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ABSTRACT 

Regional maps of foliar nitrogen are important for precision agriculture, livestock management, biodiversity 

conservation and for understanding ecosystem structure and functions. Leaf nitrogen is related to many 

other leaf constituents and key canopy traits. However, this relationship varies within and across ecosystems. 

The retrieval of foliar nitrogen is challenging i.e. from a tedious and time consuming contemporary approach 

to a more expensive and area constrained conventional approach. The optical remote sensing has served as 

a paramount technique for estimating foliar nitrogen. With the inception of new multispectral sensors with 

high spectral, spatial, and temporal resolutions covering the red edge region, which provide additional 

information on vegetation characteristics, the prospect of estimating foliar nitrogen with higher accuracy is 

promising. Although, vegetation indices are popular and simple means of retrieving leaf nitrogen, they have 

been rarely examined in wetlands. Therefore, vegetation indices derived from high resolution multispectral 

images of RapidEye and Sentinel-2 were utilized in this study for nitrogen retrieval. Field measurements of 

leaf samples were collected from 30 plots in the island of Schiermonnikoog, Netherlands in July 2015 

concurrent with the time of the RapidEye image. Moreover, the Sentinel- 2 image from the same 

phenological date was obtained for the year 2016. Leaf constituents such as nitrogen and carbon were 

determined from oven dried leaf samples using wet chemical analysis.  

 

First, we assessed the relationships between the measured leaf nitrogen with other leaf constituents 

(chlorophyll and carbon) as well as with the reflectance of individual spectral bands. Next, a total of 12 

standard vegetation indices that were mostly correlated to chlorophyll and nitrogen in the previous 

literatures were examined. The optimization of using different band combinations in different vegetation 

index formulation was conducted to assess the relationship between leaf nitrogen and different spectral 

band combinations. Regression models were then used to study the relationships between the leaf nitrogen 

and the indices and the results were validated using leave one out cross validation.  

 

The results showed that the measured leaf nitrogen had a relatively low correlation with the measured 

chlorophyll (R=0.24) and moderate correlation with the measured carbon (R=-0.61). Leaf nitrogen had a 

high correlation with NIR band in RapidEye and SWIR in Senstinel-2. The standard ratio index (SR index 

and Clrededge) demonstrated the highest correlation with the leaf Nitrogen (R= 0.70) using the RapidEye 

data. However, when vegetation indices were optimized using different band combinations, the NIR and 

red edge band combinations demonstrated to be the most promising index (R=0.70). The results from the 

cross validation indicated that the best indices selected for RapidEye and Sentinel-2 were not the same.  

 

 Foliar nitrogen was estimated from RapidEye data using Clrededge index (red edge and NIR) with R2
CV= 

0.41 and RMSECV= 0.40 whereas NDVI like index (red edge and SWIR) yield R2
CV= 0.37 and RMSECV= 

0.42 for the Sentinel-2 data. The result of our analysis confirms the importance of the red edge bands for 

estimation of foliar nitrogen and demonstrate that optimization of vegetation indices using different band 

combinations improve the accuracy of retrieving foliar nitrogen in a wetland ecosystem from multispectral 

remote sensing data. The saltmarsh/wetlands are rather heterogeneous ecosystems, so classifying the 

vegetation based on the species characteristics may further enhance the obtained results. 

 

 

Keywords: Chlorophyll, Foliar Nitrogen, RapidEye, Red edge band, Sentinel-2, Schiermonnikoog, 

Saltmarsh grassland/ecosystem, Vegetation Indices. 
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1. INTRDUCTION 

1.1. Background and  Motivation 

1.1.1. Importance of Foliar Nitrogen 

 
Nitrogen is an essential plant nutrient being an important component in proteins, nucleic acids, and 

chlorophyll (Reich et al., 1995). Among the available biochemical constituents of protein in leaves, nitrogen 

plays a primary role of regulating numerous physiological processes such as photosynthesis, leaf respiration 

and transpiration, as well as been strongly linked to light use efficiency and net primary production (Mutanga 

& Skidmore, 2007; Skidmore et al., 2010). Nitrogen acts as a limiting factor in plants tissue and serves as an 

indicator for net photosynthetic capacity in leaves (Reich et al., 1998). Nevertheless, nitrogen and carbon 

cycles are intimately linked in ecosystem, owing to the role nitrogen exert in controlling rates of several 

carbon cycling processes including net primary production, regulates carbon assimilation in terrestrial 

ecosystems, and influences ecosystem processes through decomposition of leaves, uptake of nitrogen in 

plants and net mineralization (Wright et al., 2004; Goedhart et al., 2010).  

 

Additionally, nitrogen availability influence plant growth and development and the quality of nursery plants 

hence, an alteration in supply results into non-optimal photosynthesis and subsequently effect the enzyme 

concentration (Clevers & Gitelson, 2013). Understanding plant functioning and vegetation status, requires 

information about nitrogen content in addition to other properties (such as leaf area index, biomass, and 

fraction of absorbed radiation). Moreover, it has been shown that, foliar nitrogen determines the distribution 

pattern of wildlife most especially in areas with less human interference (Pellissier et al, 2015), influences 

feeding pattern of livestock (Skidmore et al., 2010), and improves the health status of grazing animals  

(Ramoelo et al., 2012). Also, foliar nitrogen serves as an input parameter in modelling ecosystem processes 

(Pereira et al., 2013), and inadequate supply of nitrogen affects the prediction of yield and production of 

quality crops (Tian et al., 2011). A significantly precise estimate of nitrogen is important for biodiversity 

conservation, precision agriculture and for understanding ecosystem structure and functions (Asner & 

Martin, 2008). Besides, nitrogen has also been proposed as an essential biodiversity variable for satellite 

monitoring towards the progress of Aichi Biodiversity Targets (Pereira et al., 2013; Skidmore et al., 2015). 

 

1.1.2. Remote Sensing: Estimation of Foliar Nitrogen in Vegetation  

The three basic physical mechanisms of electromagnetic radiation: absorption, reflection and transmission 

are responsible for interactions between incident radiation and biochemical pigments in plants (Homolová 

et al., 2013). In vegetation studies, reflectance from the vegetation canopy is subject to the spatial 

configuration of the radiative properties of leaves and other non-photosynthetic canopy element. Kumar et 

al.,(2002) and Homolová et al.,  (2013) stated that the reflectance spectra of leaves are characterised by the 

leaf structure in the near infrared region and a strong absorption in the visible region dominated by 

photosynthetic pigments, particularly chlorophyll. Considering the importance of nitrogen in ecosystem 

processes, and its spatial variability, there has been  efforts made towards retrieving nitrogen using remotely 

sense data, traced back as to the advent of airborne imaging spectrometers (Martin et al. , 2008a).  
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Conventional methods involving laboratory spectrophotometric approaches are laborious, time consuming 

and applicable on small scale (Hansen & Schjoerring, 2003). Remote sensing techniques have been used in 

the last decade to obtain information on biophysical and biochemical parameters of vegetation  including 

foliar nitrogen (Darvishzadeh et al., 2008). However, remote sensing techniques hinge on the large variety 

of remotely sensed data provided from different passive and active remote sensing systems, of benefit in 

vegetation studies. In the process of acquiring data using remote sensing techniques, foliage pigments which 

are mostly the predominant signal seen from space are reflected captured and stored in spectral bands, either 

narrow band forming the basic knowledge for terrestrial ecosystems functions. The application of remote 

sensing techniques in estimating biochemical variables is increasing due its capacity to acquire large scale 

data and being non-destructive. The estimation of leaf nitrogen has been carried out using hyperspectral 

and multispectral data in different ecosystems, including  forest(Cho et al., 2007; Martin et al.,2008; Wang 

et al., 2016), crop (Lu et al.,2013) and grassland (Pellissie et al., 2015). 

 

 
Previous studies have showed that the use of hyperspectral data in estimating leaf nitrogen yields a good 

accuracy (Feng et al., 2008;Clevers & Kooistra, 2012c;Schlemmer et al., 2013;Wang et al., 2017), however, a 

number of drawbacks such as the high cost of acquiring  data, complexity in processing, and it’s avalaibility  

make it difficult to estimate nitrogen on a regional scale based on such data. Thus, this thesis seeks to 

evaluate the performance of new high resolution multispectral images in mapping foliar nitrogen. 

 

1.1.3. Remote Sensing Techniques 

 
In the past decades, numerous techniques have been developed to retrieve vegetation biophysical and 

biochemical variables using remote sensing data; these techniques have been divided into groups in different 

studies. As such Frampton et al., (2013) recognised them into three broad categories: the use of vegetation 

indices, machine learning methods like neutral networks (Carpenter et al., 1999) and inversion of Radiative 

Transfer Models (Shultis & Myneni, 1988). Liang  (2005) noted that empirical and physical approaches (or 

the combination of both) are quantitative methods used for interpreting remotely sensed data to assess plant 

traits. In more recent studies, these approaches have been categorized as parametric regression methods, 

non-parametric regression methods, physically based method and hybrid method (Verrelst et al., 2015). 

