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ABSTRACT 

Satellite images have been widely used to produce classification maps which are further used for 

various applications. Nowadays, many satellite missions have been launched and provide images with a high 

spatial, spectral and temporal resolution. Many studies have been conducted to investigate the methods that 

are capable of utilising all the available information simultaneously especially for classifying objects that 

spectrally changes throughout the time, i.e., crops. Multi-temporal satellite images (MTSI) provides 

additional information in the temporal domain to discriminate crops classes. We study the neural network 

approach, especially fully convolutional network (FCN) architecture to produce accurate land cover maps 

of agricultural areas by using MTSI. We design and investigate the use of FCN architecture by adopting the 

dilated convolution layer (FCN-SNet architecture) and concatenating network (FCN-SubNet Architecture). 

We apply these networks to Sentinel-2 images where the two study areas are located, Romania and 

California. We perform several experiments for selecting the appropriate hyper-parameter values for the 

FCN. In addition, we identify several errors in the reference data which caused the accuracy of the 

classification results is relatively low. Therefore, we make a refinement for the datasets to improve the 

classification result. Based on the results, FCN-SNet as the proposed technique outperforms Support Vector 

Machine (SVM), Dynamic Time Warping (DTW), and FCN-SubNet approach. It also offers a more efficient 

computation.  

 

Keywords: Fully Convolutional Network (FCN), multi-temporal satellite images, classification 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 

Land cover classification (LCC) is a fundamental part of geospatial information’s provision 

commonly displayed on a map. Geospatial information can be used for many applications, e.g., agricultural 

production, urban planning, land development, land cover and crops monitoring. In line with the global 

goals that have been set by the United Nations, sustainable agricultural production supports the achievement 

of the Sustainable Development Goals (SDGs) number 2, “end hunger, achieve food security and improved 

nutrition and promote sustainable agriculture” (United Nations, 2015). 

Monitoring in the agricultural sector is needed because agricultural fields are influenced by climate 

change more than any other sectors. Providing information about crop types through time by considering 

the phenology is one of the activities in crops monitoring. Phenology describes the vegetation cycle 

according to a natural seasonal growth pattern that is useful for distinguishing the type of vegetation 

(Rußwurm & Körner, 2017). 

Remote sensing data, i.e., aerial photo or satellite images, have been used as a primary source to 

generate the LCC map. Satellite images become a suitable choice of data sources for large monitoring areas. 

Furthermore, current satellite missions provide a huge volume of images with a short revisit time and various 

bands which are useful in giving spatial and spectral information for mapping LCC. The visible, near-

infrared, and middle infrared channels are commonly used for vegetation detection purposes (EUMeTrain, 

2010; Xue & Su, 2017). Sentinel-2 also provides these commonly used channels. The Sentinel-2 mission has 

two satellites, Sentinel-2A and Sentinel-2B, and provides 13 channels of images with five days revisit time 

(European Space Agency, 2018b). It provides multi-temporal satellite images (MTSI), a collection of satellite 

images acquired at different times over the same location. MTSI is useful for both mapping and monitoring 

purposes by providing information over a period of time. 

In the quick development of the computation technology, automation of the LCC mapping becomes 

an imperious need. It helps to optimise the time factor for data analysis and brings a possibility to use large 

datasets as input. These advantages overcome the problem of manual interpretation method that requires 

more human intervention. Various supervised algorithms are used to perform the automatic land cover 

classification, i.e., non-parametric classification algorithms such as a neural network (Jensen, 2015). Neural 

network (NN) algorithm has many advantages including no assumption of data distribution, ability to learn 

from examples and to model non-linear and complex data, can generalise a model and predict data, and can 

automatically extract information by generating intermediate features. Furthermore, Gómez, White, & 

Wulder (2016) state that for a large area with unknown data distribution, non-parametric classifier, i.e., NN, 

is proven as being more capable than the parametric classifier. 

Deep Learning (DL) is different from normal NN because it uses hidden layers. These hidden layers 

construct an architecture that does the computation to learn the information from the data hierarchically 

and gradually (Lecun, Bengio, & Hinton, 2015). Kamilaris & Prenafeta-Boldú (2018) provide a review of 

the DL application in agriculture, including the used methods. From their review, Convolution Neural 

Network (CNN) frequently appears as the used technique in agricultural applications, for example in crop 

type classification, crop detection and plant recognition. In the component of methods comparison, CNN 

is superior to the other approaches, i.e., Support Vector Machine (SVM), Artificial Neural Network (ANN), 

and Random Forest (RF) in most of the studies. 

CNN does not apply a pixel-wise classification because it is designed for image recognition aimed to 

predict the label of the whole input image, not for every pixel in the input image (Guo et al., 2018). Fully 
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Convolutional Network (FCN) applies the end-to-end pixel-wise classification by predicting the label of 

every pixel in the input image. FCN is applied for classification based on CNN architecture by replacing the 

fully connected layer with a convolution layer (Guo et al., 2018; Shelhamer, Long, & Darrell, 2017). FCN 

has successfully applied for various purposes by using different datasets, e.g., lidar point clouds (Rizaldy, 

Persello, Gevaert, & Oude Elberink, 2018), synthetic aperture radar (SAR) images (Gao, Zhang, & Xue, 

2017; Li et al., 2018), aerial images (Bergado, Persello, & Stein, 2018; Persello & Stein, 2017; Yang et al., 

2018), mono-temporal satellite images (Bittner, Cui, & Reinartz, 2017; Maggiori, Tarabalka, Charpiat, & 

Alliez, 2016) and DTM extraction (Gevaert, Persello, Nex, & Vosselman, 2018). 

When we use MTSI as a data source in the mapping process, developing an approach that fully 

incorporates the temporal dimension for mapping remains a potential research area and indicates the 

primary problem for operational mapping (Gómez et al., 2016). Additionally, we also need to tackle the 

classification problem with low inter-class spectral variability from MTSI that produces confusion among 

the targeted class (Kamilaris & Prenafeta-Boldú, 2018; Rußwurm & Körner, 2017). 

1.2. Research Identification  

The availability of multi-temporal data brings opportunities and challenges in deriving LCC map. 

Although multi-temporal data can be useful for capturing the phenology of particular crops, it also 

potentially brings higher intra-class spectral variability because the observations are repeated in the same 

location (with same objects) in a different time (Landgrebe, 1978). Along with it, the spatial information is 

also an important part to determine the classes by recognising the spatial appearance of the objects, such as 

shape, size, and pattern. Approaches that incorporate spatial, spectral and temporal data are needed to meet 

the various needs of information from the targeted classes in the LCC map (Gómez et al., 2016). LCC map 

combined with other thematic layers as the base map provides information that supports various 

applications such as urban planning, land management, and agricultural monitoring. As mentioned earlier, 

FCN offers an end-to-end pixel-wised classification that is useful in the mapping process that targeted LCC 

map as an output. 

Addressing limitation in the high computational cost of CNN models during the testing period, 

Persello & Stein (2017) propose to use FCN for detecting informal settlements by using remote sensing 

image in a single time acquisition. The authors conclude that FCN performs better than patch-based CNN. 

The authors observe that FCN has an advantage in applying classification for any size of input images that 

can be different from the size of training patches. FCN has a less computational time than patch-based 

CNN because it removes the process of splitting and re-joining input image to fit the patch size. Other 

studies show the advantages of FCN over CNN for building detection (Maggiori et al., 2016). While, Fu, 

Liu, Zhou, Sun, & Zhang (2017) use FCN to classify land cover types, and Guo et al. (2018) use FCN to 

distinguish car and tree from other classes. 

Therefore, in this thesis we investigate and design FCN to classify land cover in agricultural areas 

using MTSI. The proposed FCN network learns and extracts discriminative features automatically from a 

dataset that contains spatial, spectral and temporal information. A comparison with other approaches, i.e., 

SVM and Dynamic Time Warping (DTW) is necessary to measure the performance of the proposed 

approach. SVM is well known as a traditional approach for classification (Bruzzone & Persello, 2009; Hsu, 

Chang, & Lin, 2003; Rußwurm & Körner, 2017). DTW for remote sensing data is introduced by Petitjean, 

Inglada, & Gançarski (2012) for addressing particular problems raised when classifying MTSI such as 

difficulties in providing up to date reference data, unequal temporal spacing of input images, and irregular 

behaviour of targeted objects from a time perspective for instance due to the weather condition. 
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1.2.1. Research Objectives  

The general objective of this research is to investigate a network that exploits spatial, spectral and 

temporal information simultaneously from MTSI and produces the LCC map that provides information 

about the crops. The following sub-objectives support the aforementioned general objective: 

1. To design a network for crops classification using MTSI  

2. To implement and investigate the performance of the proposed network for crops classification 

3. To compare the performance of the proposed network with other classification methods 

1.2.2. Research Questions 

Each of the sub-objectives can be achieved by answering the following questions: 

Questions for sub-objective 1: 

a. What are the existing NN approaches that have been applied for crops classification using MTSI? 

b. What is the most suitable design for crops classification using MTSI that exploits spatial, spectral 

and temporal information simultaneously? 

Questions for sub-objective 2: 

a. What is the suitable structure of an input file for performing classification using the proposed 

network? 

b. What are the optimal hyper-parameters values for the proposed network to be used for performing 

crops classification using MTSI? 

c. How significant are the contributions of the spatial, spectral and temporal information for the 

classification result? 

d. What is the relevant assessment and evaluation to measure the performance of the proposed 

network? 

Questions for sub-objective 3: 

a. Which method performs better based on the performance assessment? 

b. What aspect of the method contributes to the classification result? 

1.3. Innovation 

This research investigates the use of FCN by adopting the dilated convolution layer (FCN-SNet 

architecture) and concatenating network (FCN-SubNet Architecture) to be able to extract spatial, spectral 

and temporal information from MTSI automatically and simultaneously. The extraction is performed by 

utilising Sentinel-2 images that have spectral information through the time and applying convolution 

operations that continuously learn the spatial information.  

A network that implements the FCN approach to produce the LCC map as output by incorporating 

the available spatial, spectral and temporal information from the MTSI in an end-to-end manner is a 

breakthrough. This approach is expected to overcome drawbacks of the methods and the classification itself, 

e.g., computational time, utilising spatial, spectral and temporal simultaneously, distinguishing crops that 

have low intra-class variability. 

1.4. Thesis Structure 

Structure of this thesis includes the following chapters: 

1) Introduction: introduces the background and aims of the research. 

2) Literature Review: provides an overview of the related research and a brief overview of the 

methodology. 

3) Methods: explain the used methodology for the research in detail. 

4) Datasets: describe the list of datasets and the processing for preparing input of the experiments. 
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5) Experiments Setting: provides information about the conducted experiments to answer the research 

questions mentioned in Chapter 1. 

6) Result and Discussion: present findings and results of the experiments and provide a discussion 

related to the results. 

7) Conclusion: concludes the research according to the result and discussion. This chapter also 

provides answers to the research questions. 
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2. LITERATURE REVIEW 

2.1. Related Work on Crops Classification using MTSI 

Rußwurm & Körner (2017) use the Long-Short Term Memory (LSTM) model to classify the crop 

vegetation using MTSI by considering the phenology. LSTM is a variant of Recurrent Neural Network 

(RNN) that uses loop connection for analysing sequential data. LSTM is initially designed for speech 

recognition and achieves better accuracy compared to SVM with mono-temporal images as input. The 

authors successfully classify Landsat and Sentinel-2 for crop vegetation. However, some classes, such as 

meadow and fallow, cannot be distinguished precisely. Hybrid vegetation, such as triticale (a hybrid of wheat 

and rye), is also difficult to differentiate because it shares the spectral and temporal features with the wheat 

and rye crops. 

Crops classification with MTSI shows a better result than classification with a mono-temporal satellite 

image. Although we need to address some challenges such as the  availability of training samples, providing 

a complete series of cloud-free image, and annual changes of a cultivated area caused by weather or 

agricultural practice variation (Belgiu & Csillik, 2018). Pointing out the input for the classification, the 

authors successfully use the Normalised Difference Vegetation Index (NDVI) from Sentinel-2 for 

classifying crops. The authors apply the Time-Weighted DTW method and recommend some further works 

on how to reduce computational time and to use more spectral channels to classify crop vegetation. 

Mou, Bruzzone, & Zhu (2018) use Recurrent CNN that combines CNN and RNN to learn spectral, 

spatial and temporal features for change detection. The authors classify binary classes (change and 

unchanged region) and multiple classes (unchanged region, city expansion, soil change, and water change). 

Recurrent CNN with LSTM model performs better than a combination of CNN and Fully Connected RNN 

or Gated Recurrent Unit. Recurrent CNN-LSTM reduces the noisy scattered results of wrongly detected 

classes when using RNN solely.  

Ji, Zhang, Xu, Shi, & Duan (2018) experiment the CNN to classify crops by using multi-temporal 

data of Gaofen satellite images. The authors introduce the use of three-dimensional convolution to utilise 

the temporal information from MTSI. This approach increases the classification accuracy especially for the 

crops that have similar spectral value representation in almost every time. The authors also point out the 

use of an active learning strategy to refine the training dataset by adding a more random sample in each 

iteration of CNN. 

Choosing the classification algorithm needs multiple considerations, such as the type of data, target 

accuracy, and class distribution to make a balance between the optimal use of the resource and the acceptable 

accuracy. There are different strategies to perform classification for a specific application. Comparing 

various studies using deep learning techniques on agricultural and food production has been conducted by 

Kamilaris & Prenafeta-Boldú (2018). The authors provide a comprehensive review and summarise it based 

on some common criteria, e.g., what type of data, what architecture of deep learning, how well is the 

performance, how to apply the methods, and what problems are needed to be addressed. The authors 

mention some popular deep learning architectures. Each of them has different advantages and makes the 

architecture suitable for a specific problem. The authors summarise the advantages of deep learning, i.e., a 

faster method in term of the testing period compared to the traditional approach, e.g., SVM, RF, and ANN; 

performing automatic feature extraction and better generalisation of classification compared to the other 

approaches that need to extract feature manually. Despite these advantages, some of the already known 

problems still need to be addressed, i.e., generally longer training time and needs of a large dataset for 

training the network, optimisation issue, and how to optimally differentiate the two crop classes that have 

low inter-class variability. 
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2.2. Overview of Support Vector Machine 

SVM is a non-parametric classifier that becomes popular due to its empirical performance to solve 

various problems and practically used in many applications (Bruzzone & Persello, 2009; Wang & Zhong, 

2003). The basic concept of SVM is to find the optimal hyperplane that separates classes with a maximum 

margin between the classes and minimises the misclassification on test data. Hsu et al. (2003) state that SVM 

aims to generate a model from training data and predicts the label of the test data. In practice, it needs to 

extend this definition for non-linearly separable data where the perfect separation is hard to get. Figure 1 

represents the basic idea of a support vector machine. Data (symbolise in point) lie on the dashed line are 

called as support vectors which determine the hyperplane (the solid black line between the dashed line). 

