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ABSTRACT

Information on crop height and biomass at different growing stages can provide important indications of
growth development and carbon stock in the agroecosystem. Monitoring growth development and studying
vegetation phenology are mostly associated with various agricultural phenomena, such as planting,
emergence, maturing and harvesting, which play an important role in answering agricultural and
environmental management policies. This study is therefore aimed in assessing the application of UAV
images in estimating biomass and crop height to provide timely and reliable spatial information to the
farmers and decision makers for managing and monitoring growth development of crops during the
vegetation period.

Obtaining spatiotemporal information and crop phonological status in agriculture during critical periods of
the growing season is very challenging using satellite imagery due to the difficulty of recording with high
cloud coverage. So this problem can be solved by using UAV images which can be operated at low altitude
(below the clouds). The present study focused on (1) the plant height modelling using Crop Surface Models
(CSMs), (2) estimation of biomass and percentage Fractional Vegetation Cover (FVC) using RGB-based
vegetation indices, (3) estimation of biomass at harvest using plant height derived from Crop Surface Models
(CSMs) and (4) biomass modelling using the combination of plant height and Vegetation indices. UAV
flights at different growth stages were carried out with RGB camera over summer maize field in western
Germany, Gronau. For accurate crop height estimation, very high-resolution multi-temporal Crop Surface
Models (CSMs) were derived. The plant height derived from CSMs were validated by field measured plant
heights. The result shows that UAV-based CSMs can accurately estimate plant height at different growing
stages, during Tasselling R* were found to be 0.68 and during ripening stage 0.85. In order to increase the
estimation accuracy of plant height a well and evenly distributed GCP points and accurate UAV data
collection is necessary.

RGB-based vegetation indices were also calculated from ortho-mosaicked image to map fractional
vegetation cover (FVC) and estimate biomass and plant height. The results indicate the ExG and COM
vegetation indices were found best in mapping fractional vegetation cover as compared to the other
vegetation indices. Furthermore, fresh and dry biomass was estimated using plant height derived from crop
surface models using an exponential regression model which results in good correlation (R* ranging from
0.6 - 0.72). Using linear regression model with vegetation indices, ExG was found significant at p <0.007
with a coefficient of determination (R* = 0.51) during stem elongation stage, followed by ExGR (R? = 0.45)
during inflorescence emergence and heading stage. In addition, multiple linear regression models with
combined plant height and vegetation indices were used to estimate biomass. Higher performance was
observed when a combined Vegetation indices with plant height were used to estimate fresh and dry biomass
than vegetation indices alone with R? of ranging from 0.70 - 0.76 at both stem elongation and inflorescence
emergence/heading stages. This study may provide an improved guidelines for estimation of fresh and dry
biomass at harvest of summer maize crop using very high-resolution multi-temporal UAV data.

Keywords: UALVs, bigh resolution, crop monitoring, CSMs, FI/C, vegetation indices, crop height and biomass
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1. INTRODUCTION

1.1.  Background and justification

World’s population is continuously increasing and it is obvious that the need for food, shelter and other
basic needs from the limited land resources are also increasing. Therefore, the study of agricultural crop
production is very crucial to improve land productivity, generate income and provide food security to
people. Important information to improve agricultural production sustainably can be obtained from crop
type maps and area extent. This area estimation and crop identification can be obtained from aerial
photographs and multispectral satellite imagery using remote sensing acquisition techniques (Yang et al.,
2010). For sustainable agricultural production, the study of crop phenology via biomass estimation helps to

understand the state of the ecosystem and environmental factors that affect the crop growth (Ajaere, 2012).

Remote sensing data is very important in the field of agriculture especially in the study of climate, soil, land
classification and crop inventory (Steven & Clark, 2013). In order to have good yield predictions in
agricultural crop production, it is essential to know the type of crops and their areas grown in a region which
provides basic information for crop management and agricultural planning. Agricultural crop type mapping
and identification throughout the vegetation period provides a vital information to agricultural institutions

and stakeholders for their efficient management and monitoring (Inglada et al., 2015).

During the growing season, the height of crops provides an important information on crop health and their
response to the environmental effects, such as precipitation and chemical/fertilizer treatment. Height
estimates of the tops of crop and the ground, the difference of which is the height of the crop, is the main
requirement for crop measurement (Anthony et al., 2014). Manual crop height measurement is expensive,
time-consuming and causes damage to the crops because of the unobstructed movement in the field.
However, height measurement from the air is also challenging, since the layers of plant leaves obscure the
ground. Anthony et al., (2014) also described some techniques that can solve this problem are, (1) Using the
increased sensing power radar or LIDAR and (2) Micro-UAV (Unmanned Aerial Vehicle) equipped less
powerful sensor operating at low altitude (close to the crops) to capture the small gaps between the crops
and sense directly to the ground and lower levels of the vegetation and (3) Using very high resolution digital

aerial images taken from airplane.

