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ABSTRACT 

Forest is essential to human’s life and has great ecosystem services function. The eastern section of semi-
arid region in China is a typical forest-steppe ecotone with total forest cover around 0.15 million km2, 
which is sensitive to climate changes. The study area located in the administrative region of Inner 
Mongolia, covering 24 counties which experienced significant development of society and urbanization 
from the end of 20th century. Forest here changes frequently and its disturbances are complicated which 
lacking of forest change detection using time series to reveal the deeper change mechanism.  

This study adopted the Breaks For Additive Season and Trend (BFAST) model using MODIS- 
Normalized Difference Vegetation Index (NDVI) time series from 2000-2013 in eastern section of semi-
arid region in China. BFAST is an ideal model to detect changes within time series trajectories and has 
been proved its ability to detect not only forest gradual changes but also forest abrupt changes. We utilized 
the ‘trend’ to character forest gradual change, ‘frequency’ and ‘magnitude’ of breakpoints to character 
forest abrupt change.  

The results shows that, 71.6% forest pixels were detected with positive change trend direction and 28.4% 
with negative change trend direction. Forest areas with decreasing NDVI mainly distributed among the 
boundaries of counties located in the middle part of the study area, forest areas with increasing NDVI 
mainly among counties located in top northern part and southern part of the study area. Forest abrupt 
changes characterized by the higher frequency and more violent magnitude clustering among northern 
part of the study area according to hot spot analysis.  

The correlation and regression analysis revealed a certain positive correlation between long-term gradual 
forest change and urbanization, negative forest abrupt change with significant correlation with extreme 
precipitation and temperature events. Comparing the correlation of Pearson’s r and regression results of 
R2 and p-value with disturbance factors, precipitation has overwhelming control on forest NDVI change 
in eastern section of semi-arid China during 2000-2013.  

This study is the first time that applying BFAST model in such a large area over a long period. The study 
suggests that the gradual forest change and abrupt change distribution have different spatio-temporal 
patterns, which not only appeals to people to pay attention to long-term forest decreasing areas, but also 
indicates the forest abrupt change areas need close attention as well. The correlation analysis revealed the 
dominant control of precipitation on forest abrupt change, and human disturbances play the main role in 
long-term gradual forest change. In conclusion, the study facilitates a better understanding of forest 
change distribution and change mechanism in semi-arid areas in China, which has important policy 
implications for long-term and sustainable development of forest conservation. 
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1. INTRODUCTION 

1.1. Background 

Forest covers about thirty percent of the earth’s land surface in the year of 2006, according to the report 
of Food and Agriculture Organization of the United Nations (FAO, 2006). Olsson et al. (2012) indicated 
that, forest not only provides products such as woods, fuel and others for human’s life and production, 
but also has high ecosystem services function which is significant to the stabilization and improvement of 
ecological environmental components including carbon circulation, water, soil, the atmosphere and so on. 
Forest is the main terrestrial ecosystem on the earth, and forest change process happens spatially and 
temporary under the pressure of human or/and natural impacts. Substantial forest changes have been 
detected globally from 2000-2012 by Hansen (2013), with a total loss of 2.3 million km2 compared to the 
low amount of forest gain of 0.8 million km2.  

Forest changes can be divided into three different types according to Verbesselt et al. (2010): seasonal 
change, gradual change and abrupt change. Seasonal change, always being driven by phenology related 
climatic variables like temperature and precipitation varying within a year. Gradual change refers to the 
changes related to gradual trend of the factors such as long-term climate variables or other long-term 
stress. Abrupt change, negative forest changes of forest cover loss or severe forest health decline being 
driven by disturbing forces like extreme climatic events (e.g., droughts and flood), fire, urbanization, pest. 
Analyzing forest dynamics will contribute to better understanding the natural and human influences on the 
forest ecosystem (Kumar et al., 2014). It is necessary to study the spatial and temporal characters of forest 
changes for better identifying the change mechanism and the driving factors. 

Efforts have been made to monitor forest changes. Forest inventory survey programs are performed at a 
range of scales, from the national to the continental. Although the forest inventory data will provide 
sufficient forest information, it is not the best source for forest change detection as these survey 
information are not always available, plus various definitions of the forest across countries and over time 
(Potapov et al., 2015). Field investigation data also have the ability to present changes between a long time 
gap within certain forest stand. However, it is not possible to perform a large-scale survey also with high 
temporal frequency which would be both time- and money-consuming. Remote sensing images from 
space-borne sensors provide the most efficient and cost-low tool for detecting forest change and 
monitoring forest variation at a large scale (Hansen, 2013). With the advantages of open access and 
increasingly advanced remote sensing technologies, some novel applications have been promoted such as 
near real-time nationwide forest monitoring (Setiawan et al., 2016). Here, previous studies related to forest 
change detection using remote sensing data were reviewed. 

 

1.2. Research review 
1.2.1. Change detection methods 

Change detection is widely performed in detecting land cover changes especially vegetation changes based 
on remote sensing images. Change detection methods can be divided into two groups according to Gong 
et al. (2008): (1) bi-temporal change detection, and (2) temporal trajectory analysis. Most of the bi-temporal 
change detection methods focus on developing classification algorithms to find out differences between 
two images which always missed the messages within temporal trajectories. By comparing the difference 
between a pair of satellite images of two-time nodes focusing on the same area, bi-temporal change 
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detections are performed. These change detection methods identify where changes happen between the 
given images of two-time nodes, normally use different methods for classification of ‘change and non-
change areas’, and these images for comparison are always from same remote sensing products according 
to Tewkesbury et al. (2015). Then, methods of integrating different types of remote sensing images of 
different resolution were developed. For example, Zhang et al. (2016) carried out a change detection 
method based on multi-spatial-resolution remote sensing images and was tested in four real datasets to 
confirm its ability to improve the change detection effectiveness.  

With the releasing of dense available satellite image time series, vegetation cover change trajectory over a 
long period can be expressed, which make it possible to detect phenological changes and abrupt changes 
within a long period, consequently make the temporal trajectory analysis popular. Although some 
researchers have developed methods to detect changes within time series (Kaufmann & Seto, 2001; 
Kennedy et al., 2010), with the limitation of unable to be applied to high temporal resolution images, some 
seasonal and phenological changes within a year still cannot be detected as some changes might be hidden 
among the infrequently acquired images (Verbesselt et al., 2010a). Some pixel-based change detection 
methods are getting popular. For example, Broich et al. (2011) developed an automatic method to map 
gross forest cover loss areas accurately by applying robust classifier using time series data. That study 
detected forest cover loss with high accuracy by integrating Moderate Resolution Imaging Spectro-
radiometer (MODIS) and Landsat time series. But the outcome still focused on showing the difference 
between two-time nodes. 

 

1.2.2. Popular change detection algorithms for remote sensing data 

Recently, attention are drawn by some methods (Verbesselt et al., 2010; Cai & Liu, 2015; Jamali et al., 2015) 
focusing on detecting changes using dense satellite time series which are capable of revealing phenological 
and seasonal variation of vegetation cover change. Here list three ideal change detection methods with the 
capacity of detecting trend and phenological change: 

(1) Breaks For Additive Season and Trend (BFAST) model. Verbesselt et al. (2010) developed a time series 
change detection tool to detect land cover change called BFAST and later improved it (Verbesselt et al., 
2012). It has similar function with Haywood & Randal (2008)’s work by using monthly tourism data, 
however it is improved by using Seasonal-Trend decomposition procedure (STL) adapted from LOcally 
wEighted regreSsion Smoother (LOESS) of Cleveland et al. (1990). Verbesselt et al. (2012) improved 
BFAST and validated its’ capacity of detecting abrupt changes in the seasonal and trend components of 
the time series and characterizing the detected changes with date, magnitude and direction. The limitation 
of this method was indicated by Jamali et al. (2015) that, despite the function provided for users to define 
the numbers they want to detect, it still has limitation space for users to define magnitude. 

(2) Detecting Breakpoints and Estimating Segments in Trend (DBEST) model. Jamali et al. (2015) recently 
proposed a novel approach called DBEST for detecting changes in time series of vegetation indices. It has 
been applied to detect regional change trend and magnitude of Global Inventory Modelling and Mapping 
Studies (GIMMS)- Normalized Difference Vegetation Index (NDVI) over a long time series within a large 
area (Jamali et al., 2015). By adopting Bayesian Information Criterion, this algorithm overcomes the 
problem of overestimating the number of the ‘breakpoints’. Its advantages compared to BFAST is that, it 
is more flexible and manageable for users to define the scale of certain changes according to users’ need. 
However, the shortcoming compared to BFAST is obvious, this method lacks the function of detecting 
changes in the seasonal components which make it infeasible to analyze the changes relating to vegetation 
phenology. 

