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ABSTRACT 

Background: Over the years, hand, foot and mouth disease (HFMD) has been considered a public health 

challenge worldwide, especially in the South East Asian region including Vietnam. This infectious disease 

mostly occurs in infants and children, and to date, no effective vaccines or drugs to combat this disease have 

been developed. Existing studies have shown that HFMD cases are related to sociodemographic and 

environmental factors. This research analysed the relationship between sociodemographic and 

meteorological factors (temperature, rainfall, sunlight and relative humidity) on HFMD cases in Da Nang 

City, Vietnam. 

Methods: The monthly counts of HFMD cases, population number, and meteorological factors from 

January 2012 to December 2016 were obtained from a reliable source. Two models, Generalized Linear 

Mixed Model (GLMM) and Model Based Random Forest (MBRF) were developed to evaluate the 

relationship between sociodemographic and meteorological factors on HFMD cases in Da Nang City, 

Vietnam during 2012-2016. Both models included seasonal changing climatic variables to model the seasonal 

(short-term) component and a function of time, i.e. month used to estimate the linear long-term trend. 

Similarly, a Bayesian Space Time Conditional Autoregressive (BSTCAR) model was used for the spatial 

effect of the residuals nested in time that arises from modelling both models.  

Results: Temperature was the only factor found to be statistically significant at lag 0. Hai Chau was the 

district with the highest relative risk of HFMD while Lien Chieu had the lowest. Both models also identified 

two different seasonal patterns amount the seven districts. Pattern one showed two peaks every year, one 

in June (highest peak) and a small one in August, i.e. from late spring to summer or in the case of Da Nang, 

at the end of the dry season. It also showed two troughs, July and January, with the deepest trough in 

January. The other pattern showed the reverse with peaks in January (highest peak) and a small peak in July, 

the troughs in June and in August with the deepest trough occurring in June every year. The models also 

showed that there was variation in the long-term trend. Under 5 Population was found to have a negative 

correlation with the relative risk while its population density was positively correlated. i.e. the districts with 

the larger population density had the higher risk while smaller population density had the lower risk.  

Conclusion: The models shows that temperature has a significant effect on HFMD in Da Nang City. This 

has resulted in different seasonal pattern of the risk associated with the disease within the districts. 

Therefore, this research provides scientific evidence that meteorological monitoring should be considered 

to help to fight HFMD against susceptible populations. 

Keywords: Hand, foot and mouth disease, risk factor, Model Based Random Forest, Generalized Linear 

Mixed model, Conditional Autoregressive model. 
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1. INTRODUCTION 

1.1. Background and Motivation 

 

Neglected Tropical Diseases (NTDs) is a leading cause of mortality and morbidity globally. Approximately 

fifty percent (50%) of deaths in tropical countries and twenty percent (20%) in the Americas (Abad, Bedoya, 

& Bermejo, 2013) have been attributed to NTDs. NTDs have been linked to environmental (Naumova et 

al., 2007), poor sanitation conditions and limited access to health care (Cohen, Dibner, & Wilson, 2010). 

According to Jannin & Gabrielli (2013), NTDs “thrive among the poor populations in tropical countries” 

and account for 35,000 deaths per day in developing countries (Cohen, Dibner, & Wilson, 2010). Existing 

literature identified major associated consequences of NTDs such as overcrowded medical facilities, 

increased healthcare cost and limited productivity among public servants within the Caribbean countries 

(Waweru, 2018; Francis et al., 2015), thus causing tremendous strains on the health sector of these countries 

(Straker, 2018; Ryan et al., 2017). 

The main NTD focused on in this research is Hand, Foot, and Mouth disease (HFMD), an infectious disease 

caused by a group of enteroviruses, including Coxsackievirus A16 (CA16) and Enterovirus 71 (EV71) 

(WHO, 2011); which affects children less than five years old. Its control proves to be a major challenge to 

societies, no vaccine or drug have been developed to date (Sarma, 2013). Thus, increased focus aims at 

management. Considering its severity and the absence of effective mechanisms to alleviate this disease, 

further research is paramount for its mitigation.  

Currently, a large volume of published statistical studies regarding modelling methods to investigate the 

relationship of HFMD and its associated risk factors are available (Liu et al., 2015; Song et al., 2018; Zhu, 

Yuan, Wang, Li, Wang, Liu, Xue, Liu, et al., 2015; Liao, Qin, Zuo, Yu, & Zhang, 2016). These includes both 

mixed (Duan et al., 2019; Li, Qiu, Xu, & Wang, 2018) and Generalized Linear models (GLM) (Phung et al., 

2018; Gou et al., 2018), both within the Bayesian and Maximum Likelihood framework. However, to my 

knowledge, within Vietnam and Da Nang city specifically, the combine effect of a mixed and GLM have 

not been carried out. Generalized Linear Mixed models (GLMM) are a “natural outgrowth of both linear 

mixed models and generalized linear models” (Mcculloch, 1997). They also allow for non-normally 

distributed responses with both fixed and random effect parameters. These random effects are done to 

incorporate overdispersion and correlation within the model (Mcculloch, 1997). 

These are all statistical models and have varying accuracy as it results to prediction. However, ensemble 

methods have been mentioned among the most accurate regression tools currently available for data 

scientists (Breiman, 2001). Boosted regression trees (W. Zhang, Du, Zhang, Yu, & Hao, 2016), and 

classification and regression trees (Du, Zhang, Zhang, Yu, & Hao, 2016) were two of those methods that 



 

2 

were used to assess the impact of meteorological factors on HFMD. However, no research was found using 

Model Based Random Forest (MBRF), to assess these impacts. This machine learning algorithm provides 

high predictive accuracy when compared other modelling methods (Lin et al., 2018). MBRF has seen limited 

use in research with two pieces of literature found. Garge, Bobashev, & Eggleston, (2013) used MBRF to 

evaluate the efficacy of pharmaceuticals and behavioral therapies for the treatment of alcohol dependences. 

Lin et al., (2018) made a comparison between MBRF and stepwise regression, RF, Gaussian process, neural 

network and support vector machine regression as it relates to predicting Vt mean and variance based on 

parallel Id measurement. However, to my knowledge, MBRF has not been used in a spatial aspect. Using 

the residuals arising from this model, spatial autocorrelation was assessed, thus introducing a spatial structure 

within the model.  

Therefore, the research contributes to the development of these methods, to help in estimating the spatial 

patterns associated with HFMD risk across areal units; help in isolating high-risk areas, with the potential to 

contribute to public health practice in the formulation of policy interventions for HFMD (Elliot & 

Wartenberg, 2004; C. Anderson et al., 2014).  

 

1.2. Research Problem 

 
HFMD continues to be a public health challenge worldwide in particular, the Asian Pacific region which 

has seen the largest outbreaks (Solomon et al., 2010). This disease was considered as a notifiable 

communicable disease and was recently reported as an epidemic disease in Vietnam (Phung et al., 2018). 

The current problem with this disease is no effective vaccine or drugs to combat HFMD has been developed 

(Sarma, 2013; Z. & B., 2018) and as such remains a challenge for various countries. Literatures have show 

that HFMD has seasonal pattern (Kim, Ki, Park, Cho, & Chun, 2016; Cheng et al., 2014; Yu et al., 2019), 

and are affected  by Socioeconomic, sociodemographic, meteorological and geo environmental factors 

(Urashima, Shindo, & Okabe, 2003; Chen et al., 2014; Zhu, Yuan, Wang, Li, Wang, Liu, Xue, & Liu, 2015).  

Through the use of Geographical Information Systems (GIS) methods, modelling of infectious disease data 

in space and time gradually increase due to the availability of such data (Bauer & Wakefield, 2018). This 

includes the ability to visualise and analyse epidemiological data (Liu et al., 2015; Song et al., 2018; Zhu, 

Yuan, Wang, Li, Wang, Liu, Xue, Liu, et al., 2015). This approach provides ample possibilities for mapping 

the spread of diseases and reveals the relationships with various risk factors (Sham, Krishnarajah, Ibrahim, 

& Lye, 2014).  

To help in the fight to combat this disease and to help achieving goal 3.3 of the Sustainable Development 

Goals (SDG’S) (WHO, 2017), two models were developed to predict the relative risk associated with HFMD 

and to assess the effect of meteorological and sociodemographic factor on this relative risk in Da Nang city, 
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Vietnam. These two models being, GLMM and MBRF. Both models residuals or random noise were also 

modelled to introduce spatial structure within the models. These residuals that were not encapsulated as a 

result of modelling the trend associated to the covariates were modelled as spatial and non-spatial correlation 

(C. Anderson et al., 2014; Besag, York, & Molli,1991). Besag, York, & Molli, (1991) proposed a conditional 

autoregressive (CAR) prior to model the spatial correlation and as such was adopted for this research. The 

models use seasonal changing climatic variables to model the seasonal (short-term trend) component, a 

function of time, i.e. month to estimate the linear long-term trend and the CAR model for the residuals. 

The log of the additive of three components of the time series representing the relative risk for the models. 

RMSE and MSE on calibration and validation was used to compare the accuracy and selecting the better of 

the two models. Through the development of these two models, this research provides scientific pieces of 

evidence to help to fight HFMD. 

1.3. Research Objectives 

 

This research aims at identifying and modelling the seasonality (i.e., the long-term and short-term trends) of 

HFMD, considering the dynamics of the population at risks and the spatial-temporal structures of the 

residuals. Ultimately, this research is able to better explain the seasonal patterns of HFMD and the developed 

models are able to forecast the seasonality in space and time given the information about the dynamics of 

the susceptible population and the related risk factors 

 

 

1.3.1. Specific Objectives  

 

1. To compare the accuracy of the Generalized Linear Mixed Model and Model-Based Random Forest 

method for mapping the relative risk of HFMD; 

2. To examine the spatio-temporal distribution of HFMD on the basis of the modelled relative risk of 

HFMD; 

3. To assess the effects of meteorological and socio-demographic factors on the relative risk of HFMD 

for Da Nang City, Vietnam; 

4. To develop a Bayesian Space-Time Conditional Autoregressive (BSTCAR) model for the spatial-

temporal random effects of the residuals. 
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1.4. Research Questions 

   

    The research questions outlined below are to be answered for the specific objectives to be met. 

 
1. Specific objective 1 

i. Which of the two models gives a lower Root Mean Squared Error (RMSE) when estimating the 

relative risk in space and time (calibration study)? 

ii. Which of two models gives a lower RMSE on forecasting the relative risk in space and time 

(validation study)? 

2. Specific objective 2  

i. Which district within the Da Nang City has the highest and lowest relative risk of HFMD? 

ii. Which period experienced the highest and lowest relative risk of HFMD? 

iii. Is there a stationary seasonality or non- stationary seasonality associated with HFMD in Da Nang 

City? 

3. Specific objective 3  

i. Is there a positive or negative linear relationship between the meteorological, socio-demographic 

factors and the relative risk of HFMD? 

4.   Specific objective  4  

i. What proportions of the residuals are being explained spatially and non-spatially? 

ii. Do the residual variation follows the same pattern as that of the relative risk and what could be the 

reasons for such behaviour? 

1.5. Thesis Structure  

 
The thesis consists of six chapters (Figure 1). Chapter one is an introduction to give a background and 

motivation of the research. It also gives an overview of the problem statement, the objectives and questions 

that are needed for this research. Chapter two presents the literature review consisting of the history of 

disease modelling, time series data and concludes with previous studies on HFMD. Chapter 3 presents Study 

area, Data, Data preparation, Data analysis, Methodology and the development of the two models. Chapter 

4 consists of Results; Chapter 5 consists of Discussions;  Limitations and Recommendations make up 

Chapter 6. The final chapter, Chapter 7 is the conclusions. 
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2. LITERATURE REVIEW 

2.1.  Spatial Epidemiology   

 

2.1.1. Geographic Information systems (GIS) 

 
Geographic Information Systems is “a tool for collecting, storing, retrieving, transforming and displaying 

spatial data from the real world” (Lai, Son, & Chan, 2009). Spatial data tells us about their spatial location 

in the real world, dimension (Burrough & Mcdonnell, 1998) and is stored as geometry (Lai et al., 2009). 

