SPATIO-TEMPORAL REGRESSION
KRIGING FOR PREDICTING
RAINFALL FROM SPARSE
PRECIPITATION DATA IN GHANA

JACOB AZUMAANA ADIGI
February, 2019

SUPERVISORS:
Dr. Frank B. Osei
Dr. Mariana Belgiu






SPATIO-TEMPORAL REGRESSION
KRIGING FOR PREDICTING
RAINFALL FROM SPARSE
PRECIPITATION DATA IN GHANA

JACOB AZUMAANA ADIGI
Enschede, The Netherlands, February, 2019

Thesis submitted to the Faculty of Geo-Information Science and Earth
Observation of the University of Twente in partial fulfilment of the
requirements for the degree of Master of Science in Geo-information Science
and Earth Observation.

Specialization: Geoinformatics

SUPERVISORS:
Dr. Frank B. Osei
Dr. Mariana Belgiu

THESIS ASSESSMENT BOARD:

Prof. Dr. ir. A. Stein (Chair)

Dr.ir. G. B. M. Heuvelink (External Examiner, Wageningen University &
Research, Laboratory of Geo-Information Science and Remote Sensing)



DISCLAIMER
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the
author, and do not necessarily represent those of the Faculty.



ABSTRACT

Reliable and spatially exhaustive surfaces that provide accurate spatial and temporal distribution of rainfall
are key requirements for making climate-related informed decisions such as management of water
resources and ecological modeling. Different approaches to predict rainfall from sparsely available data is a
notable subject of research in spatial statistics. In this study, we carried out a spatio-temporal regression
kriging to predict rainfall in Ghana by applying a model-based approach using maximum likelihood
method to estimate the model parameters. Mean monthly, mean annual and cumulative annual data was
computed from daily measurements of 26 rain gauge stations from 2001 to 2010 distributed over 238,540
km? area of Ghana. The spatial coordinates, elevation derived from digital elevation model (DEM) and
one-month time series Normalized Difference Vegetation Index (NDVI) images of the Moderate
Resolution Imaging Spectroradiometer (MODIS) were used as predictors. Due to multicollinearity
between predictors, three linear regression models were formulated and used to carry out mean monthly,
mean annual and cumulative annual predictions of rainfall at 1Tkm? grid. Their performance was evaluated
by leave-one-out cross-validation using the root mean square error and coefficient of correlation metrics.
The second regression kriging model with the spatial coordinates especially the northing as predictors
performed best in five months for the mean monthly predictions, six years for cumulative annual
predictions and the mean annual predictions. The third model with NDVI as predictor also performed in
five months and three years. The third model with a subset of all predictors performed in two months and
one year. The results uncovered the spatial and temporal distribution of rainfall in the country. The south-
western part records high rainfall and the northern part less rainfall. June is the wettest month and January
the driest month in the country. There was an increasing trend in rainfall from 2001 to 2010.
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1. INTRODUCTION

11. Motivation and Problem Statement

Climate variables such as precipitation data are of prime importance and its spatial distribution is required
for water resources management, hydrologic and ecologic modeling, recharge assessment and irrigation
scheduling (Mair & Fares, 2011; Di Piazza, Conti, Noto, Viola, & Loggia, 2011). Reliable and exhaustive
rainfall information is a critical requirement for the successful modeling and assessment of these

processes.

Direct and accurate measurements of precipitation data at a fine resolution will require a dense network
of meteorological stations (Goovaerts, 2000). Ghana as a third world country lacks the capacity to afford
the installation of these stations at higher density. A network of meteorological stations which are the
direct source of reliable precipitation data are therefore sparsely located making it difficult to characterize
this highly variable phenomenon and its spatial and temporal distribution (Keblouti, Ouerdachi, &
Boutaghane, 2012). The level of sparsity becomes more pronounced as a result of missing data due to the
malfunctioning of some rain gauge stations. This affects the continuity of available data from the sparsely

available stations.

A practical indirect alternative to providing spatially exhaustive precipitation information is the use of
ground-based meteorological RADARs and satellite platforms with mounted remote sensing devices. The
accuracy and resolution of the estimates provided by these indirect methods are often insufficient and
unreliable. As a result, these methods still require calibration and validation using historical data from
direct and reliable rain gauge measurements (Bostan, Heuvelink, & Akyurek, 2012; Lanza, Ramirez, &
Todini, 2001). This calls for alternative methods that provide the means to accurately estimate

precipitation data at unsampled locations.

Interpolation methods that have been proposed for estimating precipitation data at unsampled locations
include geostatistical interpolation and deterministic techniques. According to Goovaerts (1999),
geostatistical methods provide the best results in the estimation of precipitation since they take into
consideration spatial dependences which are usually observed for precipitation. Geostatistics is (Goovaerts
(2000) as quoted by Mendez & Calvo-Valverde (20106)) “based on the theory of regionalized variables and
provides a set of statistical tools for incorporating the spatial correlation of observations in data
processing”. The use of secondary variables such as elevation, radar imagery or land use in combination
with precipitation as established by previous studies results in more accurate estimation than using only
precipitation measurements (Hofierka, Parajka, Mitasova, & Mitas, 2002).

Despite the robustness of different spatial interpolation techniques, there is always an element of
uncertainty as to which method is most applicable for a given set of data. According to Luo, Taylor, &
Parker (2008), accuracies vary significantly among spatial interpolation methods depending on the spatial
attributes of the data at hand. Burrough, McDonnell, & Lloyd (1998) indicated that in the abundance of
data, most interpolation techniques produce results that are similar. This becomes completely different
when data are sparsely located and the choice of interpolation method to estimate data at unsampled
locations becomes a great concern. In this study, we investigate and model the spatial structural




SPATIO-TEMPORAL REGRESSION KRIGING FOR PREDICTING RAINFALL FROM SPARSE PRECIPITATION DATA IN GHANA

dependence in sparse rainfall data by applying the Maximum Likelihood method to estimate the drift and
covariance model parameters.

Through spatial exploratory analysis, the presence of trend was evident in the data, especially with the
latitude. This necessitated the use of non-stationary geostatistical methods also called the ‘hybrid’
techniques by Bishop et al. (2000). According to Bishop et al. (2000), the use of ordinary univariate kriging
is inappropriate whenever trend exists in the data. Ordinary kriging was therefore not undertaken in this
research.

These hybrid algorithms which assume a spatially varying mean by including a trend surface model
(Deutsch & Journel, 1998), are used to estimate the mean monthly, mean annual and cumulative annual
precipitation of Ghana using data from 2001 to 2010 from 26 rain gauge stations distributed over the
countty.

1.2, Research Identification

Mapping of the spatial distribution of precipitation is important for many applications in ecological
studies, environmental sciences, and epidemiology of infectious diseases. Meteorological stations serve as
the source for accurate precipitation data but are often sparsely located. This becomes more evident in a
third wortld country like Ghana that lacks the resources to establish a denser network of these stations.
This project sought to create exhaustive precipitation information from fine-scale covariates using
regression kriging in monthly and annual time steps. The Normalized Difference Vegetation Index
(NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), elevation detived from
digital elevation model (DEM) and the spatial coordinates are the secondary variables incorporated in this

study. The results of this research will be useful for applications in ecological and epidemiological studies
in Ghana.

1.3. Research Objectives

The main objective of this research is to predict the mean monthly and annual spatial and temporal
distribution of rainfall in Ghana by applying a model-based approach.

The specific objectives are:

a. To evaluate the influence of secondary vatiables (time series NDVI and elevation) on the spatial
and temporal distribution of precipitation.

b. To evaluate different covariance functions to infer the spatial structure of precipitation in the
study area for a given time period.

c. To evaluate different regression models to determine the model that provides the best prediction
results for a given time period.

14, Research Questions
Specific objective 1:
1. What is the relationship between elevation and the spatial distribution of precipitation in the
study area for a given time period?

il. Can time series of NDVI, a remote-sensed derived covariate from MODIS be used to infer
the spatial and temporal distribution of precipitation in the study area?
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Specific objective 2:
i Which covariance function is appropriate for capturing the spatial structure of precipitation in
the study area for a given time period?

if. What are the optimal model parameters of the chosen covariance function?

Specific objective 3:
i Which regression model is most appropriate for the prediction of precipitation in the study
area for a given time period?

1.5. Innovation Aimed At

The innovation of this research is aimed at producing spatially exhaustive rainfall information from
sparsely available rainfall point data by applying a model-based maximum likelihood method in the
estimation of the model parameters. There are scarcely published research studies that have applied
model-based approaches to estimate precipitation from sparse data, especially in Ghana.

