time of actual field visit is shown in Figure B-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B- 1. Identified Classes at the time of field visit. 


