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Key Terminologies  
Acronym  Descriptions 

ASPARi Asphalt Paving Research 

and Innovation 

ASPARi is a collaborative research effort between 

the University of Twente and the largest civil 

engineering contractors in the Netherlands. 

ML Machine learning An application of artificial intelligence whereby a 

machine learns by finding patterns within the data 

in order to classify or make predictions on new 

data. 

ANN Artificial neural network  ANN is a multilayer feedforward network which is 

used to model the relationship between a set of the 

input data and output data.   

MLP Multilayer perceptron 

algorithm 

An MLP algorithm is an example of an ANN that is 

used to model the relationship between a set of 

input and output data. It can be used to distinguish 

non linear relationships within the input and 

output data. 

AC Asphalt concrete Type of asphalt pavement which consists of a 

combination of fine aggregates, coarse aggregates  

and asphalt cement(binder).   

PA Porous asphalt Type of asphalt pavement which has high water 

drainage capacity. 

SMA Stone mastic asphalt Stone mastic asphalt mix consists of asphalt cement, 

binders and fibres. This open grade asphalt mix is 

porous and designed to ensure that surface water in 

the asphalt drains. 
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Abstract 
The ASPARiCool tool is an asphalt mix cooling rate prediction tool developed by ASPARi that 

uses machine learning. The role of the ASPARiCool tool is to guide the compactor operators on 

the suitable time window required to compact the asphalt mix to ensure the highest quality. At 

the moment, the ASPARiCool tool is still in its development phase, and one of the main 

problems is that the tool is not making good predictions of the cooling rates of asphalt mixes. 

The prediction problem in the tool has been identified as an overfitting problem which is the 

most common problem that is faced by many machine learning prediction tools. 

The ASPARiCool tool uses a Machine Learning algorithm known as Multilayer Perceptron 

Algorithm (MLP) to determine patterns between asphalt cooling features and the temperatures 

of asphalt mixes. The asphalt mix cooling features comprise of time, type of asphalt mix, 

ambient temperature, type of underlayer, the temperature of the underlayer, wind speed and 

amount of rainfall.  These features are significant in making accurate predictions of the cooling 

rates of asphalt mixes. 

In this study, the MLP algorithm, which is used in the ASPARiCool tool, was investigated. The 

investigation involved the development of a new prediction model that uses a similar algorithm 

and parameters as the ASPARiCool tool. Next, an analysis was conducted in the new prediction 

model to identify the effect of the asphalt cooling features in the overfitting problem of the MLP 

algorithm. 

The results of the analysis showed that MLP algorithm parameters which are, the number of 

neurons, type of activation function and type of solver would result in the MLP algorithm to 

overfit when predicting the cooling rates of asphalt mixes. Also, this research concluded that the 

asphalt cooling features which are time, type of asphalt mix, ambient temperature, solar 

radiation and windspeed resulted in a good fit MLP algorithm that made good predictions of 

the cooling rates of asphalt mixes. 

The results of this thesis will help contribute to the ASPARi research team by advising the most 

suitable MLP parameters that will help to make good predictions of the cooling rates of different 

asphalt mixes based on the current amount data available. 
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1.0. Introduction 

1.1. Motivation 

The quality of the asphalt pavement during the compaction phase in the asphalt paving process 

is influenced by the compaction temperature of the asphalt mixture. The compactor operator 

needs to estimate the optimal compaction time window during paving operations. Suppose the 

operator compacts the asphalt mix at high temperatures the fluidity of the binder increases 

causing the roller loads to displace or shove off the materials simply. Low compaction 

temperature, on the other hand, reduces the lubrication of the mixture and the bitumen, which 

results in an open surface that may cause premature failure due to low density (Kari, 1967). 

In the past, traditional approaches were used to determine the compacted temperature. One of 

the approaches used included plotting the graph of log-viscosity versus log temperature. The 

ideal compaction temperature was then determined in the graph by relating it to a viscosity 

value of 1.7. This traditional approach is no longer appropriate since it sometimes indicated high 

temperatures (Vasenev, Hartmann, & Dorée, 2012).  Another approach involved calculating the 

cooling rate of the asphalt layer due to weather and environmental conditions by a formula 

(Bossemeyer, 1966). 

 

Timm (2001 ) stated that there is an ideal temperature window to compact the asphalt mix that 

will result in a high probability of the asphalt pavement to reach the desired mechanical 

characteristic. In response, researchers have developed windows-based tools to predict cooling 

rates of asphalt mix. Such tools include PaveCool and Calcool. The problem of these tools is that 

there are discrepancies between the measured and predicted cooling rate during validation. The 

researchers state that more scientific studies are needed to create tools that have minimum 

differences between the measured and predicted cooling rates of asphalt mixes. (Timm et al., 

2001 and Chadbourn and Newcomb, 1998). 

Recently, software tools have been developed that can predict the cooling rate of asphalt mixes 

during the compaction phase. These tools help compactor operators to make well-founded 

decisions on the most suitable compaction time in asphalt pavement construction. One of the 

tools which are used to predict the cooling rate of asphalt mixes during paving operations is the 

ASPARiCool tool. The ASPARiCool tool uses Machine Learning (ML) algorithm called 

Multilayer Perceptron (MLP) to predict the cooling rate of the asphalt mix from asphalt cooling 

rate features. Such features used in the cooling rate prediction include; the type of asphalt mixes, 

type of underlayers, surface temperature, core temperature, and weather conditions like rain, 

wind speed, solar radiation, ambient temperature, and humidity (K.Ong-A-Fat, 2019).  

The ASPARiCool tool shows much potential to generate an accurate prediction of the cooling 

rate of asphalt mixes. However, in the current status of the tool, the ASPARiCool tool has an 

overfitting problem that leads to inaccurate cooling rate predictions of asphalt mixes (Baars, 

2020).   
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1.2. Research Strategy 

1.2.1. Research Problem 

In the prediction of the asphalt cooling rate in the ASPARiCool tool, the problem of overfitting 

arises in the asphalt cooling curves.  This problem is seen in the asphalt cooling curve graphs in 

which the predicted temperatures of the asphalt mixes begin to rise over time. The overfitting 

problem in the ASPARiCool tool will result in the compactor operator to fail to determine the 

most optimal compaction time window of the asphalt mix and subsequently affect the future 

quality of the asphalt pavement. Previously Baars (2020) has attempted to solve the problem of 

overfitting by increasing the amount of training data into the ASPARiCool tool. This has 

resulted in a decrease in overfitting, although the author suggests that more training data is 

required to solve this problem. Addressing the problem of overfitting is significant for the 

development of the ASPARiCool tool which will be able to predict more accurately the cooling 

rate of asphalt mixes and help roller compactor operators to determine the most optimal 

compaction time needed for compaction. 

1.2.2. Research Aim 

The objective of this research is to investigate the problem of overfitting in the prediction of the 

cooling rate of different asphalt mixes in the ASPARiCool tools MLP algorithm. This research 

aims to find out the cause of overfitting and how the problem of overfitting can be solved in the 

ASPARiCool tool’s MLP algorithm.  

This research will provide recommendations on how to approach the problem overfitting of 

ASPARiCool tool by clearly realizing how the current ASPARiCool Machine learning (ML) 

algorithm works. Next, a new prediction model that uses similar MLP algorithm will be built to 

compare the predicted cooling rates of asphalt mixes. 

1.2.3. Research Question 

The main research question is as follows: 

“How do the asphalt cooling rate features influence the problem of overfitting in the prediction 

of the cooling rate of asphalt mixes in the MLP algorithm?” 
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1.2.4. Research methodology and outline 

This section describes the approach that will be taken to answer the main research question 

followed by a description of the research outline in Table 1. 

To address the main research question, first, a literature study will be conducted in order to 

understand the problem of overfitting and to determine the methods used to address overfitting 

of the ASPARiCool tool. Secondly, the data that will be used to assess the ASPARiCool tool will 

be prepared. Thirdly, a preliminary analysis will be conducted to check whether the 

ASPARiCool tool is overfitting as described in the previous studies. Fourthly, a new similar 

prediction model will be developed that uses similar algorithm known as MLP to address the 

overfitting problem in the ASPARiCool tool. Fifth, a preliminary analysis will be conducted in 

the new MLP prediction model to check whether the similar overfitting problem occurs as in the 

ASPARiCool tool and to define the overfitting boundaries. Lastly, an analysis will be conducted 

in the new MLP prediction model to investigate the influence of the asphalt cooling features in 

the overfitting of the new MLP prediction model and to answer the main research question. 

 

The figure 1 below represents the overall research outline. The explanation of the outline is 

illustrated in Table 1 below: 

 

 

Figure 1: Research methodology 
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Table 1: Research outline 

Title Section Description 

Background information Section 2.0  Consists of a literature review relating to the 

research topic 

Theoretical framework Section 3.0 This section provides a theory of the key 

concepts that will be used in this research. The 

theoretical concepts are retrieved from the 

background information. 

Experimental design Section 4.0 This section provides an elaboration on the data, 

model evaluation strategy and the modelling 

tools used in the prediction of the cooling rates 

of asphalt mixes. 

Preliminary analysis of 

ASPARiCool model 

Section 5.0 In this section, a preliminary analysis of the 

ASPARiCool tool using the specified datasets 

will be conducted. This analysis aims to check 

whether the ASPARiCool tool is overfitting 

Development and 

preliminary analysis of new 

asphalt cooling rate 

prediction model 

Section 6.0 In this section, a new asphalt cooling rate 

prediction model is developed that uses the 

same algorithm as the ASPARiCool tool, and a 

preliminary analysis is conducted using similar 

settings and data as in ASPARiCool tool in order 

to address the overfitting problem in the 

ASPARiCool tool 

Boundary conditions for 

overfitting  

Section 7.0 In this section, the boundary conditions 

regarding overfitting are defined. 

Analysis of the new 

prediction model: 

Section 8.0 In the analysis of the new prediction model, the 

problem of overfitting and underfitting will be 

addressed based on the research questions. 

 

Conclusion Section 9.0 This section will consist of answers to the main 

research question, discussion and 

recommendations for ASPARi 
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2.0. Background information 
This section consists of the theoretical background which is used to address the problem of 

overfitting and underfitting. This section enables us to gain knowledge of the basic concepts that 

are important in order to answer the main research question. The first part of comprises of the 

cooling process of asphalt mixes, followed by the basic idea behind machine learning which is 

used in making predictions of the cooling rate of asphalt mixes. Next, the problem of overfitting 

and underfitting in machine learning models will be reviewed. This section will define 

overfitting and underfitting in prediction models as well as elaborate on the approach used to 

overcome overfitting and underfitting in prediction models. 

2.1. Asphalt cooling process 

To understand the cooling process of asphalt mix during pavement operations, first, the 

construction process of asphalt pavement is elaborated. Within the asphalt construction process, 

the laydown phase and compaction phase will be further elaborated because the cooling process 

of asphalt is significant in these phases. The production phase and transportation of the asphalt 

mix will not be discussed in this research. 

2.2. Asphalt construction process 

The asphalt construction process is divided into four phases which are (1) production phase (2) 

transportation phase and (3) laydown phase and (4) compaction phase.  

In the laydown phase, the trucks feed the paver with asphalt mix. The asphalt mix is 

temporarily stored in a hopper. A conveyor system then transports the asphalt mix to the rear of 

the paver where the paver spreads a uniform layer of asphalt mix to a specified thickness and 

shape. The material which is discharged by the paver is pre compacted by the vibrations 

produced by the paver machine and its weight (Bijleveld, 2015). 

