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ABSTRACT 

Automated methodologies for mapping cropland over large geographical areas enable frequent and 

updated agriculture statistics within a short period. Unavailability of such automated methodologies makes 

cropland mapping a tedious and time-consuming task. Therefore, most of the existing solutions dedicated 

to cropland mapping are mainly focused on a small geographic area. The aim of this research is to assess 

the transferability of Random Forest (RF) and Time-Weighted Dynamic Time Warping (TWDTW) across 

different years in the same study area and across different agroecosystems for mapping crop type using 

Sentinel-2 (S2) time series. RF and TWDTW classification models were tested in two different 

agroecosystems, namely Mississippi Alluvial Plain and Central California Valley. The classification models 

trained in one agroecosystem were applied across years and different agroecosystems to map similar crops. 

Furthermore, the performance of the two classification models in a selected study area was evaluated. The 

classification output indicated that RF performed better than TWDTW in all study areas with an overall 

accuracy of more than 92% except for the neighboring agroecosystems in California where the overall 

accuracy was 87.59%. The transferability results concluded that RF and TWDTW classification models are 

transferable with accuracy more than 84% across years and agroecosystems having the same growing 

conditions. However, unbalanced class proportions in two test areas under investigation may restrict their 

transferability. The classification models are not transferable across different agroecosystems having 

different growing conditions and dissimilar agricultural management practices. In light of these results, 

automated methodologies for mapping cropland remain essential to ensure significant contribution to the 

food security world. 

Keywords; Satellite image time series, RF, TWDTW, transferability, red-edge bands, agroecosystems 



ii 

ACKNOWLEDGEMENTS 

First, I thank the Almighty God for his protection, guidance, and care throughout my stay and study in the 

Netherlands. 

I would like to express my sincere deepest gratitude to my supervisors Dr. Mariana Belgiu and Dr. Michael 

Marshall for their constant support, guidance, constructive criticism and encouragement throughout the 

research period. I couldn’t have wished for friendlier supervisors than you. Thank you so much. 

I am also extending my gratitude to the Government of the Netherlands for granting me NFP Scholarship 

to pursue my M.Sc. course at ITC. 

Thanks to GFM staff members for their lectures, lessons and extra relevant materials they provide which 

helped me to absorb knowledge in the best ways.   

Many thanks to my GFM classmates who I interacted with on a daily basis and new friends I made from 

other courses for making my stay interesting and enjoyable.  

Special thanks go to my beloved husband for his patience and encouragement throughout the course 

period. Last but not least I would like to express my heartfelt thanks to my parents, brothers, and sisters 

for their moral support. 



iii 

TABLE OF CONTENTS 

 
 
1. INTRODUCTION .............................................................................................................................................. 1 

1.1. Motivation and problem statement ..........................................................................................................................1 
1.2. Research objectives .....................................................................................................................................................2 

2. LITERATURE REVIEW ................................................................................................................................... 4 
2.1. Transferability of supervised clasifiers in remote sensing ....................................................................................4 
2.2. Satellite image time series (SITS) for agriculture mapping using RF and TWDTW .......................................4 
2.3. Sentinel-2 Vegetation Indices (VI) ...........................................................................................................................5 

3. STUDY AREAS, DATA PRE-PROCESSING AND SOFTWARE ......................................................... 7 
3.1. Study areas ....................................................................................................................................................................7 
3.2. Reference data ..............................................................................................................................................................8 
3.3. Sentinel-2 (S2) data ................................................................................................................................................... 10 
3.4. Computation of vegetation indices ....................................................................................................................... 11 
3.5. Generating training and validation samples ......................................................................................................... 12 
3.6. Software used ............................................................................................................................................................ 13 

4. METHODOLOGY .......................................................................................................................................... 14 
4.1. Adopted methodology ............................................................................................................................................. 14 
4.2. Processing .................................................................................................................................................................. 15 

5. RESULTS ........................................................................................................................................................... 21 
5.1. Random Forest Classification results .................................................................................................................... 21 
5.2. Time-Weighted Dynamic Time Warping classfication results ......................................................................... 24 
5.3. Producer’s (PA) and user’s accuracies (UA) of RF and TWDTW .................................................................. 25 
5.4. Post classification analysis ....................................................................................................................................... 27 
5.5. Assessment of the interclass similarity and intra-class variability .................................................................... 29 
5.6. Transferability assessment of the RF and TWDTW classification models .................................................... 29 

6. DISCUSSION .................................................................................................................................................... 35 
6.1. Phenological cycles of crops ................................................................................................................................... 35 
6.2. Potential of time series Sentinel 2 data for mapping crop type........................................................................ 35 
6.3. RF and TWDTW classification models................................................................................................................ 36 
6.4. RF and TWDTW model transferability across different agroecosystems ..................................................... 36 
6.5. RF and TWDTW model transferability across same agroecosystems ............................................................ 37 
6.6. RF and TWDTW model transferability across years ......................................................................................... 37 

7. CONCLUSION AND RECOMMENDATIONS ..................................................................................... 38 
7.1. Conclusion ................................................................................................................................................................. 38 
7.2. Recommendations and future works .................................................................................................................... 39 

 
 



iv 

LIST OF FIGURES 

Figure 3-1. Study areas in Central California Valley and Mississippi Alluvial Plains .......................................... 8 
Figure 3-2. Reference maps of California and Mississippi (https://nassgeodata.gmu.edu/CropScape/) .... 10 
Figure 4-1. Flowchart of the proposed methods. .................................................................................................. 14 
Figure 4-2. Logistic weight with steepness α = − 0.1 and midpoint β = 100 ................................................... 18 
Figure 5-1. Classified images of California in 2017 (a), (c), and (e), Mississippi 2017 (b), California 2016 (d), 
and neighboring area within California 2017 (f) ..................................................................................................... 22 
Figure 5-2. The variable importance measures and rankings using mean decreases in accuracy (MDA) of 
California 2017 (a), Mississippi 2017 (b), California 2016 (c) and an area within California 2017(d). ........... 23 
Figure 5-3. Classified maps of California in 2017 (a), (c), and (e), California 2016 (d), Mississippi 2017 (b) 
and another study area within California 2017 (f) .................................................................................................. 25 
Figure 5-4. Producer’s and user’s accuracy obtained by RF and TWDTW for California and Mississippi 
study areas in 2017 ...................................................................................................................................................... 26 
Figure 5-5. Producer’s and user’s accuracy obtained by RF and TWDTW for California in 2016 and 2017
 ........................................................................................................................................................................................ 26 
Figure 5-6. Producer’s and user’s accuracy obtained by RF and TWDTW for California and its neighbor 
region in 2017 .............................................................................................................................................................. 27 
Figure 5-11. Area uncertainties of the mapped and adjusted areas extracted from error matrix (at 95% 
confidence interval) ..................................................................................................................................................... 28 
Figure 5-7. Interclass similarities of cotton and tomatoes, and intra-class variabilities of others class. ........ 29 
Figure 5-8. Transferability of RF and TWDTW classification models across different agroecosystem ....... 31 
Figure 5-9. Transferability of RF and TWDTW classification models across years in the same 
agroecosystem .............................................................................................................................................................. 33 
Figure 5-10. Transferability of RF and TWDTW classification models across the same agroecosystem .... 34 
 



v 

LIST OF TABLES 

 
Table 3-1. Description of the study areas .................................................................................................................. 7 
Table 3-2. CDL accuracy assessment of some of the crops in 2016 and 2017 in Mississippi and California 
(CropScape and Cropland Data Layers, 2018) .......................................................................................................... 9 
Table 3-3. Wavelength range of each S2 red-edge band (ESA, 2019) ............................................................... 10 
Table 3-4. Central California Valley 2016 and 2017 image information and Mississippi Alluvial Plain ....... 11 
Table 3-5. The formulas used to compute spectral indices of NDVIre ............................................................ 12 
Table 3-6. Training and validation samples for California 2016 and 2017 ........................................................ 12 
Table 3-7. Training and validation samples for California and Mississippi 2017 ............................................. 13 
Table 5-1. Overall accuracy and Kappa obtained by RF in all each study areas .............................................. 22 
Table 5-2. Overall accuracy and Kappa index obtained by TWDTW in all investigated study areas ........... 24 
 
 





ASSESSING THE TRANSFERABILITY OF RANDOM FOREST AND TIME-WEIGHTED DYNAMIC TIME WARPING FOR AGRICULTURE MAPPING 
 

1 

1. INTRODUCTION 

1.1. Motivation and problem statement 

The United Nations (UN) established 17 interrelated Sustainable Development Goals (SDG) each with its 

unique objectives. No poverty and zero hunger are two of the goals with the intention to raise the poverty 

line as high to $5 per day and to end hunger and all sorts of malnutrition by 2030 (Hickel, 2015). One way 

to fulfil these two goals is to utilize remote sensing data and techniques in providing valuable information 

in the agricultural sector (Kumar, 2015). For example, remote sensing provides platforms like airborne and 

satellites for acquiring data in a large area within a short period which is helpful in facilitating agriculture 

monitoring. Also, remote sensing provides techniques such as machine learning for processing and 

analysing large volumes of data. Machine learning algorithms are proved to be very fast and accurate in 

various studies conducted in the agriculture domain (Duro et al., 2012, Li et al., 2016, Watts et al., 2008, 

Xiaomu et al., 2005). 

Machine learning classifiers such as RF (Breiman, 2001), and TWDTW (Victor Maus et al, 2016), are 

efficient supervised classifiers in the agricultural domain. RF predicts through constructing many decision 

trees and the output is based on the majority vote of the classification output (Zafari, Zurita-Milla, & 

Izquierdo-Verdiguier, 2017). TWDTW is an adaptation of Dynamic Time Warping (DTW) (Sakoe and 

Chiba, 1978) used to classify land use and land cover classification from time series data. DTW is the 

technique useful in finding the best alignment between two dependent time series and in providing 

similarity measures between them (Victor Maus et al., 2015). RF, DTW and TWDTW classifiers are 

detailed explained under section 4.2.1 and 4.2.4 of this research. 

