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ABSTRACT 

Information on crop height and biomass at different growing stages can provide important indications of 

growth development and carbon stock in the agroecosystem. Monitoring growth development and studying 

vegetation phenology are mostly associated with various agricultural phenomena, such as planting, 

emergence, maturing and harvesting, which play an important role in answering agricultural and 

environmental management policies. This study is therefore aimed in assessing the application of UAV 

images in estimating biomass and crop height to provide timely and reliable spatial information to the 

farmers and decision makers for managing and monitoring growth development of crops during the 

vegetation period. 

Obtaining spatiotemporal information and crop phonological status in agriculture during critical periods of 

the growing season is very challenging using satellite imagery due to the difficulty of recording with high 

cloud coverage. So this problem can be solved by using UAV images which can be operated at low altitude 

(below the clouds). The present study focused on (1) the plant height modelling using Crop Surface Models 

(CSMs), (2) estimation of biomass and percentage Fractional Vegetation Cover (FVC) using RGB-based 

vegetation indices, (3) estimation of biomass at harvest using plant height derived from Crop Surface Models 

(CSMs) and (4) biomass modelling using the combination of plant height and Vegetation indices. UAV 

flights at different growth stages were carried out with RGB camera over summer maize field in western 

Germany, Gronau. For accurate crop height estimation, very high-resolution multi-temporal Crop Surface 

Models (CSMs) were derived. The plant height derived from CSMs were validated by field measured plant 

heights. The result shows that UAV-based CSMs can accurately estimate plant height at different growing 

stages, during Tasselling R² were found to be 0.68 and during ripening stage 0.85. In order to increase the 

estimation accuracy of plant height a well and evenly distributed GCP points and accurate UAV data 

collection is necessary.  

RGB-based vegetation indices were also calculated from ortho-mosaicked image to map fractional 

vegetation cover (FVC) and estimate biomass and plant height. The results indicate the ExG and COM 

vegetation indices were found best in mapping fractional vegetation cover as compared to the other 

vegetation indices. Furthermore, fresh and dry biomass was estimated using plant height derived from crop 

surface models using an exponential regression model which results in good correlation (R² ranging from 

0.6 - 0.72). Using linear regression model with vegetation indices, ExG was found significant at p <0.001 

with a coefficient of determination (R² = 0.51) during stem elongation stage, followed by ExGR (R² = 0.45) 

during inflorescence emergence and heading stage. In addition, multiple linear regression models with 

combined plant height and vegetation indices were used to estimate biomass. Higher performance was 

observed when a combined Vegetation indices with plant height were used to estimate fresh and dry biomass 

than vegetation indices alone with R² of ranging from 0.70 - 0.76 at both stem elongation and inflorescence 

emergence/heading stages. This study may provide an improved guidelines for estimation of fresh and dry 

biomass at harvest of summer maize crop using very high-resolution multi-temporal UAV data. 

 

 

 

 

 

 

 

Keywords: UAVs, high resolution, crop monitoring, CSMs, FVC, vegetation indices, crop height and biomass 



ii 

ACKNOWLEDGEMENTS 

First of all, I would like to thank the almighty God for his grace, care, protection, and guidance as well as 

gave me courage, patience, and power in life especially during the 18-month journey of my MSc study to 

accomplish it successfully. 

I would also like to acknowledge with deep gratitude to Joint Japan/World Bank Graduate Scholarship 

Program (JJ/WBGSP) for providing me a scholarship and an opportunity to pursue my MSC study at ITC, 

University of Twente, The Netherlands. My special thanks also goes to the Ministry of Agriculture the State 

of Eritrea and Central Administration zone for supporting and facilitating my leave to Netherlands. 

My heartfelt appreciation and sincere gratitude also goes to my supervisors, Ir. M.C. Bronsveld and Dr. 
M.N. Koeva for your constructive criticism, ideas, motivation, patience and always being readily available 
to advise and support during my entire MSc thesis period. Your timely suggestions and kindness give me 
courage and motivation throughout the course of the whole thesis. Working under your supervision was 
really wonderful and I have learned a lot from you on how to think critically and from your perseverance 
during field work of UAV image collection as well. Also, I would like to express my appreciation to all ITC 
staffs who performed/participated in UAV flight periods especially M. Gerke (Markus), W.S. Siderius 
(Watse), C.M. Gevaert (Caroline) and E.C. Stöcker MSc (Claudia). Further appreciation goes to C. Lievens 
(Caroline) head Geo-Science Laboratory for her advice and technical support during my laboratory analysis. 
I also wish to thank the chair, Dr. Y.A. Hussin (Yousif) for his constructive comments and suggestions 
during the proposal and midterm presentations, not forgetting a great support from Drs. E.H. Kloosterman 
(Henk), I will never forget his advice and encouragement during my studies and finally, I would like to thank 
Dr.ir. T.A. Groen (Thomas) for giving me statistical ideas during my studies when needed. 

My thanks also goes to the farmer, owner of the maize field, who gave us permission for UAV flights and 
field work measurements on his farm to perform this study during the whole growing season. The study 
could not have been accomplished without his cooperation. 

I am very grateful to thank ITC NRM department staffs with Drs. R.G. Nijmeijer (Raymond) course 
coordinator and student affairs who tirelessly helped and guided us from the very beginning of our arrival 
at ITC till the end to comfortably accomplish our studies. 

I would like to express my deep gratitude to my fellow students NRM and GEM class of 2015-2017, 
Specially Semhar, Fetene, John Reuben, Tesfaye, Weicheng, Paulina and our student representative Lucas 
De Oto, we had a wonderful and unforgettable 18-month journey together with moral support, friendship, 
inspiration and companionship throughout the entire study. 

Last but not least, I would like to express my heartfelt love and appreciation to my family members (my 

Father, Mother, sister and brother) and my wife for their moral encouragement and support during my 

studies. Finally, I would like to thank my friends who encouraged me to accomplish my career. 



iii 

TABLE OF CONTENTS 

 

LIST OF FIGURES .................................................................................................................................................... iv 

LIST OF TABLES ....................................................................................................................................................... vi 

LIST OF ABBREVIATIONS ..................................................................................................................................vii 

1. Introduction ........................................................................................................................................................... 1 

1.1. Background and justification .....................................................................................................................................1 
1.2. Literature Review .........................................................................................................................................................2 
1.3. Problem statement ......................................................................................................................................................4 
1.4. Research objectives .....................................................................................................................................................4 
1.5. Research Questions .....................................................................................................................................................5 
1.6. Research Hypothesis ...................................................................................................................................................5 

2. Study Area and Datasets ...................................................................................................................................... 6 

2.1. Study area ......................................................................................................................................................................6 
2.2. Data and Materials.......................................................................................................................................................7 
2.2.1. Materials and Software used ......................................................................................................................................7 
2.2.2. Unmanned Aerial Vehicle (UAV).............................................................................................................................7 
2.2.3. Flight planning and UAV Data Acquisition ...........................................................................................................8 
2.2.4. Maize Development stages ........................................................................................................................................9 

3. Methodology ....................................................................................................................................................... 11 

3.1. UAV Data Processing .............................................................................................................................................. 11 
3.1.1. Image Pre-processing ............................................................................................................................................... 12 
3.1.2. Generation of Mosaicked Orthophoto and Crop Surface Models (CSMs) ................................................... 14 
3.1.3. Spectral Vegetation Indices (VIs) Extraction ...................................................................................................... 15 
3.1.4. Computation of Fractional Vegetation Cover (FVC) ........................................................................................ 15 
3.2. Field Data Collection for Height and Biomass ................................................................................................... 17 
3.3. Statistical analysis ...................................................................................................................................................... 17 

4. Results and Discussion ..................................................................................................................................... 19 

4.1. Vegetation Indices and Fractional Vegetation Cover (FVC) ............................................................................ 19 
4.2. Crop Surface Models (CSMs) for Plant Height Estimation ............................................................................. 21 
4.3. Empirical models for biomass assessment at harvest ........................................................................................ 25 
4.3.1. Vegetation Indices modeling for yield assessment ............................................................................................. 25 
4.3.2. Field Measured Plant Height and Biomass Relationship .................................................................................. 29 
4.3.3. Plant Height (PHCSM) modeling for biomass estimation ................................................................................... 30 
4.3.4. Biomass modeling from the combined VIs and Plant Height (PHCSM) ......................................................... 32 
4.4. Maize Yield at Harvest ............................................................................................................................................ 34 

5. Conclusion and Recommendation .................................................................................................................. 36 

5.1. Conclusions ............................................................................................................................................................... 36 
5.2. Recommendations .................................................................................................................................................... 38 

LIST OF REFFERENCES ...................................................................................................................................... 39 

APPENDICES ........................................................................................................................................................... 44 

 

 

 

 

 



iv 

LIST OF FIGURES 

Figure 1: The location map of the study area in Gronau, Germany: (a) Germany Administrative 

boundaries (provinces); (b) boundary of North Rhine-Westphalia province with Base map world Imagery; 

and (c) UAV Ortho-mosaicked RGB image, acquired on 08-July-2016. ............................................................. 6 

Figure 2: (a) UAV Phantom 4 mounted with RGB bands along with its controlling mechanism (Source: 

www.dji.com) and (b) Artificial marks for Ground Control Point (GCP) measurement. ................................ 8 

Figure 3: Example of raw images taken by the UAV on June 07, June 16 and July 08, 2016 ......................... 9 

Figure 4: Maize growth development stages along with the UAV image acquisition dates and field Plant 

height and Biomass measurements. .......................................................................................................................... 10 

Figure 5: Flow chart showing image pre-processing in Pix4D software for the generation of Digital 

Surface Model and Mosaicked Orthophoto, and further analysis in ArcGIS, ENVI classic and Microsoft 

excel. .............................................................................................................................................................................. 11 

Figure 6: Image processing in pix4D for generation of DSM and Ortho-mosaic; (a) camera positions 

along with flight route; (b) steps of processing options; and (c) GCP manager for importing GCPs to geo-

reference the image. .................................................................................................................................................... 12 

Figure 7: Screen shot of camera positions and geo-located images; (a) Automatic tie points and point 

cloud; (b) densified point cloud and mesh .............................................................................................................. 13 

Figure 8: Final output of Pix4D; (a) Ortho-mosaicked image; and (b) Digital Surface Model (DSM) ....... 14 

Figure 9: Multi-temporal crop surface models (CSMs) at different growing stages (Nora Tilly, 2015)....... 14 

Figure 10: (a) True color image; (b) ExG Image; (c) ExG histogram with the different thresholds (r1 – 

15); and (d&e) classified images with different thresholds (green vegetative and yellow non-vegetative) 

right after applying VIs and threshold to differentiate vegetative and non-vegetative pixels. ........................ 16 

Figure 11: Single band classified image (FVC map) obtained from the ExG vegetation index upper image 

and Mosaicked orthophoto with RGB bands lower image (16-Jun-2016). ....................................................... 20 

Figure 12: Field measured Plant Height in relation to plant Height derived from CSMs (a) at 18-Aug-2016 

and (b) at 20-Sep-2016. .............................................................................................................................................. 21 

Figure 13: Plant heights from Crop Surface Model of field two (a) during flight_4 (08-Jul-2016); (b) 

during flight_5 (27-Jul-2016). .................................................................................................................................... 22 

Figure 14: An example of crop growth development of low, medium and high growing plots through 

time. ............................................................................................................................................................................... 22 

Figure 15: Crop Surface Models (CSMs) at different dates; the gray surface is the reference ground model 

(obtained from 7-Jun-2016) and the colored surfaces are the CSMs of different (dates from 16-Jun to 20-

Sep-2016). ..................................................................................................................................................................... 23 



v 

Figure 16: Cross-validation relationships of fresh/dry biomass, height and Vegetation indices of different 

dates; (08-Jul-16) ExG versus biomass and height (a-c); (27-Jul-16) CIVE and ExGR versus biomass and 

height (d-i); and (09-Aug-16) ExG versus biomass (j-k). ...................................................................................... 25 

Figure 17: Graphs showing the relationship between field-measured plant height and biomass at 

physiological maturity (right before harvesting) on sept. 15-23, 2016. .............................................................. 29 

