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Management Summary 

This version is the public version. All confidential information is removed. 

This research is performed at ASML. ASML designs, develops, integrates, markets and services 

advanced lithography systems used by customers to produce integrated circuits that power a wide array 

technology products. These systems are very expensive. Therefore, it is important to guarantee high 

machine uptime towards the customers which is a big challenge in the complex supply chain network. 

Because of this, it is useful to create insight in the end-to-end supply chain to deliver the right materials 

at the right time at the right place. This can be done using a Control Tower. Companies use a Control 

Tower to monitor their supply chain processes and generate alarms. With these alarms, companies can 

act proactively upon risks using different operational interventions to reduce non-availabilities. A 

Control Tower acts as a centralized hub that uses real-time data of supply chain processes and aggregates 

this data into one single dashboard. This provides visibility in these supply chain processes. ASML 

already uses a Control Tower for their spare parts. Besides spare parts, service tools are at least as 

important as spare parts to guarantee machine uptime. Service tools are at least as important, because 

without service tools it is not possible to carry out maintenance activities making it impossible to 

guarantee machine uptime. 

In this research we analyze how insight can be given in the supply chain processes of service tools by 

using a Control Tower for tools. The research question of this thesis is:  

How should a Control Tower for tools be designed and implemented in order to proactively act on 

shortages to reduce the number of unplanned non-availabilities on an operational level? 

First, the current situation is analyzed in order to answer the research question. Initial analysis on the 

root causes of non-availabilities of service tools showed that the 7 root causes found can be categorized 

in demand related issues, quality related issues and supply related issues. Most of the causes found 

belongs to the supply related issues. Therefore, we focus on the supply related issues of tools in this 

research.   

Using literature, we searched for information that is needed to trigger a supply alarm. We found that we 

need among others on-hand and pipeline inventory levels in each warehouse to trigger an alarm in a 

Control Tower. The suitable operational intervention that is applicable to ASML is expediting tools that 

are in consignment. In reality, supply uncertainties often play a role, which is why it is important to 

include stochasticity. To incorporate stochasticity in the alarms and intervention, lead time uncertainty 

should be taken into account. This can be achieved by using lead time distributions and probabilities. 

Since we have an operational planning problem, it is important to take contract durations into account. 

We build a simulation model to test and evaluate the proposed alarms and interventions. 
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Three types of alarms and an operational intervention are implemented in a Control Tower for tools. 

The first two alarm types, the short-term supply delay alarm and long-term supply delay alarm, are based 

on historical data. An alarm is triggered when the actual number of received tools is lower compared to 

the expected number of tools to be received in a certain time window. Two different time windows are 

used, since the time window is based on the customer contracts. The time windows can differ per 

contract. If this alarm is triggered and the expected unplanned non-availabilities are above a threshold, 

the Control Tower decision rules proposes an operational intervention to expedite tools that are in 

consignment. The third alarm-type, the future non-availabilities alarm, is based on a prediction of the 

future expected non-availabilities. Stochasticity is taken into account in this alarm by calculating the 

probability a tool returns on a certain day in the future. If the expected unplanned non-availabilities are 

above a certain threshold in the future, an alarm is triggered and an operational to expedite tools in 

consignment is proposed. 

To test the proposed alarms and interventions and to find the optimal parameters, a simulation model is 

built. The four scenarios executed in the simulation are: (1) the current situation at ASML, (2) the 

Control Tower decision rules using only the long-term and short-term delay alarms, (3) the Control 

Tower decision rules using only the future non-availabilities alarm and (4) a scenario in which both the 

long-term and short-term method and the future non-availabilities alarm are used.   

When comparing the four scenarios in the simulation model, we recommend to implement the scenario 

where both the long-term and short-term decision rules and the future non-availabilities decision rules 

are used. These results give the best performance. Table 0.1 shows the results for each scenario. The 

performance is calculated using the following formula: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑁𝑎𝑣𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑎𝑣 + 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠  

− 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

The 𝐸[𝑁𝐴𝑉] improvement is the percentage difference between the expected non-availabilities in the 

current situation and the setting evaluated. The shipment improvement is the percentage difference 

between the number of shipments in the current situation and the setting evaluated. The number of 

interventions are subtracted from the performance since these actions take time and therefore money. 

Table 0.1: Results of different scenarios 

 Scenario 
𝑬[𝑵𝑨𝑽] 

improvement 

Shipment 

improvement 

# Proposed 

Interventions 

# Normalized 

Performance 

2 Only long-term and short-term Confidential information 1 

3 Only future non-availabilities    1.66 

4 All decision rules    2.15 

We performed a sensitivity analysis to investigate what the impact is of the key input parameters in the 

simulation model on the performance of the Control Tower decision rules. The key input parameters are 

the intervention success rates and expediting lead time. Based on the sensitivity analysis of the input 
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parameters, we can conclude that the proposed decision rules are robust. Even when highly 

overestimating the success rates, the Control Tower decision rules are still beneficial. Improving the 

success rate for tools that are longer than planned in consignment is more important since this results in 

a better performance.  

The final conclusion of this thesis is to use all the proposed Control Tower decision rules. Implementing 

this scenario gives the most insight in the behavior of tools. Historical data is taken into account in the 

short-term and long-term supply delay alarm. The future behavior of tools is predicted in the future using 

the future non-availabilities alarm. Using these alarms, ASML can proactively act when the expected 

unplanned non-availabilities are high. On average, 𝑥 alarms are generated per week and 𝑥 operational 

interventions are proposed on a weekly basis. The expected unplanned non-availabilities can be reduced 

with around 𝑥% on a yearly basis when all proposed Control Tower decision rules are used. 

One of the recommendations for further research is to make use of additional operational interventions. 

When it turns out that expediting tools in consignment is not possible, it might be possible to perform a 

proactive lateral transshipment when the expected unplanned non-availabilities are high.  
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1. Introduction 

This thesis is the result of a research conducted at ASML to finalize the study Industrial Engineering 

and Management. The Customer Supply Chain Management department at ASML uses a Control Tower 

application to track down exceptions or issues threatening the availability for spare parts only. The goal 

of this thesis is to extend the scope of the Control Tower application by including service tools.  

This chapter introduces the research and the company it is performed at. We describe the motivation, 

the problem statement, research questions and the research approach. Moreover, background 

information is given about a Control Tower, spare parts and service tools.  

1.1 Company description 

ASML is the world’s leading manufacturer of lithography systems for the semiconductor industry. 

ASML designs, develops, integrates, markets and services these systems. Customers of ASML include 

all of the world’s leading chip makers, such as Samsung, Intel and TSMC (ASML, 2019). The 

headquarter of ASML is located in Veldhoven, and the company has locations in 16 different countries 

with more than 25.000 employees.  

Semiconductor chips are made on a silicon disk called a wafer. The lithography systems projects a 

pattern of small lines on a light sensitive layer that is applied to the wafer. After the pattern is printed, 

the system moves the wafer slightly and makes another copy on the wafer. This process is repeated until 

the wafer is covered in patterns, completing one layer of the wafer’s chips. To make an entire microchip, 

this process will be repeated 100 times or more, laying patterns on top of patterns (ASML, 2019). The 

latest generation lithography system is a system that use extreme ultraviolet light. ASML is the only 

manufacturer in the world that uses extreme ultraviolet light. These kind of systems are very expensive, 

so it is important to guarantee high machine uptime towards the customers. This is important for all 

types of systems ASML produces. When this machine uptime is not met, ASML faces high costs. 

This thesis is conducted in the Customer Supply Chain Management (CSCM) department. CSCM is 

responsible for providing affordable services and supporting platform extension, ensure material 

availability for minimizing downtime and to enable early access to new technologies and 

industrialization (ASML, 2018). To ensure the uptime of systems at customer’s side, ASML has very 

high Service Level Agreements (SLA). To achieve the service levels, companies need to track day-to-

day performance. To track day-to-day performance, ASML uses a Control Tower application for their 

spare parts.  
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The Service Business Application team is responsible for the execution of the Control Tower. The 

Service Business Application team is part of Service Management. Service Management is a support 

department to the CSCM departments. Besides the execution of the Control Tower processes, the Service 

Business Application team is furthermore responsible for the development and maintenance of different 

reports. These reports help the other CSCM departments to get insight in the performance on their key 

performance indicators. The team is involved in projects to structurally improve the customer supply 

chain by analyzing data using process mining tools. One other important responsibility within the 

Service Business Applications team is the automation of shipments of spare parts and service tools 

through the supply chain network. More details about this process is explained in Chapter 2. Figure 1.1 

shows the organogram of the CSCM department.  

 

 

 

 

 

 

Figure 1.1: Organogram Customer Supply Chain Management 

1.2 Control Tower 

According to Bleda et al. (2014), a Control Tower acts as a centralized hub that uses real-time data from 

a company’s existing, integrated data management and transactional systems to integrate processes and 

tools across the end-to-end supply service chain and drives business outcomes. The Control Tower 

aggregates data into one single dashboard which provides visibility in the supply chain processes and 

therefore makes analysis and efficient execution possible within the supply chain. Companies use a 

Control Tower to monitor their supply chain and generates alarms. With these alarms, companies can 

act proactively upon risks using different operational interventions (e.g. placing an emergency shipment 

or expediting repair) to reduce non-availabilities.  

A Control Tower typically consists of five layers. Figure 1.2 shows these different layers. The 

Operational Data Storage layer, Information Perception layer and Supply Chain Business layer are 

related to strategical or tactical levels. The main activities of those layers are gathering, filtering and 

storing data. The Data Application layer addresses supply characteristics needed in making operational 

decisions. This layer is able to analyze and visualize the data. In the Data Application layer it is possible 

to generate alarms based on business rules. It gives the user insight in the operational supply chain 
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processes. In the Operational Planning layer decisions are made (Topan, Eruguz, Ma, van der Heijden, 

& Dekker, 2020).   

 

 

 

 

 

 

 

 

 

Figure 1.2: Structure of the Control Tower (Muller, 2018) 

1.3 Spare parts and service tools 

A spare part is an exchangeable part that is kept in stock and used to repair or replace failed units in an 

installed base. According to Vliegen (2009), service tools are all tools that are used during a repair of a 

machine, for instance, diagnostic and calibration tools. 

For spare parts, ASML uses a Control Tower to track day-to-day performance. As mentioned in Section 

1.2, the goal of the Control Tower is to act proactively upon risks to prevent shortages of spare parts in 

the field. Muller (2018) has already proven that the Control Tower at ASML prevents shortages for spare 

parts and that they can work on structural improvements which insights derived from the Control Tower.  

For maintenance activities, besides spare parts also service tools are required. There are similarities and 

dissimilarities in the characteristics of spare parts and service tools. One similarity is that they are both 

kept in stock. At the local warehouse (a warehouse located near the customer), a base stock level is kept 

which is determined by the SpartAn algorithm. This is an optimization algorithm used at ASML for both 

spare parts and service tools. A base stock level is the desired number of spare parts or service tools in 

the local warehouse (Dhakar, Schmidt, & Miller, 1994). The supply chain network for service tools is 

the same as for spare parts at ASML. The dissimilarities between spare parts and service tools are 

described below.   

• Spare parts are consumed, while service tools are used. This means that a service tool will 

return in the supply chain after it is used. After the service tool is used, sometimes it needs to be 

cleaned, but it is also possible that the service tool needs calibration or certification. The 

cleaning of tools is a negligible activity within the Control Tower project. At ASML, there are 
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different storage locations (SLOC) in a local warehouse for these different actions, e.g. there is 

a SLOC for usable tools, for defect tools and for tools that need to be cleaned.  

• Service tools and spare parts have their own 12 Numerical Code (NC). This is a unique 12 digit 

NC for a stock keeping unit. For service tools, besides this 12NC, also the equipment number is 

important. The equipment numbers belongs to a certain 12NC. The main reason why the 

equipment number is important is for certification and calibration reasons. On equipment level, 

the dates are stored when next calibration or certification should take place. Spare parts do not 

require certification or calibration, so for spare parts the equipment number is less important.  

• Service tools can be stocked in so-called toolkits. A toolkit is defined here as a box that includes 

a set of service tools, such that it can be used in one or more repair actions. Tools can be stocked 

individually as well as in a toolkit. This means that when an individual tool is requested and it 

is not available, a toolkit in which the tool is included can be taken instead. Another 

characteristic follows from the fact that toolkits can be used in one or more repair actions. 

Whenever there is some uncertainty about which repair action exactly needs to be done, a toolkit 

can be ordered to be sure that all tools possibly needed are available. A toolkit can therefore be 

seen as some kind of uncertainty reduction (Vliegen, 2009). 

• While spare parts are included in customer contracts at ASML, tools are not included in 

customer contracts. Downtime caused by Waiting for Parts is an important performance 

indicator. It is used as a target agreed upon with the customer in the SLA. This performance 

indicator defines how long the machine may be down waiting for a spare part needed in the 

repair operation. For service tools, there are commitments towards internal departments 

regarding the availability of service tools. 

ASML classifies their tools, amongst other classifications, by tool type. The different tool types at 

ASML are: toolkits, spare for tools, tool containers, tool for tools, service tools and consumable tools. 

Figure 1.3 shows examples of these tool types.  

 

Figure 1.3: Examples of different kinds of tool types. From left to right: toolkit, tool container, spare for 

tool, service tool and a consumable tool. 

Tool containers and toolkits both consist of multiple tools but a tool container is larger than a toolkit. A 

spare for tool is a spare part needed to repair a tool. Service tools are tools that do not belong to one of 

the other types. Service tools are the most common tools at ASML. Consumable tools are consumed 

instead of used, meaning that they do not return to the supply chain. An example of a consumable tool 

are gloves or glue sticks. A tool for tool is a tool needed to produce or repair the final tool. In the 
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remainder of this thesis “tools” are used instead of “service tools” to avoid confusion. When service 

tools are mentioned, the specific tool type is meant.     

1.4 Problem statement 

To identify the problem, the Managerial Problem-Solving Method (MPSM) by Heerkens & van Winden 

(2012) is used. This method is a systematic problem-solving approach which consists of seven phases: 

defining the problem, formulating the approach, analyzing the problem, formulating solutions, choosing 

a solution, implementing the solution and evaluating the solution.  

The motivation of this research can be found in Section 1.4.1 followed by the problem cluster in Section 

1.4.2, which is the first phase of the methodology.   

1.4.1 Motivation 

At ASML, there is an increasing number of Upgrades, Installs and Relocations (UI&R) of their 

lithography systems which need tools, in addition to their after sales maintenance activities. ASML is 

continuously seeking for opportunities to reduce the number of unplanned non-availabilities of tools.  

A non-availability (NAV) occurs when a tool is not available at the local warehouse when it is requested 

for an event. At ASML, there are two kinds of events where tools are needed, namely after sales events, 

and UI&R events. Repair and maintenance are part of the after sales events. 

The demand for after sales events is stochastic since it is not known in advance when a machine is down. 

Therefore, tools used for after sales events can have a base stock level to reduce the risk of unplanned 

non-availabilities. For UI&R events, in the ideal situation, it is known in advance which tools are needed 

in which period. Therefore, tools needed for a UI&R event do not have a base stock level (BSL). 

When there is a request for a tool without a BSL, a non-availability occurs. These are planned NAVs. 

An unplanned NAV occurs when there is a BSL, but there was no tool available from stock at the 

requested time. The goal of the Control Tower is to avoid unplanned NAVs as much as possible. 

Unplanned NAVs lead to an increasing number of priority and/or emergency shipments. This is not 

desirable, as priority and emergency shipments are more expensive than regular shipments. Besides the 

extra costs of using one of the other shipment types, the machine uptime is in danger since the tools were 

not in the right place at the right time. ASML wants to limit the number of unplanned NAVs of tools 

and therefore this research is conducted. In the remainder of this thesis, when we talk about non-

availabilities, we mean the unplanned non-availabilities. 

Figure 1.4 shows the different shipment types and the supply chain network at ASML. Tools are sent 

from the central warehouse to the local warehouse where the tool is requested with a regular shipment. 

A regular shipment is used to fulfill the BSL or to fulfill demand when there is no BSL. When there are 
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Priority 

Regular 

some tighter time constraints, a priority shipment is used which is faster than a regular shipment. In case 

of (unplanned) NAVs (e.g. machine down), an emergency shipment is used to send a tool from the 

central warehouse to a local warehouse, or from a local warehouse to another local warehouse. An 

emergency shipment is the fastest transport mode. It is also possible to send a tool from a local warehouse 

to another local warehouse, this is called a lateral transshipment. Lateral transshipments are shipments 

within the same echelon level. An echelon level is a stage in the supply chain where inventory can be 

kept. Lateral transshipments are preferable to emergency shipments since they are less expensive. 

  

 

 

 

 

Figure 1.4: Shipment types and supply chain network 

From Table 1.1 can be concluded that most of the shipments are regular shipments. However, the 

majority of emergency shipments are used for service tools. Therefore, the focus of this thesis will be 

on service tools. Since spare for tools and tool for tools have the same behavior as service tools, these 

tool types are also included in scope. Consumable tools, toolkits and tool containers fall outside the 

scope of this thesis. The reason for this is that consumable tools are consumed instead of used. They 

behave more like parts and are therefore not included in the scope of this thesis. Toolkits and tool 

containers follow different processes compared to the other tool types and the percentage of these tool 

types causing an emergency shipment is relatively low.  

Table 1.1: Percentages of different shipment types used for tools and the percentages of which tool type is responsible 

for the emergency shipment 

Confidential Table 

 

Figure 1.5 shows the prices versus the yearly usage of tools used for both after sales and UIR events. 

The usage contains the tool types in scope (service tools, tool for tools and spare for tools) that have 

been used at least once in the past 3 years.  

Confidential Figure 

Figure 1.5: Price versus yearly tool usage 
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1.4.2 Problem cluster 

In order to learn how the number of unplanned NAVs of tools can be reduced, a problem cluster is made 

to identify cause-effect relationships that lead to the core problems. Figure 1.6 shows the problem 

cluster. The cluster is made based on project meetings with employees in different positions so that the 

problem is viewed from multiple perspectives. The problem observed by management is that reducing 

the number of unplanned non-availabilities of tools is a challenge. Three core problems are identified: 

1. “Tools are booked on incorrect storage locations”: On operational level, sometimes there are 

some incorrect bookings of tools on storage locations. This means that a tool can be booked on 

a certain location where it does not belong. 

2. “Absence of visibility in the supply chain of tools”: There is no clear insight in the supply chain 

of tools. This means that it is not easily visible in advance when the risk of a shortage of tools 

increases. This makes it difficult and time consuming to proactively prevent shortages resulting 

in an inefficient process of proactively reducing non-availabilities.  

3. “Base stock levels are updated only in specific periods of the year with usage/forecast”: Base 

stock levels are determined only in specific periods of the year by the optimization algorithm 

SpartAn. After the base stock levels are determined, they are not updated regularly anymore. 

So, when usage is higher than expected after the base stock levels are determined, base stock 

levels are not increased. This causes the situation where demand is higher than planned, 

increasing the risk of non-availabilities. Only in some exceptional cases, when a request is made 

to increase the base stock level, this is done.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Problem Cluster 
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During this research, we assume that all data in the ERP-system are correct. The first problem shows 

that there are some incorrect bookings. This causes the first problem to fall outside the scope of this 

thesis. The base stock levels are determined on a tactical level. Reviewing the BSLs with the usage and 

forecast belongs to the planning department which is part of the tactical level. Therefore this thesis will 

not focus on the third problem. In accordance with the internal supervisor and the management at the 

company, the second problem is the problem that will be solved.  

There are multiple definitions of supply chain visibility. For consistency in this research, the definition 

of McCrea (2005) is used who defined supply chain visibility as: “the ability to be alerted to exceptions 

in supply chain execution (sense), and enable action based on this information (respond). In essence, 

visibility is a sense and respond system for the supply chain based on what is important in the business.” 

This definition is used since the focus is on signaling exceptions in the operational supply chain 

processes which correspond with the vision of ASML with regards to the Control Tower. 