Ajaere, (2012) noted that biomass/yield estimation and monitoring of agricultural crops (maize crop in this
case) are essential because agricultural crops play an important role in the environment. The temporal and
spatial resolution of remote sensing datasets help to improve the applicability of remote sensing methods,
that is, getting the biophysical parameters of crops during the growing season with very high geometric
resolution become easier (Dahms et al., 2016). The accurate estimation of biophysical variables such as Leaf
Area Index (LAI), height, and biomass can be used to describe the architecture of plants, monitor changes,
and predict growth and yield during the growing season that improves planning and management of crop
production (Gao et al., 2013). Economical and quantitative estimation of crop biomass during the growing
season is an important ecological indicator of plant growth for crop production management and planning
(Li et al., 2015). Crop type mapping and study of vegetation phenology are mostly associated with various

agricultural phenomena, such as planting, emergence, maturing and hatrvest, play an important role in
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answering economic and environmental management policies (Reed et al., 1994; Vaudour et al., 2015;
Rembold et al., 2013).

Thus, the use very high-resolution multi-temporal UAV images for monitoring crop development during
the whole growing seasons is crucial in monitoring, planning and decision making of crop production.
Substantial information on agriculture like determining crops, biomass estimation and crop health during
their growing season can help farmers and decision makers to monitor and manage the crops in order to

get a reasonable yield.

1.2. Literature Review

Although coarse spatial resolution data can provide relevant information in monitoring and managing crop
production but has also some disadvantages, so the need for high spatial resolution data is vital. Rembold
et al., (2013) insisted in their study that, images obtained from low-resolution satellite imagery (with spatial
resolution between 250m to 1km) have been widely used for crop monitoring for over three decades,
vegetation performance detected from these low-resolution images have some limitations created by mixed
nature of low-resolution pixels. In monitoring agricultural crops the development of high spatial and
temporal resolution satellite sensors are opening new opportunities for researchers. New satellites like
Sentinel-1 & -2, SPOT5, QuickBird, GeoEye and Worldview-1 &-2 can provide very high spatial, temporal,
spectral and radiometric resolution images which can be used to extract information in crop monitoring and

management (Richter et al., 2016).

Since the early days of remote sensing crop development and growth have been monitored by the use of
satellite images (Rembold et al., 2013), and crop monitoring is essential in precision agriculture. Zhang &
Kovacs, (2012) defined Precision Agriculture (PA) as “a farming management strategy that uses information
technology to identify variations in the field and deal with them with alternative scenarios to help decisions
associated with crop production”. In precision agriculture, the use of unmanned aerial vehicles has been
increasing as an alternative to very high cost and not readily available satellite or airborne imageries (Jannoura
etal., 2015). The use of very low cost and very high-resolution aerial imagery obtained from radio controlled
model aircraft was evaluated by Hunt et al., (2005) to estimate the nutrient status of maize and crop biomass

of maize, alfalfa, and soybeans.

Based on the cultural operation of farmers in different regions of the world the use of very high spatial
resolution images is essential to map bare soil surface and early season crop identification (Vaudour et al.,
2015). Monitoring crops throughout the growing season is the main requirement in precision agriculture,
i.e. the application of geospatial information and sensors to identify variation in agricultural fields. It is one
of the most imperative practices in the development of sustainable agricultural production (Zhang &
Kovacs, 2012). The stages of precision agriculture are data collection & analysis, field variability mapping,
and crop management practice. Thus, these processes can be easily done using remotely sensed imagery,
particularly, very high-resolution satellite imagery or UAV images which are now readily available at low

cost to study soil condition and crops during the growing season.

In monitoring crop growth development determining agricultural plant parameters such as plant height,
biomass, plant nitrogen content, Leaf Area Index (LAI) etc. are very essential. Hoffmeister et al., (2010)
used Crop Surface Models (CSMs), Crop Volume Model (CVM) and multi-temporal roughness of different
crops to estimate the crop parameters. The height of the crops is the difference between the UAV-sourced
Digital Surface Model (DSM), equivalent to CSMs in this case, at full canopy and the topography of the field




MONITORING GROWTH DEVELOPMENT AND BIOMASS ESTIMATION OF MAIZE USING VERY HIGH-RESOLUTION UAV-IMAGES IN GRONAU, GERMANY

(DTM) (Waypoint Drone Insight and Inspiration, 2015). Comparison of CSMs at different growing stages
helps to determine the crop growth development and estimation of plant height (Juliane Bendig et al., 2013).
Hoftmeister et al., (2010) has already introduced the concept of generation of Crop Surface Models using
Terrestrial Laser Scanning (TLS). In addition to this Bendig et al., (2013) demonstrated the estimation of
biomass of batley by using Crop Surface Models (CSMs) derived from UAV images.