Figure 18: Cross-validation relationships between fresh/dry Biomass and plant height derived from Crop 

Surface Models (CSMs); p<0.001 for all R² except for 09-Aug-2016, p<0.05. ................................................ 31 

Figure 19: Cross-validation scatter plots for observed fresh and dry biomass versus predicted biomass 

from the combination of CSM plant height and vegetation indices of dates; 08-Jul-16 (a&b); 27-Jul-16 

(c&d); and 09-Aug-16 (e&f)..................................................................................................................................... 33 

Figure 20: Pixel based yield map resulted from modeling of Excess Green (ExG) vegetation index and 

plant height derived from Crop Surface Model (PHCSM) of UAV image acquired during Stem elongation 

of maize. ....................................................................................................................................................................... 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

LIST OF TABLES 

Table 1: List of Fieldwork materials and software .................................................................................................. 7 

Table 2: UAV-image data acquisition periods and Number of images acquired. .............................................. 8 

Table 3: The vegetation indices computed based on visible spectral bands..................................................... 15 

Table 4: Percentage vegetation fraction, the selected threshold and classification accuracy of each 

vegetation indices obtained from the Ortho-mosaic at 07-June, 16-June, 08-July, and 27-July. .................... 19 

Table 5: The regression relationships between fresh and dry biomass, Plant Height derived from CSMs 

Modelled from different vegetation indices and plant height, where R² = coefficient of determination; 

RMSE = root mean square error and nRMSE = normalized root mean square error. .................................. 27 

Table 6: Coefficient of determination (R²) for crop heights (PHCSM and PHref, linear regression) and Plant 

Height with Fresh and dry biomass (exponential regression) for all plots; at p <0.001. (PHCSM = Crop 

Surface Model Plant Height; and PHref = Field measured Plant Height). ......................................................... 29 

Table 7:  Descriptive statistics field measured plant height and CSMs plant height and aboveground fresh 

and dry biomass of maize of plots (N=40 for PHref and biomass; and N=27 for PHCSMs) collected between 

15-Sept to 23-Sept-2016, (CV = Coefficient of Variation; SD = Standard Deviation). .................................. 30 

Table 8: Multiple linear regression relationships between fresh/dry biomass as an independent variable 

and VIs together with CSM plant height as independent variables with their respective R², RMSE, and 

nRMSE values. ............................................................................................................................................................. 32 

Table 9: Descriptive statistics of the actual and predicted biomass (fresh and dry) of maize at harvest 

(Kg/m²) ......................................................................................................................................................................... 35 

 

 

 

 

 

 

 

 

 

 

 



vii 

LIST OF ABBREVIATIONS 

 
AGB : Above Ground Biomass 

AOI : Area Of Interest 

CIVE : Color Index of Vegetation 

COM : Combination 

CP : Check Point 

CSM : Crop Surface Model 

DGPS Differential Global Positioning System  

DSM : Digital Surface Model 

DTM : Digital Terrain Model 

ExG : Excess Green 

ExGR : Excess Green minus Red 

FVC : Fractional Vegetation Cover 

GCP : Ground Control Point 

GNSS : Global Navigation Satellite System 

GPS : Global Positioning System 

LAI Leaf Area Index 

LiDAR Light Detection And Ranging 

NGRDI : Normalized Green-Red Difference Index 

nRMSE : Normalized Root Mean Square Error 

PHCSM : Crop Surface Model Plant Height  

PHref : Ground reference Plant Height 

RMSE : Root Mean Square Error 

UAV : Unmanned Aerial Vehicle 

VEG : Vegetetiven 

VIs : Vegetation Indices 





MONITORING GROWTH DEVELOPMENT AND BIOMASS ESTIMATION OF MAIZE USING VERY HIGH-RESOLUTION UAV-IMAGES IN GRONAU, GERMANY 

1 

1. INTRODUCTION 

1.1. Background and justification 

World’s population is continuously increasing and it is obvious that the need for food, shelter and other 

basic needs from the limited land resources are also increasing. Therefore, the study of agricultural crop 

production is very crucial to improve land productivity, generate income and provide food security to 

people. Important information to improve agricultural production sustainably can be obtained from crop 

type maps and area extent. This area estimation and crop identification can be obtained from aerial 

photographs and multispectral satellite imagery using remote sensing acquisition techniques (Yang et al., 

2010). For sustainable agricultural production, the study of crop phenology via biomass estimation helps to 

understand the state of the ecosystem and environmental factors that affect the crop growth (Ajaere, 2012).  

Remote sensing data is very important in the field of agriculture especially in the study of climate, soil, land 

classification and crop inventory (Steven & Clark, 2013). In order to have good yield predictions in 

agricultural crop production, it is essential to know the type of crops and their areas grown in a region which 

provides basic information for crop management and agricultural planning. Agricultural crop type mapping 

and identification throughout the vegetation period provides a vital information to agricultural institutions 

and stakeholders for their efficient management and monitoring (Inglada et al., 2015).  

During the growing season, the height of crops provides an important information on crop health and their 

response to the environmental effects, such as precipitation and chemical/fertilizer treatment. Height 

estimates of the tops of crop and the ground, the difference of which is the height of the crop, is the main 

requirement for crop measurement (Anthony et al., 2014). Manual crop height measurement is expensive, 

time-consuming and causes damage to the crops because of the unobstructed movement in the field. 

However, height measurement from the air is also challenging, since the layers of plant leaves obscure the 

ground. Anthony et al., (2014) also described some techniques that can solve this problem are, (1) Using the 

increased sensing power radar or LiDAR and (2) Micro-UAV (Unmanned Aerial Vehicle) equipped less 

powerful sensor operating at low altitude (close to the crops) to capture the small gaps between the crops 

and sense directly to the ground and lower levels of the vegetation and (3) Using very high resolution digital 

aerial images taken from airplane. 

Ajaere, (2012) noted that biomass/yield estimation and monitoring of agricultural crops (maize crop in this 

case) are essential because agricultural crops play an important role in the environment. The temporal and 

spatial resolution of remote sensing datasets help to improve the applicability of remote sensing methods, 

that is, getting the biophysical parameters of crops during the growing season with very high geometric 

resolution become easier (Dahms et al., 2016). The accurate estimation of biophysical variables such as Leaf 

Area Index (LAI), height, and biomass can be used to describe the architecture of plants, monitor changes, 

and predict growth and yield during the growing season that improves planning and management of crop 

production (Gao et al., 2013). Economical and quantitative estimation of crop biomass during the growing 

season is an important ecological indicator of plant growth for crop production management and planning 

(Li et al., 2015). Crop type mapping and study of vegetation phenology are mostly associated with various 

agricultural phenomena, such as planting, emergence, maturing and harvest, play an important role in 
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answering economic and environmental management policies (Reed et al., 1994; Vaudour et al., 2015; 

Rembold et al., 2013). 

Thus, the use very high-resolution multi-temporal UAV images for monitoring crop development during 

the whole growing seasons is crucial in monitoring, planning and decision making of crop production. 

Substantial information on agriculture like determining crops, biomass estimation and crop health during 

their growing season can help farmers and decision makers to monitor and manage the crops in order to 

get a reasonable yield.  

1.2. Literature Review  

Although coarse spatial resolution data can provide relevant information in monitoring and managing crop 

production but has also some disadvantages, so the need for high spatial resolution data is vital. Rembold 

et al., (2013) insisted in their study that, images obtained from low-resolution satellite imagery (with spatial 

resolution between 250m to 1km) have been widely used for crop monitoring for over three decades, 

vegetation performance detected from these low-resolution images have some limitations created by mixed 

nature of low-resolution pixels. In monitoring agricultural crops the development of high spatial and 

temporal resolution satellite sensors are opening new opportunities for researchers. New satellites like 

Sentinel-1 & -2, SPOT5, QuickBird, GeoEye and Worldview-1 &-2 can provide very high spatial, temporal, 

spectral and radiometric resolution images which can be used to extract information in crop monitoring and 

management (Richter et al., 2016).  

Since the early days of remote sensing crop development and growth have been monitored by the use of 

satellite images (Rembold et al., 2013), and crop monitoring is essential in precision agriculture. Zhang & 

Kovacs, (2012) defined Precision Agriculture (PA) as “a farming management strategy that uses information 

technology to identify variations in the field and deal with them with alternative scenarios to help decisions 

associated with crop production”.  In precision agriculture, the use of unmanned aerial vehicles has been 

increasing as an alternative to very high cost and not readily available satellite or airborne imageries (Jannoura 

et al., 2015). The use of very low cost and very high-resolution aerial imagery obtained from radio controlled 

model aircraft was evaluated by Hunt et al., (2005) to estimate the nutrient status of maize and crop biomass 

of maize, alfalfa, and soybeans. 

Based on the cultural operation of farmers in different regions of the world the use of very high spatial 

resolution images is essential to map bare soil surface and early season crop identification (Vaudour et al., 

2015). Monitoring crops throughout the growing season is the main requirement in precision agriculture, 

i.e. the application of geospatial information and sensors to identify variation in agricultural fields. It is one 

of the most imperative practices in the development of sustainable agricultural production (Zhang & 

Kovacs, 2012). The stages of precision agriculture are data collection & analysis, field variability mapping, 

and crop management practice. Thus, these processes can be easily done using remotely sensed imagery, 

particularly, very high-resolution satellite imagery or UAV images which are now readily available at low 

cost to study soil condition and crops during the growing season.  

In monitoring crop growth development determining agricultural plant parameters such as plant height, 

biomass, plant nitrogen content, Leaf Area Index (LAI) etc. are very essential. Hoffmeister et al., (2010) 

used Crop Surface Models (CSMs), Crop Volume Model (CVM) and multi-temporal roughness of different 

crops to estimate the crop parameters. The height of the crops is the difference between the UAV-sourced 

Digital Surface Model (DSM), equivalent to CSMs in this case, at full canopy and the topography of the field 
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(DTM) (Waypoint Drone Insight and Inspiration, 2015). Comparison of CSMs at different growing stages 

helps to determine the crop growth development and estimation of plant height (Juliane Bendig et al., 2013). 

Hoffmeister et al., (2010) has already introduced the concept of generation of Crop Surface Models using 

Terrestrial Laser Scanning (TLS). In addition to this Bendig et al., (2013) demonstrated the estimation of 

biomass of barley by using Crop Surface Models (CSMs) derived from UAV images.  

Remote sensing products such as vegetation Indices, derived from visible spectral bands in this case, and 

plant height derived from CSMs provide measures of amount and condition of green vegetation on the farm 

land and also gives information on biomass estimation for agricultural management strategies (Geipel et al., 

2014; Duncan et al., 2015). Jannoura et al., (2015) also studied the relationships of visible band vegetation 

indices (like NGRDI) with above ground biomass and Leaf Area Index (LAI) of different crops like oats 

and peas from UAV data.  Similarly, Leaf Area Index and crop biomass estimation of maize and soybean 

crops were assessed using RapidEye vegetation indices (Kross et al., 2015). A review of remote sensing 

methods of assessing crop biomass using vegetation indices is presented by Prabhakara et al., (2015); 

Jannoura et al., (2015); Jin et al., (2015); Kross et al., (2015) and Sharma et al., (2016). 

Reflectance properties of crops like vegetation indices are also very essential in studying the performance of 

crops under different stress which directly affects the yield/biomass. For example, the crop growth 

development of maize under low nitrogen stress was studied by  Zaman-Allah et al., (2015) and Vergara-

díaz et al., (2016) using NDVI as well as RGB-based vegetation indices derived from UAV spectral  imaging, 

according to their results these vegetation indices have good performance in assessing crop growth 

development and spatial field variations of the crops under low N-stress. A medium-resolution data (TM, 

ETM+) can be used for monitoring spatial and temporal dynamics of vegetation changes, extraction of 

vegetation cover and growth status of the crops using NDVI vegetation index, which has a comprehensive 

reflection for vegetation type and cover form (Cui et al., 2011). Estimating Fractional Vegetation Cover 

(FVC) from vegetation indices also helps in monitoring and modeling vegetation productivity and yield 

estimations and remote sensing are an advanced science which helps in estimating vegetation cover (Liu et 

al., 2012). 