According to Hofierka et al. (2002), the use of secondary variables such as elevation, radar imagery and
land use in combination with precipitation results in a more accurate estimation of precipitation than using
only precipitation measurements. The incorporation of time series Normalized Difference Vegetation
Index (NDVI), a remote-sensed derived secondary information and DEM in the above-mentioned
method to map the spatial and temporal distribution of rainfall also adds to the novelty of this research.
The influence of NDVI to accuracy in mean monthly and annual rainfall estimation is evaluated.

1.6. Thesis Outline

This section outlines the structure of the thesis. Chapter 1 captures a description of the motivation and
problem statement, the research objectives, questions, and innovation. A literature review of related
studies is provided in Chapter 2. Chapter 3 provides information regarding the study area, the datasets and
software used. The methodology utilized is provided in Chapter 4. Chapter 5 provides the results and
analysis. The discussions and limitations of the research are provided in Chapter 6. Chapter 7 captures the
conclusion and recommendations.
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2. LITERATURE REVIEW

21. Introduction

In this section, we undertake a literature review on geostatistics and previous related research
projects that have been carried out taking into consideration the spatial interpolation methods
used, covariance parameter estimation methods applied and the incorporation of auxiliary variables

in mapping climatic variables especially precipitation.

2.2, The Concept of Geostatistics

Geostatistics, also known as spatial statistics is concerned with the analysis and prediction of
phenomena that vary in space and time. Phenomena that are of interest to the geostatistician are
often very expensive and are therefore sparsely located. The need to obtain exhaustive information
in the spatial and/or temporal distribution of a given phenomenon within a study area by carrying
out predictions at unsampled locations is the subject matter of geostatistics (Richard Webster And
Margaret A. Oliver, 2007).

There are several spatial interpolation methods that are used for spatial predictions at unsampled
locations. These can be grouped into two categories namely, deterministic and geostatistical
methods. Examples of deterministic methods include Splines, Thiessen polygons and Inverse
Distance Weighting (Hartkamp, De Beurs, Stein, & White, 1999; Keblouti et al., 2012). Examples
of geostatistical methods include Ordinary kriging, regression kriging, multiple linear regression,
geographically weighted regression, universal kriging, co-kriging and kriging with external drift. The
following are advantages associated with geostatistical methods over deterministic methods
(Goovaerts, 1999, 2000);
e Geostatistical methods allow one to make use of the spatial correlation between
neighboring observations to estimate values at unvisited locations.
e They provide estimates of the prediction error (kriging variance) at unsampled locations.
e They allow the integration of the primary attribute with secondary attributes that are
sampled at higher density.

23. Related works

The applications of rainfall information in gridded format are numerous and varied. Exhaustive
rainfall information serves as key inputs for basin management, hydrological and water quality
applications (Ly, Charles, & Degré, 2011). The successful running of hydrological models, research
into agriculture, the planning and management of water resources all require exhaustive rainfall
information (Basistha, Arya, & Goel, 2008). Extensive research has been carried out with the
application of different methods to produce high resolution rainfall information.

Bostan et al. (2012) compared multiple linear regression (MLR), geographically weighted regression
(GWR), ordinary kriging (OK), regression kriging (RK) and universal kriging (UK) in mapping the
average annual precipitation over Turkey. Elevation map, surface roughness, distance to the nearest
coast, river density, aspect, land cover, and eco-region were used as covariates. In an R-squared,
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root mean square error (RMSE) and standardized mean square error (SMSE) performance
assessment method, UK was considered the most accurate for the spatial interpolation of the

precipitation distribution of Turkey.

Harris et al. (2010) made a comparison between MLR, GWR, OK, UK and geographically
weighted regression kriging (GWRK) models using simulated data sets. The authors concluded that
UK was the best performing model. Bajat et al. (2013) also carried out a study to map the average
annual precipitation in Serbia using regression kriging. Digital elevation model and spatial
coordinates were used as covariates. By comparative analysis with the multiple linear regression
method, the authors concluded that regression kriging performed better by cross-validation

measures,

Cantet (2017) carried out a comparison study to map the mean monthly and mean annual
precipitation in a small island called Martinique which is located in the Lesser Antilles using data
from 35 meteorological stations. Spatial interpolation methods such as regression kriging and
external drift kriging were compared through a cross-validation procedure. The different regression
kriging methods that were applied include multiple linear regression kriging, principal component
regression kriging, and partial least squares regression kriging. In his performance assessment by
cross-validation, external drift kriging outperformed the regression kriging methods and was
considered the best method for mapping precipitation in the island.

Buytaert et al. (2006) investigated the spatial and temporal rainfall variability in the western
mountain range of the Ecuadorian Andes using rainfall data from 14 stations. They compared
kriging with Thiessen polygon technique and reported kriging produced accurate interpolation of
rainfall than the Thiessen polygon. They also indicated the fact that the accuracy of both methods

can be improved by the incorporation of external trends.

Ly, Chartles, & Degré (2011) in their paper “Geostatistical interpolation of daily rainfall at
catchment scale” in Belgium, compared geostatistical and deterministic approaches to interpolate
rainfall using 30 years daily rainfall data from 70 rain gauge stations. In a cross-validation
performance assessment, the geostatistical and inverse distance weighting algorithms which take
into account the spatial dependence between neighboring observations performed better than the
Thiessen polygon algorithm. According to the authors, the Thiessen polygon technique failed to
depict the true spatial variation of rainfall in the study area.

Masson & Frei (2014) carried out a study on the spatial analysis of precipitation in a high mountain
region of the European Alps. Kriging with external drift (KED) using local topographic height as
the only predictor was reported to produce smaller interpolation errors as compared to linear
regression. According to the authors, the incorporation of more predictors only resulted in a
marginal improvement of the kriging algorithm. They also underscored the fact that the use of a
single predictor field in KED improves interpolation accuracy as compared to ordinary kriging.

Lark (2000) compared the method of moments and the maximum likelihood method to estimate
variograms from simulated and real data. The maximum likelihood method was observed to be
efficient than the method of moments in different sampling intensities of the simulated data.
However, the method of moments was efficient where there were small nugget variance and large
correlation range of the data. Both methods were reported to be susceptible to positively skewed
simulated data. Todini & Ferraresi (1996) advocated the following reasons for using the Maximum
Likelthood method for estimating model parameters:

6
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e The need for an estimation algorithm that is objective.

e The need to have parameter values estimated by minimizing (or maximizing) the objective
function in the kriged variables’ space with available actual observations and meaningtul
residuals but not in the variogram space without available observations.

e The possibility of having the variance-covariance matrix of the parameters estimated.

Pardo-Igtizquiza (1998) also identified the following advantages for the application of Maximum
likelihood inference in geostatistics:

e The parameters that are of interest are the only ones estimated.
e Itis easy to assess the uncertainty of the estimates.
e  Model selection may be done by using the ML function.

e As compared to other methods, it is more efficient in terms of mean square error.

Yoon, Kim, & Park (2015) estimated monthly precipitation in South Korea by comparing different
statistical linear interpolation models using data from 441 stations. The linear models compared
were the general linear model, the generalized additive model, the spatial linear model, and the
Bayesian spatial regression model. The secondary variables that were incorporated in the study
include the longitude, latitude, elevation, topographic aspect and coastal proximity. The Bayesian
spatial model was reported to outperform the other models based on the root mean square error,

mean absolute error and correlation coefficient indexes.

Goovaerts (2000) integrated a digital elevation model in the estimation of rainfall in Portugal using
three multivariate geostatistical algorithms such as simple kriging with varying local means, kriging
with external drift and colocated cokriging. A cross-validation comparison was made to evaluate
the prediction performance of the multivariate algorithms against univariate techniques such as
Thiessen polygon, inverse square distance, and ordinary kriging. The Thiessen polygon and inverse
square distance algorithms which ignore both the elevation and rainfall observations at neighboring
stations reported larger prediction errors. The multivariate techniques were reported to outperform
the other interpolators, especially in a linear regression, where the rainfall observations and the
colocated elevation is taken into account. Ordinary kriging was also reported to outperform linear

regression when there is a moderate correlation between rainfall and elevation.

Time-series of remote sensing products have much to offer in geostatistics as far as the
contribution of auxiliary variables to the improvement of spatial prediction accuracy is concerned.
There has been a quest in recent times to improve the accuracy of climatic mapping by increasing
the scope of covariates to time series of remote-sensing based variables (Hengl et al., 2012). Hengl
et al. (2012) incorporated time-series of MODIS land surface temperature (LST) images to map
daily temperature in Croatia. According to the authors, the use of the time series product led to a

significant improvement in accuracy.