RF and TWDTW classifiers have recently gained popularity in crop type mapping using time series 

approach due to their ability of handling the main challenges encountered when mapping crop type based 

on time series analysis (Maus et al., 2017, Maus et al., 2016, Belgiu & Drăguţ, 2016, Lebourgeois et al., 

2017). These challenges include insufficient samples for training the supervised classifiers, missing time 

series data due to cloud coverage and changes of phenological cycles annually due to weather or variability 

of agricultural practices (Petitjean, Inglada, & Gançarski, 2012). These classifiers achieved promising 

results in mapping agriculture using satellite image time series (SITS), but they are typically calibrated and 

validated for a single area. Their transferability across geographical regions and years have been rarely 

studied. There are few studies reported on the transferability assessment of RF. For example, Jin et al. 

(2018) investigated the transferability of RF in canopy height estimation from multi-source remote sensing 

data. Wenger & Olden. (2012) assessed the transferability of ecological models using RF and Artificial 

Neural Networks (ANN) algorithms, and Juel et al. (2015) tested the transferability of RF classification 

models to map vegetation structures from aerial images and Digital Elevation Model (DEM). All authors 
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concluded that RF classification models cannot be transferable from one location to another. So far, no 

studies have been reported on assessing the transferability of TWDTW. 

Most of the remote sensing classifiers such as RF and TWDTW are proved to achieve excellent results 

when exploited in a small area (local scale) (Belgiu & Csillik, 2018, Müller et al., 2015, Torbick et al., 2017, 

Victor Maus et al., 2015). However, transferability of these classifiers to regional and national scale was 

not thoroughly investigated.  This research aims to test the transferability of RF and TWDTW machine 

learning across different agroecosystems and years.  

Transferability of classification-based models is an important issue to be addressed since training these 

supervised classifiers is a time-consuming and expensive task. Therefore, reusing the classification model 

trained on a specific study area to another study area reduces the computational burden and could 

facilitate operationalization of SITS classification over large areas. In addition, a model trained in one area 

can be applied in a new test area for which survey data have not been obtained as long as the two areas 

have similar contexts (Sanko & Morikawa, 2010). Therefore, this research will focus on assessing the 

transferability of the RF and TWDTW supervised classifiers across different agroecosystems and years by 

utilizing various spectral indices computed from Sentinel-2 SITS data (Fernández-Manso, Fernández-

Manso, & Quintano, 2016). The developed automated solution to classify crops in this research might 

contribute to the realization of the SDGs, especially in food security. 

S2 satellite images provide multi-spectral data with 13 spectral bands at different spatial resolutions in the 

visible, near infrared (NIR) and short-wave infrared (SWIR) of the electromagnetic spectrum. Visible and 

NIR bands are at 10m resolution, the red-edge, narrow NIR, and SWIR at 20m resolution and at 60m 

resolution is represented by the coastal aerosols, water vapor and SWIR (cirrus). In the red-edge region, 

there are three bands that other multispectral sensors such as Landsat-8 lacked but which have been 

important to agricultural monitoring. It is presumed that the red-edge bands have great potential for 

mapping diverse vegetation characteristics (Sibanda, Mutanga, & Rouget, 2015). For example, Qiu et al. 

(2017) discovered that classification accuracy of various land cover types including agriculture areas, was 

improved after adding red-edge bands in the image classification procedures. Forkuor et al. (2018) found 

that crop classification of S2 red-edge bands achieved better results compared to other S2 bands and 

Landsat-8 bands. Consequently, these bands could be helpful in assessing the transferability of RF and 

TWDTW classification models across different agroecosystems. 

1.2. Research objectives 

The overall aim of this research is to assess to what extent the TWDTW and RF-based classification 

models are transferable across different years in the same study area and across different agroecosystems 

for agriculture mapping. 
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The specific objectives and their respective research questions are; 

1. To evaluate the relevance of various S2 based vegetation indices (VI) for mapping crops in 

various agroecosystems. 

Research question: What are the most important S-2 based vegetation indices used to map 

target crops in the selected study areas? 

 

2. To develop the TWDTW and RF classification models for mapping different crops based on VI 

identified in specific objective 1. 

Research question: Which of the developed classification models performs better in the selected   

study areas? 

Research question: Is there any difference in the performance of the two evaluated classifiers in 

case of high intra-class variability and/or interclass similarity? 

 

3. To test the transferability of the developed classification models across different years and 

different agroecosystems with no calibration. 

Research question: How transferable are the developed classification models across different 

years and different agroecosystems without calibration? 

 

4. To investigate the uncertainties of the obtained classification results. 
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2. LITERATURE REVIEW 

This chapter provides the theoretical background of this research. Section 2.1 explains remote sensing-

based model transferability, Normalized Difference Vegetation Index (NDVI) calculated using red-edge 

bands is described under section 2.2, section 2.3 highlights the agricultural mapping from SITS.  

2.1. Transferability of supervised clasifiers in remote sensing 

Transferability is defined as ‘‘the fitness of the transferred model, information, or theory in the new 

context” (Wilmot, 1982). Model transferability is the process of applying the trained model in a context 

other than the one which was originally estimated (Koppelman, 1986). The trained model can be 

transferred across different geographical regions or in the same geographical regions at different periods. 

Werkowska et al. (2017) explained that transferring the trained model to other periods of time is known as 

temporal transferability. In contrast, spatial transferability refers to the reusing of the trained model in 

different geographical locations. It reduces the cost of data gathering and computation burden (Sanko & 

Morikawa, 2010).  

Juel et al. (2015) investigated the transferability of RF classification models for mapping vegetation 

structures using aerial images and DEM. The authors concluded that the RF classification model was not 

transferable to other study areas. Jin et al. (2018) tested the transferability of RF from multi-source remote 

sensing data using LIDAR-derived canopy height as a reference to train the RF model. The authors 

concluded that the RF classification model trained in one location or built for a specific vegetation type 

cannot be transferred to another location or other vegetation types. Wenger & Olden. (2012) tested the 

transferability of ecological models developed using RF and ANN into two study areas in the Western 

United States. This study revealed that RF and ANN algorithms provided outstanding performance when 

applied within one location, but they achieved poor transferability in new locations. Wang et al. (2019) 

developed and examined automatic methods for generating crop type mapping without field-level data by 

transferring trained RF model across geographic locations and year and utilizing unsupervised clustering 

procedures. The authors discovered that harmonic coefficients can successfully separate crop types when 

used in either supervised or unsupervised techniques. This study revealed that RF are transferable with 

high accuracy across geographical regions where the growing conditions and regional crop composition 

are similar. 

2.2. Satellite image time series (SITS) for agriculture mapping using RF and TWDTW 

Recently launched S2 satellite missions by the European Space Agency (ESA) in 2015 and other global 

Landsat-class missions provides time series of moderate spatial resolution imagery. This time series offers 

high possibilities to conduct near real-time monitoring and enhance our understanding of complex earth 
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structure (Zhu, Diao, & Deng, 2018). S2 time series provides a wide range of land cover applications 

(Julea, Lasserre, Jolivet, Ledo, & Lodge, 2011). Its characteristics offer the opportunity to study the 

seasonal evolution of crops.  

There are a number of studies reported using different algorithms for mapping crop type using time series 

or single-data satellite image (Ozdarici-Ok., 2015, Petitjean et al., 2012, Rhemtulla and Kalacska, 2012). 

Methods for mapping crop type from time series images have been confirmed to perform better than the 

single date methods (Gómez, White, & Wulder, 2016). For example, Simonneaux et al. (2010) successfully 

classified bare soil, annual crops, trees in the middle of an agricultural field, and trees located on bare soil. 

Furthermore, the authors estimated evapotranspiration over irrigation fed area in Morocco using high-

resolution Landsat TM images. Kontgis et al. (2017) succeeded to illustrate the unique phenology of paddy 

rice for generating a map of paddy rice extent and classifying them into single, double or triple cropped 

during the growing season. 

Also, there are a number of studies reported on mapping agriculture from time series using the RF 

algorithm. Belgiu & Csillik. (2018) examined the performance of RF and TWDTW from S2 time series 

when applied in object-based (OB) and pixel-based (PB) classification of diverse types of crops in 

Romania, Italia, and the USA. The results show OB-TWDTW performed better than PB-TWDTW and 

RF achieved high accuracy in the USA than other areas. Müller et al. (2015) investigated the spectral-

temporal classification approach for separating between cropland, pasture, natural savanna vegetation, and 

other relevant land cover classes using Landsat time series. The RF classifier was used for this 

classification study. The overall classification result achieved was 93%. Pelletier et al. (2016) examined the 

robustness of RF classifier compared to Support Vector Machine in mapping land cover using high-

resolution time series, namely Landsat-8 and SPOT-4. RF yielded the best results compared to SVM in 

terms of classification performance and computation times. 

There are also studies dedicated to mapping agriculture from time series using TWDTW. For example, 

Maus et al. (2015) improved the proposed TWDTW version of DTW for land use and land cover 

classification from time series data. The algorithm proved to be flexible in mapping different crop types 

providing overall good results for land cover classification. High accuracy was achieved when mapping the 

classes of pasture in a tropical forest area, single cropping, double cropping, and forest. Belgiu & Csillik, 

(2017) applied OB-TWDTW for mapping rice, sunflower, maize and wheat from S2 time series. The 

method achieved high accuracies, namely an overall accuracy of 93.43%, and kappa 92%. 