Based on the motivation of this research and the problems identified in the cluster, the following core 

problem is defined:  

There is a lack of insight in the supply chain of tools making it inefficient to proactively act on the risk 

that shortages of tools occur 

1.5 Objective and research questions 

The objective is formulated as the main research question. It is formulated in such a way that it will help 

to develop insights to reduce the number of non-availabilities for tools. As already explained in the 

motivation, the Control Tower for parts has already proven that it is possible to proactively prevent 

shortages. Therefore, it is assumed that a Control Tower can reduce the number of NAVs of tools. The 

main research question is: 

How should a Control Tower for tools be designed and implemented in order to proactively act on 

shortages to reduce the number of unplanned non-availabilities on an operational level? 

Because of the differences between spare parts and tools described in Section 1.3, it is not possible to 

copy the Control Tower for spare parts at ASML and use it for tools as well. To be able to answer the 

main question, multiple research questions are defined. The reasoning behind these questions are given, 

as well as the chapter where they will be answered. 
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Chapter 2: Current Situation   

To solve the problem, more information is gathered about the current situation at ASML. Key 

performance indicators that are used to measure tool availability are explained. To proactively act upon 

shortages, knowledge on what situation could lead to a non-availability of a tool is required. Also, 

current allocation rules will be investigated and the Control Tower for parts will be analyzed to check if 

some aspects can be used in the Control Tower for tools.  

1) What key performance indicators are used to measure tool availability? 

2) What are the allocation rules for replenishment of tools? 

3) What are the main causes of unplanned non-availabilities of tools? 

4) What components of the current Control Tower for parts can be used for tools? 

Chapter 3: Literature Review  

After information on the main causes of a non-availability of tools is obtained, information is needed on 

how to prevent this. Therefore, a literature study will be performed. Alarms that can be triggered for the 

identified main causes and operational interventions that can be used for acting proactively upon the 

shortages are investigated. How these alarms and interventions should be modeled is also investigated 

in literature.  

5) What kind of alarms are described that can improve tool availability?  

6) What operational interventions are available to proactively act upon shortages of tools? 

7) How should alarms and interventions on alarms be modeled? 

a. How can finite horizons be modeled? 

b. How should stochastic behavior be incorporated in the model with a focus on lead 

time uncertainty? 

c. How can a model be evaluated, verified and validated? 

Chapter 4: Model Explanation  

After obtaining the knowledge from literature on how this type of problem is handled and what 

techniques can be used, this knowledge will be applied to create a model. There are two models needed 

for solving the problem. Due to the large number of tools, first an alarm-generating model will be built 

to recognize the tools with a risk of a NAV. After obtaining insight in the tools that have a risk of a 

NAV, knowing what operational intervention can reduce the risk and prevent shortages is valuable. 

Therefore, operational interventions are proposed for the tools with an alarm to avoid the tool of 

becoming non-available.  

8) What data and parameters settings are needed to trigger an alarm? 

9) What operational interventions can be made proactively when an alarm is triggered?  

10) Is the model valid according to the chosen verification and validation methods? 
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Chapter 5: Model Results  

The goal of this chapter is to quantify the added value of the Control Tower for tools. Also, insights 

derived from the model are given. 

11) What are the parameter settings that give the best result? 

12) What is the added value of the proposed model and what are the insights? 

13) What is the impact of the input parameters on the key performance indicators of the model? 

Chapter 6: Implementation  

The model that is developed in this thesis is applied to a dataset. The implementation of the methodology 

so that it can be used at ASML and other companies will be discussed. 

14) How should a Control Tower for tools be implemented? 

1.6 Research approach 

As explained in Section 1.4, the Managerial Problem-Solving Method is used to find a solution to the 

core problem. The core problem is already defined. It is inefficient to act proactively upon the risk that 

shortages of tools occur. The second phase of the Managerial Problem-Solving Method is formulating 

the research approach. Figure 1.7 shows an overview of the research approach. 

 

 

 

 

  

 

Figure 1.7: An overview of the research steps 

1.7 Scope and assumptions 

• The focus of this thesis is on operational level. This means that a finite horizon should be taken 

into account. Tactical planning parameters are therefore outside the scope of this research. 

• The goal is to improve performance for all customers and not for specific customers. So, 

differentiation between customers is outside the scope of this research. 

• All regions and local warehouses are included in the scope of this research. 

• The tool types service tools, spare for tools and tool for tools are included. Toolkits, tool 

containers and consumable tools fall outside the scope of this research.  

• During this research, we assume that all data in the ERP-system are correct.  

Conclusion Results Modelling Literature 

Review 
Problem 

Identification 
Context 

Analysis 



 

11 

 

Public 

2. Current Situation 

This chapter gives an answer to the sub questions regarding the current situation of tools which are 

defined in Section 1.5. The goal of this chapter is to analyze the problem in more detail, which is the 

third phase of the MPSM. Section 2.1 describes the key performance indicators that are used to measure 

tool availability. Section 2.2 explains the allocation rules for replenishment of tools and Section 2.3 

describes the main causes of an unplanned non-availability of tools. As already mentioned, at ASML, a 

Control Tower for spare parts already exists. The components of the current Control Tower that could 

be used for a Control Tower for tools is described in Section 2.4. The end of this chapter summarizes 

the findings.  

2.1 Key performance indicators for tools 

This section answers sub question 1: What key performance indicators are used to measure tool 

availability? 

2.1.1 Criticality level  

To reflect the risk of an unavailability for tools and prioritize them to make them available again to fulfill 

demand, ASML calculates a ‘criticality level’ of a tool. A critical tool is defined at ASML as: “A tool 

that has an unacceptable risk of an unplanned non-availability in the coming month and has a special 

status.”  

The criticality ranking is determined by scoring all tools on different categories. The weighted sum of 

these scores determines the criticality level of a tool. The two scoring categories with the highest weight 

are the expected unplanned non-availabilities of a tool in a month and the ‘fill rate’. The process of 

scoring each 12NC to these criteria is repeated regularly. Since ASML uses another definition of fill rate 

compared to literature, we will no longer use the term fill rate, but call it the ‘relative stock level’. 

In the following two sections the calculation of the expected unplanned non-availabilities and relative 

stock levels are explained in detail as these two aspects have highest weight in the criticality calculation.  

2.1.2 Expected unplanned non-availabilities 

Network Oriented Replenishment Application (NORA) is an application developed by ASML that 

analyzes the supply chain on a regular basis. Based on the current stock levels and the base stock levels, 

a replenishment of tools can be scheduled automatically. The priority for these replenishments are based 

on the expected unplanned non-availabilities. Details about NORA are given in Section 2.2.  
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ASML works with different stock types of tools which are: ‘blocked stock’, ‘quality issue stock’, 

‘unfulfilled stock’ and ‘unrestricted stock’. Blocked stock is all stock that cannot be used anymore e.g. 

lost tools or tools that need to be scrapped. Quality issue stock is all stock of  tools that need calibration, 

certification or tools that will be repaired in a local warehouse. Most of the time, these tools will be 

usable again. Unrestricted stock consists of usable on-hand inventory of a tool 𝑖 at local warehouse 𝑗, 

tools 𝑖 in transit to local warehouse 𝑗 and tools 𝑖 ‘in consignment’ at the customer allocated to local 

warehouse 𝑗. Tools that are in consignment are tools used in the customer factory and therefore not 

available to fulfill other demand requests. Tools in consignment are not available in the local warehouse 

itself. Unfulfilled stock is the difference between the sum of all base stock levels of tool 𝑖 and the sum 

of blocked stock, quality stock and unrestricted stock of tool 𝑖.  

The expected unplanned non-availabilities (𝐸[𝑁𝐴𝑉]) for tool 𝑖 in local warehouse 𝑗 in a month are based 

on steady state performance of an Erlang loss system. Equation 2.1 shows the formula ASML uses to 

calculate the expected unplanned non-availabilities on local warehouse level.  

 𝐸[𝑁𝐴𝑉 ]𝑖,𝑗 = [𝐿(𝑂𝐻𝑖,𝑗, 𝜆𝑖,𝑗 ∗  𝑡𝑖
𝑠)] ∗ 𝜆𝑖,𝑗 −  [𝐿(𝐵𝑆𝐿𝑖,𝑗, 𝜆𝑖,𝑗 ∗  𝑡𝑖

𝑠)] ∗ 𝜆𝑖,𝑗 2.1 

Unplanned is stated explicitly, as some non-availabilities are planned. So for example, tools that are very 

expensive are not always put on stock, but non-availabilities are taken into account in the calculation of 

the service level in the tactical planning, i.e. they are planned and compensated for by stocking more 

cheap tools such that the required performance is still met. Any additional risk for non-availabilities is 

captured in the unplanned number of non-availabilities. That is why the second parts of the formula 

shown in Equation 2.1 is subtracted from the first part.  

In Equation 2.1, 𝜆𝑖,𝑗 represents the demand forecast of tool 𝑖 in local warehouse 𝑗 and 𝐿(𝑐, 𝜌) denotes 

the Erlang Loss probability. This is the probability of not having stock for a tool that is requested by the 

customer. Equation 2.2 defines this probability where 𝑐 denotes either the on-hand inventory level 

𝑂𝐻𝑖,𝑗 or the base stock level 𝐵𝑆𝐿𝑖,𝑗 and 𝜌 represents the forecast demand during supply lead time 𝜆𝑖,𝑗 ∗

 𝑡𝑖
𝑠.  

 

𝐿(𝑐, 𝜌) =

1
𝑐! ∗

(𝜌𝑐)

∑
1
𝑘!

∗ 𝜌𝑘𝑐
𝑘=0

   

2.2 

There are two limitations within the calculation of the expected unplanned non-availabilities. One 

limitation is that for the on-hand inventory level the unrestricted stock is used which includes tools in 

consignment. The tools in consignment are not available to fulfill a demand request. Therefore the on-

hand inventory levels to calculate the expected unplanned non-availabilities are too optimistic. A better 
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way to reflect the expected unplanned non-availabilities is to use the unrestricted stock of tool 𝑖 in local 

warehouse 𝑗 minus the tools in consignment allocated to local warehouse 𝑗.   

Another limitation is that the expectation is calculated by multiplying the probability of a non-

availability by the expected demand in a month (𝜆𝑖,𝑗). A better way to calculate the expected unplanned 

non-availabilities would be to multiply the probability of having 𝑥 parts short by 𝑥. Equation 2.3 shows 

the formula that can be used to do this. The formula shows the calculation of the expected backorders 

(𝐸[𝐵𝑂]). The calculation that ASML uses to determine the expected non-availabilities relates to a lost 

sales system. This is not the case, as ASML works with backordering. If the demand cannot be met, the 

materials will be delivered later. The calculation shown in Equation 2.3 refers to a model with 

backordering. 

 
𝐸 [𝐵𝑂](𝑂𝐻𝑖,𝑗) =  ∑ (𝑛 − 𝑂𝐻𝑖,𝑗) ∗  

(𝜆𝑖,𝑗 ∗ 𝑡𝑖
𝑠)

𝑛
∗ 𝑒−(𝜆𝑖,𝑗∗ 𝑡𝑖

𝑠)

𝑛!
 

∞

𝑛=𝑂𝐻𝑖,𝑗+1
 

2.3 

In Appendix A the results of the calculations in Equations 2.1 and 2.3 are compared. The conclusion of 

this comparison is that the calculations of the expected backorders and the expected non-availabilities 

have a positive correlation (the value of 𝑅2 is 0.93). The 𝑅2 measures the strength of the relation between 

the two calculations. A 𝑅2 value of 1 indicates that the result of one calculation is always exactly  𝑥 times 

higher than the result of the other calculation. In our case, we have a high value of 𝑅2. This means that 

when the expected backorders are high, the expected non-availabilities are almost always high as well.  

From the equation in Figure A.1 shown in Appendix A, we can conclude that an expected non-

availability of 1 approximately translates to an expected backorder of 0.54 and therefore the expected 

non-availabilities are too pessimistic and are lower in reality. However, due to the positive correlation 

and the high value of 𝑅2, we will keep using the calculation for the expected unplanned non-availabilities 

as ASML is already doing. We have made this choice because the current way of working at ASML is 

entirely based on the calculation of the 𝐸[𝑁𝐴𝑉]. To avoid confusion, we will continue to adhere to this 

method and as we have seen that both calculations are highly correlated it will not affect our results. 

2.1.3 Relative stock levels 

Another key performance indicator (KPI) to measure tool availability is the relative stock level. The 

calculation of the relative stock level is shown in Equation 2.4. The relative stock level is calculated for 

each tool 𝑖 in local warehouse 𝑗 and this is measured regularly. 

The corrected unrestricted stock is used to avoid that the relative stock level can become more than one. 

This situation occurs when the unrestricted stock is higher than the BSL. An example: if the BSL of a 

tool is 2, and the unrestricted stock is also 2 but these two tools are both in consignment, it can happen 

that a service engineer needs an extra tool for an upgrade of an installed base for example. When the 
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extra tool is received in the local warehouse, the unrestricted stock is 3 and the relative stock level will 

become more than 1. In this situation, the corrected unrestricted stock is used to calculate the relative 

stock level. The corrected unrestricted stock is the minimum of the unrestricted stock and the BSL.  

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑡𝑜𝑐𝑘 𝐿𝑒𝑣𝑒𝑙𝑖,𝑗1 =

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑡𝑜𝑐𝑘𝑖,𝑗

𝐵𝑆𝐿𝑖,𝑗
 

2.4 

One limitation within this calculation is the same as for the calculation of the 𝐸[𝑁𝐴𝑉]. In the example 

above, the relative stock level is 1, while actually only one tool is available in the local warehouse to 

fulfill a demand request since the other two tools are in consignment. The unrestricted stock without 

tools in consignment represents the relative stock level better. 

2.1.4 Customer service degree 

As explained in Section 1.3, performance indicators for tools are measured towards other internal ASML 

departments. For tools, there is a promise to the Customer Service department at ASML that 𝑥% of the 

tools needed for a maintenance action must be available in the local warehouse. This service level is 

measured over a certain time window. This is called the Customer Service Degree (CSD). The CSD is 

calculated by dividing the number of tools directly available from stock by the base stock level of that 

tool. So, the CSD should be at least 𝑥%. This can be seen as the fill rate as defined in literature since fill 

rate is defined as the fraction of demand that is satisfied directly from shelf (Guijarro, Cardós, & 

Babiloni, 2012). The CSD is different compared to the relative stock level as calculated in Equation 2.4 

since in that calculation the unrestricted stock includes also tools that are not directly available to fulfill 

demand requests.   

2.2 Allocation rules for replenishment of tools 

This section answers sub question 2: What are the allocation rules for replenishment of tools? 

This section explains how tools that become available in the central or local warehouse (e.g. repaired, 

used or new-buy tools) are allocated to local warehouses. As explained in the Chapter 1, there are two 

event types that need tools. These event types have different allocation rules. The next subsection 

describes the allocation rules for after sales events, and Section 2.2.2 for UI&R events.  

 

 
1 Note that ASML uses the term “Fill rate” for this key performance indicator 
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2.2.1 Shipments in the supply chain network for after sales events 

When the unrestricted stock of tool 𝑖 in local warehouse 𝑗 is lower than the 𝐵𝑆𝐿𝑖,𝑗, a replenishment 

shipment is scheduled automatically by NORA from the central warehouse or a local warehouse based 

on the 𝐸[𝑁𝐴𝑉]. NORA incorporates all regular shipments, priority shipments and reactive lateral 

transshipments. 

When multiple local warehouses face a shortage (the unrestricted stock of tool 𝑖 in local warehouse 𝑗 is 

lower than the 𝐵𝑆𝐿𝑖,𝑗) a prioritization rule is used. This rule determines to which local warehouse the 

tool is shipped when there are not enough tools available to fulfill all shortages. The prioritization rule 

is based on the 𝐸[𝑁𝐴𝑉] of the different levels in the supply chain shown in Figure 2.1.  

 

 

 

 

Figure 2.1: Levels for prioritizing shipment of tools when demand cannot be 

fulfilled from stock in the local warehouse 

First, the 𝐸[𝑁𝐴𝑉] on continental level (level 0) is calculated. This is done by a summation over all 

𝐸[𝑁𝐴𝑉]𝑖,𝑗 where the local warehouses are located in the same continent. The tool is sent to the continent 

with the highest 𝐸[𝑁𝐴𝑉]. The next step is to calculate the 𝐸[𝑁𝐴𝑉] of the different regions (level 1) in 

that continent. The local with the highest 𝐸[𝑁𝐴𝑉] (level 2) in that region will receive the tool.  

An example: Local warehouse 1 located in the region A has a shortage of tool 𝑖. Local warehouse 2 

located in the region B also has a shortage of tool 𝑖. The 𝐸[𝑁𝐴𝑉]is calculated on continental level and 

is in this case the same. Secondly, the 𝐸[𝑁𝐴𝑉]of the regions A and B are calculated. Region A has the 

highest 𝐸[𝑁𝐴𝑉]so the tool is sent to local warehouse 1 to fulfill demand there.   

After it is determined to which local warehouse the tool is sent, it is determined from which warehouse 

the tool is delivered. A replenishment can be scheduled from the central warehouse, but it is also possible 

to replenish from another local warehouse.  

ASML has two so-called supply hubs. They are located in Region C (CWH1) and in Region E (CHW2) 

and are used as central warehouses. Besides, CWH1 acts as an Emergency hub. This means that some 

stock is reserved for emergency shipments and that the other amount of stock can be used to fulfill 

regular demand.  
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To determine from which warehouse demand or shortages should be satisfied, the following 

prioritization is used:   

Confidential information 

From the prioritization rules above we can conclude that: 

Confidential information 

2.2.2 Shipments in the supply chain network for UI&R events 

Activities that belong to UI&R events are upgrades, installs and relocations. An upgrade means that 

components in the current installed base at the customer are replaced by new components. Installs means 

an installation of a new installed base at the customer and a relocation means that an installed base 

installed at customer A in Region A is relocated to another factory of customer A in Region D for 

example.  

UI&R events are planned and prepared in advance. The tools needed for an event in a local warehouse 

including start- and end-date are mentioned on a ‘pre-defined’ list. Based on this list, tools are reserved 

in the ERP-system for the period they are needed. As long as there are no shortages of the tools needed, 

NORA allocates these tools automatically to the correct local warehouse and the tools will be shipped 

to the local warehouse. When there is a shortage and NORA cannot allocate the tool to the local 

warehouse, the UI&R department will search for solutions.   

While UI&R events are planned and the tools are reserved, a non-availability might occur for these 

events as well. The reasons for this will be investigated in the next section. 

2.3 Main causes of unplanned non-availabilities of tools 

This section answers sub question 3: What are the main causes of unplanned non-availabilities of 

tools? 

The root causes of non-availabilities are analyzed to get insight into the factors that are important to 

prevent non-availabilities. The root causes are obtained by project meetings with employees in different 

positions and by analyzing data. The causes of non-availabilities of tools are described below.   

Note that detailed information about the root causes are removed in this public version. 

1. New buy lead time takes sometimes longer than expected. The time of placing an order for a 

new tool (new buys) until the moment that the tool is received in the central warehouse could 

take longer than expected. Table 2.1 shows the percentages of new buys that were on time.  

Table 2.1: Percentage of new buys on time in the central warehouse 

Confidential Table 
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2. Tools in stock are held on restricted storage locations for long times. This means that they 

are not usable to fulfill demand and the number of usable tools are decreasing.  

3. The repair lead times takes sometimes longer than planned. Tools that cannot be repaired in 

a local warehouse, should be repaired at the factory at ASML or at the supplier. This could take 

longer than planned, resulting in a reduced pool size longer than expected meaning that the risk 

of non-availabilities increases.  

4. Tools stay in customer consignment longer than planned. Tools used for the different event 

types have a planned number of days they are allowed to stay in customer consignment. Data 

showed that they stay longer than planned in consignment.  

5. A quality issue can happen during transport. This result in the fact that a tool is not directly 

usable when it arrives at the local warehouse.   

6. Quality of tools does not fall within specifications. When the quality of tools does not fall 

within the specifications during the certification phase, the tool is not certified. For small repair 

actions, the tool is repaired immediately and the tool will still be certified. For big issues, the 

tool pool is temporary decreased since the tool should first be repaired. This takes more time 

than planned. Because of the decrease in the pool size, non-availabilities can occur. 