Non-spatial data are also important in GIS as they provide descriptive information related to the spatial 

features mapped (Lai et al., 2009). Through a unique identifier, Spatial and Non- spatial data are related (Lai 

et al., 2009). Storing the spatial data as a Vector or Raster gives one the ability to visualize spatial information, 

make maps, analyse spatial information and to ask critical questions of the map and its data (Lai et al., 2009). 

 
Elliot & Wartenberg, (2004) defined Spatial Epidemiology as “the description and analysis of geographically 

indexed health data with respect to demographic, environmental, behavioural, socioeconomic, genetic, and 

infectious risk factors.” These authors also mentioned at a small area scale, Spatial epidemiology can be 

divided into three main areas: 1. disease mapping, 2. geographic correlation studies, 3. clustering, disease 

clusters, and surveillance. As this thesis focuses on disease mapping, one section would be dedicated to 

review the history. With increase technology, reports of disease outbreaks are easily collected along with 

corresponding risks factors and the population at risk. Therefore, spatial analysis can be performed on health 

data (Lai et al., 2009). 

 

2.2. Disease Mapping 

 

Research into disease mapping has a long history dating back to the 19th century with further developments 

taking place in the 21st century (Walter, 2001). Through advancement in data availability and analytical 

methods, reporting of disease at both national or regional scale has vastly improved (Elliot & Wartenberg, 

2004). This field of spatial epidemiology focuses on estimating the spatial patterns associated with disease 

risk across areal units. The aim is to identify high risks areas. Based on that public health interventions are 

made (C. Anderson et al., 2014). Disease maps are also used for descriptive purposes, etiology hypotheses, 

as surveillance to accentuate high-risk areas and help policy formation (Elliot & Wartenberg, 2004). A 

considerable amount of literature has been published on disease mapping. Generally, these studies showed 

standardized mortality or incidence ratios (SMRs) of different geographic areas, i.e. regions, districts, 

counties or countries (Elliot & Wartenberg, 2004).  
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Due to confidentiality, disease incidence data are generally available as summary counts or rates for a well-

defined region such as a district, municipality or county etc. and at a finite period (Waller, Carlin, Xia, & 

Gelfand, 1997). A typical likelihood model for count data is a realization from conditionally independent 

Poisson distributions with the means as the product of the relative risk and expected cases (Waller et al., 

1997). Elliot & Wartenberg, 2004, stated that the rate in an area is estimated as the standard mortality ratio 

(SMRi). This was calculated as Oi /Ei, where Oi is the observed number of deaths or incident cases of a 

disease in the area; Ei is the expected number of cases (calculated by applying age- and sex-specific death or 

disease rates to population counts for the area) (Elliot & Wartenberg, 2004). The expected count is given as 

Ni* θ, where θ is the overall disease risk and Ni as the population for district i (Waller et al., 1997). Through 

internally standardized (obtained from the given data) or externally standardized ( external source), the 

overall risk is obtained (Waller et al., 1997).  

 

2.3. Time series Data 

 
Time series data can be decomposed into trend, season and random noise (Barnett & Dobson, 2013).  

A trend is defined as "the long-term change in disease, representing a gradual improvement or worsening in 

disease frequency." (Barnett & Dobson, 2013). Previous literature has modelled the trend as function of 

time (Barnett & Dobson, 2013; Yu et al., 2019). Modelling the seasonality of diseases has been of great 

concern over the years. It was Hippocrates in 400 BC who stated that “all diseases occur at all seasons of 

the year, but certain of them are more apt to occur and exacerbate at certain seasons” (Barnett & Dobson, 

2013). A seasonal pattern can be stationary or non-stationary. A stationary seasonal pattern does not change 

from season to season while a non-stationary changes over time (Barnett & Dobson, 2013). 

Investigating the seasonal pattern of diseases has been done using different models. Dynamic Harmonic 

Regression Model (Sofianopoulou, Pless-Mulloli, Rushton, & Diggle, 2017), Auto-Regressive Moving 

Average (ARMA) model, Multivariate linear regression model, Generalized Additive Models (GAM), 

Artificial Neural Networks (ANN) (Baquero, Santana, & Chiaravalloti-Neto, 2018), Spatiotemporal 

Bayesian models and Functional Generalized Least Squares Regression (Basile, Oviedo de la Fuente, Torner, 

Martínez, & Jané, 2018) are some examples that have been used for disease modelling. Each model has its 

advantages and disadvantages. 
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2.4. HFMD research  

Existing studies have shown that HFMD cases are related to socioeconomic, sociodemographic, 

meteorological and geo environmental factors. Historically, research investigating the factors associated with 

HFMD have showed that there exist a linear association or relationship between HFMD and meteorological 

factors in different regions (Urashima, Shindo, & Okabe, 2003; Chen et al., 2014). One of the main 

meteorological factors that has inconsistent relationship according to prior studies is temperature (Urashima 

et al., 2003; Hii et al., 2011; Huang et al., 2013). In Singapore, a study (Hii, Rocklöv, & Ng, 2011) revealed 

that an increase of 1°C in temperature above 32 °C was significantly associated with a 36% increase in 

HFMD incidence. In contrast, a negative association was revealed in a study for Shangong, China, when the 

average temperature was above 21 °C (Zhu, Yuan, Wang, Li, Wang, Liu, Xue, & Liu, 2015). Other studies 

have also revealed that sunshine and windspeed have associations with HFMD (W. Zhang, Du, Zhang, Yu, 

& Hao, 2016b). Likewise, an association between rainfall and HFMD was revealed by Wu et al., (2017) and 

between humidity and HFMD (Phung et al., 2018). Normalized difference vegetation Index (NDVI), land 

cover, roadway density and population density were also found to have an influence on HFMD (Stanaway, 

2013; Song et al., 2018).  

The relationship between HFMD and these meteorological factors have also shown in some articles to be 

non-linear (Chen et al., 2014; Wu, Wang, Wang, Xin, & Lin, 2014). As it relates to techniques used for 

predicting nonlinear relationship, Random Forest time series models were used for prediction of avian 

influenza outbreaks in Egypt (Kane, Price, Scotch, & Rabinowitz, 2014). Also, Support Vector machine, 

bagging, boosting and Random Forest was used to predicting eight chronic diseases, with Random Forest 

ensemble learning method outperforming the rest (Khalilia et al., 2011). Distributed lag nonlinear model 

(Zhu, Yuan, Wang, Li, Wang, Liu, Xue, Liu, et al., 2015; Liao, Qin, Zuo, Yu, & Zhang, 2016), boosted 

regression trees (W. Zhang et al., 2016a), classification and regression trees (Du et al., 2016) were all used 

for predicting nonlinear relationship between HFMD and its risk factors. 

Other published studies regarding modelling methods used to investigate the relationship of HFMD and its 

associated risk factors includes: the generalized additive model (Chen et al., 2014), Bayesian network (Liu et 

al., 2015; Song et al., 2018), geo-additive mixed spatiotemporal model (L. Li et al., 2018), boosted regression 

trees (W. Zhang et al., 2016a), classification and regression trees (Du et al., 2016), Distributed lag nonlinear 

model (Zhu, Yuan, Wang, Li, Wang, Liu, Xue, Liu, et al., 2015; Liao, Qin, Zuo, Yu, & Zhang, 2016), among 

others. 

Liao, Qin, Zuo, Yu, & Zhang, (2016) assessed the effect of extreme meteorological factors, air pollution 

indicators and effects of different lag days on HFMD incidence in Guilin city using Distributed lag nonlinear 

models (DLNM) with natural cubic spline used to model the nonlinear relationship between meteorological 

or air pollution variables, and time as the indicator to control term trends, seasonality and differences in the 
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annual at-risk population. The evidence presented in this research suggests that extreme temperatures, high 

precipitation and low ozone concentration increases the risk of HFMD. 

Phung et al., (2018) examined the province specific association between monthly HFMD and climatic 

factors, while controlling for spatial lag, seasonality and long-term trend, using a Generalized Linear Model 

with Poison family. The results showed that the climate-HFMD relationship varied by regions and provinces 

across Vietnam. Time series regression was used to examine temporal patterns of HFMD and climate factors 

by Nguyen et al., (2017). Seasonality and long-term trends were controlled by using a flexible spline function 

with a Generalized Linear Model with Poison family used to examine the lag effect of each climatic factor. 

The results showed that the climate-HFMD relationship varied at different lag days with the Mekong Delta 

region in Vietnam. 

Truong & Stein, (2018) proposed a hierarchically adaptable spatial regression model to link aggregated health 

data and environmental data in Da Nang City, Vietnam. This model links misaligned health and 

environmental data especially when health data are available at larger aggregation levels than the 

environmental data (Truong & Stein, 2018). In Vietnam, cases of HFMD are reported at a district level, 

ranging between 10 to 103 km2; while the environmental risk factors such as daily air temperature and 

humidity are regularly recorded at only one or two meteorological monitoring stations per province with an 

average area of about 5×103 km2 (Truong & Stein, 2018). Most of these studies either focus on space or time 

but not both simultaneously. Other spatiotemporal models were used to detect clustering of HFMD 

incidences (Y. Liu et al., 2013; Deng et al., 2013; Wang et al., 2016).  

Bernardinelli et al., (1995), proposed a Bayesian model in which both the area specific intercept and trend 

are modelled as random effects and correlation between them is allowed for, to estimate the cumulative 

prevalence of insulin-dependent diabetes of 18-year-old military recruits born in Sardinia between 1936 and 

1971. Models of such type are Poisson Generalized Linear Mixed models: generalized because its error 

distribution is other than Normal and mixed because its linear predictors contain both fixed and random 

effects parameters. These models are under the general class of the Generalized Linear Mixed Model 

(Breslow & Clayton, 1993). The type of GLMM model used is a Poisson Log normal as this allows us to 

model the random effect of the relative risk based on the covariates while also accounting for spatial 

autocorrelation within the residuals (Wakefield, 2007). With regards to spatiotemporal residuals, Waller et 

al., (1997), proposed a heterogeneity and spatial effected nested within time which allows the examination 

of the evolution of heterogeneity and spatial patterns over time. 
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2.5. Model-Based Random Forest research 

 
According to Breiman, (2001), Random Forest (RF) is constructed through an ensemble of decision trees 

and is used for classification or regression (CART) methods. CART is a commonly used recursive 

partitioning method, that selects the most important variable from a large number of variables to explain 

the outcome variable and successively splits the data to identify groups of observations with similar values 

of the response variable (Breiman, 1994). The following algorithm was defined for a Regression Tree (Garge 

et al., 2013):  

Regression Tree Algorithm 

• Several bivariate association models are run using all predictor variable 

• The strongest association with the response variable is selected 

• The data is split into two or more subgroups on the optimal cut point in the selected predictor 

(partitioning variable). This point is the one which leads to the greatest possible reduction in the 

Residuals Sum of Squared (RSS) 

• Each subgroup form by such split is called leaves or nodes. 

• This continues until nodes contain observations only of one class. i.e. cannot be split further, no 

predictor variable shows strong association within a given node and number of observations within 

the node are less than what was specified. 

One major disadvantage of  CART is that it is a single tree method, thus making it unstable to small changes 

in the learning data. To overcome this disadvantage, methods such as Random Forest and Bagging were 

introduced (Strobl, Malley, & Tutz, 2009). Through an ensemble of decisions trees, these methods can 

greatly improve stability and prediction accuracy. 

 

 

Figure 2: Random Forest illustration, Source: (Lin et al., 2018) 
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Random Forest makes use of a  random selection of the predictor variables during the process of splitting 

a tree node and constructs trees on random samples of learning data with replacement term bootstrapping 

(Garge et al., 2013), i.e. each tree is constructed based on a different set of training samples. 