Hu, Shu, Hu, & Xu (2017) undertook a study on spatiotemporal regression kriging to predict mean
monthly precipitation in Xinjiang using time-series MODIS data and digital elevation model.
According to the authors, spatiotemporal regression kriging performed better by a leave-one-out
cross-validation method when compared with spatiotemporal multi-linear regression and
spatiotemporal kriging. The authors also indicated that the normalized difference vegetation index
is one of the optimal covariates for mean monthly precipitation prediction.

The focus of this project differs from the related works in the light of the interpolation methods to
be compared, the covariance structural modeling approach and the covariates to be considered in
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estimating precipitation from sparse data. This project sought to assess the performance of
different regression models of the hybrid geostatistical algorithm regression kriging in estimating
mean monthly and annual precipitation by incorporating DEM and NDVI, a remote sensed
derived time-series data from MODIS, as predictors. The performance assessment of these models

was carried out by the leave-one-out cross-validation measures.
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3. STUDY AREAAND DATA DESCRIPTION

3.1. Study Area

The study area for this project covers the entire country of Ghana as shown in Figure 2. Ghana is a
West African country located along the Atlantic Ocean and the Gulf of Guinea. Ghana lies
approximately between latitude 4° and 12°N and longitude 4°W and 2°¢E. It has a total area of
238,540 km?. The rainfall dynamics in Ghana shows considerable variation between the northern
and the southern parts. The northern part experiences rainfall between the months of May and
November and the southern part experiences a bimodal wet season with the major season from

March to July and the minor season from September to November.

Map of Ghanna -

Upper East

A0 125 250
IKm

Figure 3.1. Map of study area
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3.2, Datasets

3.21. Precipitation Data

Rain gauge measurements from 26 meteorological stations from 2001 to 2010 are used in this
study. The choice for this period is based on the use of the NDVI time-series data from MODIS
which is available from 2001 to date.

The original precipitation data received from the Ghana Meteorological Agency consist of daily
precipitation measurements for thirty-two stations. Due to data gaps, only twenty stations with
complete data from 2001 to 2010 are used for analysis.

3.2.2. Digital Elevation Model (DEM) Data

The Shuttle Radar Topography Mission (SRTM), a 90m spatial resolution digital elevation model
data was downloaded from the website of the U.S  Geological Survey
https://gdex.cr.usgs.gov/gdex/. This data which is a global public dataset was downloaded and

clipped to the study area. It was resampled from the 90m spatial resolution to lkm spatial
resolution using the nearest neighbour algorithm. The figure below shows the spatial location of
the rain gauge stations used in this study.

Legend
A Stations
DEM

I -10 - 101
B 101 - 175
[ 1175-257
1257 -395
I 395 - 863

Figure 3.2: Digital Elevation Model of Ghana showing the spatial locations of the rain gauge
stations
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3.23.  Time Series MODIS NDVI Data

Monthly time series images of the Moderate Resolution Imaging Spectroradiometer (MODIS)
Normalized Difference Vegetation Index (NDVI) at 1km resolution were obtained from the
USGS website. These images were downloaded using the MODIStsp (Busetto et al., 2018) and
mapedit packages in the R software.

This readily available NDVI product is calculated by the National Aeronautics and Space
Administration (NASA) as the ratio of the difference between the near-infrared radiation and the
visible radiation to the sum of the near-infrared radiation and the visible radiation. NDVI values
range between -1 and +1 with a value close to +1 indicating high density of green leaves. This can
be written mathematically as

(NIR = VIS)

(NIR + VIS)

Where NIR represents reflectance in the near infrared channel and VIS represents reflectance in

NDVI =

the visible channel.

Mean January NDVI

Figure 3.3: Map of Ghana showing NDVI for mean January
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3.3. Software Used
Different software is used in this study to accomplish different tasks. These include;
e ArcGIS. The Extract by Mask tool in Spatial Analyst was used to extract the DEM to the
boundaries of the study area.
e R software. Different packages of the R software (R Core Team., 2015) were used to
accomplish different task including exploratory data analysis, modeling, and prediction.
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4.  METHODOLOGY

The methodology undertaken to carry out this research is outlined in Figure 4.1.

MODIS NDVI Time
Series Images

Precipitation data from Digital Elevation
meteorological stations Model (DEM)

Exploratory Data
Analysis

Gaussian
Distribution?

No Resample to

same resolution

Transformation Yes

Overlay

Regression | Q1
modeling

l

Trend
Estimation

Q2
Maximum Likelihood Estimation

Exploratory Model Estimated
WVariography | |fitting/selection Parameters

Spatial
prediction

]

Validation |Q3
assessment

!

Time Series .
Prediction Maps ’

Figure 4.1: Flowchart of the methodology




SPATIO-TEMPORAL REGRESSION KRIGING FOR PREDICTING RAINFALL FROM SPARSE PRECIPITATION DATA IN GHANA

41. Data Processing

41.1. Primary Data

The data received from the Ghana Meteorological Agency was the daily precipitation records for
thirty-two stations from January 2001 to December 2017. Since the inclusion of missing data to the
computation of average and cumulative rainfall for stations will lead to unrepresentative and wrong
estimations, stations with missing data for more than 10 days in a month (Hartkamp et al., 1999)
were eliminated from the analysis. The period from 2001 to 2010 gave the maximum number of
stations with continuous data and was therefore considered for this analysis. Mean monthly, mean
annual and cumulative annual rainfall was computed from the daily records of twenty-six (26)
stations. The table below shows the descriptive statistics of the mean monthly and annual
precipitation data for the 26 stations.

Table 4.1: Descriptive statistics of the mean monthly and annual precipitation (mm) data

Mean Median SD Max Min Skew Kurt
January 14.60 12.39 12.92 49.49 0 0.76 0.06
February 29.72 22.12 25.53 90.77 2.40 0.69 -0.78
March 69.50 54.51 45.30 148.18 4.76 0.13 -1.44
April 121.28 122.89 39.67 191.66 38.95 -0.17 -0.70
May 147.31  139.98 49.05 296.61 81.85 1.11 1.21
June 189.4 183.9 65.62 464.1 129.10 2.72 8.98
July 147.94 144.14 49.37 240.16 65.47 0.11 -1.1
August 129.74  89.02 88.17 292.43 17.40 0.33 -1.52
September 167.08  180.16 59.28 296.96 51.59 -0.32 -0.23
October 136.59  147.07 57.11 233.75 59.11 0.02 -1.47
November 49.57 41.79 47.19 157.91 1.42 1.1 0.36
December  20.62 14.06 21.26 70.8 0 0.93 -0.07
Annual 12274 12722 275.56  1954.9 728.2 0.67 0.39

4.1.2. Secondary Data

The auxiliary variables incorporated in this study include the Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images of the Tera
Earth Observation systems platform and the Digital Elevation Model (DEM) of the Shuttle Radar
Topography Mission (SRTM). Mean monthly NDVI was calculated for each month by stacking the
monthly 1km time series NDVI images according to the months of the year using the stack
functions of the “raster” package (Hijmans et al., 2018) in R software.

4.2, Data Integration

Both the primary data and the secondary data were recorded in their respective coordinate
reference system and at different resolutions, especially for the secondary data. It is therefore
necessary to ensure all data are in the same coordinate reference system to enhance compatibility.
Both the primary and the secondary data were transformed from the WGS84 geographic
coordinate system to the WGS84 UTM Zone 30N coordinate reference system. The DEM was
resampled from 90m resolution to the same resolution as the MODIS NDVI and both images
were stacked together and overlaid with the point data to extract the corresponding covariates at
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the point data locations. This was done using the stack and extract functions of the raster package
(Hijmans et al., 2018) in the R software.

4.3. Exploratory Data Analysis
Spatial and non-spatial exploratory data analysis are key statistical operations which are necessary

ptior to the formulation of models in geostatistics.

4.31. Non-Spatial Exploratory Analysis

Exploratory analysis was carried out to investigate the non-spatial structure of the primary data.
This was done by plotting histograms and Q-Q plots of the monthly precipitation data. Details of
these plots are shown in chapter 5. This makes it possible to investigate the distribution of the data
as well as detect and eliminate possible outliers. The data for the mean monthly, mean annual and
cumulative annual precipitation was positively skewed. We carried out a log-transformation of the
data before model calibration and prediction. After predictions, the results were back-transformed
to the original scale of the data (Hengl, Heuvelink, & Rossiter, 2007).