7. The calibration lead times takes longer than planned. Data showed that the planned lead 

times for calibration of tools are too optimistic and it takes longer than expected to calibrate 

tools.  

The above mentioned main causes of a non-availability are classified in different categories as shown in 

Table 2.2. In Table 2.2 we see that there are multiple causes related to the supply and the quality of tools. 

There is already a high focus on the quality of tools in different projects. Due to that reason and in 

accordance with the management, in this thesis we will focus on the supply related issues. Since the root 

cause that belongs to the demand category is also part of the supply related issues, we will improve (a 

part of) that problem as well.  

Table 2.2: Classification of main causes non-availabilities of tools 

   Demand Supply Quality 

1 New buys  x  

2 Restricted storage locations   x 

3 Repair  x  

4 Consignment x x  

5 Usability   x 

6 Certification   x 

7 Calibration  x  
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2.4 Analysis of the current Control Tower 

This section answers sub question 4: What components of the current Control Tower for parts can be 

used for tools? 

The current Control Tower exists for spare parts meaning that all service tools are excluded and that no 

alarms are triggered for service tools. This section will give a description of the dashboard and will dive 

deeper in the current alarms to check whether the alarms for spare parts can also be used for a Control 

Tower for tools. The differences in processes between spare parts and tools are described to explain why 

an alarm is useful for tools as well or not, or what needs to be modified in the current alarms to use it 

for tools.  

The Control Tower is built using the business intelligence software package ‘Spotfire’ and consists of 

multiple tabs of visualizations. The main tab shows an overview of all the service parts. The user can 

filter on 12NCs by selecting an alarm and/or satisfying a certain criticality level. When a 12NC is 

selected, the user can find detailed information in other tabs to reveal more information and analyze the 

situation that triggered an alarm. In case of shortages, the automated replenishment application NORA 

triggers a replenishment to a local warehouse. NORA does not analyze trends and patterns on local 

warehouse or regional level, so it cannot give a warning on exceptions or threads in the supply chain 

(Muller, 2018). 

The data in the current Control Tower is updated regularly. The input data is retrieved from different 

sources. The Control Tower performs calculations on the input data to generate five alarms which are 

explained below.  

Demand sensing  

This alarm is triggered if the worldwide usage of a specific 12NC in a short-term and long-term period 

is substantially higher than the forecasted usage in those periods. To make the short-term usage pattern 

more important, a higher weight factor is being used. The usage of spare parts consists of usage for after 

sales events and for UI&R events.  

The list below must also be taken into account as tool usage aspects when a demand sensing alarm is 

made for tools. The mentioned quantities are added to the demand as known demand.  

• Actual demand for both after sales events and UI&R events should be compared with the 

forecasted usage of these events.  

• Demand for calibration and certification must also be visible. To avoid a situation where tools 

cannot be used because they are not certified, while there is demand for these tools, it is 

important to see these tools as a demand source. The expiration dates for calibration and 

certification are known in advance so we know when calibration or certification should take 
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place. This means that these events can be planned. They also give a good indication of future 

demand. 

• Defect tools should also take into account. A Control Tower for tools should be able to visualize 

the actual defects versus the forecasted defects. This can show an increase or decrease in defect 

tools which can trigger an alarm for example to trigger new buys. 

Supply sensing   

This alarm is triggered when the supply of new spare parts arrives structurally later than scheduled.  

Delay in supply could lead to non-availabilities in local warehouses. The trigger for this alarm is the 

difference between the expected number of spare parts received and the actual number of spare parts 

received. The expected number of spare parts received is based on the supplier lead time mentioned in 

the ERP system and is deterministic.  

The different supply flows for tools that can be incorporated in a supply sensing alarm are:  

• New buys: New tools entering the supply chain that are ordered at the supplier. However, since 

tools are used instead of consumed, they are not ordered often at the supplier when the BSL is 

not fulfilled. After tools are used they return to the local warehouse to fulfill the BSL again.  

• Repair: Tools that need repair are most of the times sent to the factory of ASML. Lead times 

are therefore long, but currently a project is ongoing at ASML to repair more tools locally or in 

the region.    

• Certification: The certification of some tools is performed by an external company at local 

warehouses. Other tools are sent to an external company to be certified and there is another flow 

where tools are certified in Veldhoven. 

• Calibration: The same applies as for certification.   

• Consignment: Lead times for tools in consignment are assumed to be deterministic by ASML 

and they are planned to return to the local warehouse after a certain number of days after they 

are sent to the customer factory for after sales events. The tools need to be returned within those 

days so that they can fulfill another demand request again. In the current alarms for spare parts, 

deterministic lead times are taken into account. A more realistic way for a supply sensing alarm 

is to use lead time uncertainty instead of assuming deterministic lead times.  

Shortage on lead time for new buys  

The ‘shortage on lead time’ alarm is triggered when a shortage is expected at the end of the supplier 

(new buy) lead time. This means that for example a new buy or repair order at the time of an alarm 

should still prevent a shortage, when the supply arrives upon supplier lead time. The reason for this 

alarm is to prevent future shortages that are caused if, for instance, no new buys or repairs are scheduled. 

When on-hand stock levels are projected towards the future, a shortage on supplier lead time can be 

seen. Shortage on supplier lead time indicates that there will be a shortage in the future and the stock 
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level on lead time is below the BSL. The purpose of this alarm is detecting problems in the ordering 

process so that they can be resolved in time and a non-availability can be avoided. The Control Tower 

simulates the future stock levels per week using the forecasted demand and scheduled receipts quantities. 

This simulation is deterministic since it is based on fixed demand forecast (same for each week) and 

supplier lead times. 

• To apply this alarm in a Control Tower for tools, all different lead times as mentioned in the 

supply sensing alarm should be taken into account. To improve the alarm, lead time uncertainty 

should be taken into account since in the Control Tower for parts lead times are assumed to be 

deterministic. Besides, the usage aspects as mentioned in the demand sensing alarm should be 

taken into account.  

Shortage within lead time 

The ‘shortage within lead time’ alarm is triggered when the BSL is met right now and when the new 

buy lead time ends, but a shortage occurs in between. The logic behind this alarm is to try to shift the 

arrival of new stock to an earlier moment (this process is called re-inning supply). Re-inning is done in 

the automated NORA application for spare parts. The purpose of this alarm is to detect supply expediting 

opportunities to balance the stock level over time.  

• Confidential information 

Regional support  

This alarm is triggered when the risk of non-availabilities can be reduced with proactive lateral 

transshipments between regions. When a region has a shortage of a spare part and there is no excess of 

spare parts in another region, a proactive lateral transshipment can take place from the region with the 

lowest NAV risk to the region with the highest NAV risk. This is only done as long as the local 

warehouses in the sending region still keeps one spare part after sending. This intervention takes place 

to limit the risk of a non-availability.  

• For service tools, using proactive lateral transshipments to balance the risk of non-availabilities  

is possible. At this moment, no proactive lateral transshipments are used for tools. Muller (2018) 

already investigated this method extensively. Therefore, the focus of this thesis will not be on 

proactive lateral transshipments, since with some modifications in the method of Muller (2018) 

this operational intervention can be implemented for tools as well. 
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2.5 Conclusion on the current situation analysis 

The conclusion in Section 2.1 is that the four key performance indicators used to measure tool 

availability are: criticality level, expected unplanned non-availabilities, relative stock level and customer 

service degree. Only the customer service degree is measured time based. To show exactly the amount 

of tools directly available in the local warehouse, the consignment stock should be subtracted from the 

unrestricted stock. This reflects the value of the non-availabilities better. Besides, the equation of the 

expected backorders is a better way to reflect the expected non-availabilities.  

In Section 2.2 we analyzed the allocation rules for replenishment of tools. We found that regular 

replenishments from the central or a local warehouse are triggered by the NORA application. Proactive 

lateral transshipments are not used in the supply chain network for tools.   

In Section 2.3 we investigated the root causes for non-availabilities. Multiple causes are related to the 

supply and the quality of tools. In this thesis the focus will be on the supply related issues. In the Control 

Tower the focus will be on an alarm(s) related to the supply of tools.    

In Section 2.4 the current Control Tower was analyzed to investigate which components of the current 

Control Tower can be used for a Control Tower for tools. The alarm types used in the Control Tower 

for spare parts can be used for tools, but it is necessary to add more data, e.g. defect rates, calibration 

and certification data. In the Control Tower for spare parts only the regional support alarm uses 

operational interventions for proactive decision making by proactive lateral transshipments. Proactive 

lateral transshipments are outside the scope of this study since with some modifications in the method 

of Muller (2018) this operational intervention can be implemented and will be valuable for tools as well. 
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3. Literature Review 

This chapter gives an overview of the available literature regarding Control Towers. Section 3.1 consists 

of different alarm generation techniques. An overview of several operational interventions that can be 

used when a certain alarm is triggered is listed in Section 3.2. How finite horizons can be modeled is 

investigated in Section 3.3. Section 3.4 consists of different ways to incorporate stochasticity in the 

model and simulation models and ways to verify and validate a model is investigated in Section 3.5. The 

conclusion of this chapter is drawn in Section 3.6.  

3.1 Alarm generation 

This section will answer sub question 5: What kind of alarms are described to improve material 

availability?  

In the paper of Topan et al. (2020) four streams of research that are related to alarm generation in 

operational planning are identified: supply chain disruption and risk management, spare parts demand 

forecasting, condition monitoring in spare parts planning and supply chain event management. The last 

stream focuses on supply chain monitoring using real-time information, detecting realized or potential 

deviations from plans, and intervening when needed (Otto, 2003). Therefore, this stream focuses on 

operational level while the other streams mainly focus on long-term planning.  

Bodendorf & Zimmermann (2005) proposed mechanisms for a proactive supply chain event 

management system. A benefit of such a proactive system is that there is more time to solve the problem, 

which means there are more alternatives to solve the problem resulting in a reduction of costs to solve 

the problem. The data gathered to trigger an alarm include status data on time and quality. Critical 

profiles are used to prioritize events to focus on.  

Trzuskawska-Grzesińska (2017) and Topan et al. (2020) showed that real-time information on 

operational level can be gathered about demand, supply and stock related processes. Since supply is 

pipeline inventory and therefore part of the total stock, we will not make a distinction between supply 

and stock. Therefore, in the following subsections we divided the alarms in the two categories: demand 

and stock related alarms.  

3.1.1 Demand related alarms 

Demand related alarms indicate situations where the demand patterns deviates from the forecast. 

Demand alarm generation is based on traditional forecasting techniques, e.g., moving average or simple 

exponential smoothing. Short-term forecasts based on real-time information is more accurate to forecast 

demand. Topan et al. (2020) mentioned condition based monitoring as a possibility to forecast.  
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Lin et al. (2017) considered a condition based spare parts supply, and showed that an optimal condition 

based inventory policy is 20% more efficient on average than a standard base stock policy. The 

degradation behavior is described by a Markov process. Olde Keizer, Teunter & Veldman (2016) 

considered the joint optimization of condition-based maintenance and a condition-based spares 

inventory for a multi-component system. They describe an optimization model and Markov Decision 

process to decide when to order spare parts based on the information on the state of components in the 

installed base. As operational intervention they described to reserve the last spare part if the component 

is close to failure, or to delay an order when the spare part is in good condition.  

Since demand related alarms indicate situations where the demand patterns deviates from the forecast, 

it is important to measure the performance of the forecast. One way to describe the performance of the 

forecast is the accuracy. Some forecast accuracy measures are described below. 

Commonly used forecast error measurements as stated by Shcherbakov et al. (2013) are divided into 

groups according to the calculation method. The first group is based on the absolute error calculations 

and consists of the following measurements: the Mean Absolute Error, Median Absolute Error, Mean 

Square Error and Root Mean Square Error. These measurements are the most popular but are sensitive 

to outliers. Heheimat et al. (2016) and Hyndman & Koehler  (2006) stated that common used measures 

are the difference between the actual usage and the forecasted usage, the Mean Square Error, the Mean 

Absolute Deviation, the Mean Absolute Percentage Error and the Mean Absolute Scaled Error.  

Conclusion 

Condition based monitoring for tools is not widely used at ASML. Condition based monitoring can be 

a good method to forecast demand, but since the scope of this thesis is not on tactical level and 

forecasting belongs to the tactical level at ASML, condition based monitoring will not be implemented. 

At ASML, there is a separate forecast for tools and spare parts. The ‘confidential information’ method 

is used to forecast demand of tools. The forecast is calculated on a regular basis and the forecast is 

compared with the actual usage to check the accuracy. A demand sensing alarm could be triggered when 

the forecast is not in line with the usage. 

3.1.2 Stock related alarms 

Stock related alarms should indicate situations where the on-hand inventory levels drops below the 

target. Topan et al. (2020) mentioned that the following information could be useful to trigger an alarm 

at the supply side: on-hand and pipeline inventory levels in each warehouse and status information about 

return, resupply, repair processes and completion times. Since pipeline inventory and therefore lead 

times play a major role in determining and predicting on-hand stock, we will first explain how arrival 

times of tools can be monitored.  
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Expected delivery dates 

Xu (2011) analyzed the real-time information for supply chain quality and highlights some of the key 

technologies that have the potential to significantly improve the performance of supply chain quality 

management. Radio frequency identification has been adopted in supply chain management for 

improving tracing capability. Alias et al. (2014) also mentioned the importance of radio frequency 

identification for easy detection of deviation in terms of arrival times. 

Knoll, Prüglmeier & Reinhart (2016) presented an approach for predicting future inbound logistics 

processes. The main objective was to support inbound logistics planning using machine learning. The 

idea of machine learning is to extract knowledge during the training which can be transformed into future 

inbound logistics planning tasks. DHL has developed a machine learning-based tool to predict air freight 

transit time delays in order to enable proactive mitigation (Gesing, Peterson, & Michelsen, 2018). The 

system can also identify the causes for the delays up to a week in advance to enable better operational 

schedules.  

The prediction of future stock levels and the related signals are based on the expected dates of deliveries 

and repairs. When a part is delivered later than expected, it is possible that a maintenance event cannot 

be executed. Having fewer parts on stock than expected can also increase the risk of a shortage. Noticing 

when a part will not be available on time, might give enough time to react and get a part from somewhere 

else. Information about delivery and repair times can also be used to deliver feedback on the parameters 

from the database, like the expected lead or repair time and its deviation (Keppels, 2016). 

On-hand stock below target 

As mentioned before, the stock related alarm should be triggered when the on-hand stock level drops 

below the target. Continuous review models (s, S) or periodic review models (R,S) can be used for this. 

In continuous review models the safety stock levels should cover uncertainty in undershoot plus the 

uncertainty in lead time demand. The undershoot can be defined as the quantity below the reorder level 

‘R’ at the time where a replenishment decision is made (Kouki, Sahin, E, Jemai, & Dallery, 2009). The 

safety stock levels in periodic review models should cover uncertainty in demand during lead time plus 

the review period. Less safety stock is needed for continuous review models, but in practice periodic 

review models are used to facilitate multi-item coordination (van der Heijden, 2018).  

Keppels (2016) described the following stock related triggers:  

• For corrective maintenance the most important signal a Control Tower needs to detect is the 

expected moment when the stock level of a spare part will drop below its base stock level. When 

the lead- and/or repair time of a part is longer than the time until the base stock level is reached, 

it becomes a risk. This signal just alerts when a new part needs to be purchased to follow the 

regular supply and demand pattern. 
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• Another way to generate a signal is to show what the probability is that the stock level will drop 

below zero, which means that there is a backorder. Given this probability, a threshold value 

must be set to generate signals. This threshold value can be dependent on many factors, like the 

costs of the parts and their storage versus shortage costs. Another factor can be the speed and 

difficulty of acquiring a new part or the uncertainty of the expected demand.  

Conclusion 

The CSCM department is not responsible for the performance of ASML’s suppliers. For the Control 

Tower it is still useful to visualize the supplier lead time and on time delivery, since it will affect the 

tool pool size which is important on operational level. Also the lead times of repairs and calibration and 

certification should be analyzed. Tracking the movement of tools across the supply chain is only done 

administratively in the ERP-system. RFID could be a useful method to improve the traceability of tools 

and detect early deviations in arrival times. It is also useful to use machine learning to predict future 

inbound supply, but due to time constraints this method will not be implemented during this research. 

Tools are not replenished every time they drop below the base stock level, since they will return the 

supply chain. There should be enough tools in the pool to make sure that the inventory positions are kept 

at the base stock levels. NORA triggers a replenishment when the risk of a shortage is high. This is the 

case when the base stock level is not fulfilled. Proactive replenishments to avoid non-availabilities are 

currently not used at ASML for tools. The idea of Keppels (2016) to predict future stock levels can be a 

good way to proactively act to avoid non-availabilities. Based on the expected stock levels we can 

predict the expected non-availabilities in the future. This makes it possible to take some action 

proactively to reduce the expected non-availabilities. We will return to this method in detail in Chapter 

4. 

3.2 Operational interventions 

This section will answer sub question 6: What operational interventions are available to proactively act 

upon shortages of tools? 

Topan et al. (2020) review a paper on operational spare parts service logistics in Service Control Towers. 

This paper focuses on both reactive and proactive interventions. Interventions are triggered by alarms 

from the application layer of the Control Tower at fixed points in time (periodic review), or at certain 

events (continuous review). Proactive interventions are triggered at fixed points in time (Topan & van 

der Heijden, 2020). In literature, no operational interventions are found specific for tools. Therefore, the 

paper of Topan et al. (2020) is used. In the following subsections we divided the operational 

interventions into three groups and the interventions belonging to each group are explained.   
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3.2.1 Stock allocation 

Proactive stock reallocation is used to balance availability among downstream locations by using real-

time information and deviating from tactical inventory policy. Specific aspects of stock allocation 

mentioned in Topan et al. (2020) include: 

Proactive stock allocation from upstream  

Stock allocation rules have been developed for determining which local warehouse receives a tool first. 

Agrawal, Chao & Seshadri (2004) investigate the benefit of using real-time demand (inventory) 

information to schedule rebalancing shipments in a network. The dynamic rebalancing problem has two 

decisions, the timing of the balancing shipments and determination of the new stocking levels at the 

retailers, as a dynamic program (DP). 

At ASML, there exists already a lot of allocation rules to determine which local warehouse receive a 

tool first, so we will not focus on the allocation rules in this thesis. The allocation rules at ASML are 

described in Section 2.2. After-repair stock reallocation and reallocation of returned tools are also 

included in the prioritization rules at ASML as explained in Section 2.2. NORA takes care of all these 

allocations.  

Dynamic inventory rationing   

The problem of allocating on-hand inventory among different demand classes is known as inventory 

rationing problem (Alfieri, Pastore, & Zotteri, 2017). A critical level that can vary is set such that, when 

on-hand inventory falls below it, low priority demand is back-ordered and tools are reserved for possible 

future high priority orders. Alfieri, Pastore & Zotteri (2017) proposes two dynamic inventory rationing 

policies for a single–echelon inventory system. Enders, Adan, Scheller-Wolf, & van Houtum (2014) 

made a model for inventory rationing where base stock policies are used for replenishment and where 

demand and lead times are stochastic.    

Reallocation of parts reserved for preventive maintenance  

Parts reserved for preventive maintenance can be used as an additional supply source in order to prevent 

stock-outs. This leads to postponing planned preventive maintenance, bearing an increased failure risk 

for the associated system (Topan, Eruguz, Ma, van der Heijden, & Dekker, 2020).  

Skipping regular replenishment  

Pinçe, Frenk & Dekker (2015) developed an inventory control policy taking into account contract 

expirations. The key idea is to reduce the base stock level of one-for-one policy before obsolescence 

occurs and let demand take away excess stock. They call this policy the single-adjustment policy. They 

apply numerical inversion of generating functions to the calculations. The goal of this intervention is 

holding costs reduction, while the focus of this thesis is improving material availability. 
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3.2.2 Expediting 

Expediting supply means to speed up supply processes for the purpose of receiving supply faster. 

According to Topan et al. (2020), the different types that can be distinguished are described below.  