2.3. Sentinel-2 Vegetation Indices (VI) 

The availability of multispectral data provided by S2 with 13 bands in the visible, near infrared (NIR) and 

Short-wave infrared (SWIR) allows the calculation of new spectral vegetation indices that proved to be 

useful to trace vegetation dynamics. For example, NDVI red edges (1,2, and 3) and that of NDVI red-
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edges (1,2, and 3) narrow computed from (NIR B8 vs bands 5,6,7) and (NIR B8A vs band 5,6,7) 

respectively were introduced by Fernández-Manso et al. (2016). The red-edge spectral region is sensitive to 

chlorophyll contents of the plants (Watson & Lee., 2005). The spectral range in the red-edge region of the 

electromagnetic spectrum lies between 675nm to 760nm. 

There are few studies reported on utilizing red-edge to improve the performance of the RF algorithm. Yet 

no study has been reported for TWDTW. Forkuor et al. (2018), for example, examined the added value of 

the red-edge bands of S2 for mapping land use and land cover in rural Burkina Faso using RF and SVM 

machine learning classifiers. In all five experiments conducted, the RF classification results showed that 

red-edge bands of S2 outperformed Landsat8 and other S2 bands. Qiu et al. (2017) investigated the 

capability of S2 vegetation red-edge spectral bands for improving land cover classification using RF 

classifier. The authors found out that the red-edge spectral bands improved the overall accuracy of the 

target land cover classes.  

There are also studies dedicated to using supervised and unsupervised algorithms for crop type mapping 

using red-edge spectral index. For example, Schuster et al. (2012) tested the red-edge spectral bands for 

improving land use classification based on RapidEye high-resolution multispectral satellite data. The 

results of this study showed that the incorporation of red-edge information can increase classification 

accuracy. Also, red-edge measurements were found useful for assessing vegetation chlorophyll and Leaf 

Area Index and are suitable for early stress detection (Filella & Penuelas, 1994). Fernández-Manso et al. 

(2016) used the red-edge index for discriminating burn severity. Delegido et al. (2011) utilized red-edge for 

estimation of Leaf Area Index and chlorophyll content. 
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3. STUDY AREAS, DATA PRE-PROCESSING AND 
SOFTWARE 

This chapter describes the study areas, the dataset used and its pre-processing, reference data and software 

used for data processing.  

3.1. Study areas 

The research was conducted in two study areas in the United States, California Great Plains, and the 

Mississippi Alluvial Plains. The agricultural fields under investigation in California are located 

approximately between 360 25’ 49.98’’ to 360 21’ 01.71’’N and 1200 06’ 10.80’’ to 1200 01’ 23.41’’W. The area is 

very hot and dry in summer periods but cool and damp in winter seasons. During the summer, the 

temperature at daytime reaches 38oC and common heat waves raise the temperature to 460C. There is a 

rainy season in mid-autumn to mid-spring (Western Regional Climate Center 2009). Annual rainfall 

receives in the area is 292.1mm. The agricultural activities in the area depend on irrigation from surface 

water diversions and pumped water from the ground. The major crops cultivated in the area are cotton, 

tomatoes, grapes, almonds, winter wheat, and alfalfa.  

Mississippi is one of the largest agriculture areas in the United States covering an area larger than 4 million 

acres. The agroecosystem in this region is very productive under proper management. Agriculture has 

been the major contributor to the Mississippi economy and the whole nation (Watson & Lee, 2005). The 

agricultural fields focused in this research are located approximately between 340 18’ 51.83’’ to 340 09’ 

37.38’’N and 900 32’ 12.86’’ to 900 21’ 57.26’’W. The area receives annual rainfall from approximately 

1143mm to 1524mm in the northern and southern part, respectively (Watson & Lee, 2005). Average 

temperature per year is 16.630C. Snowfall is around 3.3cm per year (National Weather Service, n.d.). There 

is sufficient water from perennial streams and lakes which serve as water resources for irrigation (Watson 

& Lee, 2005). The area receives plentiful rainfall but it occurs during the months when the major crops are 

not produced (Watson & Lee, 2005). Given the rainfall distribution in the study areas irrigation is required 

to prevent crop loss during drought. The major crops cultivated are cotton, small grain, forage, maize, 

soybean, and rice.  

Table 3:1 below shows the description of the study areas. The information was extracted from (Western 

Region Climate Center, 2009, National Weather Service, n.d.,Watson & Lee, 2005). 

 

Table 3-1. Description of the study areas 

Study area California Mississippi 
Lat/Long (between)  360 25’ 49.98’’ to 360 21’ 01.71’’N    

and 
 340 18’ 51.83’’ to 340 09’ 37.38’’N 

and 
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 1200 06’ 10.80’’ to 1200 01’ 23.41’’W  900 32’ 12.86’’ to 900 21’ 57.26’’W 

Annual Temperature 
(oC) 

 Min 10.72 oC 
 Max 24.94 oC 
 Average 17.83 oC 

 Min 11 oC 
 Max 22.28 oC 
 Average 16.64 oC 

Annual Rainfall (inch)  292 mm mid-autumn to mid-spring 
 Very hot and dry 

 From 1143mm to 1524mm 

Crops cultivated  cotton, tomatoes, grapes, almonds, 
winter wheat, double cropping, 
pistachios, and alfalfa 

 cotton, maize, soybean, and rice 

Irrigation  surface water diversions and 
pumped water from the ground 

 perennial streams and lakes 
 Rainfed 

 
                                                                     

 

 

 

 
Figure 3-1. Study areas in Central California Valley and Mississippi Alluvial Plains 

3.2. Reference data  

The ground truth data were downloaded from the Cropscape website provided by the United States 

Department of Agriculture (USDA). The Cropland Data Layer (CDL) of the USDA are raster-based, crop 

specific and already geo-referenced layers (Guyet & Nicolas, 2016). These reference layers have a ground 

resolution of 30 meters. The CDL layer is created from Landsat 8 OLI/TIRS satellite imagery sensor. The 
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reference maps for each area of interest are shown in figure 3:2 below. The CDL accuracy assessment 

produced for tilled crops (fallow/idle cropland), principal crops (cotton, corn, and winter wheat), orchards 

(almonds) and vegetables (onions, dry beans, and tomatoes) in California and Mississippi are presented in 

summary in table 3:4 below. 

In this research, the resolution of S2 images was 10m which is different from these reference images. The 

differences in resolution might affect the results if the validation and training samples are situated towards 

the edges of the agriculture parcels. According to the CDL accuracy assessment for agriculture field edges, 

the accuracy indicates that most of the crops situated towards the edges of agriculture fields have lower 

classification accuracy. To avoid that all training and validation samples were located towards the middle 

of the agricultural fields. 

Table 3-2. CDL accuracy assessment of some of the crops in 2016 and 2017 in Mississippi and California (CropScape 
and Cropland Data Layers, 2018) 

 California 2016 California 2017 Mississippi 2017 
 Overall Kappa Overall Kappa Overall Kappa 
Principal crops 86.7% 0.844 74.7% 0.677 85.8% 0.789 
Tilled crops 86.4% 0.848 73.5% 0.683 85.5% 0.787 
vegetables 78.0% 0.679 36.5% 0.313 55.4% 0.462 
Orchards 87.0% 0.817 96.4% 0.834 58.7% 0.450 
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Figure 3-2. Reference maps of California and Mississippi (https://nassgeodata.gmu.edu/CropScape/) 

3.3. Sentinel-2 (S2) data 

The Level-1C S2 satellite images were downloaded from the United States of Geological Survey (USGS) 

on Earth Explorer, at 20m spatial resolution. Twelve images of California (six for 2016 and six for 2017) 

and 6 images of Mississippi were used to fulfil the requirement for this research. The atmospheric 

correction of Level-1C S2 raw images was performed to remove the scattering and absorption effects of 

the atmosphere. The Sen2cor plugins incorporated in SNAP were used to convert the Top-Of-

Atmosphere (TOA) Level-1C S2 to surface reflectance (Level-2A). Meanwhile, all spectral bands of level-

2A products were resampled to 10m resolution using the Nearest neighbor method. Only the red-edge, 

NIR and narrow NIR bands were selected for further analysis from all 13 spectral bands in each year.  

The range of wavelengths covered by each S2 red-edge, NIR and narrow NIR spectral bands which were 

selected for further analysis are shown in table 3:5 below. 

 
Table 3-3. Wavelength range of each S2 red-edge band (ESA, 2019) 

Sentinel-2 bands Central wavelength (nm) 
Red-edge 1 (Band 5) 704.1 
Red-edge 2 (Band 6) 740.5 
Red-edge 3 (Band 7) 782.8 
Near-infrared (Band 8) 832.8 
Narrow Near-infrared (Band 8A) 864.7 

 
The spatial extent of the area focused for investigation for California in 2016 and 2017 was 16486.97 acres 

and 14944.81 acres for the neighboring region situated in California. The test area focused in Mississippi 
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was 16230.55 acres. The temporal resolution of all images is as shown in table 3:4 below. The images were 

taken starting from early May to late November to match the growing cycle of the crops of interest. The 

information on the standard planting and harvesting dates were retrieved from the Agricultural handbook 

of the Department of agriculture in the United States released in 2010.  

The crops of interest were selected based on the requirement of transferability test which requires 

similarities in terms of crops between the two-test area under investigation. For example, in Mississippi 

and California, the common crop was cotton, whereas in California in 2016 and 2017 the crops of interest 

were cotton, tomatoes and winter wheat. The crops classified for the test areas located in California were 

similar to those found in California 2016 and 2017.  

The agroecosystem regions in the United States are organized in hierarchical systems (i.e. domains, 

divisions, provinces and sections) and more detailed levels. In this research we used the lowest level, 

namely section which is more detailed compared to other levels. 