  
Figure 1. The basic idea of support vector machine in separating two classes by defining the hyperplane and the 

maximum margin 

Adapted from : James, Witten, Hastie, & Tibshirani (2013) 

According to Hsu et al. (2008), SVM with RBF (Radial Basis Function) kernel is a good initial choice 

of model selection for data classification. It has two parameters, i.e., penalty parameter (C) and kernel 

parameter (gamma, ). Gamma represents the width of a kernel function (Ndikumana, Minh, Baghdadi, 

Courault, & Hossard, 2018). Penalty parameter controls the balance between generalisation of decision 

boundary and classifying the training data correctly. Higher gamma leads to overfitting because the classifier 

tries to generate perfect boundaries that fit the training data. C parameter takes a role to avoid the worst 

condition where the classifier uses many points of training data as support vectors (overfitting), so the 

classifier creates more general boundaries but still classifying the data optimally. Both parameters, C and 

gamma, are identified from the training data and used to predict the label of test data. Selection of the best 

value of this parameter determines the computational time of the SVM implementation. 

2.3. Overview of Dynamic Time Warping 

Successful implementation of DTW is reported by Baumann, Ozdogan, Richardson, & Radeloff 

(2017). The authors use multi-temporal data of MODIS in vegetation index format to apply DTW approach 

in order to generate the annual phenological curve. Another implementation is reported by Guan, Huang, 

Liu, Meng, & Liu (2016). The authors map the rice cropping system. Then, Maus et al. (2016) report that 

land cover and land use classification of MTSI using a time-weighted version of DTW. 

According to Petitjean et al., (2012), DTW is a parameter-free approach that exploits the temporal 

information when time sampling of the input is irregular. DTW compares two radiometric profiles over 

time, reference and targeted profile, by measuring the similarity between them and analyse the temporal 

information of MTSI (Zhai, Qu, & Hao, 2018). Since DTW is originally designed for 1-Dimensional (1D) 

data, e.g., a speech signals (Sakoe & Chiba, 1978), in remote sensing application, it needs some options of 

modification from the original definition such as to handle the multi-dimensional time series images (multi-

temporal and multi-spectral) by providing a single radiometric profile. Using the 1D data as input is an 
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appropriate solution because the sequence of all bands is dependent (Petitjean et al., 2012). Although it 

requires an additional step to prepare the 1D data from the remote sensing image that originally has 

dimension more than one.  

2.4. Overview of Fully Convolutional Network 

FCN is a variation of CNN that consists of a set of layers with learnable parameters of weights and 

biases. FCN classifies each pixel of the input and generates the output which is labelled every input pixel to 

a specific class. 

2.4.1. Layers of FCN 

The layers of an FCN architecture can be: 

• Input Layer 

The input layer is the input image that has dimension 𝑊 × 𝐻 × 𝐷. Where 𝑊 × 𝐷 represents the 

spatial dimension of the image in Width and Height. For the training stage, the dimension of the input 

layer is equal to the dimension of patches, while for the prediction stage, it is equal to the test image 

dimension. D is the depth of the input that typically equal to the number of bands (spectral information). 

• Convolution Layer 

Convolution layer is the main block of the FCN. This layer consists of a certain number of filters 

with a small value in the spatial dimension (commonly being used in practice) and extends through the 

full depth of the input dimension (Stanford University, 2018). Even though the dimension of the filter 

is set in the three dimensions, this type of filter is called as 2-Dimensional (2D) convolution, because 

the filter convolves only on the two dimensions (width and height) of the input. A convolutional layer 

has a dimension of 𝐹 × 𝐹 × 𝐷 × 𝐾, where 𝐹 × 𝐹 is the spatial dimension of the filter, D is the depth 

of the filter. Depth of 2D filter is equal to the depth of the input image, and K is the number of filters. 

Dilated convolution is a version of the convolution layer with a dilation factor as the parameter. 

The dilation factor represents the space between cells inside the filter. Standard convolutional layer uses 

dilation factor equal to 1 (no dilation). Increasing dilation factor makes the space between filter elements 

increases (red dot) and expands the receptive field (blue colour cells) more significantly than using 

convolution layer with no dilation as shown in Figure 2. The receptive field defines the number of 

considered pixels for the training process. 

 
Figure 2. Dilated convolution with filter size 3 and dilated factor of 1, 2 and 4 

Adapted from: Yu & Koltun (2016) 

If we have 3x3 filters with dilation factor 1 in the first layer, this layer has a 3x3 view of the input 

image. When we stack 3x3 filters with dilation factor 1 in the second layer, this layer has a 3x3 view of 

the output of the first layer which means a 5x5 view of the input dimension. This type of network has 

an effective receptive field of 5x5. However, it is different if we stack 3x3 filters with dilation factor 2 

in the second layer. This type of network has a 7x7 view of the input dimension (receptive field). 
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Dilated convolution or dilated kernel (DK) layer has hyper-parameters, i.e., size of the filter (F), 

stride (S), padding (P), dilation factor (D), and the number of filters (K). It is essential to pay attention 

to these parameters for controlling the size of output feature maps. 

• Batch Normalisation (BN) layer 

In practice, the BN layer is commonly used after the convolutional layer. Batch normalisation is 

used to handle the issue of vanishing gradients when the network uses too high leaning rate (Ioffe & 

Szegedy, 2015). 

• ReLU (Rectified Linear Unit) layer 

It is one of the activation function types commonly used in practice. It is supported by Krizhevsky, 

Sutskever, & Hinton (2012) who examined that training CNN with ReLU takes less time than another 

activation function, such as tanh units. 

• Dropout layer 

It is one of the regularisation unit types that control the network so overfitting can be prevented 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

• Softmax layer (output) 

It is one of the loss function types that performs classification by calculating the score of every 

class in each pixel. 

2.4.2. Hyper-Parameters of The Network 

Besides learnable parameter, weight and bias calculated during the training process, FCN has hyper-

parameters to be defined by the user. The considered hyper-parameters to design the network are 

categorised into two part as follow: 

• Architectural Parameters 

The selection of architectural parameters influences the performance of the classification more 

than the selection of the training parameters (Rußwurm & Körner, 2017). Architectural parameters 

construct the network by providing value setting for the size of patches, layer’s architecture, and number 

of filters. 

- Patch size. It refers to the dimension of the training image used in the network as input. The filters 

only look at this given patch size, not the entire input image. 

- Layer’s architecture is the structure of layers in the network. Layer’s architecture is important to 

be defined by considering the available data. Different dataset might need a different layer’s 

architecture. 

- Number of filters represents the number of expected feature maps generated from the 

convolution layer. A larger number of filters means that more feature maps are generated, and it 

increases the number of learnable parameters. Thus, it increases the computational time. 

• Training Parameters 

Training parameters consist of: 

- Learning rate defines how much we adjust the weights of the network. Small learning rate means 

a slow movement of gradient descent to seek for the global minimum. A too small gradient makes 

the network take a long time to converge, while a too large value of learning rate might make the 

network fails to convergence because it skips the global minimum. 

- Number of epochs expresses the time needed by the network to converge during the training 

stage. This parameter interacts with the other training parameters. 

- Mini-batch size determines how many samples are executed into memory for each iteration during 

the training process. When we have 2000 samples and use batch size 100, it means that the network 

takes 20 iterations for each epoch. This mini-batch size is also dependent on hardware capacity. 
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3. METHODS 

A general overview of the methods is shown in Figure 3. By applying the workflow, we can evaluate 

how the selected methods perform classification using multi-temporal images of Sentinel-2 to provide crops 

information. 

    

 
Figure 3. Workflow of applied methods 

3.1. Baseline Methods: SVM and DTW 

We use SVM as a standard classification strategy to produce the LCC map from MTSI. In this 

research, we use an RBF kernel with 400 pairs of OAs and SVM parameters (C, gamma). The 

implementation of SVM use LIBSVM (library for SVM) tool for MATLAB extension (Chang & Lin, 2011).  

Besides applying SVM, we apply a standard DTW by measuring the spectral value similarity of the 

input image to the reference. The reference spectral value is a series of NDVI value along the time dimension 

of the input image for each of the targeted classes derived by averaging all NDVI profile of training samples. 
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3.2. FCN 

To meet the research objective, we design two FCN architectures, FCN-SNet and FCN-SubNet, that 

treat the spectral information in a different way. These architectures are implemented by using a library of 

MatConvNet for MATLAB (Vedaldi & Lenc, 2015). 

3.2.1. FCN-SNet 

FCN-SNet is adopted from Persello & Stein (2017). The authors use FCN-DK architecture for 

detecting informal settlement using satellite images. DK means dilated kernel that refers to the dilated 

convolution. Instead of using down-sampling and up-sampling technique combined with a standard 

convolution, convolution layer with dilated filters (dilated convolution) is used to capture a larger spatial 

pattern and maintain the size of every layer to be the same as the input layer. By using dilated convolution, 

the number of parameters increases with respect to the receptive field increase. However, the number of 

parameters is not exponentially increased as we use the standard convolution (no dilation factor). 

We adopt the FCN-DK architecture to avoid the unnecessary interpolation in the convolution-

deconvolution network because we aim to produce the classification map with the same size to the input 

image. Table 1 presents the proposed initial architecture for this research. We use the dilated convolution 

without the pooling layer. We design this architecture to be able to process the input of multi-temporal 

images. The initial setting for the number of filters is expected to maintain the variation of the extracted 

features from the temporal and spectral dimensions. 

Table 1. Initial architecture for FCN-SNet4.2 configuration 

Block Layer Type 

Dimension 

dilation stride pad 
width height depth 

number 
of filters 

1 

Convolution 3 3 40 40 1 1 1 

Batch Normalisation               

lReLU               

2 

Convolution 3 3 40 40 1 1 1 

Batch Normalisation               

lReLU               

3 

Convolution 3 3 40 40 2 1 2 

Batch Normalisation               

lReLU               

4 

Convolution 3 3 40 40 2 1 2 

Batch Normalisation               

lReLU               

class 

Convolution 1 1 40 5 1 1 0 

Batch Normalisation        

Dropout        

Softmax               

FCN-SNet means a single and straight network of FCN. The initial configuration network consists 

of four blocks dilated convolution layer by dilation factor 1 (block 1 and 2) and 2 (block 3 and 4), so we 

named it FCN-SNet4.2 where 4 represents the number of layers, and 2 indicates the largest dilation factor 

being used (starting from 1). Each block consists of three-layer types, dilated convolution, Batch 

Normalisation, and lRelu. Each convolution has a small size of the filter by 3x3. Larger filter size makes the 

network loss the detail and leads into underfitting. Stride 1 is used for all convolution layer to maintain the 

size of feature maps be equal to the size of the input image. The pad size is equal to the dilation factor. 

For experiments, we refer to the different structures to test as FCN-SNet<𝑎>.<𝑏>, where 𝑎 refers 

to the number of blocks, and 𝑏 refers to the dilation factor of the last blocks. FCN-SNet6.2 means the 

network consists of six blocks of convolution layer by dilation factor 1,1,1,2,2,2 in sequence. 
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3.2.2. FCN-SubNet 

FCN-SubNet is adopted from the FCN-FuseNet developed by Bergado, Persello, & Stein (2018) to 

utilise the multi-resolution images for classification. FuseNet is designed for panchromatic and multi-

spectral bands input of very high-resolution satellite images by using two separate streams with different 

spatial resolution at the beginning of the network. The network then fused those two to produce a single 

output gradually. 

We prepare the network with modification and apply it for MTSI. For the initial configuration, we 

use ten separate streams (sub-networks) at the beginning of the network then combined the output of the 

sub-network into one stream to produce the classification map. Therefore, we named it FCN-SubNet that 

indicates the structure of the network which contains more than one stream. The number of sub-networks 

represents the temporal information of multi-temporal images. We design the initial structure of the FCN-

SubNet as presented in Table 2. This structure also adopts the dilated convolution layer as being used in 

FCN-SNet architecture. 

Table 2. Initial architecture for FCN-SubNet10.2.2 configuration 

Sub-network 1 Sub-network … Sub-network n 

Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 

Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 

Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 

Concatenate Network 

Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 1 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 
Convolution 3x3 dilation 2 
Batch Normalisation 
lRelu 
Convolution 
Batch Normalisation 
Softmax 

 

Sub-Network 1-to-n uses the same architecture, where n indicates the number of available dates of 

acquisition. We use index ‘10.2.2’ to indicate ten sub-networks with dilation 2 and concatenate network also 

uses dilation 2. 

3.2.3. Design Implementation 

After building the design of the proposed network, we carry out some experiments to tune the hyper-

parameters value. The selected values from hyper-parameters tuning are used for final implementation. 
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3.3. Performance Assessment and Evaluation 

Assessing the accuracy of the classification map is an important activity to provide information how 

good is the map to the user, besides it also exhibits the potential source of errors to improve the quality of 

the map to provide a reliable result (Congalton & Green, 2010). Classification accuracy represents the degree 

of the correctness of the LCC map (Foody, 2002). We compare the classification result to the reference data 

that are assumed to be true (ground reference data).  

To perform the evaluation and accuracy assessment, we use the measures derived from the confusion 

matrix. Confusion matrix has been commonly used in practice and becomes the main point of the 

classification accuracy assessment (Foody, 2002). Confusion matrix shows the relation between the 

reference data and the corresponding classified data in cross-tabulation data. To assess the classification 

performance, we use measures as follows: 

- Overall Accuracy 

Overall Accuracy (OA) is derived from the confusion matrix and indicates the total number 

of correctly classified pixels in all classes compare to the reference data (test sample). OA indicates 

the correctness of the classification map in percentage. 