Using Random Forest, multiple trees can be constructed at different levels while incorporating predictions 

that are not as strong as the dominant predictors (Strobl et al., 2009). Figure 2 illustrates the theory of 

Random forest for B amount of decisions trees, [T1, T2, ..., TB]. Predictions of the response variable from 

RF is based on the averaging of the response variable obtained from all trees (Lin et al., 2018). Breiman 

(2001) stated "Random Forest are A+ predictors but their mechanism for producing a prediction is difficult 

to understand." This is because random forest models provide a functional measure of the influence that 

each variable has on accuracy without providing an interpretable measure of how the variable helps to 

determine the predictions (Kane et al., 2014). Although random forest has shown to provide high prediction 

accuracy, Lin et al., (2018) have shown that extension of random forest, termed Model-Based Random 

Forest (MBRF) has even greater prediction accuracy. A comparison between MBRF and stepwise regression, 

RF, Gaussian process, neural network and support vector machine regression has found that MBRF has the 

lowest RMS and highest R2 when a prediction was carried out (Lin et al., 2018). Due to this major advantage 

and the nature of the data available, MBRF was selected for this research. 

Lin et al., (2018) has outlined the two major differences between MBRF and RF. These were 1. MBRF 

applies the least squares method to build a linear regression model on the same preselected m modelling 

features for each leaf node of a tree to predict the response feature of a testing sample, instead of using the 

average of the response features inside a leaf node as in RF and 2. MBRF applies Model-Based Recursive 

Partitioning (MBRP) to choose a proper partition feature and its split criterion for each split node, instead 

of using CART as in RF. 

This was also illustrated in a diagram as seen in Figure 3. 
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Figure 3: Model-Based Random Forest illustration, Source: (Lin et al., 2018) 

 

 

As it relates to MBRP,  Garge, Bobashev, & Eggleston, (2013) stated it splits group of observations with 

similar model trends as compare to splitting group of observations that shows similar values of the response 

variable (CART). For linear regression, MBRP groups the feature space to recognize different subgroups 

with similar effects. Predictions of the response are based on the different subgroups estimated effects 

(Garge et al., 2013). This method also makes use of a single tree, thus making it unstable to small changes 

in the learning data. To stabilize the predictions and improve accuracy, predictions on multiple tree models, 

MBRF and Bagging were introduced (Garge et al., 2013).  

 

Two pieces of literature have been found using Model-Based Random Forest. Garge, Bobashev, & 

Eggleston, (2013) used MBRF to evaluate the efficacy of pharmaceuticals and behavioral therapies for the 

treatment of alcohol dependences. Lin et al., (2018) made a comparison between MBRF and stepwise 

regression, RF, Gaussian process, neural network and support vector machine regression as it relates to 

predicting Vt mean and variance based on parallel Id measurement. In this study, through the MobForest 

package in R (Garge, Eggleston, & Bobashev, 2018), this model was developed to predict the relative risk 

of HFMD associated with the meteorological factors and socio-demographic factors. 
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3. STUDY AREA, DATA AND METHODS  

3.1. Study Area 

 

HFMD is currently a worldwide health problem, especially within the South East Asian region. The study 

area resides in that region. Da Nang City (Figures 4-6) is the fourth largest city related to urbanization and 

economy and is seen as the largest city in the central coast of Vietnam (General Statistics Office Of Vietnam, 

2017). The latitude and longitude for this region are 16.0544° N, 108.2022° E. As of 2016, the average 

population per thousand was 1,046.2 and has an area of 1,284.7 km2 (General Statistics Office Of Vietnam, 

2017). This area consisted of 7 districts, one urban and 6 rural (Truong & Stein, 2018) and two seasons, dry 

(November- April) and rainy (May- October) (General Statistics Office Of Vietnam, 2017). 

The first reported cases of HFMD outbreak in Vietnam was for the year 2003 (WPRO, 2011) with the 

majority of reported and fatal cases being children within five years old (Truong & Stein, 2018). In Vietnam, 

one of the largest outbreak of hand, foot and mouth disease occurred in 2011, which resulted in 170 deaths 

among the 113,121 infected children (Nguyen et al., 2014). It was also reported for the first quarter of 2015 

in Vietnam, 72.8% of the cases were for the southern part, however, Da Nang city, located in central 

Vietnam recorded the largest number of cases, 36.8% (WPRO, 2015). 
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Figure 4: Area of Study, Da Nang City, Vietnam 

 

 

 

Figure 5: Study area location in Vietnam 
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Figure 6: Study area in Vietnam along with neighbouring countries 

 

3.2. Research Materials 

 

Data 

 
Tools required for this research included 

• Monthly Hand, Foot, and Mouth summary data between 2012- 2016 for Da Nang 

City 

• Monthly population, average rainfall, average humidity, average sunlight, the average 

temperature for 2012- 2016 (Calibration data) 
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• Monthly population, average monthly temperature, weekly observed cases of Hand, 

Foot and Mouth cases 2017 (Validation data) 

• The centroids of the districts were used as the spatial references of HFMD as the 

exact location of these outbreaks were not recorded.  

 

Softwares 

• GIS software, ArcGIS 10.5.1 

• R Studio  

• WinBUGS 

• Microsoft packages 

3.3. Data Preparation 

  
To carry out our modelling and analyse in R, the data obtained were reassigned a unique identifier in ArcGIS 

that was readable for WinBUGS. Also, calculations were done in Excel to calculate the expected and 

observed cases for each month of each district. These tables were stored as a CSV file and read into R using 

the read.csv command. 

 

3.4. Data Analysis 

 
To identify the effects of the covariates (rainfall, relative humidity, sunlight, temperature) on relative risk, a 

linear model of covariates against observed cases at both the district level and city level was carried out to 

show the covariate(s) that is/are statistically significant. Also, the correlation between each covariate and the 

correlation between the crude relative risk with the covariates at both district level and city level was assessed 

for the collinearity problem. To estimate the linear long-term trend, a month was used as a dummy variable 

with values of 1 to 60 representing the months of 5 years. Results of this analysis are presented in the Results 

section 4.2.  

3.5. Methodology 

 

Disease incidence data are generally available as summary counts or rates for a well-defined region such as 

a district, municipality or county etc. and a finite period (Waller et al., 1997). These are observed from 

different subgroups of the population within the region. In previous literature, it assumes that summary 

count data arise from the associated relative risks, i.e. there exists a likelihood model for the count data given 

the relative risk (Waller et al., 1997). The typical likelihood model that is assumed for count data is a 

realization that follows the conditionally independent Poisson distribution with the mean as the product of 
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the relative risk and expected cases (Waller et al., 1997). In the Bayesian Modelling approach, suitable priors 

for the relative risk are needed to smooth the crude map that arises from the likelihood model as these maps 

often have large variations for sparsely population regions, i.e. areas with the highest relative risk will have 

high uncertainties (Waller et al., 1997). 

With related to time series data, it can be decomposed into trend, season and random noise (Barnett & 

Dobson, 2013). In modelling the trend or the fixed effect associated with the relative risk for diseases, it can 

be modelled linearly or non-linearly as a function of time, i.e. monthly within the given time series. Likewise, 

the residuals or random effects can be modelled as a spatially structured effect and an unstructured/non-

spatial effect. 

Therefore, in this study, a Generalized Linear Mixed model and Model-Based Random Forest model, were 

developed to evaluate the impact of meteorological and socio-demographic factors on cases of HFMD and 

predict the relative risk of seven districts within Da Nang City, Vietnam for the period 2012 to 2016. These 

models were compared based on RMSE and MSE for prediction (present data, 2012-2016) and validation 

(2017) to determine which model gives the better accuracy. The results showed which model predicts better 

based on past data and can predict for a future outbreak.  

Similarly, a Bayesian Space-Time Conditional Autoregressive (BSTCAR) Model was used to model the 

spatial effect of the residuals nested in time that arises from modelling the GLMM model and MBRF model. 

Both models included seasonal changing climatic variables to model the seasonal (short-term) component, 

a function of time, i.e. month used to estimate the linear long-term trend and the (BSTCAR) model for the 

residuals. The log of the additive of three components of the time series representing the relative risk. Figure 

7 below shows the flow chart of the stated methodology.  



SPATIAL TEMPORAL AND STATISTICAL LEARNING OF LONG-TERM AND SHORT-TERM TREND OF HAND, FOOT AND MOUTH DISEASE, DA NANG CITY 

19 

 

Figure 7: Methodology 

 

3.6.  Generalized Linear Mixed Model 

 

3.6.1. Model Specification  

As stated above, the disease incidence is count data, i.e. the number of cases in each district per month. This 

shows the observed cases or the occurrences of HFMD in different districts in Da Nang City. However, 

due to the different population size among the districts, it cannot reflect the risk of contracting the disease. 

In literature, it assumes that summary count data arise from the associated relative risks, i.e. there exists a 

likelihood model for the count data given the relative risk (Waller et al., 1997). This relative risk (RR) or 

Standard Mortality Rate (SMR) map can be unstable as a result of low event counts or the population at 

risk, with small changes in the case resulted in a dramatic shift. i.e. they feature large outlying relative risks 

in districts where the population is sparse (C. Song et al., 2018). In the Bayesian Modelling approach, suitable 

priors for the relative risk are needed to smooth the crude map that arises from the likelihood model as 
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these maps often have large variations for sparsely population regions, i.e. areas with the highest relative risk 

will have high uncertainties.  

The typical likelihood model for count data is that a realization follows the conditionally independent 

Poisson distribution with the mean as the product of the relative risk and expected cases (Waller et al., 1997). 

For each district in each month, we denoted the observed cases as 𝑶𝒊𝒕, where 𝑖 = 1,…7 index the districts 

and 𝑡= 1,…60 index the months. The population for each district at each month was denoted as 𝑵𝒊𝒕. The 

risk per district per month is equal to  
𝑂𝑖𝑡

𝑁𝑖𝑡
⁄ , (1), however, our interest is in the relative risk, θit, which is 

given as 
𝑂𝑖𝑡  

𝐸𝑖𝑡
⁄ , ….. (2), where 𝐸𝑖𝑡 is the expected count in district 𝑖 at time 𝑡. This expected count is given 

as Nit* θt, where θt is the overall disease risk for a period. The overall risk was internally standardized as it 

was obtained from the given data θ𝑡 = (365.25 ∗ ∑ 𝑂𝑖𝑡)7
𝑖=1 (12 ∗ 𝐷𝑡 ∗ ∑ 𝑁𝑖𝑡

7
𝑖=1⁄ )…………...(3)  where 

𝐷𝑡 is the number of days per month (Barnett & Dobson, 2013). This adjusted rate was used to account for 

unequal number of days for each month, as the duration of exposure is likely to change. 

Thus, given θit, the observed cases, 𝑂𝑖𝑡 ~ Poisson (Eit θit) ……………………………. (4) 

The data can exhibit extra Poisson variation/ over-dispersion because of the within area variance being 

greater than the expectation of a Poisson distribution. Therefore, to control this overdispersion, one way is 

to model the relative risk as a random effect. The model chosen to do such was the Poisson Log- Normal 

Model as it allows for covariate adjustments and accounts for the anticipated similarity of the relative risk in 

nearby or adjacent regions (Montesinos-López et al., 2017).  

The Bayesian modelling approach was used instead of the Maximum likelihood approach because of the 

sparse data in geographical space (Waller et al., 1997). This approach involves two stages, a likelihood model 

for the vector of observed counts 𝑂𝑖𝑡 given the vector of the relative risk θit, and a prior model to be 

updated by this likelihood model (Waller et al., 1997). The software WinBUGS allows for MCMC 

computational algorithms and yielding a posterior of the relative risk given the observed cases (Lykou & 

Ntzoufras, 2011) was used to carry out the Bayesian modelling.  

