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ABSTRACT 

The efficiency of cropland mapping is an essential criterion for the implementation of sustainable 

agricultural practices and crop monitoring. With the increasing spatial and temporal resolution of satellite 

images, efficient cropland mapping calls for the satellite image time series (SITS) classification methods that 

are both accurate and fast. Dynamic time warping (DTW) and its variations showed significant advantages 

in coping with the irregular time series data. This MSc thesis evaluates the performances of DTW, time-

weighted DTW (TWDTW), weighted derivative DTW (WDDTW) and non-isometric transform DTW 

(NTDTW) in terms of accuracy and computation time for time series classification. The TWDTW achieved 

the highest overall accuracy which was 88.3%, and was the most time-consuming method. Warping path 

window was used to accelerate the computation of DTW-based methods. The TWDTW was selected to 

define the warping path window for reducing the computation time. Without the overall accuracy changing, 

the computation time of TWDTW reduced by 56.5%. Another method for reducing computation time 

called pattern decomposition was applied on both the TWDTW and TWDTW with warping path window. 

With a slightly changed overall accuracies, the computation time reduced 67.7% and 75.4% respectively. 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 

With the rapidly increasing population of the world, agriculture, as the food supply, is facing enormous 

challenges in the aspects of production and management (Waldner et al., 2015). Furthermore, the increasing 

frequency and intensity of extreme events such as drought, flooding, and high maximum temperatures are 

hindering agricultural development (Edenhofer et al., 2015). The development of sustainable natural 

resources management calls for the improvement of cropland mapping and monitoring methodologies 

(Matton et al., 2015). Offering timeliness, global coverage and objective observation, satellite remote sensing 

has become a critical source of data for cropland mapping and monitoring (Atzberger & Clement, 2013). 

Satellite image time series (SITS) data are demonstrated as being useful for describing trends or discrete 

change events of environmental phenomena (Gómez et al., 2016). 

According to Petitjean et al. (2012), time series cropland mapping has three challenges: (1) the lack of 

samples used to train the supervised algorithm; (2) missing temporal data caused by clouds obscuration; (3) 

annual changes of phenological cycles caused by weather or by variations in the agricultural practices. 

Dynamic Time Warping (DTW) (Sakoe, 1978) has shown well performance in coping with these challenges 

(Baumann et al., 2017; Petitjean et al., 2012). The DTW method works well for shape matching but is not 

suited for time series classification. It disregards the temporal range when applying the similarity measure 

between two time series (Maus et al., 2016). Each crop class has a distinct phenological temporal profile 

although there are internal variations (Reed et al., 1994). However, the phenological cycles in practice will 

not vary extremely. The temporal range and amplitude of the cycle vary in a range. In the DTW method, 

the similar amplitude cycles will be matched without considering their temporal durations or phase 

differences. Consequently, there will be two kinds of wrongly matchings: (1) two phenological cycles which 

have similar amplitude, but with different durations. These two cycles are supposed to be different crop 

types while the DTW method will match them together. (2) two phenological cycles which have a similar 

shape but start in different seasons during the year. The DTW method will match these two crops. In our 

study, we use the DTW and other DTW-based methods to classify the temporal profiles of seven crops 

which contained varying degree of internal variations. The DTW and DTW-based methods showed the 

abilities to endure this kind of variations in temporal profiles (Bagnall et al., 2017; Górecki & Łuczak, 2014; 

Jeong et al., 2011). 

Although the DTW and its variations have shown their advantages in the classification accuracy of time 

series data,  all DTW-based methods are facing a problem that the computation time is long. In Belgiu & 

Csillik (2018)’s experiments, they applied Random Forest and a variation of DTW called Time-Weighted 
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Dynamic Time Warping (TWDTW) (Maus et al., 2016) on three different study areas. In the computation 

time statistics, TWDTW required much longer time than Random Forest method. For example, for their 

study area 3, TWDTW spent 30 hours for classification, while the Random Forest only required 1 hour for 

25 iterations (Belgiu & Csillik, 2018). The long computation time of DTW method is reasonable due to the 

uncertainty of the warping extent in each two sequences’ DTW distance calculation (Gullo et al., 2009). The 

original DTW method calculates the DTW distance between all the points between these two sequences, 

which takes long computation time. There were many studies tried to improve the DTW method’s efficiency 

in different aspects. Petitjean et al. (2015) used the Nearest Centroid algorithm to average the set of 

sequences first, and then applied the DTW method for classification. This kind of reducing computation 

time method reduces the quantity of input time series data so as to reduce the computation time. With the 

same idea, Belgiu & Csillik (2018) adopted an object-based approach on the input satellite image time series 

data. The input images were first segmented and then applied for the subsequent classification step. In this 

way, the input data were greatly simplified. On the other hand, there were also many studies concentrated 

on the DTW algorithm’s simplification. Sakoe (1978) noticed that in the calculation of DTW distance 

between two sequences,  there are computing redundancy. The definition of warping path window could 

greatly reduce this kind of computing redundancy (Sakoe, 1978). In our study, we applied the warping path 

window as one of our methods to reduce the computation time of DTW and DTW-based methods. 

1.2. Research Objectives  

The overall objective of this research is to reduce the computation time of DTW and DTW-based methods 

for cropland mapping from satellite image time series. 

The Specific objectives are: 

⚫ To assess the performance of DTW and three DTW-based methods for cropland mapping.  

⚫ To test different widths of the warping path window defined on the DTW-based methods. 

⚫ To reduce the computation area by decomposing the patterns refer to the phenology of target crops. 

 

1.3. Research Questions  

⚫ To what extent do these three DTW-based methods improve the classification accuracy of original 

DTW method in the study area? 

⚫ What is the computational time required by the DTW and the three DTW-based methods? 

⚫ What is the computational time required by the different widths for defining the warping path 

window on the DTW and variations? 

⚫ How the widths of the warping path window affect the classification accuracies of DTW and DTW-

based methods? 

⚫ How to decompose the phenological pattern of each crop by considering the phenology in a 

mathematical formula or a logical method? 
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⚫ How the decomposition of phenological patterns affects the accuracy and computation time of DTW 

and DTW-based method? 
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2. THE STATE OF THE ART 

The state of the art is divided into two parts. Part 1 presents the main variations of Dynamic Time Warping 

(DTW) similarity measurement used in Satellite Image Time Series (SITS). These DTW-based variations 

achieved better accuracy of SITS classification. Part 2 presents the two most frequently used methods of 

defining warping path window. The warping path window not only alleviates wrongly warpings, but it also 

speeds up the DTW distance calculation. 

2.1. Variations of DTW 

DTW is an algorithm that calculates an optimal match between two sequences for measuring similarity. 

DTW differs from Euclidean distance (ED) by allowing one point on one sequence to be matched to many 

points on the other sequence and by allowing time lag between the matched points. The DTW was first 

proposed in the speech recognition field (Sakoe, 1978) and was introduced into the time series comparison 

to find patterns (Berndt & Clifford, 1994). Petitjean et al. (2012) first demonstrated that the DTW has 

advantages in coping with three challenges in SITS classification: (1) the lack of samples used to train the 

supervised algorithm; (2) missing temporal data caused by clouds obscuration; (3) annual changes of 

phenological cycles caused by weather or by variations in the agricultural practices. There are three variations 

of DTW method that have their advantages in coping with these challenges. These methods are presented 

below. 

2.2. Time-Weighted Dynamic Time Warping (TWDTW)  

There is a variation of the DTW method called the Time-Weighted Dynamic Time Warping (TWDTW) 

(Maus et al., 2016), which adopts a weight into the calculation of DTW distance. The weight is controlled 

by a Modified Logistic Weight Function (MLWF). The MLWF takes two matching points’ phase difference 

into consideration. For example, if a point in one sequence has a larger time lag than a point in another 

sequence, the weight between these two points will be larger. The weight can be tuned to suit different 

situations encountered when measuring the similarity between two sequences. This can be done by defining 

different values of two MLWF parameters, i.e. half-length of the sequence and the level of penalization for 

the points with larger phase difference. This method can be successfully used for agriculture mapping where 

different agriculture practices might cause variations in the growth cycles of the same crop. For example, 

due to different cultivation practices, the same crop might be planted or harvested in 15-30 days’ time 

difference (USDA, 2010). In this situation, the user can define a time difference tolerance between crop 

cycles in two sequences to suit different study area’s cultivation practices. 