(3) Sub-annual Change Detection (SCD) model. Cai & Liu (2015) proposed a sub-annual change detection 
approach called SCD to detect change dates using 13 years MODIS 16-day NDVI and validated its 
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capacity by comparing with ground investigating data. The results showed that SCD has comparable 
capacity of detecting change dates with BFAST, however it cannot quantify magnitude and other 
characteristics of the changes. 

 

1.2.3. RS time-series for forest change detection 

Comparing to bi-temporal change detection, remote sensing time series applied with change detection 
methods usually use low spatial resolution images such as Advanced Very High Resolution Radiometer 
(AVHRR), MEdium Resolution Imaging Spectrometer (MERIS) and Visible Infrared Imaging Radiometer 
Suite (VIIRS) with the capacity of performing temporal trajectory analysis, however, leaving the tasks of 
classification challenging according to Gong et al. (2008). Change detection dealing with high temporal 
resolution time series are mainly applied in two types of studies: (1) Vegetation dynamics in large areas. 
For example, Jong et al. (2011) detected global vegetation greening and browning trends from 1981 to 
2006 using time series of GIMMS-NDVI; (2) Specific land cover trajectory analysis. For example, Gao et 
al. (2016) using annual GIMMS-NDVI time series from 1982 to 2011 to analyze the productivity dynamic 
of the grassland by extracting information within grassland cover boundary. Landsat-derived time series 
have high spatial resolution and are also popular for forest change detection (Hermosilla et al., 2015; 
Huang et al., 2010). However, these Landsat-based time series are limited in regional scale because of 
cloud effects and other reasons (Lambert et al., 2015). 

For different time spans of the time series applied, change detection can be divided into long-time serial 
analysis and near real-time serial analysis according to Gong et al. (2008). An example of long-time serial 
analysis is that Potapov et al. (2008) used annual MODIS time series combined with Landsat images to 
improve the accuracy of estimating annual forest cover loss and map the forest cover loss hotspot in 
boreal forests. Examples of near real-time serial analysis change detections include that Verbesselt et al. 
(2012) proposed a time series analysis approach using real-time MODIS satellite image time series to 
extract abnormal events within the time series. By generating ‘vegetation greenness data’ and performing 
change detection, Verbesselt et al. (2012) detected ecosystem disturbances in near real-time from 2000 to 
2011 in Somalia. Sulla-menashe et al. (2014) characterized the size, severity and timing of forest 
disturbances among 11 years in the Pacific Northwest area using annual time series of MODIS-
Normalized Burn Ratio (NBR). 

 

1.2.4. Vegetation indices for forest change detection 

Huete and Justice (1999) defined vegetation indices as the combinations of vegetation spectral 
characteristics related bands under proper arithmetic, are derived to present certain vegetation conditions 
detected from remote sensing images and are widely used in forest change detection. The Normalized 
Difference Vegetation Index called NDVI is one of the most popular vegetation indices in detecting 
forest changes (Lambert et al., 2015; Lambert et al., 2013; Wang et al., 2005), which can distinguish high 
vitality vegetation from background features (Lawley et al., 2016). Other indices applied for measuring 
forest cover include Enhanced Vegetation Index (EVI) (Matsushita et al., 2007), Burned Area Index (BAI) 
(Quintano et al., 2011) and Normalized Burn Ratio (NBR) (Sulla-menashe et al., 2014). These indices can 
be directly applied to represent vegetation conditions, or indirectly applied by calculating and deriving 
phenological parameters related to vegetation growth like ‘start of growing season(SOS)’ and ‘end of 
growing season(EOS) ’ (Dong et al., 2016; Wang et al., 2016; Reed, 2006). 

 

 

http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html
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1.3. Problem statement 
The eastern section of semi-arid region in China is the typical forest-steppe ecotone with significant 
climate change (Liu et al., 2013). In recent 100 years, temperature has significantly risen during the winter 
of semi-arid and arid area in middle latitude of the Northern Hemisphere compare to other parts of the 
global land (Liu et al., 2013). It consists significant parts of global change research. Recent years, with 
global warming, climate anomaly events frequently happen in semi-arid area were characterized as 
temperature rising and precipitation decreasing (Allen et al., 2010; Liu et al., 2013). Rotenberg & Yakir 
(2010) indicated that, forest in these areas, shows higher carbon storage capacity than global average forest 
(Liu et al., 2013). If certain forest change happened, it might greatly influence the carbon sequestration. 
What’s more, ecological ecotone with particular characteristics as the transition area between two 
ecosystems, is driven high attention for its sensitivity to climate change and is recognized as the global 
change early warning region (Song et al., 2009). 

Recently, some studies indicated special phenomenon related to forest change in this area. Liu et al. (2013) 
observed tree growth decline and also spatial forest distribution change related to climate variation. Other 
studies, Zhao et al. (2013) used GIMMS-3g to calculated vegetation phenology parameters and studied the 
vegetation phenology responding to climate changes from 1982 to 2013 in this area. The results showed 
that the vegetation phenology detected were greatly influenced by spring temperature and precipitation, 
and a lag effect of the temperature was observed. Our study area, consists of 24 county level regions, 
which experienced significant urbanization since 1978 (Liu & Leung, 2015) and the urbanization is still 
ongoing in these regions. Urbanization process will cause conversion from forest to urban land use, which 
will directly influence the forest ecosystem, and it will also increase human disturbances of logging and 
other human-related activities (Verbesselt et al., 2010b) although with possible forest protection policy 
under implementing. However, there still lacks forest-focused change detection to reveal spatio-temporal 
distribution of forest change using long time series in the study area. 

The detection of slight forest change using coarse resolution images is generally difficult according to 
Lambert et al. (2015). As this study area has the characteristic of forest fragmentation (Liu & Yin,  2013), 
using coarse resolution images might underestimate the presence of forest. MODIS data is a type of fine 
resolution images product with the resolution of 250m, which might not be the optimal choice regarding 
resolution for our study area. However, considering the size of our study area and the suggestion of image 
resolution of 250m-1000m for forest change detection according to other authors’ work (Lambert et al., 
2015; Lambert et al., 2013; Potapov et al., 2009; Singh & Jeganathan, 2016; Sulla-menashe et al., 2014), 
MODIS time series product with 250m resolution can meet our need. Considering data characteristics of 
regular data acquisition covering large areas, accessibility and the ready-qualified factors of our potential 
product, there is no doubt that 16-day moderate resolution MODIS-NDVI time series are the best choice 
to meet our study requirements for detecting forest changes with such frequency and resolution. 

Forest change driving forces not only climate factors but also human forces need to be discussed for 
better understanding the forest change mechanism in the study area. However, this study area still lacks 
forest-focused change detection to reveal spatio-temporal distribution of forest change using long time 
series. By performing this research, gradual and abrupt forest changes in trend and seasonal components 
within MODIS-NDVI time series were extracted using BFAST model and were characterized with trend, 
frequency and magnitude, which will contribute to better monitoring forest change hot spots and for 
better understanding the forest change mechanism in semi-arid areas in China. 
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1.4. Research objectives 
General objective: 

The main objective of the study is to detect and characterize spatio-temporal forest changes in the 
eastern section of semi-arid region in China, and assess its association with climatic and human factors 
over 14 years (2000-2013) using satellite image time series and BFAST model.  

Specific objectives: 
• To detect the trend of gradual forest changes in the eastern section of semi-arid region in China 

between 2000 and 2013.  
• To determine the frequency and magnitude of abrupt forest changes in the eastern section of 

semi-arid region in China between 2000 and 2013.  
• To identify the hot spots of forest change in the eastern section of semi-arid region in China.  
• To examine the correlation of forest change with selected climatic variables (precipitation and 

temperature) and human disturbance factor (urbanization). 

1.5. Research questions 
• What is the gradual forest change trend in the study area between 2000 and 2013? 
• What are the frequency and magnitude of forest changes in the study area?  
• Where are the hot spots of forest changes? 
• Does the spatio-temporal patterns of forest change correlate with the selected climatic and human 

factors in the study area? 