To allow for different error distribution than a Normal with both fixed and random effect parameters, the 

Generalized Linear Mixed Model was used. This model was developed in the Bayesian Framework through 

the WinBUGS software. The other analyses and visualizations were carried out in R. 
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3.6.2.   Model Formula        

 

Log(𝜃𝑖𝑡) = 𝛽0𝑖 + ∑ 𝛽𝑖𝑗 
𝐶
𝑗=1 𝑋𝑖𝑗𝑡 + 𝛾𝑖 𝑋𝑡 + 𝜙𝑖𝑡 + 𝜓𝑖𝑡……………… (5) 

  𝜓 it| 𝜓 jt≠it ~ N( 
∑ 𝑤𝑖𝑗 𝜓𝑗𝑡𝑗≠𝑖  

∑ 𝑤𝑖𝑗𝑗≠𝑖
 ,  

𝜎𝜓
2

∑ 𝑤𝑖𝑗𝑗≠𝑖
) ………………………………….. (6) 

 

 
Table 1: Description of Model Parameters (GLMM) 

Index Variable Prior distribution 

i, t, j, C Indexes of  Districts, months, regression 

coefficients, and number of seasonal 

covariates 

N/A 

 

log(𝜃𝑖𝑡) Log of the relative risk N/A 

β0i Fixed intercept for each district Normal distribution with mean zero: β0i~ N (0, 

σ2
β0i)  

 

βij The regression coefficient for seasonal 

covariates for each district 
Normal distribution with mean zero: βij ~ N (0, σ2

βij) 

 

Xijt  Fixed seasonal covariates for per district 

per month 

N/A 

𝛾𝑖  
The regression coefficient of the trend 

for each district 

Normal distribution with mean zero and variance.  

𝛾𝑖 ~ N (0, σ2 
ƴi) 

𝑋𝑡 Dummy covariate indicating the number 

of months over a five-year period 

N/A 

𝜙𝑖𝑡  Spatial-temporal unstructured Normal distribution with mean zero and variance. 

𝜙𝑖𝑡~ N (0, σ2 
ϕ) 

 

ψit 
Spatial temporal structured Conditional Autoregressive prior  

𝜓 it| 𝜓 jt≠it ~ N( 
∑ 𝑤𝑖𝑗 𝜓𝑗𝑡𝑗≠𝑖  

∑ 𝑤𝑖𝑗𝑗≠𝑖
 ,  

𝜎𝜓
2

∑ 𝑤𝑖𝑗𝑗≠𝑖
) 

 

σ2
Φ,  σ2

ψ  Hyperpriors for the spatial unstructured 

and structured 

Gamma distribution 

 

 

 

 



 

22 

The two spatial random effects, one followed an independent Gaussian Exchangeable prior to model the 

unstructured heterogeneity effect nested in time, while an Intrinsic Conditional Autoregressive (CAR) prior 

was assumed for the spatial structured variability (Waller et al., 1997), i.e. spatial dependence was at its 

maximum, to update the data and give a posterior distribution of the resulting coefficient (Bernardinelli et 

al., 1995). When this is used, there is no parameter that controls the strength of the spatial correlation with 

the assumption being there is a strong spatial correlation (Craig Anderson & Ryan, 2017). This was given 

by the following: 

 

𝜓 it| 𝜓 jt≠it ~ N( 
∑ 𝑤𝑖𝑗 𝜓𝑗𝑡𝑗≠𝑖  

∑ 𝑤𝑖𝑗𝑗≠𝑖
 ,  

𝜎𝜓
2

∑ 𝑤𝑖𝑗𝑗≠𝑖
) ……. CAR model for Spatial structured random effects 

 

where i, j indicates that areas i and j are neighbors, wij indicates whether the districts share boundaries with 

1 if region i shares a common edge or border with region j, 0 if i = j, 0 otherwise and σ2 is the variance 

component (Wall, 2004; Song et al., 2018). Besag, (1974) proposed a CAR prior for spatial dependences 

with a Gaussian distribution where each spatial effect 𝜓𝑖 is conditional on its neighbors 𝜓𝑗. The variance 

for such districts depends on the number of neighboring districts and made use of the assumption that 

disease incidence risk in a spatial area was derived from areas that are geographically near to each other 

(Besag, 1974). It makes use of Tobler’s law of geography, “everything is related to everything else, but near 

things are more related than distant things” (Tobler, 2009). As it relates to spatial, this character is called 

spatial autocorrelation, where it assumes the closer the distances in space are, the similar the disease 

incidence relative risk will be in those spatial areas (Vieira et al., 2008; Segurado, Araújo, Kunin, & Segurado, 

2006).   

Both spatial-temporal unstructured and structured are assigned priors. These include the variance 

parameters with the spatial-temporal unstructured or random effect in time (σ2 
ϕ) is on the log of the relative 

risk and the spatial-temporal structured or spatial effect in time 𝜎𝜓
2  is on the log relative risk conditional on 

the spatial effect of the neighbors (Wakefield, 2007). When assigned the CAR, the prior for the precision of 

the parameter must also be given. The variance is then given as the one divided by the precision. This 

hyperprior was assigned from the gamma distribution, dgamma (0.5, 0.0005), as these are vague and allows 

the model to get most of its information from the data (Law, 2016). 
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3.7. Model-Based Random Forest 

 

As stated above, Random Forest (RF) provides a functional measure of the influence that each variable has 

on accuracy of predictions without providing an interpretable measure of how the variable helps to 

determine the predictions (Kane et al., 2014), but more focus on the importance of the variable (Kane et al., 

2014; Garge, Bobashev, & Eggleston, 2013). Similar characteristics of MBRF were observed, i.e. the MBRF 

function in the MobForest package is unable to give an interpretable measure or the coefficients of the 

variables. Therefore, to obtain an interpretable measure or the coefficients of the variables, the linear 

function or model-based recursive partitioning (MRBP) function can be used. This is because as mentioned 

previously, MBRF uses the ordinary least squares method (linear regression method or lm function) to build 

the model on selected modelling features while also using model-based recursive partitioning to select a 

proper partition feature and its splitting criterion for each split node (Lin et al., 2018).  

Using the MobForest package within R (Garge et al., 2018), the main function mobForestAnalysis for 

analysis of MBRF functions was used to predict the relative risk of HFMD within Da Nang City. The 

mob_rf_tree function for MBRP from the same package was also used to decompose the predicted related 

risk into the trend component and the seasonal component. 

 

3.7.1. mobForestAnalysis (): Model-Based Random Forest 

 
Model-based trees to incorporate random forest methodology uses a random subset of the partitioning 

variables when selecting the process of splitting a tree node. Through this subset, the variable that results in 

the lowest residual sum of square errors is selected as a splitting variable (Kane et al., 2014; Garge, Bobashev, 

& Eggleston, 2013). As it relates to Regression, the feature space is a partition to identify similar effects of 

the covariates and the predicted responses is based on the estimated effects within the different groups. 

This is the main function for analysis for MBRF. The following takes the necessary arguments to start 

model-based random forest analysis.  

mobforest.analysis (formula, partition_vars, data, mobforest_controls = mobforest.control (ntree, mtry, 

replace, alpha, bonferroni, minsplit ), new_test_data = as.data.frame(matrix (0, 0, 0)), processors = 1, model 

= linearModel, family = NULL, prob_cutoff = NULL, seed = sample (1:1e+07, 1)).  

The mobForestAnalysis () function was used to predict the relative risk based on temperature and the 

dummy variable.  As mentioned previously, this function does not allow the separability of the trend and 

seasonality, thus the regression coefficients were not obtained. Therefore, to obtain the regression 

coefficients and to separate the trend and seasonality, MBRP was used. Another function that was used for 

the same purpose is the linear regression model via the lm function.  
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3.7.2. mob_rf_tree (): Model-Based Recursive Partitioning 

 
Model-based recursive partitioning identifies groups of observations whose parameters of interest are similar 

and gives predictions from a single tree (Garge et al., 2013). The advantage and the main reason that this 

function was used was to get the regression coefficients of the covariates in order to define the model. 

However, a major disadvantage is because it is a single tree model, predictions are very sensitive to small 

changes. The following takes the necessary arguments for Model-based recursive partitioning, a randomized 

subset of partition variables considered during each split: mob.rf.tree (formula, partition_vars, mtry, data, 

model, control = mob_control (), ...). 

Carefully analyzing both functions, the major difference is in the mobforest.control which contains an 

argument called ntree. This argument represents the number of trees to be constructed in a forest and 

replaces which was set to true, thus build the trees on random samples of learning data with replacement 

(bootstrap). 

 

3.7.3. Model Formula  

  

log(𝜃𝑖𝑡) = ∑ 𝛽𝑖𝑗 
𝐶
𝑗=0 𝑋𝑖𝑗𝑡 + 𝛾𝑖 𝑋𝑡 ……………………. (7).  

See table 2 below for a description of each component of the model. 

 

3.7.4. Bayesian Conditional Autoregressive model for MBRF Residuals 

 
The model in Equation 7 was used to model the seasonality and the trend combined. The residuals arising from this 

model were obtained and assessed for spatial-temporal structured and spatial-temporal unstructured 

residuals. A Conditional Autoregressive prior was assigned for spatial-temporal structured and a Normal 

distribution prior was assigned for the unstructured residuals. 𝑒𝑖𝑡= N (𝑀𝑖𝑡, σ2
e), where 𝑀𝑖𝑡  = 𝜙𝑖𝑡 + 𝜓𝑖𝑡. 

…… (8) 

 

Overall model 

 

log(𝜃𝑖𝑡) = ∑ 𝛽𝑖𝑗 
𝐶
𝑗=0 𝑋𝑖𝑗𝑡 + 𝛾𝑖 𝑋𝑡 + 𝜙𝑖𝑡 + 𝜓𝑖𝑡………………… (9) 

The overall relative risk was obtained by taking the exponent of the sum of the predicted relative risk from 

the Model-Based Random Forest model and the residuals that arises from the spatial structured and 

unstructured effects. 
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Table 2: Description of Model Parameters (Model-Based)  

Index Variable Prior distribution 

i, t, j, C Indexes of  Districts, months, regression 

coefficients, and number of seasonal 

covariates 

N/A 

log(𝜃𝑖𝑡) Log of the relative risk N/A 

βij The regression coefficient for seasonal 

covariates for each district 

N/A 

 

Xijt  Fixed seasonal covariates for per district per 

month 

N/A 

𝛾𝑖  
The regression coefficient of the trend for 

each district 

N/A 

𝑋𝑡 Dummy covariate indicating the number of 

months over a five-year period 

N/A 

𝜙𝑖𝑡  Spatial-temporal unstructured Normal distribution with mean zero and variance. 

𝜙𝑖𝑡~ N (0, σ2 
ϕ) 

 

ψit 
Spatial temporal structured Conditional Autoregressive prior  

𝜓 it| 𝜓 jt≠it ~ N( 
∑ 𝑤𝑖𝑗 𝜓𝑗𝑡𝑗≠𝑖  

∑ 𝑤𝑖𝑗𝑗≠𝑖
 ,  

𝜎𝜓
2

∑ 𝑤𝑖𝑗𝑗≠𝑖
) 

 

σ2
Φ and 

σ2
ψ 

Hyperpriors for the spatial unstructured and 

structured 

Gamma distribution 

 

3.8. Model Inference 

3.8.1. GLMM 

 
The spatiotemporal model was formalized within the Bayesian Framework to include priors to update the 

likelihood of the data. Using the GLMM, both fixed and random effects were incorporated into the model. 

The random effects allow the model to incorporate similarities of neighborhoods in space and time while 

the fixed effects allow the model to incorporate the effects of the covariates. This model includes three main 

levels; distribution of the data, spatiotemporal process and the parameters. The likelihood model for the 

data distribution level was Poisson. As it relates to the spatiotemporal process level, spatial-temporal 

structured and spatial-temporal unstructured were combined to account for the spatial effect and random 

effects for each month. This model was proposed by Waller, Carlin, Xia, & Gelfand, 1997, where 

heterogeneity and spatial effects were nested in time. This will allow the examination of these residuals over 

time.  Finally, the parameters which are the variances were assigned an inverse gamma distribution prior 
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within the Bayesian Framework. The main value of the inverse gamma distribution used was dgamma (0.5, 

0.0005), as these are non-informative and allows the model to get most of its information from the data 

(Law, 2016). The model was built in Notepad+ and ran in WinBUGS and R using the R2Winbugs package. 

