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ABSTRACT 

Air pollution represents one of the most significant issues in the world. In this context, ultrafine particles 

(UFP) are one the most dangerous pollutants due to its small diameter. Hence, it is crucial to characterize 

the spatiotemporal distribution of air pollution which motivates to a civil initiative (AiREAS) to set up an 

innovative network (ILM) for measuring air quality in the city of Eindhoven. ILM network is conformed by 

several sensors, among which are UFP sensors that are usually in fixed locations. Nevertheless, during the 

research phase, they were rotated for five periods of three weeks among different locations in the city. 

This research aims to model and map UFP in space and time in the city of Eindhoven using meteorological 

variables and the five rotation periods as fixed and random effect variables respectively. To do so, a multiple 

linear regression analysis was applied to 24 different hourly timestamps getting the mixed-effect models’ 

parameters and the residuals. 

Then, the covariates values were obtained in the entire study area using Thiessen polygons, and the residuals 

were predicted using ordinary kriging after estimating their variogram parameters, applying maximum 

likelihood estimation. 

Afterwards, the models were run to get the 24 prediction UFP maps. Results showed a higher concentration 

of UFP during traffic peak hours and a lower concentration out of peak hours. Furthermore, the highest 

concentration of UFP is in the north-east of the city. 

The applied methodology was able to show the spatiotemporal variability of UFP. Moreover, RMSE and 

ME were assessed. 

 

Keywords: UFP, air quality, mixed-effect models, spatiotemporal 
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1. INTRODUCTION 

1.1. Motivation and problem statement  

Nowadays it is known that air pollution represents one of the most significant health, environmental and 

social issues in the world.  Additionally, the connection between air pollution and adverse health effects for 

humanity was already established and proved in the 1990s (Panis, 2010). Recent studies from World Health 

Organization (WHO) showed that nine out of ten people breathe air containing high levels of pollutants; 

the last estimations reveal a shocking death toll of seven million people every year caused by air pollution 

(“WHO," 2018). 

 

Human exposure to air pollution is related to different types of illnesses. For instance, lung cancer can be 

attributed to the exposure to various PM components and different sources like cars combustion (Raaschou-

Nielsen et al., 2016). 

 

In this respect, it is essential to understand clearly the definition of air pollution which refers to a complex 

composition of both solid and gaseous pollutants. Accurate identification of the different contaminants of 

the air mixture contributing most to the health threat might have relevant implications for environmental, 

health and social policies, and for crucial decisions of local governments in taking steps to protect population 

health (Chen et al., 2012). 

 

In this context, particulate matter (PM) is a pollutant of particular concern. Smaller-diameter particles 

referred to as PM2.5 (2.5 µm or smaller) are generally more hazardous for human health, as they can reach 

deeper into the small airways of the body (“WHO,” 2018). Nevertheless, there is another particle even more 

dangerous than PM2.5, called ultrafine particles (UFP). UFP are particles with a diameter smaller than 0.1 

µm. They can penetrate tissues and organs, posing an even greater risk of systemic health impacts (“WHO,” 

2018).  

 

From the previous paragraphs can be inferred that there is the need to create tools and mechanisms to 

address this global issue. In that sense, it is required to have an accurate evaluation of air quality, its 

compliance with legal limits and its potential health impacts. Likewise, to know the pollution level and its 

spatiotemporal distribution. Therefore, it is required to have air quality sensor networks with proper spatial 

density making measurements continuously. 

 

Despite the relevance of this worldwide issue which is affecting millions of people, there are not enough air 

quality sensors. As stated by van de Kassteele et al. (2009): “the increased distance between stations has 

caused a substantial loss of information and resulted in higher uncertainties in the maps.” Furthermore, 

there is even a smaller number of UFP sensors since there is not a regulation in Europe that establishes 

UFP thresholds levels. 

 

The rise of low-cost microsensors with the capacity to measure different components of air pollution has 

made more feasible the development of high-resolution mapping of air quality (Schneider et al., 2017). The 

recent emergence of low-cost microsensors triggers diverse projects to implement them in different cities. 

One of them is the city of Eindhoven where a civil initiative, AiREAS, has set up the sensor network (ILM— 
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Dutch: Innovatief Lucht Meetsysteem, English: Innovative Air Measurement System) and where the present 

study will be carried out.  

 

The University of Twente through the Faculty of Geoinformation and Earth Observation (ITC) is involved 

in this civil project in the city of Eindhoven in cooperation with other scientific institutions. In this context, 

35 low-cost air quality air boxes with various environmental sensors were installed in 2013  and are currently 

part of a network that measures Nitrogen Dioxide (NO2), particulate matter (PM10, PM2.5, PM1), UFP and 

Ozone (O3) (AiREAS, 2014). This network makes it possible to obtain a better spatial distribution of data 

than traditional (high-cost) sensor networks. 

 

Even though the air quality sensor network in Eindhoven has an acceptable spatial density, there are still 

spaces between the air stations without measurements and even more between UFP sensors since there are 

just six because they are more expensive than the other sensors. Nonetheless, during the research period, 

not all of them were working as will be explained in detail in Chapter 3.  

 

Hence, it is necessary to model and map air pollution to have an approximation of it, in the entire city of 

Eindhoven and not just in the points where the stations are located. In that sense, the present study is 

focused on finding out a proper method for modelling and mapping UFP in the urban area of Eindhoven 

using the data of the air quality sensors network. 

 

Finally, once a suitable method has been selected to modelling the UFP in the city of Eindhoven using data 

from the air quality sensors network, this work aims to find out whether five sensors are enough to study 

the spatial variability in the city. Likewise, to represent the result depicting a map of the air quality in space 

and time.  

 

This result will create consciousness in Eindhoven citizens since they will be able to see the pollution in the 

city, which is not possible without a map that represents air quality. Likewise, the information will be 

beneficial for local governmental authorities to make important decisions to take care of citizen-health.  

 

1.2. Research identification 

The current research can be identified through the following objectives and questions. 

1.2.1. Overall research objective 

The primary objective of this study is modelling and mapping of hourly average ultrafine particles in the city 

of Eindhoven. 

1.2.2. Specific research objectives 

1. Find out whether five sensors rotated for periods of 21 days over eighteen different locations in total 

are enough to predict the spatiotemporal variability of UFP in the city of Eindhoven. 

2. Identify a set of suitable covariates for the prediction of UFP in the study area. 

3. Develop prediction maps of hourly average UFP in the city of Eindhoven. 

1.2.3. Research questions 

1. Are eighteen locations enough to predict the spatiotemporal variability of UFP concentrations in the 

city of Eindhoven?  