Table 3-4. Central California Valley 2016 and 2017 image information and Mississippi Alluvial Plain 

California 2016 California 2017 Mississippi 2017 
Acquisition 
date 

Cloud cover in 
% 

Acquisition 
date  

Cloud cover 
in % 

Acquisition 
date 

Cloud cover in 
% 

22/05 0.37 17/05 25.33 01/05 0.1 
21/07 0.01 06/06 0 10/06 13.36 
10/08 0.04 16/07 31.2 20/07 6.78 
19/09 0 14/09 15.59 18/09 17.89 
09/10 5.19 24/10 0 28/10 7.74 
8/11 0 28/11 0 22/11 0 

 

3.4.  Computation of vegetation indices 

This research was focused on utilizing the red-edge indices. The Normalized Difference Vegetation Index 

red-edge (NDVIre) is similar to the common NDVI, however NDVIre uses the fraction of Near-Infrared 

(NIR) and the edge of the red region (Harris, 2018a).  

To obtain the temporal phenology of the crops of interest six red-edge spectral indices NDVIre were 

computed. The NDVI red-edge 1 (NDVIre1) was introduced by Gitelson and Merzlyak (1994), the 

authors used the Near-Infrared (NIR) band 8 and the red-edge Band 5.  Fernández-Manso & Quintano. 

(2016) introduced the NDVIre (2 & 3) and the NDVI red-edge narrow (NDVIren) using the NIR with 

red-edge (6 & 7) and the Narrow-NIR band 8A with red-edge (5,6,7) bands, respectively. The equations to 

compute the red-edge spectral indices are shown in table 4:2 below 
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Table 3-5. The formulas used to compute spectral indices of NDVIre 

Description Equation Reference 

NDVI red-edge 1 NDVI_B8B5 =
NIR B8 − Red Edge B5

NIR B8 + Red Edge B5
 

Gitelson and Merzlyak 

(1994) 

NDVI red-edge 2 NDVI_B8B6 =
NIR B8 − Red Edge B6

NIR B8 + Red Edge B6
 

Fernández-Manso et al. 

(2016) 

NDVI red-edge 3 NDVI_B8B7 =
NIR B8 − Red Edge B7

NIR B8 + Red Edge B7
 

Fernández-Manso et al. 

(2016) 

NDVI red-edge 1 narrow 
NDVI_B8AB5 =

NIR B8A − Red Edge B5

NIR B8A + Red Edge B5
 

 

Fernández-Manso et al. 

(2016) 

NDVI red-edge 2 narrow NDVI_B8AB6 =
NIR B8A − Red Edge B6

NIR B8A + Red Edge B6
 

Fernández-Manso et al. 

(2016) 

NDVI red-edge 3 narrow 
NDVI_B8AB7 =

NIR B8A − Red Edge B7

NIR B8A + Red Edge B7
 

 

Fernández-Manso et al. 

(2016) 

3.5. Generating training and validation samples 

In all test areas CropScape – CDL was used for generating stratified random samples. Table 3:6 below 

show the number of samples generated for each class. For each crop of interest i.e. cotton, winter wheat, 

and tomatoes 50 samples were generated for training the classifiers and 80 samples for validation. The rest 

of the crops were grouped into one “others” class in each test area. For each class composing the “others” 

class, we generated 25 samples for training and 50 for validation.  The validation samples were 

independently generated to minimize spatial autocorrelation with training samples (Millard & Richardson, 

2015). Since only a few classes were available and the test areas were small, we checked visually to see the 

spatial distribution of the samples were not situated in the same parcels.  

 Table 3-6. Training and validation samples for California 2016 and 2017 

Study area California  
Year 2016 2017 The Neighbor region within 

California 2017 
Class Training Validation Training Validation Training Validation 
Winter 
wheat 

50 80 50 80 50 80 

tomatoes 50 80 50 80 50 80 
cotton 50 80 50 80 50 80 
Others  50 100 100 200 50 100 
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Table 3-7. Training and validation samples for California and Mississippi 2017 

Year 2017 2017 
Class Training Validation Training Validation 

cotton 50 80 50 80 
Others  75 150 50 100  

 

3.6. Software used 

The third-party plugins ’Sen2Cor’ incorporated with Sentinel Application Platform (SNAP) software 

v6.0.2 developed by the European Space Agency (ESA) was used to perform atmospheric corrections of 

Level-1C products to obtain Level-2A images.  

QGIS software v3.2.0 was used in the computation of the Normalized Difference Vegetation Indices of 

the red-edge (NDVIre) 

ArcGIS software v10.6.1 with a tool developed by Ken Buja in 2016, senior GIS Analyst for NOAA's 

National Centers for Coastal Ocean Science was used to generate training samples on the reference 

images. 

Rstudio with RandomForest package was used for assessing the variable importance (VI) and developing the 

Random Forest model. TWDTW model was also developed in Rstudio using dtwsat package. RF and 

TWDTW model was implemented by adapting the codes developed by Millard et al., (2015) of Carleton 

University, Canada and Victor Maus et al., (2016), respectively. 
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4. METHODOLOGY 

This chapter provides a detailed description of the methods used to meet the main objective of assessing 

the transferability of RF And TWDTW models across different agroecosystems and across different 

periods (but the same areas). 

4.1. Adopted methodology 
The flowchart shows a general overview of the tasks and methods implemented in each step to meet the 

final outputs. 

 

 
Figure 4-1. Flowchart of the proposed methods. 

Agroecosystem 1&2= Study area 
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4.2. Processing 

4.2.1. Random Forest (RF) classification 

RF uses a bagging approach whereby trees are generated by a randomly drawn subset of the training 

samples through replacement. Some samples may be selected many times whereas others may not be 

selected at all (Belgiu & Drăguţ, 2016). RF splits the samples into training (2/3) called in-bag-samples and 

validation (1/3) referred to Out-Of-Bag (OOB). These validation samples are not used for building the 

trees (Breiman, 2001). They are used instead for internal cross-validation during the run to estimate how 

well the classification results performs by the model (Breiman, 2001).  

Two parameters needed to bet set when implementing RF, the number of features to best split at the tree 

node (Mty) and the number of decision trees (Ntree). The research conducted by Ghosh et al. (2014) 

indicated that the classification accuracy is less sensitive to Ntree than to the Mtry. Belgiu & Drăguţ. (2016) 

suggested the acceptable number of trees is 500 when applying RF classifier on remotely sensed data. 

Other studies reported also the use of 500 number of trees (Lawrence et al., 2006; Galvan-Tejada et al., 

2018) because the errors become stable before reaching this value. This is also the default value in 

“randomForest” R package. The Mtry parameter is normally set to the square root of the total number of 

input variables (Gislason, Benediktsson, & Sveinsson, 2006). 

In this study, the Mtry was considered as the square root of the number of input variables (Gislason et al., 

2006). When Mtry is set as equal to the total number of input variables the computation time increases 

because the algorithm needs to calculate the information gain contributed by all the variables used to split 

the nodes (Gislason et al., 2006). The number of decision trees, Ntree was set equal to 1000 throughout all 

the experiments conducted because the errors become stable before reaching this classification trees 

number (Lawrence et al., 2006). Therefore, it can be as large as possible since the RF classifier is 

computationally efficient (Guan et al., 2013). 

The computation time required to develop the RF model is given by (Breiman, 2001) 

𝑇ඥ𝑀𝑁𝑙𝑜𝑔(𝑁)              Equation (1) 

Where; T is the number of decision trees 

 M is the number of variables for splitting in the node 

 N is the number of training samples 

 

4.2.2. Assessing variable importance 

The variable importance (VI) plots indicate the importance of each variable in classifying the data 

(Dinsdale & Edwards, 2008.).  
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The Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) are among the measures of VI 

available in RandomForest package in R. The variable selection is important because the cost of data storage 

and collection will decrease enabling computation speed to increase because of a reduced number of 

variables to process (Han, Guo, & Yu, 2017). In this research, MDA measure was used to assess the 

importance of variables in classifying the data.  

The MDA uses the permuting OOB samples to calculate the importance of the variables (Breiman, 2001). 

As already mentioned in the previous section the OOB samples are not used to train the tree in RF but are 

used for self-assessment of the classifier internally. Therefore, MDA is determined during the 

computation of OOB error. The permutation of the VI in MDA is straightforward based on prediction 

accuracy instead of splitting criterion (Boulesteix, Janitza, Kruppa, & König, 2012). If the accuracy of the 

RF model decreases because of the exclusion of a certain variable, it means that those particular variables 

are very important in correctly classifying the data. In this case, the variables with large MDA values are 

the most important variable (Han et al., 2017). For the variables which are not relevant for a particular 

classification purpose, it is expected to have MDA=0 since permutation will not increase or decrease 

misclassification (Goldstein, Polley, & Briggs, 2011).  

Most studies use MDA for VI measure because of its broad applicability and unbiasedness ( Schmidt et al., 

2014, Hapfelmeier et al., 2014). However, MDG can also be used when the predictive quality of the trees 

is low i.e. when OOB error is approximately 50% (Goldstein et al., 2011), given that MDA is calculated 

based on the increase of the misclassification rate after permuting a certain variable. MDA is calculated off 

of the OOB sample and, therefore, it can be viewed as the predictive quality of that variable (Goldstein et 

al., 2011).  

RF classification under section 4.2.1 was implemented using iterative classification approach in order to 

assess the stability of predicted class extends and VI (Millard & Richardson, 2015). When running iterative 

classification approach variable importance measures and rankings varied with few iterations, with more 

iterations the VI rankings become stable 

4.2.3. Temporal patterns 

A temporal pattern is a set of time series containing land cover information (Victor Maus et al., 2016).  

From the package dtwSat developed by Victor Maus et al. (2016), the temporal patterns were defined using 

the function dtwSat::createPatterns which utilize a Generalized Additive Model (GAM)(Wood, 2010) to 

create a smoothed temporal patterns based on the training samples. To obtain the temporal phenological 

patterns using the function mentioned above, one needs to set the sampling frequency of the output 

patterns in days in order to create a smoothed line and GAM smoothing formula (Victor Maus et al., 

2016). In this research, the sampling frequency of the output patterns was set to 8 days in order to 
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generate a smoothed line. The temporal patterns generated in this step were used as input in the TWDTW 

classification.  