Remote sensing products such as vegetation Indices, derived from visible spectral bands in this case, and
plant height derived from CSMs provide measures of amount and condition of green vegetation on the farm
land and also gives information on biomass estimation for agricultural management strategies (Geipel et al.,
2014; Duncan et al., 2015). Jannoura et al., (2015) also studied the relationships of visible band vegetation
indices (like NGRDI) with above ground biomass and Leaf Area Index (LAI) of different crops like oats
and peas from UAV data. Similarly, Leaf Area Index and crop biomass estimation of maize and soybean
crops were assessed using RapidEye vegetation indices (Kross et al., 2015). A review of remote sensing
methods of assessing crop biomass using vegetation indices is presented by Prabhakara et al., (2015);
Jannoura et al,, (2015); Jin et al., (2015); Kross et al., (2015) and Sharma et al., (2016).

Reflectance properties of crops like vegetation indices are also very essential in studying the performance of
crops under different stress which directly affects the yield/biomass. For example, the crop growth
development of maize under low nitrogen stress was studied by Zaman-Allah et al., (2015) and Vergara-
diaz et al., (2016) using NDVI as well as RGB-based vegetation indices derived from UAV spectral imaging,
according to their results these vegetation indices have good performance in assessing crop growth
development and spatial field variations of the crops under low N-stress. A medium-resolution data (TM,
ETM+) can be used for monitoring spatial and temporal dynamics of vegetation changes, extraction of
vegetation cover and growth status of the crops using NDVI vegetation index, which has a comprehensive
reflection for vegetation type and cover form (Cui et al., 2011). Estimating Fractional Vegetation Cover
(FVC) from vegetation indices also helps in monitoring and modeling vegetation productivity and yield
estimations and remote sensing are an advanced science which helps in estimating vegetation cover (Liu et
al,, 2012).

Unmanned aerial vehicle (UAV) platforms flying at low altitude are used to acquire high temporal and spatial
resolution aerial data that enables users to take informed and targeted action. UAVs make use of small
compact camera, navigation systems, reliable GPS units and radio receivers to acquire vertical well defined
high-resolution images (Tellidis & Levin, 2014). Aerial imagery obtained from Unmanned Aerial Vehicles
(UAVs) allows cheap, flexible acquisition and provides high spatial resolution data with high temporal
frequencies (Centre for Earth Systems Engineering Research (CESER), n.d.). The CESER also described
the monitoring of Vegetation phenology, land use land cover change, hydrological phenomena, and
infrastructure systems can easily be studied using this UAVs imagery.

UAVs can fly at low altitudes and are also capable of observing small individual plants and patches, acquire
images even on cloudy days and can also be used in high-risk situations and inaccessible areas (J. Torres-
Sanchez et al,, 2014). UAVs are also a potential for 3D image generation, capability of decentralized data
acquisition (substantial advantage to communities, end users, organization, and government agencies) and
can be used for monitoring of illegal activities like illegal timber extraction (Paneque-Galvez et al., 2014).
There are also some limitations for UAV application some of which are small area coverage; they can be
affected by wind speed during image acquisition, lack of precise rule framework and tedious requests for
flight permissions limits their application (Nex & Remondino, 2014). Paneque- Galvez et al., (2014) also
listed some limitations of UAVs like Poor geometric and radiometric performance, short flight endurance,
small payload and the possibility of collisions.
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1.3. Problem statement

The decrease in biomass and yield of crops in agricultural fields focussed an attention on the need for high-
quality monitoring systems during the growing seasons. Field based crop surveying and production estimates
have a potential to give accurate results but it is costly and time-consuming which can lead to a situation of
under-sampling which compromise the accuracy measurements and estimates. To overcome this problem
the use of satellite data have been increasingly used for achievable goals for growth development health
monitoring of crops (Barret et al., 2000), crop production estimation (Lewis et al., 1998) and crop mapping
(Jain et al., 2013). The most important step in assessing the application of remote sensing for agricultural
monitoring and management is mapping vegetation crop in the field during the growing season, however
the use of aerial platforms such as planes and satellites are not suitable for these applications due to their

low spatial and temporal resolutions (J. Torres-Sanchez et al., 2014).