Three Markov chains with the initial values for the parameters set to zero was used to build the model. A 

total of 100,000 simulations each with the first 25,000 discarded, though efforts were made to assess the 

sensitivity based on no. of iterations, no. of chains, and burning length. The selected combination of 

simulations and discarded amount resulted in the lowest RMSE among those assessed. The retrospective 

and prospective RMSE of the model was calculated to be used for model comparison. Also, trace plots for 

the parameters were visualized for convergence and were stored. 

3.8.2. MBRF 

 

As stated prior, the MobForest package in R was used to build this model. The mobForestAnalysis() 

function was used to predict the relative risk based on temperature and the dummy variable. Apart from the 

required formula (equation 7), the function requires the partition variables to split the data into two or more 

subgroups. The variable which leads to the greatest possible reduction in the Residuals Sum of Squared 

(RSS) is selected to construct the node (Garge et al., 2013). Other important parameters in the function were 

mtry: the number of input variables that should be randomly sampled at each node; ntree: the number of 

trees to be built in the forest; minsplit: the number of observations in a node; model: the type of model used 

for fitting the observations, be it a linear model or generalized linear model and finally family: a description 

of the error distribution and link function that the model will be used. For this given research, the two 

predictors were used as partition variables, while 300 trees were built in the forest. The number of input 

variables that should be randomly sampled at each node was set to one with the minimum number of 

observations set at 30. The model build was a linear model with a Poisson distribution. 

The residuals arising from this model were extracted and assessed for spatial-temporal structured and spatial-

temporal unstructured residuals. Similar to the GLMM, the model proposed by Waller, Carlin, Xia, & 

Gelfand, 1997 was used to model for the residuals. This was built in Notepad+ and ran in WinBUGS and 

R using the R2Winbugs package. Analysis and visualization of the results were carried out in R. Three 

Markov chains with the initial values for the parameters set to zero was used to build the model. A total of 

100,000 simulations each with the first 25,000 discarded. This was done to maintain similarity as it relates to 

the number of simulations run for both models. The retrospective and prospective MSE and RMSE of the 

model was calculated to be used for model comparison. 
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4. RESULTS 

4.1. Descriptive Statistics 

4.1.1.  Observed cases Analysis 

 

A total number of 11,486 cases of HFMD were reported for seven districts within Da Nang city over the 

60 months. i.e. from January 2012 to December 2016. The average monthly cases across Da Nang city was 

27.35 (Sd:19.36). Among the seven districts, Lien Chieu contributed the largest proportion of the total 

HFMD cases with 2054, a monthly average of 34.23(Sd: 22.60). The least contributed district was Thanh 

Khe, which recorded a total of 1324 cases for the 5 years, a monthly average of 22.07 (Sd: 14.33) (Table 3). 

The highest number of cases recorded for a month was 588 in May 2012 while the lowest recorded, 38 

cases, in May 2014. Over the five-year period, 2012 recorded the highest number of cases, a total of 3302 

cases, while 2014 recorded the least, 1656 cases (Figure 8). As it relates to the total cases for each month, 

February recorded the lowest with 456 cases over the 5 years, while August recorded the highest with 1300 

cases. Hoa Vang was the district that received the highest cases for a month, 113 in August 2012, while 

several districts recorded as low as 3 cases for different months. It can be arguably stated that the monthly 

cases varied with time with most of the observed cases occurred during the first six months of every year 

for every district with the only exception being 2016 where most of the cases of HFMD occurred in the last 

six months (Figure 8). 

 

Table 3: Descriptive statistics of the observed cases of Hand, Foot and Mouth Disease 

District Variable Minimum 25th 50th Mean (Sd) 75th  Maximum Total 

Hai Chau  

 

 

 

OBSERVED 

CASES OF 

HFMD 

3 13 21 22.23(14.29) 27 75 1,334 

 

Lien Chieu 6 18 27 34.23(22.60) 43 96 2,054 

Ngu Hanh 

Son 

3 11 17 22.42(16.92) 29 91 1,345 

Son Tra 3 15 20 28.18(19.76) 37 83 1,691 

Thanh Khe 4 12 19 22.07(14.33) 29 66 1,324 

Hoa Vang 3 19 27 32.67(23.15) 42 113 1,960 

Cam Le 3 17 26 29.63(19.12) 37 97 1,778 

Total  11,486 
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Figure 8: Time series plot of monthly HFMD observed for each district 

 

 

4.1.2. Population Analysis 

 
The smallest under five population throughout the five years was in Hai Chau district, a population of 

210,371, a monthly average of 3,506 (Sd: 271), while the largest was in Lien Chieu, 1,938,655, a monthly 

average of 32,311 (Sd: 2,456) (Table 4).  

 

Table 4: Descriptive statistics of the population for each district 

District Variable Min 25th 50th Mean (Sd) 75th Max Total 

Hai 

Chau 

 

 

 

 

Population 

3,074 3,278 3,460 3,506 (270.80) 3,724 4,065 210,371 
 

Lien 

Chieu 

28,118 30,215 31,886 32,311 

(2,546.16) 

34,305 37,520 1,938,655 

Ngu 

Hanh 

Son 

14,764 15,868 16,691 16,873 

(1,257.53) 

17,847 19,452 1,012,401 

Son Tra 7,182 7,644 8,050 8,143(610.94) 8,621 9,403 488,558 

Thanh 

Khe 

4,041 4,345 4,584 4,642 (362.58) 4,929 5,386 278,508 
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Hoa 

Vang 

6,854 7,354 7,760 7,821 (569.07) 8,228 8,958 469,251 

Cam Le 7,365 7,992 8,462 8,555 (699.49) 9,109 9,962 513,314 

Total  4,911,058 

 

 

 

4.1.3. Seasonal Covariates Analyses  

 

The average monthly temperatures of the study period ranged from 20.3 °C to 30.8 °C (mean:26.44; Sd: 

2.99). The average monthly rainfall ranged from 0.0 to 819.4 mm (mean:182.22; Sd:224.58). The average 

monthly relative humidity ranged from 69% to 89% (mean:80.7; Sd:4.89) while the monthly sunny hours 

ranged from 28.2 to 288.3 (mean: 180.7; Sd:61.23). The last four months for each year recorded the most 

rainfall, an average of  420.71 mm per month, with the least amount in the first four months of each year, 

averaging 26.20mm. October 2014 was the month where the most rainfall was recorded while no rainfall 

was recorded for March 2012, see Figure 9. As it relates to relative humidity, similar results to the rainfall 

were observed, the last four months having the highest percentage of humidity, 84%, while the middle third 

of the year, or months May to August, having the lowest, an average of 75%, see Figure 10. Temperature 

followed a completely different pattern, with an average of 29.6 °C between May to August being the highest 

period throughout the 5 years, while the lowest was at the beginning of the year, i.e. between January to 

April, an average of 23.9 °C, see Figure 11. Sunlight was also maximum during the period of May to August 

every year, 236.7 hours while the lowest was the last period of the year, September to December, averaging 

174.3 hours, see Figure 12.  

 

 

Figure 9: Rainfall pattern 2012-2016 
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Figure 10: Humidity pattern 2012-2016 

 

 

Figure 11: Temperature pattern 2012-2016 

 

 

Figure 12: Sunlight pattern 2012-2016 
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4.1.4. Crude Relative risk Analyses  

 
The spatiotemporal patterns of the crude HFMD relative risk for each district were presented below in 

Figure 20. This relative risk varied for each district and ranged from 0.2562 (25.62%) to 4.1194 (411.94%) 

(mean: 1.49; Sd:0.86). Hai Chau was the district over the years with the highest risk of contracting HFMD 

(mean: 2.697; Sd: 0.66) while, Lien Chieu having the lowest risk (mean: 0.446; Sd: 0.15 ) (See figures 13-18 

for yearly relative risk for Da Nang city). It was observed that the crude relative risks were higher for the 

district with the smallest population, while the districts with the larger population having a lower risk. This 

clearly shows that the population and the crude relative risk have an inverse relationship, i.e. as the 

population increased, the crude relative risk decreased. Lien Chieu and Ngu Hanh Son were the only two 

districts where the risk of contracting HFMD was below 1. This means the population is negatively 

correlated with the relative risk for these districts while it was positively correlated for the remaining five 

districts, thus supporting the claim that population and crude relative risk has an inverse relationship.   

A few interesting observations were: for Lien Chieu district, only once did the observed cases exceed the 

expected cases, in April 2014; the number of observed cases never exceeded the expected for Ngu Hanh 

Son throughout the five years, ranging between 0.2562 to 0.8324 and finally, throughout the five years, Hai 

Chau observed cases of HFMD has always exceeded the expectation cases of HFMD for population under 

five, with as low as 1.002 to the highest being 3.995. i.e. the chances of contracting HFMD within this 

district ranges between 100% to approximately 400%. 

These crude relative risk maps are solely based on the observed cases and have large variances in the relative 

risk in sparsely populated districts. They also failed to account for the similarity in the relative risks in 

adjacent districts. Thus, the relative risk was treated as a random variable to introduce into an extra source 

of variability to capture the impact unobserved confounding factors has on it. Using the Bayesian approach, 

appropriate priors were assigned to the likelihood data to smooth the risks within the Da Nang city. 
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Figure 13: Spatiotemporal pattern of HFMD crude relative risk for each district, 2012-2016 

 

 

 

Figure 14: Crude relative risk for Da Nang city, Vietnam, 2012 
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Figure 15: Crude relative risk for Da Nang city, Vietnam, 2013 

 

 

Figure 16: Crude relative risk for Da Nang city, Vietnam, 2014 
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Figure 17: Crude relative risk for Da Nang city, Vietnam, 2015 

 

 

Figure 18: Crude relative risk for Da Nang city, Vietnam, 2016 
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4.1.5. Seasonal factors affecting relative risk 

 
As stated in Section 3.2, to identify the effects of the covariates (rainfall, relative humidity, sunlight, 

temperature) on relative risk, a linear model of covariates against observed cases at both the district level 

and city level was carried out to show the covariate(s) that is/are statistically significant. Also, the correlation 

between each covariate and the correlation between the crude relative risk with the covariates at both district 

level and city level was assessed for the collinearity problem. To estimate the linear long-term trend, the 

month was used as a dummy variable with values of 1 to 60 representing the months of 5 years. 

At the city level, the temperature was the only seasonal variable found to be statistically significant with p- 

values of 5.27 e-06 when all the seasonal variables were considered at lag 0 (See table 5). The Pearson 

correlation coefficient that takes a value between -1 and 1 is used to determine the strength of a linear 

association. The correlation at lag zero showed that sunlight and relative humidity were significantly 

correlated with temperature (0.79 and -0.73 respectively). Similarly, the correlation of the observed cases of 

HFMD at both the city level and district level with the temperature has a higher value as compared to rainfall 

(see Table 5). Thus, supporting the result of the linear model that temperature was statistically significant 

and the only covariate considered to build the GLMM and MBRF models. 