The TWDTW can alleviate two kinds of errors that might occur when applying the DTW method: (1) two 

phenological cycles with similar amplitude, but with different durations. Despite the fact that these two 

cycles characterize two different crop types, the DTW method will match them together. (2) two 
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phenological cycles with a similar shape, but which start in different seasons during the year. These two 

cycles are supposed to be the same crop which is cultivated in different seasons (e.g. spring wheat and winter 

wheat). The DTW method will match these two crops. Thus, the time series cropland classification method 

needs to balance between shape matching and temporal alignment. The weight in TWDTW is a time 

constraint which controls the time warping extent and makes the time series alignment dependent on the 

seasons. 

2.3. Weighted Derivative Dynamic Time Warping (WDDTW)  

Another variation of the DTW method is called Weighted Derivative Dynamic Time Warping (WDDTW). 

This method combines the idea of TWDTW and Derivative Dynamic Time Warping (DDTW) (Keogh & 

Pazzani, 2001). The DDTW does not use the value of the sequences directly but uses the first derivative of 

the sequences to calculate their DTW distance. This idea is adopted to WDDTW. The WDDTW defines a 

weight to calculate the distance between two sequences. However, the distance between two sequences is 

not calculated directly on the original value. A neighbour point averaging is applied to the original sequences. 

In this way, two new sequences will be created. The averaging is simply the average of the slope of the line 

through the test point and its left neighbour, and the slope of the line through the left neighbour and the 

right neighbour. In the next step, the two new sequences will be matched following the procedure 

implemented in TWDTW and explained above. 

This WDDTW method tries to solve one of the weaknesses of DTW, namely that the DTW only considers 

the difference of Y-axis value of the points from two sequences. For example, assuming that two points A 

and B have identical values, but A is part of a rising trend and B is part of a falling trend. DTW considers 

these two points as being similar and matches them together, although A and B are not supposed to be 

matched. To prevent this problem, the first derivative of the sequences is considered. There is also a problem 

of the TWDTW method that can be alleviated by the WDDTW method. For example, the two sequences 

depicted in Figure 1a are similar. One of the sequences is modified to a deeper valley as depicted in Figure 

1c. Therefore, the DTW distance between the two sequences in this particular location will be higher. If 

these two sequences have also a time lag, the TWDTW distance will be higher than DTW distance due to 

the weight. However, from the results of the distance alone, we cannot distinguish whether the higher 

distance is caused by the shape difference or by the time lag. The WDDTW uses the first derivative to 

acquire the shape features of the two sequences and to get a better matching between them.  
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Figure 1 Local differences between two sequences (Keogh & Pazzani, 2001) 

2.4. Non-isometric Dynamic Time Warping (NTDTW)  

Besides the two above-mentioned variations of DTW, there is also the so-called Non-Isometric Transform 

Dynamic Time Warping (NTDTW) (Jeong et al., 2011). This method uses the sequences’ mathematical 

transforms to calculate the DTW distance and combines the transform DTW distance with original DTW 

distance by using different weights. The mathematical transforms are commonly used in the classification 

of time series to extract higher order features (Faloutsos et al., 1994). The transforms are Cosine, Sine, and 

Hilbert. The transforms convert the original sequences from the time domain to the frequency domain, 

which contains more shape features of the original sequences. The weight controls the effect of the 

transformed DTW distance. Similar to the WDDTW method that takes the shape features of the sequences 

into account, the NTDTW method tries to improve the matching accuracy between sequences where cycles 

have internal variation. The WDDTW and NTDTW all claimed that they perform better than the original 

DTW method by considering the sequences’ higher order features (Górecki & Łuczak, 2014; Jeong et al., 

2011). However, there is no directly performance comparison between WDDTW and NTDTW yet. 

In this study, there will be a performance comparison among TWDTW, WDDTW and NTDTW for 

cropland mapping. The TWDTW, WDDTW, and NTDTW methods have been successfully implemented 

and produced high classification accuracy (Górecki & Łuczak, 2014; Jeong et al., 2011; Maus et al., 2016). 

The TWDTW has been applied to a cropland classification in a tropical forest area with an overall accuracy 

of 87.32%, which is higher than DTW method’s 70.14% (Maus et al., 2016). In Jeong et al.’s, (2011) study, 

they compared WDDTW and DTW using different time series datasets. Most of the error rates of WDDTW 

is lower than the error reported for the DTW (Jeong et al., 2011). The NTDTW method was experimented 

on 47 time series datasets (E. Keogh et al., 2011). By comparing with the conventional DTW method, there 

is a significant reduction in error rate for most datasets (Górecki & Łuczak, 2014). All of these three methods 

can be adapted to different crop types. The tuneable parameters in these methods help them adapt to specific 

variations of phenological cycle shapes. This is meaningful to SITS cropland mapping. 

DTW and DTW-based methods have been applied to cropland mapping after the advantages (mentioned 

at the beginning of Part I) of DTW and DTW-based methods in dealing with SITS land-use classification 

were demonstrated (François Petitjean et al., 2012). Petitjean et al. (2012) applied the DTW method to 

Formosat-2 images classification in order to deal with issues raised by high resolution SITS, namely the 
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irregular sampling caused by clouds obscuration, ground truth missing, weather and variations of agricultural 

practices. Guan et al. (2016) applied the DTW to NDVI time-series from MODIS for mapping rice cropping 

system and confirmed that DTW is suitable for areas in which rice planting scheduling is flexible and rice 

growth periods in different phases are uncertain. Maus et al. (2016) applied the TWDTW to classify crops 

with various vegetation dynamics by EVI derived from MODIS data. The TWDTW showed well 

performance in identifying single cropping, double cropping, forest and pasture. Belgiu & Csillik (2018) 

applied TWDTW to NDVI time series derived from Sentinel-2 data cropland mapping on three study areas. 

The TWDTW method showed well performance in the crop type classifications. The highest overall 

accuracy among the classifications reached 96.19% (Belgiu & Csillik, 2018). Guan et al. (2018) applied an 

open-boundary locally weighted dynamic time warping (OLWDTW) distance method to NDVI time-series 

from MODIS for cropland mapping in Southeast Asia. There was a comparison between the OLWDTW 

and DTW. The accuracy of OLWDTW was more than 5% higher than DTW’s (Guan et al., 2018). 

2.5. DTW warping path window  

The classic DTW method is time-consuming (Belgiu & Csillik, 2018;Petitjean et al., 2012). The three DTW-

based methods described above rely on complicated internal calculations which makes them even more 

time-consuming. The TWDTW method has two parameters i.e. half-length of the sequence and the level of 

penalization for the points with larger phase difference, to be tuned to suit different growth cycles of the 

investigated crop types. The WDDTW method has a parameter for weighting the derivative distance to be 

tuned. The NTDTW has also a parameter for weighting transform distance to be tuned. The optimal 

parameters are defined by assessing the classification accuracy achieved by defining different parameter 

values. The tuning of these parameters increases the computational time. Therefore, there is an obvious 

need to reduce the computational time of these methods.  

Several research efforts are dedicated to defining the width of DTW warping path window (Itakura, 1975; 

Sakoe, 1978; Ratanamahatana & Keogh, 2004; Sakurai et al., 2007; Silva & Batista, 2016; Tan et al., 2018). 

The defined width constraints the DTW distance computation. Therefore, only the DTW distance 

computations within the width of the defined window will be taken. The width constraint helps reduce the 

computation cost by narrowing the search for a qualified path. In addition to reducing the DTW distance 

computation time, the warping path window also alleviates wrongly warping situations such as those when 

a point of one sequence matches the point which has a bigtime lag on another sequence.  

The definitions of warping path window can be divided into two kinds: (1) global constraints and (2) local 

constraints. There are two most frequently used methods for defining warping path window, namely the 

Sakoe-Chiba band (Sakoe, 1978) and the Itakura Parallelogram (Itakura, 1975). They both give the 

calculation of DTW distance global constraints. The global constraint gives the DTW distance calculation a 

whole limit on how far the warping path may stray from the diagonal of the warping matrix (Das, 1978; 

Guan et al., 2016; Myers, Rabiner, & Rosenberg, 1980). 
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There are also some local constraints methods to define the warping path window (Anh et al., 2018; 

Ratanamahatana & Keogh, 2004; Silva & Batista, 2016; Tan et al., 2018). These methods try to define the 

warping path window by extracting each element’s warping extent from diagonal along the warping path of 

the two sequences’ DTW distance calculation. The constraints will vary with the calculation of each DTW 

distance, which is more complicated. 

