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ABSTRACT 

Reliable and spatially exhaustive surfaces that provide accurate spatial and temporal distribution of rainfall 

are key requirements for making climate-related informed decisions such as management of water 

resources and ecological modeling. Different approaches to predict rainfall from sparsely available data is a 

notable subject of research in spatial statistics. In this study, we carried out a spatio-temporal regression 

kriging to predict rainfall in Ghana by applying a model-based approach using maximum likelihood 

method to estimate the model parameters. Mean monthly, mean annual and cumulative annual data was 

computed from daily measurements of 26 rain gauge stations from 2001 to 2010 distributed over 238,540 

km2 area of Ghana. The spatial coordinates, elevation derived from digital elevation model (DEM) and 

one-month time series Normalized Difference Vegetation Index (NDVI) images of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) were used as predictors. Due to multicollinearity 

between predictors, three linear regression models were formulated and used to carry out mean monthly, 

mean annual and cumulative annual predictions of rainfall at 1km2 grid. Their performance was evaluated 

by leave-one-out cross-validation using the root mean square error and coefficient of correlation metrics. 

The second regression kriging model with the spatial coordinates especially the northing as predictors 

performed best in five months for the mean monthly predictions, six years for cumulative annual 

predictions and the mean annual predictions. The third model with NDVI as predictor also performed in 

five months and three years. The third model with a subset of all predictors performed in two months and 

one year. The results uncovered the spatial and temporal distribution of rainfall in the country. The south-

western part records high rainfall and the northern part less rainfall. June is the wettest month and January 

the driest month in the country. There was an increasing trend in rainfall from 2001 to 2010. 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 

Climate variables such as precipitation data are of prime importance and its spatial distribution is required 

for water resources management, hydrologic and ecologic modeling, recharge assessment and irrigation 

scheduling (Mair & Fares, 2011; Di Piazza, Conti, Noto, Viola, & Loggia, 2011). Reliable and exhaustive 

rainfall information is a critical requirement for the successful modeling and assessment of these 

processes. 

 

 Direct and accurate measurements of precipitation data at a fine resolution will require a dense network 

of meteorological stations (Goovaerts, 2000). Ghana as a third world country lacks the capacity to afford 

the installation of these stations at higher density. A network of meteorological stations which are the 

direct source of reliable precipitation data are therefore sparsely located making it difficult to characterize 

this highly variable phenomenon and its spatial and temporal distribution (Keblouti, Ouerdachi, & 

Boutaghane, 2012). The level of sparsity becomes more pronounced as a result of missing data due to the 

malfunctioning of some rain gauge stations. This affects the continuity of available data from the sparsely 

available stations.  

 

A practical indirect alternative to providing spatially exhaustive precipitation information is the use of 

ground-based meteorological RADARs and satellite platforms with mounted remote sensing devices. The 

accuracy and resolution of the estimates provided by these indirect methods are often insufficient and 

unreliable. As a result, these methods still require calibration and validation using historical data from 

direct and reliable rain gauge measurements (Bostan, Heuvelink, & Akyurek, 2012; Lanza, Ramírez, & 

Todini, 2001). This calls for alternative methods that provide the means to accurately estimate 

precipitation data at unsampled locations. 

 

Interpolation methods that have been proposed for estimating precipitation data at unsampled locations 

include geostatistical interpolation and deterministic techniques. According to Goovaerts (1999), 

geostatistical methods provide the best results in the estimation of precipitation since they take into 

consideration spatial dependences which are usually observed for precipitation. Geostatistics is (Goovaerts 

(2000) as quoted by  Mendez & Calvo-Valverde (2016)) “based on the theory of regionalized variables and 

provides a set of statistical tools for incorporating the spatial correlation of observations in data 

processing”. The use of secondary variables such as elevation, radar imagery or land use in combination 

with precipitation as established by previous studies results in more accurate estimation than using only 

precipitation measurements (Hofierka, Parajka, Mitasova, & Mitas, 2002).  

 

Despite the robustness of different spatial interpolation techniques, there is always an element of 

uncertainty as to which method is most applicable for a given set of data. According to Luo, Taylor, & 

Parker (2008), accuracies vary significantly among spatial interpolation methods depending on the spatial 

attributes of the data at hand. Burrough, McDonnell, & Lloyd (1998) indicated that in the abundance of 

data, most interpolation techniques produce results that are similar. This becomes completely different 

when data are sparsely located and the choice of interpolation method to estimate data at unsampled 

locations becomes a great concern. In this study, we investigate and model the spatial structural 
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dependence in sparse rainfall data by applying the Maximum Likelihood method to estimate the drift and 

covariance model parameters.  

Through spatial exploratory analysis, the presence of trend was evident in the data, especially with the 

latitude. This necessitated the use of non-stationary geostatistical methods also called the ‘hybrid’ 

techniques by Bishop et al. (2000). According to Bishop et al. (2000), the use of ordinary univariate kriging 

is inappropriate whenever trend exists in the data. Ordinary kriging was therefore not undertaken in this 

research. 

 

These hybrid algorithms which assume a spatially varying mean by including a trend surface model 

(Deutsch & Journel, 1998), are used to estimate the mean monthly, mean annual and cumulative annual 

precipitation of Ghana using data from 2001 to 2010 from 26 rain gauge stations distributed over the 

country. 

 

1.2. Research Identification  

Mapping of the spatial distribution of precipitation is important for many applications in ecological 

studies, environmental sciences, and epidemiology of infectious diseases. Meteorological stations serve as 

the source for accurate precipitation data but are often sparsely located. This becomes more evident in a 

third world country like Ghana that lacks the resources to establish a denser network of these stations. 

This project sought to create exhaustive precipitation information from fine-scale covariates using 

regression kriging in monthly and annual time steps. The Normalized Difference Vegetation Index 

(NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), elevation derived from 

digital elevation model (DEM) and the spatial coordinates are the secondary variables incorporated in this 

study. The results of this research will be useful for applications in ecological and epidemiological studies 

in Ghana. 

 

1.3. Research Objectives  

The main objective of this research is to predict the mean monthly and annual spatial and temporal 

distribution of rainfall in Ghana by applying a model-based approach.  

 The specific objectives are: 

a. To evaluate the influence of secondary variables (time series NDVI and elevation) on the spatial 

and temporal distribution of precipitation. 

 

b. To evaluate different covariance functions to infer the spatial structure of precipitation in the 

study area for a given time period. 

 

c. To evaluate different regression models to determine the model that provides the best prediction 

results for a given time period. 

1.4. Research Questions 

Specific objective 1: 

i. What is the relationship between elevation and the spatial distribution of precipitation in the 

study area for a given time period? 

 

ii. Can time series of NDVI, a remote-sensed derived covariate from MODIS be used to infer 

the spatial and temporal distribution of precipitation in the study area? 



SPATIO-TEMPORAL REGRESSION KRIGING FOR PREDICTING RAINFALL FROM SPARSE PRECIPITATION DATA IN GHANA 

 

3 

 

 

Specific objective 2: 

i. Which covariance function is appropriate for capturing the spatial structure of precipitation in 

the study area for a given time period? 

 

ii. What are the optimal model parameters of the chosen covariance function? 

 

Specific objective 3: 

i. Which regression model is most appropriate for the prediction of precipitation in the study 

area for a given time period? 

1.5. Innovation Aimed At 

The innovation of this research is aimed at producing spatially exhaustive rainfall information from 

sparsely available rainfall point data by applying a model-based maximum likelihood method in the 

estimation of the model parameters. There are scarcely published research studies that have applied 

model-based approaches to estimate precipitation from sparse data, especially in Ghana.  

  

According to Hofierka et al. (2002), the use of secondary variables such as elevation, radar imagery and 

land use in combination with precipitation results in a more accurate estimation of precipitation than using 

only precipitation measurements. The incorporation of time series Normalized Difference Vegetation 

Index (NDVI), a remote-sensed derived secondary information and DEM in the above-mentioned 

method to map the spatial and temporal distribution of rainfall also adds to the novelty of this research. 

The influence of NDVI to accuracy in mean monthly and annual rainfall estimation is evaluated. 

 

1.6. Thesis Outline 

This section outlines the structure of the thesis. Chapter 1 captures a description of the motivation and 

problem statement, the research objectives,  questions, and innovation. A literature review of related 

studies is provided in Chapter 2. Chapter 3 provides information regarding the study area, the datasets and 

software used. The methodology utilized is provided in Chapter 4. Chapter 5 provides the results and 

analysis. The discussions and limitations of the research are provided in Chapter 6. Chapter 7 captures the 

conclusion and recommendations. 
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2. LITERATURE REVIEW 

2.1. Introduction 

In this section, we undertake a literature review on geostatistics and previous related research 

projects that have been carried out taking into consideration the spatial interpolation methods 

used, covariance parameter estimation methods applied and the incorporation of auxiliary variables 

in mapping climatic variables especially precipitation. 

2.2. The Concept of Geostatistics 

Geostatistics, also known as spatial statistics is concerned with the analysis and prediction of 

phenomena that vary in space and time. Phenomena that are of interest to the geostatistician are 

often very expensive and are therefore sparsely located. The need to obtain exhaustive information 

in the spatial and/or temporal distribution of a given phenomenon within a study area by carrying 

out predictions at unsampled locations is the subject matter of geostatistics (Richard Webster And 

Margaret A. Oliver, 2007).  