Emergency shipment from upstream  

If the on-hand inventory level of a tool in the local warehouse (downstream) is not enough to fulfill 

demand, the central warehouse (upstream) can send the tool to fulfill demand. An emergency shipment 

is a faster but more expensive than a regular shipment to fulfill demand. As there is hardly any stock in 

the central warehouse for tools, this is not a suitable intervention. Since there is a certain pool size for 

tools, almost all tools are located as much as possible in the local warehouses to reduce lead times when 

a tool is needed at the customer factory.  

For more information about emergency shipments from upstream we refer to Evers (2001) since he 

developed two heuristics to assist managers in determining when stock transfers should be made. 

Howard, Marklund, Tan & Reijnen (2015) focusses on using information on orders in the replenishment 

pipeline to achieve cost-efficient policies for requesting emergency shipments.  

Lateral transshipment  

As discussed in Section 2.4, proactive lateral transshipments can be useful to proactively act upon a high 

risk of non-availabilities. Since Muller (2018) investigates this intervention in detail and proposed a 

method to implement at ASML, we will not dive into detail. We refer to Muller (2018) for detailed 

information about the intervention and proposed method.  

Two lateral transshipment policies based on availability and inventory equalization are proposed by 

Burton & Banerjee (2005). Hae Lee, Woo Jung & Sang Jeon (2007) proposed service level adjustment 

as a new lateral transshipment policy to effectively deal with demands. This policy reduces risk by 

forecasting stockout in advance and efficiently responding to actual stockout by combining emergency 

lateral transshipments with proactive lateral transshipments. The timing and quantity of preventive 

transshipment decisions is investigated by Feng, Fung & Wu (2016). The paper addresses the preventive 

transshipment problem in a multi-location inventory system. Decisions are made before demands are 

observed to prevent future stock out. Patriarca, Costantino & Di Gravio (2016) formulated a model in a 

multi-echelon, multi-item system where lateral transshipments represents an alternative replenishment 

policy to enhance system availability. The model aims to reduce the system expected backorder, with 

respect to strict availability and budget constraints. Reactive and proactive transshipments are 

considered by Van der Heijden & Topan (2020). They propose a generic model that integrates decisions 

on reactive and proactive interventions. All proactive interventions are made centrally by solving an 

MILP model. Results show that proactive emergency shipments contribute most to downtime reduction. 

For high demand low price parts, proactive lateral transshipments also have a significant contribution to 
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downtime cost reduction. Zhao, Ryan & Deshpande (2008) also proposed a model that uses reactive 

lateral transshipments in case of stockouts, but can also separately allocate stock when new inventory is 

produced. Glazebrook et al. (2015) model a multi-item backorder system under period review and in a 

finite horizon. They proposed a hybrid approach by rebalancing stock between pairs of locations when 

a shortage occurs at one of them.   

Expediting repair  

Expedited repair have a shorter lead time than regular repair. Arts (2017) presented a model that assists 

a decision-maker in determining when repair should be expedited. A reduction in stock investment was 

achieved by expediting the repair of expensive parts during high demand fluctuations.  

Caggiano, Muckstadt & Rappold (2006) developed an integrated real-time model for making repair and 

inventory allocation decisions in a two-echelon repairable service parts system. Their model uses real-

time information in deciding which items to repair, where to ship available units, and by what mode to 

ship them in each period of the planning horizon, based on a finite horizon. 

Somarin et al. (2016) investigated a repairable service parts inventory system that has a central repair 

facility and several locations storing inventory. They developed a cost effective after-repair service parts 

allocation policy, which minimizes operational costs and effectively fulfills demand. 

3.2.3 Conclusion on the operational interventions and their usability at ASML 

1. Proactive stock allocation from upstream. ASML already uses different allocation rules as 

explained in Section 2.2. The goal of these allocation rules are to reduce the risk of non-

availabilities. Therefore, stock allocation from upstream is outside the scope of this thesis.  

2. Dynamic inventory rationing. This intervention is interesting when tool availability should be 

improved for some customers. The goal of this thesis is to improve availability for all customers. 

Therefore, this intervention is outside the scope of this thesis.  

3. Reallocation of parts reserved for preventive maintenance. When a tool is needed in 

emergency cases, tools reserved for preventive maintenance or for UI&R can be used if that fits 

within the time frame the tools are needed.  

4. Skipping regular replenishment. The goal of this intervention itself as explained in the papers 

is reducing holding costs. This is not the focus of this thesis, because the focus is on reducing 

non-availabilities. When an emergency shipment or lateral transshipment is used, a regular 

shipment is skipped automatically.  

5. Proactive emergency shipments. As long as the central warehouse has stock, this intervention 

reduces the risk of shortages. This intervention is not usable for tools, since NORA ensures that 

there is no surplus of stock in the central warehouse, since all tools are allocated to local 

warehouses.  
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6. Proactive lateral transshipments. This is a useful intervention to pooling non-availability risk, 

but since Muller (2018) investigated this method already for service parts at ASML we will not 

implement this method. Adapting his logic a bit to make it useful for service tools is needed to 

implement proactive lateral transshipments also for service tools.  

7. Expediting repair. This is a useful intervention when repair takes longer than planned. In our 

case, when we see that tools in consignment, or tools from calibration or certification are longer 

away than planned, we can also expedite these supply sources.  

8. Emergency certification or calibration. The tools at ASML must be certified once a year. The 

planning has been made in such a way that the tools are certified when their due dates expired 

by an external company. It will hardly occur that a tool must already be certified before the 

external company has arrived. Therefore, this intervention does not have much impact on non-

availabilities. 

Table 3.1 gives a summary of which operational interventions can be useful to implement at ASML and 

which operational interventions are not useful at ASML or are already implemented.  

Table 3.1: Summary of the usability of operational interventions at ASML 

 
  

Useful and 

in scope 

Useful and 

out of scope 

Not useful at 

ASML 

1 Proactive stock allocation from upstream   x 

2 Dynamic inventory rationing  x  

3 Reallocation of parts reserved for preventive maintenance   x 

4 Skipping regular replenishment   x 

5 Proactive emergency shipments   x 

6 Proactive lateral transshipments  x  

7 Expediting supply x   

8 Emergency certification, calibration   x 

3.3 Length of finite planning horizons 

This section will answer sub question 7 (a): How can finite horizons be modeled? 

A problem has a finite horizon when there is a known upper bound to the number of decision stages a 

problem has. For operational planning problems, a finite horizon is a key aspect in the analysis since it 

focus on short-term planning. In this section we investigate what the length of a finite horizon should 

be.  

Abbasi et al. (2018) show that in multiple customer cases the average fill rate decreases when the review 

period length is increased. This finding is consistent with previously published studies of the single 

customer case, e.g. Banerjee & Paul (2005). The fill rate is defined as the fraction of demand that is 

immediately satisfied from on-hand stock. Chen, Lin & Thomas (2003) show that the expected value of 

the actual fill rate is greater than the value given by the infinite horizon expression. The implication of 

their results is that an inventory manager in a finite horizon situation who uses the infinite horizon 
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expression to set stocking levels will achieve a higher than desired expected fill rate at greater than 

necessary inventory expenses. Tan et al. (2017) proved that the expected fill rate assuming an infinite 

performance review horizon exceeds the expected fill rate assuming a finite performance review horizon. 

This means that there exists some inventory overstocking when the traditional procedure is used. Based 

on this observation and the complexity of the problem, a simulation-based algorithm is used to reduce 

excess inventory while maintaining the contractual target fill rate. 

Thomas (2005) focuses more on the distribution of the fill rate rather than its mean. He investigates the 

effects of the horizon length, the demand distribution and the desired probability to meet the fill rate 

target, and concludes that the review length can both play in favor or against the manager and customer. 

Short review horizons provide the benefit to the supplier that large demand realizations may not occur 

during a particular review horizon, increasing the chance that the target fill rate is met. Long review 

horizons increase the chance that large demand realizations are seen but also give the supplier more 

opportunity to recover from large realizations. 

Idrissi, Basten & van Houtum (2020) introduced the new performance measure extreme long down that 

limits the number of deliveries that are later than an agreed threshold during the contract period. Using 

a finite horizon Markov decision process, they derived the optimal spare parts inventory policy for 

meeting the contract at minimum costs. They also concluded that based on previous work, it is clear that 

the contract duration cannot be ignored and should be counted for. If not, the related uncertainty will 

manifest itself in the profitability of the service contract either via higher than necessary holding costs 

or via expensive emergency costs and potentially penalties. 

3.4 Lead time uncertainty 

This section will answer sub question 7 (b): How should stochastic behavior be incorporated in the 

model with a focus on lead time uncertainty? 

Mohebbi & Posnor (1998) use exponentially distributed lead times to account for stochasticity. They 

use different parameters to find out what the effect is of lead time uncertainty on the total costs. Ryu & 

Leen (2003) developed two models to reduce lead time variability. They also considers stochastic lead 

times and assumed that the distributions of lead times are exponential. Abginehchi & Farahani (2010) 

showed in their literature review a lot of papers which assumed exponential lead times to account for 

stochasticity. Diabat, Dehghani & Jabbarzadeh (2017) present a joint-location inventory model. They 

incorporate uncertain lead times into the model utilizing a queuing approach and their order lead times 

are randomly distributed based on the exponential distribution.  

Humair et al. (2013) extend the guaranteed service model for safety stock optimization to incorporate 

random lead times in multi-echelon networks. They show that it is possible to calculate inventory levels 
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more accurately when variable lead times are used. Lead-time variability is most readily calculated from 

transactional data available in the ERP system.  

Johanson (2019) investigated various periodic review policies for inventory control of a single item 

facing compound Poisson demand. He assumes that emergency orders have a short constant lead time 

and are more expensive than normal orders for which the extra lead time is specified as a stochastic 

multiple of the review period. The lead times for normal orders are distributed as the sum of the 

emergency lead times and a stochastic multiple 𝑁 of the review period 𝜏. 𝑁 can denote a constant or a 

stochastic number of review periods. The two parameters for the stochastic variable 𝑁 are its expected 

value and its distribution type. 

3.5 Simulation 

This section answers sub question 7 (c): How can a model be evaluated, verified and validated? 

Simulation models can be used to test a set of interventions in order to make a decision on the 

implementation of one or more of the alarms and interventions. There are multiple types of simulation, 

such as discrete-event simulation and continuous simulation. Law & Kelton (2015) introduces three 

dimensions that can be used to distinguish between simulation types: 

• Static versus dynamic models. Static models represent a fixed point in time whereas dynamic 

models show system behavior over a time horizon.  

• Deterministic versus stochastic. Deterministic models do not incorporate any uncertainty. In 

stochastic models, the transformation from input to output is stochastic and dependent on 

random factors.   

• Continuous versus discrete. In a continuous model, state variables change continuously. In 

discrete models, state changes are triggered by events. They changes in discrete points in time.  

In this research, lead times are stochastic and state changes are triggered by events (e.g. arrival of a tool 

in the warehouse). We will use a dynamic discrete-event simulation model (Law & Kelton, 2015) to 

obtain insight in the added value of the proposed alarms and intervention and to test the input parameters. 

Discrete-event simulation is an application of Monte Carlo simulation. 

Verification and validation of a simulation model 

In order to draw valid conclusions it is important that the simulation model is a reasonable model for the 

real process. This can be established by carefully building and validating the model. To check whether 

the proposed alarm and intervention model coincides with the model as conceived, it is important to 

verify the model. Law & Kelton (2015) suggest techniques to verify a model that is suitable for this 

research. The first and foremost technique used to verify a model is to check the code of the model. It is 
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important to let more than one person review the code. Other techniques are the use of a built-in debugger 

and checking the inputs and outputs of the model.  

Validating a model is the process of checking whether the model represents the reality well enough (Law 

& Kelton, 2015). Collecting high-quality information and data obtained by experts opinions is one of 

methods Law & Kelton (2015) suggest to validate a model. Other applicable ways they suggest is to 

interact often with the decision-maker, maintain an assumptions document, discuss with subject experts 

and perform sensitivity analysis to validate the model. Sargent (2007) suggests to also interact with 

future users of the model instead of only with the decision-maker. In this approach the focus of 

determining the validity of the model moves from the model developers to the model users. Also, this 

approach aids in model credibility. 

3.6 Conclusion on the literature review 

Currently there is a research gap on Control Towers for service tools. No literature is available on 

methods that can be used to include service tools in Control Towers. This thesis contributes to that part 

of Control Towers by introducing some alarm and interventions that can be used in a Control Tower for 

tools.  

From the literate review is concluded that the alarm-types that are useful for a Control Tower are demand 

related alarms and stock related alarms. Suitable interventions for ASML related to supply are to 

expedite tools in consignment. Topan et al. (2020) mentioned that the information needed to trigger an 

alarm on the supply side are: on-hand and pipeline inventory levels in each warehouse and status 

information about return, resupply, repair processes and completion times. Using some of this 

information, we will use the idea of Keppels (2016) to predict future stock levels to take proactive actions 

to limit non-availabilities.  

Based on these future stock levels we can calculate the future expected non-availabilities. If these future 

expected non-availabilities are above a certain threshold, the supply should be expedited to reduce the 

risk of non-availabilities and to be proactive to avoid non-availabilities. As mentioned in Bodendorf & 

Zimmermann (2005), critical profiles need to be used to prioritize the generated alarms.  

Literature shows that the length of the horizon matters for the solution of the problem. Among others 

Idrissi, Basten & van Houtum (2020) concluded that contract duration cannot be ignored and should be 

counted for. Chapter 4 will explain how the contract duration is taken into account in the Control Tower 

for tools.  

Finally, we found that a simulation model is a good way to evaluate the alarms and interventions and to 

find the optimal parameters. In Chapter 4 the details of the simulation model will be explained. The 

methods of Law & Kelton (2015) will be used to verify and validate the model.  
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4. Model Design 

The goal of this research is to add proactive decision rules to the supply chain network for tools. Chapter 

3 introduced several proactive interventions that can be executed when a supply related alarm is 

triggered in a Control Tower for tools. In Section 1.4, we conclude that the tool types included in the 

scope of this thesis are service tools, spare for tools and tool for tools. The supply source that has the 

focus of this research are the tools in consignment. Since tools are sent to and from the customer all the 

time, this is the most common supply source. Therefore, this research gives insight in the incoming 

supply sources in the local warehouses (LWH) from the customer factory. The only applicable proactive 

intervention for ASML we found in literature when supply is delayed is to expedite supply.  

We will build two models for ASML to answer the research question. One model consists of the Control 

Tower decision rules. In this model, the policies and decision rules will be created and selected for the 

Control Tower for tools. In the remainder of this thesis this model is called “Control Tower decision 

rules”. The second model is a simulation model. The purpose of this model is to evaluate the selected 

policies and decision rules and to find the parameters that give the best results.  

Section 4.1 explains the Control Tower decision rules. Section 4.2 introduces the simulation model and 

gives an description of the different scenarios that will be compared. Section 4.3 explains the validity of 

the simulation model. In Section 4.4 we determine weights for the key performance indicators and in 

Section 4.5 the conclusions are drawn.  

4.1 Control Tower decision rules 

This section answers the following two sub questions:  

8) What data and parameters settings are needed to trigger an alarm? 

9) What operational interventions can be made proactively when an alarm is triggered?  

The Control Tower provides supply chain visibility which makes proactive decision making easier. The 

deviations in the supply chain should be recognized, analyzed and handled by an intervention to improve 

the availability of tools. According to the definition of McCrea (2005), supply chain visibility can be 

gained by the ability to be alerted to exceptions in supply chain execution (sense), and enable action 

based on this information (respond).  

In the Control Tower for tools, we will build three types of alarms. In the first two alarms, we generate 

an alarm when the actual number of tools received is less than the expected number of tools received in 

the local warehouses. The conditions to trigger an alarm are the same in the first two alarms, but the 

time window is different. It is important to get alerted in this situation, since this gives insight in 



 

34 

 

Public 

situations where tools return structurally too late or that a delay is caused random (high peaks). After 

tools are used, they are needed in the future for a next event. When tools are gone longer than planned, 

at some point there will not be any available tools to meet demand. Therefore, we would like to trigger 

an alarm when we actually received less tools returned from consignment than we expected. In Section 

4.1.1 we will go more into detail. The difference between the first two alarms is the time horizon. In the 

first alarm we use a longer time window compared to the second alarm. In the third alarm, an alarm is 

generated when the expected future non-availabilities in a local warehouse are above a certain threshold. 

This insight is important since the Control Tower analysts can really proactively act upon high risks on 

expected non-availabilities. Looking at the past and future provides an overall view of the current 

situation, which gives ASML insights in the behavior of tools in consignment. 

When an alarm is triggered, the goal of all three alarms is to expedite supply when possible to reduce 

the expected non-availabilities. To indicate how these alarms and interventions contributes to an 

improvement of the current situation, the impact of these alarms and intervention is tested in a simulation 

model. The simulation model is explained in detail in Section 4.2. 

4.1.1 Description of the decision rules 

In Section 1.3, we explained that one of the differences between spare parts and tools is that for tools, 

besides a 12NC, also the equipment number of that 12NC is important. The equipment number identifies 

a unique tool, which is of a certain 12NC. This means that we can have, for example, three times the 

same 12NC, but each of these three tools have their own equipment number. In the remainder of this 

thesis this different is important. Therefore, we will not talk about ‘tool 𝑖’ anymore, but we use a ‘12NC 

𝑖’  and an ‘equipment number 𝑒’. 

As mentioned in the introduction of this chapter, we will build three types of alarms. We start by 

explaining the first two alarm types and associated intervention. 

Short-term and long-term supply delay alarm and intervention 

We made a distinction between short-term delay and long-term delay to give insight in 12NCs that return 

structurally too late (long-term) or that the delay was caused random. The short- and long-term period 

are set to different time windows. The time windows are set in such a way that they measure the same 

time window as mentioned in the customer contracts. If the time windows in the customer contracts 

change, this can also be easily adjusted in the Control Tower decision rules. 

Even if the non-availabilities are low, we would like to trigger an alarm since it is important to obtain 

insight in the behavior and lead times of service tools. Therefore, the start point for these two alarms are 

the deviations in the number of tools expected from consignment and tools received from consignment. 

However, to propose the operational intervention to expedite tools in consignment when one of these 

alarms are triggered, we will only propose an operational intervention when the non-availabilities are 
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high. We only want to expedite tools in consignment when the non-availabilities are high to avoid 

unnecessary costs. After the explanation of the short-term and long-term supply delay alarm we will 

explain the logic of the operational intervention.  

• The short-term supply delay alarm is triggered when the actual number of tools returned in the 

local warehouses from consignment in the last x weeks is less than the expected number of tools 

returned in the local warehouses the last x weeks. These number of tools are measured over all 

locations (“global level”) for each 12NC. The multiplier 𝑧 is used to control the number of 

generated alarms. The value of 𝑧 determines how big the difference between actual and planned 

must be before an alarm is triggered. The value of 𝑧 will be determined in the simulation model. 

The condition to trigger this short-term supply delay alarm is shown below.  

(𝑧 ∗ ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡 ≤ ∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡)
𝜏−1
𝑡= 𝜏−𝑥  𝜏−1

𝑡= 𝜏−𝑥  and 

(∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 − ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥 > 1)  

Two examples: If we expect 6 tools to be received the last 𝑥 weeks in all local warehouses, we 

actually received 2 tools and if we set the value of 𝑧 to 3, we have the following equation: 3 ∗

2 ≤ 6. Since this is true, the short-term supply delay alarm is triggered. The second example: If 

we expect 1 tool, we actually received 0, and the value of 𝑧 is 3, the first condition is met:  3 ∗

0 ≤ 1. After a discussion with different stakeholders, we discussed that an alarm that is triggered 

with a difference between the expected tools received and the actual tools received of 1 is not 

desired. This situation causes a lot of alarms, but this does not give insight in high peaks or in 

tools that are structural longer away than planned. Therefore, we will only trigger alarms with a 

difference between the planned tools received and actual tools received larger than 1.    