The study of non-destructive methods of measuring plant height and changes in plant height over time at
high spatial and temporal resolution is essential in crop monitoring studies. In recent years new aerial
platform, using remotely controlled UAVs, for image acquisition are progressively increasing and problems
related to spatial and temporal resolutions can be solved (Jorge Torres-Sanchez et al., 2013). High-resolution
imagery produced by UAVs can be a suitable acquisition technique for monitoring crop development during
the growing season, and it is very cheap compared to satellite images, LIDAR, and very high-resolution
images from a conventional airplane. It also provides important supplementary information for the
assessment of crop health and development. Assessment of early detection of crop infestation as well as
crop health is critical in guaranteeing good agricultural productivity and stress like excessive moisture,
insects, fungal and weed infestations, and must be detected early enough to provide an opportunity for the

farmer to mitigate (Natural Resources Canada, 2015).

Despite the promise of satellite and UAV data of high spatiotemporal resolution for monitoring and crop
yield estimates, until present, only a few studies have been made on this issue especially in our study site.
Obtaining spatiotemporal information and crop phonological status in agriculture during critical period of
the growing season is very challenging using satellite imagery due to the possibility of high cloud coverage.
Therefore, this problem can be easily solved by using Very high-resolution UAV (Unmanned Aerial Vehicle)
images which can be operated at low altitude (below the clouds). This study is going to assess the application
of UAVs in providing timely and reliable (spatial) information to the farmers and decision makers for
monitoring growth development of crops during the vegetation period. Due to very high resolution, low
cost, high maneuverability, and easy maintenance UAVs are nowadays becoming powerful sensors in
scientific researches (Cai et al., 2014). This study aims to provide accurate plant height and maize yield

estimates at farm level during the crop growing season.

1.4. Research objectives

The main objective of this research is to provide an accurate plant height and maize yield estimations for
monitoring growth development during the growing season in Gronau, Germany, using very high-resolution
multi-temporal UAV- images.
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To achieve this general objective, the following specific objectives were defined.

1.5.

1.6.

1.

To assess the best VIs for yield estimation and map Fractional Vegetation Cover (FVC) at
different growing stages.

Access the relationship between different RGB-based vegetation indices and yield/biomass and
plant height derived from CSMs at different growing stages.

To assess and validate the relationship between plant heights derived from CSMs and infield plant
height measurement.

To assess the relationship between the heights of the crops derived from CSMs and Yield (in
terms of biomass).

To assess and investigate the best single time to record the maize using UAVs for accurate yield
estimation.

Research Questions

Which vegetation index/indices is/are best for fractional vegetation cover mapping in relation to
time/growth stage of the crops?

What is the accuracy of crop surface models to calculate plant height?

Which Vegetation Index is best to estimate maize yield and how is it related to the crop height
and yield during the growing season?

What are the relationships of biomass versus crop height derived from CSMs and biomass versus
Vegetation indices?

Which growth stage or best time to record the crop using UAVs for accurate yield estimation?

Research Hypothesis

Ho: There is a significant relationship (correlation) between Fractional Vegetation Cover (FVC)
obtained from classified RGB image and vegetation indices calculated from visible spectral sands
of UAV images at different growing stages.

H.: There is no significant relationship between FVC and vegetation indices.

Ho: Crop Surface Models can calculate crop height accurately (>80%) using very high-resolution
UAYV images.

Hai: Crop Surface Models can calculate crop height with an accuracy (<80%).

Ho: The vegetation indices calculated from RGB-based UAV images acquired at different dates
have a significant relationship with plant height and biomass at the end growing season.

H.: There is no significant relationship between vegetation indices and plant height or end
Fresh/dry biomass.

Ho: The Crop Surface Models calculated from RGB-based UAV images acquired at different dates
have a significant relationship with biomass at the end growing season.
H: There is no significant relationship between Crop Surface Models and end Fresh/dry biomass

at the end growing season.
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2. STUDY AREAAND DATASETS

21.  Study area

The study was carried out on a maize field (an individual farmer’s field) which is located in the North Rhine-
Westphalia province of Germany (52° 10'N, 6° 55'E), About 8 km to the south of Enschede, 8 km to the
west of Gronau and 13 km Northwest of Ahaus city (fig.1). And it contains two maize fields of around 8
hectares each. During summer months the long term average temperature across this area is 17°C and during
winter months 1°C and annual precipitation are between 700 and 800 mm (North-Rhine-Westphalia, 2016).
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Figure 1: The location map of the study area in Gronau, Germany: (a) Germany Administrative boundaries
(provinces); (b) boundary of North Rhine-Westphalia province with Base map world Imagery; and (¢) UAV Ortho-
mosaicked RGB image, acquited on 08-July-2016.