 

Empirical approaches are computationally fast and more prominent in retrieving vegetation parameters 

from remotely sensed data, ranging from use of vegetation indices (Miphokasap et al., 2012), and the 

conventional regression procedure like stepwise multiple linear regression (Kokaly et al.,1999) and partial 

least square regression (Martin et al., 2008a) to  machine learning methods like neutral network, vector 

regression and Bayesian models (Skidmore et al., 2010; Axelsson et al., 2013; Zhao et al., 2013).  Homolová 

et al., (2013) emphasised that the most appropriate approach of estimating foliar nitrogen is by means of 

empirical methods and concluded that nitrogen can be retrieved with high accuracy by means of this 

approach. Additionally, vegetation indices happen to be one of the most widely accepted approach used to 

estimate leaf biochemical contents especially nitrogen (Wang et al., 2016).  

 

Field measurement of plant trait data are still limited to small areas, to a certain moment in time and to 

certain number of species only. Therefore, remote sensing (RS) offers potential to complement or even 

replace field measurements for some plant trait. It offers instantaneous spatially contiguous information, 

covers larger areas and in case of satellite observation profits from their revisit capacity. 
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1.2. Research Problem 

 
A lot of emphasis has been laid on the importance of foliar nitrogen in forage quality (Skidmore et al., 2010), 

livestock management (Ramoelo et al., 2012) and biodiversity conservation (Pereira et al., 2013). This 

propelled researchers to develop an efficient method appropriate for estimating foliar nitrogen, taking into 

consideration that, the strength of any reliable method depends heavily on the quality of the data used. 

Despite these advances in remote sensing data and techniques, it’s still challenging to continually monitor 

subtle changes of nitrogen or even use it as a driver in regional to global scale analyses (Lepine et al., 2016). 

 

Although the conventional spectrophotometric laboratory approach can estimate nitrogen with high 

accuracy, its drawbacks such as the tedious nature, time demanding and the small area coverage, impede the 

application of this approach on a regional scale. On the other hand, the contemporary approach, utilising 

hyperspectral remote sensing, provides better estimate of nitrogen compared to the conventional method 

(Mutanga & Skidmore, 2007); yet application on a regional scale still pose as a challenge, since these data are 

usually expensive and not readily available on a regional scale (Knox et al., 2012; Ramoelo et al., 2013). 

Additionally, the use of vegetation indices derived from Red edge band has proved to improve the estimate 

of nitrogen (Cho & Skidmore, 2006). 

 

However, mapping foliar nitrogen on a regional scale is rare and face with the challenge of unreliable method 

of extending field measurement to broad scale spatial patterns. But possibilities abound with the inception 

of broad band multispectral data. The emergence of new generation multispectral sensors with high spatial 

and temporal resolution which benefits from spectral bands in the Red edge region such as RapidEye and 

Sentinel-2, create an avenue to map nitrogen with an improved accuracy and on a regional scale. Although, 

some studies has been carried out using multispectral imagery in ecosystems like grasslands, croplands and 

forest (Ramoelo et al., 2015) for nitrogen estimation, only few have been conducted in salt marsh ecosystem 

(Cartaxana & Catarino, 1997; Bertness et al., 2002). Therefore, this study focus on evaluating the 

performance of high resolution images in mapping foliar nitrogen in salt marsh/grassland ecosystem. 

1.3. Research Objective 

1.3.1. General Objective 

The general objective of the study is to evaluate the performance of high resolution images in mapping foliar 

nitrogen in salt marsh/grassland ecosystem of Schiermonnikoog. 

1.3.2. Specific objectives 

• To examine the relationship between foliar nitrogen and other leaf constituents (chlorophyll and 
carbon) in saltmarsh/grasslands ecosystem of Schiermonnikoog. 

• To evaluate the potential of the vegetation indices derived from Rapid Eye images for foliar 
nitrogen estimation. 

• To determine whether the vegetation indices derived from RapidEye are comparable to those of 
Sentinel-2 for foliar nitrogen estimation. 

1.3.3. Research Questions 

 

• What is the relation between foliar nitrogen and chlorophyll/carbon in saltmarsh/grassland? 
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• Within the studied vegetation indices, which vegetation index derived from RapidEye data can 
provide an accurate estimate (in terms of highest R2 and lowest RSME) in estimating foliar 
nitrogen?  

• Does spectral bands and vegetation indices used for retrieval of foliar nitrogen from RapidEye 
similar to those of Sentinel-2? 

1.3.4. Hypotheses 

 

• H0: There is no significant correlation between foliar nitrogen and chlorophyll/carbon in salt 
marsh/grasslands of Schiermonnikoog.  

• H1: There is a positive correlation between foliar nitrogen and chlorophyll/carbon in salt 
marsh/grassland of Schiermonnikoog. 

 

• H0: Using the RapidEye Red edge band will not provide a high accuracy (in terms of highest R2 and 
lowest RSME) for foliar nitrogen estimation. 

• H1: Using the RapidEye Red edge band a high accuracy (in terms of highest R2 and lowest RSME) 
for foliar nitrogen estimation will be obtained. 
 

• H0: The best band combination within the studied vegetation indices derived from RapidEye images 
are not comparable to those of Sentinel-2.   

• H1: The best band combination within the studied vegetation indices derived from RapidEye images 
are comparable to those of Sentinel-2. 
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2. LITERATURE REVIEW 

2.1. Remote Sensing of Biochemical Variables: Physical Principles 

 
The interactions between incident radiation and biochemical pigments in plants depends largely on the 

physical mechanism of absorption, reflection, and transmission of electromagnetic radiation (Homolová et 

al., 2013). The wavelength of electromagnetic spectrum, incidence angle, surface roughness and biochemical 

constituents together with leaf and canopy structure are some of the factors that determines the amount 

and nature of the physical mechanism in plant (Wright et al., 2004b). Since absorption features of vegetation 

are mostly located within the optical domain (380nm to 2500nm), it has reemphasized the importance of 

this spectrum in vegetation studies (Kokaly et al., 2009;Gitelson et al., 2009). Admittedly, chlorophyll is a 

major plant constituent that determines reflectance in the visible (between 400nm and 700nm) region of the 

spectrum, thus enhancing optical remote sensing techniques in providing reliable information for 

chlorophyll and nitrogen content (Clevers & Gitelson, 2013).  An overall spectral behaviour for foliar 

pigments and similar biochemical constituent of a vegetation is illustrated in Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Homolová et al., (2013) took a step further to review most of the important and frequently reported 

wavelengths cited in the literature for estimating nitrogen and summarized them in a graph as shown in 

Figure 2 below. Based on the above review, it was further stated that these wavelengths can be categorically 

integrated into three broad spectral regions namely: red-edge region (680–780 nm), near infrared region 

(1200 nm) and short wave infrared (1680 nm, 2050 nm, and 2170 nm).  

 

Figure 1. Spectral reflectance characteristics of  a healthy vegetation (adapted from Verhoeven, 2012) 
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More recent, studies have demonstrated that the transition between red absorbance and near infrared 

reflection (NIR) contains additional information related to vegetation characteristics, most of the studies 

also highlighted that quantification of biochemical traits from NIR are strongly influenced by radiation 

scattering processes, which must be taken into consideration to obtain reliable results (Homolová et al., 

2013). Additionally, reflectance within red and near- infrared (NIR) spectral regions are used for the 

estimation of biochemical components like chlorophyll imploring remote sensing techniques (Gitelson et 

al., 2005).  

 

2.1.1. Remote Sensing Instruments 

 

The present prevailing optical remote sensed system used in vegetation studies today are built on, from a 

range of several remote sensed data obtained from different passive and active satellite sensors. The sensors 

employed ranges from low-cost spatial   multispectral satellite to high-cost imaging spectrometers (AVIRIS,  

HyMap and Hyperion) (Raymond et al., 2013). Consequently, there is a trade-off between spatial, spectral, 

and temporal resolution of optical spectroradiometers on the different satellite platforms (ground-based & 

airborne). However, increased resolution has been recorded right from the inception of coarse spatial 

broadband multispectral spectroradiometers (AVHRR) around the 1970s and 80s, to an operational satellite 

based spectroradiometers with a moderate spectral and spatial capabilities (MODIS, MERIS and ETM+) 

and to a more advance recent satellite sensor with enhanced potentials (Sentinel) (Malenovský et al., 2012; 

Frampton et al.,2013; Ramoelo et al., 2015). 