 

There are several spatial interpolation methods that are used for spatial predictions at unsampled 

locations. These can be grouped into two categories namely, deterministic and geostatistical 

methods. Examples of deterministic methods include Splines, Thiessen polygons and Inverse 

Distance Weighting (Hartkamp, De Beurs, Stein, & White, 1999; Keblouti et al., 2012). Examples 

of geostatistical methods include Ordinary kriging, regression kriging, multiple linear regression, 

geographically weighted regression, universal kriging, co-kriging and kriging with external drift. The 

following are advantages associated with geostatistical methods over deterministic methods 

(Goovaerts, 1999, 2000); 

• Geostatistical methods allow one to make use of the spatial correlation between 

neighboring observations to estimate values at unvisited locations. 

• They provide estimates of the prediction error (kriging variance) at unsampled locations. 

• They allow the integration of the primary attribute with secondary attributes that are 

sampled at higher density. 

 

2.3. Related works 

The applications of rainfall information in gridded format are numerous and varied. Exhaustive 

rainfall information serves as key inputs for basin management, hydrological and water quality 

applications (Ly, Charles, & Degré, 2011). The successful running of hydrological models, research 

into agriculture, the planning and management of water resources all require exhaustive rainfall 

information (Basistha, Arya, & Goel, 2008). Extensive research has been carried out with the 

application of different methods to produce high resolution rainfall information.  

 

Bostan et al. (2012) compared multiple linear regression (MLR), geographically weighted regression 

(GWR), ordinary kriging (OK), regression kriging (RK) and universal kriging (UK) in mapping the 

average annual precipitation over Turkey. Elevation map, surface roughness, distance to the nearest 

coast, river density, aspect, land cover, and eco-region were used as covariates. In an R-squared, 
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root mean square error (RMSE) and standardized mean square error (SMSE) performance 

assessment method, UK was considered the most accurate for the spatial interpolation of the 

precipitation distribution of Turkey. 

 

Harris et al. (2010) made a comparison between MLR, GWR, OK, UK and geographically 

weighted regression kriging (GWRK) models using simulated data sets. The authors concluded that 

UK was the best performing model. Bajat et al. (2013) also carried out a study to map the average 

annual precipitation in Serbia using regression kriging. Digital elevation model and spatial 

coordinates were used as covariates. By comparative analysis with the multiple linear regression 

method, the authors concluded that regression kriging performed better by cross-validation 

measures. 

   

Cantet (2017) carried out a comparison study to map the mean monthly and mean annual 

precipitation in a small island called Martinique which is located in the Lesser Antilles using data 

from 35 meteorological stations. Spatial interpolation methods such as regression kriging and 

external drift kriging were compared through a cross-validation procedure. The different regression 

kriging methods that were applied include multiple linear regression kriging, principal component 

regression kriging, and partial least squares regression kriging. In his performance assessment by 

cross-validation, external drift kriging outperformed the regression kriging methods and was 

considered the best method for mapping precipitation in the island. 

 

Buytaert et al. (2006) investigated the spatial and temporal rainfall variability in the western 

mountain range of the Ecuadorian Andes using rainfall data from 14 stations. They compared 

kriging with Thiessen polygon technique and reported kriging produced accurate interpolation of 

rainfall than the Thiessen polygon. They also indicated the fact that the accuracy of both methods 

can be improved by the incorporation of external trends. 

 

Ly, Charles, & Degré (2011) in their paper “Geostatistical interpolation of daily rainfall at 

catchment scale” in Belgium, compared geostatistical and deterministic approaches to interpolate 

rainfall using 30 years daily rainfall data from 70 rain gauge stations. In a cross-validation 

performance assessment, the geostatistical and inverse distance weighting algorithms which take 

into account the spatial dependence between neighboring observations performed better than the 

Thiessen polygon algorithm. According to the authors, the Thiessen polygon technique failed to 

depict the true spatial variation of rainfall in the study area. 

 

Masson & Frei (2014) carried out a study on the spatial analysis of precipitation in a high mountain 

region of the European Alps. Kriging with external drift (KED) using local topographic height as 

the only predictor was reported to produce smaller interpolation errors as compared to linear 

regression. According to the authors, the incorporation of more predictors only resulted in a 

marginal improvement of the kriging algorithm. They also underscored the fact that the use of a 

single predictor field in KED improves interpolation accuracy as compared to ordinary kriging. 

 

Lark (2000) compared the method of moments and the maximum likelihood method to estimate 

variograms from simulated and real data. The maximum likelihood method was observed to be 

efficient than the method of moments in different sampling intensities of the simulated data. 

However, the method of moments was efficient where there were small nugget variance and large 

correlation range of the data. Both methods were reported to be susceptible to positively skewed 

simulated data. Todini & Ferraresi (1996) advocated the following reasons for using the Maximum 

Likelihood method for estimating model parameters: 
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• The need for an estimation algorithm that is objective. 

• The need to have parameter values estimated by minimizing (or maximizing) the objective 

function in the kriged variables’ space with available actual observations and meaningful 

residuals but not in the variogram space without available observations. 

• The possibility of having the variance-covariance matrix of the parameters estimated. 

Pardo-Igúzquiza (1998) also identified the following advantages for the application of Maximum 

likelihood inference in geostatistics: 

• The parameters that are of interest are the only ones estimated. 

• It is easy to assess the uncertainty of the estimates. 

• Model selection may be done by using the ML function. 

• As compared to other methods, it is more efficient in terms of mean square error. 

Yoon, Kim, & Park (2015) estimated monthly precipitation in South Korea by comparing different 

statistical linear interpolation models using data from 441 stations. The linear models compared 

were the general linear model, the generalized additive model, the spatial linear model, and the 

Bayesian spatial regression model. The secondary variables that were incorporated in the study 

include the longitude, latitude, elevation, topographic aspect and coastal proximity. The Bayesian 

spatial model was reported to outperform the other models based on the root mean square error, 

mean absolute error and correlation coefficient indexes. 

 

Goovaerts (2000) integrated a digital elevation model in the estimation of rainfall in Portugal using 

three multivariate geostatistical algorithms such as simple kriging with varying local means, kriging 

with external drift and colocated cokriging. A cross-validation comparison was made to evaluate 

the prediction performance of the multivariate algorithms against univariate techniques such as 

Thiessen polygon, inverse square distance, and ordinary kriging. The Thiessen polygon and inverse 

square distance algorithms which ignore both the elevation and rainfall observations at neighboring 

stations reported larger prediction errors. The multivariate techniques were reported to outperform 

the other interpolators, especially in a linear regression, where the rainfall observations and the 

colocated elevation is taken into account. Ordinary kriging was also reported to outperform linear 

regression when there is a moderate correlation between rainfall and elevation. 

 

Time-series of remote sensing products have much to offer in geostatistics as far as the 

contribution of auxiliary variables to the improvement of spatial prediction accuracy is concerned. 

There has been a quest in recent times to improve the accuracy of climatic mapping by increasing 

the scope of covariates to time series of remote-sensing based variables (Hengl et al., 2012). Hengl 

et al. (2012) incorporated time-series of MODIS land surface temperature (LST) images to map 

daily temperature in Croatia. According to the authors, the use of the time series product led to a 

significant improvement in accuracy.  

 

Hu, Shu, Hu, & Xu (2017) undertook a study on spatiotemporal regression kriging to predict mean 

monthly precipitation in Xinjiang using time-series MODIS data and digital elevation model. 

According to the authors, spatiotemporal regression kriging performed better by a leave-one-out 

cross-validation method when compared with spatiotemporal multi-linear regression and 

spatiotemporal kriging. The authors also indicated that the normalized difference vegetation index 

is one of the optimal covariates for mean monthly precipitation prediction. 

 

The focus of this project differs from the related works in the light of the interpolation methods to 

be compared, the covariance structural modeling approach and the covariates to be considered in 
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estimating precipitation from sparse data.  This project sought to assess the performance of 

different regression models of the hybrid geostatistical algorithm regression kriging in estimating 

mean monthly and annual precipitation by incorporating DEM and NDVI, a remote sensed 

derived time-series data from MODIS, as predictors. The performance assessment of these models 

was carried out by the leave-one-out cross-validation measures. 
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3. STUDY AREA AND DATA DESCRIPTION 

3.1. Study Area 

The study area for this project covers the entire country of Ghana as shown in Figure 2. Ghana is a 

West African country located along the Atlantic Ocean and the Gulf of Guinea. Ghana lies 

approximately between latitude 4o and 12oN and longitude 4oW and 2oE. It has a total area of 

238,540 km2. The rainfall dynamics in Ghana shows considerable variation between the northern 

and the southern parts. The northern part experiences rainfall between the months of May and 

November and the southern part experiences a bimodal wet season with the major season from 

March to July and the minor season from September to November. 

 
Figure 3.1. Map of study area 
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3.2. Datasets 

3.2.1. Precipitation Data 

Rain gauge measurements from 26 meteorological stations from 2001 to 2010 are used in this 

study. The choice for this period is based on the use of the NDVI time-series data from MODIS 

which is available from 2001 to date.  