4.3.2. Spatial Exploratory Analysis

Spatial exploratory data analysis includes circle plots of the response variable with respect to the
spatial locations of the data. Scatter plots to investigate the relationship between the response
variable and the auxiliary information used were produced (Diggle & Ribeiro, 2007; Richard
Webster And Margaret A. Oliver, 2007). This enabled us to gain insight with regards to the
presence of a trend in the data. A discovered trend in the data indicated a spatially varying mean
and suggested the inclusion of a trend surface model. Possible outliers that were also discovered

through this exploratory analysis were eliminated.

44, Regression Modelling

We carried out three different linear regression models between the log-transformed precipitation
and the predictors in this study (Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, 2005).
The predictors include MODIS NDVI, elevation, the northing (X) and easting (Y) coordinates. It
became evident that the MODIS NDVI was correlated with the northing coordinates. Because of
the multicollinearity, we decided to formulate three exploratory models to choose significant
predictors for each model. In the first model, we regressed log-transformed precipitation on all the
predictors and a stepwise regression was carried out to select statistically significant predictors for
the model. NDVI was still maintained in the first model because the multicollinearity ceased in the
months with higher rainfall. In the second model, we regressed log-transformed precipitation on
the spatial coordinates and the statistically significant predictor was chosen for the model or both
are used if significant. In the third model, we regressed log-transformed precipitation on the
ancillary variables MODIS NDVI and elevation and the statistically significant predictor selected
for the model or both are used if significant.

The statistically significant predictors were chosen as the ones with their p-value less than a
significance level of 0.05. These predictors were used as the trend in modeling the covariance
structure. In few cases especially for Model 1, where all predictors were insignificant at 0.05
significance level, we considered the predictors provided by the stepwise regression for the model.
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The three formulated models are shown in equation (1) to (3).

Model 1: log(Precipitation) = By + f1NDVI + S, ELEV + 3X + (.Y )
Model 2: log(Precipitation) = By + [1X + S,Y )
Model 3: log(Precipitation) = S, + B4NDVI + B,ELEV 3)

whete fy is the intercept, 1, B2, B3 and 4 are the regression coefficients of the predictors and
ELEV represents elevation. ELEV, X and Y are predictors which are temporally constant and
NDVI is temporally dynamic and is provided for each period of model fitting.

4.5. Model Definition
The stationary Gaussian model has the following assumptions (Diggle & Ribeiro, 2007, pg. 29);

e The Gaussian process {S(x): X € Rz} for locations X1, ..., X, has mean U, variance 0% =
Var{S(x)} and correlation function p(h) = Corr{S(x),S(x')} such that distance
h=llx—x'll;

e Given {S(x): x € R?}, the measured value y; of a geostatistical data at location x;, are

realisations of mutually independent random variables Y;, distributed normally with mean
E[Y;|S(.)] = S(x;) and conditional variance T2

The model can be defined as
Y, =S0x) +Z; )
where {S(x): x € R?} represents the first assumption and Z; are mutually independent

N(0, t2) random variables.
The stationary Gaussian model can be extended for a spatially varying mean by including a linear
regression model in place of the stationary mean.
The Gaussian random field model for a spatially varying mean is given as (Paulo Ribeiro Jr, Diggle,
& Paulo Ribeiro Jr, 2018):
Y(x) = ulx) +Sx) +e 5)
where

e Y(x) is the observed variable at location X in a planar Euclidian coordinates.

e u(x) = XP is the mean component of the model (trend).

e S(x) is a stationary Gaussian process with variance ¢? (partial sill) and correlation function

¢ (the range parameter).

e ¢ is the nugget variance or measurement error.

4.6. Parameter Estimation by Maximum Likelihood Method

A robust alternative to estimate the model parameters of the linear effects and the covariance
structure is the Maximum Likelihood method proposed by Mardia & Marshall (1984). To apply the
Maximum Likelihood method, the vatiable of interest is assumed to be a realization from a random
Gaussian process (Diggle & Ribeiro, 2007, pg. 112).

The spatial trend p(x) in equation (5) is either a function of the spatial coordinates or spatially
referenced covariates such that u(x) = D,

Y ~ N(DB,a?R(¢p) + 12I) ©)
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where D is the n x p matrix of covariates, 8 is the corresponding vector of regression parameters,
and R depends on a scalar or vector valued correlation function parameter(s) ¢.

The likelihood function is given as:

L(B, 1%, 0%, ¢) = —0.5{nlog(2m) + log{|(c*R(p) + 2|} + (v — DB (¢*R(p) +
2 1)"(y — DB)}, M

The values of the regression coefficients defining the mean process and the covariance parameters
that maximize the log-likelihood function for a given set of data yields the maximum likelithood
estimate of the parameters. Considering the spatial dependence (nugget:sill ratio) described by the

variogram as

T
v? = = ®
Then the matrix
V = R(p) +v2I. @)

Given 17, the log-likelihood function is maximized at

(V) = DTV D) DTy 1y (10)
and
Y] Ty=1¢~— DR

B (V) becomes the generalized least squares estimate provided 1 is known.

A substitution of B(V) and 62(V) in equation (10) and (11) respectively into the log-likelihood
function gives a concentrated log-likelihood function in equation (12).

Lo(v?, @) = —0.5{nlog(2m) + nlog6?*(V) + log|V| + n} (12)
Numerical optimization of equation (12) with respect to ¢ and » is carried out followed by a back

substitution to obtain 62 and ﬁ Details of the maximum likelihood estimation method can be
found in (Diggle & Ribeiro, 2007).

4.7. Model Selection

In the method of moments, the plausible variogram model is selected as the one with the minimum
sum of square errors or root mean squate error. The plausible covariance function in the maximum
likelihood method is selected as the one with the maximum log-likelihood function or the one with
the minimum negative log-likelihood function (Pardo-Igizquiza, 1998).
Plausible variogram models (Oliver & Webster, 2014) used in this study include the following;
The Spherical function which is given as:
y(h)=c0+c{%—%(g)3} for0<h<r (13)
= ¢g + ¢ for h>r
= 0 for h>0
where h is the distance between pairs of points, € is the nugget vatiance which represents small
variability at distances less than the minimum sampling distance or the measurement error, and the
range T is the distance beyond which spatial dependence ceases to exist. The total variance known
as the sill is given as ¢y + C.
The Exponential function which is given as:

y(h) =co + c{l — exp (—2)} for0 <h (14)
=0forh=0
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The parameters have the same explanation as in equation (14) whiles « is a distance parameter. The

exponential function approaches the sill asymptotically at an effective range usually given as 7~ =
3a.

The Gaussian covariance function is given as:
h2
y(h) =co + c{l — exp (—;)} for0 < h (15)
=0forh=0
The parameters have the same meaning as in the exponential model. The effective range is given as

r =+3a

4.8. Spatial Predictions

We carried out spatial predictions at 1km square grid using the prediction equation (Diggle &
Ribeiro, 2007, pg. 37):

$C) = p(0) + X wi () (i — 1)) (16)

where S(x) is the regression kriging predictor at location X , u(x) is the mean or trend, w;(X) is a

function of the covariance parameters and (y; — ((x)) is the interpolated residuals.

4.9. Evaluation of Interpolation Methods

Due to the sparse nature of the data available, a separate dataset was not created for validation. The
leave-one-out cross-validation comparison is undertaken to evaluate the prediction performance of
the methods. The cross-validation procedure is carried out by holding one data point using the
remaining dataset to predict the value at that point(Hengl, 2007). This procedure is repeated for all
the data points. The mean error and the root mean square error are obtained using the difference
between the observed and the predicted values. Performance assessment is done by comparing the
mean error (ME), root mean square error (RMSE) and the coefficient of multiple determination
(R-square). The R-square indicates the amount of variability explained by the model. The best
performing method is chosen as the one with the minimum RMSE (Bostan et al.,, 2012) and
maximum R-squared. The mean error which is a measure of the prediction bias is expected to be
close to zero for unbiased methods. The root mean square error which is also a measure of the
prediction precision is expected to be small (Odeha, McBratney, & Chittleborough, 1994).

The ME and RMSE are calculated using the following formulas (Bishop et al., 2000):

ME = 31y (x) = 9(x)} a7

RMSE = |[E22,000) - 9G] (18)

The R-square is also calculated using the equation below:
SSerr 5
SStot SSerr = YL, (y(x;) — 9(x;))? and
SStot = X, (v(xp) — 7)? (19)

R —square =1 —

where y(x;) is the obsetved precipitation value, §(x;) is the predicted precipitation value, SSerr
is sum of squares of the residuals, SStot is the total sum of squares, ¥ is the mean of the
observations and # is the total number of data points.