Besides the OA, we also assess the accuracies of individual classes by calculating user’s accuracy 

(UA), producer’s accuracy (PA), and F-Measure. To provide general information for all classes, we 

calculate the average of UA (AUA), PA (APA) and F-Measure (AFM).  

- User’s Accuracy 

UA provides information from the perspective of the user, how accurate is the classification 

map in percentage. The user’s accuracy indicates how many pixels of a particular class correctly 

portray that class on the ground. 

- Producer’s Accuracy 

PA provides information from the perspective of the producer, how accurate is the 

classification map in percentage. The producer’s accuracy indicates how many pixels of the 

reference data in a certain class are correctly classified. 

- F-Measure 

It provides information about the precision and robustness of the classifier in percentage. It is 

derived from the UA (precision) and the PA (recall). 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙  
𝑈𝐴 ∙  𝑃𝐴

𝑈𝐴 + 𝑃𝐴
 

- Visual Inspection on The Classification Map 

Besides quantitative evaluation, we assess the classification result qualitatively by inspecting 

the classification map. 
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4. DATASETS  

In this chapter, we present the activities of image collection, pre-processing data, training, and test 

samples generation and creation of the input file for the experiments. We have two datasets in Romania 

(Dataset 1) and California (Dataset 2) explained in detail in Section 4.2 and 4.3. Section 4.1 explains the 

common activities in processing Sentinel-2 images for both datasets. 

4.1. Image Pre-Processing 

For this research, we use multi-temporal images of Sentinel-2A and 2B year 2017. Sentinel images are 

free and openly accessible through the website of Copernicus Open Access Hub. We collect the images by 

defining search criteria, i.e., cloud cover not more than 10% with sensing period during January-December 

2017 in the selected study area. The data can be downloaded after login. These multi-temporal images are 

collected to represent the growing stages of the crops adequately. 

Sentinel-2 mission has five days revisit time and 13 channels in which each of the channels has a 

different objective. Table 3 provides the channel’s resolution and objective of Sentinel-2 (Earth Observation 

Portal, 2014). 

Table 3. Spectral resolution and objective of Sentinel-2 

Band 
Spatial 

Resolution (m) 
Mission Objective 

1 60 Aerosols correction 

2 10 Aerosols correction, land measurement band 

3 10 Land measurement band 

4 10 Land measurement band 

5 20 Land measurement band 

6 20 Land measurement band 

7 20 Land measurement band 

8 10 Water vapour correction, Land measurement band 

8a 20 Water vapour correction, Land measurement band 

9 60 Water vapour correction 

10 60 Cirrus detection 

11 20 Land measurement band 

12 20 Aerosols correction, Land measurement band 

 

We pre-process the images through the following operations: 

a. Image Correction and Resampling 

We use the Sen2Cor plugin for Sentinel Application Platform (SNAP) for correcting and 

resampling Sentinel-2 images. Sen2Cor performs atmospheric, terrain and cirrus correction and 

creates new images for each band with Bottom of Atmosphere (BOA) value except for Band-10. 

These new images are equivalent to the level 2A of Sentinel-2 product (European Space Agency, 

2018a). 

After performing image correction, we resample the images to obtain 10m resolution images 

for the 13 bands. This resampling is needed to set the spatial resolution in the same size. Resampled 

images are used for the experiments part. For Band-10, as it does not contain the surface 

information (Müller-Wilm, 2018) so we directly resample the image of Band-10 from level 1A 

images. Images from both locations are projected in WGS 1984 UTM Zone 35N (Dataset 1) and 

11N (Dataset 2). 
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c. NVDI Calculation 

We also prepare the images in NDVI value, so we apply NDVI calculation using bands 4 (red) 

and 8 (near infra-red). 

𝑁𝐷𝑉𝐼 =  
𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 − 𝑟𝑒𝑑

𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 + 𝑟𝑒𝑑
 

d. Image Stacking 

We stack the images based on structure as in Figure 4. We stack four commonly used bands 

for classification, i.e., Band 2, 3, 4 and 8. For experimental purpose, besides four bands stacking, 

we also prepare dataset in full bands stacking (13 bands), ten bands stacking and NDVI stacking. 

Ten bands stacking contains images from the bands that originally have 10m and 20m resolution in 

Table 3. 

 

 
Figure 4. Structure of image stacking for a year. 

4.2. Dataset 1: Romania 

The first dataset is located in the agricultural site in Romania as displayed in Figure 5. Romania 

allocates one-third of the land for agricultural that provides a majority of the agricultural products in Europe 

(Encyclopædia Britannica, 2018). Romania is the number five of the largest utilised agricultural area in 

Europe (European Union, 2018) 

 
Figure 5. Romania boundary and the extent of Dataset 1 
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We collect ten images of Sentinel-2 (the year 2017) for Dataset 1. The time acquisition of those images 

are as follows: 07 March, 03 April, 03 May, 05, 22 and 30 June, 22 July, 01 and 19 August, also 30 September. 

We also prepare the reference data provided by The National Agency for Payment and Intervention of 

Agricultural (APIA) of Romania. The reference data is available in shapefile format. The data has already 

been split into test and training and contains 1250 points in 5 classes. Figure 6 shows one of the images in 

Dataset Romania and the available reference points located over the study area. The image dimension of 

Dataset 1 is 4460x5716 pixels. 

 
Figure 6. A preview of reference points in Dataset 1 overlay with the Sentinel-2 image on 7 March 2017 (RGB:832) 

 
Since we need data in raster representation for the input of the network, we generate the data from 

the available reference points. We automatically create a buffer of 75m around the points and reshape it to 

a square polygon with the size of 150mx150m or equal to 155x15 pixels. We put a label with code in number 

(see Table 4) and convert the polygon into raster. 

 

Table 4. Training and test area composition – Dataset 1 

Code 
Class 
Name 

Number of Points 
Number of Generated 

Polygons 
Number of Generated 

Pixels 

Training Test Training Test Training Test 

1 Wheat 30 400 30 395 6750 88749 

2 Maize 30 250 30 235 6750 52785 

3 Sunflower 30 250 30 250 6750 56163 

4 Forest 30 150 30 150 6735 33634 

5 Water 30 50 30 50 6750 11235 

 Total 150 1100 150 1080 33735 242566 

 

Table 4 shows the composition of training and test samples in point, polygon and raster format. 

Carefully look, there is a reduction in the number of test samples after it converts into a polygon format. 

The reason is the removal of some unnecessary polygons to make sure that the generated polygons are 

located inside the objects and disjoined from each other. Figure 7 presents the example of the samples in 

point and polygon format which is overlaid with the image. 
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Figure 7. A preview of sample polygons, over a subset of Dataset 1. Image using Sentinel-2 on 7 March 2017 

(RGB:832) 

4.3. Dataset 2: California 

California has a large coverage of agricultural, more than 38,000km2 from the total 1,567,900.73 km2 

of the agricultural in the United States (World Bank, 2018). The coverage of the agricultural area in California 

is above the average area of agricultural land in a state. Location of the Dataset 2 in the agricultural site in 

California as presented in Figure 8. 

   
Figure 8. California boundary and the extent of Dataset 2 

We collect 12 images of Sentinel-2 (the year 2017) for Dataset 2. The time acquisitions of those 

images are as follow 01 January, 20 February, 02 March, 21 April, 21 July, 20 June, 10 July, 19 August, 18 

September, 23 October, 22 November, and 22 December. As an addition to the images, we prepare the 

reference data obtained from the website of the United States Department of Agriculture, National 

Agricultural Statistics Service. This department provides annual Cropland Data Layer (CDL) of the United 

States.  
Different from the Dataset 1, we had a reference map as reference data. Therefore, we can estimate 

the coverage area of each class. We reclassify the available classes by selecting classes covered by less than 
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2% of the study area. After reclassification, we had 12 classes, i.e. Alfalfa, Carrots, Developed Area, 

Fallow/Idle Cropland, Lettuce, Onions, Open Water, Other Hay/Non-Alfalfa, Shrubland, Sod/Grass Seed, 

Sugar beets, and Winter Wheat. Compare to the Dataset 1, Dataset 2 has more complex classes, and the 

assignment of the training and test samples are not provided yet. We need to define the training and test 

sample by ourselves. 

To generate the samples, we make a selection by taking only the objects covered by more than or 

equal to 225 pixels as samples and had homogeneous classes in a boundary field. From these samples, since 

we had more flexibility to select the samples from available reference data, we use a different setting for 

training and test sample by proportion about 50:50. We create the same size of polygons as Dataset 1 for 

training and test samples. Table 5 describes the composition of training and test of Dataset 2 in vector 

(polygon) and raster format. 

Table 5. Training and test area composition – Dataset 2 

Code Class Name 

Number of Generated 
Polygons 

Number of Generated 
Pixels 

Training Test Training Test 

1 Alfalfa 99 98 22125 21990 

2 Carrots 17 16 3734 3570 

3 Developed Area 49 48 7860 7152 

4 Fallow/Idle Cropland 53 52 11649 10999 

5 Lettuce 22 21 4935 4695 

6 Onions 43 43 9375 9405 

7 Open Water 6 6 1143 1350 

8 Other Hay/Non-Alfalfa 42 41 9180 9000 

9 Shrubland 25 25 3924 3393 

10 Sod/Grass Seed 27 26 6075 5835 

11 Sugar beets 31 31 6855 6930 

12 Winter Wheat 18 17 3945 3615 

 Total 432 424 90800 87934 

 

Figure 9 shows the preview of the training and test samples in a subset of Dataset 2 randomly placed 

over the study area (simple random sampling). The image dimension of Dataset 2 is 2192x1899 pixels. 

  
Figure 9. A preview of sample polygons, over a subset of Dataset 2 using Sentinel-2 on 01 December 2017 

(RGB:832) 
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4.4. Structuring Input File for The Network 

We prepare input file for the network by creating a set of training input that contains the image 

patches, class or label and attribute of the patches (training or validation). We randomly generate 2000 

patches for training and 1000 patches for validation from the available training pixels mentioned in Table 4 

and Table 5. For consistency in all experiments, we use the same training samples by using the same central 

patches indicated by its indexes. For the initial size of patches, we use 13x13 pixels which represent the 

130x130 m2 area on the ground. It considers the effective receptive field of the initial architecture. Since the 

objects of interest do not have a high spatial dependency to the neighbourhood pixels, it is not necessary to 

have a large patch to cover the neighbourhood objects in determining a label for a specific pixel. 
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5. EXPERIMENTS SETTING 

We experimentally evaluate the optimal parameters to design the proposed architecture of FCN then 

implement the design to produce a classification map. We compare the result to other methods: SVM and 

DTW. 

5.1. Initial Experiments 

For a starting point, we apply the initial experiments for Dataset 1 and Dataset 2 with the input and 

methods as mentioned in Table 6. We start with the baseline methods, SVM and DTW, against the proposed 

method. The results of these experiments are presented in Section 6.1. 

Table 6. Initial experiments setting 

Methods Input Architecture 

SVM 4 bands (2,3,4,8); NDVI - 

DTW NDVI - 

FCN 4 bands (2,3,4,8); NDVI FCN-SNet4.2 

5.2. Datasets Refinement 

We evaluate the quality of reference data based on NDVI value and spatial distribution of the training 

and test samples (spatial sampling strategies) of Dataset 1 and Dataset 2. We use the NDVI value from the 

available images to estimate the phenology pattern of the crops (Gómez et al., 2016). The NDVI value in a 

year provides an insight into the individual crop types and indicate the crops cycle. Evaluation based on 

NDVI value is expected to reduce the confusion among classes. The spatial sampling strategies are applied 

to measure the influence of the spatial distribution of samples to the classification result. 

5.2.1. Dataset 1: Romania 

5.2.1.1. Evaluation Based on NDVI Value 

To refine Dataset 1, we check on the NDVI value of the training samples and plot the variation over 

time as presented in Figure 10. The NDVI value is generated from the centre of training polygons. 

   
a. Class 1: Wheat b. Class2: Maize c. Class 3: Sunflower 

  

 

d. Class 4: Forest e. Class 5: Water  
Figure 10. The plot of NDVI value of the samples on Dataset 1 



CONVOLUTIONAL NETWORKS FOR THE CLASSIFICATION OF MULTI-TEMPORAL SATELLITE IMAGES 

27 

For comparison, we refer to the pattern generated by Belgiu & Csillik (2018) on location near to 

Dataset 1 as displayed in Figure 11. 

 
Figure 11. Temporal pattern of NDVI value on Dataset 1 area DOY = Day of Year in 2017. 

Adapted from: Belgiu & Csillik (2018). 

 
We observe in Figure 11 that each of the classes has a single pattern that indicates crops with a single 

growing period (plantation, growing, and harvesting) during a year. We observe the pattern generated from 

the available samples in Figure 12, and we conclude that there is a potential error in the samples available 

for our study, especially in Wheat, Maize, and Sunflower classes. This problem might be the reason why the 

classification accuracy is low, and why the confusions exist in those three classes.  

Therefore, by using this assumption and information, we evaluate the samples of those three classes 

to refine the dataset. We evaluate the samples by reselecting samples for each of these three classes by 

considering the NDVI value over time and compare the similarity with the reference pattern in Figure 11. 

We check further by inspecting the samples visually. We need visual interpretation because maize and 

sunflower are difficult to distinguish only by looking at the pattern based on the NDVI value. Both have a 

similar pattern along a year. Besides that, the number of classes and samples makes it feasible to perform 

the visual interpretation. 

We try to maintain a variety of samples in a class by keeping some samples with a similar pattern and 

only omit the samples that had a completely different pattern (See Figure 12). Based on the pattern in Figure 

11, we use the image on date 20170503 (DOY 123) to categorise the class based on the NDVI value for 

wheat. Meanwhile, we use an image on date 20170819 (DOY 231) to distinguish between maize and 

sunflower. 

   
a. Class 1: Wheat b. Class2: Maize c. Class 3: Sunflower 

Figure 12. The plot of NDVI value of the refined samples for three classes in Dataset 1 

Figure 13, Figure 14 and Figure 15 show example of the samples that are displayed together with the 

images to help visual interpretation activity in order to reselect the samples for Class1, Class2, and Class3 

respectively. 