The original precipitation data received from the Ghana Meteorological Agency consist of daily 

precipitation measurements for thirty-two stations. Due to data gaps, only twenty stations with 

complete data from 2001 to 2010 are used for analysis. 

 

3.2.2. Digital Elevation Model (DEM) Data 

The Shuttle Radar Topography Mission (SRTM), a 90m spatial resolution digital elevation model 

data was downloaded from the website of the U.S Geological Survey 

https://gdex.cr.usgs.gov/gdex/. This data which is a global public dataset was downloaded and 

clipped to the study area. It was resampled from the 90m spatial resolution to 1km spatial 

resolution using the nearest neighbour algorithm. The figure below shows the spatial location of 

the rain gauge stations used in this study. 

 
Figure 3.2: Digital Elevation Model of Ghana showing the spatial locations of the rain gauge 
stations 

 

https://gdex.cr.usgs.gov/gdex/
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3.2.3. Time Series MODIS NDVI Data 

Monthly time series images of the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Normalized Difference Vegetation Index (NDVI)  at 1km resolution were obtained from the 

USGS website. These images were downloaded using the MODIStsp (Busetto et al., 2018) and 

mapedit packages in the R software. 

This readily available NDVI product is calculated by the National Aeronautics and Space 

Administration (NASA) as the ratio of the difference between the near-infrared radiation and the 

visible radiation to the sum of the near-infrared radiation and the visible radiation. NDVI values 

range between -1 and +1 with a value close to +1 indicating high density of green leaves. This can 

be written mathematically as  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑉𝐼𝑆)

(𝑁𝐼𝑅 + 𝑉𝐼𝑆)
 

Where NIR represents reflectance in the near infrared channel and VIS represents reflectance in 

the visible channel. 

 
Figure 3.3: Map of Ghana showing NDVI for mean January 
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3.3. Software Used 

Different software is used in this study to accomplish different tasks. These include; 

• ArcGIS. The Extract by Mask tool in Spatial Analyst was used to extract the DEM to the 

boundaries of the study area. 

• R software. Different packages of the R software (R Core Team., 2015) were used to 

accomplish different task including exploratory data analysis, modeling, and prediction. 
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4. METHODOLOGY 

The methodology undertaken to carry out this research is outlined in Figure 4.1. 

 

 
Figure 4.1: Flowchart of the methodology 
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4.1. Data Processing 

4.1.1. Primary Data 

The data received from the Ghana Meteorological Agency was the daily precipitation records for 

thirty-two stations from January 2001 to December 2017. Since the inclusion of missing data to the 

computation of average and cumulative rainfall for stations will lead to unrepresentative and wrong 

estimations, stations with missing data for more than 10 days in a month (Hartkamp et al., 1999) 

were eliminated from the analysis. The period from 2001 to 2010 gave the maximum number of 

stations with continuous data and was therefore considered for this analysis. Mean monthly, mean 

annual and cumulative annual rainfall was computed from the daily records of twenty-six (26) 

stations. The table below shows the descriptive statistics of the mean monthly and annual 

precipitation data for the 26 stations. 

 

Table 4.1: Descriptive statistics of the mean monthly and annual precipitation (mm) data 

 Mean Median  SD Max Min Skew Kurt 

January 14.60 12.39 12.92 49.49 0 0.76 0.06 

February 29.72 22.12 25.53 90.77 2.40 0.69 -0.78 

March 69.50 54.51 45.30 148.18 4.76 0.13 -1.44 

April 121.28 122.89 39.67 191.66 38.95 -0.17 -0.70 

May 147.31 139.98 49.05 296.61 81.85 1.11 1.21 

June 189.4 183.9 65.62 464.1 129.10 2.72 8.98 

July 147.94 144.14 49.37 240.16 65.47 0.11 -1.1 

August 129.74 89.02 88.17 292.43 17.40 0.33 -1.52 

September 167.08 180.16 59.28 296.96 51.59 -0.32 -0.23 

October 136.59 147.07 57.11 233.75 59.11 0.02 -1.47 

November 49.57 41.79 47.19 157.91 1.42 1.1 0.36 

December 20.62 14.06 21.26 70.8 0 0.93 -0.07 

Annual 1227.4 1272.2 275.56 1954.9 728.2 0.67 0.39 

 

 

4.1.2. Secondary Data 

The auxiliary variables incorporated in this study include the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images of the Tera 

Earth Observation systems platform and the Digital Elevation Model (DEM) of the Shuttle Radar 

Topography Mission (SRTM). Mean monthly NDVI was calculated for each month by stacking the 

monthly 1km time series NDVI images according to the months of the year using the stack 

functions of the “raster” package (Hijmans et al., 2018) in R software. 

4.2. Data Integration  

Both the primary data and the secondary data were recorded in their respective coordinate 

reference system and at different resolutions, especially for the secondary data. It is therefore 

necessary to ensure all data are in the same coordinate reference system to enhance compatibility. 

Both the primary and the secondary data were transformed from the WGS84 geographic 

coordinate system to the WGS84 UTM Zone 30N coordinate reference system. The DEM was 

resampled from 90m resolution to the same resolution as the MODIS NDVI and both images 

were stacked together and overlaid with the point data to extract the corresponding covariates at 
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the point data locations. This was done using the stack and extract functions of the raster package 

(Hijmans et al., 2018) in the R software. 

4.3. Exploratory Data Analysis 

Spatial and non-spatial exploratory data analysis are key statistical operations which are necessary 

prior to the formulation of models in geostatistics.  

4.3.1. Non-Spatial Exploratory Analysis 

Exploratory analysis was carried out to investigate the non-spatial structure of the primary data. 

This was done by plotting histograms and Q-Q plots of the monthly precipitation data. Details of 

these plots are shown in chapter 5. This makes it possible to investigate the distribution of the data 

as well as detect and eliminate possible outliers. The data for the mean monthly, mean annual and 

cumulative annual precipitation was positively skewed. We carried out a log-transformation of the 

data before model calibration and prediction. After predictions, the results were back-transformed 

to the original scale of the data (Hengl, Heuvelink, & Rossiter, 2007). 

4.3.2. Spatial Exploratory Analysis 

Spatial exploratory data analysis includes circle plots of the response variable with respect to the 

spatial locations of the data. Scatter plots to investigate the relationship between the response 

variable and the auxiliary information used were produced (Diggle & Ribeiro, 2007; Richard 

Webster And Margaret A. Oliver, 2007). This enabled us to gain insight with regards to the 

presence of a trend in the data. A discovered trend in the data indicated a spatially varying mean 

and suggested the inclusion of a trend surface model. Possible outliers that were also discovered 

through this exploratory analysis were eliminated. 

4.4. Regression Modelling   

We carried out three different linear regression models between the log-transformed precipitation 

and the predictors in this study (Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, 2005).  

The predictors include MODIS NDVI, elevation, the northing (X) and easting (Y) coordinates. It 

became evident that the MODIS NDVI was correlated with the northing coordinates. Because of 

the multicollinearity, we decided to formulate three exploratory models to choose significant 

predictors for each model. In the first model, we regressed log-transformed precipitation on all the 

predictors and a stepwise regression was carried out to select statistically significant predictors for 

the model. NDVI was still maintained in the first model because the multicollinearity ceased in the 

months with higher rainfall. In the second model, we regressed log-transformed precipitation on 

the spatial coordinates and the statistically significant predictor was chosen for the model or both 

are used if significant. In the third model, we regressed log-transformed precipitation on the 

ancillary variables MODIS NDVI and elevation and the statistically significant predictor selected 

for the model or both are used if significant. 

The statistically significant predictors were chosen as the ones with their p-value less than a 

significance level of 0.05. These predictors were used as the trend in modeling the covariance 

structure. In few cases especially for Model 1, where all predictors were insignificant at 0.05 

significance level, we considered the predictors provided by the stepwise regression for the model.  
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The three formulated models are shown in equation (1) to (3). 

 

Model 1:   log⁡(𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) = 𝛽0 + 𝛽1𝑁𝐷𝑉𝐼 + 𝛽2𝐸𝐿𝐸𝑉 + 𝛽3𝑋 + 𝛽4𝑌    (1) 

 

Model 2:   log⁡(𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑌     (2) 

 

Model 3:  log⁡(𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) = 𝛽0 + 𝛽1𝑁𝐷𝑉𝐼 + 𝛽2𝐸𝐿𝐸𝑉          (3) 

 

where 𝛽0 is the intercept, 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are the regression coefficients of the predictors and 

ELEV represents elevation. ELEV, X and Y are predictors which are temporally constant and 

NDVI is temporally dynamic and is provided for each period of model fitting. 