Unmanned aerial vehicle (UAV) platforms flying at low altitude are used to acquire high temporal and spatial 

resolution aerial data that enables users to take informed and targeted action. UAVs make use of small 

compact camera, navigation systems, reliable GPS units and radio receivers to acquire vertical well defined 

high-resolution images (Tellidis & Levin, 2014). Aerial imagery obtained from Unmanned Aerial Vehicles 

(UAVs) allows cheap, flexible acquisition and provides high spatial resolution data with high temporal 

frequencies (Centre for Earth Systems Engineering Research (CESER), n.d.). The CESER also described 

the monitoring of Vegetation phenology, land use land cover change, hydrological phenomena, and 

infrastructure systems can easily be studied using this UAVs imagery.  

UAVs can fly at low altitudes and are also capable of observing small individual plants and patches, acquire 

images even on cloudy days and can also be used in high-risk situations and inaccessible areas (J. Torres-

Sánchez et al., 2014). UAVs are also a potential for 3D image generation, capability of decentralized data 

acquisition (substantial advantage to communities, end users, organization, and government agencies) and 

can be used for monitoring of illegal activities like illegal timber extraction (Paneque-Gálvez et al., 2014). 

There are also some limitations for UAV application some of which are small area coverage; they can be 

affected by wind speed during image acquisition, lack of precise rule framework and tedious requests for 

flight permissions limits their application (Nex & Remondino, 2014). Paneque- Gálvez et al., (2014) also 

listed some limitations of UAVs like Poor geometric and radiometric performance, short flight endurance, 

small payload and the possibility of collisions. 
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1.3. Problem statement 
 

The decrease in biomass and yield of crops in agricultural fields focussed an attention on the need for high-

quality monitoring systems during the growing seasons. Field based crop surveying and production estimates 

have a potential to give accurate results but it is costly and time-consuming which can lead to a situation of 

under-sampling which compromise the accuracy measurements and estimates. To overcome this problem 

the use of satellite data have been increasingly used for achievable goals for growth development health 

monitoring of crops (Barret et al., 2000), crop production estimation (Lewis et al., 1998) and crop mapping 

(Jain et al., 2013).  The most important step in assessing the application of remote sensing for agricultural 

monitoring and management is mapping vegetation crop in the field during the growing season, however 

the use of aerial platforms such as planes and satellites are not suitable for these applications due to their 

low spatial and temporal resolutions (J. Torres-Sánchez et al., 2014).  

The study of non-destructive methods of measuring plant height and changes in plant height over time at 

high spatial and temporal resolution is essential in crop monitoring studies. In recent years new aerial 

platform, using remotely controlled UAVs, for image acquisition are progressively increasing and problems 

related to spatial and temporal resolutions can be solved (Jorge Torres-Sánchez et al., 2013). High-resolution 

imagery produced by UAVs can be a suitable acquisition technique for monitoring crop development during 

the growing season, and it is very cheap compared to satellite images, LiDAR, and very high-resolution 

images from a conventional airplane. It also provides important supplementary information for the 

assessment of crop health and development. Assessment of early detection of crop infestation as well as 

crop health is critical in guaranteeing good agricultural productivity and stress like excessive moisture, 

insects, fungal and weed infestations, and must be detected early enough to provide an opportunity for the 

farmer to mitigate (Natural Resources Canada, 2015).  

Despite the promise of satellite and UAV data of high spatiotemporal resolution for monitoring and crop 

yield estimates, until present, only a few studies have been made on this issue especially in our study site. 

Obtaining spatiotemporal information and crop phonological status in agriculture during critical period of 

the growing season is very challenging using satellite imagery due to the possibility of high cloud coverage. 

Therefore, this problem can be easily solved by using Very high-resolution UAV (Unmanned Aerial Vehicle) 

images which can be operated at low altitude (below the clouds). This study is going to assess the application 

of UAVs in providing timely and reliable (spatial) information to the farmers and decision makers for 

monitoring growth development of crops during the vegetation period. Due to very high resolution, low 

cost, high maneuverability, and easy maintenance UAVs are nowadays becoming powerful sensors in 

scientific researches (Cai et al., 2014). This study aims to provide accurate plant height and maize yield 

estimates at farm level during the crop growing season. 

1.4. Research objectives 

The main objective of this research is to provide an accurate plant height and maize yield estimations for 

monitoring growth development during the growing season in Gronau, Germany, using very high-resolution 

multi-temporal UAV- images. 
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To achieve this general objective, the following specific objectives were defined. 

1. To assess the best VIs for yield estimation and map Fractional Vegetation Cover (FVC) at 

different growing stages. 

2. Access the relationship between different RGB-based vegetation indices and yield/biomass and 

plant height derived from CSMs at different growing stages. 

3. To assess and validate the relationship between plant heights derived from CSMs and infield plant 

height measurement. 

4. To assess the relationship between the heights of the crops derived from CSMs and Yield (in 

terms of biomass). 

5. To assess and investigate the best single time to record the maize using UAVs for accurate yield 

estimation. 

1.5.  Research Questions  

1. Which vegetation index/indices is/are best for fractional vegetation cover mapping in relation to 

time/growth stage of the crops? 

2. What is the accuracy of crop surface models to calculate plant height?  

3. Which Vegetation Index is best to estimate maize yield and how is it related to the crop height 

and yield during the growing season? 

4. What are the relationships of biomass versus crop height derived from CSMs and biomass versus 

Vegetation indices? 

5. Which growth stage or best time to record the crop using UAVs for accurate yield estimation? 

1.6. Research Hypothesis 

1. H₀: There is a significant relationship (correlation) between Fractional Vegetation Cover (FVC) 

obtained from classified RGB image and vegetation indices calculated from visible spectral sands 

of UAV images at different growing stages. 

H₁: There is no significant relationship between FVC and vegetation indices. 

2. H₀: Crop Surface Models can calculate crop height accurately (>80%) using very high-resolution 

UAV images. 

H₁: Crop Surface Models can calculate crop height with an accuracy (<80%). 

 

3. H₀: The vegetation indices calculated from RGB-based UAV images acquired at different dates 

have a significant relationship with plant height and biomass at the end growing season. 

H₁: There is no significant relationship between vegetation indices and plant height or end 

Fresh/dry biomass. 

4. H₀: The Crop Surface Models calculated from RGB-based UAV images acquired at different dates 

have a significant relationship with biomass at the end growing season. 

H₁: There is no significant relationship between Crop Surface Models and end Fresh/dry biomass 

at the end growing season. 
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2. STUDY AREA AND DATASETS 

2.1. Study area 

The study was carried out on a maize field (an individual farmer’s field) which is located in the North Rhine-

Westphalia province of Germany (52° 10'N, 6° 55'E), About 8 km to the south of Enschede, 8 km to the 

west of Gronau and 13 km Northwest of Ahaus city (fig.1). And it contains two maize fields of around 8 

hectares each. During summer months the long term average temperature across this area is 17°C and during 

winter months 1°C and annual precipitation are between 700 and 800 mm (North-Rhine-Westphalia, 2016).  

 

Figure 1: The location map of the study area in Gronau, Germany: (a) Germany Administrative boundaries 
(provinces); (b) boundary of North Rhine-Westphalia province with Base map world Imagery; and (c) UAV Ortho-
mosaicked RGB image, acquired on 08-July-2016. 

In this area, maize crop (Zea Mays L.), also known as corn, is one of the most cultivated summer cereals 

along with wheat. It has an important source for a diverse range of applications, like Human diet and mostly 

in this area for animal feeding. The boundary of the study area was digitized to the extent of the coverage 

of the UAV images. And then computer based random points were generated in ArcGIS within the 

boundary of the study area. The study area had two maize fields and 20 random sample points for each and 

40 points in total was generated in these two fields (fig.1c). A 2m by 2m area, for field measurement, was 

taken as a sample plot for each sample point generated at the center and within these sample plots.  
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2.2. Data and Materials 

Data acquired from Unmanned Aerial Vehicles (UAVs) with RGB spectral bands were used in this study. 

The images were taken at different dates during the Maize growing season from May to September 2016. 

The main focus of this study was monitoring crop development during the growing season by extracting 

different image characteristics like Vegetation indices (based on RGB bands) and Crop Surface Models for 

estimating plant height and yield. The following sections describe the basics of UAVs and data acquisition 

technics. 

2.2.1. Materials and Software used 

Several types of equipment and field instruments were used to collect fieldwork data like plant height, the 

biomass of maize, measuring GCP points and image acquisition. The field instruments used in this study 

include; UAV, Tablet SAMSUNG, Handheld GPS, Leica GPS, Measuring Tape (3m), meter stick, clipboard, 

and data recording sheet. The detailed list of materials and different software and their usage is listed in the 

table below;  

Table 1: List of Fieldwork materials and software 

Instruments Purpose 

Unmanned Aerial Vehicles 

(UAVs) (Phantom 4)  

Image Acquisition 

Leica GPS Measure GCPs and CPs 

Tablet (SAMSUNG) Display the study area and navigate offline with Locus free 

Measuring tape (3m) Measure plant height at the sample plots 

GPS Measuring/Checking the location of the plots in the field 

Clipboard For holding the recording sheet 

Field recording sheets Record field measurement 

  

Software  

Pix4Dcapture Mobile application for flight planning for image acquisition. 

Pix4D UAV image processing, to generate DSM and Ortho-mosaic image 

ArcGIS 10.4.1 Different GIS activities, preparing maps and layout and processing data that 

are obtained from Pix4D software 

ENVI 5.3 and QGIS 2.18.0 For calculation of vegetation Indices 

MATLAB R2016a For threshold selection for mapping FVC 

Microsoft Excel 2010 Statistical Analysis 

Microsoft Word 2010 Thesis and report writing 

2.2.2. Unmanned Aerial Vehicle (UAV)  

The UAV platform used in this study is a phantom-4 (Fig. 2a) which has a stabilized camera model of 

CanonEOS600D_3.6_4000x3000 mounted on it. The camera has a focal length of 3.722 mm and produces 

images in visible spectral bands (RGB bands) that are specifically suitable for studying vegetation. The image 

resolution (Pixel size) at the typical flying height of 50m is 2cm/pixel. The UAV has a payload limit of about 

1.5kg and with full payload has a flight duration of around 30 minutes, so due to the low endurance, the 

whole study area was covered in two to four different flights (table 2). In this study, a single flight at a 50m 

flying height above the ground had a coverage area of about 7 hectares and produce about 200 images under 
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standard operation condition. A larger area can be obtained by multiple flights or by increasing the flight 

height but this will reduce the spatial resolution. 

 
Figure 2: (a) UAV Phantom 4 mounted with RGB bands along with its controlling mechanism (Source: www.dji.com) 
and (b) Artificial marks for Ground Control Point (GCP) measurement. 

2.2.3. Flight planning and UAV Data Acquisition 

The first step in UAV image acquisition is preparing the flight plan, using mobile app. Pix4Dcapture 

software, on the desired area of study. During the flight, the camera was set with the predefined flight plan 

mission with the desired shutter speed to ensure the best coverage of the area and not being affected by the 

motion of the UAV and then the images were collected based on the flight plan. These operations were 

done by the ITC staffs. The UAV is equipped with onboard Global Navigation Satellite System (GNSS) 

which provides only rough positions; therefore, before flying the UAV artificial marks were placed on the 

field which had to be visible on the images and were used as Ground control Points (GCPs) and Check 

Points (CPs) during the image processing for orthophoto creation. These artificial marks were made of 

0.3x0.4m (A3) laminated paper (fig. 2b). Those GCP positions/marks were measured using Leica GPS with 

an accuracy of less than 2cm. Several flights at different dates were carried out on the field with the sensor 

mounted in nadir position with constant orientation and flying height. The images were collected between 

9:30 a.m. to 12 p.m. during the maize growing season from May to September 2016 in every 10 to 15 days 

interval (table 2).  

Table 2: UAV-image data acquisition periods and Number of images acquired. 