4.2.4. Time-weighted Dynamic Time Warping (TWDTW) classification 

Dynamic Time Warping (DTW) is useful in finding the best alignment between the two-time series and 

provide the similarity between them (Victor Maus et al., 2015). The sequences of the two-time series are 

matched to each other in a piece-wise fashion. The original DTW method was designed for speech 

recognition (Sakoe et al., 1978), and had been widely used for a number of applications such as human 

motion animation (Hsu et al., 2005), recognition of human activity (Kulkarni et al., 2014), and 

classification of time series data (Vasimalla, Challa, & Manohar Naik, 2016). However, DTW is 

challenging when applied to SITS analysis (Victor Maus et al., 2016). For example due to the variability of 

atmospheric conditions, such as clouds, the time series becomes non-uniform and of unequal length in 

terms of temporal sampling (Petitjean, Inglada, et al., 2012). 

TWDTW is the method used in this study for land cover classification using satellite image time series. 

The method was implemented using dtwSat package developed by Victor Maus et al. (2016). 

TWDTW method has the ability to classify crops with various vegetation dynamics. The TWDTW 

classifier can handle challenges arising due to irregular sampling and out-of-phase time series. It is 

sensitive to seasonal changes in natural and cultivated crops.  

There are two in-built functions provided by the package dtwSat, namely the linearWeight and 

logisticWeight. Victor Maus et al. (2016) found that logistic-weight provides better results than the linear-

weight for land cover classification. This is because logistic TWDTW has a low penalty for small-time 

warps and significant costs for bigger time warps compared to linear-weight which has a large cost for 

small time differences (Victor Maus et al., 2016). By using the function twdtwApply users can define 

different weight function (Victor Maus et al., 2016). In Maus et al. (2016) the authors used logistic-weights 

with two parameters α and β which represents the steepness and the midpoint respectively. Belgiu & 

Csillik. (2018) used different values of α (− 0.2, − 0.1, 0.1 or 0.2) and β (50 or100), the best classification 

results were acquired with α = − 0.1 and β = 50 meaning the authors applied a low penalty for time warps 

smaller than 50 days and a higher penalty for larger time weights. Figure 1:1  below is an example of the 

logistic-weight function with steepness α = − 0.1 and midpoint β = 100 developed by Victor Maus et al. 

(2016). The x and y-axis represent the absolute difference between two dates and time weight respectively. 
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Figure 4-2. Logistic weight with steepness α = − 0.1 and midpoint β = 100 

The TWDTW algorithm requires two inputs for image classification, namely (a) phenological cycles of 

land cover classes (b) long-term satellite image time series images of the same spatial extent with their 

respective dates (Victor Maus et al., 2016). According to the description of the dtwSat package, the 

TWDTW method consists of three main steps; (a) generating temporal phenological cycles of land cover 

classes from training samples based on red-edge VI time series (b) applying weighting function (logistic or 

linear) and (c) Classifying the raster time series (Victor Maus et al., 2016). Steps (a) and (b) are detailed 

explained under section 4.2.3 and 4:2:4, respectively. 

The temporal phenological patterns of the land cover classes were extracted from the red-edge NDVI’s 

calculated under section 3.4. Logistic weighting function was used with different values of the parameters 

steepness (α) and midpoint (β) to obtain the best classification results. 

4.2.5. Accuracy Assessment of Classification results 

Overall accuracy is the measure of mapping accuracy which tells us about what proportion out of the 

reference data that was correctly classified (The core of GIScience: a systems-based approach, 2012). Kappa shows 

the level of agreement between the classified and reference images corrected by chance. It evaluates if the 

classification of the categories did better than randomly assigning values.  

Producer’s accuracy (Error of omission) includes samples points which were excluded in the interpretation 

results (The core of GIScience: a systems-based approach, 2012). They are the measure of false negatives which 

show the fraction of values that belong to a certain class but were predicted in a different class (Harris, 

2018b). Since omission error are related to the reference data and therefore, they are shown in the 

columns of the confusion matrix. 

User’s accuracy (error of commission) refers to the fraction of values that were predicted in a particular 

class but do not belong to it (Harris, 2018b). These are incorrectly classified samples (false positives). 

Errors of commission are indicated in the rows of the confusion matrix except for diagonal values.  
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The accuracy of the RF and TWDTW classification results was assessed to evaluate how good the maps 

are in terms of Overall accuracy, producer’s and user’s accuracy metrics (Congalton, 1991) and kappa 

coefficient (Cohen, 1990). The formulas to calculate the metrics are as follows; 

Overall Accuracy (OA) = 
Number of correctly classified cells

Total number of pixels checked
                                               Equation (2) 

 

Kappa (K) = 
ୠୱୣ୰୴ୣୢ ୟୡୡ୳୰ୟୡ୷ ି ୡ୦ୟ୬ୡୣ ୟ୰ୣୣ୫ୣ୬୲

ଵ ି ୡ୦ୟ୬ୡୣ ୟ୰ୣୣ୫ୣ୬୲
                                                   Equation (3) 

   where  

Chance agreement= Sum (product of row and column totals per class) 

Producer accuracy = 
୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୡ୭୰୰ୣୡ୲ ୮୧୶ୣ୪ୱ ୧୬ ୟ ୡୟ୲ୣ୭୰୷

்௧ ௨  ௫௦  ௧௧ ௧௬ (௨ ௧௧)
                   Equation (4) 

User accuracy = 
୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୡ୭୰୰ୣୡ୲ ୮୧୶ୣ୪ୱ ୧୬ ୟ ୡୟ୲ୣ୭୰୷

୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୡ୪ୟୱୱ୧୧ୣୢ ୮୧୶ୣ୪ୱ ୧୬ ୲୦ୟ୲ ୡୟ୲ୣ୭୰୷ (୰୭୵ ୲୭୲ୟ୪)
                          Equation (5) 

 

4.2.6. Assessing the uncertainty of the RF and TWDTW classification results 

From the error matrix, the post-classification analysis was performed to assess the uncertainty of the 

classification results using the information obtained from the map accuracy assessment. The information 

is useful in estimating the area of a land cover class and constructs confidence intervals that reflect the 

uncertainty of the area estimated. After performing accuracy assessment and create error matrix, 

estimating the error-adjusted of land cover area and confidence interval yields valuable information on 

land cover compared to results obtained from the map itself (Olofsson, Foody, Stehman, & Woodcock, 

2013). 

The error-adjusted estimator of an area includes the area of map omission error and leaves out the area of 

map commission error was calculated using the formula below (Olofsson et al., 2013) 

Αఫ
  = Α௧௧ ∑ 𝑊

ೕ


                                                                                          Equation (6) 

Where; 

Αఫ
  = Error-adjusted estimator of area 

Α௧௧ = Total area of the map 

𝑖 = Map categories (𝑖 = 1,2, … . . , 𝑞) of the error matrix 

𝑗 = Reference categories (𝑗 = 1,2, … . . , 𝑞) of the error matrix 

𝑛 = cell of the error matrix 
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𝑊 = Mapped area proportion given by (Α, ÷ Α௧௧) 

Α, = The mapped area of category 𝑖 

Also, an approximate 95% confidence interval for Α was estimated using the formula below 

Αఫ
  ± 2 × 𝑆(𝐴ఫ

 )                                                                                                               Equation (7) 

Where; 

𝑆(𝐴ఫ
 ) = The standard error of the error-adjusted estimated area given by (Α௧௧  ×  𝑆(𝑃

 )) 

𝑃
  = Reference category of column totals in error matrix 

𝑆(𝑃
 ) = The estimated standard error of the estimated area proportion (Cochran, 1977), 

               given by  ඨ∑ 𝑊
ଶ

ୀଵ

ೕ


(ଵି

ೕ


)

ିଵ
                                                        Equation (8) 

4.2.7. Transferability assessment 

The transferability assessment of the best models identified under sections 4.2.1 and 4.2.4 was conducted 

across agroecosystems and years based on the common crops available in both study areas. The best RF 

and TWDTW classification models trained in California using 2017 datasets was transferred to three study 

areas, namely California in 2016, a neighboring region situated in California in 2017 and Mississippi in 

2017 to map similar crops. 

First, the models were trained to identify cotton crops and transferred to map similar crop of 2017 in 

Mississippi. Second, the models were trained again based on three crops, namely cotton, winter wheat, and 

tomatoes and it was transferred to two study areas, California 2016 and neighboring area within California 

2017. 

In a new study area where the models were applied, there was no model calibration. The models were 

applied with the same parameters tuned in order to obtain the best classification models before 

transferability. 

In another case, the best RF and TWDTW models developed and trained in three study areas, namely 

California 2016, a neighboring region in California 2017 and Mississippi 2017 were applied in California 

2017 to map similar crops same as in case one. The purpose of this test was to determine whether unequal 

class proportion between the two areas under test has an influence on the transferability test results. 

The performance evaluation of the models was assessed based on the overall accuracy, producer’s and 

user’s accuracy metrics and kappa coefficient. 
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5. RESULTS  

This chapter shows the results of the implemented methods. The chapter begins with presenting the 

results of the RF model, followed by TWDTW results in section 5.2.  Section 5.3 presents a discussion of 

the Producer’s and User’s accuracies for both RF and TWDTW classification models. Section 5.4 shows 

the results of interclass similarity and intra-class variability assessment. Transferability assessment is 

presented and evaluated in section 5.5. The last section 5.6 present uncertainties of the obtained 

classification. 

5.1. Random Forest Classification results 

Figure 5:1 (a) to (f) represents the classification results obtained by RF algorithm. Cotton was the common 

crop across different agroecosystem (California and Mississippi). To assess the transferability across 

different years and across neighboring areas, we classified the following classes: cotton, winter wheat, and 

tomatoes. The final implementation of the RF model was at 300 iterations which produced the best 

classification results. The computation time per iteration was approximately 2 minutes depending on the 

number of classes to be classified and the number of layers in the NDVI stack. In this research, 36 layers 

of NDVI red-edge were used as input, because we computed six spectral indices for six months. 