4.5. Model Definition 

The stationary Gaussian model has the following assumptions (Diggle & Ribeiro, 2007, pg. 29); 

• The Gaussian process {𝑆(𝑥): 𝑥⁡𝜖⁡ℝ2} for locations 𝑥1, … , 𝑥𝑛 has mean 𝝁, variance 𝜎2 =

Var{𝑆(𝑥)}  and correlation function 𝜌(ℎ) = Corr{𝑆(𝑥), 𝑆(𝑥′)}  such that distance              

ℎ = ‖𝑥 − 𝑥′‖; 

• Given {𝑆(𝑥): 𝑥⁡𝜖⁡ℝ2}, the measured value 𝑦𝑖  of a geostatistical data at location 𝑥𝑖 , are 

realisations of mutually independent random variables 𝑌𝑖 , distributed normally with mean 

𝐸[𝑌𝑖|𝑆(. )] = 𝑆(𝑥𝑖) and conditional variance 𝜏2 

The model can be defined as        

 𝑌𝑖 = 𝑆(𝑥𝑖) + 𝑍𝑖          (4) 

where {𝑆(𝑥): 𝑥⁡𝜖⁡ℝ2} represents the first assumption and 𝑍𝑖 are mutually independent  

N(0, 𝜏2)⁡ random variables. 

The stationary Gaussian model can be extended for a spatially varying mean by including a linear 

regression model in place of the stationary mean. 

The Gaussian random field model for a spatially varying mean is given as (Paulo Ribeiro Jr, Diggle, 

& Paulo Ribeiro Jr, 2018): 

𝑌(𝑥) = ⁡𝜇(𝑥) + 𝑆(𝑥) + 𝑒                                                                                         (5) 

where 

• 𝑌(𝑥)  is the observed variable at location 𝑥 in a planar Euclidian coordinates. 

• 𝜇(𝑥) = 𝑋𝜷 is the mean component of the model (trend). 

• 𝑆(𝑥) is a stationary Gaussian process with variance σ2 (partial sill) and correlation function 

ϕ (the range parameter).  

• 𝑒 is the nugget variance or measurement error. 

4.6. Parameter Estimation by Maximum Likelihood Method 

A robust alternative to estimate the model parameters of the linear effects and the covariance 

structure is the Maximum Likelihood method proposed by Mardia & Marshall (1984). To apply the 

Maximum Likelihood method, the variable of interest is assumed to be a realization from a random 

Gaussian process (Diggle & Ribeiro, 2007, pg. 112).  

The spatial trend 𝜇(𝑥) in equation (5) is either a function of the spatial coordinates or spatially 

referenced covariates such that  𝜇(𝑥) = Dβ, 

 𝑌⁡~⁡𝑁(𝐷𝛽, 𝜎2𝑅(𝜑) + 𝜏2𝐼)          (6) 
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where D is the 𝑛⁡𝑥⁡𝑝⁡matrix of covariates, 𝛽 is the corresponding vector of regression parameters, 

and R depends on a scalar or vector valued correlation function parameter(s) 𝜑.  
 
The likelihood function is given as: 
  

𝐿(𝛽,  𝜏2,  𝜎2 ,  𝜑) =  − 0.5{𝑛𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔{|(𝜎2𝑅(𝜑) + 𝜏2𝐼)|} + (𝑦 − 𝐷𝛽)𝑇(𝜎2𝑅(𝜑) +
𝜏2𝐼)−1(𝑦 −  𝐷𝛽)},           (7) 
 
The values of the regression coefficients defining the mean process and the covariance parameters 

that maximize the log-likelihood function for a given set of data yields the maximum likelihood 

estimate of the parameters.  Considering the spatial dependence (nugget:sill ratio) described by the 

variogram as 

    𝑣2 =
𝜏2

𝜎2 ,            (8) 

Then the matrix  

   𝑉 = 𝑅(𝜑) + 𝑣2𝐼.          (9) 

 

Given V, the log-likelihood function is maximized at 

𝛽̂(𝑉) = (𝐷𝑇𝑉−1𝐷)−1𝐷𝑇𝑉−1𝑦           (10) 

and   

 𝜎̂2(𝑉) =
{𝑦−𝐷𝛽̂(𝑉)}𝑇𝑉−1{𝑦−𝐷𝛽̂(𝑉)}

𝑛
         (11) 

𝛽̂(𝑉) becomes the generalized least squares estimate provided V is known.  

A substitution of  𝛽̂(𝑉) and 𝜎̂2(𝑉) in equation (10) and (11) respectively into the log-likelihood 

function gives a concentrated log-likelihood function in equation (12). 

𝐿0(𝑣
2, 𝜑) = −0.5{𝑛log(2𝜋) + 𝑛log𝜎̂2(𝑉) + log|𝑉| + 𝑛}    (12) 

Numerical optimization of equation (12) with respect to 𝜑 and v is carried out followed by a back 

substitution to obtain 𝜎̂2 and 𝛽̂ . Details of the maximum likelihood estimation method can be 

found in (Diggle & Ribeiro, 2007).        

4.7. Model Selection  

In the method of moments, the plausible variogram model is selected as the one with the minimum 

sum of square errors or root mean square error. The plausible covariance function in the maximum 

likelihood method is selected as the one with the maximum log-likelihood function or the one with 

the minimum negative log-likelihood function (Pardo-Igúzquiza, 1998). 

Plausible variogram models (Oliver & Webster, 2014) used in this study include the following; 

The Spherical function which is given as: 

𝛾(ℎ) = 𝑐0 + 𝑐 {
3ℎ

2𝑟
−

1

2
(
ℎ

𝑟
)
3
}  for 0 < ℎ ≤ 𝑟        (13) 

         = 𝑐0 + 𝑐 for ℎ˃𝑟 

         = 0 for ℎ˃0 

where ℎ is the distance between pairs of points, 𝑐0 is the nugget variance which represents small 

variability at distances less than the minimum sampling distance or the measurement error, and the 

range 𝑟 is the distance beyond which spatial dependence ceases to exist. The total variance known 

as the sill is given as 𝑐0 + 𝑐. 

The Exponential function which is given as: 

𝛾(ℎ) = 𝑐0 + 𝑐 {1 − exp (−
ℎ

𝑎
)}  for 0 < ℎ        (14) 

         = 0 for ℎ = 0 
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The parameters have the same explanation as in equation (14) whiles a is a distance parameter. The 

exponential function approaches the sill asymptotically at an effective range usually given as 𝑟ˊ =

3𝑎. 

The Gaussian covariance function is given as: 

𝛾(ℎ) = 𝑐0 + 𝑐 {1 − exp (−
ℎ2

𝑎2
)}  for 0 < ℎ      (15) 

         = 0 for ℎ = 0 

The parameters have the same meaning as in the exponential model. The effective range is given as 

𝑟ˊ = √3𝑎 

 

4.8. Spatial Predictions  

We carried out spatial predictions at 1km square grid using the prediction equation (Diggle & 

Ribeiro, 2007, pg. 37): 

 

𝑆̂(𝑥) = 𝜇(𝑥) + ∑ 𝑤𝑖(𝑥)(𝑦𝑖 − 𝜇(𝑥))𝑛
𝑖=1        (16) 

 

where 𝑆̂(𝑥) is the regression kriging predictor at location 𝑥 , 𝜇(𝑥) is the mean or trend,  𝑤𝑖(𝑥) is a 

function of the covariance parameters and (𝑦𝑖 − 𝜇(𝑥)) is the interpolated residuals. 

4.9. Evaluation of Interpolation Methods  

Due to the sparse nature of the data available, a separate dataset was not created for validation. The 

leave-one-out cross-validation comparison is undertaken to evaluate the prediction performance of 

the methods. The cross-validation procedure is carried out by holding one data point using the 

remaining dataset to predict the value at that point(Hengl, 2007). This procedure is repeated for all 

the data points. The mean error and the root mean square error are obtained using the difference 

between the observed and the predicted values. Performance assessment is done by comparing the 

mean error (ME), root mean square error (RMSE) and the coefficient of multiple determination 

(R-square).  The R-square indicates the amount of variability explained by the model. The best 

performing method is chosen as the one with the minimum RMSE (Bostan et al., 2012) and 

maximum R-squared. The mean error which is a measure of the prediction bias is expected to be 

close to zero for unbiased methods. The root mean square error which is also a measure of the 

prediction precision is expected to be small (Odeha, McBratney, & Chittleborough, 1994). 

The ME and RMSE are calculated using the following formulas (Bishop et al., 2000): 

𝑀𝐸 =
1

𝑛
∑ {𝑦(𝑥𝑖) − 𝑦̂(𝑥𝑖)}
𝑛
1          (17) 

 

𝑅𝑀𝑆𝐸 = √[
1

𝑛
∑ {𝑦(𝑥𝑖) − 𝑦̂(𝑥𝑖)}

2𝑛
𝑖=1 ]       (18) 

 

The R-square is also calculated using the equation below: 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 1 −
𝑆𝑆𝑒𝑟𝑟

𝑆𝑆𝑡𝑜𝑡
   𝑆𝑆𝑒𝑟𝑟 = ∑ (𝑦(𝑥𝑖) − 𝑦̂(𝑥𝑖))

2𝑛
𝑖=1  and 

                                          𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦(𝑥𝑖) − 𝑦̅)2𝑛
𝑖=1      (19) 

 

where 𝑦(𝑥𝑖) is the observed precipitation value, 𝑦̂(𝑥𝑖) is the predicted precipitation value, 𝑆𝑆𝑒𝑟𝑟  

is sum of squares of the residuals, 𝑆𝑆𝑡𝑜𝑡  is the total sum of squares, 𝑦̅   is the mean of the 

observations and n is the total number of data points.  
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5. RESULTS AND ANALYSIS 

In this chapter, we outline the findings of the methodology carried out in chapter 4. We commence 

with the result of both the spatial and non-spatial exploratory data analysis, followed by regression 

analysis to select significant predictors for modeling and prediction. We conclude with a cross-

validation assessment of the methods applied in this study. 