  After the spreading the asphalt mix, while it is still warm, the rollers are tasked with the 

compaction phase to achieve the specified density and mechanical properties of the asphalt mix. 

There are three phases which occur during the compaction phase. These are (1) breakdown 

rolling, (2) intermediate rolling, and (3) finishing rolling. Each of the three compaction phases 

depends on specific temperature interval range for compaction hence the knowledge of the 

compaction time window is vital for roller operators to ensure that the highest quality of asphalt 

pavement is reached (Arbeider, Miller, Dorée, & Oosterveld, 2017).   

2.3. Compaction time interval 

The choice of compaction time is traditionally based on personal experience to determine 

surface temperatures. The process used to determine the temperature of the asphalt itself is not 

reliable. Often the operators estimate the temperature based on the colour of asphalt surface, but 

this method has its setbacks when the operations are conducted at night. Uncertainties in 

estimation of the temperature result in the final poor quality of asphalt pavements. The density 

of an asphalt mixture plays an essential role in the quality of an asphalt pavement. When an 

asphalt mix reaches the desired density, the characteristics of the asphalt mix such as stiffness, 

fatigue characteristics, resistance against deformation and moisture are optimised. The 



16 
 

temperature of a compacted asphalt mix has a direct effect on the desired density of an asphalt 

mix (Bijleveld, Miller, Bondt2, & Dorée, 2012).  

Timm et al. 2001 describe an optimal window for compaction (see Figure 2) where the desired 

mechanical properties of asphalt are achieved with a high degree of probability by a cooling 

curve of the asphalt mix. Depending on the cooling rate of the asphalt mix, if the asphalt mix is 

compacted outside the time windows, the asphalt mix will be under stressed or overstressed. 

 

Figure 2: Cooling rate of asphalt and optimal compaction time 
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2.4. Features that contribute to the cooling rate of asphalt mixes. 

The effect of the different features that affect the cooling rate of asphalt was elaborated from a 

literature review based on different studies which were conducted to determine the cooling rate 

of asphalt mixes. The effect of the features in the cooling rate of asphalt mixes are elaborated in 

the table 2 below: 

Table 2:Summary effect of features in asphalt cooling rate 

Features Details  References 

Type of asphalt mix AC concrete mix cools faster than 

SMA under similar conditions  

(Chadbourn & 

Newcomb, 1998) 

PA cools faster compared to AC 

concrete due to presence of high voids 

(Chang, Chang, & 

Chen, 2009) 

Lift thickness Thick lifts have high heat retention 

capacity compared to thin lifts, 

especially in cold regions 

(Epps, Gallaway, 

Harper, William W. 

Scott, & Seay, 1969) 

Type of underlayer The lower the temperature of the 

underlayer the faster the cooling rate 

of the lift 

(Baars, 2020) 

Asphalt as an underlayer has a high 

cooling rate than sand as an 

underlayer except when the sand is 

wet or frozen 

(Baars, 2020) 

Ambient temperature Hot air temperature decreases the 

cooling rate; hence it increases the 

time available for compaction while 

low air temperature increases the 

cooling rate 

(Miller, 2010) 

Wind speed Increased wind speed increases the 

cooling rate of the asphalt mix 

(Wise & Lorio, 2004) 

Rain Rainfall increases the cooling rate of 

asphalt mixes. Heavy rainfall causes 

the asphalt to cool and harden  

(Ismail, et al., 2019) 

Solar radiation Increased solar radiation decreases 

the cooling rate of the asphalt mix 

(Bijleveld, 

Professionalising the 

asphalt construction 

process, 2015) 

Surface and core 

temperature 

The surface temperature of the 

asphalt mix has a high cooling effect 

compared to core temperature, 

although there is a high correlation 

between the two. 

(Huerne, Dorée, & 

Miller, 2009) 

 

The next section describes the literature behind Machine Learning (ML).  
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2.5. Machine learning in predictions 

ML is a form of artificial intelligence (AI) that performs tasks such as prediction without the 

need of being programmed. ML relies on available information from a given task (training data) 

in order to predict new outcomes. In ML, training is the process whereby the machine learns 

from the previous example of a task. After learning, the same task is performed from new data 

(testing data). This process is known as inference. ML employs two strategies, namely, 

supervised, and unsupervised ML. In supervised Machine Learning (ML), there is prior 

knowledge of what the output value of the data samples should be. The aim of supervised 

Machine Learning (ML) is to learn the relationship between the input and the output values of 

the sample, making it very useful in predicting outcomes. After the machine has learned the 

relationships, the new input value is fed into the machine, and the machine will predict a new 

output value from the learned relationship.  

In Unsupervised Machine Learning (ML), there is no prior knowledge of the output value in the 

sample. The aim of unsupervised Machine Learning (ML) is to learn about the structure of the 

input values. In unsupervised Machine Learning, there are no output labels. The unsupervised 

Machine Learning (ML) is used for classification problems and dimension reduction (Louridas 

& Ebert, 2016) 

2.5.1. Machine learning algorithms 

Many ML algorithms exist that are used for prediction for non-linear relationships, e.g., decision 

trees,  random forest, multilayer perceptron algorithms support vector machines (SVM), support 

vector regression (SVR) (Mosavi, Ozturk, & Chau, 2018). The Decision trees, random forests 

algorithms, and Multilayer perceptron are going to be further discussed. These algorithms are 

discussed because they can make predictions from nonlinear relationships.  

Decision trees are the most straightforward ML algorithm approach (Leo, Luhanga, & Michael, 

2019). This algorithm uses previous historical data to predict new data. Decision tree classifiers 

are structured as trees. The nodes represent the features, the edges represent the feature values, 

and the leaves represent the classes. The biggest problem of decision trees is overfitting (Badillo, 

et al., 2020). Badillo et. Al (2020) further states that decision trees are not used in their original 

form, and the reason is that decision trees are prone to overfitting. Decision trees have become a 

building block for random decision forests. 

Random forest algorithm operates by combining decision trees on various subsamples of a 

dataset. Then, the combined decision trees are averaged in order to improve the accuracy in 

prediction. Random forest is used in classification and regression problems. Random forests are 

used to scale the volume of large data sets while retaining statistical efficiency. Another 

significance is its ability to operate with small data sets with high accuracy predictions. The 

downside of random forest is that it can feel like a black box approach hence no interpretability. 

Also, it is complex to build compared to decision trees, in case of regression, it fails to predict 

data beyond the training data and time-consuming in the prediction process (Biau & Scornet, 

2016). 
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MLP is a known artificial neural network technique. This algorithm is used in the ASPARiCool 

model. MLP was developed to be able to classify nonlinear separable sets (Kotsiantis S. , 2007). 

The main advantages of MLP are such that the distribution of training datasets is not dependant 

on pre assumptions, no decision is set on the significance of the input measurements, and the 

most input measurements are selected based on their weights in the training process. The MLP 

consists of input layers, hidden layers, and output layers (Pham, Tien Bui, Prakash, & Dholakia, 

2017). The challenges that exist include, model robustness, the choice of the model inputs, model 

weight optimisation and the validation of the model performance (Shahin, Jaksa, & Maier, 2001). 

2.5.2. Overfitting and underfitting in ML algorithms 

The biggest problem with these prediction algorithms is overfitting and underfitting. Overfitting 

occurs when the model performs better on the training data but fails to perform well on testing 

data; this means that the model has memorised the training data. Overfitting causes the problem 

of generalisation in the model in which the model fails to predict new outcomes (Kotsiantis S. , 

2014). Overfitting in regression models is mainly caused by (1) an excessively high number of 

features, and (2) complexity of the algorithms.  The presence of a high number of features in a 

regression model causes the model complexity to increase; hence the model fails to generalize. 

When the complexity of the model is high, the regression line will then fit all the training data 

points, including the noisy data, as shown in figure 3. 

 

Figure 3: Simple linear regression: Overfit model 

 

Kotsiantis S., (2014) and Liu et al. (2005) state that from a given set of input features, an 

approach for overfitting is perform feature selection. Feature selection involves filtering 

irrelevant or redundant features from the dataset.  From the literature, there are three currently 

known feature selection methods. These are filter method, wrapper method and embedded 

method (Chandrashekar & Sahin, 2014). In this study, the filter method approach is discussed 

because according to Chandrashekar and Sahin, (2014), it is not computational intensive 

compared to other selection methods.  
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The filter method is a feature selection process in which the features in a dataset are evaluated 

against a predictor. In this method, the features are ranked and removed based on a specific 

ranking method. After the features are ranked, the less relevant features are removed based on 

the ranking. The authors identify two types of ranking methods available which are (1) 

correlation-based method and (2) mutual information gain. The correlation-based method 

calculates the correlation coefficient between the input and the output to establish rank. This 

method is most suitable for linear relationships while the mutual information gain is based on 

the concept of Entropy theory, this technique is essential for different types of relationships 

including non-linear relationships of the input and output features (Chen, Wilbik, van Loon, 

Boer, & Kaymak, 2018). 

Underfitting in machine learning occurs when the machine learns from some part of the training 

data. In underfitting, the ML algorithm fails to fit the training data, and therefore the trends in 

the data are missed. When a model is under fitted, the machine will fail to generalise (Badillo, et 

al., 2020). A model under fits when it is insufficiently sophisticated such that it fails to capture 

the relationship between the feature datasets and the target variables. The possible approach for 

underfitting is to add more feature data. Zhang and Ling (2018) reaffirmed this approach by 

stating that the addition of more features alleviates underfitting. Besides, there needs to be an 

optimum number of training data. Another approach mentioned is to change the ML algorithm. 

Using a different ML algorithm that can process the available training data can solve 

underfitting. Figure 4  below represents a regression line in an underfitted model. 

 

Figure 4: simple linear regression: Underfit model 
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2.6. Key points background information 

The following key points are identified from the background information. These key points will 

be used in the rest of the research to address the problem of overfitting in the ASPARiCool tool’s 

MLP algorithm. 

1. The ASPARiCool tool uses supervised ML to predict the cooling rates of asphalt mixes. 

2. The MLP algorithm is used in the ASPARiCool tool. The problem of the MLP algorithm 

lies in its complexity.  

3. MLP algorithms are used to make predictions for nonlinear feature relationships. 

4. Overfitting occurs when a prediction model performs well on the training data but 

performs poorly on the validation data.  

5. The number of features used in an ML prediction model influences the overfitting 

problem. 

6. A suitable approach for overfitting is to perform feature selection. The literature 

identifies the feature selection method called mutual information gain as suitable for 

non-linear relations. 

7. Underfitting occurs when the prediction model fails to fit the training data in the result, 

the model fails to capture the trends in the data. Underfitting is caused by an overly 

complicated algorithm or when a small amount of data is used to train the model. 

3.0. Theoretical framework 
In this section, the key concepts that will be used to answer the research question are elaborated. 

These concepts have been retrieved from the background information and are essential in 

addressing the problem of overfitting in the ASPARiCool tool algorithm. In this section, firstly, 

the ASPARiCool tool is presented. Secondly, the theory about ANN is presented.  

3.1. ASPARiCool tool 

ASPARiCool tool is one of the new tools which predicts the cooling rate of asphalt. The tool is an 

Artificial Neural Network (ANN) that makes predictions of the cooling rate of asphalt mixes. 

This tool was developed to overcome the limitations of Pavecool and Calcool. ASPARi has 

developed this tool to determine the asphalt cooling rate of different asphalt mixtures used in 

the Netherlands. The programming language used to build this tool is JAVA (Fat, 2019).   