 

• The long-term supply delay alarm is triggered when the actual number of tools returned in the 

local warehouse from consignment the last x weeks is less than the expected number of tools 

returned in the local warehouse the last x weeks. This is also measured over all locations for the 

same 12NC. With the help of this alarm, a proposal can be made towards tactical planning to 

update the lead times they used in their planning, because the 12NCs for which this alarm is 

triggered returns structurally too late. This reduces the tool pool size, meaning that at some time 

demand cannot be fulfilled. The value of the multiplier 𝑘 has the same purpose of the multiplier 

𝑧 used in the short-term supply delay alarm. Since the long-term supply delay alarm is there to 

get insight in tools that are structurally late, and the short-term supply delay alarm to indicate 

delay by random (high peaks), the difference between actual and planned tools must be higher 

in the short-term alarm. Therefore, to identify high peaks, we use a higher multiplier in the short-

term supply delay alarm.  
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The condition to trigger this long-term supply delay alarm is: 

(𝑘 ∗  ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡 ≤ ∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡)
𝜏−1
𝑡= 𝜏−𝑥  𝜏−1

𝑡= 𝜏−𝑥  and 

(∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 − ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥 > 1)  

An example: If we expect 4 tools to be received the last x weeks in all local warehouses, we 

actually received 2 tools and if we set the value of 𝑘 to 2, we have the following equation: 2 ∗

2 ≤ 4. Since this is true, the long-term supply delay alarm is triggered.  

In Appendix B the logic of the alarms are shown in pseudo-code. 

As explained in the introduction of this chapter, the suitable operational intervention for supply that is 

delayed is to expedite supply. Therefore, we will try to expedite supply when the short-term and/or long-

term supply delay alarm is triggered. We only propose interventions when: 

- A 12NC has an alarm. For a 12NC with an alarm we know that there are still equipment 

numbers from that certain 12NC in consignment. If we look at the same example as described 

above, so we expect 4 tools to be received the last x weeks in all local warehouses, we actually 

received 2 tools and if we set the value of 𝑘 to 2, we have the following equation: 2 ∗ 2 ≤

4. Since this is true, the long-term supply delay alarm is triggered. We know that there are 2 

tools in consignment that are too late and should therefore be expedited. 

- The expected unplanned non-availabilities (𝐸[𝑁𝐴𝑉]) in the coming month of the 12NCs with 

an alarm are above the “𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑” to avoid unnecessary time and costs. The 

threshold for the 𝐸[𝑁𝐴𝑉]𝑖 will be determined in the simulation model by setting different 

values for the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. As ASML uses the 𝐸[𝑁𝐴𝑉] calculation throughout 

the company, we decided to use this calculation instead of the 𝐸[𝐵𝑂] calculation. We have seen 

in Appendix A that these have a positive correlation so for our purposes we can also use the 

𝐸[𝑁𝐴𝑉]. 

The short-term and long-term alarms are triggered on global level. On global level means that we 

measure the expected tools to receive and actual tools received over all locations of a certain 12NC. This 

is on global level (over all locations), since on local level (only 1 location) we do not have enough usage 

to find the behavior of tools if they return structural too late or not. Therefore, we also use the global 

non-availabilities to decide when an intervention should be proposed. The calculation of the global 

𝐸[𝑁𝐴𝑉]𝑖 is shown in Equation 4.1. The logic behind this formula is explained in Section 2.1.2. Table 

4.1 shows the notation that is used in this section.  
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Table 4.1: Notation used in equations 

Symbol Description 

𝑖 ∈ 𝐼 = {𝑖1, … , 𝑖𝑁} 
 

The set of all 12NCs (𝑁 ±  𝑥) 

𝑒 ∈ 𝐸 = {𝑒1, … , 𝑒𝑀} The set of all equipment numbers (𝑀 ±  𝑥) 

𝑒 ∈ 𝐸𝑖 The set of equipment numbers of 12𝑁𝐶𝑖 (1 ≤ 𝐸𝑖 ≤ 𝑥)  

𝑗 ∈ 𝐽 = {𝑗1, … , 𝑗𝐾} The set of all local warehouse (𝐾 ±  55) 

𝑑 ∈ 𝐷 = {𝑑1, … , 𝑑10} The set of days in the future 

𝑂𝐻𝑖,𝑗 
On-hand stock level of 12𝑁𝐶𝑖 in local warehouse 𝑗 
(without tools in consignment) 

𝐵𝑆𝐿𝑖,𝑗 Base stock level of 12𝑁𝐶𝑖 in local warehouse 𝑗 

𝜆𝑖,𝑗 Monthly demand forecast of 12𝑁𝐶𝑖 in local warehouse 𝑗 

𝑡𝑖
𝑠 Replenishment lead time of 12𝑁𝐶𝑖 

𝐿(𝑐, 𝜌) 
Probability of not having stock for a tool that is requested 

by the customer (see Equation 2.2) 

In Section 2.1.2 we mentioned that the limitation within the 𝑂𝐻𝑖,𝑗 is that the tools 𝑖 in consignment 

allocated to local warehouse 𝑗 are included in the unrestricted stock. In these Control Tower decision 

rules and in the calculation of 𝐸[𝑁𝐴𝑉]𝑖,𝑗, we excluded the tools in consignment from the unrestricted 

stock to reflect the non-availabilities. 

 𝐸[𝑁𝐴𝑉]𝑖 = ∑ 𝐸[𝑁𝐴𝑉]𝑖,𝑗  𝑤ℎ𝑒𝑟𝑒
𝑗 ∈ 𝐽

 4.1 

 𝐸[𝑁𝐴𝑉]𝑖,𝑗 = [𝐿(𝑂𝐻𝑖,𝑗, 𝜆𝑖,𝑗 ∗ 𝑡𝑖
𝑠)] ∗ 𝜆𝑖,𝑗 −  [𝐿(𝐵𝑆𝐿𝑖,𝑗, 𝜆𝑖,𝑗 ∗  𝑡𝑖

𝑠)] ∗ 𝜆𝑖,𝑗 4.2 

To decide which specific tool we will expedite, we look at the equipment numbers 𝑒 of the 12NCs 𝑖 for 

which an alarm is triggered. We will find the equipment number(s) that are for too many days in 

consignment. We will keep track of the number of days equipment numbers are in consignment by the 

indicator 𝐷𝑎𝑦𝑠𝐼𝑛𝐶𝑜𝑛𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖,𝑒. The planned number of days that tools are allowed to stay in 

customer consignment are the same for all tools used for after sales events. For UI&R events, we know 

the reservation end date and based on the end date we can calculate what the planned number of days in 

consignment are for each UI&R event. So, this can be different than the planned days in consignment 

used for after sales events. The difference between after sales events and UI&R events are explained in 

Section 1.4. The planned days tools are allowed to stay in consignment are indicated with the variable 

𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝐷𝑎𝑦𝑠𝑖,𝑒.  

We will first expedite the equipment numbers that are longer in consignment than planned. To get more 

insight in the reason why tools are longer in consignment, the Control Tower analysts should investigate 

why the tool was not returned on time. To decide the exact amount of equipment numbers of 12NC 𝑖 

that has to be expedited, Ε[𝑁𝐴𝑉]𝑖 will be recalculated every time an equipment number is expedited. 

We do this because as soon we expedite an equipment number, it will return the local warehouse within 
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a few days meaning that the on-hand stock is increased. Since this has impact on the Ε[𝑁𝐴𝑉]𝑖 we 

recalculate this every time when an equipment number is expedited to check whether Ε[𝑁𝐴𝑉]𝑖 is still 

above the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.  

When the short-term or long-term alarm is triggered and it turns out that there are no more equipment 

numbers for too long in consignment, we will try to expedite equipment numbers that are not too late 

now but will be late if they are still in consignment the next time the Control Tower is running. The time 

interval between each Control Tower run is indicated with “𝐶𝑇 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙” and is fixed in this research. 

We propose to execute the Control Tower decision rules on a weekly basis. A weekly basis is proposed 

instead of a daily basis to give the Control Tower analysts some time to analyze the generated alarms 

and set out some action when an intervention is proposed.   

So, when we try to expedite equipment numbers that are not too late now, but will be late the next 

Control Tower run, we look at equipment numbers that meet the following condition:  

𝐷𝑎𝑦𝑠𝐼𝑛𝐶𝑜𝑛𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖,𝑒 ≥ (𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝐷𝑎𝑦𝑠𝑖,𝑒 − 𝐶𝑇 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙). Figure 4.1 shows the logic of this 

operational intervention. 

 

Figure 4.1: Flowchart of the operational intervention: expediting supply after the long-term or short-term alarm is triggered 

In summary, for the short-term and long-term supply alarm, we have one indicator to trigger the alarms 

which is the 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡. The threshold to trigger the short-term alarm is the multiplier 𝑧 

and the threshold to trigger the long-term alarm is the multiplier 𝑘.  

The indicators to propose an operational intervention when either the short-term delay alarm is triggered 

or the long-term delay alarm are the Ε[𝑁𝐴𝑉]𝑖 and the 𝐷𝑎𝑦𝑠𝐼𝑛𝐶𝑜𝑛𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖,𝑒. The value of the 

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will be set after we tested several values for this threshold in the simulation 

model. Only when the Ε[𝑁𝐴𝑉]𝑖 is above the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 we will propose interventions. 
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Future non-availabilities alarm and intervention 

To trigger this alarm we look at the local non-availabilities instead of the global non-availabilities as we 

do in the two previous alarms. The start point to trigger this alarm are the expected non-availabilities, 

and we need to calculate these always on local level first. Therefore, it makes sense to also trigger this 

on local level since we have more detailed data available for the analysts.  

This “future non-availabilities” alarm is triggered when the prediction of the expected non-availabilities 

over the next x days is above the threshold "𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑". The stock levels are predicted 

over the next x days, such that we cover 𝑡ℎ𝑒 𝑟𝑒𝑣𝑖𝑒𝑤 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝𝑙𝑢𝑠 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 −  1. The last day of this 

time window is called ‘𝐷’. The review period is 7 days, since we recommend to start using the Control 

Tower decision rules on a weekly basis. After discussions with different stakeholders, we assume that 

tools that are expedited from consignment return the local warehouse within x days. This assumption is 

made since expediting tools from consignment is only done irregular, meaning that we do not have data 

available to know how long the lead time will be. We do not have to predict the future stock levels over 

𝑡ℎ𝑒 𝑟𝑒𝑣𝑖𝑒𝑤 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝𝑙𝑢𝑠 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒, since when it turns out that we have high expected non-

availabilities at the end of that time period, we are still on time the next control tower run to avoid a 

shortage.  

This “future non-availabilities” alarm is triggered when the 𝐸[𝑁𝐴𝑉]𝑖,𝑗 at the end of the time window is 

above the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. We first select the 12𝑁𝐶𝑠 for which we know we have equipment 

numbers in consignment. For those equipment numbers, we calculate how many days each equipment 

number is already in consignment. The expected on-hand stock level on day 𝐷 (𝐸[𝑂𝐻] ) is needed to 

calculate the 𝐸[𝑁𝐴𝑉]𝑖,𝑗 on day 𝐷. Equation 4.3 shows the formula of 𝐸[𝑂𝐻] on day 𝐷 for each 12NC 

in every local warehouse.  

 
𝐸[𝑂𝐻]𝑖,𝑗,𝐷 = 𝑂𝐻𝑖,𝑗,0 +∑ (∑ 𝑃𝑟𝑜𝑏𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑒,ℎ

𝑒 𝑖𝑛 𝐸𝑖

− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑗,ℎ)
𝐷

ℎ=1
 

4.3 

To calculate the probabilities that an equipment number will return the local warehouse after a certain 

number of days, indicated with 𝑃𝑟𝑜𝑏𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑒,𝑑 , we divide the 12NCs in groups. For each group, we 

calculate the probability that a 12NC returns after 𝑑 days in consignment. The grouping is based on their 

average time in consignment, their standard deviation and the number of demand requests. In total, 12 

groups are made. The probabilities are calculated using the empirical distribution of the time a tool is in 

consignment of each group. This means that the probability a tool returns on a given day is equal to the 

number of tools from that group that returned after this given number of days divided by the total number 

of tools in this group. An example of the probabilities for a single group can be found in Figure 4.2. 
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Confidential Figure 

Figure 4.2: Histogram of the probabilities tools stay in consignment for a number of days 

Based on the expected stock levels found using Equation 4.3 we calculate the 𝐸[𝑁𝐴𝑉]𝑖,𝑗 in the same 

way as shown in Equation 4.2, but now we use the expected on-hand stock levels as calculated in 

Equation 4.3. This is done since using the 𝐸[𝑂𝐻]𝑖,𝑗,𝐷, we can predict if we have high expected non-

availabilities in the future. When we know this, we can take a proactive action to reduce the probability 

of having shortages in the future. If 𝐸[𝑁𝐴𝑉]𝑖,𝑗 is above the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the “future non-

availabilities” alarm is triggered. The threshold will be determined in the simulation model in the same 

way as the threshold for the short-term and long-term threshold. An illustration of this alarm is given in 

Appendix B.   

After the future non-availabilities alarm is triggered, we also try to expedite supply for the tools that are 

longer in consignment than planned. Figure 4.3 shows the flowchart of this decision rule. This is almost 

the same as in the short-term or long-term supply delay trigger, but the difference is that this decision 

rule is based on local expected non-availabilities instead of the global non-availabilities. 

 

Figure 4.3: Flowchart of the operational intervention: expediting supply after the future non-availabilities alarm is triggered 

Differences and similarities between short-term and long-term supply alarm and the future supply 

alarm 

Above, we discussed the three alarm types: short-term supply delay alarm, long-term supply delay alarm 

and future non-availabilities alarm. The short-term alarm and the long-term alarm are very similar, the 

only difference is the time window. The future non-availabilities alarm differs more. 

For the future non-availabilities alarm we predict the expected non-availabilities in the future and based 

on this prediction we decide if we want to expedite tools on the current day. The goal is to prevent that 

we face a high number of expected non-availabilities in the future. The short-term and long-term supply 
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alarm are based on data in the past. So, tools are already too late returned and then the short-term and/or 

long-term supply alarm is triggered. The short-term and long-term alarm look at the situation “now” and 

the future non-availabilities alarm looks at the “future”. 

For all three alarms, the operational intervention is to expedite supply when the expected non-

availabilities are above a threshold. These thresholds differ for the different alarm types. We have the 

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. These thresholds have different values, since 

the operational intervention proposed when the short-term or long term supply delay is triggered is based 

on the global 𝐸[𝑁𝐴𝑉]𝑖. The operational intervention proposed when the future non-availabilities alarm 

is triggered is based on the local 𝐸[𝑁𝐴𝑉]𝑖,𝑗.  

All three alarm types are very generic. There are not many parameters to tune and the alarms work 

intuitively. If the expected non-availabilities are replaced by the expected backorder calculation as 

explained in Section 2.1.2, the proposed Control Tower decision rules are also easily applicable in other 

companies/fields. Since the return date forecasting method in the future non-availabilities alarm is 

separate from the intervention rule, this can still be used in cases where a different method is used to 

predict the probability that an item returns in a certain time period. Reviewing all these arguments we 

find that these Control Tower decision rules provide a good contribution to the practical side of Control 

Towers. 

If multiple alarms are triggered for the same 12NC, we will show that all three alarms have been 

triggered, but we only propose an intervention once. For example, if a 12NC has a long-term and short-

term delay alarm, and equipment numbers of that certain 12NC are already proposed to be expedited by 

the long-term alarm, we will not propose to expedite the same equipment numbers again after the short-

term supply delay is triggered.  

4.1.2 Input and output of the Control Tower decision rules 

Input 

The inputs for the Control Tower decision rules are the base stock levels of all 12NCs in all local 

warehouses. Besides, the on-hand stock levels of all 12NCs in all local warehouses are needed. To 

calculate the expected unplanned non-availabilities, we need next to the on-hand stock and base stock 

levels also the forecast. Finally, we need a history from the 12NCs that were in consignment to calculate 

the probabilities that a 12NCs returns the local warehouse on a certain day after it is sent to the customer. 

Output 

The outputs of the Control Tower decision rules are the 12NCs with an alarm and the equipment numbers 

we would like to expedite to reduce the number of expected unplanned non-availabilities.  
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4.2 Simulation model 

In order to test and evaluate the proposed decision rules, a simulation model is build. The simulation 

model is also used to find the optimal parameters of the selected policies and rules. In Section 4.2.1 we 

mention the goal of the simulation. In Section 4.2.2 the scope and the assumptions made in the simulation 

are provided. Section 4.2.3 describes the model inputs and Section 4.2.4 describes which scenarios we 

evaluate in the simulation model. Section 4.2.5 explains the decision parameters that need to be found. 

Finally, Section 4.2.6 explains how we determined the run length, warm-up period and the number of 

replications.  

4.2.1 Goal of the simulation 

The goal of the simulation model is:  

Provide insight in the added value of the proposed Control Tower decision rules as explained in 

Section 4.1 and find the parameter settings such that there is a good trade-off between the 

improvement in expected non-availabilities and number of proposed interventions 

To provide insight in the added value of the proposed Control Tower decision rules, the start point of 

the process we are going to simulate is the moment we have a request for a service tool or the moment 

when the tool is sent back to the local warehouse. At the moment of a demand request, a tool is sent 

from the local warehouse to the customer factory. From then on, that tool is ‘in consignment’. We 

determine the planned return date and based on the described decision rules, alarms/interventions can 

be triggered. We use a dynamic simulation model, so we show system behavior over a time horizon. 

The details of the simulation model are explained in the subsections below. 

4.2.2 Scope and simulation model assumptions 

Scope of simulation model 

In order to test the Control Tower decision rules, we only use demand requests for after sales events. 

The UI&R events are not included in the test scenario. We only use demand for after sales events in the 

simulation model, since the data to determine the planned return date for UI&R is not available for 

historical events.  

The dataset using only demand for after sales events resulted in around x demand lines we have to 

simulate. This resulted in a very long computational time of the model. Therefore, we decided to limit 

the amount of demand lines. We used the different groups we made to categorize all the 12NCs as 

explained in Section 4.1.1. From each group, we draw a sample so that in our test case in the simulation 

model the 12NCs represented for each group are relatively the same as in the complete dataset.  
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The dataset we used in our simulation model consist now of around x different 12NCs and around x 

demand lines.  

Assumptions and simplifications in the simulation model 

Below, the assumptions and their explanations are described. It is important to list all the assumptions, 

since we can better understand were the discrepancies between the simulation model and the reality lie.  

1. On-hand stock levels are initialized on the unrestricted stock levels at 01-01-2019 

Since we start our simulation at the beginning of 2019, the actual on-hand stock levels of the 

first of January are used. We used the unrestricted on-hand stock levels.  

2. Base stock levels are not altered during the simulation year  

We assume that the base stock levels do not alter during the year. We use the same base stock 

levels during the complete year as they are in the beginning of 2019. 

3. A simplified version of the NORA allocation rules are used  

As explained in Section 2.2, NORA has different allocation rules and sourcing prioritizations. 

We use a simplified version because the exact NORA rules are too complex to implement in the 

simulation model and all those rules are not necessarily needed to test and evaluate the Control 

Tower decision rules. We use a simplified version of these rules, meaning that we do not take 

all the different sourcing rules into account. Besides, we only use reactive shipments. When it 

happens that we cannot fulfill all demand in a local warehouse with our 𝑂𝐻𝑖,𝑗, we look at the 

expected unplanned non-availabilities in all local warehouse of the 12𝑁𝐶𝑖 that is needed to 

fulfill demand. The local warehouse with the lowest 𝐸[𝑁𝐴𝑉]𝑖,𝑗 sends the tool to the LWH with 

the shortage. After a discussion with stakeholders it is decided that shipment times are not taken 

into account and we assume that the tool is immediately available in the LWH that the tool 

requests. In the simulation model, we keep track of the number of shipments since we expect 

that the number of shipments will be reduced with the use of our Control Tower decision rules.  

4. Intervention success rate is assumed to be 70% when tools are >14 days in consignment 

When the Control Tower decision rules propose to expedite supply for tools that are longer in 

consignment than planned, it can be the case that it is not always possible to expedite supply. 

Sometimes the tools are still needed at the customer factory. Therefore, after discussions with 

stakeholders, we assume that when an intervention is proposed to expedite supply, 70% of the 

times this is possible, but 30% of the times it is not possible. Since expediting tools in 

consignment is only done irregularly, we do not have data to motivate this assumption further. 

In Chapter 5 a sensitivity analysis will be performed on this value.  