5.1. Non-Spatial Exploratory Analysis 

The distribution of the data was investigated by carrying out exploratory data analysis. The data for 

most of the months were not normally distributed and a log transformation was undertaken to 

achieve approximate normal distribution. For months with zero values of precipitation, we added 1 

to all the values before the transformation since the log transformation of zeros is not possible. 

After prediction and back transformation to the original scale of the data, we subtracted one from 

the values to obtain the original data. Table 5.1 shows the descriptive statistics of the log-

transformed values of the mean monthly and annual precipitation data. The transformation did not 

achieve a complete improvement in the normality of the distribution of the data for all months.  

We decided to use the transformed data for analysis as the scope of the appropriateness of the 

Gaussian model can be broadened by assuming that the model is still valid when the response 

variable is transformed (Diggle & Ribeiro, 2007, pg. 60). There is quite some similarity between the 

mean and the median values, and a reduced level of skewness after the transformation as shown in 

the table below. 

Table 5.1: Descriptive statistics of the log-transformed mean monthly and annual precipitation data 

 Mean Median  SD Max Min Skew Kurt 

January 2.20 2.59 1.27 3.92 0 -0.65 -1.08 

February 3.01 3.12 1.0 4.52 1.22 -0.19 -1.42 

March 3.94 4.02 0.95 5.01 1.75 -0.88 -0.36 

April 4.74 4.82 0.38 5.26 3.69 -1.01 0.56 

May 4.95 4.95 0.31 5.70 4.42 0.32 -0.37 

June 5.21 5.22 0.27 6.14 4.87 1.37 2.98 

July 4.95 4.98 0.36 5.49 4.20 -0.41 -0.86 

August 4.59 4.5 0.83 5.68 2.91 -0.42 -1.05 

September 5.04 5.20 0.45 5.70 3.96 -1.18 0.45 

October 4.83 4.99 0.46 5.46 4.10 -0.34 -1.47 

November 3.37 3.76 1.22 5.07 0.88 -0.42 -1.15 

December 2.31 2.71 1.51 4.27 0 -0.44 -1.40 

Annual 7.09 7.15 0.22 7.58 6.55 0.03 -0.11 

 

Graphical exploration of the data was carried out using histograms and Q-Q plots to study the 

structure of the data and to detect possible outliers. Figure 5.1 and Figure 5.2 below show the 

histograms and Q-Q plots of the original data and the log-transformed data respectively. Log-

transformation of the annual data was also carried out as shown in Figure 5.3 and Figure 5.4. 
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Figure 5.1: Histogram and Q-Q plot of the original precipitation data for the month of February 

                    

 

 

     
Figure 5.2: Histogram and Q-Q plot of the log-transformed precipitation data for the month of 
February 
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Figure 5.3: Histogram and Q-Q plot of mean Annual precipitation data 

      

 
Figure 5.4: Histogram and Q-Q plot of the log-transformed annual precipitation data 

     

5.2. Spatial Exploratory Analysis 

The graphical plots in Figure 5.5 (a) show a plot of the spatial locations of the log-transformed 

precipitation data, their correlation with the Y coordinate (Northing), their correlation with the X 

coordinates (Easting) and a histogram of the data respectively. This spatial exploratory analysis of 

the data for the month of February shows a high negative correlation of the data with the 

Northing. This suggested the need for the inclusion of a trend surface model in this analysis. Figure 

5.5 (b) also shows the plot of the data in proportion to the data values indicating the decreasing 
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trend of precipitation from the south to the north. Figure 5.6 (a) and (b) also show the spatial 

exploratory plots of the log-transformed annual precipitation with NDVI and the Easting as a 

trend. Though there is temporal variation in precipitation which is captured by the monthly 

analysis, the spatial exploratory analysis of the annual precipitation also shows the decreasing trend 

of precipitation from the south-west to north-east. 

(a)  (b)  

Figure 5.5: Graphical plots of spatial exploratory data analysis for log-transformed mean February 
precipitation 

 

 

    
Figure 5.6: Graphical plots of spatial exploratory data analysis for the log-transformed mean annual 
precipitation 
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5.3. Regression Analysis 

Spatial exploratory analysis of the data revealed the presence of a trend signifying a spatially varying 

mean.  The spatial coordinates, elevation, and NDVI were used as predictors or trend to model the 

mean component of the kriging models. Regression analysis was carried out between log-

transformed precipitation and the predictors to identify significant predictors for the different 

regression models as indicated in Section 4.4.  

The correlation between the log-transformed precipitation and each of the predictors for the 

monthly and annual data was also analyzed as shown in table 5.2. 

 

Table 5.2: Correlation coefficients of log-transformed precipitation with covariates 

 NDVI ELEV X Y 

January 0.66 -0.12 -0.03 -0.89 

February 0.78 -0.04 -0.17 -0.85 

March 0.74 0.01 -0.15 -0.85 

April 0.68 0.11 -0.42 -0.63 

May 0.64 -0.27 -0.39 -0.86 

June 0.34 -0.33 -0.17 -0.70 

July -0.004 -0.03 -0.20 0.56 

August 0.50 0.47 -0.10 0.87 

September 0.41 0.65 -0.05 0.55 

October 0.40 0.13 -0.35 -0.61 

November 0.67 -0.18 -0.19 -0.92 

December 0.74 -0.21 -0.06 -0.93 

Annual 0.60 0.13 -0.38 -0.36 

 

There is a moderate positive correlation between log-transformed precipitation and NDVI for 

January, March, April, May, August, November, and December ranging from 0.50 to 0.74 and a 

strong correlation for February. There is a weak correlation for the months of September and 

October and a very weak correlation in June and July. The correlation was weak for months with 

higher rainfall and stronger for months with less rainfall. There is a very strong correlation between 

log-transformed precipitation and the northing for all months with correlation coefficients greater 

than 0.5 or -0.5. Generally, there was a very weak correlation for the elevation and Easting 

covariates with precipitation except in September for elevation and in April for the Easting. 

Notwithstanding the weak correlation of elevation with precipitation, elevation showed significance 

in the regression model for January, February, March, April, September, and October with p-value 

from 0.037 (*p<0.05) in October to 0.0008 (*p<0.001) in March. 

There was multicollinearity between NDVI and the Northing which affected the significance of 

NDVI as a predictor in the regression Model 1 for most of the months. NDVI only showed 

significance for the months where its correlation with the Northing was weak and moderate. 

However, NDVI was very significant as a predictor when precipitation was regressed on NDVI 

only in Model 3 except for the months of June and July where the correlation with precipitation 

was very weak. Table 5.3 below shows the coefficient of correlation between NDVI and the 

Northing. Figure 5.7 (a) shows the correlation plot between NDVI and the northing and (b) the 

correlation matrix between log precipitation and all covariates for the month of December. 
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Table 5.3: Coefficient of correlation between NDVI and the Northing 

Period Correlation 

January -0.65 

February -0.71 

March -0.71 

April -0.68 

May -0.61 

June -0.55 

July -0.29 

August 0.40 

September 0.25 

October -0.05 

November -0.54 

December -0.69 

Annual -0.27 

 

(a)   (b)  

Figure 5.7: (a) Scatter plot of the correlation between NDVI and the Northing (b) correlation 
matrix between log precipitation and all covariates for the month of February 

 

5.4. Parameter Estimation by Maximum Likelihood 

5.4.1. Exploratory Variographic Analysis  

The spatial structure of precipitation for the mean monthly and annual precipitation was analyzed 

using different covariance models. The covariance models used in this analysis include the spherical 

model, the exponential model, and the Gaussian model. Since our approach is purely model-based 

using the maximum likelihood method of parameter estimation, the empirical variogram was not 

used as the basis for inference but only as an exploratory tool to select plausible parametric models 

for the covariance structure and also to identify initial covariance parameters (Diggle & Ribeiro, 

2007).  The model with the maximum log-likelihood function was selected for spatial prediction. 
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Figure 5.8 (a), (b) and (c) below show the empirical variogram and a fitted spherical model for 

mean September and mean annual log precipitation after removing the trend. These were used for 

exploratory purpose to identify initial parameters for covariance parameter estimation and 

prediction. 

(a)   (b)   

 

(c)  (d)   

Figure 5.8: Empirical variogram and a fitted spherical model for mean September and Mean 
Annual precipitation when the trend in (a) elevation and Northing, (b) Northing (c) NDVI and 
elevation (d) NDVI and the Easting were removed 
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5.4.2. Model Selection  

The covariance parameters needed for the accurate estimation of precipitation at 

unsampled locations is largely dependent on the type of covariance function that best 

describes the spatial structure of precipitation in the study area. For each of the kriging 

methods employed, the appropriate covariance function was selected based on the 

maximum value (Myung, 2003) of the maximized log-likelihood function. Table 5.4, 5.5 

and 5.6 provide the details of the preferred covariance function for each period in Model 

1, Model 2 and Model 3 respectively.  