 

Table 5: Pearson correlations between HFMD cases and meteorological variables along with p-values 

(temperature) 

District  Rainfall Temperature P-value 

Hai Chau HFMD cases -0.12 0.33 0.0459 

Lien Chieu HFMD cases -0.03 0.34 0.02141 

Ngu Hanh Son HFMD cases 0.02 0.30 0.0455 

Son Tra HFMD cases 0.03 0.34 0.0324 

Thanh Khe HFMD cases -0.11 0.32 0.0371 

Hoa Vang HFMD cases -0.19 0.34 0.0198 

Cam Le HFMD cases -0.10 0.37 0.0304 

 

4.2. Estimated Spatiotemporal SMR/ Relative risk  

 
As stated in the Methodology section, the log of the relative risk of HFMD can be decomposed into the 

additive of the three main components of the time series, i.e. season, trend and residuals. The relative risk 

itself can be viewed as the exponential of the additive of each component. These smooth relative risk maps 

not only maintained the original spatial risk pattern but also captured the local variation from neighbouring 

areas. In figures 19 and 20, the spatiotemporal patterns of the smooth HFMD relative risk for each district 

of both models for the period 2012-2016 were presented. This relative risk varied for each district and 
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ranged from 0.292 (29.2%) to 4.034 (403.4%) for both models. See Table 7. The predicted mean relative 

risk was highest for Hai Chau (GLMM: Mean: 2.743; Sd: 0.17, MBRF: Mean: 2.664; Sd: 0.44) and Lien Chieu 

was the lowest (GLMM: Mean: 0.458; Sd: 0.07, MBRF: Mean: 0.454; Sd: 0.09), for both models. 

Hoa Vang for GLMM and Hai Chau for MBRF were the districts that recorded the highest risk for one 

month throughout the five years while the lowest was Lien Chieu for both models. As it relates to the 

months where the highest relative risk was predicted, similar months of high prediction were observed for 

5 of the 7 districts while both models predict similar months for the lowest in one district, see Table 8 below.  

The predicted spatiotemporal smooth relative risk of the MBRF follows a similar pattern of the crude 

relative risk, Figure 13 and 20. Hence, MBRF does not significantly smooth the relative risk. However, the 

GLMM predicted spatiotemporal smooth relative risk follows a different pattern for some months. This 

was also shown in the Mean Square Error (MSE) and Root Mean Square Error (RMSE) for both models, 

see Table 7.  

It was also observed visually that there was no clear indication of the seasonality of the relative risk for each 

district as throughout the five years, different peaks occurred for different months. However, when 

modelled using only the seasonal variable, a clear seasonal pattern was observed. Similarity, it was observed 

that there were different trends associated with the relative risk for each district. Two examples are Cam Le 

and Hoa Vang of figures19 and 20, there was a clear increasing trend for Cam Le while the trend decreased 

over time for Hoa Vang. This was also shown when the relative risk was modelled solely on the dummy 

variable. 

Table 6: Retrospective MSE and RMSE for both models 

Model Retrospective MSE Retrospective RMSE 

GLMM 0.7869 0.8871 

MBRF 0.1907 0.4372 

 

 

Table 7: Maximum and Minimum Relative risk of HFMD along with the month and year observed for both models 

District Maximum Relative 

Risk, 

GLMM (MBRF) 

Month and 

Year, 

GLMM (MBRF) 

Minimum 

Relative Risk, 

GLMM (MBRF) 

Month and year, 

GLMM 

(MBRF) 

Hai Chau 3.141 (3.736) November 2012 

(February 2012) 

2.316 (1.482) October 2014 

(May 2015) 

Lien Chieu 0.839 (0.725) October 2014 

(January 2012) 

0.347 (0.292) October 2016 

(October 2016) 

Ngu Hanh Son 0.694 (0.761) October 2016 

(October 2016) 

0.438 (0.351) October 2014 

(July 2013) 
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Son Tra 2.441 (2.249) September 2016 

(September 2016) 

1.076 (0.845) August 2015 

(January 2013) 

Thanh Khe 3.657 (3.586) August 2015 

(August 2015) 

1.669 (1.201) October 2016 

(June 2014) 

Hoa Vang 4.034 (2.663) August 2012 

(August 2012) 

1.347 (0.712) October 2014 

(February 2012) 

Cam Le 1.655 (1.899) December 2016 

(December 2016) 

1.194 (0.997) August 2012 

(May 2014) 

     

 

 

 
Figure 19: GLMM smooth relative risk, Da Nang City, Vietnam 2012-2016 
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Figure 20: MBRF smooth relative risk, Da Nang City, Vietnam 2012-2016 

 

In figures 21-23, the estimated SMR as explained by the relative risk of the GLMM and MBRF models for 

January 2013 are compared with the crude relative risk. Cam Le, highlighted with the square below, shows 

smoother rates as a result of the meteorological factor and spatial dependences from neighbouring districts. 

The rates for the remaining districts fall within the same range except for Son Tra, which showed a higher 

rate in the GLMM model, highlighted by the black triangle in figure 23. 

Also shown in figures 24 and 25, was the relative risk of three different months for both models. Figure 

24.ii showed that Hoa Vang had the highest risk in August 2012. Hai Chau was the district with the highest 

risk for February 2012 and November 2012 as it relates to the GLMM model, Figures 24.i and iii. Similar 

results were also shown for MBRF in Figure 25.a, b, c. These smooth SMR maps could give more intuitive 

information and can be used for disease prevention and control. 

These time series predicted smooth relative risk was decomposed into temporal trend, seasonality and 

spatial-temporal residuals, with the following subsections giving an analysis of these components. 
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Figure 21: Crude relative risk, January 2013 

 

 
Figure 22: MBRF smooth relative risk, January 2013 

 

 
Figure 23: GLMM smooth relative risk, January 2013 
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i.  

 

ii.  

                       

iii.  

                   

Figure 24: GLMM smooth relative risk for three months in 2012 
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a.  

 
b.  

             

c.   

               

 
Figure 25: MBRF smooth relative risk for three months in 2012 
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4.2.1. Temporal Trend 

 
As mentioned in section 3.3, a dummy variable representing each month was used to model the long-term 

trend of the relative risk. This was calculated by taking the exponent of the product of the dummy variable 

and its corresponding regression coefficient for each district. This dummy variable was assigned a Normal 

Distribution prior with the variances assigned an inverse gamma distribution prior within the Bayesian 

Framework. In figure 26, plots of the long-term trend were shown. The long-term trend ranged from 0.882 

to 1.112 (GLMM) and 0.776 to 1.108 (MBRF) and varied linearly over time. Similar trends were observed 

in both models except for one district, i.e. Thanh Khe. This district showed opposite results from the two 

models. The GLMM model showed a positive linear trend while the MBRF showed this trend to be 

negatively linear. 

A positive trend was observed in Hai Chau, Ngu Hanh Son, Son Tra, Thanh Khe and Cam Le for the 

GLMM while Thanh Khe had a negative linear trend for the MBRF. The GLMM model showed two 

districts, i.e. Ngu Hanh Son and Son Tra, to be linear only for the first two years, 2012 and 2013. At the 

start of 2014, this trend was shown to be non-linear as there was an increasing gradual curve. Lien Chieu 

and Hoa Vang were all shown to have a negative linear trend by both models. These variations in the long-

term trend can be explained by the size and the location of the districts. The two largest districts in terms 

of area and with their locations having fewer influences from neighbors showed a negative linear trend. 

Those districts that showed to have a positive linear trend were centrally located in the city except for Son 

Tra. The influence from each other and the size of their neighboring districts can be inferred as a major 

contributing factor as to why similar trends were observed.  
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Figure 26: Linear trend of relative risk for districts in Da Nang City 2012-2016 
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4.2.2. Seasonality 

 

Table 9 shows the overall relative risk (Intercept) for each district and its corresponding Credible Interval. 

This is the risk that is present when the risk factors are zero. Also, the values of the seasonal coefficient 

(Temperature). The exponent of the regression coefficients of temperature arising from both models was 

shown to be within each other. This was also showed at the 95% credible interval, i.e. the range of the values 

are identical.  

 

 

Table 8: Estimated posterior parameters (GLMM), regression coefficients (MBRF), along with the exponent of these 

coefficients and its corresponding 95% credible interval 

District Variable Coefficient 

GLMM (MBRF) 

Relative risk of 

HFMD (exponential 

of coefficients) 

95% Credible Interval 

Hai Chau Intercept 

Temperature 

1.1446      (1.1556) 

-0.0058    (-0.0087) 

3.141  (3.176) 

0.994  (0.991) 

2.825, 3.457  (2.830 ,3.522) 

0.740 ,1.260  (0.740, 1.260) 

Lien Chieu Intercept 

Temperature 

-0.7775    (-0.7405) 

0.0015     (0.0025) 

0.459  (0.477) 

1.002  (1.002) 

0.160, 0.758  (0.124, 0.830) 

0.740 ,1.260  (0.740, 1.260) 

Ngu Hanh Son Intercept 

Temperature 

-0.5692    (-0.7580) 

-0.0022    (0.0032) 

0.566  (0.469) 

1.000  (1.003) 

0.266, 0.866   (0.103, 0.835 

0.740 ,1.260  (0.740, 1.260) 

Son Tra Intercept 

Temperature 

0.3389      (0.0146) 

0.0013     (0.0106) 

1.403  (1.015) 

1.001  (1.011) 

1.104, 1.702  (0.661, 1.369) 

0.740 ,1.260  (0.740, 1.260) 

Thanh Khe Intercept 

Temperature 

0.7723     (1.0439) 

-0.0032    (-0.0122) 

2.165  (2.840) 

0.997  (0.988) 

1.862, 2.468  (2.479, 3.201) 

0.740 ,1.260  (0.740, 1.260) 

Hoa Vang Intercept 

Temperature 

0.6347     (0.4267) 

-0.0024    (0.0035) 

1.886  (1.532) 

0.998  (1.003) 

1.586, 2.186  (1.165, 1.899) 

0.740 ,1.260  (0.740, 1.260) 

Cam Le Intercept 

Temperature 

0.3015     (0.2191) 

0.0018     (0.0041) 

1.352  (1.245) 

1.002  (1.004) 

1.054, 1.650  (0.917, 1.573) 

0.740 ,1.260  (0.740, 1.260) 

 

The relative risk of HFMD shows two different seasonal patterns among the seven districts for both models. 

Pattern one showed two peaks every year, one in June (highest peak) and a small one in August, i.e. during 

the summer time or in the case of Da Nang, at the end of the dry season. It also showed two troughs, July 

and January, with the deepest trough in January. The other pattern showed the reverse with peaks in January 

(highest peak) and a small peak in July, the troughs in June and in August with the deepest trough occurring 

in June every year. The GLMM and MBRF seasonal components showed a similar pattern for 5 of the 7 

districts. The two districts, Ngu Hanh Son and Hoa Vang were the only two districts where opposite results 

were obtained from the two models. 
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Lien Chieu, Son Tra and Cam Le for both models followed pattern one as described above (Figures 28, 30 

and 33). As it relates to the seasonality of temperature, two peaks occurred in June and August with the 

deepest trough being in January. Based on these observations, the seasonality of Relative Risk for Lien 

Chieu, Son Tra, and Cam Le are all positively correlated with the seasonality of temperature as the peak and 

trough of both occurred in the same months. Hence, the seasonality of relative risk increases and are said 

to be in phase.  

Hai Chau and Thanh Khe districts (Figures 27 and 31) for both models followed pattern two with the 

highest peaks of contracting HFMD in January for each year. This shows that there was a negative 

correlation, as when the temperature was at its maximum, the seasonality was at its minimum. Hence, the 

seasonality of relative risk decreases and are said to be out of phase. However, it can be inferred that the 

maximum temperature resulted in an increased in the relative risk in the months to follow. The final two 

districts, Ngu Hanh Son and Hoa Vang (Figures 29 and 32) showed opposite results for both models. The 

GLMM results showed that these districts are negatively correlated with temperature while the MBRF 

showed that they are positively correlated with temperature.  