Day of UAV 

flight 

Date of Acquisition Number of 

Images 

Flight Height 

(m) 

Area Covered (ha) 

1 26 May 2016 One flight (21) 100 8.5636 

2 07 June 2016 Three Flights (58) 50 14.0676 

3 16 June 2016 Four Flights (98) 50 10.5848 

4 08 July 2016 Two Flights (515) 50 14.2974 

5 27 July 2016 Two Flights (457) 50 14.0698 

6 09 August 2016 Two Flights (449) 50 13.635 

7 18 August 2016 Two Flights (441) 50 13.8255 

8 08 September 2016 Two Flights (386) 50 14.0411 

9 20 September 2016 Two Flights (386) 50 12.8614 

http://www.dji.com/
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The first set of aerial imagery acquired on 26 May 2016, taken at a flight height of 100m over the whole 

study area with one flight plan and not consistent with the later flights, was excluded from this study. The 

images were taken from orthogonal view, known as nadir position and a series of overlapped images were 

acquired during each flight date over the entire study area. On each flight, the imagery had an overlap of 

80% forward and 60% side-lap to cover the whole experimental field in two –four flight missions and to 

allow correct mosaicking of the images to generate a complete orthophoto of the whole study area. This 

overlap helps in detecting and matching key points from individual photos and also compensate wind 

disturbance and GPS errors. Examples of raw images taken during the early growing stages are shown in 

Figure 3 below. 

 

 

 

 

 

 

 
 

 

Figure 3: Example of raw images taken by the UAV on June 07, June 16 and July 08, 2016 

2.2.4. Maize Development stages 

The study of crop growth development stages and quantifying vegetation fraction within a crop field is a 

first and crucial step prior to investigating further objectives. Monitoring the temporal and spatial variations 

in vegetation fraction and obtaining information in growth development stages of field crops has many 

agricultural and ecological importance and is helpful in analysing the relationship between the crop growth 

processes, agro-meteorological conditions and estimation of phonological and physiological status of 

vegetation (Yu et al., 2013; J. Torres-Sánchez et al., 2013). Knowing the growth stages of maize throughout 

the growing season allows the farmers for efficient and timely management on their field. According to 

Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH), Ransom, (2013) and 

Meier, (2001) describe the maize growth development stages as shown in figure 4 below. 

 

 
 



M
O

N
IT

O
R

IN
G

 G
R

O
W

T
H

 D
E

V
E

LO
P

M
E

N
T

 A
N

D
 B

IO
M

A
S

S
 E

S
T

IM
A

T
IO

N
 O

F
 M

A
IZ

E
 U

S
IN

G
 V

E
R

Y
 H

IG
H

-R
E

S
O

LU
T

IO
N

 U
A

V
-I

M
A

G
E

S
 IN

 G
R

O
N

A
U

, G
E

R
M

A
N

Y
 

10
 

 

 

F
ig

u
re

 4
: 

M
ai

ze
 g

ro
w

th
 d

ev
el

o
p

m
en

t 
st

ag
es

 a
lo

n
g 

w
it

h
 t

h
e 

U
A

V
 i
m

ag
e 

ac
q
u
is

it
io

n
 d

at
es

 a
n

d
 f

ie
ld

 P
la

n
t 

h
ei

gh
t 

an
d

 B
io

m
as

s 
m

ea
su

re
m

en
ts

. 

 



MONITORING GROWTH DEVELOPMENT AND BIOMASS ESTIMATION OF MAIZE USING VERY HIGH-RESOLUTION UAV-IMAGES IN GRONAU, GERMANY 

11 

3. METHODOLOGY 

3.1. UAV Data Processing  

The processing of the data/images was carried out using Pix4D- Software, which allows the multiple images 

that were taken by the UAVs to create digital 3D model, and a mosaicked orthophoto with true RGB color 

and Digital Surface Model (DSM) was generated. For geo-referencing, the mosaicked image the GCPs were 

identified manually on each photo and were assigned to the coordinate position which was measured by the 

Differential GPS. The overall workflow of data processing is presented in Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Flow chart showing image pre-processing in Pix4D software for the generation of Digital Surface Model 
and Mosaicked Orthophoto, and further analysis in ArcGIS, ENVI classic and Microsoft excel. 
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3.1.1. Image Pre-processing 

UAV acquired images were processed to generate Digital Surface Model (DSM) and Ortho-mosaicked image 

using Pix4D Software for every flight. After the images are acquired they are imported into the software for 

pre-processing, Figure 6a shows the camera positions (red dots) and flight routes (green line) over the study 

area. This software allows converting hundreds of images taken by the UAV into geo-referenced 3D surface 

models (DSM) and 2D Ortho-mosaic image and point clouds which are very interesting outputs for this 

study. In order to generate DSM/DTM initially camera internal and external calibration and image 

orientation has to be performed successively (Nex & Remondino, 2014). To generate DSM and Ortho-

mosaic, the following three main steps were performed (fig. 6b).  

Initial processing: This process allows calibration of cameras (Internal and external camera 

optimization), extracting and matching key points from individual images (these matching points help to 

generate 3D points), Geolocation using GCP points and quality report generation (PIX4D Support Site, 

n.d.). The quality report generated during the processing is presented in appendix 2. 

   

 

                                                   

 
Figure 6: Image processing in pix4D for generation of DSM and Ortho-mosaic; (a) camera positions along with 
flight route; (b) steps of processing options; and (c) GCP manager for importing GCPs to geo-reference the image. 

 

a b 

c 
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The GCPs were used in the initial processing phase to locate the photogrammetric images into its true 

coordinate system. And these GCP points were imported through GCP/MTP manager tool of the software 

(fig. 6c). Mesas-Carrascosa et al., (2015) described the Pix4D processing steps into 4 phases like (1) aerial 

triangulation; (2) DSM generation; (3) rectification of individual images; and (4) ortho-mosaic. During the 

processing, the GCPs help (i) to minimize possible image deformation and possible systematic errors (ii) to 

avoid instability of bundle solutions and (iii) helps to determine correct 3D shape (Nex & Remondino, 

2014). 

Point cloud and Mesh: This process helps to increase the density of the 3D points which are computed 

in the initial processing, and this point cloud densification increases the accuracy of generating DSM and 

Ortho-mosaic image. This process uses the automated dense image matching techniques which are able to 

search and match more accurately matching points on the image (that is the point clouds with calculated 

optimal internal and external camera parameters) which results in more accurate and dense point clouds. 

Dense image matching technique also helps in extracting dense point clouds and defines the surface of the 

objects (Nex & Remondino, 2014). The output of this process is normally the 3D sparse or dense point 

clouds as shown in Figure 7a&b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Screen shot of camera positions and geo-located images; (a) Automatic tie points and point cloud; (b) 
densified point cloud and mesh 

a 

b 
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DSM, Ortho-mosaic, and Index: In this process a 3-band (RGB) multispectral Ortho-mosaicked image 

(Fig. 8a) and Digital surface models (DSM) (Fig. 8b) with high spatial resolution (2.25 cm). These two 

products of this process are the main data requirement for this study, which was generated and exported in 

*tiff format. And these outputs were used for further analysis to meet the objective of this study.  

 

 

 

 

 

 

 

 
Figure 8: Final output of Pix4D; (a) Ortho-mosaicked image; and (b) Digital Surface Model (DSM) 

3.1.2. Generation of Mosaicked Orthophoto and Crop Surface Models (CSMs) 

During the second flight the crops were at emerging stage, which means the farms were bare, so the UAV 

image acquisition during this time (07-June-2016) was used for the generation of the Ground Model. As 

shown in Figure 9 the generated DSM of each date was later used as Crop Surface Models (CSMs) which 

was subtracted from the DSM of the second flight, as a reference Ground Model for the rest of the flights 

as well, for the estimation of the crop height. In addition, mosaicked image (Orthophoto) was generated 

and exported in a *TIFF image format for visible band vegetation indices calculations. Grenzdörffer, (2014) 

presented two different approaches for determining crop heights, that is the Difference method and 3D-

point cloud methods. The difference method was applied in this study. 

As shown in Fig. 9 comparison of CSMs at different growing stages helps to determine the crop growth 

development and estimation of plant height (Juliane Bendig et al., 2013). Hoffmeister et al., (2010) and Tilly, 

(2015) has already introduced the concept of generation of Crop Surface Models using Terrestrial Laser 

Scanning (TLS) data. In addition to this (Juliane Bendig et al., 2014) demonstrated the estimation of biomass 

of barley by using Crop Surface Models (CSMs) derived from UAV images. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Multi-temporal crop surface models (CSMs) at different growing stages (Nora Tilly, 2015). 
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Further processing was carried out in Esri ArcGIS 10.4.1. The CSMs of each date was masked by the 

polygon shape file of the two maize farms, which form an area of interest (AOI). In the next step for each 

of the 2m x 2m plot, an average elevation (Z_value) was calculated from the CSMs of each date using zonal 

statistics tool to obtain a table with mean elevation and exported as dBase table which can be used for 

further statistical analysis. To get information on the average plant height of each plot, the CSMs of each 

date was subtracted from the ground model (DSM of the second flight). 

3.1.3. Spectral Vegetation Indices (VIs) Extraction  

Spectral vegetation indices were calculated based on the UAV-RGB images. The computed vegetation 

indices were listed in table 3. These vegetation indices, which provide a powerful indication for the 

quantification vegetation fraction, were used to classify green vegetation pixels in the mosaicked Orthophoto 

(detailed description is presented in chapter 4, section 4.1). The choice of these vegetation indices was 

considered based on the use of RGB bands of the electromagnetic spectrum of the sensor, indices that have 

been used mainly on crops like maize and the computation algorithms applied includes ratio, summation or 

band difference.  Based on these UAV-images of RGB spectral bands six vegetation indices were calculated 

by ENVI (using band math tool) and QGIS (using Semi-Automatic Classification Plugin, SCP) software. 

Then At each growth stage, average vegetation indices for each plot were extracted using ‘zonal statistics as 

table’ tool in ArcGIS to calculate the average vegetation Index value for the entire plot. And the process is 

repeated for each vegetation indices obtained at different dates. 

 
Table 3: The vegetation indices computed based on visible spectral bands. 

 

3.1.4. Computation of Fractional Vegetation Cover (FVC)  

The above-mentioned vegetation indices provide a powerful indication for the estimation of vegetation 

fraction (J. Torres-Sánchez et al., 2014). Figure 10 below shows an example mapping Fractional vegetation 

cover map, using ExG vegetation index, which is presented in the study of Geipel, Link, & Claupein, (2014). 

Item Equation Source 

Excess Green VI (ExG) 2G – R – B (Woebbecke et al., 1995) as cited 
in (Li et al., 2016) 

Color index of vegetation 
(CIVE) 

0.441*R - 0.881G + 0.385B +18.78745 (Kataoka et al., 2003) 

Vegetetiven (VEG) G/RªB¹ˉª with  a=0.667 as in its 
reference 

(Hague, Tillett, & Wheeler, 2006) 

Excess green minus excess 
red (ExGR) 

ExG – 1.4R – G  (Camargo Neto, 2004) as cited in 
(Li et al., 2016) 

Normalized green-red 
difference index (NGRDI), 

(G – R) / (G + R)  (Gitelson et al., 2002) 

Combination (COM) 0.25ExG + 0.3ExGR + 0.33CIVE + 
0.12VEG 

(Guijarro et al., 2011) 
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Figure 10: (a) True color image; (b) ExG Image; (c) ExG histogram with the different thresholds (r1 – 15); and 
(d&e) classified images with different thresholds (green vegetative and yellow non-vegetative) right after applying 
VIs and threshold to differentiate vegetative and non-vegetative pixels. 

Fractional vegetation cover (FVC) was quantified by classifying green vegetation pixels based on the six 

Vegetation Indices (Vis) calculated from UAV-RGB spectral bands of the Orthophoto which was obtained 

from the Pix4D (equ.1). These VIs are used to convert the original RGB-image with three spectral bands to 

a greyscale single band. All the mosaicked orthophoto obtained from different flying dates were transformed 

to a greyscale by the application of the above-mentioned vegetation indices. These greyscale images were 

then converted to a binary image by classifying the image using the prefixed threshold, pixels values greater 

than the threshold were classified as vegetation whereas those pixels lower than the threshold were classified 

as soil. In grayscale image processing, it is important to select adequate threshold level to identify objects 

from their background (OTSU, 1979). The threshold was selected based on the Otsu thresholding method 

algorithm using Matlab. Once the image pixels were classified percentage of vegetation cover was quantified 

to determine FVC.  