2.5.1. Sakoe-Chiba Band 

The Sakoe-Chiba Band was proposed for speech patterns aligning (Sakoe, 1978). The warping window gives 

the DTW distance matrix global constraints by defining the window width. The width stands for the 

maximum warping distance of a point on one sequence that can be matched to the other sequence. The 

similarity between two sequences will be assessed only within the defined warping window as depicted in 

Figure 2 In Sakoe-Chiba Band approach, the warping path window has the same width along the diagonal 

of the DTW distance matrix. It means every points of the sequence are allowed warping to the points on 

the other sequence within the defined width. The width is a constant. The Sakoe-Chiba Band is widely used 

not only in speech patterns aligning but also in music (Ning Hu, 2003; Zhu, Shasha, & Zhao, 2003), finance 

(Berndt & Clifford, 1994), medicine (Gollmer & Posten, 1995), biometrics (Deeb, Jannetta, Rosenbaum, 

Kerber, & Drayer, 1979) and robotics (Deeb et al., 1979). 

 

Figure 2 Sakoe-Chiba Band and Itakura Parallelogram warping window (Ratanamahatana & Keogh, 2004) 

2.5.2. Itakura Parallelogram 

The Itakura Parallelogram was also proposed for speech recognition (Itakura, 1975). In this method, the 

warping path window is more flexible to address the needs of different warping extents. In some cases, the 

warpings are not significant at the beginning and the end of the assessed time sequences. The parallelogram 

window’s shape can be tuned with two parameters controlling the maximum warping width and the slope. 

The slope stands for the warping extent’s increasing speed from the beginning of the warping path to the 

maximum warping width. The setting of the window parameters might be designed based on domain 

knowledge or experience. 
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Compare to Sakoe-Chiba Band, the Itakura Parallelogram is more fault-tolerant. The rigorous window width 

in Sakoe-Chiba Band may cause the optimal warping path to be cut by the window boundary which in turns 

might affect the classification accuracy. Nevertheless, the Sakoe-Chiba Band is simpler to apply in the 

calculation than the Itakura Parallelogram. The tuning of the parameters in Itakura Parallelogram is more 

time consuming. 
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3. MATERIALS AND METHODS 

3.1. Study area 

The study area of this research is in Imperial County, southern California, United States, from 33.1°N, 

115.65°W to 32.9°N, 115.45°W. Figure 3(a) illustrates the location of the study area. Imperial County is one 

of the highest-producing counties for sugar beets (100%), onions (22%), hay (alfalfa, over 17%), lettuce 

(over 17%) and wheat (over 15%) (USDA, 2017a). Figure 3(b) shows the false color combination (band 8 

near-infrared, band 4 red, band 3 green) for California in May 11, 2017. All the images in this study were 

projected in WGS 1984 UTM Zone 11N.  

As the Mediterranean climate in this study area, the rain falls mostly outside the crops growing season. The 

agriculture is heavily dependent on irrigated water from the Colorado River. For the year 2017, the average 

precipitation was 61.72 mm, and the annual mean temperature was above 27℃ (USDA, 2017a). Seven 

classes were selected for analysis, each of them occupying at least 3% of the study area: alfalfa, fallow, other 

hay, onions, sugar beets, winter wheat and lettuce.  

 

Figure 3 Study area in the Imperial Valley of California, USA (a). The false color combination (band 8 near-infrared, 
band 4 red, band 3 green) for the study area (May 11, 2017) is depicted in (b). 
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3.2. Data collection and pre-processing 

Sentinel-2 data are used in this study. The data are downloaded from the European Space Agency’s (ESA) 

Sentinel Scientific Data Hub. https://scihub.copernicus.eu/. Refer to Table 1, the Sentinel-2 mission has 

multi-spectral data with 13 bands in the visible, near infrared and short-wave infrared part of the spectrum. 

The spatial resolution is in 10 m, 20 m and 60 m. Revisiting every 5 days under the same viewing angles. 

Table 2 shows the dates of the images used in this study. All the data are Sentinel-2 Level 1C, with a cloud 

cover less than 5%. Only red band (band 4) and the near-infrared band (band 8) of Sentinel-2 data were 

used. The atmospheric correction was applied using the Sentinel Application Platform (SNAP) v6.0 and the 

sen2cor plugin v2.5.5 (ESA, 2018b). The Top-Of-Atmosphere (TOA) Level 1C images were processed to 

surface reflectance Level 2A images which can be directly used to get the Normalized Difference Vegetation 

Index (NDVI) (Tucker, 1979) time-series data. Resampling was done with the NDVI calculated from 

Sentinel-2 data from 10m to 30m resolution by using  3×3 window mean filter due to the ground truth data 

from CropScape was in 30m resolution. 

 

Table 1: Spectral bands for the Sentinel-2 sensors (ESA, 2018) 

Sentinel-2 bands Central wavelength (nm) Bandwidth (nm) Spatial resolution (m) 

Band 1 - Coastal aerosol 443 20 60 

Band 2 - Blue 490 65 10 

Band 3 - Green 560 35 10 

Band 4 - Red 665 30 10 

Band 5 - Vegetation red edge 705 15 20 

Band 6 - Vegetation red edge 740 15 20 

Band 7 - Vegetation red edge 783 20 20 

Band 8 - NIR 842 115 10 

Band 8A - Narrow NIR 865 20 20 

Band 9 - Water vapour 945 20 60 

Band 10 - SWIR-Cirrus 1380 30 60 

Band 11 - SWIR 1610 90 20 

Band 12 - SWIR 2190 180 20 

 

 

 

 

 

 

 

https://scihub.copernicus.eu/
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Table 2: Dates list of the Sentinel-2 time series data used in this research. “No.” represents the number of the time 
series data. 

No. Date No. Date No. Date No. Date 

1 2016-09-03 7 2017-01-31 13 2017-06-20 19 2017-10-08 

2 2016-09-23 8 2017-03-02 14 2017-07-10 20 2017-10-23 

3 2016-10-03 9 2017-04-21 15 2017-08-14 21 2017-10-28 

4 2016-10-13 10 2017-05-01 16 2017-08-29 22 2017-11-22 

5 2016-11-22 11 2017-05-11 17 2017-09-18 23 2017-12-07 

6 2017-01-01 12 2017-05-21 18 2017-09-23 24 2017-12-22 

 

3.3. Methods 

3.3.1. Overview 

This research is aimed at finding the most suitable method to the study area’s crops classification among the 

three DTW-based methods and reducing the computation time of this method. The methods consist of the 

following steps: (1) data pre-processing to create images of surface reflectance (Level 2A) from TOA (Level 

1C)(as mentioned in Section 2.2); (2) data processing, which involves the generation of training and 

validation samples and the creation of the NDVI time-series; (3) dates choosing, among the 24 Sentinel-2 

data listed in Table 2, applying time series classification by using the original DTW method, choose the 

highest accuracy period as our study period; (4) data classification, where TWDTW, WDDTW, NTDTW 

are used to classify the target classes; (5) Method selection, choose the most suitable method by assessing 

the classification accuracies and computation time obtained by the three DTW-based methods. (6) reducing 

computation time, defining the warping path window and decomposing the patterns are used to reduce the 

computation time of selected method. (6) Evaluation, for evaluating the classification accuracies and 

computation time obtained by selected method with the operations of time reducing. 
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Figure 4 Methods flowchart (DTW represents dynamic time warping; TWDTW represents weighted dynamic time 
warping; WDDTW represents weighted derivative dynamic time warping; NTDTW represents non-isometric 

transform dynamic time warping) 

3.3.2. Training and validation samples 

Ground truth data is provided by CropScape - Cropland Data Layer (CDL) for 2017, generated by the 

United States Department of Agriculture, National Agricultural Statistics Service (Boryan et al., 2011). The 

spatial resolution of CropScape data is 30 meters. Table 3 shows the first 9 crop types sorted descending by 

pixel counts. The third column represents the crops’ percentage. With the exception of “shrubland” and 

“developed”, the other seven classes were selected for analysis. The numbers of training and validation 

samples are also listed in Table 3.  