 CONVOLUTIONAL NETWORKS FOR THE CLASSIFICATION OF MULTI-TEMPORAL SATELLITE IMAGES 

  

28 

 
Figure 13. A sample of Class 1 appearance on RGB:832 for 10-time step, NDVI value and RGB: 783 on 19 August 

2017 

Figure 13 shows one of the samples representations for class 1. Wheat is represented by reddish 

colour in-band RGB: 832 on date1-date6 (2070307, 20170403, 20170503, 20170605, 20170622 and 

2070630) and tends to darker in date5 and date6. Starting from date7 to date10 (20170722, 20170801, 

20170819, and 20170903), wheat is represented by slate grey colour in-band RGB: 832 and tends to darker 

on date9 and date10. On date9, wheat is represented by yellow colour in NDVI image and displayed in blue 

colour on the image of RGB: 783. The samples with similar characteristic to this example are categorised as 

Class 1. 

 
Figure 14. A sample of Class 2 appearance on RGB:832 for 10-time step, NDVI value and RGB: 783 on 19 August 

2017 
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Figure 14 shows one of the samples representations for class 2. Maize is represented by slate grey 

colour in-band RGB: 832 on date1 and date2 (2070307 and 20170403). On date3 (20170503), maize is 

represented by bluish colour in-band RGB: 832. On date4 (20170605), maize is represented by green colour. 

Starting from date5 to date10 (201706022, 2070630, 20170722, 20170801, 20170819, and 20170903), maize 

is represented by red colour. On date9, maize is represented by lawn green colour in NDVI image and 

displayed in yellow colour on the image of RGB: 783. When a sample has a similar characteristic to this 

example are categorised as Class 2. 

 

Figure 15. A sample of Class 3 appearance on RGB:832 for 10-time step, NDVI value and RGB: 783 on 19 August 

2017 

Figure 15 shows one of the samples representations for class 3. Sunflower is represented by light slate 

grey colour in-band RGB: 832 on date1 (20170307) and dark slate grey on date2 (20170403.) On date3 

(20170503), sunflower is represented by bluish colour in-band RGB: 832. Starting from date4 to date8 

(20170605, 2070630, 20170722, and 20170801), sunflower is represented by a red colour and tend to dark 

on the last date. Later, on date9 and date10 (20170819 and 20170903) sunflower is represented by slate grey 

colour. On date9, sunflower is represented by yellow colour in NDVI image and displayed in blue colour 

on the image of RGB: 783. Date 9 and 10 in RGB: 832 or 783, and NDVI image clearly distinguish maize 

and sunflower. The samples that have similar characteristic to this example are categorised as Class 3. 

5.2.1.2. Evaluation Based on Spatial Sampling Strategies 

From the allocated distribution of reference data, the training and test samples are distributed 

randomly over the study area. Based on the evaluation, the training number of polygons are also very low 

compared to the test by ratio 12:88. Therefore we test whether the spatial distribution of the reference data 

influences the accuracy of the classification result or ratio between training and test which might impact the 

accuracy of the classification results.  

We evaluate this assumption by making a regular grid to systematically split the training and test area 

with the same coverage. By doing this, we also expect the ratio of the training and test sample increases to 

50:50. We make several strategies to get spatially distributed sampling as displayed in Figure 16. We apply 

these strategies to reference data before and after applying evaluation based on spectral value. 
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Combination 1 Combination 2 Combination 3 

   
Combination 4 Combination 5  

Figure 16. Set of combination for applying spatial sampling strategies 

5.2.1.3. Applied Refined Dataset for FCN-SNet Initial Experiments Setting 

For testing the refined dataset, we use FCN-SNet architecture. We set the experiments as Table 7 

and Table 8. 

Table 7. Refinement experiment set up for Dataset 1 

Set Training 

1 Refined based on NDVI value only 

2 Refined based on spatial location only 

3 Full refined: based on NDVI value and spatial location 

 

The results of these experiments are presented in Section 6.2 after optimising the last three hyper-

parameters from Table 8. 

 
Table 8. Detail setting for the FCN-SNet4.2 – Dataset 1 

Parameter Value 

Layer architecture FCN-SNet4.2 

Size of Filter 3 

Number of Filters 40 

Patch Size 13 

Size of Mini Batch 16, 32, 64, 100, 128 

Learning Rate 1e-8, 1e-7 

Number of Epochs 10, 150, 200, 250 

 

5.2.2. Dataset 2: California 

5.2.2.1. Evaluation Based on NDVI Value 

For Dataset 2, we had more classes and more complex pattern to distinguish. Figure 17 shows the 

NDVI pattern for a year for seven classes out of 12 classes used in Dataset 2. From this pattern, we see that 

differentiating target classes is a challenge because some of them have a similar pattern to each other during 

a year. It is difficult to find the time interval, i.e., the growing phase when one class can be completely 

distinct from other classes. In this case, we only remove the samples that completely different from the 

dominant pattern in the same class. We do not apply visual interpretation since it is hard to recognise the 
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appearance of the sample by looking at the spectral representation in the RGB layer. It is also a time-

consuming task due to the number of classes and samples. 

  
Figure 17. Temporal pattern of NDVI value on Dataset 2 area 

Adapted from: Belgiu & Csillik (2018) 

From the available training and test points in Dataset 2, we plot the spectral value using NDVI value. 

Figure 18 shows plots of NDVI value for 12 classes in the centre of training polygons. 

   
Class 1: Alfalfa Class 2: Carrots Class 3: Developed Area 

   
Class 4: Fallow/Idle Cropland Class 5: Lettuce Class 6: Onions 

   
Class 7: Open Water Class 8: Other Hay/Non-Alfalfa Class 9: Shrubland 

   
Class 10: Sod/Grass Seed Class 11: Sugar beets Class 12: Winter Wheat 

Figure 18. The plot of NDVI value of the samples for 13 classes on Dataset 2 
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We observe the dominant pattern from the available samples to refine the selected samples. The plot 

of NDVI value after refinement is available in Figure 19. 

   
Class 1: Alfalfa Class 2: Carrots Class 3: Developed Area 

   
Class 4: Fallow/Idle Cropland Class 5: Lettuce Class 6: Onions 

   
Class 7: Open Water Class 8: Other Hay/Non-Alfalfa Class 9: Shrubland 

   
Class 10: Sod/Grass Seed Class 11: Sugar beets Class 12: Winter Wheat 

Figure 19. The plot of NDVI value of the samples for 13 classes on Dataset 2 

5.2.2.2. Evaluation Based on Spatial Sampling Strategies 

From the allocated distribution of reference data, the training and test data are distributed randomly 

over the study area by ratio 51:49. We test whether the spatial distribution of the reference data influences 

the accuracy of the classification result by modifying the spatial distribution of the samples.  

We evaluate the spatial sampling distribution by creating a regular grid to systematically split the 

training and test area which maintain the ratio of about 50:50. We prepare several strategies to spatially 

distributed the samples as displayed in Figure 20. We apply these strategies to reference data before and 

after applying evaluation based on spectral value. For Dataset 2, we only use four combinations because the 

coverage area is smaller than the Dataset 1. We assume that combination 5 applied on Dataset 1 is already 

represented by combination 1 in Dataset 2. 
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Combination 1 Combination 2  

   
Combination 3 Combination 4  

Figure 20. Set of combination for applying spatial sampling strategies 

5.2.2.3. Applied Refined Dataset for FCN-SNet Initial Experiments Setting 

For testing the refined dataset, we use FCN-SNet architecture. We set the experiments as shown in 

Table 9 and Table 10. 

Table 9. Refinement experiment set up for Dataset 2 

Set Training 

1 Refined based on NDVI value only 

2 Refined based on spatial location only 

3 Full refined: based on NDVI value and spatial location 

 

The results of these experiments are presented in Section 6.2 after optimising the last three hyper-

parameters from Table 10. 

 
Table 10. Detail setting for the FCN-SNet4.2 – Dataset 2 

Parameter Value 

Layer Architecture FCN-SNet4.2 

Size of Filter 3 

Number of Filters 40 

Patch Size 13 

Size of Mini Batch 16, 32, 64, 100, 128 

Learning Rate 1e-8, 1e-7, 1e-6 

Number of Epochs 250, 500, 750, 1000 

5.3. SVM Parameter Tuning 

We tune in C and gamma as the parameters of SVM with RBF kernel. We select the optimal C and 

gamma by providing a range of values for each parameter and select the optimal value that produces the 

maximum OA. We set 20 values for each C and gamma, so in total it generates 400 possible combinations 

(see Table 11). We record the OA for each possible combination and select the best combination. 
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Table 11. SVM parameter experiments setting 

Parameter Value 

C 20 value of 1e2 to 1e5 

Gamma 20 value in range 0.1 to 10 

5.4. DTW Implementation  

In order to implement the DTW approach, we need to provide a temporal pattern for reference data 

and compare this pattern with every pixel of test data. For consistency, we generate a reference pattern for 

each class by averaging the NDVI value of central patches from FCN input. We generate five reference 

patterns for Dataset 1 and 12 reference patterns for Dataset 2. The reference pattern is an essential part of 

DTW implementation. 

5.5. FCN Hyper-Parameters Optimisation 

Hyper-parameter of the FCN is categorised into two components, architectural parameters and 

training parameters. The architectural parameters define the structure or design of the network, while the 

training parameters are used during the training. The optimum hyper-parameter values are used in the final 

implementation. Each parameter is tuned by varying the value of a single parameter and keeping the other 

parameters using the same value. Selection for candidate values of structural parameters as follow: 

• Patch size. We start with value 13, then make it 2, 3, 4, and 5 times larger (take the odd number). 

• Layer architecture. We test some combinations of layer architecture. The combinations aim to 

test whether adding more layers (deeper network) affect the classification accuracy positively. It is 

important to note that the addition of the layer increases the receptive field. 

• Number of filters. We start from 40 by an assumption that the first convolutional layer produces 

feature maps in the same number as the input image when the network uses 10 images with 4 bands 

as input. Then we increase the number to 80, 120 and 160. By using this number, we expect that 

we could maintain the variability of features that are hierarchically produced to classify the targeted 

classes. 

Training parameters depend on the used dataset and the architecture of the network. Experiments 

for training parameters as follow: 

• Learning rate. We observe the training curve to estimate the suitable learning rate. Training curve 

with a low gradient to converge indicates that we need to increase the learning rate (Zulkifli, 2018). 

• Number of epochs. We set a large number of epochs in the beginning to learn the trend of the 

training curve then decide when to stop the training. 

• Size of mini batch. To see the relation of the mini batch size to the accuracy of the classification 

result, we vary the value of the batch. Based on the practical recommendation, we use a value as a 

power of two that fits the hardware capacity (size of memory). We start from 16 to 128 to test. 

Another suggestion is to use the value in multiple factors from the number of samples, so we put 

100 as the candidate value. 

5.5.1. FCN-SNet Experiments Setting 

We set candidate values for each of hyper-parameters for FCN-SNet architecture as described in 

Table 12. 

Table 12. FCN-SNet experiments setting 

Hyper-parameter Candidate Value 

Layer’s Architecture 2.2, 4.2, 6.2, 6.3, 9.3, 8.4, 12.4 

Size of Filter 3 

Number of Filters 40, 80, 120, 160 
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Hyper-parameter Candidate Value 

Patch Size 13, 25, 39, 51,65 

Size of Mini Batch 16, 32, 64, 100, 128 

Learning Rate 1e-6, 1e-7, 1e-8, 1e-9 

Number of Epochs Dataset 1: 100,150,200,250 
Dataset 2: 250,500,750,1000 

Input Band Type 4b, 10b, 13b, NDVI 

5.5.2. FCN-SubNet Experiments Setting 

We set candidate values for each of hyper-parameters for FCN-SubNet architecture as described in 

Table 12. 

Table 13. FCN-SubNet experiments setting 

Hyper-parameter Candidate Value 

Layer’s Architecture 1.2,2.2,3.2,2.1,2.3 

Size of Filter 3 

Number of Filters 40, 80, 120, 160 

Patch Size 13, 25, 39 

Size of Mini Batch 16, 32, 64, 100, 128 

Learning Rate 1e-6, 1e-7, 1e-8, 1e-9 

Number of Epochs Dataset 1: 500,750,1000,1250 
Dataset 2: 750,1000,1250,1500 

Input Band Type 4b, 10b, 13b, NDVI 

5.5.3. Final Implementation 

The final implementation uses the value out of experimented candidate values explained in section 

5.5.3 and 5.5.4. The result of the final implementation is presented in section 6.7. Table 14 shows the final 

configuration of the proposed method to utilise the MTSI for generating the LCC maps that provide 

information about crop types. 

 
Table 14. FCN final implementation setting 

Parameter Selected Value Dataset 1 Selected Value Dataset 2 

Network FCN-SNet4.2 FCN-SubNet10.2.1 FCN-SNet4.2 FCN-SubNet10.2.1 

Size of Filter 3 3 3 3 

Number of Filters 40 40 40 80 

Patch Size 39 25 13 13 

Size of Mini Batch 100 16 128 16 

Learning Rate 1e-7 1e-9 1e-7 1e-6 

Number of Epochs 100 750 500 1500 

Band Input 4b, NDVI 4b, NDVI 4b, NDVI 4b, NDVI 

 



 CONVOLUTIONAL NETWORKS FOR THE CLASSIFICATION OF MULTI-TEMPORAL SATELLITE IMAGES 

  

36 

6. RESULTS AND DISCUSSION 

This chapter presents the findings and discussion about the results derived from the experiments. 

6.1. Initial Experiments 

We apply classification using the standard approach, SVM, and we use the standard implementation 

of DTW approach as a comparison. We then apply the proposed network of FCN-SNet. Classification 

accuracies presented in Table 15 are generated by implementing SVM parameter setting as mentioned in 

Section 5.3 and FCN-SNet4.2 architecture as mentioned in Table 1.  