For verification, the RGB-image was also classified to vegetative and non-vegetative parts using supervised 

classification by a set of points located on vegetation and non-vegetation (Soil). These points were used as 

training points to estimate the real percentage of the ground covered by vegetation, and later these were 

compared with the FVC computed from the vegetation indices as shown in table 4. The ground is fully 

covered by vegetation from first of august. In the study of J. Torres-Sánchez et al., (2014) used the 

expressions (1) and (2) for calculating the percentage fractional vegetation cover and classification accuracy 

respectively. 
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…….……....………………………………….. (1) 

 

Classification Accuracy (%) = 100 - | (OVF-VF)|  ...…………………………………………………… (2) 

 
Where FVC/VF = Fractional Vegetation Cover in percentage and OVE = observed vegetation fraction, in this case, 
the classified RGB image. 

3.2. Field Data Collection for Height and Biomass  

The simple random sampling method was used in this study and typically mature maize plant has the leaves, 

the stalk and the node (the point at which the leaf joins the stalk). This structure makes it difficult to the 

manual survey on the ground and Anthony et al., (2014) defined the height of maize plant as the distance 

from the top node to the ground. Field measurements, mainly plant height, and biomass measurement, on 

the selected sample plots were done using a tape and weighing balance respectively. Manual plant height 

measurement was taken at two different growth stages, one was during tasselling which corresponds to 

UAV flight seven (18-Aug-2016) and the second was at physiological maturity (just before harvesting) this 

also corresponds to UAV flight nine (20-Sep-2016) but biomass measurement was taken only at maturity 

just before harvest time. 

The plant height (PH) measurement was taken randomly from five maize plants for each plot manually. The 

mean plant height for each plot was calculated by averaging the measured plant heights. After reaching 

physiological maturity, the five randomly selected maize plants were harvested by cutting the whole plant 

from the bottom of the ground for each plot. The harvested maize plants were weighed in the field using 

the weighing balance to record the fresh biomass of the plants.  

Twenty plants from different plots were transported to the laboratory for the dry biomass analysis. Finally, 

these plants were dried at 105°C until their mass reached a constant weight (48 hours). In our study area, 

the crops were planted at a row spacing of 0.75 m and interplant spacing of 0.15 m and the average plant 

density per square meter was found to be 10. Therefore, the Above Ground Biomass (AGB) in kg/m² for 

each plot was calculated as the product of the dry weight per plant (kg/plant) and the average plant density 

(number plants/m²) which was determined by the interplant and line/row spacing (m). 

3.3. Statistical analysis  

Statistical regression analysis was carried out in Microsoft Excel 2013. Different regression models were 

used to estimate the total biomass of the crops at the end of the growing season using image characteristics 

like the height derived from Crop Surface Models (CSMs) and vegetation indices of the mosaicked 

orthophoto of different growing stages of the whole growing season. 

Exponential regression analysis using maize dry biomass which was collected at the physiological maturity 

as the dependent variable and plant height measured at the field right before harvesting as an independent 

variable were fitted in an exponential growth model (Y= a*expbx) to access the relationship between the 

maize yield (biomass)  and plant height. Determination coefficient (R²) was used to evaluate the strength of 

the relationship between Above Ground Biomass (AGB), (fresh and dry biomass), and Plant Height (PH). 

In this study, linear and exponential regression equations were also used in describing the regression 

relationships of Vegetation Indices versus above ground biomass (dry and fresh) and plant height versus 

biomass respectively. In addition to this, stepwise multiple linear regression equations were used to estimate 

Number of Pixels Classified as Vegetation

Total Number of Pixels
FVC = ( )*100
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fresh/dry biomass using the combined parameters of vegetation indices and plant height derived from the 

UAV images. The maize Fresh and dry biomass, as well as height regression models, were evaluated by the 

Coefficient of determination (R²) and Root Mean Square Error (RMSE) and percentage normalized Root 

Mean Square Error (nRMSE). RMSE is related to the magnitude of the observed variables, while nRMSE 

is a normalized value that can be used to compare the performances of different regression models. A lower 

nRMSE often indicates a better regression performance. RMSE and nRMSE were calculated using equation 

3 and equation 4 respectively (Li et al., 2016): 

𝑹𝑴𝑺𝑬 = √∑
(𝒀𝒊−𝒀′𝒊)²

𝒏

𝒏

𝒊=𝟏
   ……………………………………………………………………….. (3) 

𝒏𝑹𝑴𝑺𝑬 =  
𝑹𝑴𝑺𝑬

𝒀𝒎𝒂𝒙−𝒀𝒎𝒊𝒏
∗ 𝟏𝟎𝟎  ……….……….…….…….……….…………………… (4) 

Where n is the number of observations, Yi is the observed values, Y’i the predicted values, Ymax and 

Ymin are the maximum and minimum observed value. 
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4. RESULTS AND DISCUSSION 

4.1. Vegetation Indices and Fractional Vegetation Cover (FVC) 

Six Vegetation Indices were tested in mapping Fractional Vegetation Cover (FVC) by comparing with the 

classified ortho-mosaicked images. As described in section 3.1.3, these vegetation indices were calculated 

from fine spatial resolution RGB images acquired by the UAV. The whole study or the maize farm area 

reached near 100% vegetation cover by the end of July-2016. That means vegetation indices obtained from 

the first four flights( from early June to late July) were helpful in mapping FVC whereas the rest flights that 

were taken on and after August had no importance for FVC mapping since the ground was totally covered 

by vegetation during this period. These vegetation indices were used for classifying green vegetation pixels 

in the mosaicked images and quantify the vegetation fraction.  

The vegetation indices (VIs) were first stored in 8bit unsigned with pixel values ranging from 0 to 255 and 

based on Otsu method discussed in chapter 3, thresholds were selected to differentiate the vegetation from 

the background (soil). And the result of this study showed that the predefined thresholds for each vegetation 

indices are ExG = 110, CIVE = 125, VEG = 90, ExGR = 130, COM = 110 and NGRDI = 90. And the 

images of the six vegetation indices were classified based on a pre-defined threshold into two classes 

vegetation and non-vegetation (soil) as shown in appendix-1a and 1b.  

The thresholds were evaluated and cross-validated with FVC extracted from supervised classification 

method of the RGB image. As shown in the Table 4 out of the six vegetation indices tested in this study 

two best vegetation indices (ExG and COM) were selected considering their classification accuracy along 

with the first four temporal series, for better vegetation cover mapping with classification accuracy ranging 

from 94.52% to 99.16% for ExG and 91.45% to 96.94% for COM.  

Similarly, J. Torres-Sánchez et al., (2014) studied eight vegetation indices (the Six vegetation Indices which 

were studied in this paper and two additional VIs, Woebbecke Index (WI) and one combination VI) for 

mapping vegetation fraction based on RGB images for wheat crop.  They found ExG and VEG indices are 

best in vegetation fraction mapping with the accuracy ranging from 83.93% to 87.75% for ExG, and 83.74% 

to 87.82% for VEG at 60 m flight height with spatial resolution of 2.28 cm. Higher accuracy is observed in 

our result, the reason could be the crop that is maize in our case can easily be distinguished from its 

background when compared with wheat. This is because the maize plants were sown with definite row and 

interplant spacing and had larger leaves whereas wheat is scattered by broadcasting which made the 

classification accuracy lower. 

Table 4: Percentage vegetation fraction, the selected threshold and classification accuracy of each vegetation indices 
obtained from the Ortho-mosaic at 07-June, 16-June, 08-July, and 27-July. 

 

 

 

 

 

 

 

Tresh=110
Classification 

Accuracy
Tresh=125

Classification 

Accuracy
Tresh=90

Classification 

Accuracy
Tresh=130

Classification 

Accuracy
Tresh=110

Classification 

Accuracy
Tresh=90

Classification 

Accuracy

7-Jun-16 11.97 15.44 96.53 14.51 97.46 1.1 89.13 9.13 97.16 3.42 91.45 11.2 99.23

16-Jun-16 37.85 32.37 94.52 43.14 94.71 22.79 84.94 30.71 92.86 44.01 93.84 44.21 93.64

8-Jul-16 93.01 93.85 99.16 58.41 65.4 35.59 42.58 66.43 73.42 97.75 95.26 28.32 35.31

27-Jul-16 94.35 97.8 96.55 65.84 71.49 22.1 27.75 78.06 83.71 97.41 96.94 57.31 62.96

Date Classified 

Ortho-mosaic

Vegetation Indices/Thresholds

Area covered by vegetation in percentage

ExG CIVE VEG ExGR COM NGRDI
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In addition to visible band vegetation indices for mapping Vegetation fraction Cui et al., (2011) found NDVI 

vegetation index which provides a significant relationship with percentage vegetation cover with a 

correlation coefficient of 0.710.  Furthermore, NDVI regardless of species had also a strong relationship 

with percentage ground cover with R² of 0.87 (Prabhakara et al., 2015).  

 

Figure 11: Single band classified image (FVC map) obtained from the ExG vegetation index upper image and 
Mosaicked orthophoto with RGB bands lower image (16-Jun-2016). 

Figure 11 for example, shows the FVC map estimated from ExG vegetation index and mosaicked 

orthophoto during the early growing stage of the whole maize field of the study area using UAV images 

acquired on 16-Jul-2016. 

Based on the results of this study the hypothesis 1;  : There is a significant relationship (correlation) between 

Fractional Vegetation Cover (FVC) obtained from classified RGB image and vegetation indices calculated 

from visible spectral sands of UAV images at different growing stages was accepted for ExG and COM 

vegetation indices during the first four flights, that is from germination Stage (07-Jun-2016) to inflorescence 

emergence, heading stage (27-July-2016).  

In addition to mapping Fractional Vegetation Cover (FVC), the computed vegetation indices were also 

analyzed in predicting end biomass/yield and plant height at respective growth stages. The result of this 

study shows that vegetation indices calculated during stem elongation and Inflorescence emergence/heading 

stage, which is from early July to early August (Fig. 4), have a potential to estimate the height as well as the 

biomass of the crops. This will be further discussed in detail in the next section 4.3.   
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4.2. Crop Surface Models (CSMs) for Plant Height Estimation 

The average plant height of each plot obtained from CSMs (PHCSM) and field measured plant height (PHref) 

was fitted on a linear regression model and the result is presented in a scatter plot along with the regression 

equation and was analyzed by their coefficient of determination (R²), RMSE, and nRMSE values. The result 

showed high correlation between plant height derived from CSMs and field measured plant height with R² 

and nRMSE of 0.68 and 11.65% (on 18-August) and 0.85 and 9.14% (on 20-September) respectively (Fig. 

12a&b).  

A strong challenge during this study was, the GCP points were not sufficiently distributed over the entire 

study area especially to the east part of the field. This results in low accuracy of CSM generation on some 

flying dates (such as flights taken on 27-July, 09-August, and 18-August) which gives unexpected plant height 

from CSMs in some plots. These plots were removed from analysis to avoid errors aroused from them in 

estimating fresh and dry biomass. Still, residual errors might be present due to inaccuracy in CSM generation, 

this could be the reason for a decreased R² = 0.68 during the seventh flight (on 18-August). 

 
Figure 12: Field measured Plant Height in relation to plant Height derived from CSMs (a) at 18-Aug-2016 and (b) at 
20-Sep-2016. 

An example of CSMs of two sample dates that are 08-Aug-2016 (a); and 27-Jul-2016 (b) are shown in Figure 

13. Dark pink to brownish color indicates low growing areas and light green to dark green areas indicate 

high plant heights. This height difference comes from excessive water stress (water logging), especially to 

the east part. In our study area, extreme rainfall was observed especially during late June and July, for 

example, the maximum precipitation in this area was about 60 mm on 24-Jun-2016. Another reason for the 

variation crop height could be due to environmental effects such as climatic condition and soil type. 