2.1.2. Remote Sensing Systems in Retrieving Biochemical variables on Regional Scale 

 

The use of remote sensing has obviated the need for field measurement though field measurement remains 

one of the most reliable means of retrieving accurate measures for biochemical variables. The evolution of 

optical remote sensing proficiency in estimating plants trait advanced concurrently with the development of 

remote sensing spectroradiometers (Milton et al., 2009). At first earlier developed spectroradiometers 

provided coarse spatial and spectral resolution data suitable for broad functional vegetation classes and the 

used of developed vegetation indices sensitives to broad variations in canopy (Turner et al., 1999). But a 

more quantitative estimation of biochemical variables (Dash & Curran, 2004) was enhanced further with 

Figure 2. A summary of frequently used spectral wavelength for estimating nitrogen where each dots 
represents reported wavelength and the grey line representing the reflectance a typical green 
vegetation(adopted from Homolová et al., 2013) 
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the generation of medium resolution spectroradiometers (MODIS) simultaneously with the development 

of radiative transfer model. With the inception of these high spectral resolution imaging spectroradiometers, 

more quantitative estimate of plant pigments have been retrieved and studied (Mutanga et al.,2004),  these 

studies include  chlorophyll  and nitrogen which have received much attention (Haboudane et al., 2002; le 

Maire et al., 2004; Schlerf et al., 2010; Malenovský et al., 2013).  

 
In vegetation studies, remotely sensed data  aims at  increasing the sensitivity of reflectance towards a 

biochemical variables (chlorophyll/or nitrogen) However,   previous efforts in examining these variables  

using broad-band sensors have been limited to coarse spectral bandwidths (Haboudane et al., 2002). In 

addressing this,  a ground based sensing system made up of a multispectral optical sensor was developed to 

measure nitrogen (in cotton) using  plant reflectance (Sui & Thomasson, 2006). Most recent, a high spectral 

resolution aircraft often used for estimating  canopy nitrogen  on landscape-scale was developed based on  

the strong correlation between  field-measured nitrogen reflectance and the reflectance in some portions of 

the spectrum (Lepine et al., 2016). In addition, this strong correlation was observed by  Ollinger et al., (2008)  

over broad portions of the NIR region which also correlate with measured nitrogen in temperate and boreal 

forests. 

 

However, multispectral sensor provides few broad spectral bands, with relatively wide range that can 

contribute in  enhancing the retrieval of biochemical variables such as nitrogen (Bagheri et al., 2013) on a 

regional scale. Ollinger et al., (2008) and Ollinger (2011) suggested the possibility of estimating nitrogen 

from spectral features available on sensors which provide broader spectral coverage. Although there are 

other indications that broad-band spectral features contain information related to variability in canopy 

nitrogen (Gamon et al., 1995; Zhao et al., 2005; Hollinger et al., 2010). Notwithstanding, Lepine et al., (2016) 

findings shows that the variability are associated to broad reflectance in the NIR region, so offering many 

possibilities for estimation of canopy nitrogen on a broad scale from a range of sensors. 

2.1.3. Potential of the Red edge Band in Multispectral Sensors 

 

Assessing leaf nitrogen on a regional scale has been challenging owing to insufficient satellite data with 

spectral configuration appropriate to identify variation in leaf nitrogen content. But with the introduction 

of satellite sensors containing the red edge band (RapidEye and WorldView-2, Sentinel-2), some 

improvement has been recorded. The red edge band is a spectral region mostly associated with vegetation, 

situated within the red absorption maximum and high reflectance in the near infrared. The importance has 

been acknowledged in vegetation studies for quite a long time. However, in quantifying the red edge, the 

position which is the maximum slope along the red edge is computed, thus enhancing estimates of 

concentration of leaf content as well as chlorophyll.  

 

The red edge band also has a positive correlation between chlorophyll and nitrogen, however the region 

between 680-780nm and  550nm and 700nm spectral wavelength have been used continuously in assessing  

chlorophyll (Li et al., 2014) and also used mostly for quantification of vegetation indices for estimating leaf 

nitrogen especially where biomass and leaf nitrogen interaction are minimal. (Ramoelo et al., 2012; Skidmore 

et al., 2010). Equally there have been researches that highlighted that reflectance in the green and red edge 

regions is sensitive to a wide range of chlorophyll (Gitelson et al., 1996; Gitelson & Merzlyak, 1996).  
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2.1.4. Using RapidEye & Sentinel-2 in Retrieving Biochemical Variables 

 

Among most of the multispectral sensors containing the Red edge band are RapidEye and Sentinel-2 sensor. 

Sentinel-2  is a satellite recently launched by the European Space Agency, which possess a high possibility 

tailored towards using the sensor to retrieve biochemical variables while utilizing its high spatial, spectral, 

and temporal resolution (Ramoelo et al., 2015). Due to the fact that it contains spectral bands covering red 

edge region which is useful in retrieving chlorophyll content (Dash & Curran, 2004; Gitelson et al., 2005; 

Delegido et al., 2011). Estimates of chlorophyll content using the red edge band of Sentinel-2 has been 

shown to be highly significant (Clevers et al., 2001; Dash & Curran, 2004). Delegido et al., (2011) shows the 

significance of red edge bands of Sentinel -2 in estimating LAI and chlorophyll. 
 

Additionally, Wu et al.,(2008) laid more emphasis on the importance of red-edge bands where the red and 

NIR spectral bands in the MCARI/OSAVI and TCARI/OSAVI indices was replaced by red edge and 

improved linearity with the canopy chlorophyll and nitrogen content was obtained. Various studies have 

shown that the use of red edge bands in ratio indices or normalized vegetation indices produce good 

estimates for nitrogen and chlorophyll content. 

 

2.2. Remote sensing Methods in Retrieving Biochemical Variables 

2.2.1. Use of Vegetation Indices 

 

Spectral indices are an important method of retrieving information from remote sensed data. Vegetation 

indices are widely used in providing quantitative ground measurements of biophysical varaibles of vegetation 

by contrasting and comparing spectral reflectance characteristics of varying plant species (Frampton et al., 

2013). The benefit of using vegetation indices include;  simplicity in computation, not site specific  and 

universally applicable. Spectral indices has been shown to be of great importance especially in analyzing 

imaging spectrometer data (Gitelson, 2011). Although most of these developed spectral indices are 

calculated using ratios or normalised differences between two or three bands but this depends on the spectral 

properties of individual plant species. 

 

Considerably, each of this developed vegetaion indices has it’s own strength and weakness in application, 

so some are more optimal at retrieving certain varables than others. However, vegetation indices might be 

affected by different factors like soil, topography and angular view (Hatfield et al.,2008), but notwithstanding 

they try to reduce the effects of the above mentioned factors but not completely eliminating them. One of 

the best method of reterieving biophysical parameters of a vegetation regionally with a high temporal 

covearage still remains with the use of vegetation indices derived from remote sensed data (Frampton et al., 

2013). 

2.2.2. Estimating Nitrogen using Vegetation Indices 

 
Vegetation indices is an empirical approach used mostly for estimating foliar nitrogen. It is an old but simple 

technique for estimating leaf biochemical content like nitrogen (Verrelst et al., 2015). These vegetation 

indices consist of a combination of Near Infrared (NIR) spectral band and a visible band where the former 

represents the scattering of radiation at the canopy level and the latter represents the absorption by 

chlorophyll. Studies have shown that the presence of nitrogen in leaves influences spectral reflectance  due 

to its presence in protein and chlorophyll contents of leaf cells (Kokaly et al., 2009).  
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There are two main categories of vegetation indices: Vegetation indices developed for broadband 

multispectral sensors; and hyperspectral vegetation indices built on discrete narrows bands (Dorigo et al ., 

2007). A number of vegetation indices (VIs) have been propound for estimating chlorophyll and nitrogen 

content with a range of strengths (Daughtry et al., 2000; Boegh et al., 2002; Dash & Curran, 2004; Gitelson 

et al., 2005) and with more emphasis on the red edge region (Clevers & Kooistra, 2012a).   

 

Since the visible and NIR reflectance indices are sensitive to chlorophyll content, indices developed with 

these spectral bands increases sensitivity to chlorophyll. The positive correlation existing between 

chlorophyll and nitrogen have resulted into different mathematical transformation of vegetation indices 

(Main et al., 2011).  

 

However, Sentinel-2 has the potential of retrieving nitrogen content using suitable band position for use in 

vegetation indices, these indices have been used in studies for estimating nitrogen and chlorophyll (Clevers 

& Kooistra, 2012: Wang et al., 2012: Wang et al., 2016). 

2.3.  Statistical Approach 

 

In most vegetation studies, statistical approaches are used to model empirical relationship of spectral 

features and the biophysical parameter of interest which are driven primarily by reflectance over broad 

portions of the near infrared (NIR) region, with little contribution from the visible or mid infrared regions. 

Most of the attempts carried out in estimating nitrogen and other biochemical constituents involves the 

development of an empirical prediction model (Wessman et al., 1988; Coops et al., 2003; Townsend et al., 

2003; Martin et al., 2008a; McNeil et al., 2008).   