The ASPARiCool tool predicts the cooling rate of asphalt mixes by utilizing Machine Learning 

(ML). The type of Machine Learning used in the ASPARiCool is supervised machine learning 

because of the algorithm trains from previously collected asphalt cooling measurements. The 

ASPARiCool tool predicts the surface temperature in time. Since the predicted asphalt 

temperature is a numeric value, the supervised machine learning technique used is regression. 

The regression algorithm is the Multilayer Perceptron algorithm (MLP).  

The ASPARiCool tool consists of three main parts. The first part consists of the input. The 

second part consists of an MLP regression algorithm, and the third part consists of the output. 

The input is where the attribute data are incorporated while the regression model consists of a 

Multilayer Perceptron Algorithm (MLP), which is an Artificial Neural Network (ANN). The 
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output of the tool is a cooling curve that represents the cooling rate of asphalt mix over a 

specified time interval. The general representation of the ASPARiCool tool is elaborated in 

Figure 5. 

 

Figure 5:General structure of ASPARiCool prediction model 

As previously mentioned, the ASPARiCool tool’s main algorithm is an MLP which is an ANN. 

The MLP algorithm makes numeric predictions of the cooling rate of asphalt mixes; therefore, it 

is essential to elaborate on the functionality of the ANN. 
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3.2. Artificial Neural Network 

An ANN is a multilayer feedforward network which is used to model the relationship between 

a set of the input signal and output signal. An ANN uses the same model derived from the 

understanding of the human brain. The ANN consists of interconnected neurons or perceptrons. 

Each neuron can make decisions and feed those decisions to other connected neurons which are 

organized in interconnected layers. The connected neurons comprise of weights (w), which 

represent the importance of the connection to the output. The ANN consists of three layers 

which are the input, hidden layers, and the output layer.  

 

Figure 6: Structure of an ANN (Zhang, Eddy Patuwo, & Y. Hu, 1998) 

3.2.1. The training process of the ANN 

The training inputs are first entered into the input neurons. The weights are assigned to the 

activation values of the input neurons and summed up in the first hidden layer. An activation 

function then transforms the sum of the weighted values to the neurons in the next layer. In this 

case, the activation value becomes the new input in the next layer. The process is repeated until 

the output is determined (Zhang, Eddy Patuwo, & Y. Hu, 1998). 

The mathematical approach of the training process is presented below whereby each of the 

input is multiplied to weights w, and the final products are summed and then passed by an 

activation function 𝑓 to produce and output 𝑦(𝑥) (Lantz, 2013). 

 

𝑦(𝑥) = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 )                                                                         (1) 

3.2.2. Activation function 

The task of an activation function is to transform the neuron net input into a single output 

signal. Activation functions are useful because they introduce nonlinear relationships in ANN’s 

(Zhang, Eddy Patuwo, & Y. Hu, 1998). According to the authors, the use of activation functions 

depends on the type of problem that is to be addressed. The most common activation functions 

are logistic and rectified linear unit (relu).  For example, the logistic (sigmoid activation 

function) is used in models that predict an output value between 0 and 1 while the  relu 
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activation function is used to predict output values from 0 to infinity (Sharma, 2017). The 

formulas for these activation functions are represented below: 

Sigmoid (logistic activation function) 

𝑓(𝑥) =
1

1+𝑒−𝑥                                                                         (1) 

Relu (Rectified linear unit) 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

                                                                    (2) 

3.2.3. Loss function  

This function calculates the error between the actual value and the predicted value.  

3.2.4. Backpropagation 

The back-propagation process ensures that the network is learning by minimizing the loss 

function by updating the weights in the neurons to ensure that a minimum square error is 

reached.  

In this process, the output signal moves back from the predicted network to the neurons that 

generated the prediction. The error from the forward process is propagated back to the neurons 

to modify the connection weights. This process ensures that the total error of the network is 

reduced. The gradient descent technique is used to determine how much the connection weights 

should be changed in the backpropagation. The gradient descent is a mathematical process that 

uses the derivative of the activation function in each neuron to identify the gradient of the 

direction of the incoming weight (Lantz, 2013). The gradient specifies how steeply the error is 

going to be minimized or increased when the weight changes. In minimizing the error in ANN, 

the solver is an algorithm which is used to specify the weight optimization across the neurons 

by an amount known as the learning rate. The two most common types of solvers are Adaptive 

Gradient Algorithm (adam) and the stochastic gradient descent  (sgd).  The adam solver 

employs adaptive learning technique to find individual learning rate of in the neurons. On the 

other hand, the ‘sgd’ solver maintains a single learning rate for all updated weight while 

maintaining the learning rate. 

 

 

4.0.  Experimental design 
In this section, a detailed description of the preliminary steps taken to predict the cooling rates 

of asphalt mixes is presented. This section consists of a data collection procedure, followed by 

data preparation and pre-processing. Next, the theory behind the evaluation metrics used to 

check the performance of the prediction models is presented. Lastly, the prediction model 

implementation tools are elaborated. 
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4.1. Data collection 

In order to predict the cooling rate of asphalt mixes in machine learning models, asphalt cooling 

mix data during the road paving process needs to be acquired. The data needs to be collected 

from various asphalt paving projects. The data that affects the asphalt cooling mix is linked to 

surface and core temperatures of asphalt mix in order for a supervised machine learning model 

to be trained. 

The data used to train the model and predict the cooling rate of asphalt mixes was acquired 

from the ASPARi historical database and previous BAM projects. It consists of feature 

measurements that have been conducted on various road construction projects in the 

Netherlands. Table 3 below shows the description of the input data features that were measured 

in the various road construction projects. These features were chosen because they affected the 

cooling rate of asphalt mixes.  

Table 3: Description of features used in the asphalt cooling rate prediction model 

Features Description 

Time Is the time recorded at a specific temperature 

of asphalt mix during paving. (minutes) 

Type of asphalt mix Consists of seven mixes which are AC 22, AC 

16, PA 16, SMA-NL 11B,SMA-NL 11B AC 8, 

and AC 11. 

Underlayer temperature The temperature of the asphalt underlayer in 

°C 

Underlayer type Consists of 3 types of underlayers which are 

sand, stone and asphalt. 

Thickness Consists of the thickness of the asphalt mix 

(mm) 

Windspeed Windspeed recorded during asphalt paving 

in km/h. 

Outside temperature The ambient temperature during asphalt 

pavement (°C.) 

Solar radiation Radiant energy emitted by the sun during 

asphalt pavement. (W/m2) 

Rain Amount of rainfall recorded during the 

pavement process (mm). 

Measured surface and core temperatures The temperature of the asphalt pavement 

after the asphalt mix has been spread out 

before compaction of the asphalt mix (°C). 

 

In this research, two datasets were prepared in the prediction model. The dataset consists of 

surface temperatures and core temperatures combined with features that affect the cooling rate 

of asphalt mixes.  
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Some of the measurements in the dataset had missing values for the features. The missing 

measurements consisted of weather conditions, type of underlayer and underlayer temperature. 

The following assumptions were made to counter this problem: 

1. The weather data was retrieved from the KNMI website by looking at the location of the 

asphalt construction site and retrieving weather information from the weather station, 

which is the closest to the construction site. 

2. If the thickness of the asphalt mix layer was greater than 50 mm, the type of underlayer 

selected was sand. 

3. If the thickness of the asphalt mix layer was less than 50 mm, the type of underlayer 

selected was asphalt. 

4. The type of underlayer for all porous asphalt mixes was stone.  

 Table 4 and Table 5 below presents a brief overview of the input features which were used to 

predict the cooling curves in the ASPARiCool tool. From Table 4; Dataset 1, the type of asphalt 

mix with the highest amount of measured data was AC 22 with 42 measurements while AC 8 

has the lowest number of measurements collected. Besides, many measurements were taken 

during cold temperatures because the mean outside temperature is 14.6 °C. Lastly, the type of 

underlayers used comprised of stone, sand and asphalt. 

Table 4:Dataset 1: Statistics of features that affect the cooling rate of asphalt mixes (surface temperatures) 

Input 

features 

Thickness 

(mm) 

Underlayer 

temperature 

(°C) 

Type of 

underlayer 

 

 

 

Sand  

 

Stone 

 

Asphalt 

Wind 

speed 

(Km/h) 

Outside 

temperature 

(°C) 

Solar 

radiation 

(W/m2) 

Rain 

(mm) 

Measured 

Surface 

temperature 

(°C)  

Min 30 mm -0.2 °C 0 km/h -0.4 °C 0 W/m2 0 

mm 

15.9 °C 

Max 80 mm 36 °C 32 

km/h 

26.2 °C 668 

W/m2 

2 

mm 

170 °C 

Mean 54.18 mm 12.07 °C 9.45 

km/h 

14.6 °C 79.12 

W/m2 

0.07 

mm 

82.38 °C 

 

From Table 5 below, the core temperature the type of asphalt mix with the highest amount of 

measured data was AC 22 with 25 measurements while AC 11 has the lowest number of 

measurements collected at three measurements. Besides, many measurements were taken 

during cold temperatures because the mean outside temperature is 12.3 °C. Also, the type of 

underlayers is stone, sand and asphalt. 

 

 



27 
 

Table 5:Dataset 2: Statistics of features that affect the cooling rate of the asphalt mix (Core temperatures) 

Input 

features 

Thickness 

(mm) 

Underlayer 

temperature 

(°C) 

Type of 

underlayer 

 

 

 

Sand  

 

Stone 

 

Asphalt 

Wind 

speed 

(Km/h) 

Outside 

temperature 

(°C) 

Solar 

radiation 

(W/m2) 

Rain 

(mm) 

Measured 

core 

temperature 

(°C)  

Min 30 mm 0.1 °C 3.6 

km/h 

4.1 °C 0 W/m2 0 

mm 

23.33 °C 

Max 80 mm 34 °C 32.4 

km/h 

26.2 °C 241 

W/m2 

1.1 

mm 

177 °C 

Mean 47.5 mm 12.3 °C 15.11 

km/h 

14.13 °C 66.08 

W/m2 

0.11 

mm 

90.63 °C 

 

4.2. Data preparation ASPARiCool tool preliminary analysis 

The preliminary analysis was conducted using two sets of data. The first dataset(Table 4) 

consisted of surface temperatures of asphalt mix and other features that affect the cooling rate of 

asphalt mixes. In contrast, the second set of data Table 5 consisted of the core temperature of 

asphalt mixes and other features that affect the cooling rate of asphalt mixes—both datasets 

comprised of individual feature measurements that were collected at different construction sites. 

The measurements were stored in an xlsx excel format before being uploaded into the 

ASPARiCool tool.  Table 6 below presented the amount of data used in the ASPARiCool tool. 

Table 6: Amount of training data used in the  ASPARiCool tool 

Type of asphalt mix Dataset 1: surface 

temperature data 

Dataset 2: core 

temperature data 

AC 22 42 25 

AC 16 17 3 

AC 11 1 11 

AC 8 3 5 

PA 16 10 NA 

SMA NL 8G+ 18 17 

SMA NL 11B 13 18 

The total amount of 

data 

104 79 

 

Before inserting the datasets into the ASPARiCool tool, the datasets were separated into training 

and validation data. The training data was used to train the ASPARiCool tool while the 

validation data which comprised of different types of asphalt mixes was used to check the 

prediction performance of the ASPARiCool tool by comparing the measured temperatures and 

the predicted temperature of the asphalt mixes. The validation data comprised five asphalt 

mixes. The asphalt mixes PA 16, and AC 11 was not used to check the performance ASPARiCool 

tool because the amount of AC 11 measurements for the surface temperature dataset was one. 

Also, there were no recorded PA 16 measurements in dataset two; hence it was not possible to 
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compare the surface temperature and core temperatures of these types of asphalt mixes in the 

ASPARiCool tool. 