18
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5. RESULTS AND ANALYSIS

In this chapter, we outline the findings of the methodology carried out in chapter 4. We commence
with the result of both the spatial and non-spatial exploratory data analysis, followed by regression
analysis to select significant predictors for modeling and prediction. We conclude with a cross-

validation assessment of the methods applied in this study.

5.1. Non-Spatial Exploratory Analysis

The distribution of the data was investigated by carrying out exploratory data analysis. The data for
most of the months were not normally distributed and a log transformation was undertaken to
achieve approximate normal distribution. For months with zero values of precipitation, we added 1
to all the values before the transformation since the log transformation of zeros is not possible.
After prediction and back transformation to the original scale of the data, we subtracted one from
the values to obtain the original data. Table 5.1 shows the descriptive statistics of the log-
transformed values of the mean monthly and annual precipitation data. The transformation did not
achieve a complete improvement in the normality of the distribution of the data for all months.
We decided to use the transformed data for analysis as the scope of the appropriateness of the
Gaussian model can be broadened by assuming that the model is still valid when the response
variable is transformed (Diggle & Ribeiro, 2007, pg. 60). There is quite some similarity between the
mean and the median values, and a reduced level of skewness after the transformation as shown in
the table below.

Table 5.1: Descriptive statistics of the log-transformed mean monthly and annual precipitation data

Mean Median SD Max Min Skew Kurt
January 2.20 2.59 1.27 3.92 0 -0.65 -1.08
February 3.01 3.12 1.0 4.52 1.22 -0.19 -1.42
March 3.94 4.02 0.95 5.01 1.75 -0.88 -0.36
April 4.74 4.82 0.38 5.26 3.69 -1.01 0.56
May 4.95 4.95 0.31 5.70 4.42 0.32 -0.37
June 5.21 5.22 0.27 6.14 4.87 1.37 2.98
July 4.95 4.98 0.36 5.49 4.20 -0.41 -0.86
August 4.59 4.5 0.83 5.68 291 -0.42 -1.05
September  5.04 5.20 0.45 5.70 3.96 -1.18 0.45
October 4.83 4.99 0.46 5.46 4.10 -0.34 -1.47
November 3.37 3.76 1.22 5.07 0.88 -0.42 -1.15
December 2.31 2.71 1.51 4.27 0 -0.44 -1.40
Annual 7.09 7.15 0.22 7.58 6.55 0.03 -0.11

Graphical exploration of the data was carried out using histograms and Q-Q plots to study the
structure of the data and to detect possible outliers. Figure 5.1 and Figure 5.2 below show the
histograms and Q-Q plots of the original data and the log-transformed data respectively. Log-
transformation of the annual data was also carried out as shown in Figure 5.3 and Figure 5.4.
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Figure 5.1: Histogram and Q-Q plot of the original precipitation data for the month of February
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Figure 5.2: Histogram
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and Q-Q plot of the log-transformed precipitation data for the month of
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Figure 5.3: Histogram and Q-Q plot of mean Annual precipitation data
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Figure 5.4: Histogram and Q-Q plot of the log-transformed annual precipitation data

5.2. Spatial Exploratory Analysis

The graphical plots in Figure 5.5 (a) show a plot of the spatial locations of the log-transformed
precipitation data, their correlation with the Y coordinate (Northing), their correlation with the X
coordinates (Easting) and a histogram of the data respectively. This spatial exploratory analysis of
the data for the month of February shows a high negative correlation of the data with the
Northing. This suggested the need for the inclusion of a trend surface model in this analysis. Figure
5.5 (b) also shows the plot of the data in proportion to the data values indicating the decreasing

21
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trend of precipitation from the south to the north. Figure 5.6 (a) and (b) also show the spatial

exploratory plots of the log-transformed annual precipitation with NDVI and the Easting as a

trend. Though there is temporal variation in precipitation which is captured by the monthly

analysis, the spatial exploratory analysis of the annual precipitation also shows the decreasing trend

of precipitation from the south-west to north-east.
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5.3. Regression Analysis

Spatial exploratory analysis of the data revealed the presence of a trend signifying a spatially varying
mean. The spatial coordinates, elevation, and NDVI were used as predictors or trend to model the
mean component of the kriging models. Regression analysis was carried out between log-
transformed precipitation and the predictors to identify significant predictors for the different
regression models as indicated in Section 4.4.

The correlation between the log-transformed precipitation and each of the predictors for the

monthly and annual data was also analyzed as shown in table 5.2.

Table 5.2: Correlation coefficients of log-transformed precipitation with covariates

NDVI ELEV X Y
January 0.66 -0.12 -0.03 -0.89
February  0.78 -0.04 -0.17 -0.85
March 0.74 0.01 -0.15 -0.85
April 0.68 0.1 -0.42 -0.63
May 0.64 -0.27 -0.39 -0.86
June 0.34 -0.33 -0.17 -0.70
July 0.004  -0.03 -0.20 0.56
August 0.50 0.47 -0.10 0.87
September (.41 0.65 -0.05 0.55
October  0.40 0.13 -0.35 -0.61
November  0.67 -0.18 -0.19 -0.92
December (.74 -0.21 -0.06 -0.93
Annual 0.60 0.13 -0.38 -0.36

There is a moderate positive correlation between log-transformed precipitation and NDVI for
January, March, April, May, August, November, and December ranging from 0.50 to 0.74 and a
strong correlation for February. There is a weak correlation for the months of September and
October and a very weak correlation in June and July. The correlation was weak for months with
higher rainfall and stronger for months with less rainfall. There is a very strong correlation between
log-transformed precipitation and the northing for all months with correlation coefficients greater
than 0.5 or -0.5. Generally, there was a very weak correlation for the elevation and Easting
covariates with precipitation except in September for elevation and in April for the Easting.
Notwithstanding the weak correlation of elevation with precipitation, elevation showed significance
in the regression model for January, February, March, April, September, and October with p-value
from 0.037 (*p<0.05) in October to 0.0008 (*p<0.001) in March.

There was multicollinearity between NDVI and the Northing which affected the significance of
NDVI as a predictor in the regression Model 1 for most of the months. NDVI only showed
significance for the months where its correlation with the Northing was weak and moderate.
However, NDVI was very significant as a predictor when precipitation was regressed on NDVI
only in Model 3 except for the months of June and July where the correlation with precipitation
was very weak. Table 5.3 below shows the coefficient of correlation between NDVI and the
Northing. Figure 5.7 (a) shows the correlation plot between NDVI and the northing and (b) the
correlation matrix between log precipitation and all covariates for the month of December.
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Table 5.3: Coefficient of correlation between NDVI and the Northing

Period Correlation
January -0.65
February -0.71
March -0.71
April -0.68
May -0.61
June -0.55
July -0.29
August 0.40
September 0.25
October -0.05
November -0.54
December -0.69
Annual -0.27

Correlation matrix between
log precipitation and covariates
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Figure 5.7: (a) Scatter plot of the correlation between NDVI and the Northing (b) correlation
matrix between log precipitation and all covariates for the month of February

5.4. Parameter Estimation by Maximum Likelihood

5.4.1. Exploratory Variographic Analysis

The spatial structure of precipitation for the mean monthly and annual precipitation was analyzed
using different covariance models. The covariance models used in this analysis include the spherical
model, the exponential model, and the Gaussian model. Since our approach is purely model-based
using the maximum likelihood method of parameter estimation, the empirical variogram was not
used as the basis for inference but only as an exploratory tool to select plausible parametric models
for the covariance structure and also to identify initial covariance parameters (Diggle & Ribeiro,
2007). The model with the maximum log-likelihood function was selected for spatial prediction.
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Figure 5.8 (a), (b) and (c) below show the empirical variogram and a fitted spherical model for
mean September and mean annual log precipitation after removing the trend. These were used for

exploratory purpose to identify initial parameters for covariance parameter estimation and

prediction.
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Figure 5.8: Empirical variogram and a fitted spherical model for mean September and Mean
Annual precipitation when the trend in (a) elevation and Northing, (b) Northing (c) NDVI and
elevation (d) NDVI and the Easting were removed
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54.2.  Model Selection

The covariance parameters needed for the accurate estimation of precipitation at
unsampled locations is largely dependent on the type of covariance function that best
describes the spatial structure of precipitation in the study area. For each of the kriging
methods employed, the appropriate covariance function was selected based on the
maximum value (Myung, 2003) of the maximized log-likelihood function. Table 5.4, 5.5
and 5.6 provide the details of the preferred covariance function for each period in Model
1, Model 2 and Model 3 respectively.