5. Intervention success rate is assumed to be 50% when tools are <14 days in consignment 

The same reasoning holds for tools that are proposed to be expedited when they are not yet too 

late. Since these tools are not too late, the intervention success rate is lower than the tools that 
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have been in consignment for some longer time (assumption 4). We will also perform a 

sensitivity analysis on this percentage in Chapter 5. 

6. When tools are expedited, it is assumed that they will return the LWH after 4 days 

At this moment, tools in consignment are not expedited, so we do not exactly know how long 

this will take. After discussions with stakeholders, we assume that tools are returned in the LWH 

after 4 days. Most of the times, the customer factory is close to the LWH so we do not have a 

lot of shipment time. It takes some time to set out the expedite request after the alarm is analyzed. 

Besides, it can be the case that we are dealing with a time difference which means that the 

expedite request is taken up a day later. When it is possible to expedite the tool, it takes 1 more 

day to prepare the tool for shipment, so we assume that the tool will be back within 4 days. We 

will also perform a sensitivity analysis on this assumption. 

4.2.3 Input of the simulation model 

Demand  

In our simulation model, historical data is used to determine when demand took place. The exact after 

sales demand data of 2019 is used as input in the simulation model. We know when a tool is sent to a 

local warehouse, so we know when there was demand and this demand data is used to simulate the 

process.  

Forecast, base stock levels and on-hand stock levels  

Since we will simulate one year (2019), we need the monthly forecast of each 12NC in each LWH to 

calculate the expected non-availabilities. This data is provided by the tool forecast planner. Besides, the 

values of the base stock levels in 2019 of the 12NCs in the LWHs are provided by the planning 

department. As mentioned in assumption 1, the on-hand stock levels of each 12NC in each LWH are 

needed. These three input values are needed to calculate the expected non-availabilities. Furthermore, 

the forecast is needed in our future non-availabilities alarm to calculate the expected on-hand stock levels 

on each day.  

Time in consignment  

To determine the number of days tools stay in consignment, we use the empirical distributions as we 

used to calculate the tool returns on a specific day. We use the same groups as we made before (explained 

in Section 4.1), and based on these groups, we use the empirical distributions.  

This means that the probability a tool returns on a given day is obtained from the number of tools from 

that group that returned after this given number of days divided by the total number of tools in this group. 

An example of the probabilities for a single group can be found in Figure 4.2. In the simulation model, 

we draw a random number using these empirical distributions to determine the number of days a 12NC 

stays in consignment. 
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4.2.4 Scenarios to compare in the simulation model 

In this section we discuss the scenarios we test in the simulation model. Once a simulation run has been 

conducted, statistics are being stored to be able to evaluate the simulation run. The aim of this thesis is 

to reduce non-availabilities. Therefore, the main key performance indicator is the expected number of 

unplanned non-availabilities. The performance of the scenarios will also be compared on the number of 

proposed interventions and the reduction in number of shipments. Section 4.4 explains how we measure 

the performance of the scenarios.  

Scenario 1: Current situation 

In the first scenario, we test the current way of working at ASML. This means that we will not trigger 

alarms or interventions when tools arrive too late in the local warehouse. After the simulation runs we 

will review the output and compare this with the other scenarios in Chapter 5.  

Scenario 2: Only use short-term and long-term supply delay alarm 

In the second scenario, we only use the short-term supply delay and long-term supply delay alarm as 

explained in Section 4.1. The idea of this decision rule is to trigger alarms when we expect more tools 

to be returned than the actual number of tools returned. These alarms use historical data to decide 

whether an alarm should be triggered.  

Scenario 3: Only use the future non-availabilities alarm 

In the third scenario, we run the simulation model with future non-availabilities alarm to find out what 

impact is on the key performance indicators when we predict the future expected non-availabilities.  

Scenario 4: Use all three alarm types 

The last scenario consists of running all three alarm-types in the simulation model. After all scenarios 

are executed, we compare the output and get insight in the added value of the proposed alarms and 

interventions.  

For all different scenarios, we perform experiments to find the parameter setting that results in the best 

performance. Once we have found the best parameter settings, we conduct a sensitivity analysis to 

determine how robust our model is.  
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4.2.5 Decision parameters and output of the simulation model 

As already mentioned, the purpose of this simulation model is to evaluate the selected policies and 

decision rules and to find the optimal parameters of the selected policies and rules. The following list 

presents the parameters for which we have to find the optimal values. These are the parameters we will 

perform experiments with:  

- The multiplier 𝑧 that is used in the short-term supply delay alarm  

- The multiplier 𝑘 that is used in the long-term supply delay alarm  

- The threshold for the expected number of non-availabilities that is used in the intervention 

proposal when the short-term or long-term alarm is triggered (𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑).  

- The threshold for the expected number of non-availabilities that is used in the predicting future 

𝐸[𝑁𝐴𝑉] alarm to decide whether this alarm should be triggered  (𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). 

Each different value yields a different set of 12NCs with an alarm and intervention. The different values 

of the threshold will be compared on key performance indicators. As earlier explained, once a simulation 

run has been conducted, statistics are being stored to be able to evaluate the simulation run. The aim of 

this thesis is to reduce non-availabilities. Therefore, the main key performance indicator is the expected 

number of unplanned non-availabilities. The thresholds will also be compared on the number of 

proposed interventions and the reduction in number of shipments.    

To determine what threshold the optimal value is, we will compare the results of the current situation 

with the results for each different threshold. For each KPI, we use a weight factor. To calculate the 

performance of each threshold, we multiply the improvement on each KPI with their weight. The 

threshold with the highest performance will be chosen. In Section 4.4 is explained how we determine 

the weights for each KPI. 

4.2.6 Warm-up period and number of replications 

Run length 

We run the simulation for exactly one year, so we will simulate 365 days in each simulation run. We 

made the choice to use one year of data since this represents the times of tools in consignment the best. 

Different events have specific guidelines and these guidelines can be adjusted per year meaning that this 

can have impact on the times tools are needed at the customer factory. Therefore, using the last year of 

data (2019) gives the best representation of reality.  

Warm-up length 

We initialized the simulation model in such a way that the on-hand stock levels are the same as the on-

hand stock levels at 01/01/2019. At the beginning of the simulation run, none of the tools are in 

consignment, meaning that in the first days no tools returning the local warehouse from consignment 
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and therefore there are no tools that returns too late (or too early). This is not a realistic representation 

of the reality and therefore a warm-up length is needed. The warm-up length is determined by using the 

Welch approach. We have a stable system if the tools in consignment no longer increase over time. 

Therefore, we use a warm-up length of 60 days and start collecting the results after the first 60 days. The 

plot created with the Welch approach to determine this warm-up length can be found in Appendix C.  

Number of runs 

The number of runs is a trade-off between relative error and confidence level and the run time. We 

calculate the number of runs with a relative error of 3% and a 95% confidence interval. This results in a 

minimum number of runs of five. Appendix C shows the results of these calculations.  

Random number generator 

To make sure that one scenario we test in our simulation does not get coincidentally more favorable 

days in consignment, we use a pseudo-random number generator during the simulation. This pseudo-

random number generator makes sure that for the same run number, in each scenario the same random 

numbers are used.  

4.3 Model validity 

In order to know if the simulation model is an accurate representation of the real situation and if the 

assumptions of the conceptual model has been well translated, it is necessary verify and validate the 

simulation model. This section answers sub question 10: Is the model valid according to the chosen 

verification and validation methods? 

4.3.1 Verification 

During the development of the simulation model, we will verify if the simulation model comply with 

the “paper” model. After a new building block is added to the model, the model is debugged to check if 

the outcomes are still as expected. 

We discussed the logic and the outcomes of the model with the stakeholders and experts on the specific 

components of the simulation model. The alarm and intervention proposals are discussed with the 

stakeholders to check whether we trigger alarms and interventions when we expect an alarm is triggered. 

The building blocks where we calculate the expected non-availabilities are verified with the NORA team 

since they use these calculations daily.  

When we found differences in our simulation model and the paper model, we analyzed if the logic in 

the simulation model was wrong or we made a mistake in our paper model. If the logic in the simulation 

model was wrong, we adjusted the model.  
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4.3.2 Validation 

To validate the simulation model, a comparison will be made between the historic data and the 

simulation model. One of the scenarios we will test in the simulation model represents the current 

situation at ASML. Since we do not have the historical values of the expected unplanned non-

availabilities we cannot compare the 𝐸[𝑁𝐴𝑉] in our simulation model with the 𝐸[𝑁𝐴𝑉] it was in reality. 

Also, since we use a simplified version of the allocation rules this will not be the same. Instead of 

comparing the 𝐸[𝑁𝐴𝑉], we will validate the model by using the time tools stay in customer consignment.  

To validate the model, the Kolmogorov-Smirnov test (KS-test) is used. The KS-test tries to determine if 

two datasets differ significantly. The KS-test has the advantage of making no assumption about the 

distribution of data (Wyrzykowski, Dongarra, Paprzycki, & Wasniewski, 2003). We compared the 

historical values of the times tool were in consignment (reality) with the times in consignment of the 

simulation model. If the KS statistic is small or the p-value is high, then we cannot reject the hypothesis 

that the distributions of the two samples are the same.  

The value of our 𝐾𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is 0.0054 and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 0.9837. Since the 𝐾𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is small 

and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is high, we do not have evidence that the empirical distributions are different, 

meaning that our simulation model seems valid. 

4.4 Weights key performance indicators 

In order to determine what the best parameter settings are, we analyze the reduction in expected non-

availabilities, the reduction in the number of shipments and the number of interventions we need to 

achieve these improvements compared to the current situation.  

To make a decision on the best setting, we use the Analytic Hierarchy Process (AHP) method to 

determine weights for the different key performance indicators. This method is introduced by Saaty 

(1987) and is a widely used method in decision making. The essence of the AHP is to construct a matrix 

expressing the relative values of a set of key performance indicators. A benefit of using the AHP is the 

technique for checking the consistency of the decision-maker’s evaluations. 

The first step of the AHP is to generate a weight for each criteria based on pairwise comparisons of the 

criteria. This is the only step we use of the AHP, since we only need to determine the weights of the key 

performance indicators. The values shown in Table 4.2 are used for the pairwise comparisons.  
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Table 4.2: Scores for pairwise comparisons between criteria (Saaty, 1987) 

Definition  Numerical rating 

Extremely preferred 9 

Very strongly preferred 7 

Strongly preferred 5 

Moderately preferred 3 

Equally preferred 1 

Intermediate values 2,4,6,8 

A reasonable assumption that is made using the approach is that if criteria 𝑖 is extremely preferred over 

criteria 𝑗 and is rated with a 9, criteria 𝑗 must be less important than criteria 𝑖 and is valued at 1/9. The 

next step is to normalize the matrix and calculate the weights for each criteria. Table 4.3 shows the 

pairwise comparisons and the weights on our key performance indicators. The comparisons are made 

during a project meeting by the main stakeholders of this research.  

Table 4.3: Pairwise comparison on the key performance indicators and the weights 

 𝐸[𝑁𝐴𝑉] 
Number of 

shipments 

Number of 

interventions 

Weight 

𝐸[𝑁𝐴𝑉] Confidential information 

Number of shipments     

Number of interventions     

Sum     

The weight of each key performance indicator is obtained by the normalized eigenvector of the matrix. 

All intermediate calculations can be found in Appendix D. As mentioned before, the advantage of this 

approach is that we can determine if the judgments are consistent or not. If the consistency ratio is below 

0.1, we can conclude that the judgments are consistent. Our consistency ratio is 0.03, meaning that the 

judgments are consistent and we can use the weights as shown in Table 4.3. 

To determine the best parameter setting, we calculate the performance of each setting using Equation 

4.4. The parameter setting with the highest performance is the setting that is most desired by the decision-

makers. As mentioned earlier, all intermediate calculations to retrieve these weights are shown in 

Appendix D.  

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑁𝑎𝑣𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑎𝑣

+ 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠  

− 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

4.4 

The 𝑁𝑎𝑣𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is the difference between the expected non-availabilities in the current situation  

and the setting evaluated. The 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is the difference between the number of 

shipments in the current situation and the setting evaluated. We subtract the number of interventions 

from the performance since these actions takes time and therefore costs money. 
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Using Equation 4.4 to calculate the performance of the Control Tower decision rules, means that the 

performance of the current situation is 0. So, a positive performance means that our proposed decision 

rules performs better than the current situation. A negative performance indicates that it costs more than 

it is beneficial to implement the Control Tower decision rules.  

4.5 Conclusion on model design 

Section 4.1 described the three alarms that are proposed to be used in a Control Tower for tools: short-

term supply delay alarm, long-term supply delay alarm and the future non-availabilities alarm. An 

operational intervention is proposed when the expected non-availabilities are above a certain threshold 

and the intervention is to expedite tools that are in consignment. This intervention is proposed for all 

three alarms, but the threshold can have different values. The intervention proposed for the long-term 

and short-term delay alarms are based on the global non-availabilities. The future non-availabilities 

alarm is based on the local non-availabilities. 

In Section 4.2 the simulation model was discussed. The goal of the simulation model is to create insight 

in the added value of the proposed Control Tower decision rules and to find the parameter settings such 

that the expected non-availabilities are reduced. A run length of 365 days and the demand data of 2019 

was used. The warm-up period is 60 days and five replications for each setting were used. The scenarios 

executed in the simulation model are: (1) the current situation, (2) only the long-term or short-term 

supply delay alarm and intervention, (3) only the future non-availabilities decision rules and (4) we use 

all the Control Tower decision rules.  

In Section 4.3, the verification and validation of the simulation model was discussed. We used the 

methods of Law & Kelton (2015) to verify and validate the simulation model. Also the Kolmogorov-

Smirnov test was performed to validate the simulation model. The value of the 𝐾𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is 0.0054 

and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 0.9837. This means there is no evidence that the empirical distributions are 

different, meaning that the simulation model seems valid. 

Finally, in Section 4.4 the weights for the key performance indicators to calculate the performance of 

the different parameters settings were determined. Table 4.4 shows the weights of the key performance 

indicators which are used to compare the scenarios and the different parameter settings in each scenario. 

Table 4.4: Weights of KPIs 

 Weights 

E[NAV] Confidential information 

Number of shipments  

Number of interventions  

 



 

51 

 

Public 

5.  xperimental Results 

This chapter analyzes and presents the results of the Control Tower decision rules as explained in Section 

4.1. Section 5.1 describes how the parameter settings for the Control Tower decision rules are 

determined and what the added value is of the Control Tower decision rules. After that, the results of 

the sensitivity analyses that is performed are discussed in Section 5.2. Finally, Section 5.3 draws the 

conclusion from the results of this chapter.  

5.1 Parameter settings 

In this section, we need to find the best setting of four different parameters. These parameters are: the 

multiplier in the long-term supply delay alarm, the multiplier in the short-term supply delay alarm, the 

threshold to expedite equipment numbers when the long-term supply delay alarm or short-term delay 

alarm is triggered and the threshold to expedite the equipment numbers when the future non-

availabilities alarm is triggered. We start with the parameter settings for the multipliers. After that, we 

find the threshold for the expected non-availabilities when only the long-term supply delay or short-term 

supply delay alarm is triggered. Section 5.1.3 determines the threshold used in the future supply alarm 

when only this alarm is used. Finally, in Section 5.1.4 we will analyze what the impact is of these 

thresholds when we use both alarms. Based on these analysis we will propose the parameter settings. 

This sections answers the following two sub questions:  

11) What are the parameter settings that give the best result? 

12) What is the added value of the proposed model and what are the insights? 

5.1.1 Multipliers to control the number of generated alarms 

The first parameter settings we need to set are the multiplier 𝑧 and the multiplier 𝑘. We need these 

multipliers to control the number of alarms generated in the long-term supply delay alarm and short-

term supply delay alarm. Since the long-term supply delay alarm is there to get insight in the tools that 

are structurally too late, and the short-term supply delay alarm to indicate delay by random (high peaks), 

the multiplier for the long-term alarm should always be lower than the multiplier used in the short-term 

supply delay alarm. Table 5.1 shows the range of values that are tested to the determine value of the 

multipliers. If it turns out that too many alarms are still being generated, we will increase the range. 

Table 5.1: Range of values tested for the multipliers  

Symbol   Description Range Step size 

𝑘 Multiplier long-term supply delay alarm 1.5 – 2.5 0.5 

𝑧 Multiplier short-term supply delay alarm 2 – 3 0.5 
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The multiplier settings are tested separately for the long-term alarm and short-term alarm. Figure 5.1 

shows the normalized number of alarms generated using different values of k. We see that in total 1 

normalized long-term alarm is generated on average per week when a multiplier of 1.5 is used. A 

multiplier of 2 results in 0.60 normalized long-term alarms on average per week and a multiplier of 2.5 

results in 0.44 normalized long-term alarms on average per week. 

 

Figure 5.1: Normalized number of long-term alarms generated per week using different multipliers 

Figure 5.2 shows the normalized number of short-term alarms generated using different values of the 

multiplier 𝑧. We see that around 1 normalized short-term alarms is generated on average per week when 

a multiplier of 2 is used. Using a multiplier of  2.5 results in around 0.78 normalized alarms generated 

on average per week and a multiplier of 3 results around 0.74 normalized alarms on average per week. 

 

Figure 5.2: Normalized number of short-term alarms generated per week using different multipliers 
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The normalized number of alarms generated with the smallest value of both multipliers are not very 

high. When a multiplier of 1.5 is used in the long-term supply delay alarm and a multiplier of 2 in the 

short-term delay alarm, in total around 2 normalized alarms are generated per week. Some 12NCs were 

triggered for both alarms, meaning that they can be analyzed at the same time, saving some time from 

the analysts. We analyzed how many unique 12NCs are triggered for both alarms and this results in 1.28 

normalized 12NCs with an alarm on average per week.   

In accordance with the stakeholders, we found that it is not necessary the reduce the number of alarms 

generated further. Therefore, we will use a multiplier of 1.5 in the long-term alarm and a multiplier of 2 

in the short-term alarm.  

5.1.2 Threshold for 𝐸[𝑁𝐴𝑉] in the long-term and short-term supply delay 

intervention 

Now we know what the multiplier should be for the long-term and short-term alarm trigger, we will 

determine the value of the threshold for expected non-availabilities if the long-term or short-term alarm 

is triggered. Note that this is based on the global expected non-availabilities 𝐸[𝑁𝐴𝑉]𝑖. Table 5.2 shows 

the range of values we tested in our simulation model. When it turns out after this range that we should 

test a higher threshold, we will do this after the first experimental results.  

Table 5.2: Range of values for the LongShortTermNAV threshold  

Symbol   Description Range Step size 

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑  Threshold for the value of the expected 

unplanned non-availabilities used when the 

short-term or long-term alarm is triggered 

0.25 – 1.75 0.25 

The results of using different thresholds for the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 are shown in Table 5.3. Note 

that this are also the results of the second scenario as described in Section 4.2.4. As can be seen, a lower 

threshold results in the highest improvement compared to the current situation in expected non-

availabilities. This is as expected, since we try to expedite more equipment numbers when we use a 

lower threshold. The highest improvement in expected non-availabilities also has the highest number of 

proposed interventions. For each threshold we calculate the performance with the formula used in 

Equation 4.4. To calculate the performance, we did not use the improvement in percentages, but we used 

the real numbers. These values are shown behind the percentages. 
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Table 5.3: Results for different LongShortTermNAV thresholds  

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 
𝑬[𝑵𝑨𝑽] 

improvement 

Shipment 

improvement 
# Proposed 

Interventions 

# Normalized 

Performance 

0.25 Confidential information 0.97 

𝟎. 𝟓𝟎    1 

0.75    0.64 

1    0.42 

1.25    0.21 

1.50    0.23 

1.75    0.19 

The threshold with the best performance is 0.50. From Table 5.3 we see that a threshold of 0.25 results 

in a slightly higher improved on expected non-availabilities and shipments, but more interventions are 

needed. An improvement of 𝑥% on the 𝐸[𝑁𝐴𝑉]𝑖 means that the total expected non-availabilities during 

the year are reduced by 𝑥% compared to the current situation. An improvement of 𝑥% on shipment 

improvement means there were 𝑥 fewer shipments compared to the current situation, resulting in less 

shipment costs.  