The accuracy assessments on CropScape (USDA, 2017b) present the producer and user accuracy (Table 3 

Column 6 and 7) of the CDL classification results for California. Only the Alfalfa’s Producer Accuracy (PA) 

is higher than 90%, which means the ground truth data are not reliable. In this study, 50 training samples 

for each crop type were first plotted their temporal profiles and then compared to the crop calendars (Rabi, 

2017; University of California Cooperative Extension, 2017), among 50 samples, the points whose temporal 

profiles had significantly difference with the others’ were removed manually. The validation samples were 

generated randomly excluding the parcels which had training samples. But, due to the low accuracy of the 

ground truth data, the validation samples were manually edited. We plotted all the validation samples’ 

temporal profiles and removed the samples who had significant difference with the other samples to make 

sure the temporal profiles belong to each crop type. In this way, the effects of misclassification on the quality 

of the validation samples can be alleviated. 
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Table 3 List of the first 9 crops sorted descending by pixels count; Column 3 is the crops’ pixels percentage in this 
study area; Column 4 and 5 are the numbers of training and validation samples. The numbers in the brackets of training 
samples are the numbers first selected to choose each crop’s pattern. The numbers before the brackets are the final 
numbers of training samples. Column 6 and 7 are the Producer Accuracy (PA) and User Accuracy (UA) of CropScape 
classification approach for California derived from the CropScape accuracy assessments (USDA, 2017b). 

CLASS_NAME Pixels 

count 

Percentage 

(%) 

Training Validation PA UA 

Alfalfa 155811 33.72% 50 50 91.60% 87.50% 

Fallow 64168 13.89% 50 50 80.80% 80.50% 

OtherHay 34403 7.45% 50 50 53.60% 65.50% 

Shrubland 28455 6.16% NA NA NA NA 

Onions 27854 6.03% 50 50 78.60% 71.40% 

Developed 23813 5.15% NA NA NA NA 

Sugarbeets 15997 3.46% 50 50 46.70% 86.00% 

WinterWheat 15957 3.45% 50 50 68.10% 72.40% 

Lettuce 14531 3.14% 50 50 20.10% 45.10% 

 

3.3.3. Temporal phenological patterns 

The NDVI generated from 10 m resolution Sentinel-2 red and near-infrared spectral bands was used to 

compute the temporal phenological patterns of the target classes: 

NIR RED
NDVI

NIR RED

−
=

+
                                                                       equation (1) 

where NIR are data from the Sentinel-2 near-infrared band, and RED are data from the Sentinel-2 visible 

red band. 

NDVI has become one of the most-used indices for studying vegetation phenology (Yan & Roy, 2014). 

NDVI time series is a good solution to address the issue that describing trends or discrete change events in 

agriculture land use (Ali, 2009) and it also can reduce the spectral noise caused by illumination conditions, 

topographic variations or cloud shadows (Huete et al., 2002). 

After plotting 18 NDVI time series values of 50 training sample points in each class, we found that the 

temporal profiles of each class varied, but for the most part shared similarities. However, some points’ 

temporal profiles were very different and were attributed to the mis-classification of the CropScape 

approach. For example, there were some training points’ temporal profiles whose NDVI values were around 

0.1 through the whole year. They should be fallow, but the CropScape classified them as other crops. This 

kind of errors can be easily removed manually. Among the 50 training samples of each class, we manually 

removed the significant different ones and did the arithmetic averaging for the rest of the training points. 

The averaging sequences were the patterns of the target 7 classes. 
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As irrigation was applied in the study area, the area was divided into dense agricultural parcels for the 

production of cash crops. Different agricultural practices make the temporal phenological patterns of the 

target crops complex. (El-Gammal et al., 2013) set three levels for different NDVI values. The NDVI values 

of some samples are below 0 are “No plant cover”; between 0.01 and 0.3 are “Weak plants”; above 0.31 are 

“Healthy plants”.  Fallow is a class with values of NDVI around 0.1 through the year. Alfalfa and other hay 

(non-alfalfa) may be planted and harvested periodically throughout the whole year. So, their patterns show 

the maximum irregularity among the other crop patterns. Sugar beets has a trapezoid like temporal profile. 

The NDVI values start increasing in the middle of October 2016. Before decreasing in May 2017, the sugar 

beets stayed “Healthy plants” for 7 months. Winter wheat and onions have one highest NDVI value in their 

temporal profiles. For winter wheat, the values increased in November and got the peak in February. The 

increasing of onions values had two months delayed and got the peak in April. After June, both of them 

became bare soil. Lettuce has two peaks, in Dec-Jan and May, followed by bare soil afterwards. Figure 8(b) 

illustrates the phenological patterns of the target crops using Sentinel-2 NDVI time series for 2017. 

3.3.4. Classification 

After the 10 m to 30 m resolution resampling, the size of NDVI time series images was reduced from (2190, 

1899) to (730, 633). There were 462090 pixels to be classified into 7 target classes. However, the DTW and 

DTW-based methods are all time-consuming (Belgiu & Csillik, 2018; Górecki & Łuczak, 2014; Jeong et al., 

2011; Maus et al., 2016; Petitjean et al., 2012). A subset (Figure 5) of the study area was defined to accelerate 

the testing of DTW and DTW-based methods’ performance. The size of the subset is (300, 300) with 90,000 

pixels. The crop types in the subset had the similar proportion with the initial study area. The classification 

was first carried out in the selected subset. The distance calculations between each pixel’s sequence (i.e. 

NDVI time series data) and 7 temporal patterns was performed in this study. Among the 7 results, the pixel 

is assigned to the class which had the smallest distance value. In this study, 3 DTW-based methods 

(TWDTW, WDDTW, NTDTW) of distance calculation were applied on the classification of Sentinel-2 

NDVI time-series data and the original DTW method was also applied as comparison. After the three DTW-

based methods applied on the subset of study area, we chose the highest accuracy one which was the 

TWDTW to apply on the whole study area (2190,1899). The warping path window was defined on the 

TWDTW distance calculation to reduce the computation time. We also tried to decompose the temporal 

profiles of the patterns to decrease the computation time. 
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Figure 5 Study area (upper) and (300, 300) subset (below) CropScape land use map. The legend adopted from 
(USDA, 2018) 

3.3.5. DTW 

DTW is an algorithm which is based on Euclidean distance for similarity measurement between two 

sequences. The two time series sequences U = {u1, u2, …, un} and V = {v1, v2, …, vm} have lengths n and m. 

A n×m matrix Dbase = (dbase(ui,vj))n×m is used to store the Euclidean distance between ui ∈ U ∀ i = 1, 2, …, n 

and vj ∈ V ∀ j = 1, 2, … , m. 

( , ) | |base i j i jd u v= −                                                                   equation (2) 

The DTW distance D is computed by a recursive sum of the minimal distances, such that, 

, ( , ) 1, 1, 1 , 1min{ , , }i j base i j i j i j i jd d d d d− − − −= +                              equation (3) 

There are boundary conditions of the D: 
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                                       equation (4) 

Figure 6 illustrated the DTW distance matrix. Each cell in the matrix saved the DTW distance value between 

two sequences. The red cells which represented the lowest DTW distance values composed the warping 

path. The farther away is the warping path from the diagonal, the more points on one sequence will be 

matched to one point on the other sequence. 

 

 

Figure 6 DTW distance matrix and Warping path window (Jeong et al., 2011). U and V are the two sequences to be 
calculated for DTW distance. (a) shows the DTW distance matrix of U and V. The area circled by brown line is the 
warping path window. R represents the warping path window width. (b) shows the alignment of U and V based on 

DTW. 

3.3.6. TWDTW 

In the Time-Weighted Dynamic Time Warping (TWDTW) method (Maus et al., 2016), a weight ω is 

given to the dbase, 

( , ) , | |base i j i j i jd u v= −                                                                       equation (5) 

The WDTW distance WD is such that, 

, , 1, 1, 1 , 1| | min{ , , }i j i j i j i j i j i jwd u v wd wd wd − − − −= − +                     equation (6) 

The weight ω is defined as below called the modified logistic weighted function (MLWF), 

, ( ( , ) )

1

1 i j
i j g t t

e
 


− −

=
+

                                                                         equation (7) 
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The g(ti,tj) is the elapsed time in days between the dates ti in the pattern U and tj in V. steepness α controls 

the level of penalization for the points with larger phase difference. β is the midpoint. 

 
Figure 7 MLWF with different α. 

The value α could range from zero to infinity, there are four cases with different α as Figure 7 shown: (1) 

Constant weight: when α=0, all points are given the same weight; (2) Linear weight: when α=0.01, the weight 

value is nearly a linear relationship; (3) Sigmoid weight: different value of α can achieve different sigmoid 

patterns. Figure 7 shows the sigmoid pattern when α=0.025, 0.05, 0.1. (4) Two distinct weights: when α=3, 

the first one-half is given one weight value, the second one-half is given another weight value. 