1.6. Research hypotheses  
• Hypothesis 1 
      H0: There is no significant forest change trend detected over the 14 years between 2000 and 
 2013. 

       H1: The majority of forests in the study area has gradually increased over the 14 years 
 between 2000 and 2013.  

• Hypothesis 2 
H0: There is no significant correlation between forest changes and human disturbance factors and 
climate factors. 
H1: Abrupt forest changes (mainly loss) detected in this area has a significant and stronger 
correlation with human disturbance factors rather than climatic factors.  

1.7. Thesis structure and research approach 
In chapter 1, basic background is described with literature reviews of previous work, explanation of the 
research problem is provided, definitions of the research objectives, questions and hypotheses and the 
description of the outline of each chapter are explained. Chapter 2 introduces the study area from both 
natural and social aspect, with the explanations of data collection and data processing methods. Chapter 3 
showing the result and explained the findings relevant to each research questions. Chapter 4 discusses the 
main findings of forest change and the approach in this research. Chapter 5 concludes the research and 
gives recommendations for potential further work. 
 
Figure 1 describes the whole flowchart of main approaches consists in the research. The main body of the 
overall workflow can be divided into two parts. For the first part, pixel level MODIS-NDVI time series 
were extracted and pre-processed before input into BFAST model. The another part shows the running of 
BFAST model on the extracted time series and the spatial analysis, hot spot analysis with the forest change 
results, as well as the correlation analysis with urbanization and climate variables. 
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Figure 1. Research approach flowchart 
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2. MATERIALS AND METHODS  

2.1. Study area 
The study area consists of twenty-four counties, all of which are within Inner Mongolia Autonomous 
Region of China. The total area of land cover is 360,620 km2, and the general social-economic data of each 
county are shown in Table 1 from census data of statistical yearbook of Inner Mongolia in the year 2000, 
which can be acquired from the website of National Bureau of Statistics of China 
(http://www.cnstats.org). The majority of the study area locate within northeast part of semi-arid climate 
from 42° - 53° N and 110° - 127° E as is shown in the arid and semi-arid distribution map (Figure 2). It is 
a typical forest-steppe ecotone with 146,071 km2 of forest cover, which is sensitive to climate and human 
disturbances and the vegetation cover varies over spatial and temporal. According to Liu et al. (2015) the 
mean annual temperature is 2-12℃ and the mean annual precipitation is between 260-450 mm. The 
dominant tree species in the forest is Pinus tabu- laeformis Carr., another two common species are Larix 
chinensis Mill. and Abies fargesii Franch., with unusual forest mortality phenomenon observed here recent 
years (Kharuk et al., 2013; Liu et al., 2015).  Map on the right side in Figure 2 shows the forest presence of 
each county in 2000 with county ID marked according to Table 1. 

 

 
 
Figure 2. Location of the study area. (a) location of the study area in China; (b) location of the study area in arid and 
semi-arid distribution map of northern China; (c) forest cover map in 2000 with county ID. 

 
As is shown in Table 1, the majority of the forest covers the northern part of the study area, and the 
counties located in south-eastern part are with higher density of population. What's more, counties with 
higher GDP mostly gathering in the southern part, and the county K is the county with least forest and 
land cover, but with a considerable economic level. 
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Table 1.Social economic data with forest and land cover information of each county 

County ID County NAME GDP 
(108 RMB) 

GDP Per Capita 
(RMB) Population Land Cover 

(km2) 
Forest Cover 

(km2) 
A Ergun City 37 44,268 83,574 28,590 18,979 
B Genghe City 30 17,415 172,263 20,010 14,761 
C Oroqen Autonomous Banner 53 20,139 265,473 54,947 38,250 
D Yakeshi City 190 53,700 354,098 27,734 19,060 
E Morindawa Daur Autonomous Banner 90 27,418 328,482 10,177 2,700 
F Arun Banner 129 39,102 330,414 11,076 5,641 
G Evenk Autonomous Banner 93 64,561 143,473 18,756 4,582 
H Zhalantun City 104 24,323 366,300 16,800 11,125 
I Horqin Right Front Banner 75 22,163 338,427 25,581 9,799 
J Jalaid Banner 70 17,538 399,204 11,099 2,566 
K Ulanhot City 130 40,451 321,387 786 64 
L Tuquan County 56 17,858 313,680 4,719 933 
M Horqin Right Middle Banner 48 18,551 258,761 11,837 1,486 
N Jarud Banner 162 53,108 305,731 17,344 2,725 
O West Ujimqin Banner 102 129,012 79,149 22,716 2,198 
P Arhorqin Banner 92 30,633 299,559 12,926 1,851 
Q Bairin Left Banner 100 28,182 355,589 6,418 1,597 
R Bairin Right Banner 61 33,025 184,957 9,856 956 
S Linxi County 58 24,222 240,136 3,905 448 
T Hexigten Banner 124 49,204 252,134 19,053 2,112 
U Ongniud Banner 118 24,283 486,318 11,883 612 
V Songshan District 194 35,925 540,000 6,998 1,251 
W Harqin Banner 66 18,702 350,390 3,106 1,013 
X Ningcheng County 136 22,362 608,166 4,304 1,364 
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2.2. Data preparation 

2.2.1. MODIS-NDVI time series data collection and processing 

MODIS Terra vegetation index product images of MOD13Q1 of version 6 are available from NASA web 
facility (http://reverb.echo.nasa.gov/). This product produced at 16-day intervals and with multiple spatial 
resolutions, provides consistent spatial and temporal comparisons of vegetation canopy greenness, a 
composite property of leaf area, chlorophyll and canopy structure. The period span of the dataset 
downloaded is from 18th Feb 2000 to 18th Feb 2014 with totally 1292 images, per scene of the study area 
consists of 4 images, the time series contain 323 scenes of the study area with 23 scenes per year. Per study 
area scene cover of 4 images with the identifier tiles of h25v3, h25v4, h26v4 and h27v4. The projection of 
the images is sinusoidal under WGS84 spheroid.  

MODIS-NDVI images with spatial resolution of 250m are imported using ERDAS from the original 
product. MOD13Q1 has already checked the data quality and done de-cloud according to the manual. As 
NDVI values code from -3000 to 10000, rescaling was performed to reduce file size by deriving DN 
values from 0-255 using the code provided by ITC (Ali et al., 2014). After this, the re-scaled 323 images of 
2000-2013 each scene were stacked through Erdas. TIMESAT program is an ideal method to reduce 
potential noise using adaptive Savitzky-Golay, which can be applied to derive smoothing NDVI time 
series (Jönsson & Eklundh, 2004). As the smoothing of the time series will affect the result of the BFAST 
analysis in a certain degree, smoothing should not be done too much which may hide some character of 
NDVI change leading to not being detected in BFAST. Here we performed Savitzky-Golay smoothing 
function in the second level using TIMESAT.  

2.2.2. Forest cover mask 

In this study, change detection methods were applied focus on the specific land cover of forest. We 
performed change detection within forest landscape with a forest cover mask derived from Chinese Land 
Use and Land Cover Map of 2000 with 250m spatial resolution. The map was acquired from Institute of 
Geographic Science and Natural Resources Research and was achieved from remote sensing interpretation 
and national land survey. As lacking the map source of comparable Chinese land cover map of 2013, we 
used Hansen’s forest cover map as complementation. Based on this forest mask we managed analyzing 
every pixels’ time series. The base map was complemented using a combination of Hansen et al. (2013)’s 
global forest cover map (http://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.2.html), including forest cover areas both presence in the year 2000 and 2013. 
Hansen et al. (2013)’s work of forest cover change maps derived from Landsat images have a spatial 
resolution of 30m. Here, by resampling them into images with comparable spatial resolution with 
MODIS-NDVI of 250m, they were used as a component of forest reference mask. The final forest mask 
is shown in Figure 2, consist of 2,337,140 pixels with the resolution of 250m.  

 

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
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Figure 3. Forest mask in the study area 

 

2.2.3. Climate data 

Climate data was downloaded from the China Meteorological Data Sharing Service System of the China 
Meteorological Administration (http://cdc.nmic.cn/home.do). The location of 24 meteorological stations 
in each county of the study area is shown in Figure2. As vegetation change in semi-arid region is sensitive 
to climate variables especially extreme climate events (Tong et al., 2016), special statistics represent for 
extreme precipitation and temperature events were selected and downloaded from the each meteorological 
station. Each meteorological station located in each county is represented by a comparable small letter of 
the county ID for later analysis of this thesis. 