Table 7 presents an overview of the validation data measurements for both the surface and core 

temperatures which were used to check the performance of the ASPARiCool tool in the 

prediction of surface and core temperatures: 

Table 7: Validation data for the different types of asphalt mixes used to check the performance of ASPARiCool tool 

Type of 

mix 

Thickness 

(mm) 

Type of 

underl

ayer  

Temperature 

of 

underlayer 

Windspeed 

(km/h) 

Outside 

temperature 

Solar 

radiation 

(W/m2) 

Rain 

(mm) 

AC 8 

 

30 Asphalt 10 23 10 0 0 

AC 16 

 

40 Asphalt 7 21 6 0 0 

SMA-NL 

11B 

35 Asphalt 7 8 7 0 1.1 

SMA-NL 

8G 

35 Asphalt 17.8 10.8 21.8 206 0 

AC 22 60 Sand 8.85 18 12.85 36 0 

        

 

4.3. Data preparation new prediction model 

The initial step in the data preparation phase was to extract validation data from the datasets. 

The validation data consisted of five types of asphalt mixes. The validation data was used to 

check the cooling curves of the predicted cooling rates of asphalt mixes. The data that was used 

for the new prediction model was similar to the one used in the ASPARiCool tool preliminary 

analysis(Table 6). The only difference was in the way the data was inputted into the new 

prediction model. The data input strategy for ASPARiCool tool was to insert individual 

measurements comprising of xlsx excel format into the ASPARiCool tool while for the new 

prediction model; the data input strategy was to combine all the measurements from Table 6 

into a single csv excel format then insert the single csv file into the new prediction model. This 

was done separately for surface temperature measurements and core temperatures 

measurements of asphalt mixes. The datasets for the new prediction model are illustrated in 

Table 8 below. 
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Table 8: Dataset 1 and Dataset 2 file names for the new prediction model 

Dataset 1 file name: Surface temperatures Dataset 2 file name: Core temperatures 

Model data  Validation data Model data Validation data 

Surface_Dataset_1.csv 

 

 

AC_8_Surface_Valid.csv Core_Dataset_2.csv 

 

 

AC_8_Core_Valid.csv 

AC_16_Surface_Valid.csv AC_16_Core_Valid.csv 

AC_22_Surface_Valid.csv AC_22_Core_Valid.csv 

SMA-

NL_8G_Surface_Valid.csv 

SMA-

NL_8G_Core_Valid.csv 

SMA-

NL_11B_Surface_Valid.csv 

SMA-

NL_11B_Core_Valid.csv 

 

4.4. Data pre-processing for new prediction models 

In this phase, all the asphalt cooling measurements with missing values in both the datasets 

were removed. Secondly, the features, which are the type of asphalt mix and type of underlayer, 

which consisted of qualitative categorical features, were converted into numeric labels through 

the use of dummy variables. This was done because the prediction model can only predict 

numbers and not texts. The dummy variable can only take two quantitative values, which are 

zero and one. The value one represents the presence of the qualitative categorical feature, while 

zero represents the absence. The dummy variable is used when the data contained in the 

attribute are not conventionally measured on a numeric scale. In this case, the attributes ‘type of 

asphalt mix’ and ‘type of underlayer’  was not to be measured on a numeric scale because the 

model would have assigned numeric weights to the qualitative categorical features and affect 

the prediction performance of the cooling rate of asphalt mixes.  After the dummy variables 

were applied to the categorical features, the categorical labels are converted into features; hence 

the total amount of features increased to eighteen features in dataset one and sixteen features in 

dataset two. The feature set excel format of datasets one and datasets two are illustrated in  

 

 

Appendix B. 

Another step taken in the pre-processing phase was to separate the independent x variables (the 

type of asphalt mix, type of underlayer, underlayer temperature, solar radiation, wind speed, 

rain, and ambient temperature) and the dependant variable (Core and Surface temperature of 

asphalt mix).  

Lastly, the train and test split function was used to separate the datasets into training and testing 

data. This train and test split function was used to evaluate the performance of the model and 

check whether the model overfits.  The x and y variables were split into 60 % training and 40 % 

testing data. 
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4.5. Model evaluation metrics 

4.5.1. Root mean square error 

The RMSE was used as the model performance evaluators for the asphalt cooling rate 

prediction. The RMSE was chosen because it measures how far the deviation is between the 

measured value and the predicted value. Besides, the RMSE is useful because it assigns high 

weights to large errors; hence for this research, it was useful for large undesirable errors relating 

to temperatures (Chai & Draxler, 2014).  

The RMSE is a measure of the standard deviation between the observed values and the 

predicted values (Barnston, 1992). In this research, the RMSE measures the standard deviation 

between the predicted temperature and the measured temperature of asphalt mixes. The RMSE 

is a negatively oriented score. This means that a lower RMSE value indicates a more accurate 

and consistent asphalt cooling rate prediction model. The formula which is used to calculate the 

RMSE is presented: 

𝑅𝑀𝑆𝐸 =  √
∑(𝑦𝑖−𝑥𝑖)2

𝑛
                                                                     (1) 

Where 

 𝑦𝑖 is the predicted temperature of the asphalt mix 

𝑥𝑖  is the measured temperature of the asphalt mix 

n is the number of samples used in the measurements 

4.6. Implementation tools 

This section describes the implementation tools and the libraries that were used to perform 

essential functions in the prediction of the cooling rates of asphalt mixes. A detailed function 

python code can be found in Appendix A. 

Programming language:  Python 3. Python 3 was chosen because it is a relatively simpler 

language to use compared to JAVA (Anaconda, 2020). 

Programming platform:  Jupyter lab. This is an open-source programming platform. (Jupyter, 

2020). 

Supporting libraries: Python 3 supports different scientific libraries. The following libraries 

were used in the new asphalt cooling rate prediction model: 

1. Pandas pd – comprises of a data analysis toolkit (pandas, 2020). 

2. Numpy np – performs mathematical and logical operations in multidimensional arrays 

and matrices. (NumPy, 2020) 

3. Scikit learn – imports libraries used in developing the model (Scikitlearn, 2019) 

▪ MLPRegressor: Multilayer perceptron regression algorithm 

▪ Mutual information regressor – Feature selection algorithm  

▪ Train-test splits: Splits the data into training and testing data. 

▪ Metrics for scoring: provides scorings for the model predictions. 
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o square root(sqr), mean square error (mse)  

4. Matplotlib – used for 2-dimensional plotting and data visualization. (Matplotlib, 2020). 

5.0.  Preliminary analysis ASPARiCool tool 
This section describes the performance of the predicted asphalt mix cooling curves in the 

ASPARiCool tool. The validation data in Table 7 was used to check the performance of the 

ASPARiCool tool by comparing the curves of the predicted temperatures and the measured 

temperatures of the asphalt mixes. The results of the preliminary analysis of the ASPARiCool 

tool are divided into two parts, surface temperature predictions and core temperature 

predictions of asphalt mixes.  

In evaluating the performance of the ASPARiCool tool, the RMSE between the measured 

temperature of the asphalt mix and predicted temperature of the asphalt mixes was calculated 

for the three compaction phases. The compaction phases comprised of breakdown phase 

intermediate rolling phase and finishing rolling phase as elaborated in section 2.2 

Two types of asphalt mixes were considered for this analysis, the SMA and AC mix. Each of 

these mixes has its own compaction temperature, as illustrated in Table 9 below: 

Table 9: Compaction time windows for asphalt mixes (retrieved from ASPARi research) 

Type of mix Breakdown phase 

temperature °C 

Intermediate rolling 

phase temperature 

°C 

Finishing rolling 

phase 

Temperature °C 

SMA  140 - 120 120 -100 100 -80 

AC 150 120 120 -100 100 -80 

 

As previously mentioned in section 4.5, the RMSE value for this analysis represented the 

standard deviation between the measured asphalt mix temperature and the predicted asphalt 

mix temperature. Furthermore, the lower the RMSE value represented a better model 

performance in predicting the cooling temperature of the asphalt mix because it closely related 

the measured temperature of the asphalt mix. Before looking at the results of the predicted 

temperatures, the parameters used in the ASPARiCool tool MLP classifier were identified: 

5.1. Parameter identification ASPARiCool tool 

To identify the model parameters, the MLP classifier file, located inside the ASPARiCool java 

program, was decompiled. The next step followed was to retrieve the parameter values for the 

MLP classifier. The ASPARiCool tool parameters and their descriptions are elaborated in Table 

10. From the table below, the type activation function and the type of solver could not be 

determined from the MLP classifier code:  
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Table 10: Parameters used in the ASPARiCool tool. Description of parameters retrieved from (Scikitlearn, 2019) and (Lantz, 

2013) 

Parameters Value Explanation 

Number of hidden layers 3 Processes signals from the 

input node to the output 

node. Adding more layers 

will increase the complexity 

and increase the signal 

processing ability  

Number of neurons in the hidden 

layers 

Not known Determines the complexity of 

the task learned in the 

network. 

Activation function Not known Transforms neuron net input 

into an output function 

within the network layers 

Maximum iterations 2000 Determines how many times 

the data is trained in the 

model. 

Learning rate 0.1 Determines the schedule for 

updating the input weights. 

Type of solver  

▪ Adaptive moment 

estimation(adam) 

▪ Stochastic gradient descent 

(sgd) 

Not known Updates network weights 

iteratively based on training 

data to minimize the error in 

the predictor 

 

Momentum 0.2 Used to increase the speed of 

learning effect of the MLP 

 

The next section elaborates on the prediction results for dataset one and dataset two. 

5.2. Dataset 1: Surface temperature predictions  

Table 11 present the RMSE values of the surface temperature dataset for the five types of asphalt 

mixes that were trained in the model. The AC 16 mix predictions were poor at the breakdown 

compaction phase compared to the intermediate and finishing rolling phase. The predictions for 

AC 8 and AC 22 were poor because of the RMSE value in the intermediate and finishing rolling 

phase were high. The SMA mixes performed better than the AC mixes because of the lower 

RMSE values in the breakdown and intermediate phase, although the RMSE values were higher 

in the finishing rolling phase. 
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Table 11:Performance scores for different types of asphalt mixes in ASPARiCool tool- Surface temperatures 

Type of 

mix 

The total 

amount of data 

 Root mean square error between measured surface and  

predicted surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 10.26 4.23 7.62 

AC 8 3 6.27 13.88 17.63 

AC 22 42 21.95 24.61 24.91 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 2.70 8.01 10.65 

SMA-NL 

11B 

13 2.02 6.49 18.17 

 

The cooling curves are presented below. The cooling curves of the asphalt mixes show more 

significant deviations between measured temperatures and predicted temperatures of the 

asphalt mixes and a rising effect is observed at the end of the cooling curves. This indicates that 

the MLP algorithm used in the tool was overfitting in the prediction of these mixes. 
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Figure 7:Dataset 1, AC 8 cooling curves ASPARiCool 

 
Figure 8:Dataset 1, AC 16 cooling curve ASPARiCool 

 
Figure 9:Dataset 1, SMA-NL 11B cooling curve ASPARiCool 

 
Figure 10: Dataset 1, SMA-NL 8G cooling curve ASPARiCool 

 
Figure 11:Dataset 1, AC 22 cooling curve ASPARiCool 
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5.3. Dataset 2: Core temperature predictions  

Table 12 present the RMSE values for the five types of asphalt mixes. Starting with the AC 

mixes, the worse performing mix is AC 22, which has high RMSE values in all compaction 

phases. AC 8 mix recorded a lower RMSE value of 6.21 in the breakdown phase, but the 

intermediate rolling phase and finishing rolling phase RMSE values, which were greater than 8. 