In this area, maize crop (Zea Mays L.), also known as corn, is one of the most cultivated summer cereals
along with wheat. It has an important source for a diverse range of applications, like Human diet and mostly
in this area for animal feeding. The boundary of the study area was digitized to the extent of the coverage
of the UAV images. And then computer based random points were generated in ArcGIS within the
boundary of the study area. The study area had two maize fields and 20 random sample points for each and
40 points in total was generated in these two fields (fig.1c). A 2m by 2m area, for field measurement, was

taken as a sample plot for each sample point generated at the center and within these sample plots.




MONITORING GROWTH DEVELOPMENT AND BIOMASS ESTIMATION OF MAIZE USING VERY HIGH-RESOLUTION UAV-IMAGES IN GRONAU, GERMANY

2.2, Data and Materials

Data acquired from Unmanned Aerial Vehicles (UAVs) with RGB spectral bands were used in this study.
The images were taken at different dates during the Maize growing season from May to September 2016.
The main focus of this study was monitoring crop development during the growing season by extracting
different image characteristics like Vegetation indices (based on RGB bands) and Crop Surface Models for
estimating plant height and yield. The following sections describe the basics of UAVs and data acquisition
technics.

2.2.1. Materials and Software used

Several types of equipment and field instruments were used to collect fieldwork data like plant height, the
biomass of maize, measuring GCP points and image acquisition. The field instruments used in this study
include; UAV, Tablet SAMSUNG, Handheld GPS, Leica GPS, Measuring Tape (3m), meter stick, clipboard,
and data recording sheet. The detailed list of materials and different software and their usage is listed in the
table below;

Table 1: List of Fieldwork materials and software

Instruments Purpose

Unmanned Aerial Vehicles Image Acquisition
(UAVs) (Phantom 4)

Leica GPS Measure GCPs and CPs

Tablet (SAMSUNG) Display the study area and navigate offline with Locus free

Measuring tape (3m) Measure plant height at the sample plots

GPS Measuring/Checking the location of the plots in the field

Clipboard For holding the recording sheet

Field recording sheets Record field measurement

Software

Pix4Dcapture Mobile application for flight planning for image acquisition.

Pix4D UAYV image processing, to generate DSM and Ortho-mosaic image

ArcGIS 10.4.1 Different GIS activities, preparing maps and layout and processing data that

are obtained from Pix4D software
ENVI 5.3 and QGIS 2.18.0 | For calculation of vegetation Indices

MATLAB R2016a For threshold selection for mapping FVC
Microsoft Excel 2010 Statistical Analysis
Microsoft Word 2010 Thesis and report writing

2.2.2. Unmanned Aerial Vehicle (UAV)

The UAV platform used in this study is a phantom-4 (Fig. 2a) which has a stabilized camera model of
CanonEOS600D_3.6_4000x3000 mounted on it. The camera has a focal length of 3.722 mm and produces
images in visible spectral bands (RGB bands) that ate specifically suitable for studying vegetation. The image
resolution (Pixel size) at the typical flying height of 50m is 2cm/pixel. The UAV has a payload limit of about
1.5kg and with full payload has a flight duration of around 30 minutes, so due to the low endurance, the
whole study area was covered in two to four different flights (table 2). In this study, a single flight at a 50m
flying height above the ground had a coverage area of about 7 hectares and produce about 200 images under
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standard operation condition. A larger area can be obtained by multiple flights or by increasing the flight
height but this will reduce the spatial resolution.

Figure 2: (a) UAV Phantom 4 mounted with RGB bands along with its controlling mechanism (Source: www.dji.com)
and (b) Artificial marks for Ground Control Point (GCP) measurement.

2.2.3. Flight planning and UAV Data Acquisition

The first step in UAV image acquisition is preparing the flight plan, using mobile app. Pix4Dcapture
software, on the desired area of study. During the flight, the camera was set with the predefined flight plan
mission with the desired shutter speed to ensure the best coverage of the area and not being affected by the
motion of the UAV and then the images were collected based on the flight plan. These operations were
done by the ITC staffs. The UAV is equipped with onboard Global Navigation Satellite System (GNSS)
which provides only rough positions; therefore, before flying the UAV artificial marks were placed on the
tield which had to be visible on the images and were used as Ground control Points (GCPs) and Check
Points (CPs) during the image processing for orthophoto creation. These artificial marks were made of
0.3x0.4m (A3) laminated paper (fig. 2b). Those GCP positions/marks wetre measured using Leica GPS with
an accuracy of less than 2cm. Several flights at different dates were carried out on the field with the sensor
mounted in nadir position with constant orientation and flying height. The images were collected between
9:30 a.m. to 12 p.m. during the maize growing season from May to September 2016 in every 10 to 15 days
interval (table 2).