The index for precipitation selected is the Days of the Longest Period Continuously without Precipitation 
(DLP) during the study period 2000-2013. The index for temperature selected is the mean value of Days 
of the Longest Period Continuously with Maximum Temperature Above 35℃ (DLT35) in each year from 
2000-2013. The values of the two indices for each meteorological station is shown in Table 2.  

 

 

     

http://cdc.nmic.cn/home.do
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Table 2. Meteorological station records of two climate indices from 2000-2013 

Meteorological 
Station ID DLP DLT35 

a 151 1.3 
b 138 3.8 
c 116 4.5 
d 98 2.5 
e 60 1.3 
f 63 1.4 
g 113 0.9 
h 96 1.7 
i 105 2.2 
j 98 1.5 
k 35 0.2 
k 39 0.4 
m 42 0.6 
n 37 0.3 
o 49 1.1 
p 94 5.7 
q 39 0.1 
r 116 2.9 
s 77 2.8 
t 46 1.2 
u 74 1.6 
v 98 0.4 
w 120 3.8 
x 34 0.1 

 

 

Under the influence of elevation and other terrain factors, climate variables especially temperature vary 
within study area. Here we assume the records of the meteorological station were reliable within the 5km 
buffer, which means the pixels within the 5km circle of the corresponding meteorological station have the 
same precipitation and temperature condition. These pixels within each meteorological station buffer were 
extracted and the mean values of their forest change indices were calculated and recorded.  

2.2.4. Night-time light image 

Our study area is with a background of rapid urbanization since 1978 (Liu & Leung, 2015) and a booming 
start from the end of 20th century. Urbanization process will not only cause conversions of forest cover to 
other land uses, but also increase human disturbances of logging and other human-related activities 
(Verbesselt et al., 2010b). Night-time light image products of remote sensing are getting popular in the 
research field of urban land detecting because its productive capacity of deriving proxy features stand for 
urbanization (Liu & Leung, 2015). DMSP-OLS Nighttime Lights Time Series Version 4 are popular 
because of it can provide the long time series of global urban land, and give beautiful panoramic views of 
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humanity (Elvidge et al., 2013).Here we used the images of this product for developing human disturbance 
of urbanization indices from 2000 to the end of 2013. DMSP-OLS Nighttime Lights Time Series Version 
4 are free and available from the website of the National Geophysical Data Center of the National 
Oceanic and Atmospheric Administration of the USA (http://ngdc.noaa.gov/eog/dmsp/). It is a cloud-
free annual data excluded with noises like sunlit, sun glare, moonlit and others. The data products provide 
gridded cell based on stable night- time lights with a digital number (DN) ranged from 0 to 63. Night-time 
light time series in our study area were extracted and the urbanization from 2000 to 2013 was presented by 
the DN values variation per pixel. Night-time average light over China in 2000 is shown in Figure 4. 

 

 
Figure 4. Night-time average stable light from space 2000_ DMSP-OLS 

 
 
The row product of the night-time light images cannot be compared pixel to pixel among the time-series, 
as the satellite sensor was aging and was replaced by certain years (2004 and 2010) when it was out of 
commission. Several ways can reduce these problematic issues, one way is to apply the log light per area 
when doing regression with other indices according to Henderson et al. (2012). Here using parameters 
according to Elvidge et al. (2013) we performed inner-calibration of the final yearly time series. To 
represent the character of night-time light change within the study area during study period, the mean 
value of the night-time light from 2000-2013 each county was calculated, also the slope of the trend 
produced from simple linear regression of the mean values were calculated. As is shown in Figure 5, the 

http://ngdc.noaa.gov/eog/dmsp/
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procedure of deriving these two indices is as described as followed. Each of the yearly nighttime light 
images from 2000-2013 was extracted by study area mask from geometrically correlated images. Then the 
extracted night-time light images were stacked in order from the year 2000 to 2013, for each year, mean 
values of night-time light DN value in each county were recorded.  

 

 
Figure 5. Steps for deriving night-time light indices per county of 2000-2013 for this research 

2.3. Change detection with BFAST 
BFAST can analyze remote sensing time series by decomposing it into ‘trend’, ‘seasonal’ and ‘remainder’ 
components per pixel (Verbesselt et al., 2010). These analyses were performed using the BFAST package 
(http://rpackages.ianhowson.com/rforge/bfast/) in the statistical environment R. According to 
Verbesselt et al. (2010), the BFAST model is described as the equation followed:  

Yt =Tt +St +et, t = 1... n, 

where Yt is the time series data at time t; Tt is the trend component which refers to changes of long-term 
change trend; St is the seasonal component which refers to phenology vary in seasons which always 
depend on climate variation within a year; et is the remainder component which refers to changes beyond 
trend and seasonal components; and n is the number of observations within time series (Lambert et al., 
2015). BFAST has the ability to detect changes within trend and seasonal components, where trend 
component has already been fitted with piecewise linear model and seasonal model with ‘dummy’, 
‘harmonic’ or ‘none’ three types to choose from. The high performance of computing support can be 
activated by setting parameter ‘hpc’ to ‘foreach’, which called another package in R to support the high 
performance of this analysis. Here, we defined two types of the output, one is for long term trend and the 

http://rpackages.ianhowson.com/rforge/bfast/
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other is for breakpoints. An example of time series from the study area within forest landscape is given in 
Figure 6. 

 

 
Figure 6. A time series of pixel processed with BFAST 

2.3.1. Trend analysis  

Trend of the time series were calculated per pixel using the whole time series to see the long-term forest 
change trend within trend component from 2000 to 2013. The calculated trends are the slope of the 
piecewise linear regression lines for each pixel. The trend direction can be either positive or negative. The 
trend values of pixels were grouped into three classes (significant positive, significant negative and no 
significant trend); the mean value of trends in each county were grouped into five classes. Then the 
significance of trends were assessed by testing the slope of the trend against the null slope using t-test 
according to the description of Lambert et al. (2013).  

- Trend level 1 (slope>0, p<0.01): Significant positive trends of forest activity showing a potential forest 
strong growing trend. 

- Trend level 2 (slope>0, 0.01<p<0.05): Mild positive trends of forest activity with a low degree of forest 
growth increasing trend. 

- Trend level 3 (slope>0 or slope <0, p>0.05): No significant trend of forest activity change. 

- Trend level 4 (slope<0, 0.01<p<0.05): Mild negative trends of forest change, with a low level of forest 
growth decrease. 

- Trend level 5 (slope<0, p<0.01): Significant negative trends of forest change indicating the counties with 
forest growth seriously decreased or forest cut down.  

2.3.2. Breakpoint analysis 

BFAST can also identify abrupt changes in the time series by detecting breakpoints in the linear trend and 
seasonal components per pixel. Breakpoints detected in trend component can be recognized as events 
with the land cover change between forest and non-forest. Breakpoints detected within seasonal 
components usually indicate small quick forest changes related to phenological changes within forest. The 
‘h’ parameter can be adjusted to define the minimum distance between detectable breaks (Lambert et al., 
2015). In this study, the parameter ‘h’  was set to meet the demand of detecting changes with a time span 
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of at least one complete phenological cycle, which satisfied the outcome of the time gap between two 
breakpoints would not shorter than one year. The ‘break’ parameter was also set to determine the 
maximum of the breakpoints between 2000 and 2013. Here we chose maximum of 5 breakpoints to be 
detected as preparation test for randomly selected time series showing maximum 5 breakpoints was tested. 
Moreover, the seasonal component has several fitting selections to choose from, ‘dummy’, ‘harmonic’ or 
‘none’, as is described in the manual of BFAST. The selection ‘none’ means no seasonal model be fitted, 
which will result in all seasonal changes detected. Here we selected ‘harmonic’ which fit natural vegetation 
seasonal growing trend most (Verbesselt et al., 2010). For all the time series of each pixel, we recorded the 
count of breakpoints detected per pixel and extracted the magnitude of major breakpoints detected. As 
the number of breakpoints is a kind of proxy to represent the happening rate of the abrupt change, the 
recorded number of breakpoints range from 0-5 is the calculated frequency of the abrupt change but not 
mean exactly the real change happen in the field. The only breakpoints with frequency ranging from 1-5 
were extracted to derive breakpoint distribution maps representing for forest abrupt changes. The output 
of magnitude in BFAST has two directions, the positive numbers mean breakpoints with sudden 
increasing trends of NDVI in such forest abrupt changes, the negative numbers mean breakpoints with 
sudden decreasing trends of NDVI in such forest abrupt changes. Moreover, the breakpoints with a 
bigger absolute value of the magnitude indicate these pixels presented forests with greater or severe forest 
abrupt changes.   