The tool showed a better performance in predicting the cooling rate of the AC 16 mix because of 

the lower RMSE values in all the rolling phases. The SMA-NL 8G mix performed poorly in the 

finishing rolling phase compared to the other compaction phases. Lastly, the SMA-NL 11B 

performed poorly in the breakdown compaction phase and finishing rolling phase. 

Table 12:Performance scores for different types of asphalt mixes in ASPARiCool tool- Core temperature dataset 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured core temperature 

and predicted core temperature( RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 3 0.71 1.92 8.09 

AC 8 5 6.21 17.31 23.73 

AC 22 25 22.84 32.35 39.95 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

17 3.53 3.88 9.29 

SMA-NL 

11B 

18 8.77 2.22 8.58 

 

The cooling curves for the core temperature dataset show that the predicted core temperatures 

are increasing indicating that the MLP algorithm used in the tool was overfitting in the 

prediction of these mixes. 
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Figure 13: Dataset 2, AC 16 cooling curve ASPARiCool 

 

Figure 14: Dataset 2, SMA-NL 11B cooling curve ASPARiCool 

 

Figure 15:Dataset 2, SMA-NL 8G cooling curve ASPARiCool 

 

 

 
Figure 16: Dataset 2, AC 22 cooling curve ASPARiCool 

Figure 12: Dataset 2, AC 16 cooling curve ASPARiCool 
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5.4. Discussion preliminary analysis ASPARiCool tool  

The cooling curves show that the predicted temperatures of the surface and core dataset are 

rising with time, especially at the intermediate (120°C -100°C) and finishing rolling phase(100°C-

80°C). The rising effect is indicated by the higher RMSE values between the predicted 

temperatures and the measured temperatures. For example, the cooling curve of SMA-NL 8G 

mix for dataset 1 (Figure 10) shows that the predicted temperature of the asphalt mix begins to 

rise at the intermediate rolling phase whereby the RMSE value is 8.01 as represented in Table 11. 

Another example can be seen in the cooling curve of AC 16 mix for dataset 2 (Figure 13) 

whereby the cooling curve shows a rise in the predicted core temperature of the mix at the 

finishing rolling phase in which the RMSE value is 8.08 as represented in Table 12. 

According to previous research by Baars, 2020, the problem of the rise in the cooling curves is 

overfitting of the ASPARiCool prediction tool, although this problem was not correctly defined 

because the tool was considered a black box since the model could only be viewed in terms of 

the input and output because it is still in the development phase.  

Another problem was some parameters of the MLP algorithm, which comprise of the number of 

neurons, activation function, and solver type could not be known hence the prediction 

performance of the tool might have been affected. Furthermore, the tool only showed asphalt 

mix cooling curves, but there was no option to download the cooling curve values; hence the 

RMSE values between the measured and predicted temperatures of the asphalt mix that were 

calculated in the preliminary analysis were not significantly accurate.  

6.0. Development of an asphalt cooling rate prediction model 
To address the problem of overfitting in the ASPARiCool tool’s MLP algorithm, a similar model 

which predicts the cooling rate of asphalt mixes was built. A similar prediction model was built 

to address the problem of overfitting in the ASPARiCool tool because there was limited time to 

learn JAVA programming language, which was used in the ASPARiCool tool. 

6.1. New asphalt cooling rate prediction model 

The algorithm used in the new prediction model was the MLPRegressor. The MLPRegressor is a 

multilayer perceptron algorithm that utilizes feed-forward network propagation to conduct 

supervised machine learning regression. The MLPRegressor trains iteratively based on the 

chosen MLP model parameters and record a score depending on the specified maximum 

iterations (Scikitlearn, 2019). The MLPRegressor consisted of the following parameters: 

1. Number of hidden layers 

2. Number of neurons in each of the hidden layers 

3. Activation function for hidden layers  

▪ Rectified linear unit function (relu) 

4. Type of solver  

▪ Adam 

5. Momentum  
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6. Learning rate 

The model development steps have been summarised in Figure 17 below:  

 

Figure 17: Development steps of new asphalt mix cooling rate prediction model 

The detailed steps taken to develop the new prediction model were elaborated below. The 

detailed python code and descriptions are presented in Appendix A for each of the steps taken: 

Step 1:  Importation of scientific libraries into the python 3 web interface. 

Step 2: Importation of the dataset one (Surface_Dataset_1.csv) and dataset two 

(Core_Dataset_2.csv) to make asphalt cooling rate predictions( Table 8). 

Step 3: Data pre-processing. The process comprised of the following: 

A. Removal of rows in the data with missing values. 

B. Application of dummy variables to features with qualitative categorical attributes 

(Suits, 1957).Appendix B 

C. Separation of the variables into independent and dependant variables. 

D. Split the data into training and testing data 

Step 4: Application of MLPRegressor algorithm. 

A. Application of independent and dependent variables into the MLPRegressor 

B. Tuning of parameters of the MLP Regressor algorithm. 

Step 5: Importation of validation data which comprises of different types of asphalt mixes 

Step 6: Test the model performance on validation data 

A. Calculate RMSE values between the measured and predicted surface temperatures of 

asphalt mixes 

B. Return the cooling curves of the measured surface temperature and the predicted 

surface temperature of the asphalt mixes. 

6.2. Preliminary analysis of new asphalt cooling rate prediction model 

The preliminary analysis was conducted using similar parameters and datasets that were used 

in the ASPARiCool tool. The goal of conducting a preliminary analysis was to investigate 

whether the new prediction model overfitted like the ASPARiCool tool.  

The following steps were taken in the preliminary analysis:  

1. The new prediction model used similar datasets as the ASPARiCool tool. 

Two datasets that consist of core and surface temperatures of asphalt mixes, including other 

features that affect the cooling rate of asphalt mixes were used in the preliminary analysis of the 

new prediction model. Table 13 below provides an overview of the amount of data used. 
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Table 13: Amount of training data for a new prediction model 

Type of asphalt mix Amount of surface 

temperature data 

Amount of training 

core temperature data 

AC 22 42 25 

AC 16 17 3 

AC 11 NA 11 

AC 8 3 5 

PA 16 10 NA 

SMA NL 8G+ 18 17 

SMA NL 11B 13 18 

Total amount of data 104 79 

 

2. One set of measurements was separated in each type of mix to be used as validation data. 

 

3. The parameters which include, activation function, solver and the number of neurons in 

each of the hidden layers were not known in the MLPclassifier algorithm in the 

ASPARiCool tool; therefore, the activation function and solver was set to relu (rectified 

linear unit) and adam, respectively. These parameters are also the default function for the 

MLPRegressor algorithm, which was used in the new prediction model (Scikitlearn, 2019).  

 

4. The standard number of neurons in each of the hidden layers was calculated by taking 2/3rd 

of the total amount of features (18 features) plus one. This rule is considered a standard rule 

of thumb because there is no specific formula to calculate the number of neurons in each of 

the hidden layers (Panchal et al. 2011). 

Table 14 below illustrated the overview of the data and the parameters used for the algorithm of 

the new prediction model.  

 

 

 

 

Table 14: MLPRegressor input data and parameters 

MLPRegressor input data Value 

Dataset 1: Total amount of surface data measurements 104 

Dataset 2: Total amount of core data measurements 79 
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MLP Regressor Parameter  

Learning rate 0.1 

momentum 0.2 

Activation function relu 

solver adam 

Max iterations 2000 

Hidden layer sizes 3 

Number of neurons in the hidden layer (13,13,13) 

 

5. The performance of the new prediction model was determined by comparing the RMSE 

between the predicted and measured temperatures of the asphalt mixes and by checking the 

cooling curves of the asphalt mixes. 

6.3. Results of the preliminary analysis in the new prediction model 

In evaluating the performance of the new prediction model, the RMSE between the measured 

temperature of the asphalt mix and predicted temperature of the asphalt mixes was calculated 

for the three compaction phases. The compaction phases comprised of breakdown phase 

intermediate rolling phase and finishing rolling phase.  

6.3.1. Dataset 1: Surface temperature predictions 

Table 15 present the RMSE values of the surface temperature dataset for the five types of asphalt 

mixes that were trained in the model. The RMSE values indicate the temperature deviations 

between the measured temperature and predicted temperatures of the asphalt mixes. From the 

table below, the AC 16, AC 8, and SMA-NL 11B mixes indicated very high-temperature 

deviations between the measured and predicted surface temperatures. The new prediction 

model performed better for SMA-NL 8G mixes because the RMSE in the breakdown, 

intermediate rolling and finishing rolling phase were 1.4, 5.5 and 5.6 respectively hence this 

indicates the MLP algorithm used in the new prediction model was not overfitting when 

predicting SMA-NL 8G asphalt mix. 

 

 

 

 

 

Table 15:Performance scores for different types of asphalt mixes in new prediction model- Surface temperature dataset 

Type of 

mix 

The total 

amount of 

data 

Root mean squared error between predicted temperature 

and measured temperature of asphalt mixes (RMSE) 

   Breakdown 

phase 

Intermediate 

rolling phase 

Finishing rolling 

phase 



41 
 

(150°C-120°C) (120°C -100°C) (100°C – 80°C) 

AC 16 17 24.56 17.16 6.33 

AC 8 3 22.08 12.94 10.07 

AC 22 42 5.77 9.79 9.04 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling 

phase 

(100°C – 80°C) 

SMA-

NL 8G 

18 1.4 5.5 5.6 

SMA-

NL 11B 

13 35.93 26.10 12.36 

 

The cooling curves are presented in the figures below. As can be seen, the SMA-NL 8G mix 

cooling curve, which consisted of 17 measurements performed better compared to the other 

cooling curves. The problem seen for the rest of the cooling curves is that the predicted surface 

temperature at the beginning of the curves was considerably lower compared to their respective 

measured surface temperature indicating that the new MLP algorithm was overfitting when 

predicting the AC 8, AC 16, and SMA-NL 11B mixes. 

 
Figure 18: Dataset 1, AC 8 cooling curves New prediction 

model preliminary analysis 

 

 
Figure 19: Dataset 1, AC 16 cooling curves New prediction 

model preliminary analysis 
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Figure 20:Dataset 1, SMA-NL 11B cooling curves New 

prediction model preliminary analysis 

 
Figure 21: Dataset 1, SMA-NL 8G cooling curves New 

prediction model preliminary analysis 

 

 
Figure 22: Dataset 1, AC 22 cooling curves New prediction model preliminary analysis 

 

6.3.2. Dataset 2: Core temperature predictions 

Table 16 below presents the RMSE values for the five types of asphalt mixes. The RMSE values 

indicate the temperature deviations between the measured temperature and predicted 

temperatures of the asphalt mixes.  Starting with AC 16 mix, the RMSE value was high for the 

intermediate and finishing rolling phase while the AC 8 and AC 22 mix recorded slightly high 

RMSE values in the breakdown phase compared to the intermediate and finishing rolling 

phases. Furthermore, the prediction model performed was overfitting when predicting the 

SMA-NL 11B mixes because all the compaction phases showed high-temperature deviations. 