Table 15. The classification accuracies of the initial experiments 
Input Methods OA Dataset 1 OA Dataset 2 

4 bands (2,3,4,8) SVM 59.2 66.9 

FCN-SNet4.2 65.9 68.8 

NDVI SVM 57.4 56.7 

DTW 47.5 25.9 

FCN-SNet4.2 63.5 61.1 

 

According to Table 15, the overall accuracies of all methods are less than 70%. We evaluate and 

examine the possible source of error contributed to the classification result. Confusion matrix for applying 

FCN-SNet4.2 on Dataset 1 and Dataset 2 are presented in Table 16 and Table 17. Individual class accuracies 

in UA and PA are provided in Table 18 and Table 19 (indicating by heading ‘before’). 

Table 16. Confusion matrix Dataset 1 – FCN-SNet4.2 

Class Wheat Maize Sunflower Forest Water 

Wheat 56707 16107 11751 183 167 

Maize 12493 25246 10775 135 0 

Sunflower 18341 11327 33629 2 0 

Forest 1140 105 8 33306 0 

Water 68 0 0 8 11068 

Table 17. Confusion matrix Dataset 2 – FCN-SNet4.2 
Class AF CR DP FA LC ON OW OH SR GS SB WW 

AF 16339 52 51 192 205 0 0 292 0 293 27 210 

CR 792 1718 10 250 0 1166 0 732 1 8 94 300 

DP 85 9 6396 541 0 47 0 29 803 0 0 0 

FA 186 809 123 7712 553 106 0 225 651 0 210 4 

LC 153 463 0 651 2918 559 113 393 0 225 26 346 

ON 151 165 28 394 388 5172 11 40 0 98 811 498 

OW 0 0 78 178 0 0 1226 0 0 0 0 0 

OH 1467 0 1 101 225 233 0 5333 0 1463 0 0 

SR 7 3 460 922 0 1 0 225 1922 6 0 16 

GS 1099 0 0 0 134 80 0 1154 0 3742 0 0 

SB 1711 351 0 1 0 881 0 267 0 0 5762 0 

WW 0 0 5 57 272 1160 0 310 16 0 0 2241 

AF : Alfalfa 
CR : Carrots 
DP : Developed Area 
FA : Fallow/Idle Cropland 

LC : Lettuce 
ON : Onions 
OW : Open Water 
OH : Other Hay/Non-Alfalfa 

SR : Shrubland 
GS : Sod/Grass Seed 
SB : Sugar beets 
WW : Winter Wheat 
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6.2. Dataset Refinement 

We examine the confusion matrix of the classification results provided in Table 16 and Table 17. We 

notice that there is a larger confusion among three classes, i.e., wheat, maize and sunflower, than the other 

two classes, forest and water. We expect these three classes can be distinguished well as the other two classes. 

So, we decide to investigate various possibilities to refine the dataset before continuing further experiments 

and analysis. Because we do not have the ancillary data, such as additional ground measurement, available 

base map, or aerial photo with higher resolution, to increase the number of samples by adding polygons in 

the different location, we make a refinement for the reference dataset by evaluating existing samples and 

reselecting training and test samples. A detailed explanation of the dataset’s refinement is presented in 

Section 5.2. Classification accuracies generated for this section are calculated from the result of applying the 

configuration of the FCN-SNet approach. 

6.2.1. Refined Based on NDVI Value 

Table 18 compares the individual class accuracies in UA and PA before and after refining samples 

for Dataset 1 by applying refinement explained in section 5.2.1.1. In Dataset 1, refining the samples based 

on NDVI values and reselecting the samples means that the number of training and test polygons are 

changing for classes wheat, maize and sunflower. However, the total polygons and the ratio of training and 

test samples are not changing. 

Table 18 indicates that providing the refined samples by examining the NDVI value in a year 

influences the classification accuracies in Dataset 1, especially if we carefully look at the class of Wheat, 

Maize and Sunflower. These three classes have a significant increase of the UA in a range of 19.2% – 32.9%. 

Refinement in these three classes also affects the class Forest and Water which the UA increase by 3.5% 

and 0.7%. In general, the dataset refinement generates enhancement of the overall accuracies by 29.8%, 

from 65.9% to 95.7%. 

Table 18. The result of before and after dataset refinement for the initial experiments – Dataset 1 

Class 
UA PA 

Before After Before After 

Wheat 66.8 99.7 63.9 97.5 

Maize 51.9 96.3 47.8 89.8 

Sunflower 53.1 72.3 59.9 93.7 

Forest 96.4 99.9 99.0 99.2 

Water 99.3 100 98.5 95.8 

 

Table 19. The result of before and after dataset refinement for the initial experiments – Dataset 2 

Class 
UA PA 

Before After Before After 

Alfalfa           92.5            89.6  74.3 75.5 

Carrots           33.9            44.4  48.1 66.4 

Developed Area           80.9            84.7  89.4 87.6 

Fallow/Idle Cropland           72.9            93.4  70.1 77.4 

Lettuce           49.9            71.8  62.2 80.0 

Onions           66.7            65.6  55.0 62.5 

Open Water           82.7            83.9  90.8 97.4 

Other Hay/Non-Alfalfa           60.4            51.6  59.3 53.8 

Shrubland           54.0            58.0  56.6 67.0 

Sod/Grass Seed           60.3            51.3  64.1 53.4 

Sugar beets           64.2            65.5  83.1 83.1 

Winter Wheat           55.2            50.9  62.0 61.0 
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For Dataset 2, there is an increase of OA from 68.8% to 71.7%. This improvement is reasonable 

since the plot of NDVI values after refining the Dataset 2 as displayed in Figure 19 and before refining as 

presented in Figure 18, does not show a clear distinction between them. However, Table 18 and Table 19 

show an increase of UA for almost all classes after refinement. It means that samples refinement based on 

the NDVI value become a potentially effective way to improve the classification accuracies with no ancillary 

data. 

In the proposed methods, the number of training samples is determined by the number of patches 

that are generated randomly. Furthermore, we also test the impact of an increasing number of training 

patches in Dataset 2 upon the classification results as presented in Table 20. It is not necessary to increase 

the number of patches since there is no difference in the classification results when different numbers of 

patches are used for training (e.g. 2000 patches versus 6000 patches). The number of test patches is half of 

the training patches, so the number of test patches increases when the training patches increase. 

Table 20. Additional training patches experiments for Dataset 2 
Number of 

training patches 
2000 for 
13 classes 

4000 for 
13 classes 

6000 for 13 
classes 

@600 x 13 
classes 

OA 71.7 71.4 71.1 71.7 

AUA 67.6 66.4 65.5 68.1 

APA 72.1 70.9 69.1 68.8 

6.2.2. Refined Based on Spatial Sampling Strategies 

We perform the experiments to refine the samples based on the spatial locations to eliminate the 

potential error caused by the spatial distribution of samples (Congalton, 1991). We prepare several 

combinations as explained in Section 5.2.1.2 and 5.2.2.2. 

Table 21 exposes the classification accuracies in different combinations of sampling strategies by 

varying the selection of spatial location. The overall accuracies for the ten different combinations of spatial 

sampling are in a range of 64.5% to 71.7% with average value is 68.0%. Since the difference of the accuracies 

after and before refined is relatively low in a range 1.4% to 5.8% in Dataset 1, it indicates the spatial 

distribution of the samples is not a significant source of the classification errors. It is also supported by the 

individual class accuracies (UA) from the five classes in ten combinations that all of them have a range of 

minimum and maximum UA below 25% (column Max-Min). In Dataset 1, these results also indicate the 

changing of training and test polygons ratio from about 12:88 to 50:50 does not significantly affect the 

classification accuracies. 

Table 21. Classification accuracy of Dataset 1 by applying refinement in spatial location 

Items 
Before 
Refined 

After Refined 

Reference data C0 C01 C01s C02 C02s C03 C03s C04 C04s C05 C05s Max-Min 

OA 65.9 65.4  71.7  68.7  64.5  66.4  67.8  68.9  67.2  69.7  70.0  7.2 

UA 

Wheat 66.8 75.4  69.7  79.3  57.9  71.1  75.6  76.4  67.8  73.8  78.5 21.4 

Maize 51.9 45.3  57.8  52.0  51.6  57.8  46.9  52.2  55.8  55.1  58.5 13.2 

Sunflower 53.1 49.1  56.6  47.4  60.8  49.9  51.0  50.8  54.3  51.2  54.0 13.4 

Forest 96.4 99.8  94.2  94.8  97.0  94.7  97.7  97.1  98.1  98.1  96.0 5.6 

Water 99.3 96.5  97.3  92.3  98.4  93.1  92.7  98.2  93.6  95.3  96.3 6.1 

Table 22 presents the individual class accuracies (UA) of Dataset 2 when varying the spatial selection 

of the samples. Alfalfa, Fallow, and Other Hay have a range of maximum and minimum UA below 25%. 

The other classes have differences more than 25% by varying the spatial distribution of the samples. Spatial 

distribution of samples in Dataset 2 implies that it has more influence on the classification accuracies 

compare to Dataset 1. However, both datasets imply similar behaviour in overall accuracy. Although there 
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is an influence on the classification accuracies in varying the spatial distribution of the samples, especially in 

certain classes in Dataset 2, the overall accuracies deviation is relatively low, 11.2% in Dataset 1 and 7.2% 

in Dataset 2. We infer that the spatial selection of the samples does not significantly contribute to the overall 

accuracies, but indeed influences the individual class accuracies. 

Table 22. Classification accuracy of Dataset 2 by applying refinement in spatial location  

Items 
Before 
Refined 

After Refined 

Reference data C0 C01 C01s C02 C02s C03 C03s C04 C04s Max-Min 

OA 68.8 61.9 65.6 63.7 55.4 64.6 64.9 67.1 59.1 11.7 

UA 

Alfalfa 92.5 86.3 81.7 89.7 78.8 82.8 86.3 79.0 84.9 10.9 

Carrots 33.9 39.2 32.0 0.0 5.5 10.4 13.3 45.5 18.1 45.5 

Developed Area 80.9 84.8 80.1 78.5 73.3 93.1 82.1 93.1 54.3 38.8 

Fallow/Idle Cropland 72.9 78.9 67.2 80.4 61.8 74.3 73.4 83.4 64.6 21.6 

Lettuce 49.9 48.7 56.8 27.4 35.4 64.3 31.6 34.3 50.9 36.9 

Onions 66.7 40.4 78.3 57.8 67.5 55.9 65.7 68.3 59.7 37.9 

Open Water 82.7 71.1 89.6 74.3 96.1 74.8 83.9 83.9 93.2 25.0 

Other Hay/Non-Alfalfa 60.4 49.0 49.2 36.9 39.3 35.0 54.1 48.3 45.3 19.1 

Shrubland 54.0 37.0 60.0 44.7 33.2 53.5 47.4 52.7 37.7 26.8 

Sod/Grass Seed 60.3 58.1 43.1 40.5 27.0 54.7 50.8 50.4 40.4 31.1 

Sugar beets 64.2 75.2 52.8 82.0 43.9 53.4 72.0 64.3 70.5 38.1 

Winter Wheat 55.2 49.9 40.6 55.5 31.1 49.7 40.1 27.7 62.7 35.0 

 

6.2.3. Full Refined 

We check further by applying both refinements based on NDVI value and spatial sampling strategies 

to test whether the previous finding remains valid. Table 23 and Table 24 provide individual class accuracies 

of the full refined dataset. We observe the maximum and minimum overall accuracies and individual class 

accuracies in both datasets.  

Table 23. The result of the initial experiments applied to a full refined dataset – Dataset 1 

Items 
Before 
refined 

After Refined 

Reference data C0 C1 C1s C2 C2s C3 C3s C4 C4s C5 C5s Max-Min 

OA 65.9 96.1 97.2 95.5 97.3 96.5 96.9 96.9 96.7 97.2 96.5 1.8 

UA 

Wheat 66.8 99.5 98.7 98.1 100.0 99.1 99.4 98.7 100.0 99.6 98.6 1.9 

Maize 51.9 95.2 97.2 94.6 97.4 95.8 97.8 98.9 95.3 97.4 95.6 4.3 

Sunflower 53.1 77.5 87.3 80.8 81.8 85.3 79.9 85.4 80.3 80.2 85.5 9.8 

Forest 96.4 98.8 98.5 96.9 99.5 98.7 98.0 97.5 99.6 98.3 99.7 2.8 

Water 99.3 93.2 98.3 95.4 98.7 93.2 97.5 95.4 96.9 97.0 96.5 5.5 

Table 23 provides records of overall accuracies on Dataset 1 that are not significantly different among 

the combinations. The difference is 1.8%. However, sunflower is the most affected class because the 

difference among combinations shows the biggest value of 9.8%. Table 24 provides the results of Dataset 

2. It shows that the difference among combinations is 11.2%. This condition indicates that there is a higher 

influence of varying spatial distribution to Dataset 2 than Dataset 1. The biggest influence is shown for the 

class Carrots, indicated by the highest difference of its individual class accuracy 44.1%. This finding agrees 

with the aforementioned finding that spatial selection of the samples does not significantly contribute to the 

overall accuracies, but indeed influences the individual class accuracies. 
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Table 24. The result of the initial experiments applied to a full refined dataset – Dataset 2 

Items 
Before 
refined 

After Refined 

Reference data C0 C1 C1s C2 C2s C3 C3s C4 C4s Max-Min 

OA 68.8 66.2 70.6 71.7 60.5 66.5 67.4 68.8 65.1 11.2 

UA 

Alfalfa 92.5 86.3 86.8 87.7 75.9 84.3 83.3 88.7 86.2 12.8 

Carrots 33.9 40.2 35.7 0.0 44.1 20.5 9.3 29.2 27.8 44.1 

Developed Area 80.9 74.3 86.0 84.2 75.1 84.7 90.0 86.7 66.1 23.9 

Fallow/Idle Cropland 72.9 84.0 74.2 83.9 64.2 78.2 84.6 88.6 82.5 24.4 

Lettuce 49.9 47.2 69.9 58.6 54.8 77.8 34.8 61.5 61.9 43.0 

Onions 66.7 52.3 85.1 78.2 64.7 54.1 73.0 64.8 70.2 31.0 

Open Water 82.7 50.5 88.3 84.1 96.4 76.9 92.6 87.4 83.4 19.5 

Other Hay/Non-Alfalfa 60.4 57.0 48.5 57.1 40.3 40.3 60.3 48.1 51.3 20.0 

Shrubland 54.0 42.4 55.9 45.6 30.4 49.9 41.7 45.2 37.6 25.5 

Sod/Grass Seed 60.3 62.0 42.8 51.9 38.6 60.1 56.5 60.8 43.9 22.2 

Sugar beets 64.2 75.4 56.2 79.1 53.7 61.4 65.7 68.4 62.4 25.4 

Winter Wheat 55.2 58.4 47.8 49.5 33.9 50.1 41.6 33.1 56.9 23.8 

 
Since we do not have a special interest in a particular crop type, so we select final dataset based on 

the OA. For further experiments, Combination 2 is selected for a more practical reason. For example, if we 

need to process a new dataset with a similar characteristic to Dataset 1, we can use this trained network with 

Dataset 1 and directly apply classification for the new dataset that located separately to generate the 

classification map (pre-trained network approach). The composition of sample polygons for the selected 

dataset are described in Table 25 and Table 26. 