In the time series classification, the sigmoid weight is used to give different penalty to different time warps. 

There will be a low penalty for small time warps and significant cost for large time warps. But the α and β 

must be tuned to suit different datasets. In this study, after tuning, we set the α=0.025, β=193. 

3.3.7. WDDTW 

Weighted derivative dynamic time warping (WDDTW) (Jeong et al., 2011) is based on the TWDTW and 

imposes the idea of derivative dynamic time warping (DDTW). The DDTW transforms the original points 

into higher level features, which contain the shape information of a sequence. The estimate equation for 

transforming data point ui in the sequence U is given by, 

1 1 1( ) (( ) / 2)
,1

2

u i i i i
i

u u u u
d i n− + −− + −

=                                           equation (8) 

where n is the length of sequence U. 1 1

u ud d= and 1

u u

n nd d −= . 

Then the weighted version of DDTW (WDDTW) is given as follows: 

, , 1, 1, 1 , 1| | min{ , , }u v

i j i j i j i j i j i jwdd d d wdd wdd wdd − − − −= − +               equation (9) 

where 
u

id  and 
v

jd  are the transformed sequences from sequence U and V with lengths n and m, 

respectively. 
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The estimate 
u

id  is simply the average of the slope of the line through the test point and its left neighbor, 

and the slope of the line through the left neighbor and the right neighbor. This method uses the shape 

features instead of original value to alleviate the confusion caused by local differences (Figure 1) and weights. 

3.3.8. NTDTW 

In case of non-isometric transform dynamic time warping (NTDTW), there are three transforms used for 

the DTW distance measure. For the time series { : 1,2,..., }iU u i n= =  has a transform 

{ : 1,2,..., }kT u k n= = . 

Cosine transform: 
1

1
cos[ ( )( 1)]

2u

n

k i u

i

t u i k
n



=

= − −                     equation (10) 

Sine transform: 
1

1
sin[ ( ) ]

2u

n

k i u

i

t u i k
n



=

= −                                   equation (11) 

Hilbert transform: 
1

u

n
i

k

i u
i k

u
t

k i=


=
−

                                                    equation (12) 

The NTDTW distance is defined as: 

, , ,(1 )
u vi j i j k ktd d d = − +  

where ,i jd  is the DTW distance between U and V, ,u vk kd  is the DTW distance between transform U 

and transform V. 

The mathematical transforms are popularly used in the classification of time series to extract higher order 

features. This method adds transforms of the sequences to the DTW distance and uses a parameter θ to 

control the effect of the transforms. Then the final distance will include the features of higher order. The 

parameter θ has to be tuned. 

3.3.9. Defining the warping path window width 

Sakoe (1978) proposed the Sakoe-Chiba Band to constrain the calculation of DTW distance to a specific 

warping path window. The Sakoe-Chiba Band not only reduces the computation time of the DTW distance 

calculation, but also improve the accuracy (Sakoe, 1978).  

There is a warping path ( , )k kw i j=  of two sequences whose length are i  and j , the constraint of the 

warping path is such that i ij R i j R−   + , where iR  is a term defining the allowed range of warping, 

for a given point in a sequence. In the case of the Sakoe-Chiba Band, R is independent of i . 

,0 ,1iR d d m i m=      
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where iR  is the height above the diagonal in the y-direction, as well as the width to the right of the diagonal 

in the x-direction. Note that | |R m= , and the above definition forces R to be symmetric. 

As an example, a Sakeo-Chiba Band of overall width of 11 (width 5 strictly above and to the right of the 

diagonal) with the definition 

5 1 5

5
i

i m
R

m i m i m

  −
= 

− −  
                                                          equation (13) 

In Figure 6(a), the area circled by the brown line is the warping path window. R is the width of the window. 

Warping path window constraints the DTW distance calculation and make sure that one point on one 

sequence will not be matched to more than R numbers of points. In terms of temporal aspect, the warping 

path window limits the warping which will not happen between points which had more than R numbers of 

intervals. The effect of the warping path window and the weight in TWDTW method are alike. They all try 

to constrain the DTW distance calculation to prevent the points on one sequence match points which are 

too far away on the other sequence. For TWDTW, the set of warping path window width should not 

interfere with the effect of the weight. The intervals of selected time series’ dates in this study is not 

equivalent, with a range from 10-40 days. So, the maximum warping days controlled by the warping path 

window are 10R-40R. In MLWF of TWDTW, the maximum warping days is decided by the value of β. If 

we do not want the defining of warping path window to affect the results of TWDTW method, we should 

make sure 10R-40R is larger than β. 

3.3.10. Decomposition of phenological patterns 

For the patterns of target classes, there were many periods when the temporal profiles of the crops 

overlapped. Most of the overlaps happened when the soil was bare. Except Alfalfa and other hay, the other 

5 classes were overlapping from Sep to Oct 2016 and from Aug to Sep 2017. The DTW distance between 

any two of these 5 classes during these periods would be very small. In the classification, we calculated the 

DTW distance between each pixel and 7 classes’ patterns. In the bare soil periods of the 5 classes, the short 

DTW distance had no contribution to the distinguishing of these 5 classes. The discrimination between 

target crops relies on the other periods. Therefore, we reduce some classes’ calculation periods. For fallow, 

due to the fact that it has low value throughout the whole year, we only kept March-June part where the 

fallow had distinct values from the other 6 classes. For onions and winter wheat, the period from December 

to June was kept. Their different peak times can be used to distinguish them. Lettuce had two peaks in the 

temporal profiles. We kept the two peaks and removed the bare soil periods. Sugar beets had a trapezoid 

like temporal profile, but we notice that if we remove the bare soil periods of sugar beets, the rest of the 

profile would be similar to alfalfa. Therefore, the bare soil periods are useful for distinguishing sugar beets 

and alfalfa. Consequently, we kept the whole temporal profile of sugar beets. Alfalfa and other hay fluctuate 

throughout the entire year. We kept the whole temporal profiles of them.   
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4. RESULTS AND DISCUSSION 

4.1. Results 

All the DTW and DTW-based methods analysis in this study were run on a configuration with 4 cores 3.30 

GHz and 8-GB memory in PyCharm 2018.2.4 64-bit on Windows 10 64-bit professional version. The code 

of this thesis can be found on https://zenodo.org/record/2594722#.XIuC4ShKhPY. The DOI:  

10.5281/zenodo.2594722. In the programming, we used “numpy” library for processing the matrices. “math” 

for calculating the Euclidean distance. The main program “test.py” has the ability to call all the function we 

need in this study. DTW and DTW-based methods are all coded as functions. The DTW and TWDTW 

with warping path window are coded as independent functions. The decomposition patterns of DTW and 

TWDTW are coded as independent functions. 

4.1.1. Phenological patterns decision 

At the beginning of this research, we downloaded only the Sentinel-2 data of 2017 from January to 

December (total 18 dates). From the training samples, we plotted the temporal profiles of the target seven 

crops (Figure 8(a)). We changed the dates and plotted the temporal profiles of targets crops from September 

2016 to September 2017 as Figure 8(b) shown. Figure 8(c) shows the dates of the reduced temporal 

profiles from September 2016 to June 2017. 

The original DTW classifications were applied on these three periods, the accuracies of these three periods’ 

classifications were shown in Table 4. Among the three periods, Sep2016-Sep2017 period achieved the 

highest overall accuracy, which was 57.4%. The overall accuracies yielded for Jan2017-Dec2017 period and 

Sep2016-June2017 period were 52% and 54% respectively. The computation time of Jan2017-Dec2017 and 

Sep2016-Sep2017 were similar, due to the fact that there were 18 dates in their time series data. For Sep2016-

June2017 period, there were 13 dates in its time series, which reduced the computation time. 

The classification results are presented in Table 5. The best classified class was the fallow class with a PA 

and UA of 100%. Alfalfa and OtherHay class were confused with each other. Many OtherHay class 

validation samples were classified as Alfalfa. This confusion decreased the UA of Alfalfa class and the PA 

of OtherHay class. The high overlap between Onions, Lettuce and WinterWheat class lead to the low PAs 

and UAs of these three classes. Some Sugarbeets validation samples were misclassified as Onions and 

WinterWheat, which decreased the PA of Sugarbeets to 64%. 

https://zenodo.org/record/2594722#.XIuC4ShKhPY
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Figure 8 Temporal profiles of different dates selection of Sentinel-2 time series data. (a) shows the 7 crops’ temporal 
profiles from January 2017 to December 2017 (total 355 days). (b) shows the 7 crops’ temporal profiles from 

September 2016 to September 2017 (total 385 days). (c) shows the 7 crops’ temporal profiles from September 2016 
to June 2017 (total 290 days). 