The new prediction model performed well in the prediction of SMA-NL 8G mix because the 

temperature differences in the breakdown, intermediate and finishing rolling phases was low. 
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Table 16:Performance scores for different types of asphalt mixes in new prediction model- core temperature dataset 

Type of 

mix 

Total amount of 

data 

Root mean squared error between predicted temperature and 

the measured temperature of asphalt mixes (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 3 5.21 11.06 18.94 

AC 8 5 24.62 6.19 8.47 

AC 22 25 9.52 1.63 0.63 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

17 4.08 0.19 4.09 

SMA-NL 

11B 

18 36.04 27.93 18.46 

 

The cooling curves produced by the new prediction model are presented below. From the 

cooling curves, there are high deviations between the predicted temperature and measured 

temperatures of the asphalt mixes except for AC 22 and SMA-NL 8G. Also, the predicted core 

temperatures of the AC 8, SMA-NL 11B, AC 22 are relatively lower at the beginning of the 

curves indicating that the new MLP prediction model was overfitting when predicting these 

mixes. 

  
Figure 23: Dataset 2, AC 8 cooling curves New prediction 

model 

  
Figure 24:Dataset 2, AC 16 cooling curves New prediction 

model 
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Figure 25: Dataset 2, SMA-NL 11B cooling curves New 

prediction model 

 

 
Figure 26:Dataset 2, SMA-NL 8G cooling curves New 

prediction model 

 

 
Figure 27: Dataset 2, AC 22 cooling curves New prediction model 

 

6.3.3. Discussion preliminary analysis new prediction model 

The preliminary analysis shows that the new MLP prediction model made a poor prediction for 

AC 8, AC 16, SMA-NL 11B and AC 22 because the RMSE values between the measured 

temperatures and predicted temperatures were high. Also, the predicted cooling curves were 

much lower at the beginning compared to the measured temperatures of the asphalt mixes. In 

contrast, the SMA-NL 8G mix performed better with lower RMSE value between the measured 

and the predicted cooling curves in both the core and surface temperature datasets.  The poor 

performance of the AC 8, AC 16, SMA-NL 11B and AC 22 cooling curves indicated that the new 

prediction model was overfitting in the prediction of these mixes. The same problem was 

noticed in the ASPARiCool preliminary analysis in which the RMSE between the measured and 

the predicted temperatures in some specific asphalt mixes were higher in the asphalt 

compaction windows. 
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7.0. Conditions to detect an overfitting asphalt cooling rate 

prediction model within the MLP algorithm 
Based on the results of the preliminary analysis of the ASPARiCool tool and the new prediction 

model, the conditions that will be used to define an overfit MLP asphalt cooling rate prediction 

model in the analysis of the new prediction model are stated.  

The first method that will be used to define overfitting is by comparing the RMSE values 

between the measured and the predicted temperatures of the asphalt mixes in the breakdown 

phase, intermediate rolling phase and finishing rolling phase.  

The MLP algorithm will overfit when predicting the cooling rate of asphalt mixes if the RMSE 

value between the measured and predicted temperature is greater than 8 in the breakdown 

phase, intermediate rolling phase and finishing rolling phase.  The value of 8 is chosen based on 

the preliminary analysis conducted in the ASPARiCool tool. As it can be observed in the AC 16 

cooling curve in Figure 13 , the predicted temperature of the mix was increasing at the finishing 

rolling phase (100°C -80 °C). The recorded RMSE value between the predicted temperature and 

the measured temperature of the asphalt mix in the finishing rolling phase was 8.09 which 

meant that a RMSE value of 8 indicated that the ASPARiCool tool was overfitting.  

The second method to detect overfitting is to look at the measured and predicted temperatures 

in the cooling curves of the asphalt mixes. Generally, an MLP prediction model will overfit if the 

predicted temperatures of the asphalt mix fails to capture a similar pattern as the measured 

temperature of the asphalt mix. 

 From the cooling curves, if the predicted temperatures at the beginning of the cooling curves is 

either lower or higher compared to the measured temperature of the asphalt mix then the MLP 

prediction algorithm is overfitting. This effect was observed in the preliminary analysis of the 

new MLP prediction model whereby the cooling curves of AC 8 , SMA-NL 11B, and AC 22 

mixes showed that the predicted temperatures at the start of the cooling curves were lower 

compared to the measured temperatures (see section 6.3.1 and section 6.3.2).   

 Also, if the predicted temperatures of the asphalt mixes are increasing with time compared to 

the measured temperatures of the asphalt mixes, then the MLP prediction algorithm is 

overfitting. The increasing effect was observed in the preliminary analysis of the ASPARiCool 

tool whereby the predicted temperatures of AC 8, AC 16, AC 22, SMA-NL 11B and SMA-NL 8G 

mixes were increasing with time as presented in section 5.2 and section 5.3. 

8.0. Analysis of new MLP asphalt cooling rate prediction model 
In this section, the problem of overfitting of the MLP algorithm was addressed. According to the 

background section 2.5.2 , the amount of features can have an influence in overfitting of a ML 

prediction model, therefore, in this research, the overfitting problem in the MLP algorithm was 

addressed by conducting feature selection to determine which set of asphalt cooling features 

influence a good asphalt cooling rate prediction performance.  Two approaches were conducted 

in order to investigate the problem of overfitting. The first approach is to select the best 
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combination of asphalt cooling features that influence the prediction performance of the MLP 

algorithm and the second approach was to test these features in the MLP algorithm in order to 

assess the overfitting problem and to check the asphalt cooling rate prediction performance. 

8.1. First approach: Feature selection by mutual information gain method 

 The first approach is to determine the importance of each asphalt cooling mix feature to the 

temperature of the asphalt mix by using the mutual information gain method described in 

section 2.5.2. The mutual information gain works by determining a score of how much each 

asphalt cooling feature is dependent on the surface temperature of the asphalt mix. After the 

dependency between each asphalt cooling feature and the surface temperature of the asphalt 

mix is determined, the next step is to successively remove the least dependent asphalt cooling 

feature successively and grouping the remaining features. This feature selection method was 

chosen because it is suitable for non-linear features, also because it would have been time-

consuming to investigate the effect of overfitting in the MLP asphalt cooling rate prediction 

model by testing every possible combination of asphalt cooling feature. 

 

The score that determines the dependency is known as IG score. A higher IG score means that 

the asphalt cooling mix feature is more mutual dependant to the temperature of the asphalt mix 

(Chen, Wilbik, van Loon, Boer, & Kaymak, 2018).  

The mutual information model was developed in Python 3 using the 

mutual_information_regressor library, which was imported from sklearn.  The detailed steps 

taken to develop the new asphalt cooling rate prediction model were elaborated below. The 

detailed python code with description can be found in Appendix A for each of the steps taken: 

 

Figure 28: Detailed mutual information gain model development 

Step 1:  Importation of mutual info regression tool and other libraries from sklearn (see section 

4.6) 

Step 2: Importation of dataset 1 Surface_Dataset_1.csv ( Table 8). 

Step 3: Data pre-processing. The process comprised of the following: 

A. Removal of rows in the data with missing values. 

B. Application of dummy variables to features with qualitative categorical attributes 

(Suits, 1957). Appendix B 

C. Separation of the variables into independent and target variable. 

D. Splitting of the datasets into 60% training, and 40% testing data. 

Step 4: Application of mutual_info_regression algorithm. 

E. Application of independent (x) and target variably (y) into the 

mutual_info_regression. 
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Step 5: Prediction model output. The model output comprised of IG scores. 

8.1.1. Feature selection results 

The Table 17 presents the results of the asphalt cooling features that were used to check how 

dependent each asphalt cooling feature is to the surface temperature of the asphalt mix. A 

significant point to note is that the time and type of asphalt mix feature were not used in the 

feature selection analysis because these features were considered as important features that 

provide much information about the surface temperature of the asphalt mix.  

From the Table 17, it can be seen that rain feature recorded the lowest IG score which meant that 

it provided the least information about the temperature of the asphalt mix. Besides, solar 

radiation had the highest IG score which meant that it provided much more information about 

the surface temperature of the asphalt mix compared to the rest of the features. 

 

 

Table 17: Asphalt cooling features importance scores 

Feature IG score 

Time(min) - 

Type of asphalt mix - 

Solar (W/m2) 0.113 

Ambient temperature  0.086 

Windspeed 0.083 

Thickness 0.075 

Type of underlayer 0.055 

Underlayer temperature 0.051 

Rain(mm) 0.036 

 

After the IG scores of the asphalt cooling features were determined, the second approach was to 

group each of these features listed in Table 17  into different combination of features. These 

combinations are selected by successively removing the least important feature that provides the 

least information about the temperature of the asphalt mix. For example, feature set 1  in Table 

18 consists of all asphalt cooling features except for rain, which was removed because it had the 

lowest IG score. Also, the feature set 2 consists of all asphalt cooling features except for rain and 

underlayer temperature which were removed based on their low IG scores. 
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Table 18: Combination of features used to check the MLP asphalt cooling rate prediction performance 

Feature set 

1 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness Type of 

underlayer 

Temperature 

of 

underlayer 

Feature set 

2 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness Type of 

underlayer 

Feature set 

3 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness 

Feature set 

4 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed 

Feature set 

5 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Feature set 

6 

Time Type 

asphalt 

mix 

Solar 

radiation 

 

 

 

Second approach:  Prediction of asphalt cooling feature combinations in the MLP 

algorithm to investigate overfitting 

The second approach was to predict the cooling rates of asphalt mixes using different 

combinations of asphalt cooling features. The aim of this analysis was to investigate which 

asphalt cooling features resulted in overfitting problem of the MLP algorithm 

The analysis of the new prediction model was conducted using the dataset one (Table 13). 

Dataset one which comprised of 104 measurements, was chosen because it had a relatively large 

number of datasets compared to the core temperature dataset two; therefore, it was less prone to 

overfitting as described section 2.5.2. Also, the same MLP algorithm parameters described in 

Table 14 were used in the new prediction model.  

The effect of overfitting was determined by comparing RMSE between the measured and the 

predicted surface temperature in the three asphalt compaction windows which are breakdown 

phase, intermediate rolling phase and finishing rolling phase. 

In this analysis, the MLP asphalt cooling rate prediction model will overfit if the RMSE between 

the measured and predicted surface temperature is higher than  8  in the asphalt compaction 

windows. Also, the MLP algorithm is considered to be overfitting if predicted temperature of 

the asphalt mixes does not follow similar trends as the measured temperatures of the asphalt 

mixes as described in section 7.0 



49 
 

Feature set 1: asphalt cooling rate prediction results 

Feature set 1 comprised of time, type of asphalt mix, solar radiation, ambient temperature, 

windspeed, thickness, type of underlayer and temperature of underlayer. 

From Table 19 below, the RMSE values between the predicted and measured temperatures for 

SMA-NL 8G mix were lower than 8 in all compaction phases compared to the rest of the mixes 

indicating that for the feature set 1; the MLP algorithm was not overfitting when predicting the 

cooling rate of SMA-NL 8G mix. In contrast, the MLP new prediction model was overfitting 

when predicting the cooling rates of AC 16, AC 8, AC 22, and SMA-NL 11B mixes. 

 

Table 19: Feature set 1, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 21.12 21.13 16.41 

AC 8 3 14.28 6.75 7.95 

AC 22 42 6.50 10.99 6.56 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 2.58 1.29 5.28 

SMA-NL 

11B 

13 16.68 10.32 4.15 

 

The cooling curves for feature set 1 show that predicted temperatures at the breakdown phase 

for AC 8, AC 16, SMA-NL 11B and AC 22 mixes were lower compared to measured 

temperatures of the asphalt mixes. In addition, the temperature differences between the 

measured and predicted surface temperatures were high in all the compaction phases. Lastly, 

the cooling curve for SMA-NL 8G mix showed a good fit compared to the other asphalt mixes. 
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Figure 29: Feature set 1, AC 8 predicted cooling curve 

 
Figure 30: Feature set 2, AC 16 predicted cooling curve 

 

 
Figure 31: Feature set 1, SMA-NL 11B cooling curve  

Figure 32: Feature set 1, SMA-NL 8G predicted cooling 

curve 

 
Figure 33: Feature set 1, AC 22 predicted cooling curve 
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Feature set 2: asphalt cooling rate prediction results 

Feature set 2 comprised of time, type of asphalt mix, solar radiation, ambient temperature, 

windspeed, thickness, and type of underlayer. 