2. Which covariates can be used to predict UFP concentrations in the study area? 

3. Which method is suitable to predict UFP concentrations in space and time in the city of Eindhoven?  
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1.2.4. Innovation aimed at 

UFPs are amongst the most dangerous pollutants for human health (“WHO,” 2018). However, previous 

studies have used data measured from mobile sensors or non-permanent sensor networks (Berghmans et 

al., 2009; Kwasny et al., 2010; Klompmaker, Montagne, Meliefste, Hoek, & Brunekreef, 2015; Farrell et al., 

2016). To the best of my knowledge, there not study that has modellled and mapped this pollutant at an 

urban level using data from a permanent sensor network.   
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2. LITERATURE REVIEW 

2.1. UFP and health effects 

Air pollution is a composition of different noxious substances of various sizes and is believed that the small 

ones (UFP) are the most harmful for human health. UFP is a pollutant that has a diameter smaller than 0.1 

µm and is related to road traffic emissions (Panis, 2010). Moreover, the primary source of UFP is the vehicle 

emissions, and highest concentrations of UFP are found nearby major roads (Farrell et al., 2016). 

 

Another particularity of UFP is its dynamic nature which in contradistinction to other pollutants as PM10 or 

PM2.5, can vary significantly in space and time at small scales. This variation depends on meteorological 

conditions as temperature, wind direction or wind speed (Kumar et al., 2014). 

 

The small size of UFP makes it more likely to penetrate tissues and organs. Thus “UFP is deemed to be a 

major risk for human health” (Buonanno, Stabile, & Morawska, 2014).  Different mortal diseases are directly 

related to exposure to air pollution. In the case of lung cancer, the risk is associated with various components 

of particulate matter (Raaschou-Nielsen et al., 2016). 

 

Other studies have suggested that UFP concentrations are related to cardio-respiratory diseases (Hoek et 

al., 2010), and they are a possible causative agent for an increment of mortality with increases in UFP 

concentrations (Zhu, Hinds, Shen, & Sioutas, 2010). 

 

2.2. Related work 

Many studies have been carried out to model and map air pollution in different areas around the world. 

However, most of them are focused on pollutants like NO2, PM10, and PM2.5. For instance, Hamm, Finley, 

Schaap, & Stein (2015) presented a study on modelling and mapping PM10 concentrations in Europe, 

whereas a research of NO2 concentrations in Oslo, Norway was carried out by Schneider et al. (2017) in 

which they also used data of low-cost sensors. 

 

There are also some studies based on modelling and mapping UFP such as the estimation of the exposure 

of cyclists to UFP in the town of Mol in Flanders, Belgium using mobile sensors installed on the bicycle 

(Berghmans et al., 2009).  They fixed the sensors in a bicycle, and the sampling path was selected considering 

different parts of the city as major roads and residential areas. The results indicates a a high variability of 

UFP even within the same transport microenvironment. Furthermore, since it is a relative small city, the 

concentrations of UFP were smaller than in major cities around the world as Amsterdam (The Netherlands), 

Los Angeles (USA) or Zurich (Switzerland). 

 

There is also a more recent study presented by Weichenthal et al. (2016) in which a land use regression 

model was developed for UFP in Montreal, Canada using mobile monitoring data during the summer and 

winter months between 2011 and 2012. This research applied multivariable linear regression model and 

kernel-based regularized least squares (KRLS). The results showed that KRLS approach explained better 

the UFP distribution. 

 

Hoek et al., (2010) developed a research to characterize UFP in Amsterdam, the Netherlands applying a 

land use regression model. They measured UFP outside of 50 homes around the city for one week in 

different periods, and continuous measurements close to the city center. Covariates as land use, address 
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density, traffic intensity, and others were used to model UFP. However, the product of traffic intensity and 

inverse distance to nearest major road was the most significant predictor. 

 

Ragettli et al., (2014) built multivariate regression models to predict UFP in the city of Basel, Switzerland. 

They sampled UFP in 60 locations among the city for periods of 20 minutes. The results showed a higher 

averaged concentration of UFP in winter than in summer and spring. They demonstrated that short-term 

measurements surveys are effective to characterize short-term UFP concentrations. Nonetheless, 

correlations between short and long term UFP concentrations requires to be assessed in the future. 

 

Zhu et al., (2010) developed a study to compare the UFP concentrations between winter and summer in 

Los Angeles. They found a significantly higher UFP concentration in winter than in summer which 

suggested a weaker atmospheric dilution in winter. This effect contributes to a major accumulation of 

particles in the air, increasing UFP concentrations. 

2.3. Modelling and analysis 

The main goal of this study is to model and map the ultrafine particles in the city of Eindhoven and to do 

so it is necessary to apply different techniques considering the distribution of the data based on descriptive 

statistics. 

 

To this end, geostatistical methods will be used during the development of the thesis, being used for the 

data analysis and also for the modelling and mapping of the ultrafine particles. For instance, Diggle & Ribeiro 

Jr. (2007) presented basic concepts and more advanced techniques about geostatistical data like the 

covariance functions and the variogram, different approaches for model parameters estimations (e.g., 

maximum likelihood) and spatial prediction methods (e.g., kriging). 

 

For spatial data quality of pollutants, there are different methodologies like a novel outlier detection 

presented by van Zoest, Stein, & Hoek (2018)  which is focused on NO2 that also has high spatial variability 

in urban areas. On the other hand, Wang et al. (2017) focused their study on spatiotemporal variation of 

PM2.5 and carbon monoxide (CO2), and they dropped all the data that was out of ±3σ of the mean. 

 

It is also important to know which external factors influence the spatial variability of the UFP. Regarding 

this, we know that the meteorological parameters like temperature, relative humidity, wind direction, and 

wind speed might have a  significant influence on the spatial variation of the pollutants in the air 

(Jayamurugan, Kumaravel, Palanivelraja, & Chockalingam, 2013). Likewise, other pollutants as NO2 can be 

used to explain UFP mostly in winter (Kwasny et al., 2010). Other spatial covariates are also valid to predict 

UFP as the distance from the nearest highway or distance from the nearest restaurant as used by Farrell et 

al. (2016). 

 

Since the observations were taken in different periods,they will be cosidered as a random effect and the 

other covariates as a fixed effect. In order to include both effects into the model, the mixed effect model 

method will be used. Regarding this, several studies based on mixed effect model has been reviewed like 

“Model selection in linear mixed effect models” in which a simple procedure was developed for estimation 

and selection of fixed and random effects for linear mixed models (Peng & Lu, 2012). Another research 

based on linear mixed effect models was carried out to mapping nighttime PM2.5 concentrations in Beijing 

(Fu et al., 2018). More related to the present research, a linear mixed model was developed to modelling and 

mapping UFP in space and time, using spatial and temporal covariates (Farrell et al., 2016). 
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To carry out the complete analysis, R software version 3.4.3 was used for data pre-processing and for 

developing the methodology to get the predicted values of UFP, including the resulting final maps (R core 

team, 2017). To do so, the main package that will be used is GeoR version 1.7-5.2 which contains a great 

variety of geostatistical functions (Ribeiro Jr. and Diggle, 2016). This package includes useful functions for 

reading and preparing the data, exploratory analysis applying descriptive statistics, inference on model 

parameters including variogram based and likelihood-based methods which will be used to get the 

coefficients of the model to predict UFP, and spatial interpolation (Jr., Christensen, & Diggle, 2003).  
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3. STUDY AREA AND DATA DESCRIPTION 

3.1. Study area 

The present study aims to predict the spatial and temporal variability of UFP in the city of Eindhoven, The 

Netherlands. The study area is delimited by the border of the municipality of Eindhoven. In Figure 1 we 

can observe the eighteen locations where the UFP sensors were rotated during the study period. 