 

In modelling the relationship existing between spectral features and the biophysical parameter of interest, 

we mathematically correlate reflectance for different wavelength ranges or broad spectral bands with the 

biophysical vegetation parameters of interest (e.g., leaf area index (LAI), leaf chlorophyll content (LCC), 

fractional vegetation cover, nitrogen content) (River et al., 2014). This is achieved by fitting a function 

(exponential, power, logarithmic and polynomial) using a simple linear regression.  

 

The  regression function is dependent on the following factors: selecting the most sensitive spectral band 

relative to the retrieval of the biophysical parameter in question, formulation of spectral index that establish 

accurate empirical relationship and the selection of an accurate fitting function (River et al., 2014). 

 

Lately, a conceptual model which relates remotely sensed reflectance with pigment content in different 

components of plant (leaves, crop canopy and phytoplankton) was developed and used for non-destructive 

estimation of chlorophyll (Gitelson et al., 2003). Although the development of vegetation indices, which are 

mostly based on spectral regions have been used successfully, but their calibration coefficients are species-

specific because they were tested under single-species canopies (Daughtry et al., 2000; Boegh et al., 2002; 

Dash & Curran, 2004). 

 

 

However, the relationships between field measured nitrogen and canopy spectral properties as shown by 

(Martin et al., 2008a) appears to be highly boosted by NIR reflectance patterns, and were consistent enough 

across boreal, temperate, and tropical forests. In addition, Feng et al. (2008) deduced a model for reliable 

estimation in wheat by employing hyperspectral bands and estimation indices.  
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2.4. Using Remote sensed Chlorophyll as a Proxy for estimating Nitrogen 

 
Vegetation indices, spectral models and transformations have been developed to estimate chlorophyll from 

reflectance data (Homolová et al., 2013). Remotely sensed chlorophyll can be used as a proxy to estimate 

nitrogen using operational approach (Le Marie et al., 2008) as usually high correlation exist between nitrogen 

and chlorophyll in plant (Evans, 1989). Baret et al., (2007) also concurred that nitrogen could be determined 

from chlorophyll estimate. However, this relationship has proven to be specie and ecosystem specific and 

therefore makes it more interesting for communities with lower species diversity.  

 

2.5. Conclusion 

Based on the above review, empirical approach involving the use of vegetation indices are proven in many 

application areas and we would like to test how they perform in Schiermonnikoog. This approach has been 

adopted for use in this present study.  
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3. MATERIAL AND METHODS 

3.1. Study Site and Data 

3.1.1. Site Description 

 
The study area is the saltmarsh in the islands of Schiermonnikoog (53°30′ N, 6°10′ E), (figure 3) the 

Netherlands and is part of the Dutch Waddenzee ecosystem (Schmidt & Skidmore, 2003). The wetland is 

made up of a salt-marsh with a total area of 39.9km2 with 16 km long and a width of 4 km, a yearly 

temperature of 10.20 ± 0.720C (mean ± SD), and rainfall of 824 ± 149.1 mm (Schrama et al., 2012). The 

west and northwest part of the island is fortified against erosion by the sea. The artificial sand dikes protect 

the salt marsh towards the western part whereas the natural dunes protect the eastern part of the salt marsh 

(Schmidt & Skidmore, 2003). It’s a contiguous nature reserve formed because of the deposition of sediments 

from the river Rhine. The eastward sea current extends to the islands towards the east, where the salt marsh 

chronosequence has been present for over 100 years (Olff et al., 1997).  

 

 

 

 

 

Figure 3: Location of the Schiermonnikoog islands, the vegetation structure, and the distribution of the 
sample plots.  
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3.1.1.1. Vegetation Type  

 

The National Park Management known as Natuurmonument is responsible for managing the National Park 

of Schiermonnikoog since the island was left to nature since 1965 (Olff et al., 1997). The island 

characteristics features include beach, dunes, forest, a polder, salt marshes and the mud flats. The saltmarsh 

vegetation is made up of grasses, sedges, rushes, and herbs. Canopy within the salt marsh are on average of 

25 cm which are either electrophiles or circular (Schmidt & Skidmore, 2003). There are patches of different 

degree of bare soil between vegetation and a relatively uniform soil characteristics within the vegetation 

(Schmidt & Skidmore, 2003). Examples of  grass species dominate in the island are Festuca rubra (Poaceae), 

Elytrigia atherica  (Poaceae) and Juncus maritimus (Juncaceae) (Ruifrok et al.,2014). Figure 3 shows the 

vegetation structure and the distribution of the sample plots in Schiermonnikoog. 

 

3.1.2. Data 

3.1.2.1. Field Data 

The field data used for this study was collected during a field campaign carried out by ITC, NRS staff in 

July 2015. Field measurements of different vegetation traits were collected in a total of 30 plots (30m x 30m), 

which were generated within the salt marsh grassland strata subject to the land cover map used by the 

National Reserve Park’s management Authority. In each plot, a range of one to four subplots (1m x 1m) 

was stratified based on the homogeneity and heterogeneity of the grass species found on the main plot.  

 

Leaf chlorophyll content (LCC) was non-destructively measured in the field with a SPAD-502 leaf 

chlorophyll meter, measuring the transmittance in the red (650nm) and near infrared (920 nm) wavelength 

region. A total of 30 leaves representing the dominant species was randomly selected in each plot and the 

SPAD reading averaged and converted into LCC in unit of µg cm_2. Further, for leaves with very small 

surface area, the leaf chlorophyll content (Cab µg cm_2) was measured non-destructively in the field using a 

CCM-300 chlorophyll content meter (Opti-Sciences, 2011). 

 

3.2. Laboratory Chemical Analysis 

3.2.1. Sample Preparation 

 
Leaf samples were collected in each subplot representing the species diversity and were placed in labelled 

plastic zip-locked bags and subsequently transported to the laboratory. In the laboratory, the fresh weight 

and area of the leaf samples were recorded and they were dried for 48 hours using an oven at 65oC. It is 

paramount to note that 27 sample plots were used further in the analysis, three sample plots were lost in the 

process of storage. The dried samples were pulverized into fine particles with a mortar and pestle to pass 

through a 180µm mesh screen. The properly dried prepared leaf samples were label and stored properly in 

paper bags in an oven dried at 50 c for chemical analysis. 

3.2.2. Chemical Analysis 

 
Next, the leaf nitrogen and carbon (% dry weight) were determined by the dry combustion method using 

the Perkin Elmer 2400 CHNS/O Elemental Analyzer (PerkinElmer, 2005). The analyzer combusts sample 

elements in a pure oxygen environment, with a temperature range of 1200-2400F to convert the sample 

element into simple gases like CO2, H2O and N2, separated under a steady state. However, CO2, H2O and 
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N2 represents carbon, hydrogen, and nitrogen contents respectively. In retrieving nitrogen percentage, the 

following step was adhered to. 

 

• a steady state condition was established in the instrument by using a high purity oxygen and helium 
gases, running the leak diagnostic because the column was changed, conditioning the system by 
running several unweighed capsules of acetanilide, and adjusting the sample size (within the range 
of 1.6 – 1.8mg); 

• establishing a blank value at the beginning and throughout the run sequence; 

• Running accurately weighed leaves samples; 

• Establishing a K-factor by running pure standards. 

 

The ideal operating procedure includes running conditioners, blanks, calibrants and standards throughout 

the run sequence. The percentage of nitrogen, carbon and hydrogen are enclosed exported as a csv file. 

 

The above method is similar to the method adapted by Ramoelo et al., (2015), where the potential of 

sentinel-2  was explored in measuring leaf nitrogen in grasslands. Additionally, the possibility of retrieving 

biochemical concentration from dried leaves has been emphasized by Kokaly & Clark, (1999)  

 
Table 1: Summary Statistics of the measured variables 

Summary Statistics        

Variables  Mean Median Min Max Stdev Range CV 

%Nitrogen  2.47 2.46 1.65 3.54 0.54 1.88 0.22 

Chlorophyll  17.19 16.77 5.23 34.69 7.75 29.46 0.45 

%Carbon  42.48 44.15 36.47 45.57 2.82 9.10 0.07 

 

3.3. Image Data Acquisition and Processing  

3.3.1. RapidEye Data 

The RapidEye is a multispectral sensor constellation, consisting of five satellites with identical sensors and 

capable of collecting large volume of data covering over 6 million square kilometres per day (Tyc et al., 

2005). These satellites are all in the same orbital plane (sun-synchronous orbit) and provides imagery with 

high repetitive rate and a spatial resolution of 6.5m x 6.5m equipped with a multi spectral push broom focal 

plane. The constellation provides five multi spectral bands covering the blue (440–510 nm), green (520–

590 nm), red (630–685 nm), and near infrared spectral ranges (760–850 nm). Schuster & Förster (2008) 

demonstrated that the red edge spectral band was sensitive to sudden rise in reflectance induced by 

vegetation's chlorophyll status. The specification of the multispectral instrument (MSI) on the RapidEye 

satellite system is shown in Table 2. 