 

Table 5.4: Maximized log-likelihood values for covariance functions in Model 1 

Period 

 

Maximized Log-likelihood Preferred 

function Exponential Spherical Gaussian 

January -19.07 -18.58 -18.69 Spherical 

February -13.06 -11.52 -13.06 Spherical 

March -9.48 -9.57 -9.64 Exponential 

April 3.246 3.676 3.744 Gaussian 

May 22.6 22.6 22.6 Spherical 

June 7.521 7.763 6.602 Spherical 

July 0.1891 -0.00085 0.6254 Gaussian 

August -10.44 -10.16 -9.786 Gaussian 

September -4.3 -3.889 -5.555 Spherical 

October -0.5967 0.0086 0.8181 Gaussian 

November -13.26 -12.99 -13.02 Spherical 

December -18 -18 -18 Spherical 

Annual 10.91 11.29 11.62 Gaussian 

 

Table 5.5: Maximized log-likelihood values for covariance functions in Model 2 

Period Maximized Log-likelihood Preferred 

function Exponential Spherical Gaussian 

January -21.01 -20.37 -20.42 Spherical 

February -16.79 -16.68 -16.05 Gaussian 

March -14.34 -14.22 -14.09 Gaussian 

April 2.449 3.115 3.248 Gaussian 

May 22.2 22.27 22.2 Spherical 

June 7.253 7.034 7.002 Exponential 

July 0.179 0.7822 0.6254 Spherical 

August -11.66 -11.49 -11.05 Gaussian 

September -6.084 -5.897 -6.82 Spherical 

October -3.108 -2.986 -1.803 Gaussian 

November -14.73 -14.49 -15.28 Spherical 

December -21.05 -20.91 -21.05 Spherical 

Annual 9.095 9.634 10.1 Gaussian 
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Table 5.6: Maximized log-likelihood values for covariance functions in Model 3 

Period Maximized Log-likelihood Preferred 

function Exponential Spherical Gaussian 

January -25.13 -25.9 -24.42 Gaussian 

February -18.41 -17.68 -17.45 Gaussian 

March -14.82 -13.84 -12.08 Gaussian 

April 1.164 1.862 2.16 Gaussian 

May 11.8 11.72 13.96 Gaussian 

June 3.031 3.47 0.9348 Spherical 

July -0.9911 -0.4444 -0.1757 Gaussian 

August -16.99 -16.46 -16.56 Spherical 

September -4.683 -4.592 -4.617 Spherical 

October -3.568 -3.069 -4.209 Spherical 

November -20.03 -19.27 -16.84 Gaussian 

December -27.97 -27.25 -25.31 Gaussian 

Annual 9.095 9.634 10.1 Gaussian 

 

5.4.3. Model Parameters 

The covariance models that are selected based on the criteria in Section 5.4.2 after the 

optimisation of the likelihood function provide the parameters of the linear effect and 

covariance structure. It is important to note that in the maximum likelihood estimation 

method, both the trend coefficients and the covariance parameters are estimated 

concurrently. An optimisation criterion using the “likefit” function of the geoR package 

gives the maximum likelihood estimates of the parameters in each of the models. Table 

5.7, 5.8, and 5.9 show the estimated parameters of the mean, the signal variance, the 

nugget variance and the range in each of the kriging models applied for each period. The 

abbreviations SPH = Spherical, EXP = Exponential and GAU = Gaussian.  
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Table 5.7: Selected covariance functions and model parameters in Model 1 

Period  Coefficients Psill Rang 

(Km) 

Nug. Loglik Model 

𝜷0 𝜷1 𝜷2 𝜷3 𝜷4 

January 6.4869  0.0021  -5.473 0.176 139.3 0.0871 -18.58 SPH 

February 6.4487  0.0028  -4.655 0.1459 65.13 0 -11.52 SPH 

March 7.0543  0.0031  -4.3484 0.1223 16.67 0 -9.479 EXP 

April 6.5322  0.0005 -1.335 -1.0690 0.0547 73.87 0.0039 3.744 GAU 

May 6.6173 0.1477  -1.078 -1.143 0.0009 76.62 0.0094 22.6 SPH 

June 6.2099 -0.257   -1.0156 0.0342 86.06 0 7.763 SPH 

July 4.2933 -0.001   0.8141 0.0799 205 0.0265 0.6254 GAU 

August 1.7500 0.8574   2.9379 0.1295 38.38 0 -9.786 GAU 

September 4.1622  0.0016  0.7151 0.0829 80.43 0 -3.889 SPH 

October 5.5872 0.6900 0.0012  -1.5741 0.0654 53.12 0 0.8181 GAU 

November 6.1269 1.8472   -4.3421 0.0556 361.6 0.1164 -12.99 SPH 

December 7.7265  0.0023  -6.8966 0.0038 50.07 0.2301 -18 GAU 

Annual 6.9769 0.9094  -0.431  0.0259 39.44 0 11.62 GAU 

 

 

Table 5.8: Selected covariance functions and model parameters in Model 2 

Period Coefficient Psill Range 

(Km) 

Nugget Loglik Model 

𝜷0 𝜷1 𝜷2 

January 6.403  -4.887 0.2569 158.3 0.065 -20.37 SPH 

February 6.5351  -4.111 0.235 50.85 0 -16.05 GAU 

March 6.5309  -3.180 0.211 157.3 0.0726 -14.09 GAU 

April 6.5849 -1.5040 -0.8732 0.0648 78.94 0.0021 3.248 GAU 

May 6.7617 -1.1034 -1.2065 0.0027 74.36 0.0078 22.27 SPH 

June 5.9992  -0.9231 0.0349 31.11 0 7.253 EXP 

July 4.2806  0.8229 0.0676 311.7 0.015 0.7822 SPH 

August 1.9277  3.2351 0.1504 47.59 0 -11.05 GAU 

September 3.4801  1.7216 0.2001 344.7 0 -5.897 SPH 

October 6.6084 -0.9154 -1.2790 0.0885 63.74 0 -1.803 GAU 

November 9.1208 -1.7897 -5.2613 0.1837 67 0 -14.49 SPH 

December 7.8075  -6.4601 0.169 59.67 0.1252 -20.91 SPH 

Annual 7.8412 -0.5147 -0.4258 0.0303 45.87 0 10.1 GAU 
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Table 5.9: Selected covariance functions and model parameters in Model 3 

Period Coefficients Psill Range 

(Km) 

Nugget Loglik Model 

𝜷0 𝜷1 𝜷2 

January 1.627 1.4589  0.8872 152.1 0.0744 -24.42 GAU 

February 1.8697 2.5109  0.4662 358.9 0.1298 -17.45 GAU 

March 2.3183 1.3942  1.831 620 0.0706 -12.08 GAU 

April 4.3616 0.9369  0.0803 81.32 0 2.16 GAU 

May 5.0923 0.2366  0.5246 1134 0.0107 13.96 GAU 

June 5.3512 -0.118  0.0709 786.6 0.0205 3.47 SPH 

July 5.0259 -0.028  0.1349 249 0.0261 -0.1757 GAU 

August 4.291 0.5432  0.6673 944 0.046 -16.46 SPH 

September 4.249 0.9162 0.0018 0.0922 106.6 0 -4.592 SPH 

October 4.4456 0.5287  0.2262 511.3 0 -3.069 SPH 

November 2.0746 1.5535  1.41 560.1 0.1133 -16.84 GAU 

December 1.1201 1.8042  1.924 563.8 0.2368 -25.31 GAU 

Annual 6.66 0.9376  0.028 43.45 0 10.9 GAU 

 

5.5. Spatial Prediction 

Spatial predictions were carried out for mean monthly, mean annual and cumulative annual 

rainfall for the period under analysis using the three kriging models. 

5.5.1. Mean Monthly Prediction 

Model 2 outperformed the other methods in five months (February, April, May, 

September, and October). Model 3 also performed better than the others in five months 

(March, July, August, November, and December). Model 1 was the least performing model 

and performed better in January and June. Figure 5.9 (a), (b) and (c) show the predictions 

for the month of April using Model 1, Model 2, and Model 3 respectively. The kriging 

standard deviation for the three models are shown in Figure 5.10. Figure 5.11 shows the 

time series mean monthly predictions for all the months using the preferred kriging model 

in each month. 
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(a)   (b)   

(c)  

Figure 5.9:  Predicted precipitation maps for mean April using (a) Model 1 (b) Model 2 and (c) 
Model 3 
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(a)  (b)  

 

(c)  

Figure 5.10:  Kriging standard deviation using (a) Model 1 (b) Model 2 and (c) Model 3 
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Figure 5.11: Predicted mean monthly precipitation maps of Ghana using Model 1, Model 2 and 
Model 3. 

MOD1, MOD2 and MOD3 represent Model 1, Model 2 and Model 3 respectively. 