Table 4 Overall accuracies and computation time of three periods’ (January 2017-December 2017, September 2016-
September 2017, September 2016-June 2017) DTW classifications. 

Periods Overall Accuracy Computation time 

Jan2017-Dec2017 52% 7261s 

Sep2016-Sep2017 57.4% 7253s 

Sep2016-June2017 54% 4689s 
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Table 5 Classification accuracy of DTW method from September 2016 to September 2017. 

DTW 

Croptypes Alfalfa Fallow Onions OtherHay Lettuce WinterWheat Sugarbeets Total PA 

Alfalfa 42 0 1 0 3 0 4 50 0.84 

Fallow 0 50 0 0 0 0 0 50 1 

Onions 0 0 22 0 12 16 0 50 0.44 

OtherHay 34 0 0 16 0 0 0 50 0.32 

Lettuce 0 0 9 0 21 19 1 50 0.42 

WinterWheat 0 0 32 0 0 18 0 50 0.36 

Sugarbeets 0 0 11 0 0 7 32 50 0.64 

Total 76 50 75 16 36 60 37 350 
 

UA 0.553 1 0.293 1 0.583 0.3 0.865 
 

0.574 

4.1.2. Classification experiments on three DTW-based methods 

Given the classification results, we chose September 2016 to September 2017 as our study period. Three 

DTW-based method classifications were performed on this period. Table 6 depicts the results of the 3 

DTW-based method classifications. The two tuneable parameters alpha and beta of the TWDTW method 

were set to 0.025 and 193 through trail-and-error. The computation time of TWDTW classification for 7 

target crops was 16398 seconds. For the WDDTW method, the alpha parameter was tuned to 0.4. The 

computation time of the WDDTW classification was 9385 seconds. In case of the NTDTW method, a value 

of 0.94 was used for the alpha parameter. The computation time of NTDTW classification was 9313 seconds. 

In case of the TWDTW method, the UAs and PAs for Alfalfa, Fallow, OtherHay, and Sugarbeets achieved 

high values (higher than 90%). The PA for WinterWheat class was 98%, while some Onions fields were 

misclassified as WinterWheat which contributed to the reduction of the UA of WinterWheat to 81.7% and 

the PA of Onions to 76%. The UA of Onions class was 67.9%, due to confusion with the Lettuce class. 

In case of the WDDTW, Fallow class achieved a PA and UA of 100%. Sugarbeets class yielded high PA 

and UA, namely 80% and 87% respectively. Alfalfa class had a PA of 90%, while OtherHay class was 

confused with Alfalfa which contributed to the reduction of the UA of Alfalfa to 61.6% and the PA of 

OtherHay to 42%. As no other class was classified as OtherHay class, OtherHay achieved a UA of 100%. 

Onions, Lettuce and WinterWheat presented a high confusion with each other which led to relatively low 

PAs and UAs values. 

For NTDTW, Fallow and Sugarbeets got high PAs and UAs. The confusion of Onions, Lettuce and 

WinterWheat caused low PAs and UAs values for these classes. The PAs of Onions and WinterWheat were 

only 20% and 30% respectively. Many Onions and Lettuces were classified as WinterWheat which decreased 

the UA of WinterWheat to 23.8%. OtherHay class was confused with Alfalfa. Therefore, the PA of 

OtherHay was 52%. 
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Table 6 Classification accuracy assessments of TWDTW, WDDTW and NTDTW methods. (a) TWDTW, (b) 
WDDTW (c) NTDTW. PA represents producer’s accuracy, UA represents user’s accuracy. 

TWDTW 

Croptypes Alfalfa Fallow Onions OtherHay Lettuce WinterWheat Sugarbeets Total PA 

Alfalfa 47 0 1 0 0 0 2 50 0.94 

Fallow 0 50 0 0 0 0 0 50 1 

Onions 0 2 38 0 0 10 0 50 0.76 

OtherHay 5 0 0 45 0 0 0 50 0.9 

Lettuce 0 0 16 0 30 1 3 50 0.6 

WinterWheat 0 0 1 0 0 49 0 50 0.98 

Sugarbeets 0 0 0 0 0 0 50 50 1 

Total 52 52 56 45 30 60 55 350 
 

UA 0.904 0.962 0.679 1 1 0.817 0.909 
 

0.883 

(a) 

WDDTW 

Croptypes Alfalfa Fallow Onions OtherHay Lettuce WinterWheat Sugarbeets Total PA 

Alfalfa 45 0 1 0 1 0 3 50 0.9 

Fallow 0 50 0 0 0 0 0 50 1 

Onions 0 0 18 0 12 20 0 50 0.36 

OtherHay 28 0 0 21 1 0 0 50 0.42 

Lettuce 0 0 5 0 32 10 3 50 0.64 

WinterWheat 0 0 19 0 0 31 0 50 0.62 

Sugarbeets 0 0 2 0 0 8 40 50 0.8 

Total 73 50 45 21 46 69 46 350 
 

UA 0.616 1 0.4 1 0.696 0.449 0.87 
 

0.667 

(b) 

NTDTW 

Croptypes Alfalfa Fallow Onions OtherHay Lettuce WinterWheat Sugarbeets Total PA 

Alfalfa 41 0 0 7 0 0 2 50 0.82 

Fallow 0 47 2 0 0 1 0 50 0.94 

Onions 0 1 10 0 12 27 0 50 0.2 

OtherHay 22 0 2 26 0 0 0 50 0.52 

Lettuce 0 0 4 0 26 20 0 50 0.52 

WinterWheat 2 0 6 27 0 15 0 50 0.3 

Sugarbeets 0 0 0 0 0 0 50 50 1 

Total 65 48 24 60 38 63 52 350 
 

UA 0.63 0.979 0.417 0.433 0.684 0.238 0.962 
 

0.614 

(c) 
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4.1.3. Defining the warping path window 

The defining of warping path window is to reduce the computation time of the DTW-based methods. 

Among the 3 DTW-based methods, the TWDTW method was chosen to define the warping path window 

as the result of the highest overall accuracy and longest computation time. The definition of the warping 

path window of original DTW method was also considered as comparison. Table 7 showed the classification 

results of the DTW and TWDTW methods obtained by defining different widths of the warping path 

window. 

In case of the DTW, the overall accuracy increased from 57.4% to 86.3% and the computation time 

decreased from 5438 seconds to 1467 seconds, with the warping path window width decreasing. For 

TWDTW, we made subtraction between the classification result of the original TWDTW method and the 

classification results of TWDTW with different warping path window widths. The pixel differences column 

shows the pixel numbers of each width classification result difference with the original TWDTW method. 

The overall accuracy was 88.3%, and did not change much when the warping window width was changed 

from 5 to 1. From the width 5 to 4, the classification results did not change at all. For width 3, 2 and 1, the 

pixel numbers were 53, 370 and 3507 respectively. The computation time decreased with the lower warping 

path window width from 8607 seconds to 6100 seconds. Figure 9 shows the PAs and UAs of DTW and 

TWDTW classification. 

 

Table 7 The Overall Accuracy (OA) and computation time (Time) of DTW and TWDTW methods with different 
warping path window widths. The “pixel differences” column means the pixel numbers of each warping path 
window width classification result difference with the classification result of the original TWDTW. 

Warping path 

window width 

DTW TWDTW 

OA Time OA Time Pixel differences 

5 0.574 5438s 0.883 8607s 0 

4 0.617 4687s 0.883 7986s 0 

3 0.68 2389s 0.883 7132s 53 

2 0.734 2212s 0.883 6842s 370 

1 0.863 1467s 0.883 6100s 3507 
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Figure 9 Classification results of DTW with warping path window width from 5 to1 and TWDTW with warping path 

window. 

4.1.4. Decomposition of phenological patterns 

A knowledge-based decomposition of phenological was done on the period September 2016 to September 

2017. Classifications were implemented on pattern decomposition DTW (PD-DTW), pattern 

decomposition DTW with warping path window (PD-DTW-W), pattern decomposition TWDTW (PD-

TWDTW), pattern decomposition TWDTW with warping path window (PD-TWDTW-W). We got the 

classification results of the 4 methods mentioned above are displayed in Figure 10. The overall accuracies 

and computation time of these 4 methods are listed in Table 8. 