Table 25. Number of polygons in Dataset 1 after dataset refinement in Combination 2 
Class Training Test Training (%) Test (%) 

Wheat 377 234        62         38  

Maize 168 73        70         30  

Sunflower 72 44        62         38  

Forest 99 81        55         45  

Water 43 37        54         46  

Total 759 469 - - 

Table 26. Number of polygons in Dataset 2 after dataset refinement in Combination 2 
Class Training Test Training (%) Test (%) 

Alfalfa 103 92    53     47  

Carrots 26 2    93       7  

Developed Area 35 60    37     63  

Fallow/Idle Cropland 50 47    52     48  

Lettuce 30 9    77     23  

Onions 47 28    63     37  

Open Water 3 8    27     73  

Other Hay/Non-Alfalfa 31 50    38     62  

Shrubland 14 33    30     70  

Sod/Grass Seed 16 28    36     64  

Sugar beets 30 26    54     46  

Winter Wheat 20 9    69     31  

Total 405 392 - - 
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6.3. Hyper-Parameter Tuning 

After defining the final dataset for further experiments, we tune the parameter of SVM and FCN. 

DTW has no parameter to tune so it can directly be implemented. 

6.3.1. SVM Parameters because those parameters are dependent on the used dataset. 

Table 27 shows the combinations of parameter C and gamma that produce the best classification 

accuracy by applying SVM for Dataset 1 and Dataset 2. Both datasets used different parameter value out of 

the same range of candidate values because those parameters are dependent on the used dataset. 

Table 27. Combination of SVM parameter that generates the best result 
Parameter Dataset 1 Dataset 2 

Input type 4b NDVI 4b NDVI 

C 48329.3024 69519.2796 143.8450 1274.2750 

gamma 0.6952 0.1000 6.1585 10.0000 

We observe that Dataset 2 requires a higher gamma value to be able to discriminate the classes. We 

can infer that Dataset 2 is more difficult to classify because it has more classes compared to Dataset 1. 

Having more classes increases the possibility of having a similar spectral pattern along the temporal 

dimension, see Figure 12 and Figure 19. The higher value of C on NDVI input indicates that the dataset is 

generalised more than applied on four-bands input classification. 

6.3.2. FCN-SNet Hyper-Parameters 

This section reports the findings during the experiments to design FCN-SNet architecture. The OAs 

are recorded to measure the classification result when varying the hyper-parameter values. 

6.3.2.1. Patch Size 

Patch size represents the spatial dimension of the considered training samples to assign the label for 

every pixel inside the patch (see section 4.4) for a given central pixel. Table 28 presents the influence of 

varying patch size on classification accuracy. We use size 13x13 as an initial value and make it larger by 2,3,4, 

and five times larger (use the odd number) to feed into FCN-SNet4.2 architecture. Size 13x13 is the smallest 

size of an effective receptive field on the architecture tested in the layer depth experiments. 

Table 28. FCN-SNet experiments results – patch size 

Patch Size 13x13 25x25 39x39 51x51 65x65 

OA Dataset 1 95.5 95.6 95.8 95.8 95.6 

OA Dataset 2  71.7   70.6   70.7   66.5   65.4  

 
Figure 21 (a) shows that, for Dataset 1, increasing the patch size do not always lead to an increase of 

classification accuracies, despite the expectation that it makes an increase. Although the network considers 

larger area (dimension of the patch) to extract the information for predicting the label, it does not positively 

influence the classification results. Increasing patch size from 51x51 to 65x65 lead to degrading the 

classification accuracies. Patch size 39x39 and 51x51 are the obvious choices by considering the OA. 

Figure 21 (b) shows a different trend in Dataset 2. The increase of patch size results in a negative 

impact on the classification accuracies. From this plot, size 13x13 is an obvious choice for implementation 

on Dataset 2. 
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(a) Dataset 1 (b) Dataset 2 

Figure 21. Effect of varying patch size on FCN-SNet 

Later, we compare the average of UA (AUA), PA (APA) and F-Measure (AFM) for both patches of 

size to select the patch size of Dataset 1 for implementation.  

Table 29. Classification accuracy comparison of patch size 39x39 and 51x51 of FCN-SNet – Dataset 1 

Patch Size OA AUA APA AFM 

39x39 95.8 94.1 93.2 93.7 

51x51 95.8 93.9 93.4 93.6 

 

By observing Table 29, the classification result of patch size 39x39 has a slightly higher value on AUA 

and AFM. Furthermore, we inspect the classification map for both patch size presented in Figure 22. See a 

detailed red box of both maps. It shows that the classification result of patch size 39x39 is more suitable 

because this area is not a forest (dark green colour). We compare it to the input image, and it seems that 

Figure 22 (b) is misclassified in the mentioned location.  

  
(a) Classification map for patch size 39x39 (b) Classification map for patch size 51x51 

Figure 22. A comparison for the classification map for patch size 39x39 and 51x51 

Accordingly, we deduce that patch size 39x39 and 13x13 are the selected value for implementation 

on Dataset 1 and Dataset 2 respectively. This condition reveals that with the same spatial resolution data 

(10 m), the network possibly uses different patch size to solve the problems in classification. As mentioned 

before, Dataset 1 has five classes, and Dataset 2 has 12 classes. This might be the reason that there is no 

agreement in both datasets in term of patch size.  

Although the crop field characteristics in both locations are different, where Dataset 2 has a smaller 

size of a crop field, we infer that it does not contribute to the different selection of the patch size. It happens 

because it does not need to consider the size of the crop fields to determine the label for a given pixel. For 

example, a pixel is labelled as a maize because of its spectral value in all time-step of images (temporal 

information), not because of its neighbourhood (if all its neighbourhood pixels are maize, then it must be a 

maize), nor the size of the crop field meet some specific size (if a pixel and its two pixels neighbourhood 
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are maize, it is considered as maize). Although, the network still needs more than one pixel to determine 

targeted classes because it is not sufficient to determine classes by looking at one pixel solely. 

6.3.2.2. Layer Depth 

Layer depth refers to the number and type of layers for processing the input to the output layer. We 

design six different architectures by varying the depth and a combination type of the layer. According to 

Table 30, the shallowest architecture network, FCN-SNet4.2, generates the highest accuracy for Dataset 1 

and Dataset 2 compare to another architecture. The architecture of the layer is related to the size of the 

receptive field in a network that extracts the information from a given patch in the training process. 

Theoretically, a network with a receptive field that closes to or equals with the size of the patch means that 

the network includes the all pixels of a patch to learn during the training. An effective receptive field that 

larger than the size of the patch is not be useful in the learning process because the input does not provide 

information outside the patch. If we look back at the previous section, it is expected that the network FCN-

SNet9.3 (RF = 37x37) would suit and produce highest classification accuracy for Dataset 1 (patch 39x39) 

and network FCN-SNet4.2 (RF = 13x13) suits Dataset 2 (patch 13x13). However, this result shows that 

network FCN-SNet4.2 (RF = 13x13) suits for Dataset 1 (patch size 39x39) and Dataset 2 (patch size 13x13). 

Table 30. FCN-SNet experiments results – layer depth 

Layer Architecture 4.2 6.3 6.2 9.3 8.2 12.3 

Receptive Fields (RF) 13x13 19x19 25x25 37x37 41x41 61x61 

OA Dataset 1 95.8 95.1 95.1 95.2 95.6 95.3 

OA Dataset 2 73.7 72.5 69.9 65.9 56.1 51.0 

If we look from the receptive field point of view, Figure 23-a.1 and b.1 show that there is no linear 

correlation between the increasing of receptive field and the classification accuracy. However, both datasets 

show a general trend of decreasing the classification accuracy if we change the receptive field form a small 

to a larger value.  

 
 

 
 

 

 
 

 
 

 
(a) Dataset 1 (b) Dataset 2 

Figure 23. Effect of the varying architecture of layer depth on FCN-SNet 
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Figure 23-a.2, a.3, b.2 and b.3 show that adding more layers tends to degrade the classification 

accuracy. Although we expect that layer addition (adding more parameters in the calculation) makes a more 

accurate calculation in predicting the label output, this assumption is only proven by the experiment of 

adding a block from 2 to 3 and 4 (in Figure 23-a.3). The other block additions are negatively correlated with 

the classification accuracy escalation. Based on this finding, we select FCN-SNet4.2 to implement for both 

datasets. The architecture of FCN-SNet4.2 is sufficient for the available datasets to produce classification 

maps with accuracy performance superior to the other architecture FCN-SubNet that has more complex 

architecture than FCN-SNet. 

6.3.2.3. Number of Filters 

The number of filters defines the number of feature maps that are generated form convolution layers 

and further learned by the next layer in the network to predict the label of the input image. A larger number 

of filters means more feature maps that can be extracted. We start with the number of filters 40 because we 

expect that the generated feature maps could accommodate the depth of input images (stacking four bands 

with images in ten different time acquisition). So, the network produces adequate feature maps to be learned. 

Table 31 shows the change of the classification accuracies by varying the number of filters which is 

started from 40, then makes it 2, 3, and 4 times larger. 

Table 31. FCN-SNet experiments results – the number of filters 

Number of Filters 40 80 120 160 

OA Dataset 1 95.8 95.0 95.5 95.8 

OA Dataset 2 73.7 68.6 70.9 71.6 

Figure 24 shows that, on Dataset 1, there is a reduction from 95.8% to 95.0% of the OA when we 

increase the number of filters from 40 to 80, then OA starts to increase in a marginal value from 95.0%, for 

the number of filters 8, and it increases to 95.8% for the number of filters 120. While on Dataset 2, there is 

a similar trend where the OA decreases from 73.7% to 68.6% when the number of filters increases from 40 

to 80, then continue to increase to 71.6% when the number of filters changes from 80 to 160. If we observe 

the trend in Figure 24, it might be possible for increasing OA for both datasets when we further increase 

the number of filters. However, an increasing number of filters lead to an increase in the number of 

parameters that affects computational time. Therefore we stop the experiments on the number of filters 

160. 

  
(a) Dataset 1 (b) Dataset 2 

Figure 24. Effect of varying number of filters on FCN-SNet 

We select the number of filters 40 to implement in Dataset 2. While we further check on other 

measures to select the implementation for the number of filters for Dataset 1. We compare the OA, AUA, 

APA and AFM of the number of filter 40 and 160 of Dataset 1 as presented in Table 32. We notice that 

AUA and AFM produced from the classification with 40 number of filters generates a slightly higher result 

than classification with 160 number of filters. Hence, we use 40 as the number of filters for the 

implementation of Dataset 1. This value is assumed as optimum for the network to learn and produce 
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comparable classification accuracies than using a larger number of filters. Network with 40 number of filters 

also has a fewer number of parameters to estimate during the training compared to a network with 160 

number of filters. 

Table 32. Classification accuracy comparison of the number of filters 40 and 160 

Number of Filters OA AUA APA AFM 

40 95.8 94.1 93.2 93.7 

160 95.8 93.1 94.2 93.6 

6.3.2.4. Learning Rate 

We train the network with a fixed value of learning rate. We estimate the learning rate form the initial 

configuration and set from big to a low value for experiments. Selecting the optimum learning rate is 

important because we need to find a balance between the computational cost and the targeted accuracy. 

Learning rate is categorised as a training parameter which means that it depends on the trained dataset. The 

different dataset has a different variation value to treat so that it needs a different strategy to find out the 

optimal learning rate. 

Table 33 shows the variation of classification accuracies by varying learning rate for Dataset 1 and 

Dataset 2. Varying learning rate from 1e-6 to 1e-9 generates a classification map with an accuracy range 

from 92.9% to 96.3% for Dataset 1 and from 40.5% to 73.7% for Dataset 2. According to Figure 25, both 

datasets show a similar trend where the OA starts to increase, peaks at learning rate 1e-7 then tends to 

decrease after that. Hence, we select the same learning rate 1e-7 for implementation to Dataset 1 and Dataset 

2. 

 
Table 33. FCN-SNet experiment results – learning rate 

Learning Rate 1e-6 1e-7 1e-8 1e-9 

OA Dataset 1 96.2 96.3 95.8 92.9 

OA Dataset 2 68.8 73.7 68.2 40.5 

 

  
(a) Dataset 1 (b) Dataset 2 

Figure 25. Effect of varying learning rate on FCN-SNet 

6.3.2.5. Number of Epochs 

The number of epochs also depends on the used dataset. It is essential to select the adequate number 

of epochs along with the other training parameters to prevent under or overtraining. We can monitor the 

flattening of the error curve to assess the training process and decide when to stop the training. By observing 

the training curve, we set the number of epochs 100 for Dataset 1 and 500 for Dataset 2 to implement. 