 

The RapidEye imagery used for this study was obtained on the 18th July 2015 concurrent to the time of the 

field campaign. The data obtained was pre-processed at level 3A, which means that the radiometric, 

geometric corrections and geo-referencing were applied. The image covers 25 km × 25 km with 

orthorectified pixel size of 5 m × 5 m. The reflectance spectra of the sample plots were extracted from 

RapidEye imagery within a kernel size of 5 by 5 for the field plots locations, resulting in a spectral calibration 

datasets of 27 reflectance spectra.  
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Table 2: RapidEye Constellation and Sensor Specifications 

Mission Characteristics Information 

Number of satellites 5 

Orbit Altitude 630 km in Sun-synchronous Orbit 

Equator Crossing Time 11:00 am local time (approximately) 

Sensor Type Multispectral push broom 

Spectral Bands Blue           440-510nm 

Green        520-590nm 

Red            630-685nm 

Red edge   690-730nm 

NIR           760-850nm 

Ground Sampling Distance(nadir) 6.5m 

Swath Width 77km 

Maximum Image Strip per Orbit Up to 1500km of image data per orbit 

Revisit Time Daily (off-nadir)/5.5 days (at nadir) 

Image Capture Capacity >6 million km2/day 

Camera Dynamic Range 12-bit 

 

 

3.3.2. Sentinel-2 Data 

In 2015, the European Space Agency launched a polar orbiting satellite called Sentinel-2, carrying a 

multispectral instrument(MSI) with four bands at 10m, six bands at 20m and three bands at 60m spatial 

resolutions. The swath width covers 290km with a 20o field of view window (Drusch et al., 2012). The 

Sentinel-2 image also contains two spectral bands within the red edge region centred at 705nm and 740nm 

with a spatial resolution of 20m. The specification of the multispectral instrument on Sentinel-2 is presented 

in Table 3. 

 

Table 3: Specifications of the Multi Spectral Instruments(MSI) on the Sentinel-2 satellite system  

 

Spectral band 
Wavelength 

(nm) 

Band width  

(nm) 

Spatial resolution 

(m) 

B1 443 20 60 

B2 490 65 10 

B3 560 35 10 

B4 665 30 10 

B5 705 15 20 

B6 740 15 20 

B7 783 20 20 

B8 842 115 10 

B8a 865 20 20 

B9 945 20 60 

B10 1380 30 60 

B11 1610 90 20 

B12 2190 180 20 
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In this study, Sentinel-2 image was acquired for 20 July 2016 in which vegetation were in the same 

phenological stage of the field campaign. Both satellite sensors (RapidEye and Sentinel-2) contain the Red 

edge spectral bands making them distinguished amongst other satellites  and important for vegetation studies 

especially in retrieving biochemical variables like nitrogen (Ustuner et al., 2014). The reflectance spectra of 

the sample plots were extracted from Sentinel-2 imagery using the coordinates of the centre of field plots, 

resulting in a spectral calibration datasets of 27 reflectance spectra. 

 

3.4. Selection of Vegetation Indices for Nitrogen Estimation  

 
Generally, a strong positive correlation exist between nitrogen and chlorophyll across plant species has been 

noted (Hansen & Schjoerring, 2003; Haboudane et al., 2004) Most of the vegetation indices linking 

chlorophyll and nitrogen to vegetation indices have used spectral wavelength within 550 nm -780 nm range.  

 

The selection of vegetation indices in this study was based on their performance and sensitivity to leaf 

chlorophyll and nitrogen in earlier studies. The selected vegetation indices were modified using spectral 

bands of the images used.  The selected indices include the combination of visible, near infrared and red 

edge band (see table 4 below). The vegetation indices shown in table 4 were selected based on RapidEye 

band settings using the closest bands available, suited within nitrogen absorption features from the 

reflectance spectra many of which has been reported in literatures for nitrogen estimation. 

 

Table 4: Selected Vegetation Indices in this study based on their sensitivity to leaf nitrogen and chlorophyll 

 

S/N Spectral Index Algorithm Reference 

1 SR705 RNIR/RRED Gitelson & Merzlyak (1994) 

Jordan, (1969) 

2 Clrededge (NIR/Red Edge) −1 Gitelson et al. (2003,2006) 

3 Cl green (NIR/Green) − 1 Gitelson et al. (2003,2006) 

4 Green NDVI (RNIR – Rgreen)/ (RNIR + Rgreen) Gitelson et al., (1996) 

5 NDVI (RNIR − RRED)/ (RNIR + RRED) Rouse et al., (1974) 

6 NDVIred edge (RNIR − RRED-edge)/ (RNIR + RRED-edge) Gitelson & Merzlyak (1994) 

7 SR Index RNIR/RRED-edge Gitelson & Merzlyak (1994) 

8 RDVI (R800 – R670)/ (SQRT (R800 + R670)) Roujean & Breon, (1995) 

9 MSAVI 0.5(2R800 + 1 – SQRT ((2R800 + 1)2 – 

8 (R800 – R670))) 

Qi et al., (1994) 

10 GI (Green Index) R554/R677 Smith et al., (1995) 

11 OSAVI (1 + 0.16) (R800 – R670)/ (R800 + R670 

+ 0.16) 

Rondeaux et al., (1996) 

12 OSAVI (705,750) (1 + 0.16) (R750 – R705)/ (R750 + R705 

+0.16) 

Wu et al., (2008) 

 

 

The use of vegetation indices comes with enormous benefits of retrieving nitrogen (Mutanga et al., 2005; 

Kruse et al., 2006), including serving as a means of representing variability in leaf area index and biomass 

which are relative to percentage nitrogen. Most recently, vegetation indices explored in studying 

characteristics features of vegetation, concentrate on the red edge region. The red edge region is define as a 

region with a sharp rise in the reflectance of green vegetation between 670nm and 780nm containing 
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information useful for chlorophyll and nitrogen estimation and can serve as a measure of plant condition 

(Horler, Dockray, & Barber, 1983). Horler et ., (1983) demonstrated that the region is a transition of the red 

NIR, containing information for vegetation spectra. However, the position and slope of red edge is subject 

to change under a stress condition. Although indices like NDVI are affected by factors like soil and 

atmosphere whereas chlorophyll red-edge and green chlorophyll index do not affect the saturation effects. 

3.5. Regression Analysis 

 
Regression analysis has been a popular empirical method of linking biochemical variables (such as nitrogen) 

to remote sensing data to provide continuous estimates for these variables (Cohen et al., 2003). In most 

studies, vegetation indices are related to vegetation variable through linear or exponential regression models. 

In this study the percentage nitrogen obtained from the laboratory analysis was averaged to mean nitrogen 

concentration and then were related to vegetation indices using simple linear regression models which were 

developed to interpret the relationships between the vegetation variable (nitrogen) and the vegetation 

indices. Measured percentage nitrogen per plots was related to the RapidEye and Sentinel-2 reflectance 

spectra through linear regression model to derive a predictive model. Likewise, the extracted reflectance of 

each individual band and the selected vegetation indices were iteratively linearly regressed against measured 

percentage nitrogen.  

 

3.5.1. Band Combination 

A systematic assessment of possible band combinations, vegetation indices formulations and curve fitting 

procedures are required before choosing a vegetation index model to retrieve biophysical or biochemical 

variables from a remotely sensed data (Rivera et al., 2014). An interesting approach therefore is by calculating 

all possible band combinations for vegetation indices formulations. For instance, the mostly used vegetation 

index is the generic Normalized Difference Index (NDVI).  

 

The index calculates all possible two-band narrowband combinations per the formulation: 

 

NDVI= (RNIR − RRED)/ (RNIR + RRED) 

 

where NIR and Red represent the reflectance bands for the entire optical spectral range. These supposed 

generic spectral indices allows the selection of a best performing index when correlated with nitrogen. In 

the review conducted by le Maire et al., (2004), the formulation of vegetation or a spectral index are 

categorized into four broad classes; indices using a single reflectance or a difference between reflectance at 

two wavelengths; simple ratio of reflectance’s (SR); normalized difference ratios of reflectance (ND); and 

indices based on reflectance signature derivatives. 

 

In this study, in addition to selected indices, the correlation between nitrogen and individual bands as well 

as the correlation with other leaf constituents (chlorophyll, carbon) were examined.  The fitting model was 

restricted to ordinary least-squares linear regression.  
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3.6. Model Calibration and Validation 

 
The regression models were validated using leave one out cross validation LOOC (Stone, 1974; Ramoelo et 

al., 2015) due to the small sample size( n=27). During this process, individual samples were predicted based 

on the remaining samples. For instance, out of the 27 samples available, iteratively, 26 samples were used to 

predict the sample which was left out.  Cross validated root mean square error (RMSE) and coefficient of 

determination (R2) were determined where RMSE represents the  overview a measure of the standard 

deviation of the error in the model prediction (Lepine et al., 2016) and R2 expresses the dispersion of the 

estimated point from the best fitting line and expresses how good the model captures the relationship 

between nitrogen and the selected vegetation indices.  