5.5.2. Mean Annual Prediction 

Model 2 outperformed Model 1 and Model 3 in the mean annual predictions. Though the spatial 

coordinates especially the northing were strongly correlated with the log-transformed precipitation 

for the monthly data which accounted for the performance of Model 2 in five months, their 

correlation with the log-transformed mean annual precipitation data was weak. Notwithstanding 

the weak correlation, Model 2 still outperformed Model 1 and Model 3. Figure 5.12 (a), (b) and (c) 

show the mean annual prediction maps using Model 1, Model 2 and Model 3 respectively. 
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(a)  (b)    

(c)  

Figure 5.12: Predicted Mean Annual precipitation maps using (a) Model 1 (b) Model 2 and (c) 
Model 3 

 

5.5.3. Cumulative Annual Prediction 

In order to investigate the cumulative dynamics of precipitation in Ghana, we carried out 

cumulative annual predictions from 2001 to 2010 using the three models and selected the best 

model for each year through cross-validation. Figure 5.13 shows the spatial and temporal 

distribution of cumulative annual rainfall in the country for the ten-year period. 
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Figure 5.13: Cumulative annual prediction maps using Model 1, Model 2 and Model 3. 

 

 

5.6. Performance Assessment of Models 

Table 5.10 and Table 5.11 show the leave-one-out cross-validation statistics carried out to evaluate 

the performance of the three models in mean monthly and cumulative annual predictions. For 

mean monthly prediction, Model 2 performed better in five months (February, April, May, 

September, and October) with the minimum root mean square error and maximum coefficient of 

determination. Model 3 equally performed better in five months (March, July, August, November, 

and December) and Model 1 for two months (January and June) as shown in Table 5.10. For 

cumulative annual prediction, Model 2 performed better in 2001to 2004, 2007 and 2009. Model 3 

performed in 2005, 2008 and 2010 and Model 1 for 2006. 
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Table 5.10: Cross-Validation statistics for the three Models in mean monthly and annual 
predictions 

 Model 1 Model 2 Model 3 Preferred 

 Method ME RMSE R sq. ME RMSE  R sq. ME RMSE R sq. 

Jan 0.748 8.005 0.6041 1.155 8.5417 0.5536 0.392 9.3147 0.4602 Model 1 

Fe 0.1991 27.321 0.4113 4.024 17.148 0.5566 1.856 18.758 0.4440 Model 2 

Mar -2.736 39.229 0.2238 2.862 25.453 0.6558 1.773 20.840 0.7815 Model 3 

Apr 1.937 26.361 0.5433 2.802 22.973 0.6565 1.744 23.673 0.6317 Model 2 

May 0.937 21.40 0.8024 1.423 20.083 0.8265 1.32 21.334 0.8040 Model 2 

Jun 4.579 51.685 0.3598 4.492 51.835 0.3559 5.205 52.845 0.3320 Model 1 

Jul 3.589 33.32 0.5317 4.02 32.688 0.5509 3.548 32.146 0.5643 Model 3 

Aug 3.857 35.841 0.8304 4.898 36.610 0.8242 6.796 31.242 0.8758 Model 3 

Sep 4.868 49.297 0.2878 3.542 36.334 0.6130 1.142 77.595 0.385 Model 2 

Oct -0.846 62.56 0.2480 6.699 30.670 0.7144 2.142 34.735 0.6168 Model 2 

Nov 1.974 33.571 0.4756 1.853 35.799 0.4032 2.888 32.269 0.5177 Model 3 

Dec 0.696 14.755 0.5003 0.598 16.66 0.2330 1.538 14.259 0.5377 Model 3 

Ann 23.22 225.85 0.3088 35.49 209.96 0.4135 24.16 221.71 0.3347 Model 2 

 

The abbreviations Jan = January, Feb = February etc and Ann = Annual 

 

Table 5.11: Cross-Validation statistics for the three Models in cumulative annual predictions 

 Model 1 Model 2 Model 2 Preferred 

 Method ME RMSE R sq. ME RMSE  R sq. ME RMSE R sq. 

2001 18.62 221.43 0.2098 24.13 204.26 0.3323 17.66 228.09 0.1606 Model 2 

2002 20.52 314.96 0.2726 41.60 265.27 0.4946 27.88 319.04 0.2562 Model 2 

2003 27.58 278.39 0.0342 35.94 264.68 0.0913 26.23 282.15 0.0230 Model 2 

2004 34.72 309.96 0.2733 59.10 290.36 0.3810 32.31 292.15 0.3542 Model 2 

2005 31.43 267.23 0.1621 41.90 269.64 0.1559 31.19 264.91 0.1766 Model 3 

2006 20.51 198.95 0.51 30.30 216.79 0.4209 22.25 210.10 0.4515 Model 1 

2007 40.65 320.96 0.1477 34.71 315.67 0.1723 30.63 316.63 0.1649 Model 2 

2008 20.33 280.63 0.2117 32.31 293.82 0.1418 20.32 270.97 0.2653 Model 3 

2009 33.97 237.18 0.2286 37.80 225.44 0.3085 33.12 226.86 0.2948 Model 2 

2010 25.24 288.81 0.3295 40.32 289.30 0.3352 29.80 283.33 0.3569 Model 3 

 

Figure 5.14 (a) and (b) show plots of the RMSE of prediction using Model 1, Model 2, and Model 

3 for the mean monthly and cumulative annual prediction. The months with less precipitation 

recorded lower RMSE and the months with more precipitation recorded higher RMSE in each of 

the models. Though Model 2 performed better than the other models for five months, it was more 

bias than the other models for those months except September. Generally, all models showed 

different levels of underprediction with mean errors above zero. Model 1 also showed 

overpredictions with MEs below zero as a result of the incorporation of elevation in accounting for 

the trend. Figure 5.15 (a) and (b) also show plots of the mean error or bias in prediction for mean 

monthly and cumulative annual predictions.  
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(a)  

(b)  

Figure 5.14: RMSE of prediction using Model 1, Model 2 and Model 3 for (a) mean monthly and 
(b) cumulative annual precipitation estimation 
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(a)  

(b)  

Figure 5.15: ME of prediction using Model 1, Model 2 and Model 3 for (a) mean monthly and (b) 
cumulative annual precipitation estimation  
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Figure 5.16 shows the cross-validation plots of the log-transformed mean annual precipitation. The 

scatter plot of the observed and the predicted shows a reasonable fit with some slight deviations as 

showing in Figure 5.16(a). The histogram of Figure 5.16(b) shows the residuals of the log-

transformed mean annual precipitation. For a good model, the residuals are expected to be 

normally distributed. 

(a)  (b)   

Figure 5.16: Cross-validation (a) scatter plot (b) histogram of residuals for log-transformed mean 
annual precipitation 

5.7. Spatial Dependence 

Figure 5.17 shows the monthly variation of the estimated sill and nugget effect for each of the 

interpolation models. The largest sill and nugget effect is observed mostly in the months with less 

precipitation as shown in Figure 5.17 (a), (b) and (c). This is as a result of the higher variation of 

precipitation in those months. The months with more precipitation have less sill and nugget effect. 

Figure 5.18 also shows the nugget to sill ratio for each of the interpolation models in each month. 

According to Cambardella et al. (1994),  a nugget to sill ration of 0 to 25% correspond to strong 

spatial dependence, 25% to 75% corresponds to moderate spatial dependence and above 75% 

correspond to weak spatial dependence.  

Figure 5.19 shows the range of spatial dependence described by the three models. Model 3 with 

NDVI as a predictor, shows a higher range of spatial dependence beyond the scale of the study 

area especially in the months with more precipitation. This shows the existence of the trend 

beyond the scale of the study area.  
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(a)  (b)    

 

 

(c)  

Figure 5.17: Nugget effect and total sill in (a)Model 1, (b) Model 2, and (c) Model 3 for each month 
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Figure 5.18: A graph of Nugget to Sill ratio in each month for Model 1, Model 2 and Model 3 

 
Figure 5.19: Range of spatial dependence in each month for Model 1, Model 2 and Model 3 
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6. DISCUSSION 

In this chapter, we present a discussion on the results obtained through the methodology we 

applied to predict rainfall from sparse precipitation data.  

6.1. Assessment of Predictors 

The inclusion of elevation as a trend component in regression kriging did not contribute much in 

the prediction results for both monthly and annual precipitation. Although weakly correlated with 

precipitation, elevation showed significance with a p-value less than a significance level of 0.05 in 

January, February, March, April, September, October, and December in the multiple linear 

regression model. Model 1 with elevation as a predictor only performed better than the other 

models in January. There was an extreme over-prediction of precipitation in most of the months 

for which elevation showed significance and was included as a predictor. The over predictions were 

mainly observed in higher elevations as compared to lower elevations. The significance of elevation 

in the regression models for the abovementioned months could possibly be due to local influences.  

This was not a surprising discovery judging from the weak correlation between log-transformed 

precipitation and elevation presented in Table 5.2. The correlation of elevation with precipitation 

ranged from 0.01 to 0.65. Our findings are consistent with Goovaerts (2000), who found that 

ordinary kriging performed better than linear regression with elevation when the correlation 

between elevation and rainfall was moderate (𝜌<0.75). A stronger correlation between elevation 

and rainfall is therefore necessary for elevation to bring improvement in spatial prediction of 

rainfall. 

There was a moderate and strong correlation between NDVI and log-transformed precipitation 

ranging from 0.5 to 0.78 in most months except June and July as shown in Table 5.2. The weak 

correlation of NDVI with precipitation in June and July could be as a result of the fact that it rains 

everywhere in the country within that period. NDVI was simultaneously correlated with the 

northing coordinates making it less significant in Model 1 except the months with more rain.  