6.3.2.6. Size of Mini Batch 

Table 34 presents the classification accuracies by varying the mini-batch size. According to Figure 26, 

the plot shows a positive correlation between the size of the mini batch and the overall accuracy. By 

considering the achieved overall accuracies, we select 100 for Dataset 1 and 128 for Dataset 2. The 

interaction between the learning rate and mini-batch size determines the number of epochs needed for the 

network to converge. Besides that, it defines training time per epoch and model quality. 
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Table 34. FCN-SNet experiments results – the size of a mini batch 

Size of Mini Batch 16 32 64 100 128 

OA Dataset 1 95.7 96.0 95.9 96.3 96.3 

OA Dataset  70.5 72.6 72.4 73.3 73.7 

 

  
(a) Dataset 1 (b) Dataset 2 

Figure 26. Effect of varying size of mini batch FCN-SNet 

6.3.2.7. Input Band Type 

Based on Table 35, classification using NDVI input on Dataset 1 outperforms the classifications 

obtained using the reflectance value for these experiments. Even though it does not agree with the result on 

Dataset 2 that using four bands input generates the highest classification accuracy from all tested input type. 

Table 35. FCN-SNet experiments results – the type of input band 

Input Band Type NDVI 4 bands 7 bands (MI) 10 bands 13 bands 

OA Dataset 1 97.9 96.3 95.4 97.0 96.6 

OA Dataset 2 63.5 73.7 70.7 71.4 70.9 

The use of 10 bands (band 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12) of Sentinel-2 on Dataset 1 improves the 

classification accuracy from 96.3% to 97.0% compared to only use four bands (band 2,3,4 and 8) as input. 

By using all 13 bands of Sentinel-2 for classification, the results show a positive impact compared to 

classification with four bands. The additional nine bands increase the classification accuracies in a marginal 

amount from 96.3% to 96.6%. This result confirms the conclusion by Zhang, Su, Liu, & Chen (2019) who 

reveal that incorporating more related band information, in their case 13 bands of Sentinel-2 compare to 

mutual information (MI) based bands (band 3, 5, 6, 7, 8, 8a, and 9), can escalate the performance of 

classification in a marginal amount than using less spectral bands. However, it is surprising that using 10 

bands generates better performance compared to classification with 13 bands. This result implies that three 

additional bands of Sentinel-2 (band 1,9 and 10) do not provide additional information to determine the 

targeted classes. Meanwhile, in Dataset 1, NDVI input generates the highest overall accuracy. This fact 

provides an indication that the refinement based on NDVI value gives a significant contribution to the 

classification result of Dataset 1. 

Figure 27 and Figure 28 present the spectral plot of the targeted classes in 13 available bands of 

Sentinel-2. Both imply that band 10 (b10) do not provide any additional information because the spectral 

value of all classes is almost at the same value (low-class separability). Thereby band 10 is not a 

recommended band to use in determining the classes. 



CONVOLUTIONAL NETWORKS FOR THE CLASSIFICATION OF MULTI-TEMPORAL SATELLITE IMAGES 

47 

 
Figure 27. Spectral plot of samples from Dataset 1 

 

Figure 27 shows that band 4, 5, 7, 8, 8a and 11 have a good separability indicated by the line separation 

on the plot for Dataset 1. While in Figure 28, we hardly see the separation of 12 classes in one of the bands. 

It indicates why the classification accuracies of Dataset 2 are generally lower than Dataset 1. 

 

 
Figure 28. Spectral plot of samples from Dataset 2 

6.3.3. FCN-SubNet Hyper-Parameters 

This section reports the findings during the experiments to design FCN-SubNet architecture and the 

implementation. The OAs are recorded to measure the classification results when varying the hyper-

parameter values. The selection of the FCN-SubNet hyper-parameter values are made by concerning the 

experiments of FCN-SNet hyper-parameter tuning 

6.3.3.1. Patch Size 

In FCN-SNet, both datasets are suited with a relatively small value of patch size and the OA tends 

to decrease at the moment the patch size is increased. Since FCN-SubNet use the same Dataset (same 

problems to solve) for the experiments, according to the result of applying the patch size 13x13, 25x25 and 

39x39 as presented in Table 36, for efficiency, we stop increasing the patch size at the third candidate value. 

In the implementation, we select value 25x25 for Dataset 1 and 13x13 for Dataset 2. 

Table 36. FCN-SubNet experiments results – patch size 

Patch Size 13x13 25x25 39x39 

OA Dataset 1 (%) 89.9 90.3 90.2 

OA Dataset 2 (%) 61.7 56.3 57.2 

6.3.3.2. Layer Depth 

Table 37 shows the tested candidate networks and the classification results. Architecture 

SubNet10.2.1 generates the highest classification accuracy than the other architectures for both datasets.  
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Table 37. FCN-SubNet experiments results – layer depth 

Layer Architecture SubNet10.1.2 SubNet10.2.2 SubNet10.3.2 SubNet10.2.1 SubNet10.2.3 

OA Dataset 1 (%) 96.0 95.9 93.6 96.2 94.8 

OA Dataset 2 (%) 63.5 61.7 56.0 65.9 63.2 

From Figure 29 and recalling Figure 23, in designing the network for our dataset, both imply that 

additional layers tend to degrade the classification accuracies. This result is also in line with the result of the 

layer depth experiment of FCN-SNet as explained in Section 6.3.2.2. FCN-SubNet10.2.1 is a selected 

architecture to implement for both datasets. 

 
 

 

 
 

 
(a) Dataset 1 (b) Dataset 2 

Figure 29. Effect of the varying architecture of layer depth on FCN-SubNet 

6.3.3.3. Number of Filters 

Table 38 shows the classification results by varying the number of filters. Number of filters 40 has 

the highest OA for Dataset 1, while on Dataset 2, number of filters 80 generates the highest OA. 

Table 38. FCN-SubNet experiments results – the number of filters 

Number of Filters 40 80 120 160 

OA Dataset 1 (%) 96.8 95.6 96.1 96.1 

OA Dataset 2 (%) 65.9 67.9 67.2 66.7 

 

Figure 30 indicates the behaviour of Dataset 1 and Dataset 2 in a different number of filters setting. 

Each of them indicates a different trend. Figure 30 (a) has the highest accuracy in the first candidate value. 

While in Figure 30 (b) second candidate value, number of filters 80 has the highest accuracy. These values 

are used to implement the FCN-SubNet on Dataset 1 and Dataset 2. These values are assumed as an 

adequate number of required feature maps to distinguish classes. 

  
(a) Dataset 1 (b) Dataset 2 

Figure 30. Effect of varying number of filters on FCN-SubNet 
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6.3.3.4. Learning Rate 

By examining the training curve while applying the candidate values of the learning rate. We use 1e-

9 for Dataset 1 and 1e-6 for Dataset 2 to implement. These values are different from the selected value of 

FCN-SNet architecture. This condition points out dependency of the learning parameter on the architecture 

of the network and the used dataset. 

6.3.3.5. Number of Epochs 

By examining the training curve, we set the number of epochs 750 for Dataset 1 and 1500 for Dataset 

2 to implement. These values show that different architecture which is applied to the same dataset require 

a different number of epochs because it requires different time to convergence during the learning process. 

More complex architecture, FCN-SubNet, requires more time to converge compare to the simpler 

architecture as FCN-SNet architecture. 

6.3.3.6. Size of Mini Batch 

Table 39 describes the result in OA by varying the mini-batch size. For both datasets, size 16 has the 

highest OA. Figure 31 shows a completely different behaviour of increasing mini-batch size for classification 

accuracies compare with Figure 26. This condition implies that the more complex architecture, FCN-

SubNet is more suitable with a smaller mini-batch size. 
 

Table 39. FCN-SubNet experiments results – the size of the mini batch 

Size of Mini Batch 16 32 64 100 128 

OA Dataset 1 (%) 94.4 93.4 91.9 90.6 82.8 

OA Dataset 2 (%) 70.0 67.0 66.8 63.1 62.0 

 

  
(a) Dataset 1 (b) Dataset 2 

Figure 31. Effect of varying size of mini batch FCN-SubNet 

6.3.3.7. Input Band Type 

Table 40 provides information about varying input bands to feed into the networks. Comparing to 

Table 35, we cannot see the agreement from these experiments on both datasets. The result shows a different 

behaviour. In these experiments, four bands input on both datasets produces higher OA that using NDVI 

input. However, it shows the different effect of using 10-bands and 13 bands input on both datasets. On 

Dataset 1, incorporating more bands to feed into the network tends to degrade the OA. While on Dataset 

2, incorporating more bands gives a positive impact on the classification result indicated by the increasing 

OA by using 10 bands and slightly drops on 13 bands usage. 

Table 40. FCN-SubNet experiments results – the type of input band 

Input Band Type NDVI 4 bands 10 bands 13 bands 

OA Dataset 1 90.8 93.8 90.0 89.2 

OA Dataset 2 56.4 70.0 70.4 70.1 
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6.4. Comparison of Final Implementation 

Comparison for classification accuracies of final implementation to Dataset 1 and Dataset 2 are 

provided in Table 41 and Table 42. From those tables, the FCN-SNet4.2 confirms that this architecture can 

deal with a complex problem represented by Dataset 2. We also observe that DTW has the lowest OA 

compared to other methods. Although DTW considers the spectral and temporal information from the 

dataset, this method does not consider the spatial information. The standard implementation of DTW is 

applied to 1-Dimensional input, so we only used NDVI input. SVM, which also utilise the spectral and 

temporal information as DTW, produces 1% higher classification accuracy compares to DTW result on 

Dataset 2. FCN-SNet utilises the spatial, spectral and temporal information and produces a classification 

map with the highest classification accuracy compared to other methods. FCN-SubNet which also deals 

with that three information becomes a potential choice in the perspective of classification accuracies. 

Table 41. Classification accuracies on the final implementation of Dataset 1 
Input Methods OA AUA APA F-Measure 

4bands SVM 90.6 86.0 82.6 83.4 

FCN-SNet4.2 96.3 94.9 94.1 94.5 

FCN-SubNet 10.2.1 93.8 89.4 92.3    90.7  

NDVI SVM 93.7 89.6 87.1 88.2 

DTW 92.7 89.4 92.4 90.6 

FCN-SNet4.2 97.9 97.5 96.7 97.1 

FCN-SubNet 10.2.1 90.8 86.1 91.9    88.2  

Table 42. Classification accuracies on the final implementation of Dataset 2 

Input Methods OA AUA APA F-Measure 

4bands SVM 64.9    56.7  59.8 57.3 

FCN-SNet4.2 73.7 64.2 67.0 65.1 

FCN-SubNet10.2.1 70.0 61.0 62.7 61.3 

NDVI SVM 61.3    50.3  48.5 47.2 

DTW 29.3 34.0 38.4 25.8 

FCN-SNet4.2 63.5 57.2 51.9 51.4 

FCN-SubNet10.2.1 56.4 49.0 51.0 48.9 

From the perspective of the SVM method, all the classification result confirms this method works 

well in a simple or more complex classification problem, as on Dataset 2 where several classes have an 

overlapping profile. Although SVM uses fewer hyper-parameter to tune than FCN methods, it is able to 

generate a baseline accuracy comparable to the FCN. This result provides additional fact to use SVM as 

baseline methods. 

Table 42 provides classification accuracies of Dataset 2 that are generally lower from Dataset 1. 

Although Dataset 2 use the same images of Sentinel-2, it had different classes and use a different source of 

reference data. Reference data of Dataset 1 is a ground measurement without information of the accuracies, 

and for Dataset 2 we derive the reference data from reference map with accuracies about 85% and spatial 

resolution of the reference map is 30m. To minimise the issue of the reference data accuracy, we derive the 

reference pixels as explained in Chapter 4 through polygon generation based on the images and attributing 

the label based on reference data. 

DTW implementation depends on the reference pattern that we need to provide. If we look at the 

plot of the reference pattern, Dataset 2 indicates that it is hard to separate the classes because many classes 

have similar NDVI value for every time-step (Figure 33). While for Dataset 1, it can be presumed that 

information from time 6-10 positively contributes to the class separation (Figure 32). Although the DTW 

does not consider the spatial information and only use limited spectral information, it can achieve 92.7% 

OA in Dataset 1 because the temporal information supports additional information to classify the targeted 

classes. However, the provided temporal information on Dataset 2 seems to be not sufficient to support 
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the classification for 12 classes. Based on Table 42, on the same condition where the classification only relies 

on the NDVI value and temporal information, SVM shows better performance. 

 
Figure 32. The plot of reference pattern for Dataset 1 

 

 
Figure 33. The plot of reference pattern for Dataset 2 

 

Table 43 provides the individual class accuracies for Dataset 1. From the user’s accuracies, all methods 

show that sunflower has the lowest accuracy. SVM only have about 55.4% of sunflower from the 

classification map is real sunflower in the ground. In the perspective of producer’s accuracy, SVM has only 

69.4% of sunflower from reference data correctly classified as sunflower. However, FCN-SNet and FCN-

SubNet are able to perform better by achieving 81.2% and 80.0%. 

FCN-SNet has the highest UA of all classes except for wheat, where FCN-SubNet achieves a better 

accuracy. Meanwhile, it indicates that the classification map of FCN-SNet has more misclassified pixels in 

forest and water compared to FCN-SubNet. 

Table 43. The accuracies of individual classes of four bands input -- Dataset 1 

Class 

UA PA 

SVM 
FCN-

SNet4.2 
FCN-

SubNet10.2.1 
SVM 

FCN-
SNet4.2 

FCN-
SubNet10.2.1 

Wheat    97.8     98.1  100.0    97.6     99.1  95.6 

Maize    85.0     91.7  88.7    89.0     91.9  88.2 

Sunflower    55.4     86.0  80.8    69.4     81.2  78.5 

Forest    98.5     99.0  93.9    97.8     98.9  99.3 

Water    93.1     99.8  83.5    59.2     99.5  100.0 
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Table 44 provides the individual class accuracies for Dataset 2. All methods are failed to classify 

Carrots. SVM has Other Hay as the most misclassified class, while FCN-SNet has shrubland and FCN-

SubNet has winter wheat. The available samples from datasets are not sufficient to classify Carrots correctly 

(see Table 24 and Table 26). 