 

 
 

3.7. General workflow of the Methodology 

 

 
 

  

Figure 4: Overall workflow of the present study 
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4. RESULTS 

This chapter presents the results of the analysis performed in the study including exploration of field and 

remote sensing data, the relationship between foliar nitrogen and other leaf constituents (such as chlorophyll 

and carbon) in the saltmarsh of Schiermonnikoog, calculation of the selected vegetation indices for foliar 

nitrogen estimation, evaluation of the best band combination derived from RapidEye imagery to estimate 

foliar nitrogen and finally, comparing the best band combination of RapidEye to those of Sentinel-2 for the 

estimation of foliar nitrogen. 

4.1. Leaf triats and their interactions 

AS can be observed from Table 1 (presented in chapter 3) the measured leaf nitrogen ranged from 1.65% 

to 3.54% with a mean of 2.46% while the measured carbon ranged from 36.47% to 45.57% and with a mean 

of 42.48%. The variability of nitrogen and carbon were relatively low while chlorophyll showed a larger 

variation with a coefficient of variation of approximately 22%, 7%, and 45%, respectively. 

 

Further, the relationship between the field measured leaf nitrogen and other leaf constituents were examined 

to understand how leaf traits are interacting in the saltmarsh of Schiermonnikoog and the results are 

illustrated in table 5. As can be observed from the table, the relationship between leaf nitrogen and leaf 

chlorophyll content among the measured samples were not very strong (R=0.24). On the other hand, the 

relationship between leaf chlorophyll and leaf carbon was somehow stronger (-0.54). Moreover, carbon also 

showed a high negative correlation with leaf nitrogen (R=-0.61).  

 

 
Table 5 Interaction between leaf traits among the measured samples (N=27).  

Leaf 

Constituents 

Nitrogen Chlorophyll Carbon 

Nitrogen 1   

Chlorophyll 0.24 1  

Carbon -0.61 -0.54 1 

 

 

4.1.1. Reflectance variations among samples 

Reflectance spectra of the sample plots were extracted from the RapidEye and Sentinel-2 images based on 

the coordinates of the plots. This spectral reflectance for the 27 sample plots are demonstrated in figure 6 

(for RapidEye) and Figure 7(for Sentinel-2), respectively. From these figures, it can be observed, that the 

reflectance spectra obtained from both satellites have similar general shapes corresponding to the shape of 

vegetation. Although there seems to be few crossovers around the visible and near infrared regions which 

can be attributed to the differences within spectra of different vegetation types or species in relation to the 

different spectral regions. 
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As can be realized from figure 6 and figure 7, the reflectance of the 27 samples plots are very distinct from 

each other which indicate a large variability within the sample plots and consequently the study area. This 

variation may further explain the heterogeneity of the vegetation cover in our study area. 

4.2. Relationships between individual spectral bands and leaf nitrogen 

It is important to determine the relationship between two measured quantities before fitting a model 

function. Therefore, we studied the existing relationships between leaf nitrogen and individual spectral 

bands of the remote sensing data. In this regard, we first examined the relationships between leaf nitrogen 

and the reflectance of the sample plots extracted from RapidEye image (table 6). Next, to further extend to 

our analysis to larger scale, we studied the relationship between leaf nitrogen and the reflectance of individual 

spectral bands of Sentinel-2 from (2016) data which belonged to the same phonological stage. These 

relationships are presented in Table 7. 

 

Figure 5: Spectral Reflectance of the 27 sample plots extracted from RapidEye image 
(2015) 

Figure 6: Spectral Reflectance of the 27 sample plots extracted from the Sentinel-2 image (2016) 
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Table 6: Correlation between reflectance of individual RapidEye bands and the measured leaf nitrogen (n=27). 

Bands Blue Green Red Red 

edge 

 NIR Nitrogen 

Blue 1      

Green 0.83 1     

Red 0.83 0.73 1    

Red edge 0.31 0.72 0.36 1   

NIR -0.03 0.35 -0.28 0.71 1  

Nitrogen -0.08 -0.06 -0.44 0.03 0.53 1 

 

As can be observed from table 6, nitrogen shows high correlations to NIR and red bands of RapidEye, 

however, the relationship between the Red edge band of RapidEye and leaf nitrogen are not very strong.  

 
Table 7: Correlation between reflectance of individual sentinel-2 bands and leaf nitrogen (n=27) 

Bands Blue Green Red Red 

edge 

Red 

edge 

Red 

edge 

NIR SWIR SWIR N 

Blue 1          

Green 0.76 1         

Red 0.77 0.65 1        

Red 

edge 

0.61 0.93 0.68 1       

Red 

edge 

0.31 0.70 0.01 0.69 1      

Red 

edge 

0.29 0.68 -0.03 0.65 0.99 1     

NIR 0.24 0.69 -0.03 0.66 0.99 0.99 1    

SWIR -0.13 0.34 0.28 0.44 0.18 0.16 0.27 1   

SWIR -0.09 0.28 0.40 0.41 0.03 0.01 0.12 0.97 1  

N 0.17 0.14 -0.19 0.09 0.41 0.40 0.33 -0.47 -0.54 1 

 

As can be observed from table 7 nitrogen shows a high correlation to NIR and two red edge bands of 

Sentinel-2, however the relationship between the leaf nitrogen and bands in SWIR region appears to be also 

strong, while the relation between leaf nitrogen and band from Red region is rather low (R=0.19). 

4.3. Relation of standard spectral vegetation indices and foliar nitrogen  

The correlation of the studied vegetation indices (in standard formulation) with foliar nitrogen are shown 

in table 8. As can be observed from the table, Clrededge and SR indices show strong positive correlations 

to nitrogen (R=0.70) for the RapidEye image, while using the Sentinel-2 image, Clrededge, NDVIrededge, 

SR indices and OSAVI with almost similar value of R (0.46) performed better in comparison to other 

indices.  
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Table 8: The relation between standard vegetation indices and leaf nitrogen using reflectance extracted from both 
images. 

Vegetation Indices RapidEye  Sentinel-2  

   

 R  R  

NDVI 0.59  0.35  

NDVIrededge 0.69  -0.46  

SR705 0.57  0.30  

Clrededge 0.70  -0.46  

Clgreen 0.57  0.31  

Green NDVI 0.57  0.31  

SR Index 0.70  -0.46  

RDVI 0.59  0.36  

MSAVI 0.58  0.35  

GI (Green Index) 0.56  0.31  

OSAVI 0.59  0.35  

OSAVI (705, 750) 0.67  0.47  

 

As can observed from table 8, the performance of the standard vegetation indices for RapidEye are similar 

to those of Sentinel-2. This indicate that the performance of the satndard vegatation indices for both images 

can be compared. 

 

In figure 7 the relationships between the measured leaf nitrogen and the standard indices (Clrededge) for 

RapidEye (2015) and Sentinel-2 (2016) are presented. 

 

Figure 7: The relationships between foliar nitrogen and the standard vegetation index; (a)Clrededge for RapidEye (2015) (b) 
Clrededge Sentinel-2 (2016) 
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4.4. Best Band Combination 

To further analyse which band combinations are most suitable for estimation of leaf nitrogen, the 

relationships between leaf nitrogen and all band combinations in RapidEye (5*5) and Sentinel-2 (9*9) for 

the selected vegetation indices (12 indices) were examined and the best performing combination (in term of 

highest R2) was selected and are presented in table 9. It is paramount to note that only two band vegetation 

indices were used for this formulation. Table 9, demonstrates the best possible two band combinations 

using the reflectance form RapidEye and Sentinel-2 data.  
 
Table 9: The correlation between the best possible two band combinations for nitrogen estimation using vegetation 
indices 

Vegetation Indices RapidEye Sentinel-2  

 Best band 

combination 

 

R 

Best band 

combination 

 

R 

NDVI band_5 & band_4 0.69 band_5 & band_9 0.67 

SR705  band_5 & band_4 0.70 band_5 & band_9 0.65 

Clrededge band_5 & band_4 0.70 band_5 & band_9 0.65 

RDVI band_5 & band_4 0.65 band_5 & band_8 0.67 

MSAVI band_1 & band_3 0.68 band_8 & band_5 -0.66 

OSAVI band_5 & band_4 0.67 band_5 & band_8 0.66 

 

As can be observed from table 9, the best performing vegetation index using the best band combinations 

for RapidEye are simple ratio (SR705) and Clrededge using the red edge and NIR bands, while on the other 

hand NDVI and OSAVI indices using NIR and SWIR bands performed best for the sentinel-2 data.  