From Table 20, The RMSE value between the predicted and measured surface temperature of 

AC 8, AC 22, and SMA-NL 8G mix were  lower than 8°C in all compaction phases hence the 

MLP algorithm was not overfitting when predicting the cooling rates of these mixes. On the 

other hand, the MLP algorithm was overfitting when predicting the cooling rate of AC 16 and 

SMA-NL 11B mix because the RMSE values were greater than 8°C. 

Table 20: Feature set 2, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 12.56 14.00 10.52 

AC 8 3 2.13 7.66 1.7 

AC 22 42 8.04 5.60 12.03 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 2.58 1.29 5.28 

SMA-NL 

11B 

13 16.68 10.32 4.15 

 

The cooling curves for feature set two are presented below. First, the AC 8, and SMA-NL 8G 

cooling curves showed small differences between the measured and predicted temperatures of 

the asphalt mixes in the three compaction phases indicating that the MLP algorithm did was not 

overfitting when predicting these mixes. The rest of the cooling curves that comprise of SMA-

NL 11B, AC 16 and AC 22 had lower predicted temperatures compared to measured 

temperatures at the breakdown compaction phase indicating that the MLP algorithm was 

overfitting in the prediction of these mixes.  
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Figure 34: Feature set 2, AC 8 predicted cooling curve 

 

 
Figure 35: Feature set 2, AC 16 predicted cooling curve 

 
Figure 36: Feature set 2, SMA-NL 11B predicted cooling 

curve 

 
Figure 37: Feature set 2, SMA-NL 8G predicted cooling 

curve 

 
Figure 38: Feature set 2, AC 22 predicted cooling curve 
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Feature set 3: asphalt cooling rate prediction results 

Feature set 3 comprised of time, type of asphalt mix, solar radiation, ambient temperature, 

windspeed, and thickness. 

From Table 21, the prediction model performed better in predicting the AC 22, and SMA-NL 8G 

mixes because the RMSE between the measured and predicted temperatures did not exceed 8°C. 

On the other hand, the AC 16, AC 8 and SMA-NL 11B recorded RMSE which were higher than 

8°C in all the compaction phases indicating that the MLP algorithm was overfitting in predicting 

these mixes. 

Table 21: Feature set 3, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 26.23 21.42 11.90 

AC 8 3 19.80 10.72 9.57 

AC 22 42 5.89 2.02 0.76 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 8.04 2.24 2.68 

SMA-NL 

11B 

13 37.04 28.71 16.05 

 

The cooling curves for feature set three are presented below. The cooling curves show that the 

temperature difference between the measured and predicted surface temperatures in the 

breakdown compaction phases are high for AC 16, AC 8 and SMA-NL 11B. This indicates that 

the prediction model was overfitting in predicting these particular mixes.  The MLP prediction 

algorithm prediction performance for AC 22 and SMA-NL 8G mixes was good because of the 

low-temperature differences observed in the cooling curves in the breakdown, intermediate and 

finishing rolling compaction phases. 
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Figure 39: Feature set 3, AC 8 predicted cooling curve 

 

 
Figure 40: Feature set 3,AC 16 predicted cooling curve 

 
Figure 41:Feature set 3, SMA-NL 11B predicted cooling 

curve 

 
Figure 42: Feature set 3, SMA-NL 11B predicted cooling 

curve 

 
Figure 43:Feature set 3, AC 22 predicted cooling curve 
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Feature set 4: asphalt cooling rate prediction results 

Feature set 4 comprised of time, type of asphalt mix, solar radiation, ambient temperature, and 

windspeed. 

From Table 22, Starting with the AC mixes, the MLP prediction algorithm did not overfit when 

predicting the AC 16 and AC 22 within the three compaction windows but the MLP algorithm 

was overfitting when predicting the AC 8 mixes because the RMSE between the measured and 

predicted surface temperature of the finishing rolling phase was higher than 8°C. For the SMA 

mixes, the prediction model was overfitting for SMA-NL 11B mix because the RMSE at the 

breakdown and intermediate rolling phase was higher than the RMSE value of 8°C. 

Table 22:Feature set 4, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 3.2 3.89 6.76 

AC 8 3 8.16 5.55 11.86 

AC 22 42 2.98 6.78 6.6 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 6.95 2.07 2.17 

SMA-NL 

11B 

13 22.59 18.04 6.81 

 

The cooling curves for feature set four in Error! Reference source not found. are presented. The A

C 8, AC 16, and SMA-NL 8G cooling curves indicate that the model was not overfitting. In the 

contrary, the predicted temperature of SMA-NL 11B mix shows a high deviation between 

surface and measured temperature at the breakdown and intermediate compaction phase, but 

the predicted surface temperature captures a similar trend after the finishing rolling phase. 

 

 

 

 

 

 



56 
 

 
Figure 44: Feature set 4, AC 8 predicted cooling curve 

 
Figure 45: Feature set 4, AC 16 predicted cooling curve 

 
Figure 46: Feature set 4, SMA-NL 11B predicted cooling 

curve 

 
Figure 47: Feature set 4, SMA-NL 8G predicted cooling 

curve 

 
Figure 48: Feature set 4, AC 22 predicted cooling curve 
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Feature set 5: asphalt cooling rate prediction results 

Feature set 5 comprised of time, type of asphalt mix, type of asphalt mix, solar radiation, and 

ambient temperature. 

From Table 23, The RMSE between the predicted surface temperature and measured surface 

temperature are presented. Generally, all the cooling curves recorded high RMSE values of more 

than 8 °C except for the AC 8 mix, which had a lower RMSE in all the compaction phases. Hence 

the MLP algorithm was not overfitting when predicting the cooling rate of the AC 8 mix. 

Table 23: Feature set 5, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 17.82 16.48 8.32 

AC 8 3 5.15 0.04 6.29 

AC 22 42 2.98 9.11 9.51 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 15.27 13.85 9.75 

SMA-NL 

11B 

13 14.12 8.45 2.74 

 

The cooling curves for the feature set five are shown in the figures below. The cooling curves 

show that the difference between the measured and predicted surface temperatures of AC 16, 

SMA-NL 11B, SMA-NL 8G and AC 22 mixes are high. Lastly, the temperature difference in the 

AC 8 mix indicates that the model performed well in predicting this particular type of mix 

compared to the rest of the mixes because of the low-temperature deviation between the 

mesured and predicted surface temperature. 
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Figure 49: Feature set 5, AC 8 predicted cooling curve 

 
Figure 50: Feature set 5, AC 16 predicted cooling curve 

 
Figure 51: Feature set 5, SMA-NL 11B predicted cooling 

curve 
 

Figure 52: Feature set 5, AC 22 predicted cooling curve 

 
Figure 53: Feature set 5, cooling curve feature  
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Feature set 6: asphalt cooling rate prediction results 

Feature set 6 comprised of time, type of asphalt mix, solar radiation, and ambient temperature. 

From Table 23, the RMSE between the measured and predicted temperatures for the AC mix 

were lower than 8°C in all the compaction phases; hence the MLP prediction model did not 

overfit for the AC mixes. The SMA-NL and SMA-NL 11B mixes recorded RMSE values which 

were higher than 8°C for the breakdown and intermediate rolling phase hence the prediction 

model was overfitting during the prediction of SMA mixes 

Table 24: Feature set 6, RMSE values for asphalt compaction windows 

Type of 

mix 

The total 

amount of data 

Root mean square error between measured and predicted 

surface temperature (RMSE) 

AC   Breakdown 

phase 

(150°C-120°C) 

Intermediate 

rolling phase 

(120°C -100°C) 

Finishing rolling phase 

(100°C – 80°C) 

AC 16 17 2.48 4.86 5.23 

AC 8 3 0.92 2.61 6.37 

AC 22 42 6.81 1.34 0.54 

     

SMA  Breakdown 

phase (140°C - 

120°C) 

Intermediate 

rolling phase 

(120°C - 100°C) 

Finishing rolling phase 

(100°C – 80°C) 

SMA-NL 

8G 

18 15.65 15.36 4.67 

SMA-NL 

11B 

13 17.90 1.34 0.54 

 

From the cooling curves below, the predicted surface temperature in AC 16 mix was increasing 

in time, especially after the finishing rolling phase indicating that the MLP algorithm was 

overfitting. For both the SMA-NL 11B mix and SMA-NL 8G mixes, the predicted temperature at 

the breakdown phase was higher compared to the measured temperature of the mix. Also, the 

cooling curve of the SMA-NL 8G was linear compared to the measured cooling curve. This 

meant that the MLP algorithm was overfitting in predicting the SMA-NL 8G and SMA-NL 11B 

mixes. For the AC 8 and AC 22, the model performed better because the temperature differences 

between the predicted and measured surface temperatures were low. 
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Figure 54: Feature set 6, AC 8 predicted cooling curve 

 

 
Figure 55: Feature set 6, AC 16 predicted cooling curve 

 
Figure 56:Feature set 6, SMA-NL 11B  predicted cooling 

curve 

 
Figure 57: Feature set 6, SMA-NL 8G predicted cooling 

curve 

 
Figure 58: Feature set 6, AC 22 predicted cooling curve 
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9.0. Conclusion 
This section comprises of the conclusion, discussion, and recommendations for ASPARi. The 

conclusion section provides an answer to the main research question. Next, the discussions are 

presented, and lastly, the recommendations for ASPARi is provided. 

This research aimed to investigate the problem of overfitting in the prediction of the cooling 

rates of the asphalt mixes in the ASPARiCool tool’s algorithm known as MLP. The problem of 

overfitting occurs when the MLP algorithm fails to predict the cooling rate of asphalt mixes. The 

overfitting problem is determined by comparing the predicted temperatures of the asphalt 

mixes with the measured temperatures of the asphalt mixes. If the predicted temperatures of the 

asphalt mixes fail to capture a similar trend as the measured temperature of the asphalt mix, 

then the MLP prediction model is considered to be overfitting. 

This research comprised of the prediction of the cooling rate of AC 8, AC 16, AC 22, SMA-NL 8G 

and SMA-NL 11B asphalt mixes based on their respective surface and core temperature dataset. 

The effect of overfitting was determined by evaluating the performance of the cooling curves 

within the three compaction windows, which are breakdown phase, intermediate rolling phase 

and finishing rolling phase. It is important to note that the AC and SMA mixes comprise of their 

compaction temperature windows elaborated in Table 25 below: 

Table 25: Compaction temperature windows for AC and SMA mixes (retrieved from ASPARi Research team) 

Type of mix Breakdown phase 

temperature °C 

Intermediate rolling 

phase °C 

Finishing rolling 

phase °C 

SMA  140 - 120 120 -100 100 -80 

AC 150 120 120 -100 100 -80 

 

In order to define overfitting in the prediction of the cooling rate of asphalt mixes, first, the 

RMSE values between the predicted temperature and the measured temperature of the asphalt 

mix were determined. The RMSE value determines the temperature deviation about the mean of 

the predicted and the measured temperatures of the asphalt mixes. The RMSE values are 

negatively oriented scores which mean that a higher RMSE value in the asphalt compaction 

phases indicated a poor performing prediction model while a lower RMSE value indicated a 

good performing prediction model.  