In Section 5.1.4 we will analyze the results and performance of the alarms when we use both the long-

term and short-term supply delay alarm and the future non-availabilities alarm. We start this analysis by 

using the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.50 since this threshold results in the best performance    

5.1.3 Threshold for 𝐸[𝑁𝐴𝑉] in the future supply alarm intervention 

Table 5.4 shows the range of values we tested in our simulation model to determine the threshold in the 

future non-availabilities alarm intervention. Note that this are also the results of the third scenario as 

described in Section 4.2.4.We originally used the range of 0.1-0.5, but we saw that the threshold of 0.1 

had the best performance. Therefore, we added some lower thresholds than 0.1 to analyze if this results 

to an even better performance.   

The range is lower compared to the range for the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑. This is the case since the 

future non-availabilities alarm is based on the local non-availabilities 𝐸[𝑁𝐴𝑉]𝑖,𝑗, while the long-term 

and short-term supply delay alarm is based on the global non-availabilities 𝐸[𝑁𝐴𝑉]𝑖. Since the local 

non-availabilities are lower than the global non-availabilities, we also need a lower threshold.   

Table 5.4: Range of values for the Future NAV threshold  

Value    Description Range 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑  Threshold for the value of the expected 

unplanned non-availabilities 
0.0 – 0.5 

The results of the different threshold for the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 are shown in Table 5.5. As can be 

seen here as well, a lower threshold results in the highest improvement on non-availabilities compared 

to the current situation, but also has the highest number of proposed interventions. We see in Table 5.5 

that the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.01 has the best performance. A threshold of 0.0 indicates a 



 

55 

 

Public 

situation where we always propose to expedite supply when there are tools in consignment. That is the 

reason why so many interventions are triggered. Due to these high number of interventions, this 

threshold has the lowest performance. 

Although a 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.01 has the highest performance, we will use a threshold of 0.1 

in the coming experiments. This is discussed after a meeting with multiple stakeholders. This choice is 

made, because: 

- Confidential information  

Therefore, in Section 5.1.4 we start with a threshold of 0.1 to analyze the impact when both alarms are 

used. 

Table 5.5: Results for different values of the Future NAV thresholds 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 𝑬[𝑵𝑨𝑽] improvement 
Shipment 

improvement 

# Proposed 

Interventions 

# Normalized 

Performance 

0.0 Confidential information 0.05 

0.01    4.02 

0.02    3.14 

0.04    2.20 

0.06    2.20 

0.08    1.92 

0.1   
 1.67 

0.2   
 1.66 

0.3   
 1.03 

0.4   
 0.79 

0.5   
 0.53 

5.1.4 Thresholds when all alarms are used 

In the previous subsections, we analyzed the performance of the Control Tower decision rules when 

either the long-term supply delay and short-term supply delay alarm are used, or when only the future 

non-availabilities alarm is used. In this subsection, we analyze the impact on the key performance 

indicators when we use all alarm types. Note that this are also the results of the fourth scenario as 

described in Section 4.2.4. 

To analyze the impact of this scenario, we used the thresholds we found in Sections 5.1.2 and 5.1.3. This 

means we start this analysis with a 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.50 and an 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 

0.1. We tested this setting two times. First, we ran the long-term and short-term alarm first and after that 

the future non-availabilities alarm, and the second test we did this vice versa. The results were very 

similar, so we can conclude that the sequence running the alarms does not matter for the performance. 

However, the future non-availabilities gives the analysts a bit more details since this is on local level. 

Therefore, we recommend to first run the future non-availabilities and thereafter the long-term and short-

term supply delay alarm.  
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We also tested the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.25 and the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.2, since these 

two got the second best performance when we only used one of the alarm types. Besides, we tested the 

setting using a 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.50 and the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 of 0.01. Table 5.6 

shows the results when both alarms are used.  

Table 5.6: Results for different thresholds when both alarms are used 

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡 
𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉 
𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 

𝑬[𝑵𝑨𝑽] 
improvement 

Shipment 

improvement 

# Proposed 

Interventions 

# Normalized 

Performance 

0.25 0.1 Confidential information 2.05 

𝟎. 𝟓𝟎 𝟎. 𝟏    2.15 

0.25 0.2    1.98 

0.50 0.2    1.74 

𝟎. 𝟓𝟎 𝟎. 𝟎𝟏    3.89 

From Table 5.6 we can conclude that the setting using a 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.50 and a 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.01 has the best performance We achieve an improvement on the expected 

non-availabilities of 𝑥% and 𝑥 interventions are needed to reach this improvement. As expected, the 

setting using a 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.50 and a 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.2 results in the 

worst performance. This is caused by the fact that less interventions are proposed since for both 

thresholds we use the highest threshold. Since less interventions are proposed, it is also harder to improve 

the expected non-availabilities. We did not test even higher thresholds than the values shown in Table 

5.6 since we see that higher thresholds result in a decrease in performance.  

As mentioned in Section 5.1.3, a 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.01 is not desired by the stakeholders. 

Therefore, we continue our analysis with a  𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.1. From Table 5.6 we can 

conclude that the setting using a 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.50 and a 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 

0.1 results in an improvement on the expected non-availabilities of 𝑥% and 𝑥 interventions are needed 

to reach this improvement. 

We can also conclude from these results that we are dealing with a substitution effect. The results when 

using all alarm-types are less than the added results of the short-term, long-term alarm and the future 

non-availabilities alarm separately. This is caused by the fact that some 12NCs are triggered for both 

alarms, but we cannot count the improvement twice. However, using both alarms using a 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.1 and a  𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.5 results in the best performance, 

also compared to the results when we either use the short-term and long-term alarm or only the future 

non-availabilities alarm. Therefore, Table 5.7 gives some more insight in the number of alarms and 

interventions proposed when both alarms are used with the threshold value 0.1 for the 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 0.5 for the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 
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Table 5.7: More details about the normalized results of the best setting 

 Long-term 

supply 

delay alarm 

Short-term 

supply delay 

alarm 

Future non-

availabilities 

alarm 

Unique 

12NCs with 

an alarm 

# 𝑜𝑓 𝑎𝑙𝑎𝑟𝑚𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘  0.32 0.35 0.61 1 

# 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 0.05 0.07 0.35 N/A 

5.1.5 Conclusion on the parameter settings analysis 

Based on the results of Table 5.3, Table 5.5 and Table 5.6, we propose to use both the long-term and 

short-term delay alarm and the future non-availabilities alarm. When we use all alarm types, instead of 

only the future non-availabilities alarm or only the long-term and short-term supply delay alarm, we 

have a better performance and we get more insight in the behavior of service tools.   

In Figure 5.3 we visualized the performance and the key performance indicators of all scenarios using 

the parameter settings as proposed in Table 5.8. We see that when we only use the long-term and short-

term supply delay alarm we improved the key performance indicators, but using only the future non-

availabilities results in a better performance.  

Confidential Figure 

Figure 5.3: Comparison of performance of the different scenarios 

As already concluded, using both alarm types result in the best performance. After we analyzed the 

performances in Table 5.6, we propose the parameter settings as shown in Table 5.8. 

Table 5.8: Proposed parameter settings used in the Control Tower rules 

Symbol   Description Value 

𝑘 Multiplier long-term supply delay alarm 1.5  

𝑧 Multiplier short-term supply delay alarm 2  

𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑  𝐸[𝑁𝐴𝑉] threshold to propose an intervention when 

long-term and short-term delay alarm is triggered 
0.50 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐸[𝑁𝐴𝑉] threshold to propose an intervention when 

the future non-availabilities alarm is triggered 
0.10 

5.2 Sensitivity analysis 

Some of the input parameters are based on assumptions. Therefore, sensitivity analyses were performed 

to analyze whether a change in these input parameters lead to different results. Therefore, this sub section 

answers sub question 13: What is the impact of the input parameters on the key performance indicators 

of the model? 

In Section 5.2.1 we perform a sensitivity analysis on the multipliers we used in the long-term and short-

term supply delay alarm to analyze whether it is valuable to differentiate between 12NCs. In Section 

5.2.2 we perform a sensitivity analysis of the intervention success rates and in Section 5.2.3 of the 

expedite lead times.  
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5.2.1 Sensitivity analysis of the multipliers  

In Section 5.1.1 we tested different settings of the multipliers 𝑧 and 𝑘 we use in the short-term and long-

term supply delay alarm. These multipliers are used to determine how big the difference between the 

actual tools received from consignment worldwide and expected tools received from consignment must 

be before an alarm is triggered. In Section 5.1.1 we used for all 12𝑁𝐶𝑠 the same multiplier.  

In this Section we analyze the impact on the performance when we use different values of the multipliers 

for fast and slow movers. We defined a fast mover as a 12NC that is sent to customer consignment more 

than 50 times in a year, and a slow mover is defined as a 12NC that is sent to customer consignment less 

than 50 times. In the initial setting, we used a multiplier of 1.5 in the long-term alarm and a multiplier 

of 2 in the short-term alarm (setting 0). Table 5.9 shows the results of the performance when we use 

different multipliers for fast and slow movers.  

In setting 1 we increase the value for the slow movers with 0.5. In setting 2 the value for the slow movers 

is increase with 1 compared to the original setting. Finally, in setting 3 we increased the multipliers for 

the fast movers with 0.5 compared to the original setting.  

Table 5.9: Results using different multipliers for fast and slow movers 

Setting Multiplier 
Value for fast movers Value for slow movers 

# Normalized 

Performance 

0 𝑧 =  2 
𝑘 =  1.5 

N/A N/A 2.15 

1 𝑧 (short-term alarm) 2 2.5 
2.05 

𝑘 (long-term alarm) 1.5 2 

2 𝑧 (short-term alarm) 2 3 
2.01 

 𝑘 (long-term alarm) 1.5 2.5 

3 𝑧 (short-term alarm) 2.5 2 
1.94 

 𝑘 (long-term alarm) 2 1.5 

From the results shown in Table 5.9 we cannot conclude that using different multipliers result in a better 

performance. The original setting we proposed in Section 5.1.1, setting 0, still results in the best 

performance. This is caused by the fact that less interventions are proposed using different multipliers, 

since less alarms are triggered. Therefore, there is less room for the control tower to reduce non-

availabilities. 

5.2.2 Sensitivity analysis of the intervention success rate 

At the beginning, we made the assumption that it is not always possible to expedite tools in consignment 

when this is proposed. The initial setting for the intervention success rate for tools in consignment longer 

than planned is 70%, and 50% when tool are no longer than planned in consignment. To investigate 

what the impact is on the key performance indicators when these success rates are increased or 

decreased, we perform this sensitivity analysis.  
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We performed a full factorial experimental design to analyze the impact of the intervention success rates. 

We start with an intervention success rate of 100%, then 80%, 60%, 40%, 20% and we end with a success 

rate of 0%. Since we have two intervention success rates, 5 ∗ 5 = 25 experiments should be conducted. 

However, we assumed that the intervention success rate when tools are no longer away than planned 

cannot be higher than the success rate when tools are longer away than planned. Therefore, in total, 20 

experiments are performed to analyze the impact of the intervention success rates on the key 

performance indicators. In Appendix E the detailed results can be found of these experiments.  

We can conclude that the Control Tower decision rules as designed in Chapter 4 always result in an 

improvement compared to the current situation. Even if the intervention success rates are highly 

overestimated, for example using intervention success rates of 20% and 20%, the Control Tower 

decision rules are beneficial. Based on these results, we can conclude that our proposed model is robust 

on the intervention success rates. The maximum improvement in expected non-availabilities is around 

x% compared to the current situation. This improvement is achieved when both intervention success 

rates are 100%.  

Figure 5.4 shows a scatterplot of the performance versus the intervention success rates. The x-axis shows 

the intervention success rate for tools longer away than planned, and the y-axis shows the intervention 

success rate for tools that are no longer than planned in consignment. The darker the color of the circle, 

the better the performance. 

Confidential Figure 

Figure 5.4: Scatterplot of the results of the sensitivity analysis of the intervention success rates 

To conclude which intervention success rate is most important to focus on, we use Figure 5.4. We start 

this analysis with the intervention success rates [x%, z%] where x is higher than z, which has a 

normalized performance of 1. The first percentage indicates the intervention success rate for tools longer 

away than planned, the second percentage indicates the intervention success rate for tools that are no 

longer away than planned.   

When we improve the intervention success rate for tools longer than planned in consignment, we have 

the setting [x+20%, z%] with a normalized performance of 1.31. If we improve the intervention success 

rate for tools no longer than planned in consignment, we have the setting [x%, z+20%] with a normalized 

performance of 1.09. In both situations we improved one of the two intervention success rates with 20%. 

When we improve the success rate of  tools longer than planned in consignment, so we have the setting 

[x+20%, z%], the normalized performance increases more compared to the setting [x%, z+20%]. 

Therefore, we can conclude that improving the success rate for tools longer in consignment than planned 

is more important since this results in a better performance. If we leave the success rate for tools no 

longer away than planned the same, i.e. at 50%, and we increase the success rate for tools longer in 

consignment than planned from 70% to 100%, the performance will increase from 2.15 to 2.53. 
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5.2.3 Sensitivity analysis of the expedite lead time  

The initial setting for the expedite lead time is four days. This assumption is quite certain, but to test the 

impact when the lead time is different, we also performed a sensitivity analysis on this assumption. Since 

the assumption is already quite certain, we performed this analysis in which we set the intervention 

success rates to 70% and 50% each time. We have not combined these two input parameters in our 

sensitivity analysis. Table 5.10 shows the different settings we tested for the expedite lead time and the 

results. 

Table 5.10: Results of sensitivity analysis of expedite lead time 

Expedite lead time 
𝑬[𝑵𝑨𝑽] 

improvement 

Shipment 

improvement 

# Proposed 

Interventions 

# Normalized 

Performance 

1 Confidential Information 3.15 

2    2.66 

3    2.53 

4    2.16 

5    2.04 

6    1.64 

From Table 5.10 we can see that when the expedite lead time is shorter, the expected non-availabilities 

improvement is increased compared to the expedite lead time of four days. Using longer lead times than 

assumed, results in a lower performance compared to the lead time of four days. However, longer lead 

times than assumed also results in a better performance compared to the current situation. This means 

that the model is also quite robust on the input parameter expedite lead time. It makes sense that the 

improvement on expected unplanned non-availabilities is less high using longer lead times, since with a 

lead time of six days we have to wait longer till we have the tool back.   

5.3 Conclusion on experimental results 

In Section 5.1 the value of the multipliers 𝑧 and 𝑘 were determined. The multiplier 𝑧 is used in the short-

term supply delay alarm to control the number of generated alarms. The proposed value for 𝑧 is 2. This 

results in x short-term alarms generated per week. The multiplier 𝑘 used in the long-term supply delay 

alarm is set to 1.5. This results in x long-term alarms generated per week. We propose to implement all 

Control Tower decision rules, so to use the long-term and short-term supply alarm and the future non-

availabilities alarm. The value of the 𝐿𝑜𝑛𝑔𝑆ℎ𝑜𝑟𝑡𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is proposed to be 0.5 and the 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is proposed to be 0.1. Using these settings, the expected unplanned non-

availabilities are reduced with almost x% and the number of shipments are reduced with x% compared 

to the current situation. Since some 12𝑁𝐶𝑠 are triggered in all alarm-types, in total, there are on average 

x 12𝑁𝐶𝑠 per week for which an alarm is triggered.   
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In Section 5.2 a sensitivity analysis was performed on the multipliers used in the long-term and short-

term delay alarm, the input parameters intervention success rates and expedite lead times. Using different 

values for the multipliers for fast and slow movers did not increase the performance of the Control Tower 

decision rules. From the analysis on the intervention success rates we can conclude that the Control 

Tower decision rules are robust. Even when highly overestimating the success rates, the Control Tower 

decision rules are still beneficial. In a situation where a proposed intervention is always successful, the 

maximum improvement that can be achieved on the expected non-availabilities is around x%. Based on 

the sensitivity analysis of the expediting lead time we can also conclude that the proposed decision rules 

are robust on this input parameter. In all scenarios, the proposed rules perform better compared to the 

current situation.   
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6. Implementation 

In the previous chapters we have explained the Control Tower decision rules and we analyzed the added 

value of these rules. Since the model is robust and the proposed rules are almost always beneficial, we 

recommend to implement these rules. In this chapter we provide an implementation plan which explains 

how the company should work with the proposed decision rules and how the Control Tower process 

should work. Therefore, this chapter answers the final sub question: How should a Control Tower for 

tools be implemented? 

In Section 6.1 we explain the steps needed to execute the Control Tower decision rules and in Section 

6.2 is explained how the visualization tool can be used. The conclusions are drawn in Section 6.3. 

6.1 Execution of decision rules 

The proposed Control Tower decision rules as explained in Section 4.1 are written in a Python script. 

From the experimental results we found that the situation where all alarms are used results in the best 

performance. First the “future non-availabilities” rules should be executed followed by the long-term 

and short-term decision rules.  

We propose to execute the Control Tower decision rules on a weekly basis. A weekly basis is proposed 

instead of a daily basis to give the Control Tower analysts some time to analyze the generated alarms 

and set out some action when an intervention is proposed.  

To make it possible to execute the Control Tower decision rules, the list of data files are needed as input 

for the model are given below. Note that in this public version the implementation details that are 

specific for ASML are removed.  

• Demand data: We need the historical demand lines to determine the number of tools we 

planned to receive in a week and the actual number of tools we received in a week.  

• Days in consignment: The days in consignment are needed to determine the probabilities a tool 

returns after some number of days.  

• Forecast data: For all the tools included in the demand dataset, we need the monthly forecast 

of these tools in all local warehouses. We need this data to calculate the expected unplanned 

non-availabilities and we need this data to calculate the expected on-hand stock levels in our 

future non-availabilities alarm.  

• Base stock levels: For all the tools included in the demand dataset, we need the base stock levels 

of these tools in all local warehouses. We need this data to calculate the expected unplanned 

non-availabilities. 
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• On-hand stock levels: For all the tools included in the demand dataset, we need the on-hand 

stock levels of these tools in all local warehouses. Important is that we need the number of tools 

that are physically available in the local warehouse to fulfill a demand request, so the tools in 

consignment should be excluded. We need this data to calculate the expected unplanned non-

availabilities.  

• Group of the 12NCs: For all tools included in the demand dataset, we need the group number. 

We need this data to calculate the probability that a 12NC returns on a certain day. These groups 

can be made based on the average time tools are in consignment, their standard deviations and 

the number of times tools are sent to the customer factory.  

All these data files are already collected and the changes that needed to be done are already finished. 

The data files mentioned above should be exported from Spotfire as a ‘.csv’ file, so that they can be used 

in the Python script to execute the Control Tower decision rules.  

We have four output files of the Python script. These data files are described below. The first two 

datafiles are needed to analyze the alarms and interventions. The last two datafiles are needed to make 

some visualizations. The visualization tool is explained in Section 6.2. 

• 12NCs with an alarm: For each 12NC the global expected non-availabilities are stored and 

there is indicated with a Boolean datatype which alarm(s) are triggered. 

• Equipment numbers to be expedited: For each equipment number, the 12NC is listed, the 

local warehouse where the equipment number should be returned to and the number of days the 

tool is already in consignment. 

• Probabilities that an equipment number returns on a day in the future: For each equipment 

number, the 12NC is listed, the local warehouse, the day in future and the probability the 

equipment number returns on that day in the future. This data is needed to make some 

visualization graphs. 

• The expected on-hand stock levels of each 12NC: For each 12NC, the local warehouse is 

listed, the base stock level, the 𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the day in future, the expected stock 

level on that day in future and the expected non-availabilities on that day in the future. This data 

is needed to make some visualization graphs. 

After the decision rules are executed and we have the output files, one of the goals of a Control Tower 

is to visualize the data. In the next section we describe the visualization tool that is build. 
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6.2 Visualization tool 

The output of the Control Tower decision rules are used in the visualization tool we built. This 

visualization tool is built in the Business Intelligence software ‘Spotfire’. This program is chosen since 

all the reports and dashboards at ASML are built in Spotfire.  

As Bodendorf & Zimmermann (2005) also recommend, it is useful to prioritize the generated alarms. 