Model 3 outperformed Model 2 and Model 1 in March, July, August, November, and December 

when NDVI was incorporated as the drift. Though NDVI was weakly correlated with log-

transformed mean July precipitation, Model 3 still performed better in July. Remotely-sensed 

derived covariate NDVI is, therefore, an optimal covariate for the accurate prediction of rainfall in 

the above-mentioned months. 

The spatial coordinates especially the northings were highly correlated with log-transformed mean 

monthly precipitation and this accounted for the performance of Model 2 in five months.  Their 

correlation with the log-transformed mean annual precipitation was weak. Though weakly 

correlated, Model 2 performed better in the mean annual prediction using the spatial coordinates as 

predictors.  The spatial coordinates are therefore optimal covariates for mean annual prediction of 

rainfall in Ghana. 

It could be observed in Figure 5.14(a) that all models performed similarly in May, June and July 

which are the months with more rainfall as shown in Figure 5.11. All models also performed 

similarly in cumulative annual predictions as shown in Figure 5.14(b). It is important to note that 

Model 2 with the spatial coordinates as predictors performed closely with Model 3 in the months 
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that model 3 performed better using NDVI as a predictor. Though NDVI improved predictions in 

these months, the spatial coordinates could be used for overall monthly predictions in the absence 

of NDVI data. 

6.2. Spatial Structure of Precipitation 

The choice of a variogram model for spatial predictions depends largely on the covariance 

structure of the input data. It is therefore important to evaluate different models to infer the spatial 

structure of the input data for a given period. The spherical, exponential and Gaussian models were 

evaluated in this study and the appropriate model was selected for parameter estimation and 

prediction. The spherical and Gaussian models best captured the spatial structure of precipitation 

in the monthly and annual data. There was significant variation in the spatial dependence of 

precipitation from one month to the other resulting in the variation of variogram parameters.  The 

months with less precipitation exhibited higher nugget effect as compared to months with more 

precipitation except for May with more precipitation and higher nugget effect. We may attribute 

this to the fact that it rains everywhere in the country during the month of May making it difficult 

to capture variability less than the minimum sampling distance. The nugget to sill ratio which 

describes the strength of spatial dependence (Cambardella et al., 1994) was high in the months of 

May and December as shown in Figure 5.18. The higher this ratio, the weaker the spatial 

dependence which is as a result of the high nugget effect. There was strong to moderate spatial 

dependence in most of the months especially months with high rainfall. 

6.3. Spatial and Temporal Distribution of Precipitation 

Precipitation varies both in space and time and this was clearly depicted in the monthly analysis. It 

was observed that precipitation varies spatially with decreasing trend from the south-west to the 

north-east. There is more precipitation in the south-western part of the country from January to 

June and from October to December than in the northern part.  Axim located in the south-western 

part records the highest rainfall in the country and Bawku the lowest in the north-eastern within 

this period. The north-eastern part also depicted higher precipitation than the south in July and 

August whiles the easting part recorded higher precipitation in September as shown in Figure 5.11. 

This is in line with the rainfall pattern of Ghana with the southern part exhibiting a bimodal wet 

season from March to July (major season) and September to November (minor season) whiles the 

northern part experiences a single wet season from May to October as shown in Figure 5.11. 

Precipitation shows an increasing trend from January to June at a maximum and declines steadily to 

August. It rises again to a maximum in September and finally declines to December. June is the 

month with the highest rainfall and January the lowest in the interpolation results. August is the 

transition between the major and the minor seasons in the southern part resulting in low 

precipitation in the south as compared to the north. This temporal variation of precipitation in the 

country among other factors could possibly be due to the influence of the two major air masses in 

the country. The south-west monsoon wind that hits the country beginning at Axim could explain 

why it records the highest rainfall in the country for most of the months. It could also be argued 

that the high rainfall record of Axim is as a result of its location along the coast. This argument 

would be flawed by the fact that towns like Tema and Accra are coastal towns yet are among the 

areas recording low rainfall in the country. Therefore, proximity to the coast has less or no 

fundamental effect on the rainfall variability in Ghana and a predictor like distance to the coast may 

not provide an improvement in rainfall predictions. The dry north-east trade wind commonly 
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known as harmattan that blows from the Sahara Desert towards the north-eastern part of Ghana in 

December to March could possibly be the reason for the low precipitation rate in the north.  

The result of the cumulative annual predictions indicates the spatial and temporal distribution of 

rainfall from 2001 to 2010. The results show that there was less rainfall in 2001 and more rainfall in 

2010. This shows an increasing trend of rainfall in the country for that decade. This provides 

reliable information for drought analysis since drought-prone areas can easily be spotted.  
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7. CONCLUSION AND RECOMMENDATION  

7.1. Conclusion 

The main objective of our study was to predict rainfall from sparse precipitation data using 

regression kriging by applying model-based maximum likelihood method in estimating the drift and 

covariance parameters. We carried out a comparative analysis to evaluate the performance of three 

regression kriging models in estimating the mean monthly, mean annual and cumulative annual 

rainfall of Ghana through cross-validation measures using the RMSE and R-square metrics. 

Monthly and annual averages were computed from daily observations of precipitation from 2001 to 

2010 using data from 26 rain gauge stations to carry out this analysis. The secondary variables used 

in this study include the spatial coordinates, MODIS NDVI, and elevation derived from DEM. 

The first model with significant predictors selected from a multiple linear regression of all the 

predictors performed better in two months (January and June) for mean monthly predictions and 

in 2006 for cumulative annual predictions. There was a strong correlation between mean monthly 

precipitation and the northings which accounted for the performance of the second model in five 

months (February, April, May, September, and October) for the mean monthly predictions, in six 

years (2001-2004, 2007 and 2009) for cumulative annual predictions and in the mean annual 

predictions. The third model with NDVI as predictor performed better in five months (March, 

July, August, November, and December) for mean monthly predictions and in three years (2005, 

2008 and 2010) for cumulative annual predictions. 

There was a slight difference between the RMSEs of the Model 3 with the spatial coordinates as 

predictors and Model 2 with NDVI as a predictor.  We therefore consider MODIS NDVI as an 

valuable covariate for mean monthly rainfall estimation in Ghana. The RK model with elevation as 

a predictor only performed in January. There were overpredictions for most of the months where 

elevation was included as a predictor in the multiple linear regression. Elevation was not significant 

in the mean annual and cumulative annual predictions. 

 

Answers to Research Questions 

Specific Objective 1: 

1. What is the relationship between elevation and the spatial distribution of 

precipitation in the study area for a given time period? 

 

The was a very weak correlation between precipitation and elevation for most of the 

months. Elevation was only moderately correlated with precipitation in September as 

shown in Table 5.2. Though weakly correlated with precipitation, elevation contributed to 

the improvement of rainfall predictions in only January when it was used as a predictor in 

a multiple linear regression with the northing coordinates. 

January is the driest month in Ghana and rainfall in this month can be partly due to 

orographic effects. 

 

2. Can time series of NDVI, a remote-sensed derived covariate from MODIS be used 

to infer the spatial and temporal distribution of precipitation in the study area? 
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The one-month time series of MODIS NDVI was simultaneously correlated with the 

northing coordinates and was not significant for most of the months when it was used in a 

multiple linear regression with all predictors for Model 1. 

NDVI became very significant for most months and years when it was used as a predictor 

in Model 3 except the months with more rainfall such as June and July.  

The significance of NDVI led to the improvement of prediction in five months (March, 

July, August, November, and December) for the mean monthly predictions and three years 

(2005, 2008 and 2010) for the cumulative annual predictions. 

 

Specific Objective 2: 

1. Which covariance function is appropriate for capturing the spatial structure of 

precipitation in the study area for a given time period? 

 

The appropriateness of three covariance functions was evaluated using the maximum 

likelihood method of parameter estimation. These included the spherical function, the 

exponential function, and the Gaussian function. The preferred covariance function was 

selected for each period of model fitting by considering the function with the maximum 

value of the maximized log-likelihood. 

 

2. What are the optimal model parameters of the chosen covariance function? 

 

For each period of prediction, the preferred covariance function was selected and the 

estimated parameters used for prediction. Details of the functions used for each period 

and the optimal model parameters are shown in Section 5.4.3. 

 

Specific Objective 3: 

1.  Which regression model is most appropriate for the prediction of precipitation in 

the study area for a given time period? 

 

Three different regression models were formulated due to multicollinearity between NDVI 

and the northing coordinates as indicated in Section 4.4.  

Their performance was evaluated by leave-one-out cross-validation as indicated in Section 

5.6. 

The first model performed better in two months (January and June) for the mean monthly 

predictions and 2006 for the cumulative annual predictions.  

 

The second model performed better in five months (February, April, May, September, and 

October) for the mean monthly predictions, in six years (2001-2004, 2007 and 2009) for 

cumulative annual predictions and in the mean annual predictions.  

 

The third model performed better in five months (March, July, August, November, and 

December) for mean monthly predictions and in three years (2005, 2008 and 2010) for 

cumulative annual predictions. 

 

7.2. Recommendation  

The following recommendations are suggested for future research: 

• We recommend further research to evaluate the influence of remotely sensed rainfall 

estimates to the accuracy of mean monthly and annual precipitation estimation. 
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• An extension of this work with more data to space-time kriging with parameters estimated 

by the maximum likelihood method 
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