 

 

Figure 1. Map of the municipality of Eindhoven with the eighteen locations over the UFP sensors were rotated. 

 

3.2. Data description 

3.2.1. Sources 

The data used for this research has been taken from two sources: ILM and the Royal Netherlands 

Meteorological Institute (KNMI) and consist in UFP as the response variable and PM1, temperature, relative 

humidity, wind speed and wind direction as covariates. 

 

ILM is a network composed of 35 airboxes spread in the city of Eindhoven. Each airbox has sensors of 

PM10, PM2.5, PM1, temperature, relative humidity, ozone and just six of them have a sensor of UFP. The 

data used from this source is UFP, PM1, temperature, and relative humidity. In Figure 2, we can observe 

one airbox of the ILM network in the city of Eindhoven, where the UFP sensor is installed inside the small 

white box. 
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Figure 2. ILM airbox installed in the city of Eindhoven. 

 

KNMI is the Dutch national weather service and the data obtained from that source is considered highly 

reliable. The data used from this source is wind speed and wind direction. 

 

3.2.2. Variables 

UFP: This is the main variable in this study since it is the one that will be predicted, also known as the 

response variable. UFP-unit is counts per cubic centimeter (Counts/cm3). 

 

Sensors of UFP are usually fixed in six locations in Eindhoven. However, they were rotated over eighteen 

different airboxes during 113 days in five different periods of rotation as we can see in Table 1. As it is 

shown in Figure 2, the UFP sensor is installed inside a separate box which makes its transport over different 

locations easy. When the rotation started one of the sensors was out of order, so just five sensors were 

available to get the data from. 

 

Additionally, during the rotation periods, two more UFP sensors had problems, finally having available only 

three sensors as can be seen in Table 1. 
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Periods 

1 2 3 4 5 

Date 2/11/16  
23/11/16 

23/11/16 
15/12/16 

15/12/16 
4/1/17 

4/1/17 
1/2/17 

1/2/17 
23/2/17 

Airbox 
number 

11 6 1 12 3 
21 7 13 19 4 
25 20 17 29 14 
30 24 30 30   
36 30       

Table 1. Periods of UFP sensors-rotation among the airboxes 

In Appendix 1, we can observe maps of where the sensors were located during each of the five different 

periods. 

 

Covariates: 

 

PM1: There are 35 sensors of PM1 in the city of Eindhoven installed in the airboxes of the ILM network. 

This variable is measured in micrograms per cubic meter (µg/m3). 

 

Temperature: The temperature sensors are located in 35 airboxes in the city of Eindhoven that belong to 

the ILM network. This variable is measured in degrees Celsius (0C). 

 

Relative humidity: There are also thirty-five sensors and are located in the same airboxes where PM1 and 

temperature sensors are located. This variable is measured in percentage (%). 

 

Wind speed: There is just one sensor for the whole study area.  This variable is measured in kilometers per 

hour (km/h). 

 

Wind direction: There is just one sensor for the whole study area. This variable is measured in north 

azimuth degrees (0-359), but it was classified to wind rose directions and treated as a factor. 

 

Periods: It refers to the five periods in which the UFP sensors were rotated. This covariate will be treated 

as a factor and as a random effect since the values of UFP, and the other covariates might have differences 

between periods. If it is true that every period differs from each other in time, they also have another 

particularity; every period is related to a different area in which the UFP sensors were located during the 

corresponding period as we can observe in Appendix 1. Hence, periods differ in time and space.    

 

UFP, PM1, relative humidity, and temperature were downloaded from the AiREAS website (“Download - 

ECN dustmonitoring Aireas,” 2018). While wind speed and wind direction were downloaded from the 

KNMI website (“KNMI - Weather data from the Netherlands - Download,” 2018). 

 

All the variables mentioned before were downloaded considering an hourly average. 

 

After introducing the problem statement, the research objectives, and data and variables description, in the 

next chapter, the methodology applied to develop the present study and to reach the research objectives is 

presented. 
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4. METHODOLOGY 

The methodology used in the present research can be explained by the flowchart in Figure 3. The initial 

input, which is the response variable (UFP) and all the initial covariates (PM1, relative humidity, temperature, 

wind direction, and wind speed) went through a pre-processing analysis to clean the data, removing possible 

errors and outliers. The Pearson correlation test was applied between the covariates and the response 

variable, leaving out the covariates that present a low correlation and significance. 

 

The cleaned data and the selected covariates were split into 24 hourly timestamps before applying the 

multiple regression linear analysis with the aim of removing the temporal trend between hours. However, 

there was still a temporal trend between the different days, which will not be considered in the present study 

due to time limitation. 

 

Hereafter, the term timestamp will be referred to as the hourly classification of the data considering each 

timestamp as a set of observations (Log-transformed UFP and the covariates) taken in different days but at 

the same time (e.g., 0700, 0800, etc.). It means that in the end, 24 timestamps were obtained in total. 

 

The multiple regression linear analysis was applied to every timestamp with the aim of getting the model 

coefficients required for predicting UFP. This process was useful to verify the significance of each covariate 

and find out again which ones should be considered for further analysis. 

 

When the covariates were defined, they were prepared to have their respective values in every cell raster into 

the study area. Furthermore, ordinary Kriging was applied to the residuals to get their values in the entire 

research area as well. 

 

Knowing the models’ coefficients, and the covariates and residuals values; the 24 different models 

corresponding to each hourly timestamp were executed to get the maps of predicted UFP in the study area. 

 

Finally, the models were validated using the mean error (ME), and root mean square error (RMSE) 

approaches. 
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Figure 3. Flowchart of the methodology 
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4.1. Data pre-processing 

Data quality is a concept that embraces more than data accuracy since it is already known that it also consists 

of completeness, consistency, and currency which are relevant characteristics of quality of data (Batini & 

Scannapieca, 2006).  

 

The data used in the present study consist of different variables as is explained in Chapter 3. However, 

inspecting the data just by checking at it, is difficult to read and analyze due to its size. In that sense, 

descriptive statistics offer a great range of tools and procedures like graphics and mathematical calculations 

that make the data readable and interpretable (Miles & Banyard, 2008).  

 

The following procedures and calculations of descriptive statistics were used to analyze the data: 

 

• Histogram 

• Box plot 

• Q-Q plot 

• Timeline 

• Mean, quantiles, standard deviation, maximum and minimum value, etc. 