 
Figure 7. The breakpoints detected in trend component, the example showing 2 breakpoints detected and with the 
change magnitude marked with a pink line. 

2.3.3. Forest change hot spot analysis 

With the performance of BFAST in each extracted forest cover pixel, change trend of forest gradual 
change was calculated, breakpoints of the abrupt changes can be found either with a positive or negative 
magnitude, the number of breakpoints was also recorded as frequency of abrupt change. Hot spot 
analyses were performed on these BFAST produced results using Optimized Hot Spot Analysis from 
spatial statistics tool in ArcGIS. Firstly，hot spot analysis with change trend for both direction, pixels 
with extreme positive trend were recognized as with signals of high possibility of forest increase in the 
long term, on the other hand, pixels with significant negative trend were analysed as high forest loss risk 
area in the long term; Similarly, by analyzing the frequency and the magnitude of breakpoints, hot spots of 
high rate abrupt changes (high frequency) and hot spot of violent forest abrupt changes (high frequency) 
were derived. All the performances followed the ArcGIS manual, using count incidents within fishnet 
polygons aggregation methods. Objective inputted forest change points were counted within derived 
polygon with appropriate cell size. As a single high value would not be recognized as hot spot, z-core and 
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p-value were measured, and multiple high value clustered cells were recognized as hot spot. In the output 
of the results, the default value in Gi_Bi field of +3 represented the confidence interval of 99% with most 
significant hot spot aggregation areas, and -3 represented the most significant cold spot aggregation areas 
of 99% of confidence level. The areas with value +2 and +1 had the lower significance of hot spot 
clustering than +3 value areas. The areas with negative values had less significance of cold spot clustering 
with the smaller numbers. The results can be comparable to other forest change outcomes to be a part of 
validation of the forest change trend analysis. Here we did hot spot analysis using Hansen et al. (2013)’s 
forest gain and forest map of 2000-2013, the hot spot derived were compared with the results of the 
research. 

2.4. Disturbances and forest cover change correlation analysis 
Simple linear regression has been widely used for correlation analysis assuming variables are independent 
of each other. Some of the studies proposed the possibility that vegetations in semi-arid area are sensitive 
to droughts with long period of high temperature and without precipitation especially under climate 
change (Liu et al., 2013). However, forest changes will also be driven by human factors. In our study, 
urbanization is one of the main concerns. In order to detect how forest cover change was driven by 
climate factors (temperature and precipitation) and human disturbance (urbanization) at the temporal 
scale, a partial correlation analysis between forest changes (presented by indexes derived from NDVI time 
series within forest landscape mask as described in previous steps) and both climate and human factors 
were performed.  

Here we analyzed the linear relationship between gradual forest changes and abrupt changes with the two 
aspects of driven factors derived from the night-time light indicator of each county using correlation 
analyses within each county. Since climate factors especially temperature differs with the variation of 
elevation and other terrain factors, we assumed the precipitation and temperature records are reliable to 
represent the climate within 5km buffer of the meteorological station. Coincidently, precipitation and 
temperature indices were correlated and regressed with mean values of forest cover change indices, which 
were calculated with all pixels within 5km buffer of the meteorological station. The Pearson correlation 
analyses with correlation coefficient (r) were calculated using SPSS. The value of r varies between -1 and 1 
shows the strength of the relationship between forest cover changes and the corresponding variables.  

Then, on the scatter diagrams of each group, simple linear regression lines were drawn. For each group of 
the variable and independence, R2 of the regression were calculated, with the R2 bigger and much closer to 
1, the regression is more significant. Also by performing F-test statistics, the significance and the 
coefficient level of each regression group can be estimated by p-value. For p-value<0.01, means the 
regression is significant at the 0.01 level (2-tailed), for 0.05<p-value<0.01 means the correlation is 
significant at the 0.05 level (2-tailed). Then the strength of correlation and regression between forest 
change and disturbance factors were compared according to r, R2 and p-value. 
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3. RESULTS 

3.1. Forest change trend 
The forest change trend was detected in all pixels during the study period from 2000 to 2013. The slope of 
the linear regression of the time series per pixel was recorded as gradual change trend of each study pixel, 
the result has positive and negative directions, which means forest trend of positive number representing 
the pixels with growing NDVI value in the long time-series, oppositely the negative value of forest trend 
representing the pixels showing a decline of NDVI in long term. The result of change trend recorded in 
raster with a spatial resolution of 250m as is shown in Figure 8, the statistical analysis for each of the 
county is shown in Figure 9. 

In left map of Figure 8, forest change trend with positive direction in blue color occurs actively in most 
northern and southern part of the forest landscape and in eastern fragmental areas along the edge of the 
forest landscape. As forest NDVI change trends detected in BFAST had positive and negative two 
directions, and the significance of the change trend per pixel was calculated by comparing to zero trend, 
pixels were grouped into three classes by significant positive, significant negative or null. The results 
within 99% of the coefficient level of significant forest change trend are, significant positive change trend 
pixels with NDVI change trend > 0.055 and significant negative change trend pixels with NDVI change 
trend <-0.052. Pixels with significant change trend were extracted and shown in the right side of Figure 8. 

 

 
Figure 8. Long-term change trend map of NDVI within forest cover 2000-2013, (a) long-term forest gradual change 
trend with 250m resolution at pixel level; (b) significant positive and negative forest NDVI change trend map at pixel 
level. 
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The character of statistics of forest change trend in each county is shown in Figure 10. The histogram 
shows the maximum and minimum change trend pixel value occurred in each county, and the black line 
represents the mean value of change trend of all pixels in the county and with the mean number marked 
out. In Figure 10, counties were grouped into five classes with five different mean gradual change level. 
Combining the statistical results in Figure 11 with Figure 10, the pixels with most violent forest cover 
NDVI change increasing trends among 2,337,140 pixels locate in county P, the most fierce forest change 
declining pixels locate in county E. Counties with most significant negative trends are county E and F 
locate in the northeast of the study area. On the other hand, county K, county W and county X laying in 
most southern part of the study area are showing significant change trend of increasing. County A and 
county B in top northern part, county J and county L in the middle and eastern part including county V 
are showing mild positive NDVI increasing trends of increasing.  
 

 

Figure 9. Forest gradual change trend classes of mean trend value at county level. 
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Figure 10. Total forest NDVI change trend mean value of each county with pixel maximum and minimum values 
during 2000-2013. 

Figure 11 shows the mean value of significant negative and positive change trend in each county, the 
counties with highest mean change trend are county G, county J, county K and county N. Mean values of 
NDVI change trend of counties with significant positive change trend are shown in boxplot (i) in Figure 
11. The boxplot (ii) in Figure 11 shows the mean value of negative forest change trend in each county with 
standard deviation. 

 
 
Figure 11. Forest NDVI change trend mean value in both positive and negative direction, (i) mean and standard 
deviation of significant positive forest change trend per county 2000-2013; (ii) mean and standard deviation of 
significant negative forest change trend per county 2000-2013. 
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3.2. Forest change magnitude and frequency   

3.2.1. Forest change magnitude 

The major breakpoints were recorded with the character of magnitude, either positive or negative. The 
result shows there are 38.9% of pixels detected with at least one breakpoints, and the total proportion of 
positive breakpoints is 8.4%, negative breakpoints consists 30.5%. Forest NDVI breakpoints change 
magnitude derived by BFAST has two directions, the positive and with bigger number ones represent 
breakpoints with fierce forest NDVI increase, the negative with smaller number ones represent the 
breakpoints with much fierce forest NDVI decrease. 

 Figure 12 shows the distribution of all the magnitude of breakpoints either positive or negative. The 
result shows that most breakpoints of each pixel are with mild positive change magnitude. The histogram 
(Figure 13) shows the statistical analysis results of mean, maximum and minimum magnitude of 
breakpoints per pixel in each county. The maximum positive magnitude was in county O and the most 
fierce negative forest change among the whole study area exists in county B. According to the mean value 
of breakpoint magnitude, counties were grouped into five breakpoints magnitude level (Figure 15).  