4.5. Cross Validation 

To assess the performance of the vegetation indices calculated from the best band combinations for 

estimation of foliar nitrogen, cross validation was used for model validation. A scatterplot of measured 

nitrogen and estimated nitrogen using the best band combination in the form of simple ratio (NIR and 

RedEdge bands) index using RapidEye and in the form of Clrededge index (NIR and SWIR bands) using 

Sentinel-2 data are illustrated in figure 8.  

 

The cross validated results using the best band combinations of the selected vegetation indices are presented 

in table 10 and the cross validated R2 and RMSE between measured and estimated leaf nitrogen are 

presented. The R2
CV and RMSECV indicate that the best indices can only explain 41% variability in RapidEye 

and 33% variability in Sentinel-2. 
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Table 10: The relation between measured and estimated foliar nitrogen 

 RapidEye Sentinel-2 

Index R2
CV RMSECV R2

CV RMSECV 

NDVI 0.40 0.41 0.37 0.42 

NDVIrededge 0.40 0.41 0.37 0.42 

SR705 0.41 0.41 0.33 0.43 

Clrededge 0.41 0.41 0.33 0.43 

Clgreen 0.41 0.41 0.33 0.43 

Green NDVI 0.40 0.41 0.37 0.43 

SR Index 0.41 0.41 0.33 0.43 

RDVI 0.33 0.43 0.36 0.43 

MSAVI 0.37 0.42 0.34 0.43 

GI (Green Index) 0.41 0.41 0.33 0.43 

OSAVI 0.35 0.43 0.36 0.43 

OSAVI (705, 750) 0.35 0.43 0.36 0.43 

 

 

 

4.6. Mapping foliar Nitrogen  

 
The best performing vegetation index for Sentinel-2 using red and NIR bands in were utilized to map 

nitrogen in the study area. For this first the waterbodies and residential areas were identified and masked 

out from the images. Next the best vegetation index (NDVI using band red and NIR) was calculated in the 

image and then the regression model that was developed on the best performing index was applied to the 

Sentinel-2 image resulting into the map of foliar nitrogen for the salt marsh area of Schiermonnikoog.  

Figure 8: The relationship between the estimated and measured foliar nitrogen based on the best band combinations: 
(a)Clrededge index (NIR and RedEdge bands) (RapidEye, 2015) and NDVI index (Red and SWIR bands (Sentinel-2, 
2016). R2 and RMSE are cross validation 
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As can be observed from figure 9, foliar nitrogen varies for a scale of 1.65 to 3.56. The area around 3 to 3.4 

have higher concentration of leaf nitrogen compare to other areas of the salt marsh grasslands. The 

measured nitrogen from of the field samples plots illustrated in figure 3 are well characterized in the map of 

foliar nitrogen.  Different vegetation cover types such as agriculture, forest, high shrubs, and the grasslands 

are captured in the map. 

  

Figure 9: Map of foliar Nitrogen for the saltmarsh area of Schiermonnikoog using Sentinel image (2016) 
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5. DISCUSSION. 

Two satellite images RapidEye and Sentinel-2 images were used in evaluating the performance of high 

resolution images in mapping foliar nitrogen in the salt marsh/grassland ecosystem of Schiermonnikoog 

with the aim of making a contribution towards understanding how remote sensing can estimate foliar 

nitrogen on a regional scale  

 

5.1. Relationship Between Nitrogen, Chlorophyll  and Carbon in the grassland/saltmarsh 

 
Most previous studies demonstrated the existence of a strong correlation between nitrogen and chlorophyll 

(Hansen & Schjoerring, 2003; Haboudane et al., 2004). However, the results obtained in this study indicated 

that the relationship between nitrogen and chlorophyll was rather weak (R=0.24). A factor explaining the 

significantly weak correlation might be the type of ecosystem, attributed to the differences between field 

and reflectance data obtained from the remote sensed images (RapidEye and Sentinel-2), or the existing 

heterogeneity between and within plots as the nitrogen of multiple species were averaged within a plot and 

used to determine the relationship between these two variables (Ferwerda et al.,2005). Although our finding 

is inconsistent with the past studies which established a strong-moderate positive correlation between 

nitrogen and chlorophyll (Clevers & Kooistra, 2012b; Evans, 1989; Homolová et al., 2013; Le Marie et al., 

2008) using chlorophyll alone has been insufficient to explain nitrogen variation, because their correlation 

becomes lower in nitrogen rich ecosystems (Asner & Martin, 2008). The combination of other leaf traits 

(carbon, dry matter, and water content) in addition to chlorophyll may explain the variance of nitrogen and 

improve the nitrogen estimation (Wang et al., 2016). As was expected carbon showed rather strong 

correlation with nitrogen (R=0.61). Moreover, the relationship between carbon and chlorophyll was 

moderate (R=0.61). Nitrogen availability constrains carbon assimilation and, it plays a vital role in terrestrial 

ecosystem carbon dynamics(Heimann & Reichstein, 2008; Ollinger et al., 2008b).  

 

5.2. Vegetation indices, Red edge and NIR 

 

The spectral transformation of two bands vegetation indices used in this present study were designed to 

provide more reliable spatial and temporal physiological variations in the saltmarsh ecosystem. Vegetation 

index helps in monitoring seasonal, inter-annual and long-term variation of vegetation structure, phenology 

and biophysical parameter (Liu et al., 2016). Therefore, the concept behind using broad band indices in 

estimating foliar nitrogen is to evaluate the performance of spectral bands that falls within the absorption 

features and are also sensitive to vegetation properties in estimating leaf nitrogen.  

 

Vegetation indices extracted from RapidEye image were correlated to the measured nitrogen using a linear 

regression model. The obtained result showed that among the studied popular vegetation indices Clrededge 

index was the best index for explaining the leaf nitrogen (R2=0.49) variation using the RapidEye imagery. 

The result showed that Clrededge can be used as a linear estimator of nitrogen, thus confirming the finding 

by (Clevers & Kooistra, 2012b) that the use of red edge band in a vegetation index band combination, would 
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increases the correlation with nitrogen. This is also similar to the findings of Clevers, (1999) who found that 

the red edge band contains additional information (although; an imaging spectrometry was used). In 

addition, Clevers et al., (2000) noted that the red edge band contribute immensely to the quantitative 

information obtained in terrestrial ecosystem. 

 

The response of the red edge band with nitrogen in this study indicated that RapidEye Red edge reflectance 

data have weak correlation with nitrogen (RapidEye: R=0.03, as shown in table 6. Although this correlation 

was differed using the Sentinel-2 data. As can be observed from Table 7, while the correlation of first Red 

edge band with nitrogen was low (R=0.09), this correlation become stronger using the other two Red edge 

bands (R=0.41 and R=0.40). This indicate that the position of Red edge band is probably very important in 

defining its relation with biochemical properties of vegetation. The obtained result differed from the study 

done by Mutanga & Skidmore (2007) where using hyperspectral data the red edge region had a high 

correlation with nitrogen concentration with respect to a grassland ecosystem. This probably can be justified 

by the position of the red edge bands which is sensitive in predicting leaf nitrogen and further confirmed 

using Sentinel-2 data as it can be seen that the correlation increased to R=0.41 and 0.40 (Table 7). Although, 

since the saltmarsh is very humid, some factors like water interferes with the estimation of some biochemical 

variables because they conceal in the absorption features (Kokaly and Clark, 1999), and alters reflectance 

spectra of vegetation. It is also important to note that in this study we considered the leaf nitrogen which 

probably plays a small role in canopy reflectance obtained from the satellite sensors. Considering the 

nitrogen at the canopy level (e.g. by multiplying it to LAI) will surely increase its correlation with reflectance.  

 

The findings in this studies contribute to the growing number of studies that observed a moderate to strong 

correlation between nitrogen and NIR reflectance (Goel et al., 2003; Kruse et al.,2006;  Martin et al., 2008a). 

In this present study, the correlation of NIR band and nitrogen is relatively moderate using both satellite 

images (R= 0.53 and R= 0.33). However, this results might be subject to the fact that NIR region is indicative 

of structural features that influences scattering (Curran, 1989) instead of an absorption feature that is driven 

by biochemical constituents. Furthermore, research has shown that RapidEye bands 4 and 5 happens to 

produce reliable results in optimal band combinations (Frampton et al., 2013). Moreover, the study 

conducted by Wang et al., (2016) showed that NIR reflectance within the range of 800-850 nm produces a 

good accuracy in estimating percentage nitrogen (R2cv =0.75,. Martin et al., (2008b) also support the findings 

about correlation between NIR reflectance and canopy foliar nitrogen and concluded that the spectral region 

is important for predicting nitrogen but this can be attributed to NIR reflectance and canopy structure 

(Knyazikhin et al., 2013). Thus, the structural properties of the saltmarsh ecosystem must be considered, so 

as to account for the effects of estimating plant traits based on reflectance.  