In case of the PD-DTW and PD-DTW-W, we obtained an overall accuracy of 68.3% and 74.3%, 

computation time 2385s and 1992s respectively. The Fallow class obtained PAs of 98%. The OtherHay 

achieved UAs of 100%. The WinterWheat class achieved relatively low PAs of 30%. The Sugarbeets class 
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obtained a UA of 40% for PD-DTW and 45.3% for PD-DTW-W, which were relatively low. For PD-DTW, 

some OtherHay agricultural fields were classified as Alfalfa class which reduced the PA of OtherHay to 

60%. The confusion of Sugarbeets, Onions, Lettuce and WinterWheat led to the relatively low PAs and 

UAs values of these classes.  

In case of the PD-TWDTW and PD-TWDTW-W, the overall accuracies were 86.5% and 89.1%, the 

computation time were 5291s and 4029s. The Fallow class obtained PAs of 100%. The OtherHay achieved 

UAs of 100%. For PD-TWDTW, except for the Lettuce class which obtained a PA of 70% and the Onions 

class which obtained a UA of 68.3%, the other classes obtained PAs and UAs of higher 70%. For PD-

TWDTW-W, except for the Lettuce class that achieved a PA of 70% and Fallow class which had a UA of 

72.5%, the other classes achieved PAs and UAs of higher 80%.  

 

Figure 10 Classification results of pattern decomposition DTW (PD-DTW), pattern decomposition DTW with 
warping path window (PD-DTW-W), pattern decomposition TWDTW (PD-TWDTW), pattern decomposition 

TWDTW with warping path window (PD-TWDTW-W). 
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Table 8 Overall accuracy results and computation time of DTW and TWDTW with and without patterns 
decomposition classification. PD-DTW, PD-DTW-W, PD-TWDTW, PD-TWDTW-W represent pattern 
decomposition DTW, pattern decomposition DTW with warping path window, pattern decomposition TWDTW, 
pattern decomposition TWDTW with warping path window. 

Methods Overall accuracy Computation time 

PD-DTW 0.683 2385s 

PD-DTW-W 0.743 1992s 

PD-TWDTW 0.865 5291s 

PD-TWDTW-W 0.891 4029s 

 

Figure 11 Comparison of original patterns and decomposited patterns 
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4.2. Discussion 

4.2.1. Selection of the time series interval 

Sentinel-2 provides 10 m optical images every 5 days. Dense time series data from Sentinel-2 contribute 

significantly to remote sensing applications in agriculture monitoring. Yet, these data come along some 

challenges that need to be carefully addressed. One of the challenge is how to handle the irregularly-spaced 

time series data (Roerink et al., 2000). The irregularly-spaced time series data are caused by removing cloud 

contaminated observations from the 5-day time series data. All of the DTW and DTW-based methods were 

to measure the similarity between phenological patterns and the time series data. The selection of the time 

series interval from the irregularly-spaced time series data is of vital importance to the quality of extracting 

phenological patterns. 

At the beginning of this research, we planned to use the crops’ temporal profiles of the year 2017 for the 

classification purpose. Given the fact that the study area was in the desert region, we were not familiar with 

the phenological cycles of crops of interest. Through visual inspection of the temporal profiles from January 

2017 to December 2017, we found out that the NDVI values of the Sugarbeets and Lettuce classes had high 

value at the beginning. Therefore, we concluded that these two crops start to turn green before January 

2017. To get the entire phenological cycles of Sugarbeets and Lettuce, we referred to the crops calendar 

(Rabi, 2017; University of California Cooperative Extension, 2017) and shifted the study period to 

September 2016 – September 2017. The temporal profiles of the target 7 crops were shown in Figure 8(b). 

It is reasonable that the accuracy obtained for the Jan-to-Dec period (namely 52%) is lower than those 

obtained for the Sept-to-Sept period (namely 57.4%). This happens because most of the crops reached the 

greenness phase during the October 2016 and their senescence phase around September 2017. The complete 

growing season was covered by the Sept-to-Sept time series. Furthermore, the Jan-to-Dec pattern not only 

cut the phenological cycles, but might also contain the crops plantation information of the next year. As 

different crops can be grown in the same field next year, the classification results might be affected by the 

selection of the time series interval. Consequently, the time series interval selection was September 2016 to 

September 2017. 

Bégué et al. (2018) claimed that expert knowledge on the local agricultural systems, in particular the 

knowledge of crop types and crop calendars, plays an important role in the agriculture applications of 

satellite data. The time series data contains spectral and temporal variability which is caused by the 

environment, the cropping system and the quality of images (Bégué et al., 2018). Without the local 

knowledge, it is hard to achieve a high accuracy in extracting phenological patterns and the DTW-based 

classifications. 

4.2.2. Assessment of three DTW-based methods 

As the DTW method’s classification accuracy shown, 57.4% is not a satisfying result for crops classification 

accuracy. The three DTW-based methods (TWDTW, WDDTW, NTDTW) have their advantages in 
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classification. One of the objectives of this study was to assess the performance of these three DTW-based 

methods. We tested these three methods on our study area and got the classification results as Table 6 

shown. 

4.2.2.1. TWDTW 

Among the three DTW-based methods, TWDTW got the highest overall accuracy. The main reason is the 

TWDTW gives the similarity measurement between the pattern and the test sequence a time constraint. 

This time constraint limits the point on pattern matches the point which has a large time lag on test sequence. 

For example, there were many testing samples of WinterWheat class which were classified as Onions class 

in the DTW method’s confusion matrix. However, in TWDTW method, only 1 of 50 WinterWheat testing 

samples were classified as Onions class. From the temporal profiles shown in Figure 8(b), the patterns of 

WinterWheat and Onions have a similar profile, which means the durations and amplitudes of their NDVI 

curves were similar. The difference is that the WinterWheat’s NDVI values started to increase, reached its 

peak and decreased to low value one month earlier than the Onions class. The DTW method failed to 

consider the time lag between these two classes. The TWDTW method used Modified Logistic Weight 

Function (MLWF) to define a weight for the distance between two points which have a time lag. The 

distance between these two points becomes larger with an increasing time lag. Due to the defined weight, 

TWDTW improved the overall accuracy of classification from 57.4% to 88.3%. In the study of Belgiu & 

Csillik's (2018) study, pixel-based TWDTW was applied on three study areas. The overall accuracies of 

TWDTW were 92.14%, 86.78% and 66.34% respectively. It should be mentioned that for the study area 3 

in Belgiu & Csillik's (2018) study, we found that the low PA and UA for crop classes was not only from the 

high intra-class spectral heterogeneity, errors in the patterns, but also from the validation samples. Referring 

to the accuracy assessments on CropScape (USDA, 2017b), there could be errors in the validation samples. 

Consequently, in this study, we manually edit the validation samples by removing the samples who had 

significant difference with the others. In Maus et al.'s (2016) study, TWDTW method was used to classify 

Single cropping, Double cropping, Forest and Pasture. The Double cropping obtained a PA and UA of 

90.43% and 92.04%. The single cropping achieved a PA and UA of 84.85% and 75% respectively. The 

Lettuce class as double cropping in this study achieved higher PA of 100% and lower UA of 60%, the 

WinterWheat as single cropping obtained higher PA and UA of 98% and 81.7%. 

Despite its clear advantages, the TWDTW presents also some shortcomings that worth being mentioned. 

The flexible agricultural practices in this study area made the same crop type’s temporal profiles to have 

different planting and harvesting time (Bégué et al., 2018). These time differences not only affect the quality 

of the training samples but also hinder the classification results. In case of the Onions class, there were some 

samples whose temporal profiles were delayed than the Onions pattern. The TWDTW method cannot 

distinguish the delayed Onions temporal profiles from WinterWheat temporal profiles. This situation led to 

the confusion of Onions and WinterWheat. This kind of confusion also happened between Onions and 

Lettuce. In the calculation of TWDTW distance, these two crops had flexible agricultural practices which 
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led to longer distance between testing points and patterns. Though the Lettuce class’ pattern temporal profile 

had two growing peaks which was different with one growing peak of the Onions class, the TWDTW 

method did not take the curve’ shape into consideration. It was hard for TWDTW to distinguish whether 

the distance was from the time lag or the real NDVI value difference. These kinds of errors caused the 

unsatisfactory PAs results for the Onions and Lettuce. The similar things also happened in Belgiu & Csillik's 

(2018) study. The confusion between Onions, Lettuce and Durum wheat class caused the low PAs and UAs 

of these classes. The misclassification in Belgiu & Csillik's (2018) study from other classes to fallow class did 

not happen in this study as a result of the modified validation samples. Another shortcoming of TWDTW 

method is the TWDTW contains complexed computation. The computation time increased by 126% from 

the original DTW method. This problem also described in Belgiu & Csillik's (2018) study. One of the 

objectives of this study is to reduce the computation time of the DTW-based methods. As the problem of 

computation time stated above, the TWDTW was selected as the DTW-based method for further study. 