Table 5.4: Maximized log-likelihood values for covariance functions in Model 1

Period Maximized Log-likelihood Preferred
Exponential ~ Spherical Gaussian function
January -19.07 -18.58 -18.69 Spherical
February -13.06 -11.52 -13.06 Spherical
March -9.48 -9.57 -9.64 Exponential
April 3.246 3.676 3.744 Gaussian
May 22.6 22.6 22.6 Spherical
June 7.521 7.763 6.602 Spherical
July 0.1891 -0.00085 0.6254 Gaussian
August -10.44 -10.16 -9.786 Gaussian
September  -4.3 -3.889 -5.555 Spherical
October -0.5967 0.0086 0.8181 Gaussian
November  -13.26 -12.99 -13.02 Spherical
December  -18 -18 -18 Spherical
Annual 10.91 11.29 11.62 Gaussian

Table 5.5: Maximized log-likelihood values for covariance functions in Model 2

Period Maximized Log-likelihood Preferred
Exponential ~ Spherical Gaussian function
January -21.01 -20.37 -20.42 Spherical
February  -16.79 -16.68 -16.05 Gaussian
March -14.34 -14.22 -14.09 Gaussian
April 2.449 3.115 3.248 Gaussian
May 222 22.27 22.2 Spherical
June 7.253 7.034 7.002 Exponential
July 0.179 0.7822 0.6254 Spherical
August -11.66 -11.49 -11.05 Gaussian
September -6.084 -5.897 -6.82 Spherical
October -3.108 -2.986 -1.803 Gaussian
November -14.73 -14.49 -15.28 Spherical
December -21.05 -20.91 -21.05 Spherical
Annual 9.095 9.634 10.1 Gaussian
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Table 5.6: Maximized log-likelihood values for covariance functions in Model 3

Period Maximized Log-likelihood Preferred
Exponential Spherical Gaussian function
January -25.13 -25.9 -24.42 Gaussian
February  -18.41 -17.68 -17.45 Gaussian
March -14.82 -13.84 -12.08 Gaussian
April 1.164 1.862 2.16 Gaussian
May 11.8 11.72 13.96 Gaussian
June 3.031 3.47 0.9348 Spherical
July -0.9911 -0.4444 -0.1757 Gaussian
August -16.99 -16.46 -16.56 Spherical
September -4.683 -4.592 -4.617 Spherical
October -3.568 -3.069 -4.209 Spherical
November -20.03 -19.27 -16.84 Gaussian
December -27.97 -27.25 -25.31 Gaussian
Annual 9.095 9.634 10.1 Gaussian

5.4.3.  Model Parameters

The covariance models that are selected based on the criteria in Section 5.4.2 after the
optimisation of the likelihood function provide the parameters of the linear effect and
covariance structure. It is important to note that in the maximum likelihood estimation
method, both the trend coefficients and the covariance parameters are estimated
concurrently. An optimisation criterion using the “/kefit” function of the geoR package
gives the maximum likelihood estimates of the parameters in each of the models. Table
5.7, 5.8, and 5.9 show the estimated parameters of the mean, the signal variance, the
nugget variance and the range in each of the kriging models applied for each period. The
abbreviations SPH = Spherical, EXP = Exponential and GAU = Gaussian.
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Table 5.7: Selected covariance functions and model parameters in Model 1

Period Coefficients Psill Rang Nug. Loglik Model
Bo B B: B B: (Km)
January 6.4869 0.0021 -5.473 0.176 139.3 0.0871 -18.58 SPH
February 6.4487 0.0028 -4.655 0.1459 6513 0 -11.52 SPH
March 7.0543 0.0031 -4.3484  0.1223  16.67 0 -9.479 EXP
Apri] 6.5322 0.0005 -1.335  -1.0690  0.0547 73.87 0.0039 3.744 GAU
May 6.6173  0.1477 -1.078  -1.143 0.0009 76.62 0.0094  22.6 SPH
June 6.2099  -0.257 -1.0156  0.0342  86.06 0 7.763 SPH
July 4.2933  -0.001 0.8141 0.0799 205 0.0265  0.6254 GAU
August 1.7500  0.8574 2.9379 0.1295 3838 0 -9.786 GAU
September 41622 0.0016 07151 00829 8043 0 3880  SPH
October 55872 0.6900  0.0012 15741 00654 5312 0 08181  GAU
November 61269  1.8472 43421 00556 361.6 01164 -1299  SPH
December  7.7265 0.0023 6.8966 00038 5007 02301 -18 GAU
Annual 6.9769  0.9094 -0.431 0.0259 3944 0 11.62 GAU
Table 5.8: Selected covariance functions and model parameters in Model 2
Period Coefficient Psill Range  Nugget Loglik Model
B B B e
January 6.403 4,887 0.2569 1583 0.065 2037  SPH
February 65351 4111 0.235 5085 0 1605  GAU
March 6.5309 3180 0.211 1573 00726  -1409  GAU
April 6.5849 -1.5040 -0.8732 0.0648 78.94 0.0021 3.248 GAU
May 6.7617 -1.1034 -1.2065 0.0027 74.36 0.0078 22.27 SPH
June 5.9992 09231 0.0349 31110 7.253 EXP
July 4.2806 0.8229 0.0676 311.7 0.015 0.7822 SPH
August 1.9277 3.2351 0.1504 4759 0 1105  GAU
September 34801 1.7216 0.2001 3447 0 5807  SPH
October 6.6084  -09154 12790  0.0885 6374 0 1803  GAU
November 91208  -1.7807  -52613  0.1837 67 0 1449  SPH
December  7.8075 64601 0.169 59.67 01252 -2091  SPH
Annual 78412 05147 04258  0.0303 4587 0 101 GAU
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Table 5.9: Selected covariance functions and model parameters in Model 3

Period Coefficients Psill Range  Nugget Loglik Model
B B B e

January 1.627 1.4589 0.8872 152.1 0.0744 -24.42 GAU
February 1.8697 2.5109 0.4662 358.9 0.1298 -17.45 GAU
March 2.3183 1.3942 1.831 620 0.0706 -12.08 GAU
April 4.3616 0.9369 0.0803 81.32 0 2.16 GAU
May 5.0923 0.2366 0.5246 1134 0.0107 13.96 GAU
June 5.3512 -0.118 0.0709 786.6 0.0205 3.47 SPH
July 5.0259 -0.028 0.1349 249 0.0261 -0.1757 GAU
August 4291 0.5432 0.6673 944 0.046 -16.46 SPH
September 4.249 0.9162 0.0018 0.0922 1006.6 0 -4.592 SPH
October 4.4456 0.5287 0.2262 511.3 0 -3.069 SPH
November 2.0746 1.5535 1.41 560.1 0.1133 -16.84 GAU
December 1.1201 1.8042 1.924 563.8 0.2368 -25.31 GAU
Annual 6.66 0.9376 0.028 43.45 0 10.9 GAU

5.5. Spatial Prediction
Spatial predictions were carried out for mean monthly, mean annual and cumulative annual

rainfall for the period under analysis using the three kriging models.

5.5.1. Mean Monthly Prediction

Model 2 outperformed the other methods in five months (February, April, May,
September, and October). Model 3 also performed better than the others in five months
(March, July, August, November, and December). Model 1 was the least performing model
and performed better in January and June. Figure 5.9 (a), (b) and (c) show the predictions
for the month of April using Model 1, Model 2, and Model 3 respectively. The kriging
standard deviation for the three models are shown in Figure 5.10. Figure 5.11 shows the
time series mean monthly predictions for all the months using the preferred kriging model

in each month.
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Figure 5.9: Predicted precipitation maps for mean April using (a) Model 1 (b) Model 2 and (c)
Model 3
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Mean Monthly Prediction maps
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Figure 5.11: Predicted mean monthly precipitation maps of Ghana using Model 1, Model 2 and
Model 3.

MOD1, MOD2 and MOD3 represent Model 1, Model 2 and Model 3 respectively.

5.5.2.  Mean Annual Prediction

Model 2 outperformed Model 1 and Model 3 in the mean annual predictions. Though the spatial
coordinates especially the northing were strongly correlated with the log-transformed precipitation
for the monthly data which accounted for the performance of Model 2 in five months, their
correlation with the log-transformed mean annual precipitation data was weak. Notwithstanding
the weak correlation, Model 2 still outperformed Model 1 and Model 3. Figure 5.12 (a), (b) and (c)
show the mean annual prediction maps using Model 1, Model 2 and Model 3 respectively.
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Figure 5.12: Predicted Mean Annual precipitation maps using (a) Model 1 (b) Model 2 and (c)
Model 3

5.5.3.  Cumulative Annual Prediction

In order to investigate the cumulative dynamics of precipitation in Ghana, we carried out
cumulative annual predictions from 2001 to 2010 using the three models and selected the best
model for each year through cross-validation. Figure 5.13 shows the spatial and temporal
distribution of cumulative annual rainfall in the country for the ten-year period.
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Figure 5.13: Cumulative annual prediction maps using Model 1, Model 2 and Model 3.