Table 2: UAV-image data acquisition periods and Number of images acquired.

Day of UAV | Date of Acquisition | Number of Flight Height Area Covered (ha)

flight Images (m)
1 26 May 2016 One flight (21) 100 8.56306
2 07 June 2016 Three Flights (58) 50 14.0676
3 16 June 2016 Four Flights (98) 50 10.5848
4 08 July 2016 Two Flights (515) 50 14.2974
5 27 July 2016 Two Flights (457) 50 14.0098
6 09 August 2016 Two Flights (449) 50 13.635
7 18 August 2016 Two Flights (441) 50 13.8255
8 08 September 2016 | Two Flights (386) 50 14.0411
9 20 September 2016 | Two Flights (386) 50 12.8614



http://www.dji.com/
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The first set of aerial imagery acquired on 26 May 2016, taken at a flight height of 100m over the whole
study area with one flight plan and not consistent with the later flights, was excluded from this study. The
images were taken from orthogonal view, known as nadir position and a series of overlapped images were
acquired during each flight date over the entire study area. On each flight, the imagery had an overlap of
80% forward and 60% side-lap to cover the whole experimental field in two —four flight missions and to
allow correct mosaicking of the images to generate a complete orthophoto of the whole study area. This
overlap helps in detecting and matching key points from individual photos and also compensate wind
disturbance and GPS errors. Examples of raw images taken during the early growing stages are shown in

Figure 3 below.

07 June 2016 16 June 2016 08 July 2016

Figure 3: Example of raw images taken by the UAV on June 07, June 16 and July 08, 2016
2.24. Maize Development stages

The study of crop growth development stages and quantifying vegetation fraction within a crop field is a
first and crucial step prior to investigating further objectives. Monitoring the temporal and spatial variations
in vegetation fraction and obtaining information in growth development stages of field crops has many
agricultural and ecological importance and is helpful in analysing the relationship between the crop growth
processes, agro-meteorological conditions and estimation of phonological and physiological status of
vegetation (Yu et al., 2013; J. Torres-Sanchez et al., 2013). Knowing the growth stages of maize throughout
the growing season allows the farmers for efficient and timely management on their field. According to
Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH), Ransom, (2013) and
Meier, (2001) describe the maize growth development stages as shown in figure 4 below.
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3.

3.1.  UAV Data Processing

METHODOLOGY

The processing of the data/images was cartried out using Pix4D- Softwate, which allows the multiple images

that were taken by the UAVs to create digital 3D model, and a mosaicked orthophoto with true RGB color

and Digital Surface Model (DSM) was generated. For geo-referencing, the mosaicked image the GCPs were

identified manually on each photo and were assigned to the coordinate position which was measured by the

Differential GPS. The overall workflow of data processing is presented in Fig.5.
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Figure 5: Flow chart showing image pre-processing in Pix4D software for the generation of Digital Surface Model

and Mosaicked Orthophoto, and further analysis in ArcGIS, ENVI classic and Microsoft excel.
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3.1.1. Image Pre-processing

UAYV acquired images were processed to generate Digital Surface Model (DSM) and Ortho-mosaicked image

using Pix4D Software for every flight. After the images are acquired they are imported into the software for

pre-processing, Figure 6a shows the camera positions (red dots) and flight routes (green line) over the study

area. This software allows converting hundreds of images taken by the UAV into geo-referenced 3D surface

models (DSM) and 2D Ortho-mosaic image and point clouds which are very interesting outputs for this

study. In order to generate DSM/DTM initially camera internal and external calibration and image

orientation has to be performed successively (Nex & Remondino, 2014). To generate DSM and Ortho-

mosaic, the following three main steps were performed (fig. 6b).

Lnitial processing: This process allows calibration of cameras (Internal and external camera
optimization), extracting and matching key points from individual images (these matching points help to

generate 3D points), Geolocation using GCP points and quality report generation (P1X4D Support Site,

n.d.). The quality report generated during the processing is presented in appendix 2.
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Figure 6: Image processing in pix4D for generation of DSM and Ortho-mosaic; (a) camera positions along with
flight route; (b) steps of processing options; and (¢) GCP manager for importing GCPs to geo-reference the image.
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The GCPs were used in the initial processing phase to locate the photogrammetric images into its true
coordinate system. And these GCP points were imported through GCP/MTP manager tool of the software
(fig. 6¢). Mesas-Carrascosa et al., (2015) described the Pix4D processing steps into 4 phases like (1) aerial
triangulation; (2) DSM generation; (3) rectification of individual images; and (4) ortho-mosaic. During the
processing, the GCPs help (7 to minimize possible image deformation and possible systematic errors (z) to
avoid instability of bundle solutions and (#%) helps to determine correct 3D shape (Nex & Remondino,
2014).