 

As a result, we found outliers since devices that usually have mobility such as the UFP sensors, and are 

exposed to different environmental conditions, tend to present outliers (Cho & Choi, 2017). 

 

Finally, the outliers were removed considering a suitable criterion according to the data distribution. 

 

4.2. Correlation between covariates and response variable 

The Pearson correlation coefficient was used to assess the correlation degree between the covariates and 

the response variable. 

 

This coefficient can be defined as “the covariance of the two variables divided by the product of their 

standard deviations” (Zhou, Deng, Xia, & Fu, 2016). 

The Pearson correlation coefficient measures the degree at which variables are linearly dependent. This 

coefficient has a value within the range of -1 and 1. 

 

Since periods and wind direction are covariates treated as factors, it will be not possible to assess their 

correlation against the response variable. Instead, their significance were checked while the multiple linear 

regression analysis was applied. 
 

4.3. Linear model 

A multiple linear regression model analysis was applied to establish the linear relation between the response 

variable and the covariates to get the respective coefficients. Furthermore, the significance values of the 

covariates were checked to determine which of them explain better the response variable and which of them 

should be removed. The linear regression model analysis was applied after splitting the data into 24 hourly 

timestamps. Hence, 24 different set of coefficients were calculated, one for every timestamp. 

The multiple linear regression model can be represented by the following equation: 

 

𝑦𝑝,𝑠,𝑑,ℎ = 𝛽0 𝑝,ℎ + ∑ 𝛽𝑐,𝑝,ℎ𝑥𝑐,𝑝,𝑠,𝑑,ℎ𝑐 + 𝜀𝑝,𝑠,𝑑,ℎ  (1) 
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 Where: 

 

𝑦𝑝,𝑠,𝑑,ℎ = Response variable (log-transformed UFP)  at period 𝑝, location 𝑠, day 𝑑, and timestamp ℎ 

𝛽0 𝑝,ℎ = Intercept at period 𝑝, and timestamp ℎ 

𝛽𝑐,𝑝,ℎ = Linear parameter estimates for covariate 𝑐 at period 𝑝, and timestamp ℎ 

𝑥𝑐,𝑝,𝑠,𝑑,ℎ = Covariate 𝑐 at period 𝑝, location 𝑠, day 𝑑 and timestamp ℎ 

𝜀𝑝,𝑠,𝑑,ℎ = Residuals at period 𝑝, location 𝑠, day 𝑑, and timestamp ℎ 

 

After applying the multiple linear regression model to every timestamp, we got the model coefficients and 

residuals considering the hourly temporal variation since the data were split in hourly timestamps. Likewise, 

the significance level of the obtained coefficients was tested. The model obtained was the following: 

 

𝑦̂𝑝,𝑠,ℎ = 𝛽̂0,𝑝,ℎ + 𝛽̂ℎ𝑢𝑚,𝑝,ℎ𝑥ℎ𝑢𝑚,𝑝,𝑠,ℎ + 𝛽̂𝑝𝑚,𝑝,ℎ𝑥𝑝𝑚,𝑝,𝑠,ℎ + 𝛽̂𝑤𝑑,𝑝,ℎ 𝑥𝑤𝑑,𝑝,ℎ + 𝛽̂𝑤𝑠,𝑝,ℎ𝑥𝑤𝑠,𝑝,ℎ + 𝜀𝑝,𝑠,ℎ   

 (2) 

 

Where: 

 

𝑦̂𝑝,𝑠,ℎ = Predicted log transformed UFP at period 𝑝, location 𝑠, and timestamp ℎ 

𝛽̂0,𝑝,ℎ = Interception at period 𝑝, and timestamp ℎ 

𝛽̂ℎ𝑢𝑚,𝑝,ℎ = Estimated coefficient for relative humidity at period 𝑝, and timestamp ℎ 

𝛽̂𝑝𝑚,𝑝,ℎ = Estimated coefficient for log-transformed PM1 at period 𝑝, and timestamp ℎ 

𝛽̂𝑤𝑑,𝑝,ℎ  = Estimated coefficient for wind direction at period 𝑝 and timestamp ℎ 

𝛽̂𝑤𝑠,𝑝,ℎ = Estimated coefficient for wind speed at period 𝑝 and timestamp ℎ 

𝑥ℎ𝑢𝑚,𝑝,𝑠,ℎ = Relative humidity value at period 𝑝, location 𝑠, and timestamp ℎ 

𝑥𝑝𝑚,𝑝,𝑠,ℎ = Log-transformed PM1 value at period 𝑝, location 𝑠 , and timestamp ℎ 

𝑥𝑤𝑑,𝑝,ℎ = Wind direction at period 𝑝, and timestamp ℎ 

𝑥𝑤𝑠,𝑝,ℎ = Speed direction value at period 𝑝, and timestamp ℎ 

𝜀𝑝,𝑠,ℎ = Residuals at period 𝑝, location 𝑠, and timestamp ℎ 

 
As we can observe in Equation 2, the temperature variable was removed from the model because in most 

of the timestamps it was not significant 

4.4. Ordinary Kriging of the residuals 

Once the data were split in timestamps, it was necessary to select a proper method to estimate the variogram 

parameters (sill, range, and nugget) before applying Kriging to predict the residuals in the study area. To do 

so, it is essential to consider that UFP has a small range. 

 

The empirical variogram estimator has a limitation since the selection of lag classes, or bins is very critical 

because if they are too narrow then the estimated variogram will be noisy, but if the classes are too broad 

then it will lead a loss of the spatial structure of the variable (Lark, 2000). 

 

On the other hand, the maximum likelihood estimator (MLE) estimates better the variograms of fields with 

a weak spatial structure (short range and small spatial dependence) than the empirical variogram estimator 

(Lark, 2000). The MLE seems to be the most appropriate approach to estimate the variogram of the 

residuals. Consequently, this approach was chosen because the fitted model takes into consideration all the 

pairs of distances between points, which makes it possible to model spatial autocorrelation in a small range. 
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Maximum likelihood estimation approach determines values for the parameters of the variogram such that 

they maximize the likelihood that the process described by the model produced the observed data (Brooks-

Barlett, 2019). The MLE can be simplified to its natural logarithm, which is the log-likelihood function to 

be maximized to get the parameters estimates. 