 

 
 

Figure 12. Forest NDVI time abrupt change magnitude during 2000-2013, (a) forest change magnitude at pixel level; 
(b) significant negative magnitude of forest change at pixel level. 
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Figure 13. Forest change magnitude in each county_2000-2013 

 

Major breakpoints with negative change were extracted and compared with the magnitude of zero to test 
the significance of negative change tension level. They were grouped into significant violent negative 
change and mild negative change classes (Figure 12). As we can see, the significant violent forest abrupt 
changes occur in county A and B. The boxplot (Figure 14) shows the mean values and standard deviation 
of magnitude for all the negative abrupt change pixels. In Figure 15, different level of forest NDVI abrupt 
change is derived according to the mean value of negative magnitude in each county. The most fierce 
abrupt forest change areas are county A and county B locate in the top northern part of the study area, 
country C locates in north-eastern part and county S. Other parts show mild negative abrupt changes. 

 

 
Figure 14.  Mean value of forest NDVI abrupt change magnitudes with negative direction in each county 
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Figure 15. Mean magnitude levels of forest abrupt changes with negative direction in each county during 2000-2013 

 

3.2.2. Forest change frequency 

The breakpoints number intended to be detected can be adjusted by setting parameter of ‘max.iter’ also 
determined by ‘h’ which restricts the minimum time gap between two breakpoints. Here in our case, the 
breakpoints number per pixel detected ranged from 0-5, according to which we derived the frequency 
map of forest NDVI abrupt change at pixel level (Figure 16). The number 0 represents pixels with 
breakpoints detected which is the same meaning to the magnitude value of 0. The number 5 means five 
breakpoints of abrupt changes detected in BFAST, but not mean exactly five times the abrupt change has 
happened in the field. We grouped the change frequency into three level, the level 1 with none or one 
abrupt change occurred, level 2 with two or three times of abrupt changes detected, and level 3 with four 
or five times of abrupt change detected in BFAST. As we can see in the left map of Figure 16, pixels with 
a high level of forest NDVI abrupt change frequency mainly locate in the northern part of the study area, 
and pixels with lower frequency level mainly spread in north and east fragmental forest landscape areas. 

The boxplot (Figure 17) shows statistical analysis results of mean value and standard deviation of 
breakpoints number per pixel. Accordingly, counties with five classes of forest abrupt change frequency is 
shown in right map of Figure 16. Most frequently forest abrupt changes appear in County A, county B 
and county G. 



DETECTING SPATIO-TEMPORAL FOREST CHANGES IN THE EASTERN SECTION OF SEMI-ARID REGION IN CHINA USING MODIS NDVI TIME SERIES AND 
 BFAST MODEL 

23 

 
Figure 16. Forest abrupt change frequency level during 2000-2013, (a) frequency levels of forest NDVI abrupt 
change at pixel level; (b) mean frequency levels of forest NDVI abrupt change at county level. 

 
Figure 17. Mean value of forest NDVI abrupt change frequency from 2000-2013 at county level 

3.3. Hot spot of forest change 
Based on forest NDVI change detection results in BFAST, hot spot analysis were performed using 
ArcGIS function. Hot spots of extreme negative and positive forest gradual change areas, high-frequency 
abrupt change areas and negative violent abrupt change areas are shown. 

Both hot spots of extreme negative and positive forest gradual change areas are shown in Figure 18. Hot 
spot areas with negative forest change trend mainly locate in the middle of the study area. By doing hot 
spot analysis using significant negative forest NDVI change trend pixels, extreme negative forest gradual 
change areas locate in county A, county B, county C, county D, county E, county F and county G, with 
the mostly clustered in county F. For the positive forest change trend part, hot spot analysis results 
performed with extreme numbers of positive forest change trend. Hot spots of forest change trend 
increasing areas locate in county A, county B and northern part of county C, and southern part covering 
most region of county W and county X. 
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Figure 18. Hot spots of extremely negative and positive forest change trend derived from 2000-2013 NDVI time 
series 

We derived the hot spots of Hansen et al. (2013)’s forest loss and forest gain which compared forest 
presence of 2000 and 2013, as is shown in Figure 19 for discussion. 

 

Figure 19. Hot spots of forest change trend from 2000-2013 based on Hansen’s forest loss and forest gain map 
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Figure 20. Hot spots of extreme abrupt forest change areas from 2000-2013, (a) hot spots of forest abrupt changes 
with high frequency; (b) hot spots of forest abrupt change areas with extreme negative magnitude. 

Figure 20 demonstrates the results of clustering breakpoints frequency 4 and 5. Red areas represent hot 
spot with high frequency of forest abrupt changes, which mainly spread among the middle part of the 
study area covering county E, county F, county G and southern part including county C, county D, and a 
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very little northern part of county I. The distribution is very similar to the distribution of negative forest 
gradual change.  

 

3.4. Correlation analysis 
Correlation between selected disturbance factors and forest change indicators of 24 counties were 
performed firstly with Person’s correlation to check the significance of the correlation coefficient of 
Person (r), then accordingly with simple linear regression of corresponding pairs. For each pair of the 
linear regression, the coefficients of determination R2(r-squared) were calculated and p-values of F-test 
were compared to see the significance of the regression. Indicators at the significance level p-value=0.05 
were accepted as high simple linear regression pairs.  
 
Urbanization variables 

The line chart (Figure 21) shows the trends of mean and sum night-time light DN values of the whole 
study area through the study period 2000-2013. The mean values and the sum values of night-time light in 
the study area show similar growing trends from 2000-2013. With statistical analysis of the night-time light 
time series, indices of two aspects were derived at county level: the mean values of night-time light DN 
throughout the time series each county and the change trend of night-time light mean values from 2000 to 
2013. 

 

 

Figure 21. Trend of night-time light DN value in the whole study area from 2000-2013 

The mean value of 14-year mean night-time light DN value and the change trend of mean value were 
selected to represent the urbanization disturbance variation and disturbance change trend among the study 
area at county level. As is shown in Figure 14, the counties with high mean forest urbanization disturbance 
factor are county K and other three southern counties. And counties with most significant positive trends 
of mean night-time light DN value are county K, county V and southern counties of county W and county 
X according to Table 3. 
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Table 3. Mean value and trend of night-time light DN values for each county 

County ID Mean light DN value Trend of light DN value 

A 0.139 0.015 
B 0.204 0.009 
C 0.170 0.015 
D 0.373 0.018 
E 0.501 0.066 
F 0.414 0.061 
G 0.477 0.041 
H 0.293 0.032 
I 0.223 0.032 
J 0.421 0.043 
K 6.866 0.708 
L 0.378 0.036 
M 0.181 0.022 
N 0.479 0.070 
O 0.203 0.044 
P 0.153 0.020 
Q 0.432 0.049 
R 0.229 0.031 
S 0.574 0.071 
T 0.173 0.031 
U 0.299 0.029 
V 3.094 0.268 
W 1.908 0.199 
X 1.642 0.178 

 

 
Figure 22. Urbanization disturbance level derived from mean night-time light DN value for each county from 2000-
2013 
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Climate variables 

The pixels within each meteorological station buffer were extracted and the mean values of their forest 
change indices from BFAST were calculated. The characters of these indices are shown in Figure 23, the 
forest change trend and forest change magnitude in each station buffer are characterized by minimum, 
maximum, and mean values. Forest change frequency is shown by histogram with mean frequency and 
standard deviation in the third boxplot of Figure 23. Meanwhile, the sum values of frequency are shown, 
which represents the total number of abrupt change occurred in each meteorological station buffer.  

 
Figure 23. Forest change indices within each meteorological station buffer, (i) forest gradual change trend 
within meteorological station buffer; (ii) forest abrupt change magnitude within meteorological station 
buffer; (iii) forest abrupt change frequency within meteorological station buffer. 
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3.4.1. Correlation between Night-time light and forest change 

The result of Pearson’s correlation shows significant correlation between mean night-time light with forest 
change trend and mean night-time light trend with forest change trend, the r for each is 0.45 and 0.52. 
Linear regression between night-time light DN value and forest change indicators were performed at 
county level, as variables and independents were statistically analyzed in each county. As is shown in the 
first regression group in Figure 24, there is a significant linear relationship between mean night-time light 
DN value and forest change trend with R2=0.276 and p-value=0.010. The trend of mean night-time light 
DN value also shows good linear correlation with forest change trend with R2=0.244 and p-value=0.014.  