Point clond and Mesh: This process helps to increase the density of the 3D points which are computed
in the initial processing, and this point cloud densification increases the accuracy of generating DSM and
Ortho-mosaic image. This process uses the automated dense image matching techniques which are able to
search and match more accurately matching points on the image (that is the point clouds with calculated
optimal internal and external camera parameters) which results in more accurate and dense point clouds.
Dense image matching technique also helps in extracting dense point clouds and defines the surface of the
objects (Nex & Remondino, 2014). The output of this process is normally the 3D sparse or dense point
clouds as shown in Figure 7a&b.
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Figure 7: Screen shot of camera positions and geo-located images; (a) Automatic tie points and point cloud; (b)
densified point cloud and mesh
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DSM, Ortho-mosaic, and Index: In this process a 3-band (RGB) multispectral Ortho-mosaicked image
(Fig. 8a) and Digital surface models (DSM) (Fig. 8b) with high spatial resolution (2.25 cm). These two
products of this process are the main data requirement for this study, which was generated and exported in

*tiff format. And these outputs were used for further analysis to meet the objective of this study.

Figure 8: Final output of Pix4D; (a) Ortho-mosaicked image; and (b) Digital Surface Model (DSM)

3.1.2.  Generation of Mosaicked Orthophoto and Crop Surface Models (CSMs)

During the second flight the crops were at emerging stage, which means the farms were bare, so the UAV
image acquisition during this time (07-June-2016) was used for the generation of the Ground Model. As
shown in Figure 9 the generated DSM of each date was later used as Crop Surface Models (CSMs) which
was subtracted from the DSM of the second flight, as a reference Ground Model for the rest of the flights
as well, for the estimation of the crop height. In addition, mosaicked image (Orthophoto) was generated
and exported in a *TIFF image format for visible band vegetation indices calculations. Grenzdértter, (2014)
presented two different approaches for determining crop heights, that is the Difference method and 3D-
point cloud methods. The difference method was applied in this study.

As shown in Fig. 9 comparison of CSMs at different growing stages helps to determine the crop growth
development and estimation of plant height (Juliane Bendig et al., 2013). Hoffmeister et al., (2010) and Tilly,
(2015) has already introduced the concept of generation of Crop Surface Models using Terrestrial Laser
Scanning (TLS) data. In addition to this (Juliane Bendig et al., 2014) demonstrated the estimation of biomass
of batley by using Crop Surface Models (CSMs) detived from UAV images.

y
flm e Plant
(S . height
> = CSM
DTM X t, = CSM, t, = CSM, e
t0=
Growing season

Figure 9: Multi-temporal crop surface models (CSMs) at different growing stages (Nora Tilly, 2015).
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Further processing was carried out in Esri ArcGIS 10.4.1. The CSMs of each date was masked by the
polygon shape file of the two maize farms, which form an area of interest (AOI). In the next step for each
of the 2m x 2m plot, an average elevation (Z_value) was calculated from the CSMs of each date using zonal
statistics tool to obtain a table with mean elevation and exported as dBase table which can be used for
further statistical analysis. To get information on the average plant height of each plot, the CSMs of each
date was subtracted from the ground model (DSM of the second flight).

3.1.3.  Spectral Vegetation Indices (VIs) Extraction

Spectral vegetation indices were calculated based on the UAV-RGB images. The computed vegetation
indices were listed in table 3. These vegetation indices, which provide a powerful indication for the
quantification vegetation fraction, were used to classify green vegetation pixels in the mosaicked Orthophoto
(detailed description is presented in chapter 4, section 4.1). The choice of these vegetation indices was
considered based on the use of RGB bands of the electromagnetic spectrum of the sensor, indices that have
been used mainly on crops like maize and the computation algorithms applied includes ratio, summation or
band difference. Based on these UAV-images of RGB spectral bands six vegetation indices were calculated
by ENVI (using band math tool) and QGIS (using Semi-Automatic Classification Plugin, SCP) software.
Then At each growth stage, average vegetation indices for each plot were extracted using “zonal statistics as
table’ tool in ArcGIS to calculate the average vegetation Index value for the entire plot. And the process is
repeated for each vegetation indices obtained at different dates.