 

 

𝐿(𝜃ℎ) = −
1

2
{𝑛ℎ log(2π) + log{|𝑪(𝜽𝒉)|} + 𝜺𝒉

𝑇(𝑪(𝜽𝒉))−1𝜺𝒉}  (3) 

 

Where: 

 

𝐿(𝜃ℎ) = Log-likelihood function to estimate set of parameters 𝜃 at timestamp ℎ 

𝜃ℎ = Parameters (sill, nugget, and range) to be estimated at timestamp ℎ 

𝑪(𝜽𝒉) = Covariance matrix of 𝜃 at timestamp ℎ 

𝜺𝒉 = 𝑛 length vector of residuals at timestamp ℎ, where 𝜺𝒉~ 𝑁(0, 𝑪(𝜽𝒉))  

𝑛ℎ = Number of observations at timestamp ℎ defined by the number of locations multiplied by the number 

of days 

 

Likewise, the covariance of 𝜃 at timestamp ℎ can be expressed in terms of the nugget, sill, and range: 

 

𝑪(𝜽𝒉) =  𝜎ℎ
2𝑅(𝜙ℎ) + 𝜏ℎ

2𝑰  (4) 

 

Where: 

 

𝑪(𝜽𝒉) = Covariance matrix of 𝜃 at timestamp ℎ 

𝜎ℎ
2 = Sill of the variogram at timestamp ℎ 

𝜙ℎ = Range of the variogram at timestamp ℎ 

𝜏ℎ
2 = Nugget of the variogram at timestamp ℎ 

𝑅 = Exponential function which determines the shape of the variogram 

𝑰 = Identity matrix 

 

After estimating the variogram parameters of the residuals, ordinary Kriging was applied to predict them in 

the entire study area. Ordinary Kriging is an interpolation method for spatial data (Diggle, Tawn, & Moyeed, 

1998) with constant spatial mean and can be written as follows: 

 

𝜀𝑠̂0,ℎ = ∑ 𝑤𝑠0,ℎ 𝜀𝑠,ℎ  (5) 

 

Where: 

 

𝜀𝑠̂0,ℎ  = Predicted residual at any unobserved locations 𝑠0, and timestamp ℎ 

𝑤𝑠0,ℎ  = Kriging weight for residual at location 𝑠, and timestamp ℎ derived from the estimated spatial mean 

and covariance of the given data 

𝜀𝑠,ℎ = Residual at timestamp ℎ and location 𝑠 
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4.5. Preparation of the covariates 

Once the covariates have been selected, they must be prepared before being considered as inputs of the 

model. The first step was average all the values at every location and timestamp, obtaining 24 values (one 

for every hourly timestamp) in every position. However, it was possible just for the covariates that have 

numeric values but not being treated as factors. 

 

Later, Thiessen polygons were generated to obtain the covariates values in the entire study area for every 

timestamp. Finally, they were converted to rasters, considering the same cell size as the one selected for the 

predicted maps. In the end, 24 rasters (one for every timestamp) were created for all the covariates. The 

covariates treated as factors were also converted to rasters with the same cell size of the predicted maps, 

and that process will be explained in detail in Chapter 6. 

 

4.6. Predicted maps 

To assess the hourly temporal variation during the day, 24 maps were generated, one for every timestamp 

using the obtained model after applying the multiple linear regression analysis. 

  

A suitable cell size was chosen for the predicted maps according to the following criterion: 

• Cell size smaller than the UFP range, to be able to observe these variations. 

• A small enough cell size that allows observing variations of UFP in the urban area of Eindhoven.  

• A cell size that allows running the model with the computational sources available for this study.  

 

Once the model has been set, we can split it into two parts: 

 

𝛽0 𝑝,ℎ + ∑ 𝛽𝑐,𝑝,ℎ𝑥𝑐,𝑝,𝑠,𝑑,ℎ𝑐  = Non-constant mean at timestamp ℎ 

𝜀𝑝,𝑠,𝑑,ℎ = Residuals at timestamp ℎ 

 

The mean was calculated multiplying the covariates by their respective coefficients. However, it is necessary 

to have the covariates values in every single cell of the raster of the study area. To do so, Thiessen polygons 

were generated for all the covariates, and afterwards, they were converted into rasters with the cell size 

selected for the predicted maps. 

 

The residuals from the multiple linear regression analysis were predicted in the whole study area using 

ordinary Kriging. Since there are 24 different models, there are also 24 sets of residuals, one for every 

timestamp.  

 

Finally, the resultant raster of the non-constant mean was summed with the residual raster for every 

timestamp, getting the 24 prediction maps of log-transformed UFP, then a back-transformation was applied 

to obtain the UFP values for predicted maps. 

 

 

4.7. Validation 

Once the 24 UFP predicted maps were obtained, the mean error (ME) and root mean square error (RMSE) 

were used to validate the models for every timestamp. 
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The validation was applied using two vectors of the same size, the first one with all the observations values 

and the second one with the predicted values in the corresponding locations where the observations were 

taken at every timestamp. 

 

The ME refers to the average of the sum of all differences between observations and predicted values. It 

can be represented with the following equation: 

 

𝑀𝐸ℎ = 1/𝑛ℎ ∑ 𝑦ℎ,𝑠,𝑑 −𝑛
𝑖=1 𝑦̂ℎ,𝑠  (6) 

 

Where: 

 

𝑀𝐸ℎ = Mean error at timestamp ℎ 

𝑛ℎ = Number of observations at timestamp ℎ, it is equal to the number of locations multiplied by the 

number of days 

𝑦ℎ,𝑠,𝑑 = Observation of log-transformed UFP at timestamp ℎ, location 𝑠, and day 𝑑 

𝑦̂ℎ,𝑠 = Predicted value of log-transformed UFP at timestamp ℎ, and location 𝑠 

 

The ME was used to detect if there is a bias in the model. 

 

The RMSE can be expressed as follows: 

 

𝑅𝑀𝑆𝐸ℎ = √1/𝑛ℎ ∑ (𝑦ℎ,𝑠,𝑑 −𝑛
𝑖=1 𝑦̂ℎ,𝑠)2  (7) 

 

Where: 

 

𝑅𝑀𝑆𝐸ℎ = Root mean square error at timestamp ℎ 

𝑛ℎ = Number of observations at timestamp ℎ, it is equal to the number of locations multiplied by the 

number of days 

𝑦ℎ,𝑠,𝑑 = Observation at timestamp ℎ, location 𝑠, and day 𝑑 

𝑦̂ℎ,𝑠 = Predicted value at timestamp ℎ, and location 𝑠 

 
  



MODELLING AND MAPPING OF ULTRAFINE PARTICLES IN SPACE AND TIME IN THE CITY OF EINDHOVEN, THE NETHERLANDS 

 

23 

5. DATA PRE-PROCESSING  

5.1. UFP 

First, the summary of the data was observed checking at the minimum and maximum value, quantiles, 

median and mean for the 18 airboxes, finding a high variability and outliers. This data summary can be 

observed in Appendix 2. 

 

The next step was to visualize the data using graphics like histograms, boxplots, and Q-Q plots, so three 

sets of data (3 airboxes) were selected to confirm what was already observed in the data summary as it is 

noted in Figure 4. 

 

Airbox 1: 

 

  

Airbox 11: 
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Airbox 30: 

The graphics confirmed that the UFP data is not normally distributed and very skewed. Hence, a log 

transformation was applied. Likewise, we can see outliers checking at the boxplots. 

After the log transformation was applied and continuing with the descriptive statistics, timelines, histograms, 

and boxplots were checked to find out if the data has a normal distribution or at least presents fewer outliers 

and look less skewed. 