 

 

 
Figure 24. Correlation of forest change trend with mean night-time light data from 2000-2013, (a) the regression 
between mean night-time light and forest gradual change trend; (b) the regression between mean night-time light and 
forest abrupt change frequency; (c) the regression between mean night-time light and mean value of negative abrupt 
forest change magnitude. 
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The result showed weaker linear relationship between dynamics derived from night-time light image time-
series (trend and mean) and forest breakpoints change indicators (magnitude and frequency) as is shown 
in Figure 25. 

 

 
 

Figure 25. Correlation of forest change trend with trend of night-time light data from 2000-2013, (d) the regression 

between the trend of night-time light and forest gradual change trend; (e) the regression between the trend of night-

time light and forest abrupt change frequency; (f) the regression between the trend of night-time light and mean 

value of negative abrupt forest change magnitude. 
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3.4.2. Correlation between climate variables and forest change 

Correlation between climate variables (precipitation and temperature) and forest change indicators were 
performed.  

The selected indicator, DLP (the Days of the Longest Period Continuously without Precipitation) 
represented by each meteorological station, were tested with 5km station buffer statistical value of forest 
change trend, mean of negative forest change magnitude and sum of forest change frequency. The results 
in Figure 26 indicate that the forest change trend has no significant linear relationship with precipitation 
(R2=0.001, p-value=0.993), but has a significant regression coefficient with forest abrupt change indicators 
has high significance (p-value<0.01). Only pixels with extreme negative forest change magnitude were 
selected and the mean value was recorded to carry out, the linear regression with precipitation indicator. 
The result shows a higher linear relationship (R2=0.502, p-value≈0) between DLP and extreme forest 
abrupt change than DLP and normal forest abrupt change (R2=0.355, p-value=0.002). 

 

 
Figure 26. Correlation between forest change and precipitation from 2000-2013, (a) correlation between DLP and 
forest gradual change trend; (b) correlation between DLP and forest abrupt change frequency sum value at county 
level; (c) correlation between DLP and mean value of negative forest abrupt change magnitude at county level; (d) 
correlation between DLP and mean value of extreme negative forest abrupt change magnitude at county level. 
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The indicator of temperature here selected is DLT35 (the mean value of Days of the Longest Period 
Continuously with Maximum Temperature Above 35℃ each year), and the linear regression shows similar 
results with precipitation indicator. The indicator of extreme temperature shows no significant correlation 
with forest gradual change trend (R2=0.001, p-value=0.993), but shows a strong linear relationship with 
forest abrupt change indicators (frequency and magnitude) shown in Figure 26. However, the relationship 
between significant negative forest abrupt change and the extreme temperature is weaker than forest 
change with precipitation according to R2 and p-value. 

 

 
 
Figure 27. Correlation between forest change and temperature from 2000-2013, (a) correlation between DLT35 and 
forest gradual change trend; (b) correlation between DLT35 and forest abrupt change frequency sum value at county 
level; (c) correlation between DLT35 and mean value of negative forest abrupt change magnitude at county level; (d) 
correlation between DLT35 and mean value of extreme negative forest abrupt change magnitude at county level. 
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4. DISCUSSION 

4.1. Distribution of forest changes and validation issues 

A lot of studies and field work have found forest loss events in the eastern section of semi-arid region in 
China (Liu et al., 2013). However, we assumed that the total forest gradual trend in this area was increasing 
during 2000-2013, considering the Chinese governments’ efforts in forest conservation and afforestation 
in recent decades. 

According to the proportion of forest change trend directions of all the pixels, 71.6% forest pixels are 
with positive change trend direction and 28.4% with negative change trend direction. When considering 
the mean value of forest change trend including all the forest pixels, the overall forest NDVI in the whole 
study area had gradually increased 0.014 from 2000 to 2013. By performing forest change trend analysis, 
each of the pixel within forest cover was detected with forest change trend either positive or negative, by 
comparing to no trend value 0, both pixels with significant forest increase and pixels with significant forest 
decrease trend were found over the 14 years between 2000 and 2013. The results show similar forest 
gradual change pattern from 2000-2010 with Deng et al. (2010)’s work.  

It is widely recognized that it is difficult to validate changes detected by change detection of dense time 
series straightforwardly. Usually, the ground truth data cannot fully validate the changes because it needs 
references of potential changes detected within the time interval, and it is not possible to record every 
change happen in reality (Verbesselt et al., 2010). What’s more, the ground observations used for reference 
were always performed within forest stand and were always presented by trees in small plots. Recently, use 
other satellite images like Landsat products give a solution for upscaling of ground observations according 
to Lambert et al. (2013).  

This study can be partly validated by comparing the change detection results of hot spot area under 
negative forest change trend with the forest loss map derived from Landsat (Hansen et al., 2013), and 
comparing the hot spot areas detected under significant positive trend with the forest gain map by 
Hansen. The two forest negative trend maps are comparable to some extent as the majority of hot spots in 
the two maps overlay. In our study, forest pixels with a positive gradual change trend >0.039 and marked 
with significant forest increase trend consist of 11.68% of the total forest area. Forest pixels with a 
negative gradual change trend<-0.018 and marked with significant forest decrease trend, consist of 7.29% 
of the total forest area. The results of hot spot analyses on significant forest increase and decrease trend 
are shown in the left map of Figure 28. Hot spots with an increasing forest gradual change trend mainly 
cover the areas in county A, county B, northern part of county C, and southern part of the study area 
covering most parts of county W and county X; hot spot with an extreme negative forest gradual change 
trend locate in northern part of the counties, and the most clustered one is mainly spread in county F. 
Forest decreasing trend is consistent with Hansen’s work displayed in the right map in Figure 28, but the 
increasing part is not. It may be because of that the specific study period is a bit different as Hansen’s 
work using the images mainly in growing season. What’s more, Hansen only considered bi-temporal 
changes, here we examined the linear trend of the whole time series. However, this simple comparison is 
not convincible enough to evaluate the accuracy of the results forest abrupt changes. Some satellite images 
such as free data of Sentinel or other images like Google-Earth Images and the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) are potential data sources to provide forest 
change areas for validating the forest abrupt changes caused by fire or other disturbances to certain 
extend. 
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Figure 28. Comparison between the hot spot derived from extreme forest change trend (left) with hot spot derived 
from Hansen's work (right) 

Another alternative data for ground truth validation might be the tree-ring data. Liu et al. (2013) used tree-
ring data to demonstrate the forest growth characters and assessed the correlation of the tree-ring data 
with the droughts in Inner Asia. Wang et al. (2009a) also indicated that tree-ring data as an excellent proxy 
for representing long-term forest growth responding to the climate change in Northeast China. Regarding 
this, tree-ring data might be a useful validation data for representing forest changes. 

Forest types with different canopy cover have different change characteristics in this area. Deng et al. 
(2010a) used 1-km area percentage data model with Landsat data, demonstrated the forest degradation 
resulting from the conversions between different forest cover types in northeast China. This study only 
examed the forest changes within forest landscape which treat all the forest with density over 10% as the 
same forest cover area (according to the definition from Land Cover and Land use map of China). As a 
result, this study cannot reveal change characteristics between different forest types and species.  

4.2. Correlation between forest change and disturbances 
 

Our study area locates in the eastern section of semi-arid China, a forest-steppe ecotone with high 
sensitivity to climate change and other human disturbance factors. Previous studies found the vegetation 
NDVI in this area has vital correlations to climate variables (Zhao et al., 2013; Liu et al., 2013). Deng et al. 
(2010b) also demonstrated forest dynamics in this area in the beginning years of the 21st century, with 
consideration of more specific variables, such as human density, forest distances to the cities, forest 
distances to the roads. What’s more, the terrain and elevation also need to be discussed as other studies in 
this area show the geography factors have influences on the forest changes patterns. Wang et al. (2009b) 
considered altitudinal gradient within site to explore the forest dynamics in northeast China, which 
suggested the importance of including local factors of diverse topography in large-scale forest study. 
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For estimating the major factor of forest change in this study, correlation and regression analyses between 
forest change indicators and disturbance variables were carried out. Forest change trend indices and night-
time light indices have certain positive correlations, which indicated that the slight forest gradual change 
trend has a possible correlation with the development and urbanization in the study area. This particular 
phenomenon can be explained by the successfulness of logging ban promoted by the Chinese 
government. From 1998, the Chinese government shifted the primary focus of forest management in the 
country from wood production to protect the sustainability of the forest ecology (Yu et al., 2011), and 
published Natural Forest Conservation Program and Grain to Green Program (Liu et al., 2007). Liu et al. 
(2008)’s study declared the enormous contributions of these efforts to the increase of forest area in China, 
which also explained the potential reason of why forest NDVI gradually increased in our study. 