 

5.3. Best band combination in predicting foliar nitrogen in saltmarsh/grassland variables 

 

Heege et al., (2008) found that the red edge inflection point (REIP) based on four bands (R670, R700, R740 

and R780) are linearly correlated to nitrogen concentration (R2=0.97). Clevers, (1999) and Clevers et al., 

(2000) have shown that the red edge band is less sensitive to soil background and atmospheric effects and 

can provide information on vegetation properties. In present study, more emphasis was laid on the red edge 

because the radiation within this region penetrates deeply into leaves of crop canopies compared with visible 

light (blue and red) (Ramoelo et al., 2012).  

 

Hatfield et al., (2008) concluded that indices which include the red edge and NIR bands in canopy nitrogen 

concentration perform better than indices which only use the NIR and Red bands in relation to maize plant.  

In this study, the best performing vegetation indices (SR705 and Clrededge) made use of the spectral 
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information in the red edge region which resulted into the estimation of nitrogen with R2 of 0.41 and RSME 

of 0.40, compared to other indices used. This shows that red edge region with a low reflectance in red band 

and a high reflectance in the NIR band can be sensitive to nitrogen estimation.  

5.4. Comparing the Retrieval of Nitrogen from RapidEye and Sentinel-2 Data 

In this study, the best band combination of the vegetation indices like SR705, Clrededge, Clgreen and Green 

Index performed better than the normalised differences indices (NDVI and NDVIrededge) as evaluated by 

their correlation in the RapidEye data whereas the reverse is the case when Sentinel-2 data was used. 

Correlation coefficient is used here as an indicator to express the relationship between vegetation indices 

and percentage nitrogen captured by the best fit function.  

Our results are further supported by similar findings obtained by Li et al., (2014) and Perry et al., (2012) on 

showing promising results using RapidEye satellite data for canopy nitrogen estimation in wheat.  
 

Using the Sentinel-2 bands, almost all the vegetation indices were related linearly to measured leaf nitrogen. 

The results which are presented in table 10 shows the performance of these indices in relation to leaf 

nitrogen. The overall performance of the normalized (NDVI, and NDVIrededge) vegetation indices were 

better compared to the ratio indices (SR705 and Clrededge) using the Sentinel-2 data whereas in using 

RapidEye data the reverse was observed.  Clevers & Gitelson (2013) observed that simulated bands of 

Sentinel-2 used in ratio index like Clrededge provided a good estimate of chlorophyll and nitrogen in a 

grassland landscape. 

 

5.5. Effects of spectral Resolution and upscaling the retrieval 

 
 Although Inoue et al. (2012) found that nitrogen at canopy level could be mapped on a regional scale with 

the application of hyperspectral measurement, factors such as cost and limited area coverage plays a 

significant role in hindering this regional application. Another factor to consider is the spectral noise within 

the leaf reflectance spectra brought about by upscaling leaf to canopy nitrogen reflectance, often influenced 

by plant structure and leaf background.  

 

In this study, the strength of leaf nitrogen and reflectance relationship declined when RapidEye pixels were 

up scaled to 20m. This can be partly attributed to the fact that nitrogen considered in this was only at the 

leaf level. However, similar results was also reported by Lepine et al., (2016) where weak relationship 

between degraded AVIRIS pixels from 18m to 30m was observed. There was no significant correlation 

between leaf chlorophyll and the reflectance from RapidEye as well as Sentinel-2. Though band 4 (Red edge) 

and band 5 (NIR) from the RapidEye were significantly related to nitrogen. For Sentinel-2 not only Red 

edge bands but also bands from NIR and SWIR region correlated to nitrogen (see table 7). It was also noted 

that there was little deviation of accuracy from the results obtained from RapidEye and Sentinel-2 meaning 

some of the synergy captured by RapidEye at 5m was also captured by Sentinel at 20m. 

Additionally, nitrogen correlated with Sentinel-2 reflectance much better than with RapidEye, reasons might 

be not only the position of the wavelengths in Sentinel-2 which covers further the NIR and SWIR 

electromagnetic spectrum but also attributed to the pixel size of Sentinel-2 which is 4 times larger than the 

pixel size of RapidEye. Lepine et al., (2016) suggested that pixels’ sizes can accounts for the differences 

between the measured nitrogen reflectance but other related effects such as sensor fidelity should also be 

taken into consideration. However, saltmarsh vegetation types are statically significantly different for various 

spectral regions. 
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5.6. Likely source of Prediction Errors and ways to improve accuracy 

 

Nitrogen in plants are available in a variety of compounds, most of which lack spectral signature or a 

designed defined approach of estimation (Homolová et al., 2013), this contributes to the challenges 

experienced in providing an accurate estimation of nitrogen. However, the application of remote sensing 

techniques augmented with an empirical approach, it has open useful feasible path. In this study, possible 

errors could be linked to heterogeneity within the plot and averaging the leaf nitrogen per plot and not based 

on vegetation types or species. Another possible source of error could be the inter annual variation in foliar 

nitrogen that occurs due to offsets between field and image data collection, this might cause a potential 

source of error in the analysis. Or perhaps the samples collected were very few to make any reasonable 

prediction because it does not serve as a true representation of the entire ecosystem. 

As indicated before, leaf nitrogen plays a small role in canopy reflectance obtained from the satellite sensors, 

considering the nitrogen at the canopy level would increase its estimation accuracy form satellite data. 
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6. CONCLUSION AND RECOMMENDATION. 

6.1. Conclusion 

From the present studies, the most important conclusions are as follows:  

 

• Although chlorophyll and nitrogen content have been shown to be correlated in a number of 

ecosystems, their relationship in the saltmarsh ecosystem was weak and thus requires additional 

studies and information to explain the variability. 

 

 

• Refinement in the band combinations derived from RapidEye of the selected vegetation indices 

were comparable to those of Sentinel-2 but the upscaling was affected with some spectral noise 

leading to slight deviation of accuracy compared to the former. 
 

 

• Ratio indices such as simple ratio and Clrededge index were the best performing index using 

RapidEye whereas the normalised differential indices performed better in Sentinel-2 data 

 

• A combination of the red edge region and NIR in a formula would yield a better estimate of nitrogen 

for RapidEye image, where using Sentinel-2, SWIR bands were played an equal role with these 

bands.  

 
 

• Nitrogen has been demonstrated that it can be estimated through empirical methods achieving a 

moderate accuracy amongst other biochemical constituents in plants. 
 

• However, there are technical problems associated with using field data as well as remotely sensed 

images for estimating biochemical variables 
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6.2. Summary of Research Question Answers 

Based on the result presented in chapter four (4), short answers to the research question are presented 

below: 

 
Question 1: What is the relation between foliar nitrogen and chlorophyll/carbon in saltmarsh/grassland? 

Answers: From this study, the relation between nitrogen and chlorophyll in the saltmarsh/grassland was 

relatively weak (R=0.24) but stronger with carbon (R=0.61). This was obtained by correlating measured 

percentage nitrogen and the chlorophyll values for the 27 plot. However, this result can be because of 

insufficient sample points or classifying samples based on the vegetation types. 

 
Question 2: Within the studied vegetation indices, which vegetation index derived from RapidEye data can 

provide an accurate estimate (in terms of highest R2 and lowest RSME) in estimating foliar nitrogen?  

Answers: Amongst all selected vegetation indices used in this study, simple ratio (SR705) and Clrededge 

provided a moderate estimate of nitrogen (with R2 =0.41 and RMSE = 0.40).  

 

Question 3: Does spectral bands and vegetation indices used for retrieval of foliar nitrogen from RapidEye 

similar to those of Sentinel-2?  

Answers: The spectral bands (refined in the band combinations) derived from RapidEye for the selected 

vegetation indices were comparable to those of Sentinel-2, however, it should be noted that for Sentinel-2 

bands from SWIR region play an important role. 

 

6.3. Recommendation for Subsequent Studies 

 

• A more refined research narrowed towards developing method to map nitrogen which 

accommodate a broad range of ecosystem and landcover types should be considered. 

 

•  An understanding of how plants nitrogen varies in relation to NIR and red edge should be 

considered. 
 

• In understanding the inference of making reliable estimate of nitrogen at landscape, regional and 

global scale, sensor characteristic should be considered. 
 

• Development of a method with the inversion of radiative transfer models that explore the 

mechanism of photons interaction with plants thus enhancing better estimate of properties of 

reflectance. 

 

• Development of red edge vegetation index based algorithms for monitoring interanual seasonal 

variation of nitrogen in saltmarsh grassland/ecosystem. 
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APPENDIX 

A. The figure shows the Correlation between vegetation indices and leaf nitrogen; RapidEye (2015) 
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B. The figure shows the Correlation between vegetation indices and leaf nitrogen; Sentinel (2016) 
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