 

Figure 5 shows that the data now is more similar to a normal distribution and there are fewer outliers than 

in the non-transformed data. Hence, the log-transformed data will be used to get the predicted maps. The 

complete list of mentioned graphics can be found in Appendix 3. 

 

Airbox 1: 

 

 
  

Figure 3. Descriptive statistics of UFP (Histogram, boxplot, and Q-Q plot) 
Figure 4. Descriptive statistics of UFP (Histogram, boxplot, and Q-Q plot) 
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Airbox 11: 

 

Airbox 30: 

 
Figure 5. Descriptive statistics of log-transformed UFP (Timeline, histogram, and boxplot) 

 

Nevertheless, we can still observe outliers and also some data that apparently does not present any variability 

during some periods, but the dynamic nature of UFP makes it highly temporal and spatial variable (Kumar 

et al., 2014). Hence, it is inferred that those periods in which UFP seems to present a lack of variability, are 

errors during the measurement. This sort of error will be called flat data in the present study for purposes 

of practicality, and they were deleted from the dataset. 

 

In order to remove the outliers, I considered removing all the observations above (µ+3σ) and below (µ-3σ), 

but in that case, the number of removed observations would be more than expected, and probably most of 

them are valid observations, hence, to avoid eliminating correct observations I decided to use (±4σ) 

criterion. 
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Considering that criterion, the inferior and superior limits established for the observations are shown in 

Figure 6 (just the airboxes that have outliers are represented by a timeline graphic): 

 
 

 
  

Figure 5. Outliers detection of log transformed UFP 
Figure 6. Outliers detection of log-transformed UFP 
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After removing the outliers, there was still remaining flat data in airboxes 3, 12, 13 and 30. So, checking at 

the timelines, periods that correspond to flat data were identified. The next step was to remove the flat data 

of those identified periods. 

 

5.2. Covariates 

The procedure applied to UFP was also used to check the data quality of the covariates, removing errors in 

the data. However, outliers were not found but flat data was removed. 

 

In the case of relative humidity of airbox 11, the data presented illogical values during the whole period, for 

that reason the entire dataset was removed. 

 

Regarding wind direction, 0 degrees is very close to 359 degrees, but the software would interpret 0 degrees 

very far from 359 degrees. Hence, to avoid that mistake, the data were categorized as it is shown in Table 2. 

 

Wind direction 
categories 

North 

North-east 

East 

South-east 

South  

South-west 

West 

North-west 

Calm/variable 

Table 2. Wind direction categories 
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6. RESULTS AND ANALYSIS 

6.1. Correlation between covariates and response variable 

The results of Pearson correlation between candidate covariates and log-transformed UFP are shown in 

Table 3. 

 
Correlation between covariates and log-transformed UFP 

Air 

boxes 

log-

transformed 

PM1 

Temperature Rel. 

Humidity 

Wind 

speed 

AB1 0.63 -0.56 -0.11 -0.49 

AB3 0.55 -0.22 -0.31 -0.51 

AB4 0.68 -0.53 -0.17 -0.28 

AB6 0.63 -0.35 0.06 -0.29 

AB7 0.48 -0.23 -0.24 -0.48 

AB11 0.70     -0.57 

AB12 0.47 -0.52 -0.36 -0.50 

AB13 0.46 -0.14 -0.34 -0.25 

AB14 0.79 -0.54 -0.12 -0.18 

AB17 0.58 -0.51 -0.09 -0.41 

AB19 0.49 -0.30 -0.27 -0.49 

AB20 0.56 -0.40 -0.07 -0.41 

AB21 0.70 -0.33 0.10 -0.41 

AB24 0.54 -0.41 -0.18 -0.37 

AB25 0.70 -0.36 0.08 -0.54 

AB29 0.58 -0.33 -0.30 -0.54 

AB30 0.65 -0.42 -0.12 -0.41 

AB36 0.61 -0.20 -0.02 -0.55 

Table 3. Correlation values between candidate covariates and log-transformed UFP 

 

Temperature and relative humidity values in airbox 11 presented illogical values during the whole period of 

interest, and that data was removed, which will not have a significant influence on the final predicted maps 

since there are 34 more sensors of those variables in the study area. 

 

In most cases, we can observe an acceptable correlation. However, the correlation values of relative humidity 

are very low in comparison with the other covariates. Nevertheless, its significance value is acceptable; 

consequently, relative humidity was regarded as a covariate. 

 

Since the wind direction was categorized as a factor, it was not possible to assess its correlation with log-

transformed UFP. However, it was considered as a covariate because in further steps it was verified that it 

had an acceptable significance level when the linear regression models were applied. 
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6.2. Residuals of 24-hourly timestamps 

The R-Squared value of the 24 models is between 0.4 and 0.7 as can be observed in Figure 7, which I 

consider an acceptable value. 

 

 

Figure 7. R-squared values of every timestamp 

After applying the linear regression model to get the residuals and the model coefficients, residuals were 

included to the 24 different data frames (split by hourly timestamps) and with the aim of avoid 

computational problems and to have locations close enough to observe spatial autocorrelation on the 

residuals, the observations within the same airbox were artificially displaced in a buffer of 20 meters.  

 

6.3. Ordinary Kriging to the residuals 

Before applying ordinary Kriging to predict the residuals in the study area, maximum likelihood estimator 

was used to estimating the variogram parameters of the residuals for every timestamp as we can see in Figure 

8 and Figure 9. 
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Figure 8. Nugget and sill of the residuals for every timestamp 

 

Figure 8 shows that the nugget and sill have the same pattern for every timestamp, and they present very 

similar values, being the partial sill significantly smaller than the nugget. Hence, the variability is mainly 

explained by the nugget. 

 

On the other hand, Figure 9 does not show a pattern in the variation of the range among the timestamps. 

However, the lowest range is generated at 04:00. 

 

 

Figure 9. Range of the residuals for every timestamp 
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After getting the model parameters with maximum likelihood estimation, ordinary kriging was applied to 

the residuals.  Since in most of the timestamps the range of the model presented a value between 50 and 

100 meters, the selected cell size for the predicted maps was 50 meters, regarding also the available 

computational capacity. 

 

In Figure 10, we can observe the raster map of the predicted residuals of the timestamp 07:00. 

 

 

 

Figure 10. Raster map of the predicted residuals at timestamp 07:00 

6.4. Resultant covariates as inputs of the model 

A group of five covariates has already been selected with the linear model analysis, leaving out temperature 

due to its non-significant value. Log-transformed PM1, relative humidity, wind direction, and wind speed 

are considered as fixed effect covariates while, while periods are regarded as random effect. The reason why 

periods are viewed as random effect is that UFP were taken in five different periods according to Table 1, 

so different conditions between periods might influence the UFP values. The next step was to convert the 

covariates values in rasters for every timestamp regarding the same cell size selected for the residuals (50 

meters). To do so, Thiessen polygons were generated to get the values of the covariates in the whole study 

area as we can see in Figure 11. 
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Figure 11. Thiessen polygons of log-transformed PM1 and relative humidity at timestamp 07:00 

 

For wind speed, there is just one sensor available in the study area, so one raster with one single value was 

created for every timestamp. Those values were obtained averaging all the observations at each timestamp. 