5.1.1. Overall accuracies of the classification results yielded by Random Forest 

 
The best classification results obtained in California, in 2017 had an overall accuracy of 99.12% and kappa 

98.82% compared to other areas as shown in Table 5:1. The accuracy of the classification yielded for the 

same area, but in a different year, namely 2016 was lower, namely we obtained an overall accuracy of 

92.08% and kappa 89.38%. This was due to numerous changes that occurred from one year to another in 

the study area under investigation. For example, most of the tomatoes and winter wheat crops cultivated 

in 2016 were replaced by cotton in 2017. According to the CDL accuracy assessments which reflect the 

accuracy of each crop, tomatoes and winter wheat classes have lower accuracy compared to cotton in both 

years. Therefore, large coverage of tomatoes and winter wheat that were misclassified caused the lower 

accuracy obtained in 2016 as compared to those obtained in 2017. The accuracy obtained in different areas 

which belong to the same agroecosystem, was lower compared to other areas due to high confusion 

between winter wheat and “others” class. In California overall accuracy and kappa were 87.89% and 

83.40% and its neighbor region were 87.59% and 83.15%, respectively.   
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Table 5-1. Overall accuracy and Kappa obtained by RF in all each study areas 

Study area Overall Accuracy 

in % 

Kappa 

in % 

California 2016 92.08 89.38 

California 2017 99.12 98.82 

   

California 2017 97.92 95.24 

Mississippi 2017 98.33 96.63 

   

California 2017 87.89 83.40 

California 2017 (another 

location) 

87.59 83.15 

 
 

 

 

(a) 

 

 

(c) 

 

 

(e) 

 

(b) 
 

(d) 

 

(f) 

Figure 5-1. Classified images of California in 2017 (a), (c), and (e), Mississippi 2017 (b), California 2016 (d), and 
neighboring area within California 2017 (f) 
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5.1.2. Evaluation of the variable’s importance  

According to the variable assessment carried out in this work the best suitable time to classify crops in 

Mississippi is October when the crops reached their maturity, and the harvesting period starts. The 

NDVI-red edge values at the moment are lower and their temporal profiles indicate the end of the season. 

In Mississippi, the harvesting season starts on mid-September. This is influenced by the planting dates 

which are not fixed, and which normally range from April to mid or late May. In California 2016, 

California 2017 and the neighbor region, September was identified as the most relevant month to classify 

the target crops. This is the moment when the NDVI-red edge values are at the maturity stage and the 

harvesting season is approaching (from October until November). 

Therefore, classifying target crops when they have reached the maturity and senescence stages increases 

the probabilities of the crops to be correctly classified. Figure 5:2 shows the first 30 important variables 

ranked from the most important (top) to the least ones (bottom). 

 
 

 

(a) 

 

 

(b)  

 

©  

 

(d) 

Figure 5-2. The variable importance measures and rankings using mean decreases in accuracy (MDA) of California 
2017 (a), Mississippi 2017 (b), California 2016 (c) and an area within California 2017(d). 
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Note; ndvi_b8b5-ndvi_b8b7 and ndvi_b8ab5-ndvi_b8ab7 are the six calculated indices in all study areas. The last 
digits 1 to 6 represents months from May-November, respectively except August. 

5.2. Time-Weighted Dynamic Time Warping classfication results 

 
To implement the TWDTW classification model, different values of α (α = -0.2, -0.1) and β (β = 50 or 

100) parameters were used to run the classification. The best classification results were achieved when α 

and β were set to -0.1 and 50, respectively. The processing time in this study varied between 9 to 12 hours 

depending on the number of crops classified. For the test areas with four crops, the processing time was 

between 11 and 12 hours, whereas for those areas where only two crops were classified the computation 

time was about 10 hours (Computer processor; Intel(R) Core (TM) i7-7700HQ CPU @2.80GHZ). For 

the purpose of transferability assessment, we considered again only those crops that were similar across 

evaluated study areas. For example, cotton was the common crops for California and Mississippi 2017. 

For testing transferability across years and across different study areas, but the same agroecosystem region, 

we considered the following crops: winter wheat, cotton, and tomatoes. Figure 5:2 show the classification 

results obtained by applying TWDTW. 

 

5.2.1. Overall accuracies of the classification results obtained by Time-Weighted Dynamic Time Warping 

California 2017 yielded the best classification results with an overall accuracy of 96.67% and kappa 92.45% 

compared to all test areas under investigation. These accurate classification results were obtained due to 

distinctive temporal profile of cotton and “others” classes. The performance of TWDTW across different 

years but the same study area (e.g. California 2016 and 2017) were different due to the high overlap 

between the temporal profiles of tomatoes and “others” classes in 2016. Therefore, the classification 

results for 2016 were lower as compared to those obtained for 2017. Overall accuracy was 94.46% and 

kappa 92.55, in 2017 and 2016 the overall accuracy was 80.41% and kappa 73.69%. The test areas situated 

within the same agroecosystems obtained the lowest accuracy compared to other areas because of the high 

confusion between cotton and “others” class. Table 5:2 shows the results of TWDTW classification 

model. 

Table 5-2. Overall accuracy and Kappa index obtained by TWDTW in all investigated study areas 

Study area Overall Accuracy 

in % 

Kappa 

in % 

California 2016 80.41 73.69 

California 2017 94.46 92.55 

   

California 2017 96.67 92.45 

Mississippi 2017 91.11 82.35 
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California 2017 81.31 74.59 

California 2017 

(another location) 

89.66 85.98 

 

 

 

(a) 

 

 

(c) 

 

 

(e) 

 

(b) 
 

(d) 

 

(f) 

Figure 5-3. Classified maps of California in 2017 (a), (c), and (e), California 2016 (d), Mississippi 2017 (b) and another 
study area within California 2017 (f) 

5.3. Producer’s (PA) and user’s accuracies (UA) of RF and TWDTW 

Figures 5:3 shows the PA and UA obtained by RF and TWDTW models in the investigated areas situated 

across different agroecosystems. The PA and UA for cotton and “others” classes yielded highest values 

ranging from 96% to 100% for both RF and TWDTW in California, whereas the classification results 

obtained for Mississippi were lower than 90%. This was due to small overlap of the temporal profiles of 

the cotton class with “others” from the start of the growing phase before maturity stage. 
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Figure 5-4. Producer’s and user’s accuracy obtained by RF and TWDTW for California and Mississippi study areas in 
2017 

PA for cotton, tomatoes and winter wheat obtained by RF and TWDTW in 2017 achieved best 

classification results (higher than 90%). In the case of UA, all crops acquired high values except for those 

obtained by both classifiers for the tomatoes, namely 43.75% and “others” classes 76.47%, in 2016. 

Generally, the results obtained for California in 2017 by both RF and TWDTW were excellent compared 

to 2016. This is because in 2016 there was a high confusion between “others” class and tomatoes. This 

happened because of the fact that the temporal profiles of the “others” class overlapped with those of 

tomatoes. In California 2017 the area covered by tomatoes and “others” classes were smaller compared to 

2016. Therefore, the confusion between the two classes had a lower impact on the classification results 

obtained for 2017. Figure 5:4 presented below shows the PA and UA across years, for RF and TWDTW. 

 

 

 

 
Figure 5-5. Producer’s and user’s accuracy obtained by RF and TWDTW for California in 2016 and 2017 

 

In the other study area situated in California the PA and UA obtained by RF and TWDTW for tomatoes 

and UA for cotton, for both RF and TWDTW were high from 97% to 100%, as shown in figure 5:5.  In 
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California, the PA for cotton and “others” were 69.56% and 43.75%, respectively obtained by TWDTW 

and UA for others and winter wheat were 28% and 30% acquired by TWDTW and RF, respectively. This 

was due to the confusion between the classes of interest (cotton and winter wheat) and “others” class. The 

temporal patterns of “others” class showed high intra-variability and high overlap with winter wheat in 

both test areas. Furthermore, the winter wheat class was underrepresented in California, i.e. about 3 times 

smaller area compared to neighbor region situated in California. Therefore, the confusion between winter 

wheat and “others” classes and small proportion of winter wheat in California, contributed to the lower 

UA obtained by RF. Also, cotton and “others” class showed overlap of their temporal profiles from the 

start until the mid of the growing season. In its neighbor region, the temporal patterns of winter wheat 

and “others” were the same in the whole season. This confusion explains the poor classification results 

obtained by RF and TWDTW. 

 

 

 

 
Figure 5-6. Producer’s and user’s accuracy obtained by RF and TWDTW for California and its neighbor region in 
2017 

 

5.4. Post classification analysis 

By using the approach described by Olofsson et al. (2013), the error-adjusted estimate of the area (at 95% 

confidence interval) was computed. In California 2017, the adjusted and mapped area of cotton and 

tomatoes was the same (Figure 5.5(a)). There were no significant differences, because of their distinct 

temporal patterns which result in a good classification result. RF mapped a large area of cotton and 

“others” classes about 2948.19 ha and 1514.22 respectively, compared to the TWDTW. TWDTW mapped 

a large area of tomatoes about 2974.44 ha compared to RF. The area mapped by the winter wheat for both 

RF and TWDTW is smaller compared to other crops whereby the margin error of TWDTW is greater 

than that of RF. 
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In California 2017, where two classes were mapped, the area coverage of “others” class was larger than the 

cotton for both TWDTW and RF (Figure 5.5(b)). The differences between the mapped and adjusted areas 

for cotton and “others” class was 166.56 ha and 82.27 ha for RF and TWDTW, respectively. Therefore, 

the margin error of the mapped and adjusted area for cotton and “others” was the same for RF and 

TWDTW. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5-7. Area uncertainties of the mapped and adjusted areas extracted from error matrix (at 95% confidence 
interval) 

In California 2016, there was the greatest difference between mapped and adjusted for tomatoes produced 

by TWDTW, namely 895.70 ha as compared to RF which was 453.88 ha (figure 5:9 (c)). This happened 

due to the overlapping of its temporal profiles with “others” class. A large discrepancy was also identified 

for the winter wheat and cotton classes, where the adjusted area was higher with 203.96 and 537.42 ha for 

TWDTW. In case of RF, the mapped and adjusted areas of winter wheat have a smaller discrepancy, 

namely 13.27 ha. The area of tomatoes was underestimated for TWDTW because of the confusion 

between this class and “others” class. This also reflects the lower UA, namely 43.75% for TWDTW and 

larger area margin of 237.82 ha for RF. 
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In Mississippi 2017, the area mapped by cotton class was larger with a difference of approximately 3000 

ha compared to “others” for both TWDTW and RF (figure 5:9 (d)). The adjusted area for cotton was 

larger with 276.28 ha for TWDTW. In case of RF-based classification results the mapped and adjusted 

area have smaller differences, namely 22.15 ha. The amount increased of adjusted area for cotton was the 

same quantity decreased by “others” class in the adjusted area obtained by TWDTW. The same 

differences in gain and loss between mapped and adjusted were identified for cotton and “others” for RF. 