Vegetative growth of the crop was similar on the entire field until the end of June, but from this time 

onwards difference on vegetative growth development was observed within the field which leads to the 

variation in the end biomass/yield production. 
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Figure 13: Plant heights from Crop Surface Model of field two (a) during flight_4 (08-Jul-2016); (b) during flight_5 
(27-Jul-2016). 

Plant height derived from Crop Surface Models (CSMs) from different UAV flights, of selected plots were 

also plotted on a line graph against time to see the growth development of the crops (Fig. 14). The gray line 

shows the growth development of maize for sample plot 19, which is very low growing plot, with a 

maximum height of less than 1m in September. As a result, the yield obtained from this plot was also very 

low. The orange, light blue, and yellow lines show for plot 2, plot 7 and plot 20 respectively from medium 

to high growing plots. And the dark blue line indicates the average growth development of the whole field 

(average of all plots). As indicated by the arrow in Figure 14 unexpected drop in plant height is shown on 

18-Aug-2016, this is due to inaccurate CSM generation which results from insufficient distribution of GCP 

points (as discussed above). 

 

Figure 14: An example of crop growth development of low, medium and high growing plots through time. 
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The Crop Surface Models (CSMs), which were obtained from UAV images at different dates, represent the 

surface of the crops with high spatial resolution (2.25 cm) at different growth stage were used to determine 

the actual plant height by subtracting from the ground model which was obtained from DSM of the second 

flight (07-Jun-16) where there were no crops.  The gray colored surface represents the ground model and 

the colored surfaces represent the crop canopy surface (CSMs) at different dates. Figure 15 shows a 

visualized map of plant height with same spatial resolution with Crop surface Models. Plant growth 

(spatiotemporal difference in plant height) between two desired dates can also be measured by subtracting 

CSM of earlier date from CSM of the later date. 

As described on the literature review and the results obtained in this study very high-resolution multi-

temporal crop surface models (CSMs) were important in determining crop height for growth monitoring 

and development by a means of low-cost UAV equipment. The images for this study were collected from 

early June, just before crop germination, to late September just before the date of harvesting. GCPs with 

sufficient visibility were also collected during each flight (acquisition date) and which were manipulated 

during data processing. Crop Surface models (CSMs) were generated from Pix4D software for maize 

biomass estimation using very high-resolution UAV images for monitoring crop growth development. 

Comparatively, in other studies the Structure from Motion (SfM) based software Agisoft PhotoScan were 

used to process UAV acquired stereo images for CSM generation to accurately estimate crop height and 

crop growth monitoring (Juliane Bendig et al., 2015; Geipel et al., 2014; J Bendig et al., 2013; J. V. Bendig, 

2015).  

Accurate pre-processing of very high spatial resolution data is very important for accurate crop height and 

Biomass/yield estimation. CSM generation is one of the most important output of pre-processing of fine 

spatial resolution imagery and its concept includes generating of absolute plant heights as well as monitoring 

growth development of crops during the growing season (J. V. Bendig, 2015). In the current study, images 

were collected with sufficient overlap (80% forward and 60% side lap). Similarly, other studies used flight 

plans with side to forward overlap of 44% to 90% (J Bendig et al., 2013); 60% to 70% (Ruiz et al., 2013); 

30% to 60% (Jorge Torres-Sánchez et al., 2013); 50% to 80% at 60m flying height (Mesas-Carrascosa et al., 

2015) respectively to generate CSMs for accurate estimation of crop heights. 

The accuracy of the CSMs can be affected by different factors like image overlap and the number and 

distribution of GCP points over the study site. As discussed in section 4.2. the coefficient of determination 

was 0.68 and 0.85 this is probably due to unevenly distributed GCPs. Enough and well distributed GCPs 

increase the absolute accuracy of DSM/CSM generation, Juliane Bendig et al., (2014) for example, took 15 

GCP point on an area of about 0.2 ha evenly distributed over the study site which is much smaller as 

compared to our study field around 13 ha with only 7 GCPs and were not evenly distributed. Their result 

shows high accuracy with R² of 0.92 in estimating crop height of barley (which has considerably more 

homogeneous canopy surface as compared to maize) which was a stronger correlation as compared to the 

result of this study (R² = 0.70 during Tasselling and R² = 0.85 during ripening). This shows substantially 

higher accuracy of crop heights from CSM can be obtained by using sufficient amount, well-distributed and 

highly visible GCPs. Similarly, higher correlation was also found by  Tilly, (2015) with R² of 0.93 for maize 

and N. Tilly et al., (2013) R² of 0.71 for paddy rice using TLS data which was validated by manually measured 

plant heights. 

Based on the results described above crop heights derived from Crop Surface Models (CSMs) of UAV 

images have high potential in accurately estimating plant height. Hereby we accept hypothesis two; (H₀: 

Crop Surface Models can calculate crop height accurately); provided that there should be sufficient and well-

distributed GCP points for accurate CSMs generation. 
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4.3. Empirical models for biomass assessment at harvest 

This study focused on estimation of fresh and dry biomass at harvest using RGB derived vegetation indices 

and plant height obtained from Crop Surface models (CSMs) of different campaigns of the growing season. 

The overall objective of this study was to establish robust empirical models for non-destructive crop 

biomass of maize at field level for monitoring growth development throughout the growing season. 

Therefore, this study developed linear regression models between VI & Biomass, exponential relation 

between crop height & biomass and multiple linear regression models with the combined plant height 

derived from CSMs and vegetation indices and these regression models showed an optimal result. 

4.3.1. Vegetation Indices modelling for yield assessment 

Crop biomass is an important parameter for efficient crop management during the growing season and yield 

estimation. Linear relationships were accessed between vegetation indices as the independent variable and 

biomass (fresh and dry) at harvest as the dependent variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: Cross-validation relationships of fresh/dry biomass, height and Vegetation indices of different dates; (08-
Jul-16) ExG versus biomass and height (a-c); (27-Jul-16) CIVE and ExGR versus biomass and height (d-i); and (09-Aug-
16) ExG versus biomass (j-k). 
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At 95% confidence level a significant correlation between fresh/dry biomass at harvest time and vegetation 

indices (such as ExG, CIVE, ExGR, COM, NGRDI) were observed during the vegetative growth stages 

(Fig. 4). Similarly, correlation with CSM plant heights was also revealed by ExG, CIVE, ExGR, and COM 

vegetation indices. Basically, all the vegetation indices had low R², ranging from 0.004 to 0.50 but have a 

significant relationship at p<0.05, to estimate yield at harvest time and crop height at a respective growth 

stages (Table 5) and in addition to R² the RMSE and nRMSE values were used to select the best model for 

estimation. For the estimation of biomass (fresh and dry) and crop height the ExG, CIVE, ExGR, and 

COM vegetation indices were fitted to linear regression equations and the rest (VEG and NGRDI) were 

not significant at 95% confidence level, so they were not included for assessing biomass and plant height. 

Based on the results from Table 5 and Figure 16, ExG vegetation index had a higher correlation with 

biomass and height during stem elongation stage (08 July) (Fig.4) with a p-value of less than 0.001, and its 

correlation declines from late July onwards. During inflorescence emergence and heading stage (27 July), 

CIVE and ExGR models had better fit with higher R² and lower RMSE as compared to other vegetation 

indices.  

As shown in Table 5 and figure 16 the ability of the vegetation indices, predicting the yield at harvest and 

crop height at different growth stages, was analyzed based on their behavior with respect to R², RMSE, and 

nRMSE values. On 08-July (stem elongation stage) (Fig.4), ExG had significant relationship with R² = 0.5 

and 0.4, RMSE = 1.2 kg/m² and 0.4 kg/m² and nRMSE = 12.3% and 15.6% for fresh biomass and Dry 

biomass respectively, and R² of 0.3 for plant height at p<0.001 (Fig. 16a – 16c). During inflorescence and 

heading stage (27-July) ExG, CIVE, ExGR, and COM have significant relationship with biomass and height 

at 95% confidence level, out of which CIVE with negative linear relationship (R² = 0.33 - 0.35), and ExGR 

with positive linear relationship (R²= 0.42 - 0.45) were better in estimating yield and height with lower RMSE 

and nRMSE at p<0.001(Table 5 and Fig. 16d-16i). At flowering stage (09-August) ExG seem to have a 

significant relationship with fresh and dry biomass at p<0.05 with negative correlation but it was supposed 

to have a positive relationship, that means from this growth stage it had no importance in estimating biomass 

(Fig 16j - 16k). 

Based on the results obtained at different dates the vegetation indices performs differently with respect to 

time. That is, ExG vegetation index performed better during stem elongation (08-July) with highest R², 

Lower RMSE and lower percentage error (nRMSE) in estimating yield and plant height. The CIVE and 

ExGR vegetation indices during stage 5 (Fig. 4) had also reasonable estimation accuracy next to ExG. The 

relationship between vegetation indices and biomass were found higher (with an estimation error ranging 

from 12% - 22%) than those between vegetation indices and plant height (with an estimation error ranging 

from 18% - 34%) (Table 5). This could be because of the errors occurred from plant height derived from 

CSMs (PHCSM) as described in chapter four. 
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Reasonable relationships between the vegetation Indices and biomass/height were measured and different 

regression equations of biomass and height were established (Table 5). During the early stages (germination 

and leaf development) and during reproductive and maturity growth stages starting from Stage 7, tasselling 

(18-Aug-2016) of Figure 4, the Vegetation indices did not have significant relationship with the measured 

yield at 95% confidence level, therefore the vegetation indices calculated during this periods were not 

suitable for biomass estimation. The reason is that the vegetation indices which were calculated at the early 

stages of vegetation growth (that is before 16-June), the background were not covered by vegetation and 

there were some weeds germinated on the field, so they have mixed reflectance properties with the 

soil/weeds, but after 16-June chemicals were sprayed on the field to kill the weeds. And starting from the 

early reproductive stage that is the beginning of tasselling (18-August) the crop starts to turn to 

brownish/yellowish which affects the reflectance of vegetation and was thus unsuitable for biomass 

estimation from vegetation indices. Juliane Bendig et al., (2015) also described the visible (RGB) spectral 

band vegetation indices showed better ability to predict biomass in the early growing stages as compared to 

the late growth stages. The established models were evaluated their estimation accuracy by their R², RMSE 

and nRMSE values (Table 5).  

Similar to our study  Li et al., (2016); Guijarro et al., (2011); and Geipel et al., (2014) also used visible (RGB) 

band vegetation indices in their studies for crop biomass and plant height estimation. Biomass at harvest 

time was estimated using different regression models with various vegetation indices derived from visible 

spectral bands and low correlation was observed between them. This correlation can be improved using 

multispectral vegetation indices such as NDVI, which have high biomass predicting power. For example, 

Kross et al., (2015) and Prabhakara et al., (2015) use NDVI vegetation index for biomass estimation with 

R²>0.90.  

Referring to the result which was discussed above in Figure 16 and Table 5, for the estimation of biomass, 

the vegetation indices have generally low correlation with R² of ranging from 0.2 to 0.45 this is due to the 

vegetation indices are highly dependent on the photosynthetically active component of the crops (leaves), 

but majority of the biomass of maize comes from the stalk and ear which are photosynthetically inactive 

component. Similar results were also found by Link et al., (2013), in their study they found R² = 0.34 between 

vegetation indices and end biomass. This shows that the relationship between biomass and spectral 

vegetation indices is generally low. But for close growing crops such as barley, the visible band vegetation 

indices have higher potential in estimating crop height and biomass with higher R² ranging from 0.80-0.82 

(Juliane Bendig et al., 2015). Similarly, in the study of Li et al., (2016) Visible band vegetation indices show 

low R² for example, CIVE showed a negative relationship in estimating biomass and crop height with 

R²=0.35 for biomass, and R²=0.15 for plant height which is comparable to our result, that is R² =0.34 for 

biomass and R² = 0.19 for plant height. 