 

However, since the wind direction is treated as a factor, the most repetitive category was selected for every 

timestamp. In Table 4, we can observe the chosen categories and the averaged wind speed. 

 

 

Timestamp Wind direction Wind speed 

2300 to 0000 South-west 31.59 

0000 to 0100 South 30.80 

0100 to 0200 South-west 31.50 

0200 to 0300 South-west 31.95 

0300 to 0400 South 31.68 

0400 to 0500 South 31.42 

0500 to 0600 South 31.77 

0600 to 0700 South-west 32.39 

0700 to 0800 South-west 32.74 

0800 to 0900 South-west 34.51 
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0900 to 1000 South-west 36.55 

1000 to 1100 South-west 38.94 

1100 to 1200 South-west 40.62 

1200 to 1300 South-west 40.97 

1300 to 1400 South-west 39.64 

1400 to 1500 South 38.23 

1500 to 1600 South 35.13 

1600 to 1700 South-west 32.57 

1700 to 1800 South 32.04 

1800 to 1900 South 33.10 

1900 to 2000 South 32.21 

2000 to 2100 South-west 32.21 

2100 to 2200 South-west 32.92 

2200 to 2300 South-west 32.30 

 

Table 4. Selected wind direction category and averaged speed for every timestamp 

As it is shown in Table 4, the predominant wind directions in Eindhoven are South and South-west. 

Finally, the different five periods are also treated as factors, so one different raster was generated for every 

single period. This is possible because UFP sensors were rotated during five periods among different 

locations in Eindhoven. Consequently, each period is related to a set of locations or an area.  

First, a Thiessen polygon was created to have the periods in the entire study area and later the period rasters 

were generated considering the value of 1 in the area related with the period and value of 0 in the rest of the 

raster as we can see in Figure 12 and Figure 13. 
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Figure 12. Thiessen polygons of the 5 rotations periods in the study area 

 

 
Figure 13. Raster of period 5 

As we can observe in Figure 12, a Thiessen polygon was generated considering all the periods in the entire 

study area, and then rasters were made independently for each period, in Figure 13 is shown the raster of 

period 5. 
 

6.5. Predicted UFP maps 

To get the predicted maps, the models obtained from the linear regression analysis were used for each 

timestamp respectively. 

 

The first step was to solve the mean of the model, multiplying the covariates by their respective coefficients. 
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The second step was to sum the resultant raster of the previous action with the resultant raster of the 

residuals for every timestamp. 

Since the applied model predicts log transformed UFP values, those results were back-transformed before 

plotting the maps. 
 

 

As we can see in Figure 14, the concentration of UFP is higher in traffic peak hours like 09:00 and 19:00 

and lower in timestamps when there is not a high density of traffic jam. 

 

Another particularity that can be observed is that the highest concentration of UFP is not in the center of 

the city as expected but in the north-east of it probably because the predominant wind in the city comes 

from the south-west and brings the UFP and other solids and gases in the air to that area.  

In appendix 4, all predicted maps are presented. 

Figure 14. Predicted UFP maps at 4 different timestamps. Figure 14. Predicted UFP maps at four different timestamps 
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6.6. Validation of the model 

The model was validating calculation the ME and the RMSE with the results shown in Table 5: 
 

Timestamp ME RMSE 

2300 to 0000 300 6848 

0000 to 0100 -280 6223 

0100 to 0200 -832 5444 

0200 to 0300 -1836 5289 

0300 to 0400 264 4956 

0400 to 0500 -798 4868 

0500 to 0600 -1723 4895 

0600 to 0700 -836 5043 

0700 to 0800 -590 6007 

0800 to 0900 -491 6278 

0900 to 1000 -481 5890 

1000 to 1100 -455 5879 

1100 to 1200 -576 6116 

1200 to 1300 338 5434 

1300 to 1400 1401 5775 

1400 to 1500 -1841 6066 

1500 to 1600 -1893 6337 

1600 to 1700 120 6211 

1700 to 1800 -693 6451 

1800 to 1900 -375 7270 

1900 to 2000 -794 7018 

2000 to 2100 -1213 7027 

2100 to 2200 -556 7326 

2200 to 2300 -259 7554 

Table 5. ME and RMSE comparison 

The predicted maps presented an acceptable ME value, in most of the cases below of 10% of the UFP 

values, and we can infer that the model does not introduce bias since the resultant values are negatives and 

positives. Nevertheless, the calculated RMSE has high values between 25% and 35% of UFP values. 
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7. DISCUSSION 

This chapter refers to an analysis of the entire research, reviewing some points of the methodology used to 

achieve the research objectives, the results obtained, beneficiaries of this study and limitations during the 

development of the thesis.  

7.1. Methodology used 

The first step that has been taken in this research was the pre-processing of the data to remove outliers and 

errors in UFP data. The criterion applied to remove outliers was ±4σ out of the mean of the normal 

distribution after applying a log-transformation. This method was used to every location independently 

which allowed to keep the spatial variation. Nonetheless, it did not consider the temporal variation. 

 

Other outlier-detection methods keep the spatial but also the temporal variation, for instance, van Zoest et 

al., (2018) made a spatiotemporal classification of the data before applying an outlier-detection using the 

mean and standard deviation of the normal distribution underlying the truncated normal distribution of the 

NO2 observations. This method would be suitable for the present research, but due to the time limitation 

to achieve the research objectives, ±4σ out of the mean of the normal distribution was applied. 

 

The method used is probably leaving some outliers during the hours when there is not a high traffic jam but 

removing more values than expected during peak hours since it is not considering the temporal variation. 

Thus, this fact might have influenced the estimation of the model coefficients and consequently in the 

results, decreasing the accuracy of the predicted UFP maps. 

 

After the pre-processing, the data was split into 24 hourly timestamps to partially keep the temporal 

variability, and just partial because there are also differences between days, weekdays and weekends, and 

between months. Those temporal variations are not considered in this research due to time limitation, and 

they will negatively influence the accuracy of the results. 

 

Another critical process to be reviewed is the artificial spatial displacement of the observations. This process 

was made due to the limited number of locations where the UFP data have been taken and the long distances 

between them. As it was presented in previous chapters, UFP have a high dynamic spatial nature which 

means that vary significantly in short ranges, making hard to establish a spatial autocorrelation of UFP. 

 

Since it is known that UFP can vary significantly in ranges of 10 meters, the artificial displacement of 

measurements was made in a maximum buffer of 20 meters; even though this may have led some errors in 

the results, it was necessary to establish the spatial autocorrelation of the residuals before estimating its 

variogram and fitted model to apply ordinary Kriging. 