This is the reason why the margin error of cotton and “others” classes are the same in adjusted and 

mapped for TWDTW and RF. 

5.5. Assessment of the interclass similarity and intra-class variability 

Figure 5:6 (a) below show interclass similarities between the two crops i.e. cotton and tomatoes. Cotton 

growing phase is between May and July followed by the maturity stage from July to September and was 

harvested in October. In case of tomatoes, the green up phase usually starts on February (Urban Farmer 

LLC, 2019), the maturity stage is in June and its harvest takes place on September. Therefore, there is a 

clear distinction between the temporal profiles of the two crops.  Figure 5.3 (b) indicate the inter-class 

variability of “others” class. As this class is composed of more than one class, namely idle cropland and 

dry beans there is a high inter-class variability and their profiles show different patterns. In this class the 

temporal profiles which overlap indicate similar class. The high variability of this class is directly reflected 

in the low classification accuracy obtained in our study. Also, some overlap on the temporal profile of this 

class with the other classes of interest influenced the classification accuracy obtained by RF and TWDTW. 

 

 

(a) 

 

 

(b) 

Figure 5-8. Interclass similarities of cotton and tomatoes, and intra-class variabilities of others class. 

5.6. Transferability assessment of the RF and TWDTW classification models 

The best RF and TWDTW classification models were those obtained for California in 2017 as already 

mentioned in section 5.1.1 and 5.2.1. Therefore, these models were used to test their transferability for the 
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selected crops. No model calibrations were performed when applied on a new test area, the models were 

applied with the same parameters which were originally trained with. For RF, the best models were 

obtained by setting 1000 number of trees (Ntree) and 6 number of variables (Mtry). In the case of 

TWDTW, the best models were achieved when steepness (α) and midpoint (β) parameters were set to -0.1 

and 50, respectively. 

We assessed the transferability by applying the best RF and TWDTW classification models (i.e. those 

obtained for California 2017) to Mississippi 2017, California 2016, and neighboring region in California. 

Also, another transferability test was conducted by applying the best RF and TWDTW classification 

models obtained for California 2016, neighboring region situated in California and Mississippi 2017 to 

California 2017. 

5.6.1. Model transferability across different agroecosystems  

By transferring the RF and TWDTW classification models from California to Mississippi, the classification 

results dropped significantly. The overall accuracy decreased by 54.58% for RF and 49.45% for TWDTW, 

as shown in Figure 5:6 (a) and (b). The kappa index for RF indicated a clear disagreement between the two 

study areas and for TWDTW it was reduced by 88.41%. The PA and UA for all crops were decreased by 

approximately 50% for RF. TWDTW obtained a slightly better UA for cotton which was increased by 

0.59%.  

The models trained in Mississippi and applied in California also acquired extremely poor results, as shown 

in figure 5:6 (c) and (d). The overall accuracy was reduced by 42% and 76.28% for RF and TWDTW, 

respectively. Their kappa indicates no effective agreement between the two study areas. PA and UA 

accuracies for cotton was 1.8% and 2.5%, respectively, for TWDTW. These indices were 0 for RF because 

cotton was not identified in a new test area. 

In general, model’s transferability from Mississippi to California yielded poor results. The temporal profile 

of the crop of interest, i.e. cotton, between the two areas was different. Therefore, it was challenging to 

identify this crop in a new test area, especially for TWDTW. The class proportion of cotton in Mississippi 

was 4841.66 ha, approximately two times larger compared to its proportion in California. Transferring 

models with a large proportion of cotton from Mississippi to California yielded poor results. This indicates 

that unbalanced class proportion influenced the classification results obtained, by RF and TWDTW. 

“other” class was identified in both test areas. However, its composition was different between the two 

areas. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5-9. Transferability of RF and TWDTW classification models across different agroecosystem 

5.6.2. Transferability of classification models across years 

Figures 5:7 (a) and (b) below show the transferability results obtained in California in 2017 and 2016. 

There was no increase in accuracy after model transferability from 2017 to 2016, the overall accuracy 

decreased by 15.25% and kappa by 20.56% for RF. The same for TWDTW the overall accuracy and kappa 

were decreased by 17.83% and 23.51%, respectively. Therefore, no improvement was observed that 

exceeded the accuracies before transferability, for both RF and TWDTW. 

However, when the classification models from 2016 were applied to 2017, TWDTW shows improvement 

since overall accuracy increased by 3.67% and kappa by 4.37%. PA and UA for all classes increased except 

for the PA obtained for the winter wheat and UA obtained for “others” class. This happened because of 

the high spectral confusion between these two classes. Most of the “others” pixels class were not 

identified in the new test area and were mapped as winter wheat since their temporal patterns overlapped. 
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Overall accuracy and kappa of the RF classification model showed no improvement. The results are as 

shown in figures 5:7 (c) and (d). 

The results obtained indicate that, correctly classified classes in the test area where a model is applied have 

an influence on the final results of transferability. Transferability of RF and TWDTW models from 

California 2017 to 2016 yielded poor results because in 2016 the classification accuracy was low compared 

to 2017, therefore, the accuracy of the new predicted classes also became low. Transferability from 

California 2016 to 2017 achieved good results for TWDTW because the classification accuracy of 2017 

classes was higher compared to 2016.  PA and UA for all classes increased except for the PA for winter 

wheat and UA for other class. This is because of the high spectral confusion between these two classes. 

Most of the pixels belonging to the “others” class were not correctly identified and were mapped as winter 

wheat since their temporal patterns overlapped. 

In case of RF classification model, its transferability from 2017 to 2016 indicated no improvement because 

the classification accuracy in 2016 was lower compared to 2017 where the model was trained. RF model 

transferability from 2016 to 2017 achieved low accuracy because of the unbalanced proportions of the 

classes of interests especially winter wheat and because of the high confusion between “others” class and 

tomatoes class in the new test area. PA and UA for cotton were increased to 100% since its accuracy in 

2017 was good. UA for tomatoes was also increased from 76% to 100%. Winter wheat showed no 

improvement because of unequal proportional between the two areas. In California 2017 winter wheat 

area was three times smaller compared to its coverage in 2016.  

 

 

 

 

(a) 

 

 

(b) 
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(c) 
 

(d) 

Figure 5-10. Transferability of RF and TWDTW classification models across years in the same agroecosystem 

 

5.6.3. Model transferability across the same agroecosystems 

After applying RF and TWDTW classification models trained in California 2017 to its neighbor region, 

the overall accuracy of the RF model decreased by 12.37% and kappa 16.81%, respectively as shown in 

figures 5:7 (a) and (b). There was no increase also for the TWDTW, the overall accuracy was reduced by 

21.65% and kappa by 28.09%. PA of winter wheat and UA of tomatoes, was the same 100%, for RF. 

Also, the UA for cotton for both TWDTW and RF models its accuracy remained 100%. Its PA was 

reduced by 12.86% for RF and 2.33% for TWDTW because of the underrepresentation of this class in its 

neighbor region which was approximately three times smaller compared to its coverage in California 2017. 

Winter wheat was not identified by the TWDTW in the neighbor region due to non-overlapping temporal 

patterns between the two areas throughout the season. Therefore, the poor performance of RF and 

TWDTW classification models when transferred to a neighbor region is caused by the poor classification 

accuracy of this test area before transferability. 

Model transferability from a neighbor region situated within California to California, TWDTW and RF 

classification models improved their accuracy. RF accuracy increased by 18.51% outperforming TWDTW 

which was improved by 4.45%. Kappa for TWDTW was 6.04% higher than RF which scored 1.93%. PA 

and UA of all crops for RF and TWDTW scored higher compared to those obtained before 

transferability, as shown in figures 5:8 (b) and (c).  

This indicates, after applying the model to the new area where classification accuracy is high, the model 

performance for mapping the same crops will improve. 
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(d) 

Figure 5-11. Transferability of RF and TWDTW classification models across the same agroecosystem 
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6. DISCUSSION 

The chapter discusses some of the key findings in this research. The discussion starts by highlighting crops 

phenology and reflecting on the results acquired. It continues by presenting the potential of S2 for 

mapping time series data, followed by the performance of RF and TWDTW. The last three sections 

focused on RF and TWDTW transferability results achieved in our study.  

6.1. Phenological cycles of crops 

According to the crop calendar, the cotton is cultivated starting from April-November. Given the fact that 

cloud coverage is one of the challenges in mapping crop type based on time series (Petitjean, Inglada, et 

al., 2012), two images of April and August were missed because of the cloud coverage. Therefore, the 

focus was on six images from May-November with exception of August. Within this temporal interval 

(May-November) there was no overlap in the phenology represented between cotton and “others” classes 

in all study areas. Therefore, cotton was relatively good classified. 

The high heterogeneity of the “others” class caused the relatively low UA and PA obtained in our study. 