Table 44. The accuracies of individual classes of four bands input -- Dataset 2 

Class 

UA PA 

SVM 
FCN-

SNet4.2 
FCN-

SubNet10.2.1 
SVM 

FCN-
SNet4.2 

FCN-
SubNet10.2.1 

Alfalfa 83.3 89.5 86.0 78.2 78.0 77.0 

Carrots 0.0 0.0 0.0 0.0 0.0 0.0 

Developed Area 73.3 86.0 92.1 85.5 94.4 78.3 

Fallow/Idle Cropland 72.4 80.8 76.9 52.9 80.7 75.9 

Lettuce 59.2 45.6 39.1 66.8 60.5 66.7 

Onions 66.0 77.8 63.8 71.6 79.3 82.7 

Open Water 86.6 96.0 96.5 99.6 99.2 87.0 

Other Hay/Non-Alfalfa 50.0 61.1 54.5 28.7 47.8 51.5 

Shrubland 32.3 53.7 61.8 45.5 46.9 60.3 

Sod/Grass Seed 45.4 52.2 55.0 74.3 81.1 56.3 

Sugar beets 74.9 77.8 75.1 70.7 73.5 76.1 

Winter Wheat 36.7 50.4 31.5 44.0 62.2 40.6 

 

Aside from the quantitative measure for the classification result, we do the qualitative measure by 

inspecting the classification maps. Figure 34 shows that FCN-SubNet generates more misclassified area with 

water coverage compare to the other two maps. 

  
SVM FCN-SNet4.2 

  
FCN-SubNet  

Figure 34. Classification map of SVM, FCN-SNet4.2, FCN-SubNet for 4 bands input on Dataset 1 
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Figure 35 displays the reference map and classification maps of Dataset 2 by using four bands input. 

Square red boxes indicate some locations of misclassified pixels compared to the reference map. 

   
SVM FCN-SNet4.2  

  

 

FCN-SubNet Reference Map  

Figure 35. Classification maps of SVM, FCN-SNet4.2, FCN-SubNet of four bands input on Dataset 2 

In term of computational time, as presented in Table 45, FCN-SubNet 10.2.1 can be an optional 

method to FCN-SNet4.2 than using DTW. Although it uses more complex architecture and needs longer 

processing time compared to FCN-SNet4.2, on Dataset 2, FCN-SubNet 10.2.1 produces higher 

classification results than DTW with NDVI input and also higher OA than SVM with four-bands input. 

The experiments are performed on a Laptop with an Intel Core i7-7700HQ CPU 2.80GHz, NVIDIA 

Quadro M1200, and 48GB of RAM. 

Table 45. Estimation of processing time on Dataset 1 
Methods Input Estimation of Processing Time 

SVM Dataset 1, 4 bands 125 minutes 

DTW Dataset 1, NDVI 4 days 

FCN-SNet4.2 Dataset 1, 4 bands 40 minutes 

FCN-SubNet10.2.1 Dataset 1, 4 bands 22 hours 
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6.5. Information Extractor 

Recalling the research objective to investigate a network that exploits spatial, spectral and temporal 

information simultaneously, the applied methods utilise the available information in different ways. For the 

proposed method of FCN-SNet, it extracts the available information by using the following components: 

• Spatial-information extractor 

o Patch size 

o The spatial dimension of the filter 

o Effective receptive field 

• Spectral and temporal information extractor 

o Number of filters 

o The depth of the input image 

o Input band type 

 

We carry out experiments that indicate the effect of removing some information from the Dataset.  

1. Spatial information 

The effect of removing the use of spatial information can be inferred from Table 41 and Table 

42 where FCN is the only method that exploits the spatial information by defining the value for the 

spatial-information extractor, i.e., patch size, size of the filter and effective receptive field. The OA 

calculated for SVM and DTW are generated from the classification by utilising only the spectral 

and temporal information. Table 41 denotes that the OA of Dataset 1, with NDVI input, drops to 

92.7% and 93.7% from 97.9% if we remove the spatial information extraction. While for Dataset 

2, with NDVI input, Table 42 shows that there is a reduction from 63.5% to 61.3% and 29.3%.  

2. Spectral information 

Table 46 provides classification accuracies, in OA, by applying the proposed architecture FCN-

SNet4.2 with single spectral information and full temporal information (images from all different 

acquisition time). 

Table 46. Classification accuracies by using single spectral information 

Band number Dataset 1 Dataset 2 

1     87.7    60.8  

2     88.9    62.5  

3     85.9    60.6  

4     90.6    63.4  

5     92.1    61.5  

6     94.0    61.8  

7     94.9    61.4  

8     94.9    60.9  

8a     94.9    61.7  

9     92.3    57.7  

10     90.7    25.6  

11     94.7    63.6  

12     97.3    65.3  

3. Temporal information 

Effect of reducing some temporal information from the input is tested by performing 

classification using a single time acquisition image. We experiment by using the proposed 

architecture FCN-SNet4.2. 

From Table 47, the OAs on Dataset 1 vary from 81.0% to 89.3%. The maximum overall 

accuracies that can be obtained by a single time image for classification is 89.3%. While on Dataset 

2, the OAs vary from 43.2% to 58.9%. The maximum OA achieved by a single time image for 

classification is 58.9%. 
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Table 47. Classification accuracies by using single time acquisition image  

Input Image Dataset 1 OA Input Image Dataset 2 OA 

Date 1: 20170307 86.2 Date 1: 20170101   55.1  

Date 2: 20170403 86.2 Date 2: 20170220   50.6  

Date 3: 20170503 89.3 Date 3: 20170302   55.1  

Date 4: 20170605 85.2 Date 4: 20170421   52.5  

Date 5: 20170622 82.7 Date 5: 20170521   58.9  

Date 6: 20170630 89.2 Date 6: 20170620   58.4  

Date 7: 20170722 84.9 Date 7: 20170710   49.9  

Date 8: 20170801 81.0 Date 8: 20170819   43.2  

Date 9: 20170819 85.4 Date 9: 20170918   48.5  

Date 10: 20170903 86.5 Date 10: 20171023   44.0  

- - Date 11: 20171122   44.6  

- - Date 12: 20171222   51.5  

 

From these three experiments, we summarise the classification results in Table 48. Both datasets 

indicate the same behaviour where: 

- including all information: it provides the highest accuracy, 

- excluding temporal information: it is most influential on the classification results (producing the 

lowest accuracy), 

- excluding spatial information extraction: it affects classification results in second place, and  

- using only single spectral information: it is least influential on the classification result (OA drops 

but still higher than the result of excluding temporal or spatial information extraction). 

Table 48. Classification accuracies by varying the use of spatial, spectral and temporal information 

Parameters To be included? 

Extract spatial information: applying FCN-SNet4.2 No Yes Yes Yes 

Extract spectral information: using NDVI or 4 bands Yes No Yes Yes 

Extract temporal information: use all image from all time acquisition Yes Yes No Yes 

Maximum generated OA (%) – Dataset 1 93.7 97.3 89.3 97.9 

Maximum generated OA (%) – Dataset 2 64.9 65.3 58.9 73.7 

 

These results confirm that applying land cover classification by using multi-temporal images 

classification provides an improvement in the classification accuracy compared to only use mono-temporal 

image. It is also in line with the conclusion by Sharma, Liu, & Yang (2018) when applying classification to 

Landsat-8 using a patch-based recurrent neural network.  
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7. CONCLUSION 

7.1. Concluding Remarks 

We develop two main architectures of FCN to classify land cover that contains crops information 

using MTSI. These architectures are expected to deal with the classification problems coming from the 

targeted objects, i.e., agricultural areas, and the multi-temporal input images. The optimal classification 

results are achieved by FCN-SNet4.2 architecture with four blocks of dilated convolutional layers and stacks 

the spectral and temporal information in the third dimension as the input images. According to the 

qualitative and quantitative measures applied to the classification results, FCN-SNet4.2 architecture 

performs better than the other two popular classification algorithms such as SVM and DTW. FCN-SNet4.2 

architecture is also superior to the FCN-SubNet10.2.1 architecture that deals with the temporal information 

of MTSI in different ways. This result also points out the importance of designing the proper and adequate 

architecture to deal with the dataset.  

In term of pre-processing, FCN has an advantage over the DTW approach. FCN approach directly 

uses the NDVI or spectral image to feed into the network and extracts the learning features automatically. 

However, DTW needs an additional step to provide a reference pattern by defining a single profile for each 

class to be further used in the classification. Moreover, FCN-SNet4.2 architecture significantly outperforms 

to SVM and DTW in terms of computational time. 

7.2. Answers for The Research Questions 

Each of the sub-objectives has been achieved by answering the following questions: 

Questions for sub-objective 1: 

a. What are the existing NN approaches that have been applied for crops classification using MTSI? 

Section 2.1 explains the related work on crops classification using MTSI. In the neural network 

methods, CNN is widely used for various purposes, including crops classification. There are variations 

of CNN such as FCN and LSTM that are also used for MTSI. 

b. What is the most suitable design for crops classification using MTSI that exploits spatial, spectral and 

temporal information simultaneously? 

We studied the existing NN approaches and developed the methods that are expected to exploit 

better the MTSI in providing accurate LCC map. We experimented with the proposed methods to 

achieve the optimal design to be implemented. Based on the explanation in Section 6.4, FCN-SNet4.2 

is an optimal design to deal with Dataset 1 and Dataset 2 used in our study. This architecture is designed 

by carrying out design experiments to vary the hyper-parameter value with candidate value. The setting 

for the experiments are explained in Section 5.5.1, and selected value for the hyper-parameter is 

presented in Section 6.3.2. Layer construction of this design is presented in Table 1.  

Based on Section 6.4, FCN-SNet4.2 generates higher classification accuracy compared to the other 

tested methods. FCN-SNet4.2 exploits the spectral and temporal information by concatenating the 

input image as Figure 4 and spatial information extracted by using a convolutional layer.  

Different architectures, i.e., FCN-SubNet also exploits the spatial information by using the 

convolution layer, but it uses a different way to handle the temporal information by providing sub-

network and concatenating extracted feature maps from each sub-network to gradually generate the 

classification map. Spectral information is extracted in a standard way in sub-network design. However, 

if we look further to the computational time as shown in Table 45, FCN-SNet4.2 become the best 

choice. In addition, we explain the correlation of the FCN components to the information extraction 

in Section 6.5. 
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Questions for sub-objective 2: 

a. What is the appropriate structure of an input file for performing classification using the proposed 

network? 

Figure 4 shows the structure of the input image for FCN-SNet4.2 architecture by concatenating 

the images in spectral then temporal dimension into one file and feed this file into the network. Handling 

the temporal information in a different way as implemented in FCN-SubNet approach does not 

improve the classification result. FCN-SubNet treats the temporal information separately in the 

beginning by separating the stream for every date of acquisition of the image. 

b. What are the optimal hyper-parameters values for the proposed network to be used for performing 

crops classification using MTSI? 

Section 5.5.3 presents the selected hyper-parameter value to implement. Those values are the 

optimal hyper-parameters values for Dataset 1 and Dataset 2. The differences of the selected values for 

the different datasets and different networks indicate the hyper-parameters values depend on the used 

dataset input. These selected values can be used as an approximation value to initialise crops 

classification for other datasets. 

c. How significant are the contributions of the spatial, spectral and temporal information for the 

classification result? 

Section 6.5 provides the experiment results to answer this question. Table 48 presents a summary 

of the experiments. Based on the classification results, temporal information has proven to have the 

most significant contribution to the classification accuracies. Our experiments also reveal that single-

date images obtain less satisfactory results.  

By excluding the spatial information, we obtain less accurate classification results as well. We 

assume that the spatial information contributes less to the classification accuracy because crops 

identification is not highly dependent on very large neighbourhood pixels. In addition, incorporating 

multi-spectral information outperforms the classification obtained by using a single-based image as 

input.  

d. What assessment and evaluation are relevant to measure the performance of the proposed network? 

Section 3.3 explains the assessment and evaluation used to measure the performance of the 

classification quantitatively (by calculating Overall Accuracy, User’s Accuracy, Producer’s Accuracy, F-

Measure) and qualitatively (by inspecting the classification map visually). 

Questions for sub-objective 3: 

a. Which method performs better based on the performance assessment? 

According to Section 6.4, we deduce that the FCN-SNet4.2 performs better than other evaluated 

methods after applying the classification evaluation and accuracy assessment. 

b. What aspect of the method that contributes to the classification result? 

Based on Section 6.3.2.7 and 6.3.3.7, FCN-SNet can be used for different type of input, i.e., NDVI 

and reflectance images. For reflectance images with multi-spectral information, it requires a specific 

structure of the input images (stacking) as shown in Figure 4 which is different from the FCN-SubNet 

input images. By concatenating the spectral and temporal information in the third dimension of the 

input images in combination with an adequate number of filters to extract the feature maps, we could 

obtain satisfactory results compare to the other methods. In the case of DTW, we could only provide 

one spectral reference pattern to apply the method. Spectral information is limited to the NDVI data. 

It also ignores the spatial information that is considered by the FCN approach. Similar to DTW, SVM 

only utilises the spectral and temporal information of the input image while ignoring the spatial 

information.  

Besides that, the flexibility of FCN in defining the hyper-parameter values is the other aspect that 

contributes to classification result. SVM has a less hyper-parameter value to set, and DTW has no hyper-
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parameter value. Furthermore, our study reveals that providing the proper number of samples for 

training and test is important for all methods in the pre-processing stage. 

 

Additional  

a. How to optimise reference dataset as input for the network? 

There are several ways to optimise the dataset: 

• Inspect the temporal pattern by using NDVI value 

• Checking for the spatial distribution of the samples 

• Adequately divide reference data into training and test samples 

• Increasing the number of samples by adding more sample polygons and/ or training patches 

from the available reference data 

7.3. Recommendation 

We summarise some suggestions for future research: 

• FCN-SubNet, regarding the complexity, will be more useful if we want to generate a classification map 

for every acquisition image or do change detection for it and produce the annual classification map. 

• Using different setup for the sub-networks, such as use the spectral information as sub-network in 

FCN-SubNet may useful to utilise different temporal information provision. 

• Inspect the effect of the spatial resolution of the input images to the patch size.  

• To improve the classification accuracies, add the number of polygons samples by using ancillary data, 

such as additional ground measurements, available base map, aerial images with higher resolution. These 

additional data are used to increase the number of training samples without reducing the test samples 

and vice versa. In this condition, we need to pay attention to the quality of the ancillary data to prevent 

adding more data that is not correct. 
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