5.6. Performance Assessment of Models

Table 5.10 and Table 5.11 show the leave-one-out cross-validation statistics carried out to evaluate
the performance of the three models in mean monthly and cumulative annual predictions. For
mean monthly prediction, Model 2 performed better in five months (February, April, May,
September, and October) with the minimum root mean square error and maximum coefficient of
determination. Model 3 equally performed better in five months (March, July, August, November,
and December) and Model 1 for two months (January and June) as shown in Table 5.10. For
cumulative annual prediction, Model 2 performed better in 2001to 2004, 2007 and 2009. Model 3
performed in 2005, 2008 and 2010 and Model 1 for 2006.
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Table 5.10: Cross-Validation statistics for the three Models in mean monthly and annual

predictions

Model 1 Model 2 Model 3 Preferred

ME RMSE Rsqc ME RMSE Rsq ME RMSE Rsq. Method
Jan 0.748  8.005 0.6041 1.155 8.5417 0.5536 0.392 9.3147 0.4602 Model 1
Fe 0.1991 27321 0.4113 4.024 17.148 0.5566 1.856 18.758 0.4440 Model 2
Mar -2.736 39.229 0.2238 2.862 25453 0.6558 1.773 20.840 0.7815 Model 3
Apr 1937 26361 0.5433 2802 22973 0.6565 1.744 23.673 0.6317 Model 2
May 0937 2140 0.8024 1.423 20.083 0.8265 1.32 21.334 0.8040 Model 2
Jun 4579  51.685 0.3598 4.492 51.835 0.3559 5.205 52.845 0.3320 Model 1
Jul 3,589 3332  0.5317 4.02  32.688 0.5509 3.548 32146 0.5643 Model 3
Aug 3.857 35.841 0.8304 4.898 36.610 0.8242 6.796 31.242 0.8758 Model 3
Sep 4.808 49297 0.2878 3.542 36.334 0.6130 1.142 77.595 0.385  Model 2
Oct -0.846 6256 0.2480 6.699 30.670 0.7144 2142 34735 0.6168 Model 2
Nov 1974 33,571 04756 1.853 35799 0.4032 2.888 32269 0.5177 Model 3
Dec 0.696 14755 0.5003 0.598 16.66  0.2330 1.538 14.259 0.5377 Model 3
Ann 2322 22585 0.3088 3549 209.96 04135 2416 221.71 0.3347 Model 2

The abbreviations Jan = January, Feb = February etc and Ann = Annual

Table 5.11: Cross-Validation statistics for the three Models in cumulative annual predictions

Model 1 Model 2 Model 2 Preferred

ME  RMSE Rsq. ME RMSE Rsq ME  RMSE Rsq. Method
2001 18.62 221.43 0.2098 2413 204.26 0.3323 17.66 228.09 0.1606 Model 2
2002 20.52 31496 0.2726 41.60 265.27 0.4946 27.88 319.04 0.2562 Model 2
2003 27.58 27839 0.0342 3594 264.68 0.0913 2623 282.15 0.0230 Model 2
2004 34.72 30996 0.2733 59.10 290.36 0.3810 3231 292.15 0.3542 Model 2
2005 3143 267.23 0.1621 4190 269.64 0.1559 31.19 26491 0.1766 Model 3
2006 20.51 19895 0.51 30.30 216.79 0.4209 2225 210.10 0.4515 Model 1
2007 40.65 32096 0.1477 3471 315.67 0.1723 30.63 316.63 0.1649 Model 2
2008 20.33 280.63 0.2117 3231 293.82 0.1418 20.32 270.97 0.2653 Model 3
2009 3397 237.18 0.2286 37.80 225.44 0.3085 33.12 226.86 0.2948 Model 2
2010 2524 288.81 0.3295 4032 289.30 0.3352 29.80 283.33 0.3569 Model 3

Figure 5.14 (a) and (b) show plots of the RMSE of prediction using Model 1, Model 2, and Model

3 for the mean monthly and cumulative annual prediction. The months with less precipitation

recorded lower RMSE and the months with more precipitation recorded higher RMSE in each of

the models. Though Model 2 performed better than the other models for five months, it was more

bias than the other models for those months except September. Generally, all models showed

different levels of underprediction with mean errors above zero. Model 1 also showed

overpredictions with MEs below zero as a result of the incorporation of elevation in accounting for

the trend. Figure 5.15 (a) and (b) also show plots of the mean error or bias in prediction for mean

monthly and cumulative annual predictions.
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Figure 5.14: RMSE of prediction using Model 1, Model 2 and Model 3 for (a) mean monthly and
(b) cumulative annual precipitation estimation
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ME of Mean Monthly Prediction
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Figure 5.15: ME of prediction using Model 1, Model 2 and Model 3 for (a) mean monthly and (b)
cumulative annual precipitation estimation
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Figure 5.16 shows the cross-validation plots of the log-transformed mean annual precipitation. The
scatter plot of the observed and the predicted shows a reasonable fit with some slight deviations as
showing in Figure 5.16(a). The histogram of Figure 5.16(b) shows the residuals of the log-
transformed mean annual precipitation. For a good model, the residuals are expected to be

normally distributed.
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Figure 5.16: Cross-validation (a) scatter plot (b) histogram of residuals for log-transformed mean
annual precipitation

std residuals

5.7. Spatial Dependence

Figure 5.17 shows the monthly variation of the estimated sill and nugget effect for each of the
interpolation models. The largest sill and nugget effect is observed mostly in the months with less
precipitation as shown in Figure 5.17 (a), (b) and (c). This is as a result of the higher variation of
precipitation in those months. The months with more precipitation have less sill and nugget effect.

Figure 5.18 also shows the nugget to sill ratio for each of the interpolation models in each month.
According to Cambardella et al. (1994), a nugget to sill ration of 0 to 25% correspond to strong
spatial dependence, 25% to 75% corresponds to moderate spatial dependence and above 75%
correspond to weak spatial dependence.

Figure 5.19 shows the range of spatial dependence described by the three models. Model 3 with
NDVI as a predictor, shows a higher range of spatial dependence beyond the scale of the study
area especially in the months with more precipitation. This shows the existence of the trend

beyond the scale of the study area.
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Figure 5.17: Nugget effect and total sill in (a)Model 1, (b) Model 2, and (c) Model 3 for each month
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Figure 5.18: A graph of Nugget to Sill ratio in each month for Model 1, Model 2 and Model 3
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Figure 5.19: Range of spatial dependence in each month for Model 1, Model 2 and Model 3
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6. DISCUSSION

In this chapter, we present a discussion on the results obtained through the methodology we

applied to predict rainfall from sparse precipitation data.

6.1. Assessment of Predictors

The inclusion of elevation as a trend component in regression kriging did not contribute much in
the prediction results for both monthly and annual precipitation. Although weakly correlated with
precipitation, elevation showed significance with a p-value less than a significance level of 0.05 in
January, February, March, April, September, October, and December in the multiple linear
regression model. Model 1 with elevation as a predictor only performed better than the other
models in January. There was an extreme over-prediction of precipitation in most of the months
for which elevation showed significance and was included as a predictor. The over predictions were
mainly observed in higher elevations as compared to lower elevations. The significance of elevation
in the regression models for the abovementioned months could possibly be due to local influences.
This was not a surprising discovery judging from the weak correlation between log-transformed
precipitation and elevation presented in Table 5.2. The correlation of elevation with precipitation
ranged from 0.01 to 0.65. Our findings are consistent with Goovaerts (2000), who found that
ordinary kriging performed better than linear regression with elevation when the correlation
between elevation and rainfall was moderate (p<<0.75). A stronger correlation between elevation
and rainfall is therefore necessary for elevation to bring improvement in spatial prediction of
rainfall.

There was a moderate and strong correlation between NDVI and log-transformed precipitation
ranging from 0.5 to 0.78 in most months except June and July as shown in Table 5.2. The weak
correlation of NDVI with precipitation in June and July could be as a result of the fact that it rains
everywhere in the country within that period. NDVI was simultaneously correlated with the
northing coordinates making it less significant in Model 1 except the months with more rain.

Model 3 outperformed Model 2 and Model 1 in March, July, August, November, and December
when NDVI was incorporated as the drift. Though NDVI was weakly correlated with log-
transformed mean July precipitation, Model 3 still performed better in July. Remotely-sensed
derived covariate NDVI is, therefore, an optimal covariate for the accurate prediction of rainfall in
the above-mentioned months.