The crop calendar indicates that tomatoes crop is normally cultivated starting from February-September. 

Within this temporal range, there was an overlap with “others” class in California 2016 which resulted in 

low UA. The rest of the test areas obtained good classification results. 

The planting dates for winter wheat are from October to December and the harvest period ranges 

between June-July. The temporal range represented in this study was during the harvest period. In most 

cases, this crop was confused with “others” class because one of the components of the “others” class 

was idle cropland, which has a temporal profile similar to the winter wheat class profile. 

6.2. Potential of time series Sentinel 2 data for mapping crop type 

This research was motivated by the freely available high temporal resolution of S2 for mapping crops. S2 

adds a new image every 5 days (with both satellites in orbit) and makes it very appealing for crop 

monitoring and tracing vegetation dynamics in time (Escolà, Badia, Arnó, & Martínez-Casasnovas, 2017). 

The increase of temporal resolution of the Multispectral Instrument carried onboard Sentinel platform 

allowed us to capture growing cycles of the target crops and detect their inter-annual processes. However, 

to obtain the cloud-freely images covering the whole season for the crops of interest is a challenging task. 

The presence of clouds in an image covers the true surface reflectance. In this study, several cloud-free 

images were available as shown in table 3:2. These data were sufficient for achieving satisfactory results 

and meet the main objective of our research. There are a number of  studies indicating the potential of S2 

time series for crop type mapping using RF and TWDTW (Belgiu & Csillik, 2018), for identifying and 
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updating crop field boundaries using proposed automated approach (Solano-Correa, Bovolo, Bruzzone, & 

Fernandez-Prieto, 2017), or for constructing a dynamic cropland mask to map cultivated areas using RF 

(Valero et al., 2015). 

In this research, we used the NDVI red-edge spectral index which proved to add value to the S2 bands for 

crop type mapping. Forkuor et al. (2018) proved that the classification accuracy of land use and cover 

increased when red-edge bands were used in addition to the rest of the S2 bands and Landsat-8. Qiu et al. 

(2017) assessed and proved that red-edge spectral bands improve land cover classification. Also, the red-

edge bands are suitable for discriminating burn severity (Fernández-Manso et al., 2016). 

6.3. RF and TWDTW classification models 

RF classier outperformed TWDTW in all test areas except in the neighboring area situated in California. 

This happened because RF proved to better handle the high confusion between winter wheat and 

“others” classes. The efficiency of this classifier for mapping agriculture was also confirmed in the 

previous studies (Belgiu & Csillik, 2018, Hao et al., 2015, Pelletier et al., 2016). The overall performance of 

TWDTW was not good because it was a one-dimensional classification model compared to RF which 

relied on more input variables, e.g. red-edge based NDVI indices. 

The biggest differences between TWDTW and RF classification results were obtained for California in 

2016. TWDTW showed lower UA for tomatoes and PA for “others” because of the overlapping of their 

temporal profiles. The performance of RF for classifying “others” class as compared with the remaining 

target classes was not good especially when inspecting the classification results obtained in California 

2016, 2017 and its neighboring region. This is because training and validation samples for “others” were 

underrepresented compared to other classes of interest. This study showed that RF cannot easily cope 

with an unequal proportion of training or validation samples and that this classification method favors the 

most representative classes (Dalponte et al., 2013, Haibo and Garcia, 2009). This is reflected in the low PA 

and UA obtained for the ‘others’ class. Cotton, winter wheat and tomatoes were over-represented classes 

in the training samples set.  Millard et al. (2015b) stated the over-represented classes in the training or 

validation may favor the resulting classification of these classes whereas the under-represented class may 

also be under-represented in the classification result. 

6.4. RF and TWDTW model transferability across different agroecosystems 

RF classification model transferability across different agroecosystem corresponds to the findings obtained 

by Jin et al. (2018) and Juel et al. (2015) who reported that RF model trained in one location cannot be 

transferred to new locations. RF and TWDTW models trained in California when applied to Mississippi to 

map similar crops their accuracy decreased. We performed another test by transferring RF and TWDTW 
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models trained in Mississippi and apply them to California to map similar crops. The classification results 

yielded were extremely poor compared to the model’s transferability from California to Mississippi.  

6.5. RF and TWDTW model transferability across same agroecosystems 

RF and TWDTW model trained in California 2017 and applied to its neighboring region (transferability 

across same agroecosystems) achieved less accurate classification results. This is because of the low 

classification results achieved by RF and TWDTW in the neighboring region compared to California. 

Most of the pixels belonging to the winter wheat class were not accurately identified by TWDTW.  

Another transferability test was carried out from a neighboring region to California. In this case, RF and 

TWDTW classification accuracy increased. This is due to the fact that classification accuracy of California 

was higher compared to the neighboring region where the models were trained. RF transferability results 

resemble with the study conducted by Wang et al. (2019)  who concluded that RF is capable to obtain high 

accuracies of more than 80% when applied to the nearby geographies when regional crop composition 

and growing degree days (GDD) are similar. However, the authors omitted to check the class proportions 

of similar classes between the two areas. 

6.6. RF and TWDTW model transferability across years 

Before transferability, the accuracy of models in California 2017 was excellent compared to the 

classification results obtained for 2016. When we applied the models trained in California 2017 to 2016 its 

accuracy decreased for both RF and TWDTW. This is due to the lower classification accuracy in 2016.  

Again, we tested the model transferability from California 2016 back to 2017 the accuracy of the TWDTW 

model increased as expected. In the case of RF, it showed no increase in accuracy after transferability. This 

is because tomatoes and winter wheat were over-represented for California in 2016 compared to 2017, 

after transferability their UA and PA showed no improvement.  
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7. CONCLUSION AND RECOMMENDATIONS 

The chapter focused on the conclusion of this research and recommendation for future studies. Section 

7.1 conclude based on findings of the main objective and the last section 7.2 presents a recommendation 

for future studies. 

7.1. Conclusion 

The main objective of this research was to assess to what extent the TWDTW and RF-based classification 

models are transferable across different agroecosystems for agriculture mapping. The data used in this 

research was a Sentinel-2 time series captured in three study areas, namely Mississippi Alluvial Plain in 

2017, California Great Plains in 2016 and 2017.  

This study revealed that RF and TWDTW based classification models are not transferable across different 

agroecosystems with different climatic condition and dissimilar agriculture management practices. The 

models are transferable across the same agroecosystems having similar growing conditions. However, class 

proportions of similar classes between the two areas under investigations should be equal or have a small 

discrepancy. Also, correctly classified classes have an influence on the new predicted classes transferred 

from another test area. 

The answers to the research questions raised in our study are: 

a. What are the most relevant vegetation indices used to map target crops in the selected study areas? 

The most relevant vegetation index to map target crops in Mississippi in 2017 is the NDVI red-

edge1 index calculated using NIR band 8 and the red-edge band 5. Furthermore, the crop 

classification should be carried on October when the crops have reached their maturity stage.  

 

In 2016 and 2017 in California, NDVI red-edge1 narrow (NDVI calculated using Narrow-NIR 8A 

and the red-edge band 5) is the most suitable vegetation index identified. The most relevant month 

to classify target crops is September when harvesting date is approaching. In a neighboring region 

located in California, the suitable time for the crop classification is the same as in California in 2016 

and 2017, but its relevant vegetation index is NDVI red-edge 1 (NDVI of NIR band 8 and the red-

edge Band 5). 

 

b. Which of the developed classification models perform better in the selected study areas? 

RF classification model performed better in all study areas in terms of measured overall accuracy 

metric and computational time, except for the neighboring region in California its overall accuracy 

was lower by 2% compared to TWDTW. 
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Low performance of the TWDTW classification model was due to a high intra-class variability 

presented by some of the crops which led to overlapping temporal patterns of different crops. 

 

c. Is there any difference in the classifier performance in case of high intra-class variability and/or 

interclass similarity? 

RF classifier was less affected by the high intra-class variability and interclass similarity, in all study 

areas as shown in Table 5:1 and under section 5.1.1. However, in the neighboring region in 

California, high intra-class variability of “others” created confusion with cotton. This confusion 

challenged the RF classier. 

In most cases, TWDTW was challenged by the intra-class variability of “others” class whereby its 

temporal profiles were overlapping with some of the crops of interest. This is the reason why 

TWDTW performed less accurately in our study areas.  

 

d. How transferable are the developed classification models across different agroecosystems without 

calibration? 

RF and TWDTW classification models are transferable across agroecosystems in the same location 

having similar growing conditions. However, imbalance class proportions between the two areas 

may hinder their transferability.  

The models are also transferable in the same agroecosystems across different years. However, high 

spectral confusion between classes and unequal proportions of classes between the two areas may 

limit their transferability. 

Limitations: 

 This study was challenged by the quality of the ground truth data available in Cropscape 

(CropScape and Cropland Data Layers, 2018). For example, some crops like pistachios, 

fallow/idle cropland, tomatoes and winter wheat classified in this study have lower accuracy 

according to the CDL accuracy assessment for 2017 datasets. The classes also indicated confusion 

among themselves in the selected study area. 

 Similarities between the two test areas for transferability was limited. For example, in Mississippi 

and California cotton was only similar crop in both study area the rest of the crops were different. 

 

7.2. Recommendations and future works 

We recommend the following for future work 

a. TWDTW proved to be more robust than other classifiers when comes to inconsistent time 

series. However, we emphasize on a suggestion made in Belgiu & Csillik. (2018), further studies 
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should be conducted on improving the TWDTW in a situation when the time series available 

doesn’t correspond to the phenological cycles of crop types under investigation. 

b. Transferability test of RF and TWDTW classification models performed in this study is at pixel 

level. We recommend transferability assessment of object-based RF and TWDTW classification 

models. Object-based TWDTW classification model was proven in Belgiu & Csillik (2018) to 

achieve best results than pixel-based RF and TWDTW. 
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