We recommend to analyze the proposed alarms based on the criticality levels of the tools. At ASML, a 

critical tool is defined as: “A tool that has an unacceptable risk of an unplanned non-availability in the 

coming month and has a special status.” The details about the criticality level are explained in Section 

2.1.1. So, tools with a higher criticality level should be analyzed first. The criticality is only used to 

prioritize the alarms and is not used to actually generate the alarms. This has to do with the calculation 

of the criticality. As indicated in Chapter 2, the criticality level is calculated by the weighted sum of 

various aspects. The expected non-availabilities have by far the highest weight, which is why the 

expected non-availabilities are used to generate alarms and interventions. 

On the first page of the dashboard we show an overview of how many alarms are triggered. Figure 6.1 

shows how this view looks like. On the first page of the dashboard, we can find data related to the 12NCs 

that have an alarm. For all 12NCs with an alarm, we also show the criticality level of this 12NC.  

 

Figure 6.1: Overview alarms in Spotfire dashboard 

It is possible to filter on a specific 12NC (with or without an alarm). When a 12NC is selected, we see 

detailed information on another tab in the dashboard. This tab shows for a 12NC if an alarm is triggered, 

what the global non-availabilities are and which alarm-type is triggered. If there are intervention 

proposed, this is also visual. Figure 6.2 shows how this looks like in Spotfire.  
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Figure 6.2: Detailed information on 12NCs in consignment 

The visualization of the future non-availabilities alarm as shown in Figure B.1 (see Appendix B) is also 

shown in this tab.  

Using this dashboard, the Control Tower analysts can analyze the generated alarms and they see the 

behavior of tools over time. The analysts can see how many equipment number should be expedited and 

to which local warehouse they are allocated. We recommend to log all actions taken in the so-called 

“Tool action tracker”. This is a file that is already used at AMSL by among others tool coordinators to 

use as a communication file. An advantage when we log the actions taken after the Control Tower 

decision rules are analyzed, is that we build a historical database. When it turns out after a few 

weeks/months that always the same 12NCs or the same group of 12NCs should be expedited, we can 

set up an improvement project. Using this file, we can continuously improve the processes where tools 

are involved. When a certain 12NC is selected in the Spotfire dashboard, also a data table is shown in 

the dashboard with the previous comments/feedback mentioned about that certain 12NC in the “Tool 

action tracker”. 

6.3 Conclusion on the implementation 

This chapter explained which data is needed to implement the Control Tower decision rules and how 

the visualization tool can be used. The input files needed to execute decision rules are: demand data, 

forecast data, base stock levels, on-hand stock levels, and the groups of the 12NCs. The output contains 

information on the 12NCs with an alarm and the equipment numbers that should be expedited. Besides 

that, there are two output files containing information to visualize the information generated by the 
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Control Tower decision rules to obtain some insights. Finally, the visualization tool that can be used to 

analyze the alarms were presented. Analyzing the alarms will become easier using this visualization tool 

for the Control Tower analysts.   



 

67 

 

Public 

7. Conclusion and Recommendations 

This chapter contains the conclusions and recommendations of this research. Section 7.1 provides the 

conclusions of this research followed by the discussion in Section 7.2. Finally, Section 7.3 explains the 

recommendations to ASML.  

7.1 Conclusions 

The objective of this research is defined as follows:  

 How should a Control Tower for tools be designed and implemented in order to proactively act on 

shortages to reduce the number of unplanned non-availabilities on an operational level? 

In the current situation, the identified causes for unplanned non-availabilities were categorized in 

demand related issues, supply related issues and quality related issues. Most of the causes of the 

unplanned non-availabilities were supply related issues. Since tools are used instead of consumed like 

spare parts, there are multiple supply sources from which tools enter or return the supply chain. 

Therefore, in order to answer the main research question, the scope was limited to the supply side. 

During the literature review, no literate specifically for Control Tower for service tools was found. This 

thesis contributes to that part, since insights are given in how a Control Tower can be designed for tools. 

In the literature review, we used articles related to a Control Tower for spare parts. We found that 

demand related alarms and stock related alarms are the main alarm types that can be used in a Control 

Tower. Besides, multiple operational interventions were found that can be proposed when an alarm is 

triggered. The operational intervention expediting supply was selected as most suitable option for 

ASML. Finally, we found that we can use distributions and probabilities to include stochasticity in the 

proposed Control Tower decision rules.  

To design a Control Tower specific for service tools, three alarm-types are proposed. The proposed 

alarms are made with regards to the supply flow from local warehouse to the customer factory and vice 

versa. The operational intervention that can be proposed when one of the alarms is triggered is to 

expedite tools in consignment.  

• In the first two alarms, the long-term and short-term supply delay alarm, we use a different time 

window, but the decision rule is the same. When the actual number of tools received in a time 

window is less than the expected tools received, an alarm is triggered. Using this alarm, we gain 

insight into whether the tools are structurally longer away than planned or that a deviation in the 

number of received tools are caused by random (high peaks). This is an important insight 

because with this information ASML can, for example, update the planned times in consignment 
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when the tools are structurally longer away than planned. Doing so, processes related to tools 

can continuously be improved since the planning is made in such a way that demand should be 

able to be fulfilled. Therefore, updating lead times in the planning means that the targets can be 

achieved. 

• The third alarm-type, the future non-availabilities alarm, is based on a prediction of the future 

non-availabilities. The stochastic nature of the time tools are in consignment in the future non-

availabilities alarm is taken into account by using the probability a tool returns on a certain day 

in the future. This is used to calculate the expected future on-hand stock and the expected future 

non-availabilities. If the expected unplanned non-availabilities in the future are above a certain 

threshold, an alarm is triggered. Based on this alarm, the Control Tower analysts know that the 

risk of having a shortage in the future is high. Therefore, the analyst can proactively act on that 

situation since they are alerted by the alarm. 

• The operational intervention proposed when (at least) one of the alarms is triggered is to 

expedite tools in consignment. Tools in consignment are expedited when the expected 

unplanned non-availabilities in the coming month are above a threshold. A threshold of 0.5 is 

proposed in the short-term and long-term supply alarm and a threshold of 0.1 in the future non-

availabilities alarm. This difference is important since the short-term and long-term supply 

alarm is triggered on a global level (over all location), while the future non-availabilities alarm 

is triggered on a local level (over a specific location). 

These Control Tower decision rules were tested and evaluated using a simulation model. We compared 

the performance of the different Control Tower rules with the current situation. Using all the proposed 

Control Tower decision rules will result in the best performance. On average, x alarms are generated per 

week and x operational interventions are proposed on a weekly basis. The expected unplanned non-

availabilities can be reduced with around x% on a yearly basis when all proposed Control Tower decision 

rules are used.  

Based on the sensitivity analysis of the intervention success rate we can conclude that the proposed 

model is robust. Even when the intervention success rates are highly overestimated, the alarms and 

interventions are beneficial. A sensitivity analysis is also performed on the expediting lead time. When 

the expediting lead time is shorter, the expected non-availabilities increase slightly compared to the 

assumed expediting lead time (4 days). The improvement range is small, meaning the model is also quite 

robust against the expediting lead time.  
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7.2 Discussion 

This section describes some limitations within this research. Also, the assumptions made in our 

simulation model are discussed and the contribution of this thesis is explained.  

• One limitation within this research is the calculation of the expected unplanned non-

availabilities. The expected unplanned non-availabilities are calculated by multiplying the 

Erlang Loss probability by the monthly forecast. The Erlang Loss probability refers to a lost 

sales system, while ASML uses backordering. Therefore, the calculation of the expected 

unplanned non-availabilities is compared to the calculation of the expected backorders. It 

showed that the outcomes of these two calculations where highly positively correlated, meaning 

that when the expected backorders are high, the expected non-availabilities are high. Therefore, 

the calculation of the expected unplanned non-availabilities can be used to indicate a relative 

risk, but the risk in reality is lower. In the proposed Control Tower decision rules the expected 

non-availabilities calculation were used, since this fits better with the current way of working at 

ASML.  

• The goal of this thesis is to create insight in the behaviour of service tools. Therefore, the goal 

is to trigger alarms that need interventions and that do not specifically need interventions. We 

made this choice since having an alarm without an intervention is not bad. An alarm without an 

intervention is still a useful insight for the Control Tower analysts since this indicates there is a 

delay in supply, which is a risk in fulfilling future demand. One of the goals at ASML is to add 

more alarms in the Control Tower for tools, like a demand-related alarm. When this helicopter 

view is created, the Control Tower analysts can see for example an increase in demand and a 

delay in supply. Then it is still useful to trigger the supply alarms, even when no interventions 

are proposed.  

o When it turns out that the number of alarms are increasing, it can be helpful to generate 

the number of alarms in such a way that alarms are only proposed when also an 

operational intervention should take place. In the proposed future non-availabilities 

alarms this can easily be implemented by increasing the value of the 

𝐹𝑢𝑡𝑢𝑟𝑒𝑁𝐴𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. In the short-term and long-term supply delay alarm this can 

be achieved by increasing the multipliers 𝑧 and 𝑘. 

Below, the main assumptions are discussed which are used in the simulation model. The simulation 

model is used to test and evaluate the performance of the proposed Control Tower decision rules.  

• A simplified version of the NORA allocation rules is used. This simplification means that not 

all different sourcing rules are taken into account. Besides, only reactive shipments are used. 

Because of this simplified version of the NORA rules, a situation may have been created 
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somewhere with higher expected non-availabilities than when the real NORA rules were used. 

This gives the control tower a little more room to improve situations. 

• Two types of intervention success rates are used when the Control Tower decision rules propose 

to expedite tools in consignment. This has been done because sometimes it is not even possible 

to expedite supply when this is proposed. No data was available on how many times it is possible 

to expedite, so the assumption was made that when tools are longer away than planned the 

intervention success rate is 70%, and when tools are no longer away than planned the success 

rate is 50%. Due to this uncertain assumption, we performed a sensitivity analysis of the 

intervention success rates. The results show that even when these success rates are highly 

overestimated, the decision rules are beneficial, meaning the model is robust.  

Besides these limitations, the contribution of this thesis is two-fold.  

• First of all, no literature can be found specifically for a Control Tower for service tools. This 

thesis contributes to that part, given some insights in how a Control Tower can be designed for 

service tools.  

• Besides, all three alarm types are very generic. There are not many parameters to tune and the 

alarms work intuitively. If the expected non-availabilities are replaced by the expected 

backorder calculation, the proposed Control Tower decision rules are also easily applicable in 

other companies/fields. The return date forecasting method in the future non-availabilities alarm 

is separate from the intervention rule. Therefore, this can still be used in cases where a different 

method is used to predict the probability that an item returns in a certain time period. Reviewing 

all these arguments in can be concluded that these Control Tower decision rules provide a good 

contribution to the practical side of Control Towers. 

7.3 Recommendations 

In this section the recommendations are listed.  

• We recommend ASML to implement the proposed Control Tower decision rules. As mentioned, 

the Control Tower should run on a weekly basis to give the Control Tower analysts some time 

to analyze the alarms and to set out the proactive actions. It is shown that these proposed decision 

rules reduce the expected unplanned non-availabilities by 𝑥%. Using the visualization tool that 

is developed, insight is obtained in the behavior of service tools that are sent back and forth 

between the local warehouses and customer factories.  

• Besides, we recommend to try to increase the intervention success rate for tools that are longer 

in consignment than planned. From the sensitivity analysis on the intervention success rates, we 

saw that increasing this success rate improves the performance of the model.  
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• As next steps we recommend to add more supply sources to the decision rules. These supply 

sources are: new buys, repair, calibration and certification. First of all, we recommend to collect 

data about the duration of certification and calibration in a more systematic way. Using this data, 

the expected return date and the actual return date can be calculated. When a deviation is sensed, 

an action can be taken on this supply source. However, at this moment limited data is available, 

so the first step is to collect data about certification and calibration lead times. This supply 

source is mentioned as first source to add, since on the other supply sources already multiple 

improvement projects are ongoing.  

• Moreover, a demand related alarm is also recommended to include in a Control Tower for tools. 

Using insight in both demand and supply processes, the Control Tower analysts have a better 

understanding of the risks of non-availabilities in the coming month. For example, when demand 

is increasing and supply is delayed, there is a better end-to-end view compared to the current 

situation where only the delay in supply is visible. In order to design a demand related alarm, 

the actual usage should be compared with the forecasted usage of tools. Defect rates of tools 

and demand for calibration and certification should then be taken into account.  

The recommendations for further research are listed below.  

• We analyzed the impact on the performance when the multipliers 𝑧 and 𝑘 have different values 

for fast and slow movers. However, we did not find an increase in the performance. It may be 

valuable to perform this analysis again, but then increase the multipliers by smaller steps than 

done in Section 5.2.1. If this also does not lead to an increase in the performance, research can 

be done into tuning the multipliers per individual 12NC in the simulation model. 

• We recommend to make use of additional operational interventions. In this thesis, only one 

usable operational intervention that was applicable to ASML was included. In literature, 

multiple operational interventions were found. When it turns out that expediting supply is not 

possible, it might be possible to perform a proactive lateral transshipment when the expected 

unplanned non-availabilities are high. The paper of Topan & van der Heijden (2020) can be 

useful since they investigated the operational interventions that include among others lateral 

transshipments. Topan & van der Heijden (2020) considered either reactive or proactive 

interventions. 

• Another recommendation for further research is to find a better way to make a good estimation 

of the costs of a non-availability. In this research, the best settings are based on the highest 

performance which is calculated by the weights on the key performance indicators given by 

multiple stakeholders. As soon as the costs of a non-availability are known, we can see which 

setting has the lowest total costs. This gives the management more insight into the added value 

and is therefore more objective. 
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Appendices 

A.  Comparison of expected non availabilities and 

backorders 

NORA calculates daily the expected unplanned non-availabilities to determine the prioritization for the 

replenishment of tools. The formula that is used is not completely correct. That is why we compared the 

outcomes of the expected unplanned non-availabilities with the calculation of the expected backorders. 

The Equations are given in Section 2.1.2.  

Figure A.1 shows the relation between the expected non-availabilities on the x-axis and the expected 

backorders on the y-axis. The closer the data points come to the straight line, the higher 

the correlation between expected backorders and the expected non-availabilities.  

The 𝑅2 measures the strength of the relationship between the expected backorders and the expected 

unplanned non-availabilities. From Figure A.1 we can see that the value of 𝑅2 is 0.93. This indicates 

that the two calculations are correlated. When the 𝐸[𝐵𝑂] are high, the 𝐸[𝑁𝐴𝑉] is also high meaning 

that we can use the calculation of 𝐸[𝑁𝐴𝑉] for the prioritization rules.  

However, from the equation in Figure A.1: 𝑦 = 0.5447𝑥 + 0.0035 we can conclude that the results 

from the expected non-availabilities are too pessimistic and are lower in reality.   

 

Confidential Figure 

Figure A.1: Comparison of the expected unplanned non-availabilities and the expected backorders 

 

  

https://www.texasgateway.org/glossary/correlation
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B.  Logic of the Control Tower decision rules 

In this Appendix the logic of the Control Tower decision rules are given in pseudo codes for the short-

term and long-term supply delay alarm. An illustration is given in Figure B.1 for the future non-

availabilities alarm.  

Short-term supply alarm for tools in consignment 

For i in I: 

If 𝑧 ∗  ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 ≤ ∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥  and  

∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 − ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥 > 1 then 

then 

𝑆𝑢𝑝𝑝𝑙𝑦𝐷𝑒𝑙𝑎𝑦𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝑖 = 1  

Else  

𝑆𝑢𝑝𝑝𝑙𝑦𝐷𝑒𝑙𝑎𝑦𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝑖 = 0  

End if 

End for  

 

Long-term supply alarm for tools in consignment 

For i in I: 

If  𝑘 ∗  ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 ≤ ∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥  and 

∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡
𝜏−1
𝑡=𝜏−𝑥 − ∑ 𝐴𝑐𝑡𝑢𝑎𝑙12𝑁𝐶𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖,𝑡

𝜏−1
𝑡=𝜏−𝑥 > 1 then 

𝑆𝑢𝑝𝑝𝑙𝑦𝐷𝑒𝑙𝑎𝑦𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝑖 = 1  

Else  

𝑆𝑢𝑝𝑝𝑙𝑦𝐷𝑒𝑙𝑎𝑦𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝑖 = 0  

End if 

End for  
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Figure B.1: Illustration of the “future non-availabilities” alarm 
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C.  Warm up length and number of replications 

Warm-up length 

To determine the warm-up length used in the simulation model, the Welch approach is used. Figure C.1 

shows the plot to determine the warm-up period for all 12NCs in consignment. From this Figure we can 

see a stable system after x days. However, this can be different for the different groups we made. 

Therefore, we also analyzed what the warm-up period should be for single groups, but we found that in 

all groups after around x days we have a stable system.  

 

Confidential Figure 

Figure C.1: Welch method to determine warm-up length 

Number of replications 

To determine the number of runs a run length of 365 days minus the warm-up period is used, which is 

the same run length as we use in the experiments of the simulation. We used different KPIs to determine 

the number of runs. The KPIs used are: expected non-availabilities, number of days tools were in 

consignment, total tools in consignment and the number of shipments within the supply chain network.  

We have to perform runs until the width of the confidence interval, relative to the average, is sufficiently 

small. We set the relative error 𝛾 arbitrarily to 3%, which results in a corrected relative error 𝛾′ of 2.91%. 

The relative error is calculated by the following formula: 

𝛾′ = 
𝛾

(1 − 𝛾)
 

We set the value of 𝑎𝑙𝑝ℎ𝑎 to 5%. An 𝑎𝑙𝑝ℎ𝑎 of 5% means that with 95% certainty the average will fall 

into the confidence interval. We calculate the width of the confidence interval for each replication until 

it is smaller than the corrected relative error. We calculate this with the following formula: 

𝑡
𝑛−1,1−

𝛼
2

√𝑆𝑛
2

𝑛

�̅�
≤  𝛾′ 

Table C.1 shows the values of the relative errors for the different key performance indicators per run. 

We can conclude that after five runs, for all key performance indicators used the width of the confidence 

interval is smaller than 𝑦′. Therefore, the number of runs used in the simulation model is five.  

Table C.1: Relative error for different KPIs to determine number of runs 

Confidential Table 
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D.  Analytic Hierarchy Process 

In this appendix the calculations of the Analytic Hierarchy Process (AHP) are given. The first step in 

the AHP is make pairwise comparison of all the criteria. The results are shown in Table D.1. This table 

is made during a project meeting with different stakeholders. 

Table D.1: Pairwise comparisons on each criteria 

Confidential Table 

The next step is to compute the normalized values. These are calculated for each factor by:  
𝑎𝑖,𝑗

∑ 𝑎𝑖,𝑗𝑗
.  

Table D.2 shows the normalized values and the weights. The weights are calculated by taking the 

average value of each row.  

Table D.2: Normalized values and weights for each criteria 

Confidential Table 

 

Using the obtained values so far, we can calculate our consistency ratio. If the consistency ratio is smaller 

than 0.1, the judgments are consistent. To check for consistency, we calculate the largest eigen value 

𝜆𝑚𝑎𝑥. The following formulas are used:  

𝜆𝑚𝑎𝑥 = 

∑
∑ 𝑤𝑖 ∗ 𝑎𝑗,𝑖
𝑛
𝑖=1

𝑤𝑗

𝑛
𝑗=1  

𝑛
 

 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) =  
𝜆𝑚𝑎𝑥 − 𝑛 

𝑛 − 1
 

 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐶𝑅) =  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 

𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥
= 0.03 

The values for the Random Consistency Index are shown in Table D.3. The Consistency Ratio is lower 

than 0.1, meaning that our judgment are consistent and we can use the weights.  

Table D.3: Values for the random consistency index if we have 𝑛 criteria (Saaty, 1987) 

n 3 4 5 6 7 8 

Random Consistency Index 0.58 0.90 1.12 1.24 1.32 1.41 
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 . Results sensitivity analysis on intervention success rates 

This appendix consists of the results of the experiments performed to get insight in the impact of the 

intervention success rates on the key performance indicators. Table E.1 shows the results for the different 

values tested.  

Table E.1: Results of sensitivity analysis on intervention success rates 

Confidential Table 

 

  



 

83 

 

Public 

 

 