Based on the result of this study and previous studies the hypothesis 3; the null hypothesis (Ho) was accepted 

for ExG, CIVE, ExGR, and COM vegetation indices at α = 0.05 and for growing stages starting from stage 

3 (stem elongation) to stage 6 (flowering, anthesis). But during the early growing stage that is, (before stem 

elongation, 08-July) and late growing stages (after flowering stage, 09-August), there were no significant 

relations between VIs and biomass/height, so the alternate hypothesis (H1) was accepted. 
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4.3.2. Field Measured Plant Height and Biomass Relationship  

Field Measured fresh biomass and oven-dried biomass was plotted against field measured plant height on a 

scatter plot with an exponential relation. As shown in Figure 17 and table 6 the relationship of the field 

measured plant height and biomass gives a high correlation of R² = 0.81 for fresh biomass and R² = 0.70 

for dry biomass. A higher correlation was observed on fresh biomass as compared to dry biomass, this is 

due to only 20 plants from 20 different plots were used for dry biomass analysis and interpolated for 40 

plots and as a result, some errors could occur in calculating dry biomass of all plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Graphs showing the relationship between field-measured plant height and biomass at physiological 
maturity (right before harvesting) on sept. 15-23, 2016. 

As shown in Table 6 and Figure 17 exponential regression models were derived for fresh and dry biomass 

versus PHCSM and PHref and evaluated by their coefficient of determination R². The result showed that a 

reasonable relationship between PHCSM and Biomass was obtained (R² = 0.72 for Fresh biomass and R² = 

0.68 for dry biomass). Comparatively, higher correlation was observed with Field measured plant height, 

PHref, (R² = 0.81 for Fresh biomass and R² = 0.70 for dry biomass), this is because some errors might be 

introduced due to the CSMs (section 4.2). 

Table 6: Coefficient of determination (R²) for crop heights (PHCSM and PHref, linear regression) and Plant Height with 
Fresh and dry biomass (exponential regression) for all plots; at p <0.001. (PHCSM = Crop Surface Model Plant Height; 

and PHref = Field measured Plant Height). 

  PHCSM(m) PHref(m) Fresh Biomass (kg/m2) Dry Biomass (Kg/m2) 

PHCSM(m) 1    

PHref(m) 0.84 1   

Fresh Biomass (kg/m2) 0.72 0.81 1  

Dry Biomass (Kg/m2) 0.68 0.70 0.86 1 

The descriptive statistics of the field measured plant height and plant height derived from CSMs along with 

fresh and dry biomass were also described in Table 7. The difference between the mean plant heights derived 

from Crop Surface Models (PHCSMs) and manually measured plant heights (PHref) is about 0.17 m and 

Standard deviation of 0.63 m for PHCSM and 0.46 m for PHref.  The average value of the measured biomass 

are in the range from 2.24 to 9.58 kg/m² (for fresh biomass) and 0.59 to 2.99 kg/m² (for dry biomass) and 

shows similar variability with a coefficient variance of 22.25% (fresh) and 22.22% (dry). Based on the field 
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measurements of 40 maize plots (Table 7), the maize fresh/dry biomass showed a larger spatial variability 

than field measured plant height with a higher CV (22.2% > 18.8%) this is due to those plants with the same 

height could have different biomass. The number of plots for CSMs plant height are shown 27 due to some 

of the plots lie outside the area coverage of the image captured by the UAVs, and the plant height derived 

from CSM had higher spatial variability than those of manually measured plant height CV (27.7%>18.8%) 

these variations were aroused from the uncertainty of the generated CSMs. 

Table 7:  Descriptive statistics field measured plant height and CSMs plant height and aboveground fresh and dry 
biomass of maize of plots (N=40 for PHref and biomass; and N=27 for PHCSMs) collected between 15-Sept to 23-
Sept-2016, (CV = Coefficient of Variation; SD = Standard Deviation). 

  
 
PHCSMs (m) PHref (m) 

Fresh Biomass 
(kg/m2) 

Dry Biomass 
(Kg/m2) 

N 27 40 40 40 

Min 0.67 1.004 2.24 0.586828 

Max 3.30 3.024 9.58 2.987614 

Mean 2.292273 2.460125 7.078875 2.042200643 

SD 0.6352586 0.4637864 1.5749625 0.453714059 

CV 0.27713045 0.18852149 0.22248768 0.2221691883 

4.3.3. Plant Height (PHCSM) modelling for biomass estimation 

In addition to the investigation of the relationship between vegetation indices and biomass, the relationship 

between biomass and crop height were also analyzed and better correlation was observed when plant height 

was used to estimate biomass. Crop heights at different growth stages were an interesting parameter to 

describe the crop growth development and to estimate yield/biomass. In this study, the crop heights at 

different growing stages of the crops were obtained by difference method (which was described in chapter 

three) of the ground model and the Crop Surface Models (CSMs). Exponential regression models between 

fresh and dry biomass and plant height derived from CSMs (PHCSM) were developed at different dates and 

evaluated by their coefficient of determination (R²), RMSE  and nRMSE (Table 5 and Figure 18).   

As shown in Table 5 and Figure 18 the relationship of crop height and fresh/dry biomass had higher 

performance at physiological maturity (ripening stage) with R² = 0.72 and 0.69, RMSE of 1.0 kg/m² and 0.3 

kg/m²,and nRMSE of 13.6% and 12.40% for fresh and dry biomass respectively at p<0.001(Fig. 18f). A 

better fit was also observed during stem elongation stage, 08-July, (R² = 0.6) for both fresh and dry biomass 

(Fig. 18a), similarly, during Inflorescence emergence/heading stage, 27-July, (R² = 0.7) for both fresh and 

dry biomass (Fig. 18b). Reasonable relationship was also found during silking/fruit development stage, 08 

September, (R² ≈ 0.6) for both fresh and dry biomass (Fig. 18e). But the models for estimating biomass 

during flowering stage (09-Aug-2016) (Fig. 18c) and tasselling (18-Aug-2016) (Fig. 18d) were weak as 

compared to others probably due to the low accuracy of the CSM plant height during these periods (R² ≈ 

0.4).  
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Figure 18: Cross-validation relationships between fresh/dry Biomass and plant height derived from Crop Surface 
Models (CSMs); p<0.001 for all R² except for 09-Aug-2016, p<0.05. 

Based on the results presented in Table 5 and Figure 18 plant height was the most important parameter for 

fresh and dry biomass estimation of the maize crop. Generally, the predicting ability of the crop height 

derived from CSMs for fresh and dry biomass increases with vegetation growth development of the crops. 

The end yield estimation from plant height (PHCSM), during stem elongation stage (08-July) and 

Inflorescence emergence and heading stage (27-July) (Fig.4), had better performance with higher R² and 

lower RMSE/nRMSE.  
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In this study, the PHCSM and manually measured crop height represent the average plant height of all pixels 

found on each plot. The regression models for biomass estimation from PHCSM performs differently, that 

is, generally higher R² occurs for fresh biomass as compared to dry biomass estimation models. As shown 

in table 5 the fresh/dry biomass estimation models have lower performance during dates 09-Aug, 18-Aug, 

and 08-Sept., with R² ranging from 0.36 - 0.61 (fresh biomass) and 0.28 - 0.60 (dry biomass), the reason for 

this was unexpected plant heights were obtained from CSMs during these periods which affects the strength 

of the relationship. To establish the model the extreme plant heights, that is higher than the expected were 

removed from the dataset (because these errors were clearly caused due to lack of GCP points on some part 

of the field). And the height derived from CSMs at the early stages, that is germination and leaf development 

stages (07-June and 16-June) were not suitable for yield estimation since the heights at this period were too 

short to use them as biomass estimator.   

Similar to our study an Exponential regression equation was used to study the relationship between plant 

height derived from Crop Surface Models (CSMs) and biomass of barley by Juliane Bendig et al., (2015) and 

by Yin et al., (2011) for maize biomass estimation. Using UAV-based high-resolution images  J. V. Bendig, 

(2015) also studied the ability of plant height, derived from crop surface models (CSMs), as the best 

estimator for biomass of barley (R² = 0.81 for fresh and R² 0.82 for dry). Similarly, Li et al., (2015) studies 

the estimation of biomass of maize at the peak growth (tasselling stage) using airborne LiDAR-derived 

canopy height and LAI as input with RMSE = 0.36 kg/m² which was almost similar to the result of this 

study (RMSE = 0.32 kg/m²) at similar growth stage. 

Referring to our result the Crop Surface Models obtained from RGB-based UAV images acquired at 

different dates have a significant relationship with biomass at the end growing season. So, the plant height 

data had a general validity to approve its ability for estimating maize biomass non-destructively. Hence the 

null hypothesis (Ho) of the research hypothesis-4 was accepted. 

4.3.4. Biomass modelling from the combined VIs and Plant Height (PHCSM) 

As mentioned earlier in chapter 3 (section 3.2) a destructive biomass sampling was done at the physiological 

maturity of the crops just before harvesting to compare with the estimated biomass from VIs and plant 

height. Stepwise Linear regression models were established between fresh/dry biomass at harvest time as 

dependent variable and ExG, ExGR and Plant height at different growing stages as an independent variable 

along with their statistical indicators of R², RMSE and nRMSE values (Table 8). The models were established 

during the vegetative growth development from early July to mid of August (Fig.4) and are significant at a 

p-value less than 0.05. As described in section 4.3.1, the vegetation indices calculated before 08-July and 

after 09-August were not significant at 95% confidence level and not presented in Table 8. 

Table 8: Multiple linear regression relationships between fresh/dry biomass as an independent variable and VIs 
together with CSM plant height as independent variables with their respective R², RMSE, and nRMSE values. 

 

 

 

 

 

 

 

Note: * Model significance at 0.05 probability level (p<0.05). 

            ** Model significance at 0.01 probability level (p<0.01). 

 

Regression Equation R
2

RMSE 

(Kg/m²)

nRMSE 

(%) Regression Equation R
2

RMSE 

(Kg/m²)

nRMSE 

(%)

8-Jul-16 Y=0.0201*ExG+2.5581*PH CSM +0.167 0.7159** 0.8937 12.18 Y=0.0041*ExG+0.8673*PH CSM +0.2541 0.699** 0.2665 11.10

27-Jul-16 Y=0.03394*ExGR+1.9568*PH CSM -2.9633 0.7537* 0.8186 11.15 Y=0.0079*ExGR+0.5951*PH CSM -0.5713 0.7642* 0.2271 10.80

9-Aug-16 Y=-0.019*ExG+1.939*PH CSM +5.3213 0.5444** 1.0294 14.02 Y=-0.0052*ExG+0.4531*PH CSM +1.7298 0.4581** 0.3105 14.76

Date

Fresh Biomass/Yield Dry Biomass/Yield
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Based on the result of multiple linear regression models shown in Table 8, only ExG vegetation index 

together with PHCSM was significant at p<0.01 to estimate biomass during the stem elongation (8-July) and 

flowering stage (9-August), and a regression model was established using these two independent variables.  

During inflorescence emergence and heading (27-July), only ExGR and PHCSM were found to be significant 

at p<0.05 for fresh and dry biomass estimation. 

 

Figure 19: Cross-validation scatter plots for observed fresh and dry biomass versus predicted biomass from the 
combination of CSM plant height and vegetation indices of dates; 08-Jul-16 (a&b); 27-Jul-16 (c&d); and 09-Aug-16 
(e&f). 
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The general concept of the biomass regression models described in Table 8 was to calculate the fresh and 

dry biomass and which was validated by comparing the actual and the predicted biomass plotted in Figure 

19 by their respective coefficient of determination (R²). The performance of the regression model (ExGR 

+ PHCSM) at inflorescence emergence, heading stage (27-July) was relatively high with, R² of 0.75 and 0.76, 

and RMSE of 0.82 kg/m² and 0.23 kg/m² for fresh and dry biomass respectively (Fig.19c&d) at p<0.05. 

During stem elongation (08-July) the model, with ExG and PHCSM variables, had also good performance in 

predicting biomass with higher R² of 0.72 for fresh biomass and 0.70 for dry biomass (Fig. 19a&b) at p<0.01. 