From the preliminary analysis of the MLP algorithm conducted in section 5.0 and section 6.2, the 

boundaries resulting in an MLP prediction algorithm to overfit were defined. Two approaches 

were used to detect overfitting in the prediction of the cooling rates of asphalt mixes as follows: 

1. If the RMSE between the predicted and measured surface temperature is higher than 8 

°C, then the MLP algorithm was overfitting. The value of 8 was chosen by checking the 

cooling curves in the ASPARiCool tool and new prediction model analysis. 

 

2. The MLP prediction model would be overfitting if the predicted temperatures of the 

asphalt mixes were increasing with time compared to the measured temperature of the 
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asphalt mixes secondly, if the predicted temperatures at the breakdown compaction 

phase( 150°C - 120°C) were either lower or higher than the measured temperatures of the 

asphalt mixes. 

 

As previously mentioned, this research is related to the overfitting problem of ASPARiCool 

prediction tool. The overfitting problem was addressed by constructing and analysing a similar 

asphalt cooling rate prediction tool. The similarity of the tool lies in the machine learning (ML) 

algorithm used, which is known as multilayer perceptron algorithm (MLP). The overfitting 

problem was investigated by considering the surface and core temperature dataset. Table 26 

below outlines the input data, and MLP parameters that were used in the MLP algorithm. 

Table 26: new MLP algorithm dataset and parameters used in the prediction of the cooling rate of asphalt mixes 

MLPRegressor input data Value 

Dataset 1: Total amount of surface data measurements 104 

Dataset 2: Total amount of core data measurements 79 

Initial amount of asphalt cooling features 9 

MLP Regressor Parameters  

Learning rate 0.1 

momentum 0.2 

Activation function relu 

solver adam 

Max iterations 2000 

Hidden layer sizes 3 

Number of neurons in the hidden layer (13,13,13) 

Types of asphalt mixes used   

AC 8, AC 16, AC 22, SMA-NL 11B and SMA-NL 8G 5 

Asphalt cooling features  

Time, type of asphalt mix, solar radiation, ambient temperature, windspeed, 

thickness, type of underlayer, temperature of underlayer, rain 

9 

 

This research focused on answering the main research question which states, 

 “How do the asphalt cooling rate features influence the problem of overfitting in the prediction 

of the cooling rate of asphalt mixes in the MLP algorithm?” 

Depending on the parameters of the MLP algorithm used, increasing the amount of asphalt 

cooling features will result in the overfitting of the MLP algorithm when predicting particular 

types of asphalt mixes. 

From this research, given the MLP input data and parameters used in Table 26, when the total 

number of asphalt cooling features was reduced from nine to four features which comprised of 

time, type of underlayer, solar radiation and windspeed, the MLP algorithm did not overfit 

when predicting the cooling rate of AC 16, AC 22, SMA-NL 8G mixes. 
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In substantiating this answer,  different combinations of asphalt cooling features in Table 27 

were used to determine whether the MLP algorithm was overfitting during the prediction of the 

cooling rates of asphalt mixes. These combinations of asphalt cooling features were chosen by 

successively removing the least important features that will have a minimal contribution in 

predicting the temperatures of the asphalt mix. The feature importance was determined using 

the filter selection method known as mutual information gain as elaborated in section 8.1 

Table 27: Feature sets applied to the MLP algorithm to investigate the overfitting problem in the prediction of asphalt cooling rate 

Original 

features set 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness Type of 

underlayer 

Temperature 

of 

underlayer 

Rain 

Feature set 

1 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness Type of 

underlayer 

Temperature 

of 

underlayer 

Feature set 

2 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness Type of 

underlayer 

Feature set 

3 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed Thickness 

Feature set 

4 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Windspeed 

Feature set 

5 

Time Type 

asphalt 

mix 

Solar 

radiation 

Ambient 

temperature 

Feature set 

6 

Time Type 

asphalt 

mix 

Solar 

radiation 

 

As previously mentioned, an asphalt cooling rate prediction model overfits when the RMSE 

between measured and predicated temperature of the asphalt mix is higher than 8 in the three 

asphalt compaction phases, which are breakdown rolling, intermediate rolling and finishing 

rolling phase. 

Table 28 below presents the asphalt mix cooling features that resulted in the MLP algorithm to 

overfit when predicting the cooling rate of specified asphalt mixes. From the table, it can be 

observed that for all the asphalt feature sets, the MLP algorithm was overfitting when predicting 

the cooling rate of SMA-NL 11B mix. 

Another significant point noted was that feature set four which comprised of time, type of 

asphalt mix, solar radiation, ambient temperature and wind speed had an overall better 

performance compared to the rest of the feature sets because the MLP algorithm was only 

overfitting in the prediction of SMA-NL 11B mix and AC 8 mixes. However, the rest of the 
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asphalt mixes which comprised of AC 16, AC 22 ,  and SMA-NL 8G+ mixes showed good 

performance because their RMSE between the predicted surface temperature and the measured 

surface temperature was lower than 8 in all the compaction phases. Also, by looking at the 

cooling curves produced, the predicted surface temperatures followed the same trend as the 

measured surface temperatures of the asphalt mixes. 

 

Table 28:Poorly predicted cooling curves of asphalt mixes based on the asphalt cooling features sets 

Feature sets Number of 

features 

Type of asphalt mix that performed poorly in predicting the 

cooling rates of asphalt mixes 

Original 

feature set 

9 SMA-NL 11B  AC 16 AC 8  

Feature set 1 8 SMA-NL 11B  AC 16 AC 8  

Feature set 2 7 SMA-NL 11B  AC 16  AC 22 

Feature set 3 6 SMA-NL 11B SMA-NL 8G AC 16 AC 8  

Feature set 4 5 SMA-NL 11B   AC 8  

Feature set 5 4 SMA-NL 11B SMA-NL 8G AC 16   

Feature set 6 3 SMA-NL 11B SMA-NL 8G AC 16   

 

10. Discussion 

10.1. MLP algorithm parameters 

This research was related to the investigation of the overfitting problem in the prediction of the 

cooling rates of asphalt mixes within the ASPARiCool tool. The ASPARiCool tool could not be 

used to investigate overfitting because there was limited time to learn JAVA language. 

Therefore, a similar prediction model that uses similar algorithm was built using python in 

order to solve the problem of overfitting.  

The new prediction model was similar because it used the similar MLP algorithm like the 

ASPARiCool tool, but some of the parameters that were used in the ASPARiCool tool algorithm 

were either missing or could not be identified. The unknown parameters included the type of 

activation function, the type of solver and the number of neurons in the hidden layers. These 

parameters are significant in the training process of the MLP algorithm and influenced the 

prediction performance of the MLP algorithm.  

To overcome the overfitting problem, the activation function was set to relu (rectified linear 

unit) because this activation function is used in predicting numeric output values which are 

greater than 0. Furthermore, the solver was set to adam (adaptive moment estimation) because 

the adam solver updates the learning rate of the ANN after every iteration in order to reduce the 

errors in predictions. Also, the number of neurons in the hidden layer was set to 13 as 

elaborated in section 6.2.  Therefore, the choice of the MLP parameters have a significant 

influence on the overfitting problem  of the MLP algorithm 
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10.2. Asphalt cooling data  

This research was conducted using five types of asphalt mix datasets which are AC 8, AC 16, AC 

22, SMA-NL 8G and SMA-NL 11B, which comprised of surface and core temperatures. The PA 

16 dataset was not used in this research because the dataset did not have core temperatures; 

hence it would have been difficult to compare surface temperature and core temperature 

predictions for this specific type of mix. 

Some of the asphalt cooling data was missing. For example,  the weather data was missing; 

therefore, to overcome this problem, the weather data was retrieved from the KNMI website by 

looking at the weather stations that were close to the construction project this is not a  way of 

collecting weather information from a construction site. Furthermore, the underlayer type was 

missing for some of the measurements; therefore, it is assumed that if the thickness of the 

asphalt mix layer was greater than 50 mm, the type of underlayer which was selected was sand. 

Also, if the thickness of the asphalt mix layer was less than 50 mm, the type of underlayer 

selected was asphalt.  

11. Recommendations for ASPARi  
The recommendations are based on the current limitations observed in this research. The 

following recommendations are proposed: 

The following MLP algorithm parameters should be used in predicting the cooling rate of 

asphalt mixes for the 104 surface datasets and 79 core temperature datasets: 

▪ Activation function should be relu (rectified linear unit) 

▪ The type of solver used should be adam (adaptive gradient algorithm) 

▪ The number of hidden layers should be 3  

▪  The size of the layers should be obtained depending on the number of features 

present. One approach to determine the number of neurons is to take 2/3rd of the 

number of features used in the asphalt cooling rate prediction model. 

The current research investigated the effect of the asphalt cooling features in the prediction of 

the cooling rate of asphalt mixes within the MLP algorithm using the parameters mentioned in 

Table 14. Based on specified parameters the MLP algorithm did not overfit when predicting the 

cooling rates of AC 22, AC 16, and SMA-NL 8G mixes which consisted of 42, 17 and 18 training 

data respectively. In contrast, the AC 8 and SMA-NL 8G mixes resulted in the model to overfit 

because the RMSE values were high in the breakdown and intermediate rolling phases. The 

amount data that was used for AC 8 and SMA-NL 11B was 3 and 13 respectively which was 

considerably lower compared to the other mixes. The small number of training data may have 

resulted in the MLP algorithm to overfit when predicting these mixes. Hence it is recommended 

to increase the amount of training data of AC 8 and SMA-NL 11B to the same number of 

training data which was used of AC 22, AC 16 and SMA-NL 8G mixes and check whether the 

MLP algorithm will overfit. 
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Lastly, it is recommended to conduct further research by considering all the possible 

combination of MLP parameters and asphalt cooling features to check whether the MLP 

algorithm will be overfitting when predicting the cooling rates of asphalt mixes. 

12. Specific recommendations to the contractor 
Firstly. the current nine asphalt cooling features used to predict the cooling rates of asphalt 

mixes are suitable in predicting the cooling rates of asphalt mix, but some mixes have very small 

amount of training data. Hence it is recommended to make sure that the amount of training data 

is increased to at least 18 measurements for each type of mix to ensure that the MLP algorithm 

does not overfit during predictions. 

Secondly, all the nine asphalt cooling data which comprises of time, type of asphalt mix, solar 

radiation, ambient temperature, windspeed, thickness, type of underlayer, temperature of 

underlayer, and rain is required to be collected. There should not be any missing data and there 

needs to be a proper logbook of how this data was collected to ensure that the data collected is 

of the highest quality. 
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Appendix A 

MLP algorithm; New asphalt cooling rate prediction model python code 

 

Step 1: Importation of libraries. 

 

Step 2: Importation of datasets 

 

Step 3:  Data pre-processing 
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Step 4: Application of MLP Regressor 

 

 

 

Step 5: Importation of validation data 

 

Step 5:  Prediction model output: Evaluation of model performance by comparing the RMSE 

values of the measured surface temperature and the predicted surface temperatures. 
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Mutual information gain regressor 

Step 1: Importation of libraries. 

 

Step 2: Importation of data 

 

Step 3:  Data pre-processing 
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Step 4: Application of mutual_information_regressor 

 

Step 5: Output results: IG scores 

 

 

 

 

Appendix B 
The following tables present the feature set in the new prediction model after label encoding the 

categorical qualitative features. 

Asphalt cooling features applied to the MLP algorithm  (Dataset 1) 
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Asphalt cooling features applied to the MLP algorithm  (Dataset 2) 

 

 

 

 