4.2.2.2. WDDTW and NTDTW 

WDDTW used a weight to control the effect of the first derivative in the calculation of the DTW distance 

of the two sequences. The effect of the first derivative alleviated the problem namely, wrongly matching. 

For instance, there are two points who have similar NDVI values located in two sequences. One point is in 

ascending part of a sequence, the other one is in the descending part of the other sequence. The DTW 

distance of these two points is short due to the fact that the DTW method considers only their NDVI values. 

These two points will be wrongly matched. Similar to WDDTW, the NTDTW method also takes the shape 

features into consideration. NTDTW uses mathematical transforms to replace the first derivative of 

sequences. In this way, two sequences who have similar shapes will get shorter WDDTW distance. For 

Alfalfa, OtherHay, and Lettuce, the frequency fluctuations of their NDVI values lead to the positive and 

negative fluctuations of their first derivatives. The positive and negative fluctuations of the first derivatives 

enhanced the sequences’ shape features, as a result, the accuracies improved. The WDDTW was applied on 

20 datasets from different application domains for classification and obtained better performance than the 

original DTW method (Jeong et al., 2011). Górecki & Łuczak (2014) applied the NTDTW on 47 time series 

datasets for classification. For most of the time series datasets, the NTDTW method achieved higher 

accuracies than the original DTW method (Górecki & Łuczak, 2014). In our study, the WDDTW and 

NTDTW were first implemented for the classification of crop temporal profiles. Compared to the original 

DTW method, the WDDTW and NTDTW had better performance. 

Even if WDDTW and NTDTW improved most of the classes’ accuracies, the improvement was not 

significant. The flexible agricultural practices lead to the diversity of the same crop’s curves. Onions, Lettuce 

and WinterWheat were still misclassified. Many samples of OtherHay were classified as Alfalfa class. 

WDDTW and NTDTW alleviated errors of classification, but it did not solve the problems caused by the 

flexible agricultural practices. 
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In case of the computation time, as the authors claimed in their papers, the WDDTW and NTDTW did not 

increase the computation time complexity (Bagnall et al., 2017; Górecki & Łuczak, 2014; Jeong et al., 2011). 

The derivative calculation increased the computation time of WDDTW from DTW by 29.4%. The 

transform calculation increased the computation time of NTDTW from DTW by 28.4%. 

4.2.3. Defining the warping path window 

In defining the warping path window, we adopted Sakoe's (1978) method to DTW and TWDTW distance 

calculation. As the author said, The Sakoe-Chiba Band not only reduces the computation time but also 

improve the accuracy of DTW (Sakoe, 1978). The effect of the warping path window to the DTW distance 

calculation is similar to the time constraint of the TWDTW. They all limit the matching points between 

sequences within a certain range. In our study, the window width changing from 5 to 1 meant that a point 

on one sequence was permitted to match to 5 points to 1 point on the other sequence in both directions. 

This limit tolerated the flexible agricultural practices and also alleviated the wrongly matching of two crops 

who had long time lag.  

In the experiment of DTW method with warping path window, the overall accuracies were increasing with 

the decreasing warping path window widths, which verified Sakoe's (1978) conclusion. For TWDTW 

method, we tried these 5 widths to find an appropriate width which does not have a high impact upon the 

classification accuracy. We saved the classification results of each pixel and made subtraction between the 

original TWDTW classification result and each width result. From Table 4, the width from 5 to 4, no pixels 

changed in the classification results. From 4 to 3, only 53 pixels changed the results from original TWDTW. 

Even for the width 1, 3507 of 90,000 pixels’ results changed. The slightly changed results of TWDTW with 

different warping window widths were beyond our expectation. Like the different tuning of parameters in 

TWDTW, the classification results should change with different time constrains (Maus et al., 2016). This 

phenomenon could be explained. The tuning of the parameters in TWDTW already constrains most of the 

TWDTW distance calculation within warping path window of width 1. In this way, the classification results 

will not be affected by the sets of warping path window width larger than 1. In order not to make the 

warping path window too extreme, the warping path window width was set to 3 for the following 

classification. For the width 3, it will not affect the classification result of TWDTW and the computation 

time reduced from16398 seconds to 7132 seconds by 56.5%. 

4.2.4. Decomposition of phenological patterns 

In the decomposition of phenological patterns, we tried to extract the crops’ growing seasons from the 

entire temporal profiles. Compared to the original DTW method, the decomposition of phenological 

patterns applied on DTW not only reduced the computation time but also increased the classification 

accuracy. Especially, the confusions among Onions, Lettuce and WinterWheat were greatly alleviated. This 

is due to the fact that the distance calculated beyond the growing season was omitted. With the decomposed 

phenological pattern the sample who has similar temporal profile with the pattern will be more easily 
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classified. The decomposition of patterns emphasized the effect of growing seasons. We preserved the entire 

temporal profiles of the Sugarbeets class because the Alfalfa class had also similar NDVI values during the 

growing season from October 2016 to August 2017. This means that the non-growing season also contains 

information for classification. On the basis of the phenological patterns decomposition, we also 

implemented the defining of warping path window with width 3 in the classification. 

In the pattern decomposition of TWDTW with or without warping path window, there was no obvious 

improvement on the accuracies. The pattern decomposition was mainly used to reduce the computation 

time. As we shown before, the TWDTW achieved the highest classification accuracy. However, its 

shortcoming was the long computation time. For the pattern decomposition of TWDTW without warping 

path window, the computation time decreased from the original TWDTW 16398s to 5291s by 67.7%. For 

the pattern decomposition of TWDTW with warping path window width 3, the accuracy improved to 89.1%, 

the computation time was 4029s, reduced by 75.4% from original TWDTW method. 

The decomposition of phenological pattern is knowledge-based for now. Except for the Sugarbeets class, 

the growing season proved to be the most relevant period for achieving good classification results while 

reducing the computation time. The decomposition of phenological patterns related the work to time series 

segmentation. Chandola et al., (2010) segmented the temporal profiles of Moderate Resolution Imaging 

Spectroradiometer (MODIS) NDVI data to derive phenology indices. Conrad et al. (2011) applied temporal 

segmentation of MODIS time series to improve the crop classification in Central Asian irrigation systems. 

They proved that the temporal segments of time series data performed better than the discrete time series 

data (Conrad et al., 2011). Due to time constraints and the complexity of the crop temporal profiles, we 

failed to propose a mathematical formula or a logical method to decompose the phenological patterns in a 

fast and accurate way. The temporal segmentation of time series for automatic extracting of phenological 

patterns would be the future work. 

4.3. Conclusions 

In this study, a knowledge-based decomposition of phenological patterns method was proposed to reduce 

the computation time of DTW-based methods without decreasing the accuracy of classification. 

DTW, TWDTW, WDDTW, and NTDTW were applied in the study area for crops classification. For 

TWDTW, WDDTW and NTDTW, the overall accuracies were improved from original DTW by 53.8%, 

16.2% and 7.0% respectively. Among these methods, TWDTW achieved the highest accuracy. DTW had 

the shortest computation time. Reducing the warping path window increased the accuracy of DTW method 

and decreased both DTW and TWDTW methods’ computation time. The knowledge-based decomposition 

of phenological patterns further reduced the computation time of DTW and TWDTW, whereas the 

accuracy of pattern decomposition of TWDTW with window width 3 slightly improved. 

To obtain a fast classification result without human intervention, the original DTW method with reduced 

warping path window could be integrated into operational programs dedicated to cropland mapping and 

monitoring based on satellite image time series. The knowledge-based pattern decomposition applied to 
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TWDTW with a reduced warping path window would be a good option for getting higher accuracy in the 

classification of crop temporal profiles. 
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