The predicting ability lowered after growth stage 6, flowering stage (09-Aug) with a little bit lower R² and 

higher RMSE and nRMSE as compared to the previous stages with, R² = 0.54 and nRMSE = 14.02% for 

fresh biomass; R² = 0.46 and nRMSE = 14.76% for dry biomass (Fig.19e&f) at p<0.01. 

The multiple regression analysis were carried out to investigate the dependence of the fresh and dry biomass 

from the combination of plant height and vegetation indices. In general, a moderate correlation was obtained 

for each individual variable to fresh/dry biomass, but the correlation increases when combined variables 

(PHCSM and VIs together) were used to estimate yield, that means higher R² and lower RMSE were obtained 

from multiple linear regression models. The combination of plant height derived from Crop Surface Models 

and vegetation indices allows advanced estimation for fresh and dry biomass (Geipel et al., 2014). The R², 

RMSE and nRMSE values were used to evaluate the strength of the models in estimating the biomass. And 

in addition to this, the actual biomass and predicted biomass (fresh/dry) were plotted on a scatter plot to 

evaluate the predicting ability of the regression models.  

Generally, good performance was found for multiple linear regression model combinations PHCSM + ExG 

(on 08-July), PHCSM + ExGR (on 27-July) and PHCSM + ExG (on 09-August). All correlation had better 

fit with R² above (0.54 and 0.46) and nRMSE below (14.02% and 14.75%) for (fresh and dry) biomass 

estimation respectively. So multiple linear regression models with combinations of plant heights and 

vegetation indices give better yield estimation with higher R² and lower RMSE and nRMSE values. 

Comparably, Juliane Bendig et al., (2015) also described in their study that the combined plant height derived 

from Crop Surface models (PHCSM) and selected vegetation indices fitted in multiple linear regression 

models performed better than vegetation indices alone with R² ranging from 0.78 to 0.82.  

4.4. Maize Yield at Harvest  

The final pixel based maize biomass was calculated using the equation with combined ExG vegetation index 

and crop height (derived from CSM) at stem elongation growth stage (08-Jul-16). As shown in table 8 using 

this regression model the computed RMSE of the actual and predicted biomass was 0.90 kg/m² for fresh 

biomass and 0.27 kg/m² for dry biomass at p<0.01. The equation that best describe the biomass estimation 

of maize using VI and crop height relationship was “Y =0.0201*ExG + 2.5581*PHCSM + 0.167” for fresh 

biomass and “Y =0.0041*ExG + 0.8673*PHCSM + 0.2541” for dry biomass. The criteria used to select the 

optimal model was the model with higher R² and lower RMSE which was significant at 0.01 probability 

level. 

As shown in the yield map of Figure 20 there is high spatial variability within the field due to variation in 

crop height, and highest biomass was represented by green color which corresponds to highest crop height. 

The red and yellow colors also represent for lower biomass. The reason for such variation in biomass within 

the field was the low growing areas (low plant height) that could be due to water stresses and other 

environmental factors during the growth period (section 4.2). 
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Figure 20: Pixel based yield map resulted from modeling of Excess Green (ExG) vegetation index and plant height 
derived from Crop Surface Model (PHCSM) of UAV image acquired during Stem elongation of maize. 

The descriptive statistics resulted from the selected model at α = 0.05 is described in Table 9, the actual and 

predicted fresh and dry biomass had almost the same mean approving the models good performance. But 

the standard deviation of actual and predicted biomass are slightly different with least variation in predicted 

yield as compared to the variation of actual yield in both Fresh and dry biomass.   

Table 9: Descriptive statistics of the actual and predicted biomass (fresh and dry) of maize at harvest (Kg/m²) 

 Fresh Biomass Predicted Y. Dry Biomass Predicted Y. 

Mean 6.936 6.944 2.018 2.023 

Std. Deviation 1.704 1.443 0.494 0.413 

Variance 2.905 2.083 0.244 0.171 

Minimum 2.24 2.268 0.587 0.770 

Maximum 9.58 8.862 2.988 2.676 

95% Confidence Level of the mean       

 

The mean and standard deviation of dry biomass for this study were found to be 2.02 kg/m² and 0.41 kg/m² 

respectively, with RMSE of 0.27 kg/m². Comparably, Li et al., (2016) estimated above ground biomass of 

maize with an average of 1.75 kg/m² and standard deviation of 0.86 kg/m². 
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5. CONCLUSION AND RECOMMENDATION 

Based on the results and discussion presented in chapter four of the present study, this section also presents 

the following parts: 

 Conclusions with summary answer to each research question and  

 Recommendations for further studies. 

5.1. Conclusions 

This study demonstrates the potential of very high-resolution multi-temporal UAV images for monitoring 

crop growth development during the whole growing season for efficient planning and decision making. The 

primary objective of this thesis is to evaluate UAV-based RGB imaging and its products, like the vegetation 

indices and plant height derived from crop surface models (PHCSM) for modelling fresh and dry biomass of 

maize and mapping fractional vegetation cover (FVC) at different growing stages.  

Six vegetation indices were tested in mapping Fractional Vegetation Cover (FVC), out of which only two 

vegetation indices (ExG and COM) were found to be significant in calculating percentage vegetation cover 

during the first four UVA flights ( from germination to inflorescence emergence and heading stage). 

Furthermore, these vegetation indices were also evaluated at 95% confidence level for their use to estimate 

fresh/dry biomass at harvest and crop height at a respective growth stage. Optimal vegetation indices were 

selected by their strength of correlation with the biomass at harvest time and significant relationship was 

found with ExG at the stem elongation stage with higher R² and lower RMSE. Next to ExG, the ExGR 

with the positive relationship and CIVE with negative correlation at inflorescence emergence and heading 

stage had a reasonable relationship with biomass.  

The CSMs was assessed as the predictor for the crop height and biomass at harvest time. It was found that 

CSMs can accurately estimate crop height with an accuracy between 68% and 85% and can be improved by 

taking sufficient and well-distributed GCP point on the study site. In addition, crop height derived from 

UAV-based Crop Surface Models (CSMs) at the different growing stage were evaluated for assessing the 

biomass at harvest. And the result assured there is a strong correlation between plant height and biomass 

with higher R² especially during mid of vegetative development. And the predicting ability of crop height is 

found to be better as compared to vegetation indices. 

Answers to the research questions 

Q1:  Which vegetation index/indices is/are best for fractional vegetation cover mapping in relation to time/growth stage of 

the crops? 

 Based on this study, Fractional Vegetation Cover (FVC) can be mapped from germination stage, 

07-June (around 0% vegetation cover) to inflorescence emergence and heading stage, 27-July 

(around 100% vegetation cover) (fig. 4). After July-27, that is from flowering/anthesis stage the 

ground is totally covered by vegetation. Out of the six vegetation indices tested for mapping FVC, 

ExG and COM vegetation indices were best in mapping FVC by differentiating the vegetation from 

its background with higher classification accuracy. 
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Q2:  What is the accuracy of crop surface models to calculate plant height?  

 To validate the accuracy of plant height estimated from Crop Surface Models (CSMs), this study 

uses two datasets of different growing stages, that is crop heights measured manually during (13-

to-17-Aug) and (15-to-23-Sep) which corresponds with UAV flight of (18-Aug) and (20-Sep) 

respectively.  And found an accuracy of 68% during the first dataset and 85% accuracy during the 

last campaign.  The reason for low accuracy for August 18 is that in some plots the plant heights 

obtained from CSMs were higher than the expected height. This can be improved by generating 

accurately georeferenced DSM/CSM by using enough and well-distributed GCP points. 

Q3:  Which Vegetation Index is best to estimate maize yield and how is it related to the crop height and yield during the 

growing season? 

 Based on the results presented in this thesis some of the visible band vegetation indices have a 

potential in estimating end biomass of maize. As described in chapter 4 the vegetation indices are 

only significant between 08-July to 09-August (from stem elongation to flowering stage) in 

estimating biomass and plant height. The ExG vegetation index has better performance at stem 

elongation stage (08-July) (fig. 4). CIVE and ExGR (at inflorescence emergence and heading stage, 

27-July) have also reasonable estimation accuracy next to ExG. 

Q4:  What are the relationships of biomass versus crop height derived from CSMs and biomass versus Vegetation indices? 

 A linear regression model with vegetation indices, an exponential relationship with plant height 

(PHCSM) and stepwise linear regression model using both parameters, Plant height, and vegetation 

indices was fitted to estimate fresh and dry biomass. The detailed relationships are shown in tables 

5 & 8. Multiple linear regression models with a combined plant height and vegetation indices show 

better biomass estimation performance than models with vegetation indices alone. And except for 

three flights (09-Aug, 18-Aug, and 08-Sep), due to inaccurate CSMs, the exponential relationship 

of plant height performs better for biomass estimation with higher R² >0.71. And the plant height 

obtained on 08-July is short enough to estimate end biomass but still, it is significant for estimation 

(R²≈0.60). 

Q5:  Which growth stage or best time to record the crop using UAVs for accurate yield estimation?  

 For efficient management and monitoring of crops during the growing season, it is important to 

know the best time or growth stage to survey the crops for optimal yield estimation. This is one of 

the objectives to be assessed by this study, accordingly based on the products obtained from high-

resolution multi-temporal UAV images, like CSM plant height and vegetation indices best yield 

estimations were observed during stem elongation (08-July) and Inflorescence emergence, heading 

(27-July) stage of figure 4.  During this growing stages, fresh and dry biomass can be estimated from 

both PHCSM and vegetation indices with an error of only (1.2 kg/m² - 1.6 kg/m² for fresh and 0.35 

kg/m² - 0.38 kg/m² for dry). Therefore, the best time to record maize field using UAVs for accurate 

yield estimation is after one month from germination that is stages 3-5 (fig. 4), July in this case.  
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5.2. Recommendations 

The present study investigated and reached a conclusion on estimating fresh and dry biomass using RGB-

based vegetation index (ExG) and CSM derived crop height acquired by the UAVs. But in terms of 

agricultural crop monitoring during the whole growing season, it has some limitations and needs some 

improvement for improved crop yield/biomass assessment. To improve the assessment of yield using very 

high-resolution UAV images the following recommendations are suggested for further studies:  

 Accurately georeferenced Digitals Surface Model (DSM), CSM in this case, should be generated for 

accurate plant height measurement. This can be achieved by putting well, sufficiently distributed 

and visible Ground Control Points (GCPs) over the entire field. Or some improvements should be 

made on the UAV-based image collection by mounting on-board GPS with high accuracy which 

enables direct geo-referencing of the images, this omits GCP measurement and speeds up data 

collection and processing. 

 

 This study focusses on multi-temporal analysis which enables accurate monitoring of plant height 

and plant growth development, but in further studies, hyperspectral analysis should be included to 

derive physiological plant parameters like Leaf Area Index (LAI), chlorophyll and nitrogen content 

of the plants which are very important information for monitoring crop growth and studying crop 

stresses. This can be done using new technologies like hyperspectral camera systems which can 

provide the above mentioned hyperspectral and 3D spatial information which is powerful for 

monitoring agricultural crops and biomass estimation.  

 

 In addition to the RGB sensor, in further studies, it is advisable to use NIR camera for UAV by 

combining high spectral and spatial resolution which are a promising development in further 

researches and enable a new and advanced crop monitoring possibilities. Because NIR can provide 

a clear picture of crop health and moisture variations and also have greater opportunity for visual 

interpretation and digital analysis. 

 

 This study does not consider factors that could affect the end yield, like soil type, fertilizer/chemical 

treatments, temperature, and rainfall. In further Studies, those factors should be considered in the 

analysis for accurate yield/ biomass estimation. 

 

 The small area coverage is the main limitation of studies from UAV imagery, so integration of UAV 

imagery with satellite imageries like Sentinel_2 & 3 (with low spatial resolution as compared to UAV 

imagery but freely available) or WorldView_1 & 2 (very high resolution but not freely available) can 

provide promising result with large spatial coverage. 

 

 Different results of vegetation indices might occur because of the lighting condition (sometimes 

full of sun and sometimes cloudy) during the flight periods which was not studied in this research. 

So the vegetation indices of different flights were difficult to compare, and more work should be 

done to calibrate the biomass estimation from these vegetation indices.  
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