However, considering the distance effect of human activities, the night-light might not be the best proxy 
for estimating the human disturbance in this study. More accurate assessment of human activity influences 
on forest dynamics may utilize proxies such as the distribution of roads and settlements (Liu et al., 2012). 

For the forest abrupt change part, both extreme abnormal precipitation and climate indices show a 
significant correlation to forest abrupt change indices. The unusual forest mortality events occurred in 
recent years can be explained by the significant correlation with extreme unfriendly climate factors, 
especially blame for droughts and high temperature according to the correlation results, which consistent 
with previous findings of Tong et al. (2016). These forest abrupt changes driving factors need more 
detailed analysis with disturbances such as forest fire and pests. Liu et al. (2012) studied the fire occurrence 
in the boreal forest of northeast China, which indicated that fires could be ignited from both human 
disturbance as well as the side effect of climate. Forest in China also faced big challenges from various 
kind of forest pests, including insects and plant diseases (Ji et al., 2011). State Forestry Administration 
(2010) recorded pests outbreak events which seriously threatened the forest in China. According to the 
research of Ji et al. (2011), different species of beetles are the major threaten for northern forest areas. Liu 
et al. (2013) used tree-ring data to demonstrate the forest decline in Inner Asia, which also revealed the 
correlation of tree mortality documented from 2007- 2009 responding to fire and insects in northeast 
China. Forest abrupt changes disturbance analysis can be more convincible if the correlation of forest 
changes occurrence times and forest fire as well as pests outbreak events are fully discussed. 

4.3. Detecting forest changes using MODIS time series with BFAST  

Our study area has a characteristic of forest fragmentation, and detection of thin forest change using 
coarse resolution images is generally difficult (Lambert et al., 2015), using coarse resolution images might 
underestimate the presence of forest. Here in our study, using MODIS data with fine resolution of 250m 
which has the same spatial resolution as the forest cover mask, overcomes this problem. 

On the other hand, the temporal resolution of MODIS-NDVI data is 16-day, by performing time series 
analysis with such frequency can reveal abrupt changes between short time gaps. With the advantage of 
time series analysis using BFAST to detect abrupt changes in the seasonal and trend components, the 
results can reflect not only the differences between the two time nodes, but also the changes within time 
series, which reveal much information hidden within long time trajectory of the remote sensing images. In 
this study, by performing BFAST and hot spot analysis with results of gradual change trend and 
breakpoints, we can elicit the forest areas with significant negative forest change trend, high rate of abrupt 
changes and violent abrupt changes as is shown in Figure 20. Although the drawback of difficult to find 
comparable validation data is obvious, the result is at least convincible by showing different changes 
within study areas. 
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What’s more, BFAST can record the date of forest change detected, which might be used to compare the 
occurring time of forest change with other disturbance factors. It might reveal a much deeper correlation 
between forest changes with potential factors in temporal aspect.  

This study only has 24 correlation groups when performing forest disturbances analysis, which need other 
substantial data for more accurate correlation examination. There is no doubt that the correlation and 
regression analyses for the results of forest changes from BFAST with other disturbance factors can be 
improved if indices of disturbance factors with better resolution were acquired. Then the correlation can 
be analyzed at pixel level which might reveal a much deeper relationship between forest changes and 
potential factors spatially.   

The patterns of forest abrupt changes are very different from long-term forest gradual change. As these 
forest abrupt change areas need particular attentions of government departments concerning the 
management of forests such as Forestry Bureau and Land Use Planning Bureau for their policy and 
decision making. What’s more, further studies and filed investigations need to be performed within forest 
abrupt change hot spots. Historical forest fire, pests outbreak events and tree-ring records are potential 
data resources besides remote sensing data for validation and accuracy assessment. Further study of 
driving factors of these changes will contribute to better management of forests and sustainability of 
forest ecology. 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusions 
This study is the first time of applying BFAST with MODIS images in such large area. The results 
revealed that this research fulfilled the goals to detect both forest gradual and abrupt changes within long 
time series of MODIS-NDVI at pixel level. Forest gradual changes cannot explain some sudden changes 
within forest NDVI time series. With the performance of BFAST model, forest abrupt changes can be 
extracted by breakpoint change detection function and characterized by magnitude and frequency. By 
further hot spot analysis with the results of BFAST model, the spatio-temporal forest gradual change and 
abrupt change were clearly revealed. By correlation and regression analyses, forest gradual change and 
forest abrupt change main driving factors were found out. In this research, three main aspects have been 
explored corresponding to research objectives: 

• This case study detected gradual forest change trends and abrupt forest changes among totally 
2,337,140 pixels, with the MODIS-NDVI spatial resolution of 250 m. The spatial and temporal 
distribution of forest change character were shown. From 2000-2013, the total trend of the forest 
gradual change among the whole study area was generally increasing. Forest NDVI decreasing 
areas mainly distributed among the boundaries of counties located in the middle part of the study 
area, forest NDVI increasing areas mainly among counties located in top northern part and 
southern part of the study area.  

• The distribution of forest abrupt change from 2000-2013 showed at pixel level appeared to be 
more fragmented, but the extreme abrupt forest change characterized by the higher frequency and 
more violent magnitude can be found with clustering distribution patterns, mostly located among 
northern part of the study area.  

• The hot spot analysis also indicated the major gradual forest negative change happened in 
counties located in northern part of the study area: county F and northern corner of county A, 
county C, county J, middle part of county B and county E. The hot spot analysis showed the 
violent negative abrupt forest changes were clustering in county A, county B located in northern 
part of the study area and high-frequency abrupt forest changes clustering similarly around the 
hot spots of negative forest gradual change but with much larger areas. 

• The correlation and regression analysis revealed a certain positive correlation between forest long-
term gradual change trend and urbanization with two groups, showing the development of human 
society positively influenced the long-term forest change trend. Forest abrupt changes have 
significant correlation with extreme precipitation and temperature events, and the main 
controlling factor is precipitation with linear regression results of R2=0.502, p≈0. Comparing to 
other factors, precipitation had overwhelming control on forest growth in the eastern section of 
semi-arid region in China during 2000-2013. 

5.2. Recommendations 
Forest changes were statistically analyzed within certain scopes with BFAST to derive variable indices for 
correlation and regression. The final correlation and regression results were based on 24 groups of 
comparison. If the meteorological data can be interpolated into certain comparable resolution spatial data, 
or derived from other climatic remote sensing products, the results of correlation can reveal a much 
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deeper spatial correlation of forest change with these disturbance factors. What’s more, BFAST model can 
record the ‘date’ where changes happen, if comparable climatic or other disturbance data have date 
recorded, more variety of the correlation and comparison can be performed to derive more exciting 
results. These can be the further work of this study. 

To some extent, the results of change trends or abrupt changes detected by this model, depended a lot on 
the parameters set by the users. In this study we dealt with this issue cautiously, we picked harmonic 
model when dealing with seasonal components in BFAST according to the suggestion that it is most 
appropriate for fitting natural vegetation (Verbessslt et al., 2010). Other issues should also be paid 
attention as the sensitivity of change detection depends on the degree of operation like cleaning when 
doing pre-processing or smoothing with the time series. 

On the other hand, BFAST model has already been tested with its capacity of detecting changes not only 
in time series of remote sensing but also numeric strings. It has high potential in analyzing big data set 
because it only put numeric strings in arithmetic which boosting the analysis performance. This case study 
applied all the pixels’ time series inside forest mask to BFAST model within R language environment. 
However, the string needs to be extracted manually, and the output of BFAST are numeric which need to 
be assigned to the raster images or point shapefile using other R functions or GIS tools. Regarding this, 
the applicability of BFAST model for users needs improvement. 
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