The spatial coordinates especially the northings were highly correlated with log-transformed mean
monthly precipitation and this accounted for the performance of Model 2 in five months. Their
correlation with the log-transformed mean annual precipitation was weak. Though weakly
correlated, Model 2 performed better in the mean annual prediction using the spatial coordinates as
predictors. The spatial coordinates are therefore optimal covariates for mean annual prediction of
rainfall in Ghana.

It could be observed in Figure 5.14(a) that all models performed similarly in May, June and July
which are the months with more rainfall as shown in Figure 5.11. All models also performed
similarly in cumulative annual predictions as shown in Figure 5.14(b). It is important to note that
Model 2 with the spatial coordinates as predictors performed closely with Model 3 in the months
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that model 3 performed better using NDVI as a predictor. Though NDVI improved predictions in
these months, the spatial coordinates could be used for overall monthly predictions in the absence
of NDVI data.

6.2. Spatial Structure of Precipitation

The choice of a variogram model for spatial predictions depends largely on the covariance
structure of the input data. It is therefore important to evaluate different models to infer the spatial
structure of the input data for a given period. The spherical, exponential and Gaussian models were
evaluated in this study and the appropriate model was selected for parameter estimation and
prediction. The spherical and Gaussian models best captured the spatial structure of precipitation
in the monthly and annual data. There was significant variation in the spatial dependence of
precipitation from one month to the other resulting in the variation of variogram parameters. The
months with less precipitation exhibited higher nugget effect as compared to months with more
precipitation except for May with more precipitation and higher nugget effect. We may attribute
this to the fact that it rains everywhere in the country during the month of May making it difficult
to capture variability less than the minimum sampling distance. The nugget to sill ratio which
describes the strength of spatial dependence (Cambardella et al., 1994) was high in the months of
May and December as shown in Figure 5.18. The higher this ratio, the weaker the spatial
dependence which is as a result of the high nugget effect. There was strong to moderate spatial
dependence in most of the months especially months with high rainfall.

6.3. Spatial and Temporal Distribution of Precipitation

Precipitation varies both in space and time and this was clearly depicted in the monthly analysis. It
was observed that precipitation varies spatially with decreasing trend from the south-west to the
north-east. There is more precipitation in the south-western part of the country from January to
June and from October to December than in the northern part. Axim located in the south-western
part records the highest rainfall in the country and Bawku the lowest in the north-eastern within
this period. The north-eastern part also depicted higher precipitation than the south in July and
August whiles the easting part recorded higher precipitation in September as shown in Figure 5.11.
This is in line with the rainfall pattern of Ghana with the southern part exhibiting a bimodal wet
season from March to July (major season) and September to November (minor season) whiles the
northern part experiences a single wet season from May to October as shown in Figure 5.11.
Precipitation shows an increasing trend from January to June at a maximum and declines steadily to
August. It rises again to a maximum in September and finally declines to December. June is the
month with the highest rainfall and January the lowest in the interpolation results. August is the
transition between the major and the minor seasons in the southern part resulting in low
precipitation in the south as compared to the north. This temporal variation of precipitation in the
country among other factors could possibly be due to the influence of the two major air masses in
the country. The south-west monsoon wind that hits the country beginning at Axim could explain
why it records the highest rainfall in the country for most of the months. It could also be argued
that the high rainfall record of Axim is as a result of its location along the coast. This argument
would be flawed by the fact that towns like Tema and Accra are coastal towns yet are among the
areas recording low rainfall in the country. Therefore, proximity to the coast has less or no
fundamental effect on the rainfall variability in Ghana and a predictor like distance to the coast may
not provide an improvement in rainfall predictions. The dry north-east trade wind commonly
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known as harmattan that blows from the Sahara Desert towards the north-eastern part of Ghana in
December to March could possibly be the reason for the low precipitation rate in the north.

The result of the cumulative annual predictions indicates the spatial and temporal distribution of
rainfall from 2001 to 2010. The results show that there was less rainfall in 2001 and more rainfall in
2010. This shows an increasing trend of rainfall in the country for that decade. This provides

reliable information for drought analysis since drought-prone areas can easily be spotted.
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7. CONCLUSION AND RECOMMENDATION

71. Conclusion

The main objective of our study was to predict rainfall from sparse precipitation data using
regression kriging by applying model-based maximum likelihood method in estimating the drift and
covariance parameters. We carried out a comparative analysis to evaluate the performance of three
regression kriging models in estimating the mean monthly, mean annual and cumulative annual
rainfall of Ghana through cross-validation measures using the RMSE and R-square metrics.
Monthly and annual averages were computed from daily observations of precipitation from 2001 to
2010 using data from 26 rain gauge stations to carry out this analysis. The secondary variables used
in this study include the spatial coordinates, MODIS NDVI, and elevation derived from DEM.
The first model with significant predictors selected from a multiple linear regression of all the
predictors performed better in two months (January and June) for mean monthly predictions and
in 2006 for cumulative annual predictions. There was a strong correlation between mean monthly
precipitation and the northings which accounted for the performance of the second model in five
months (February, April, May, September, and October) for the mean monthly predictions, in six
years (2001-2004, 2007 and 2009) for cumulative annual predictions and in the mean annual
predictions. The third model with NDVI as predictor performed better in five months (March,
July, August, November, and December) for mean monthly predictions and in three years (2005,
2008 and 2010) for cumulative annual predictions.

There was a slight difference between the RMSEs of the Model 3 with the spatial coordinates as
predictors and Model 2 with NDVI as a predictor. We therefore consider MODIS NDVI as an
valuable covariate for mean monthly rainfall estimation in Ghana. The RK model with elevation as
a predictor only performed in January. There were overpredictions for most of the months where
elevation was included as a predictor in the multiple linear regression. Elevation was not significant

in the mean annual and cumulative annual predictions.

Answers to Research Questions
Specific Objective 1:
1. What is the relationship between elevation and the spatial distribution of
precipitation in the study area for a given time period?

The was a very weak correlation between precipitation and elevation for most of the
months. Elevation was only moderately correlated with precipitation in September as
shown in Table 5.2. Though weakly correlated with precipitation, elevation contributed to
the improvement of rainfall predictions in only January when it was used as a predictor in
a multiple linear regression with the northing coordinates.

January is the driest month in Ghana and rainfall in this month can be partly due to
orographic effects.

2. Can time series of NDVI, a remote-sensed derived covariate from MODIS be used
to infer the spatial and temporal distribution of precipitation in the study area?
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The one-month time series of MODIS NDVI was simultaneously cortelated with the
northing coordinates and was not significant for most of the months when it was used in a
multiple linear regression with all predictors for Model 1.

NDVI became very significant for most months and years when it was used as a predictor
in Model 3 except the months with more rainfall such as June and July.

The significance of NDVI led to the improvement of prediction in five months (March,
July, August, November, and December) for the mean monthly predictions and three years
(2005, 2008 and 2010) for the cumulative annual predictions.

Specific Objective 2:
1. Which covariance function is appropriate for capturing the spatial structure of
precipitation in the study area for a given time period?

The appropriateness of three covariance functions was evaluated using the maximum
likelihood method of parameter estimation. These included the spherical function, the
exponential function, and the Gaussian function. The preferred covariance function was
selected for each period of model fitting by considering the function with the maximum
value of the maximized log-likelihood.

2. What are the optimal model parameters of the chosen covariance function?

For each period of prediction, the preferred covariance function was selected and the
estimated parameters used for prediction. Details of the functions used for each period
and the optimal model parameters are shown in Section 5.4.3.

Specific Objective 3:
1. Which regression model is most appropriate for the prediction of precipitation in
the study area for a given time period?

Three different regression models were formulated due to multicollinearity between NDVI
and the northing coordinates as indicated in Section 4.4.

Their performance was evaluated by leave-one-out cross-validation as indicated in Section
5.0.

The first model performed better in two months (January and June) for the mean monthly
predictions and 2006 for the cumulative annual predictions.

The second model performed better in five months (February, April, May, September, and
October) for the mean monthly predictions, in six years (2001-2004, 2007 and 2009) for
cumulative annual predictions and in the mean annual predictions.

The third model performed better in five months (March, July, August, November, and
December) for mean monthly predictions and in three years (2005, 2008 and 2010) for
cumulative annual predictions.

7.2, Recommendation
The following recommendations are suggested for future research:

e We recommend further research to evaluate the influence of remotely sensed rainfall
estimates to the accuracy of mean monthly and annual precipitation estimation.
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e An extension of this work with more data to space-time kriging with parameters estimated
by the maximum likelihood method
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