 
Figure 27: Seasonality of MBRF RR vs Seasonality of GLMM RR for Hai Chau 2012-2016 

 

 
Figure 28: Seasonality of MBRF RR vs Seasonality of GLMM RR for Lien Chieu 2012-2016 
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Figure 29: Seasonality of MBRF RR vs Seasonality of GLMM RR for Ngu Hanh Son 2012-2016 

 

 

 
Figure 30: Seasonality of MBRF RR vs Seasonality of GLMM RR for Son Tra 2012-2016 

 

 

  
Figure 31: Seasonality of MBRF RR vs Seasonality of GLMM RR for Thanh Khe 2012-2016 
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Figure 32: Seasonality of MBRF RR vs Seasonality of GLMM RR for Hoa Vang 2012-2016 

 

 

  
Figure 33: Seasonality of MBRF RR vs Seasonality of GLMM RR for Cam Le 2012-2016 

 

 

4.2.3. Spatial temporal residuals 

 
The final component of the models was the residuals. These residuals represent variation not yet explained 

by the temporal trend and the seasonal risk factor temperature.   

In figures 34 and 35, the combined spatial and heterogeneity effects nested in time for each district from 

both models are plotted. Table 11 shows the proportion of these residuals that are being explained by the 

spatial structure for each time period from both models.  

From the residual’s analyses, a few major observations were found: 

• The residual risks of both models have smaller values than the relative risk. However, its 

spatiotemporal pattern follows the same pattern of the smooth relative risks of each predicted 
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model. This is because the trend and the seasonality due to temperature do not have a spatial 

structure. 

•  In some months, the predicted relative risk was higher than the observed relative risk for the MBRF 

as it resulted in negative residuals while for the GLMM all the predicted relative risk was lower than 

the observed.  

• The districts with the highest relative risk also had the highest residuals arising from the models. 

• For the GLMM model, for every month, most of the residuals were spatially structured, i.e. residuals 

arising due on their neighboring values with the lowest percentage being 53.26 for June 2014, while 

for the MBRF, in some months, most of the residuals change between spatial or random with the 

lowest percentage being 20.44 for April 2014 of the spatial effect. 

• It was also observed that in 2015 and 2016, most of the residuals were explained spatially for the 

MBRF, i.e. they arise due to interaction with its neighbors. This was also seen as predictions were 

closer to the observed relative risk in those years as the Non-spatial or random errors decreased. 

 

 
Figure 34: Space-Time residuals for each district (MBRF) 
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Figure 35: Space-Time residuals for each district (GLMM) 
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Table 9: Percentage of the residuals explained spatially (interaction with its neighbours) for each month for GLMM 

and MBRF

Month Percentage 

of the 

residuals 

explained 

spatially 

GLMM 

(MBRF) 

Month Percentage 

of the 

residuals 

explained 

spatially 

GLMM 

(MBRF)  

Month Percentage 

of the 

residuals 

explained 

spatially  

GLMM 

(MBRF) 

Month Percentage 

of the 

residuals 

explained 

spatially 

GLMM 

(MBRF)  

Month Percentage 

of the 

residuals 

explained 

spatially  

GLMM 

(MBRF) 

Jan-12 76.28 % 

(33.01%) 

Jan-13 70.59% 

(95.66%) 

Jan-14 59.40% 

(66.08%) 

Jan-15 60.65% 

(75.05%) 

Jan-16 65.26% 

(91.86%) 

Feb-12 66.83% 

(98.42%) 
 

Feb-

13 

63.24% 

(91.46%) 

Feb-

14 

62.69% 

(31.08%) 

Feb-

15 

62.05% 

(92.15%) 

Feb-

16 

62.13% 

(78.92%) 

Mar-12 67.66% 

(54.12%) 

Mar-

13 

58.87% 

(68.96%) 

Mar-

14 

59.36% 

(48.85%) 

Mar-

15 

71.99% 

(94.16%) 

Mar-

16 

63.82% 

(80.63%) 

Apr-12 61.50% 

(58.37%) 

Apr-

13 

77.46% 

(86.26%) 

Apr-

14 

71.98% 

(20.44%) 

Apr-

15 

89.75% 

(95.06%) 

Apr-

16 

62.81% 

(55.71%) 

May-12 63.75% 

(48.82%) 
 

May-

13 

70.03% 

(81.45%) 

May-

14 

60.30% 

(55.13%) 

May-

15 

59.75% 

(47.11%) 

May-

16 

80.45% 

(89.06%) 

Jun-12 61.33% 

(47.15%) 
 

Jun-13 59.44% 

(40.15%) 

Jun-14 53.26% 

(22.14%) 

Jun-15 70.19% 

(96.60%) 

Jun-16 60.31% 

(70.58%) 

Jul-12 63.25% 

(66.15%) 

Jul-13 66.71% 

(78.86%) 

Jul-14 61.90% 

(79.17%) 

Jul-15 55.65% 

(63.58%) 

Jul-16 55.67% 

(60.41%) 

Aug-12 86.41% 

(32.78%) 

Aug-

13 

59.76% 

(71.53%) 

Aug-

14 

71.47% 

(81.74%) 

Aug-

15 

87.71% 

(95.95%) 

Aug-

16 

81.51% 

(79.10%) 

Sep-12 67.79% 

(96.49%) 

Sep-13 64.34% 

(70.17%) 

Sep-14 65.83% 

(74.11%) 

Sep-15 60.45% 

(45.65%) 

Sep-16 90.05% 

(87.52%) 

Oct-12 64.30% 

(44.57%) 

Oct-

13 

58.95% 

(43.67%) 

Oct-

14 

92.29% 

(63.64%) 

Oct-

15 

62.82% 

(64.99%) 

Oct-

16 

91.28% 

(97.85%) 

Nov-12 57.73% 

(54.61%) 

Nov-

13 

61.12% 

(49.91%) 

Nov-

14 

54.76% 

(73.60%) 

Nov-

15 

62.08% 

(53.26%) 

Nov-

16 

61.60% 

(52.58%) 

Dec-12 60.34% 

(85.59%) 

Dec-

13 

64.42% 

(41.51%) 

Dec-

14 

58.80% 

(37.97%) 

Dec-

15 

63.35% 

(90.19%) 

Dec-

16 

63.36% 

(67.29%) 
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4.3. Model Comparison  

 

 
The accuracy of Generalized Linear Mixed Model and Model-Based Random Forest for mapping the relative 

risk associated with HFMD for Da Nang City, Vietnam were compared based on RMSE and MSE for 

retrospective analysis or calibration (past data, 2012-2016), and prospective analysis or validation (2012-

2017). Table 12 shows both MSE and the RMSE each for retrospective and prospective analysis.  

The results from both analyses show that MBRF model is more accurate in terms of predicting the relative 

risk on past data and for future outbreaks of the disease, RMSE equal to 0.4372 (MBRF) and 0.8871 

(GLMM), respectively. It was also observed that the MBRF prospective RMSE is lower than the GLMM 

retrospective (calibration) and prospective (validation) RMSE.  

Figures 36 and 37 show the predicted vs observed values for both models along with their R2 values. These 

were calculated by taking the square of the correlation between the actual and predicted outcomes. 

The higher values from the MBRF shows that it has higher predictive accuracy as the values close to 1 

represents predictions close to the actual. 

Figure 38 shows the important variables within the model for each district. Our models show that 

temperature was the most important variable for three of the districts, Son Tra, Thanh Khe and Hoa Vang 

in gaining a more accurate prediction while the remaining four districts, the month which represents the 

temporal trend was the important variable. These results were discussed more in details in the discussion 

section. 

 

 

 

Table 10: Comparison of the RMSE and MSE of both models 

Model Retrospective MSE (RMSE) Prospective MSE (RMSE) 

GLMM 0.7869 (0.8871) 0.8668 (0.9310) 

MBRF 0.1907 (0.4372) 0.3146 (0.5609) 
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Figure 36: Crude RR vs MBRF RR for Da Nang City 
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Figure 37: Crude RR vs GLMM RR for Da Nang City 
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Figure 38: Variable Importance plot for the seven districts in MBRF model 
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5. DISCUSSIONS 

In this section, four main findings were discussed. First, the relative risk of HFMD was discussed. Secondly, 

the decomposed time series with a specific focus on the seasonal pattern was discussed. Thirdly, the effects 

of meteorological and socio-demographic factors on the relative risk associated with HFMD in Da Nang 

City, Vietnam were discussed. Finally, evaluating the performance of both models and identifying the 

possible reasons why MBRF outperformed GLMM in terms of predictions were discussed. Our findings 

were compared with similar research to check for consistencies and contradictions/mismatches. The section 

concludes with limitations and recommendations of this research.  

5.1. Incidence of HFMD in Da Nang city, Veitnam 

 
As mentioned prior, a total number of 11,486 cases of Hand, Foot, and Mouth disease were reported for 

seven districts within Da Nang city over the 60 months. i.e. from January 2012 to December 2016. The 

average monthly cases across Da Nang city was 27.35 (Sd:19.36). Lien Chieu contributed the largest 

proportion of the total HFMD cases with 2054, a monthly average of 34.23 (Sd: 22.60) while Thanh Khe 

contributed the least, a total of 1324 cases, a monthly average of 22.07 (Sd: 14.33). It can be arguably stated 

that the monthly cases varied with time with most of the observed cases occurred during the first six months 

of every year for every district with the only exception being 2016 where most of the cases of HFMD 

occurred in the last six months. The districts with the highest number of cases were all located on the 

outskirt of the city. Examples were Lien Chieu, Hoa Vang, and Son Tra. 

5.2. Predicted relative risk  

 
Our models have identified two districts (Hai Chau and Thank Khe) of Da Nang City, Vietnam with the 

highest relative risk of HFMD. This can be attributed to these districts having the largest population density, 

smallest population, most number of pre-schools (43 and 39 respectively) (General Statistics Office Of 

Vietnam, 2017), central of the urban areas thus having the most neighboring districts, and highest land 

surface temperature (L. Liu & Zhang, 2011). The districts with opposite conditions had the lowest relative 

risk. This finding is consistent with other findings in the literature. For example, Chang et al. (2002) 

suggested that school children share toys along with other items among each other, that contribute to the 

virus infections. The authors stated that it could be transmitted through the fecal-oral route and respiratory 

droplets of the children. Li et al. (2013) stated that temperature affects the survival and transmission of 

HFMD, hence with the highest land surface temperature in those districts, it can be inferred that greater 

transmission of HFMD is possible, thus higher the risk. Also, other evidence has suggested the higher 

temperature may lead to a higher risk of a person getting infected (Song et al., 2015; Urashima et al., 2003). 

Similarly, the relative risk tends to be higher in urban areas than in rural areas (Yan et al., 2014). Although 
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not in the same geographic location, Fabre, (2015) and Huang et al., (2014) stated that a densely populated 

area tends to expedite the spread of HFMD. 

5.3. The influence of meteorological and socio-demographic factors 

 
The influence of meteorological and socio-demographic factors on diseases is an ongoing field of study in 

recent years. These factors have been recognized as important factors influencing HFMD outbreaks as this 

disease generally displays seasonality (Yu et al., 2019a). Previous literature has shown that meteorological 

factors influence HFMD occurrences. Temperature, humidity, sunlight, rainfall were shown to be 

significantly associated with HFMD occurrences (Chen et al., 2014; Hii et al., 2011; Urashima et al., 2003; 

Huang et al., 2013). These meteorological factors influence HFMD in two main ways: 1. Affecting the 

external environment resulting in a change to the biological activity and transmission of the pathogen; and 

2. Impacting the behaviour of humans (Tian et al., 2018). 

In this study, two models were developed to predict the relative risk of HFMD in space and time, 

considering meteorological and socio-demographic factors of Da Nang City for the period 2012-2016. 

Firstly, four meteorological variables, monthly temperature, humidity, sunlight, and rainfall were assessed 

for statistical significance at lag 0 with the occurrence of HFMD. Average monthly temperature was shown 

to be the only variable to have statistical significance at lag 0 with the occurrence of HFMD in the districts 

of Da Nang City. Three reasons could be attributed to this. First, assessing the correlation between 

temperature and humidity, temperature and sunlight have shown that both humidity and sunlight have a 

strong correlation with temperature. Because temperature has a stronger correlation with HFMD 

occurrences, it was used as the main meteorological variable. Secondly, in a univariate model, these variables 

showed statistical significance for some of the districts but not all. However, as a multivariate model, only 

temperature showed statistical significance. This might be attributed to the fact that different geographic 

units within the study area are exposed to different climatic or meteorological variables. Finally, as stated, 

only at lag 0 the association was tested for statistical significance, however, their association may have been 

at different time scales, i.e. the meteorological variables may have been associated with HFMD occurrence 

in different lags (J. Liao et al., 2016).  