 

Likewise, the selection of covariates is a critical process for the accuracy of the model. In this case, the 

covariates selection was based on the literature review (Jayamurugan et al., 2013) and data availability, pre-

selecting just atmospheric variables. In the end, log-transformed PM1, relative humidity, wind direction, and 

wind speed were selected as fixed effect variables and the periods were selected as a random effect variable. 

The lack of sensors of wind direction and wind speed (one sensor in the study area) might affect the accuracy 

of the results. However, spatial covariates as population or distance to main roads are not considered, and 

they would significantly increase the accuracy in the results. 
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About the validation of the model, the RMSE presented high values because the data has a high variability 

as was shown in chapter 4, so all the peaks that initially the data presented are not represented in the 

predicted maps. 

 

In spite of the results can be improved, the methodology applied is suitable to predict UFP in the city of 

Eindhoven, and regarding the lack of data, the few sensors available, and the time limitation, the research 

objectives were achieved, and the maps give an idea about the spatiotemporal distribution of UFP with an 

acceptable spatial resolution. 

 

7.2. Spatiotemporal variability of UFP in Eindhoven 

The results show the spatiotemporal variability of UFP in the city of Eindhoven. Hence, the main goal of 

the present research was achieved. The maps of predicted UFP show in general a small concentration 

between 00:00 and 06:00 but in peak hours like 08:00 or 19:00 when there is more circulation of vehicles in 

the city, the concentration of UFP increases, showing that the UFP quantities in urban areas are directly 

proportional to vehicles combustion. 

 

Another particularity of the results is that in all the 24 maps, the major concentration of UFP is in Eindhoven 

north-east as we can see in Appendix 4, which is not expected since that area is relatively far from the center, 

and with a small vehicles circulation. A possible reason may be that the predominant wind in Eindhoven 

comes from the south-west and carries the particles in the wind towards that area. 

 

Furthermore, in Figure 15 we can observe that the highest UFP concentration was predicted at 20:00 and 

the lowest one at 03:00, which makes sense due they are opposite in terms of vehicles circulation. 

 

Figure 15. Variation of averaged predicted UFP among timestamps 
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7.3. Beneficiaries of the research  

This study will benefit to Eindhoven authorities to have an idea about how UFP concentration is 

spatiotemporally distributed in the city. Therefore, they can make important decisions to mitigate the fatal 

health consequences that people who are exposed to air pollution can suffer. 

 

It will also benefit to Eindhoven citizens since they will know which areas are more dangerous to stay in 

and it will create consciousness to improve habits in order to decrease air pollutants emissions in the city. 

 

7.4. Research limitations 

The first limitation was the lack of UFP data since there are just six sensors. However, when they started to 

be rotated, there were five of them working, and during the rotation two of them had problems and stopped 

working. Likewise, the availability of data in the maximum amount of locations is vital because the primary 

goal of this study is to predict UFP values in the city of Eindhoven, so every location with available data 

makes the results more accurate. 

 

Furthermore, all the observation were taken between the end of November 2016 and the end of February 

2017, which means that this research was able to predict UFP just in the winter season. Likewise, it can be 

inferred from literature review that UFP concentrations are higher in winter session (Zhu et al., 2010; 

Ragettli et al., 2014).  

 

Finally, the computational capacity available was not enough to try out different methods. In a first moment, 

maximum likelihood estimation was applied including the trend to get the coefficients of the models with 

the end of utilizing regression Kriging. However, this led to a memory overload even on a workstation with 

128GB of RAM.  
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8. CONCLUSIONS AND RECOMMENDATIONS  

8.1. Conclusions 

The main conclusion is that the methodology applied is suitable to predict UFP in the city of Eindhoven, 

despite the limitations described in the previous chapter. Nevertheless, the RMSE showed a high degree of 

uncertainty, whereby the method can be improved to reduce the uncertainty and consequently increase the 

accuracy. 

 

Even though it was possible to predict UFP in the study area using five sensors rotated over eighteen 

locations, the spatial resolution of the maps seems to be large for an urban area since we cannot observe 

smooth variations of the values but defined differences between the regions that compound the generated 

Thiessen polygons of the covariates. So, to get a better spatial resolution in the prediction maps, it would 

be necessary to have more than eighteen locations available. 

 

Likewise, the distances between observations are not short enough to assess spatial autocorrelation of UFP, 

because this pollutant presents a high spatial dynamic, making it challenging to apply various geostatistical 

approaches to predict UFP in the city of Eindhoven.  

 

The covariates used to estimate the model, explain well the response variable. Nonetheless, the inclusion of 

other spatial covariates (e.g., population, distance to main roads) would increase the accuracy of the 

predictions. 

 

8.2. Recommendations 

For future researches, it would be suggested to look for different methods (e.g., including Bayesian 

approach, regression kriging, etc.) to improve the accuracy of the results. The Bayesian approach has the 

advantage of accounting for a prior belief which will increase the accuracy of the obtained model, if the 

prior belief is informative but also will allow calculating the uncertainty for each coefficient of the model, 

giving a better idea of which covariates should be included. 

 

Also, one could include more explanatory variables (e.g., population, distance to main roads) to estimate the 

model. These variables will explain better the spatial distribution of the response variable, which will help 

to obtain more accurate results. 

 

For people involved in AiREAS project and developers of air quality sensor networks in general, it would 

be adviced to purchase more UFP sensors or to rotate those which are currently available for more extended 

periods and more locations to have a better spatial and temporal resolution of predicted UFP in Eindhoven. 
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Appendix-1 UFP sensors-rotation among the airboxes 
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Appendix-2 Summary of UFP data in the 18 airboxes 
  
 
 

Airbox Min. 
1st 
Qu. Median Mean 

3rd 
Qu. Max. NA's 

1 2001 7096 9290 10502 12750 48959 2228 

3 1190 5439 5594 7628 6697 28175 2195 

4 980 7947 11515 11947 15568 27563 2276 

6 694 8800 12413 13420 17109 43855 2185 

11 1021 5390 8902 9447 12054 54513 2163 

12 1102 11270 17836 15082 17885 37170 2039 

13 3675 8289 8330 9170 8493 39772 2228 

14 1429 8365 11801 12282 15190 32503 2189 

17 1021 6931 9408 11665 13916 51765 2228 

19 735 6145 9841 10434 13557 34586 2057 

20 882 7962 11188 12417 15445 37608 2184 

21 735 4961 7203 7858 9951 58800 2173 

24 2042 10821 14630 15547 19257 40075 2203 

25 2042 6686 9065 10559 13516 51042 2196 

29 1960 8167 12862 12916 16660 38873 2036 

30 588 7554 9114 10239 13271 151410 13 

36 939 6166 9473 9887 12332 40874 2195 
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Appendix-3 Timelines, histograms and boxplots of log-transformed UFP data for the 18  
                      Airboxes 
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Appendix-4 Predicted UFP maps
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