Within the time series predicted relative risk, statistical evidence in our findings show a variation of the 

seasonality of the relative risk associated with the average monthly temperature within Da Nang City, 

Vietnam. Two different seasonal patterns amount the seven districts were identified. Pattern one showed 

two peaks every year, one in June (highest peak) and a small one in August, i.e. from late spring to summer 

or in the case of Da Nang, at the end of the dry season. This pattern also showed two troughs, July and 

January, with the deepest trough in January. The other pattern showed the reverse with peaks in January 

(highest peak) and a small peak in July, the troughs in June and in August with the deepest trough occurring 
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in June every year. Our findings of late spring into summer were consistent with other works of literature 

such as Yu et al. (2019), Cheng et al. (2014) and Zhang et al. (2016). 

Peaks in pattern one occurred when the temperature was at its maximum while pattern two showed peaks 

in January when the temperature was at its minimum. One major observation was that for the two central 

districts, Hai Chau and Thanh Khe, with the highest relative risk, the seasonal pattern was negatively 

correlated with seasonal temperature, i.e. when the temperature increased to its maximum, the relative risk 

decreased to its minimum. However, when the maximum temperature has reached, the relative risk within 

those districts starts to increase. This mismatch in those districts clearly shows that maximum temperature 

was the driving factor in the sudden increase of the relative risk. It can be inferred that the effect of 

temperature was at a different lag for these districts and may have been positively correlated at different 

lags. Phung et al. (2018) examined the province-specific association between monthly HFMD and climatic 

factors in Vietnam while controlling for spatial lag, seasonality and long-term trend, using a Generalized 

Linear Model with Poison family. The results showed that the climate-HFMD relationship varied by regions, 

different lags, and provinces across Vietnam.   

The districts that showed to have a negative correlation with temperature was found to have a positive 

correlation ranging from 0.61 to 0.75 with relative humidity, i.e. the peak in January occurs when the relative 

humidity was the highest. Also, a univariate model of observed cases against the relative humidity showed 

the p-values of these districts were all less than 0.05 and as such was statistically significant. Therefore, it 

can be inferred that the relative humidity contributed to the high relative risk within those districts and its 

mismatch with temperature. This finding is consistent with other pieces of literature that shows high relative 

humidity increases the risk of HFMD (Yang et al., 2018; Huang et al., 2013; Yang et al., 2017). Due to high 

relative humidity, the virus tends to be attached to toys, limit sweating and the metabolism of children thus 

increasing the risk associated with HFMD (Yang et al., 2018).  

As it relates to the effect of socio-demographic on the relative risk, our models showed an overall negative 

correlation. The districts with the highest population or least dense resulted in the lowest risk and vice versa. 

However, the models have also shown that there were periods where an increase in population resulted in 

an increase in the relative risk. These periods of increasing risk with increasing population were on average 

for two months. For the effect of the meteorological factors, a delayed effect was observed as our models 

showed that there were different seasonal relative risks within the districts of Da Nang city. Among the 

seven districts within Da Nang city, five districts show a positive relationship, i.e. in phase with temperature, 

while the remaining 2 districts show a negative relationship, i.e. out of phase with temperature. 
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5.4. Spatio-temporal residuals 

 
The spatial-temporal residuals which represent variation not yet explained by the temporal trend and the 

seasonal risk factor temperature spatiotemporal pattern follow the same pattern of the smooth relative risks 

of each predicted model. Reason can be argued to be because the trend and the seasonality due to 

temperature do not have a spatial structure. Also, literature has shown other meteorological factors such as 

wind speed (Y. Liao, Ouyang, Wang, & Xu, 2015) and precipitation (W. Zhang et al., 2016a) to have an 

influence on HFMD. Similarly, none meteorological factors such as socio-economic levels, health and 

medical facilities access, surveillance and controlling capacities have all been mentioned as potential factors 

of HFMD (Tian et al., 2018). All these factors can be inferred as factors influencing the residuals variations. 

5.5. Performances of the models 

Our final findings focus on the performance of the models. This research was the first to my knowledge 

that uses MBRF to predict the relative risk with the residuals arising from this model being split into spatial-

temporal structured and unstructured. Likewise, a GLMM model was developed to predict the relative risk. 

The MBRF model was inferred to be the better model as it relates to predicting the relative risk of HFMD 

associated with meteorological factors on a retrospective (past) and prospective (future) data. The MBRF 

MSE and RMSE were substantially very low as compared to the GLMM for both on the developed 

calibration models (past data) and the validation models (future data). MSE represents the squared difference 

between predicted and observed parameter, with RMSE being the square root of the MSE (Dietrich, 2008). 

As this research was the first to compare the accuracy of the predictions from both models, reasons for 

their differences are inferred from similar researches.  

Random Forest makes use of a random selection of the predictor variables during the process of splitting a 

tree node and constructs trees on random samples of learning data with replacement, i.e. bootstrapping 

(Garge et al., 2013). Thus, each tree is constructed based on a different set of training samples. For every 

prediction, some of the data is not used in the prediction, termed Out of Bag observations (Cutler, Cutler, 

& Stevens, 2009). To calculate the importance of a variable m for a single tree, predictions are first carried 

out on the out of bag observations. Furthermore, the values of the variable m are randomly permuted or 

reshuffle randomly, keeping the other variables fixed. Predictions are then computed on these new values, 

giving two sets of out of bag predictions for each observation, i.e. a set for the real data and the other for 

the permutated variable m. The variable importance is calculated as an error rate from the permuted data 

and the real data. The overall variable importance for is calculated by averaging over all the observations 

(Cutler et al., 2009). A large value indicates an important predictor in producing accurate predictions (Cutler, 

Cutler, & Stevens, 2009; Garge et al., 2013). 

MBRF is an extension to Random Forest , a machine learning algorithms (MLA). Newton & Wernisch 

(2017) stated that the major advantage machine learning methods have over a Bayesian method is that within 
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the MLA features in the data that are important for accurate predictions are easily identified. However, 

within the Bayesian modelling approach this is not the case. Bayesian approach requires prior knowledge 

that should be applied to the model. According to Newton & Wernisch, (2017), these priors can be 

subjective and incomplete. This variable importance shows which variables significantly affect the prediction 

and how much its squared error is improved (Cutler et al., 2009). Garge et al., (2013) stated variable 

importance assessment is ranking variables within the predictor set accoring to how important they are in 

producing accurate predictions. The ability of MBRF models to give preference to the most important 

variable for prediction can be argued to be a major advantage as to why it was more accurate than the 

GLMM. Although vague priors were specified to allow the model GLMM to get most of its information 

from the data, the MBRF with no specified prior still gives better predictive accuracy.   

Another reason that can be argued is the different seasonal pattern of the relative risk based on temperature 

for the districts. As seen in the results section, MBRF showed two of the districts having different seasonal 

patterns for the relative risk as compared to GLMM. These predicted values will affect the overall prediction 

accuracy of the models. Also, the accuracy of MBRF can be attributed to the inability of the MBRF to 

smooth the relative risk, with values close to the crude relative risk obtained. These results are consistent 

with literature as it was stated that ensemble methods like random forest tends to be the most accurate 

regression tools currently available for data scientists (Breiman, 2001). Thus, with MBRF being an extension 

of random forest, this research shows that it was one of the most accurate regression tools available. Finally, 

the R2 which represents the ratio of the sum of the squares explained by a regression model and “ total” 

sum of squares around the mean”(Itaoka, 2012) were shown in the results section. Values of R2 lies between 

0 and 1, with 1 implying that most of the variability in the dependent variable was explained by the regression 

model. This was used to assess the goodness of fit of regression models (Bewick, Cheek, & Ball, 2003). 

Those plots along with the high R2 values confirm that the MBRF model was more accurate in terms of 

predicting the relative risk.  

There were two disadvantages observed of MBRF. Firstly, its inability to significantly smooth the relative 

risk. The predicted spatiotemporal smooth relative risk of the MBRF follows a similar pattern of the crude 

relative risk. However, this is an advantage for GLMM, as with prior specified, it was able to smooth the 

relative risk. Secondly, it overpredicts the relative risk in some districts at a different time period. Further 

research is required as a recommendation as to why these disadvantages arises.  
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6. LIMITATIONS AND RECOMMENDATIONS 

 
This research has a few limitations and recommendations and are stated as follows: the meteorological 

variables used were obtained from one monitoring center and was used to represent the meteorological 

conditions of all the districts in Da Nang. Therefore, as a recommendation, spatial variation in these 

variables can be considered. However, for such a small city, a lot of spatial variabilities is not expected. 

Secondly, to estimate the monthly population of under 5s, a constant monthly growth rate was applied to 

the yearly data. Thirdly, limitation in the data, 5 years for 7 districts, hence why Bayesian was applied. It 

would be ideal to analyze data for a much longer time period and more districts. Fourthly, the study was 

carried out at the district level and as such cannot be applied for a different level of spatial aggregation (Tian 

et al., 2018). Finally, this research only takes into consideration lag 0, however, delayed effects or different 

lags for the remaining meteorological factors were not assessed. As a recommendation, different lags of the 

meteorological factors can be considered. 
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7. CONCLUSIONS 

The main objective of this research was to identify and model the seasonality of HFMD, considering the 

dynamics of the population at risks and the spatial-temporal structures. Two models, GLMM and MBRF 

were developed to predict the relative risk of HFMD in space and time for Da Nang City. This time series 

predicted relative risk was decomposed into temporal trend, seasonality, and spatial-temporal residuals 

components. To achieve this main aim, the research had four sub-objectives along with seven research 

questions. 

As it relates to sub-objective one, MBRF was the more accurate model in terms of predicting the relative 

risk associated with HFMD for Da Nang City, Vietnam for both the validation and calibration model. Sub-

objective two was to examine the spatio-temporal distribution of HFMD based on the modelled relative 

risk of HFMD. For both models, Hai Chau was the district identified to have the highest relative risk while 

Lien Chieu the lowest relative risk associated with HFMD. Two different seasonal patterns amount the 

seven districts for both models were identified. Pattern one showed two peaks every year, one in June 

(highest peak) and the other in August with the deepest trough in January. The other pattern showed the 

reverse with the highest peak occurred in January and the peaks fell in June and in August with the deepest 

trough occurring in June every year. This season was stationary as it repeats itself every year.  

The next sub-objective was to assess the effects of meteorological and socio-demographic factors on the 

relative risk associated with HFMD in Da Nang City, Vietnam. For the effect of the meteorological factors, 

a delayed effect was observed as our models showed that there were different seasonal relative risks associate 

with temperature within the districts of Da Nang city. It was also observed relative risks were higher for the 

district with the smallest population, while the districts with the larger population having a lower risk. This 

clearly shows that the population and the relative risk have an inverse relationship, i.e. as the population 

increased, the relative risk decreased. Finally, the last sub-objective was to develop a Bayesian Space-Time 

Conditional Autoregressive (BSTCAR) model for the spatial-temporal structured residuals. The result of 

this component was used to determine the overall relative risk and were shown in the results section. 

In conclusion, the models showed that temperature had a significant effect on relative risk of HFMD in Da 

Nang City. This has resulted in the different seasonal pattern of the disease risk within the districts. Similarly, 

Model Based Random Forest was shown to be an accurate model in terms of predicting the relative risk 

associated with HFMD. Therefore, this research provides a model for future works and scientific evidence 

that meteorological monitoring should be considered to help to fight HFMD against susceptible 

populations. 
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