Table 3: The vegetation indices computed based on visible spectral bands.

Item

Equation

Source

Excess Green VI (ExG)

2G-R-B

(Woebbecke et al., 1995) as cited
in (Li et al., 20106)

Color index of vegetation

(CIVE)

0.441*R - 0.881G + 0.385B +18.78745

(Kataoka et al., 2003)

Vegetetiven (VEG)

G/R*B'"™ with a=0.667 as in its
reference

(Hague, Tillett, & Wheeler, 20006)

Excess green minus excess

red (ExGR)

ExG-14R -G

(Camargo Neto, 2004) as cited in
(Li et al.,, 2010)

Normalized green-red | (G—-R) / (G + R) (Gitelson et al., 2002)
difference index (INGRDI),
Combination (COM) 0.25ExG + 0.3ExGR + 0.33CIVE + | (Guijatro et al., 2011)

0.12VEG

3.1.4. Computation of Fractional Vegetation Cover (FVC)

The above-mentioned vegetation indices provide a powerful indication for the estimation of vegetation
fraction (J. Torres-Sanchez et al., 2014). Figure 10 below shows an example mapping Fractional vegetation
cover map, using ExG vegetation index, which is presented in the study of Geipel, Link, & Claupein, (2014).
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Figure 10: (a) True color image; (b) ExG Image; (¢) ExG histogram with the different thresholds (11 — 15); and
(d&e) classified images with different thresholds (green vegetative and yellow non-vegetative) right after applying
VIs and threshold to differentiate vegetative and non-vegetative pixels.

Fractional vegetation cover (FVC) was quantified by classifying green vegetation pixels based on the six
Vegetation Indices (Vis) calculated from UAV-RGB spectral bands of the Orthophoto which was obtained
from the Pix4D (equ.1). These VIs are used to convert the original RGB-image with three spectral bands to
a greyscale single band. All the mosaicked orthophoto obtained from different flying dates were transformed
to a greyscale by the application of the above-mentioned vegetation indices. These greyscale images were
then converted to a binary image by classifying the image using the prefixed threshold, pixels values greater
than the threshold were classified as vegetation whereas those pixels lower than the threshold were classified
as soil. In grayscale image processing, it is important to select adequate threshold level to identify objects
from their background (OTSU, 1979). The threshold was selected based on the Otsu thresholding method
algorithm using Matlab. Once the image pixels were classified percentage of vegetation cover was quantified
to determine FVC.

For verification, the RGB-image was also classified to vegetative and non-vegetative parts using supervised
classification by a set of points located on vegetation and non-vegetation (Soil). These points were used as
training points to estimate the real percentage of the ground covered by vegetation, and later these were
compared with the FVC computed from the vegetation indices as shown in table 4. The ground is fully
covered by vegetation from first of august. In the study of J. Torres-Sanchez et al.,, (2014) used the
expressions (1) and (2) for calculating the percentage fractional vegetation cover and classification accuracy

respectively.
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Number of Pixels Classified asVegetation 0 ceceecicceciiiiiiiiiiiiiiiiiiiiiiiitiitiitisiisisscsinanas (1)
FVC=( = e )*100
Total Number of Pixels
Classification Accuracy (%) = 100 - | (OVF-VF)| ..... Lereeeroresarereesannnoossannsoosrsnreossrssnssssrsnnsonee @)

Where FVC/VF = Fractional Vegetation Cover in percentage and OVE = observed vegetation fraction, in this case,
the classified RGB image.

3.2.  Field Data Collection for Height and Biomass

The simple random sampling method was used in this study and typically mature maize plant has the leaves,
the stalk and the node (the point at which the leaf joins the stalk). This structure makes it difficult to the
manual survey on the ground and Anthony et al., (2014) defined the height of maize plant as the distance
from the top node to the ground. Field measurements, mainly plant height, and biomass measurement, on
the selected sample plots were done using a tape and weighing balance respectively. Manual plant height
measurement was taken at two different growth stages, one was during tasselling which corresponds to
UAV flight seven (18-Aug-2016) and the second was at physiological maturity (just before harvesting) this
also corresponds to UAV flight nine (20-Sep-2016) but biomass measurement was taken only at maturity
just before harvest time.

The plant height (PH) measurement was taken randomly from five maize plants for each plot manually. The
mean plant height for each plot was calculated by averaging the measured plant heights. After reaching
physiological maturity, the five randomly selected maize plants were harvested by cutting the whole plant
from the bottom of the ground for each plot. The harvested maize plants were weighed in the field using
the weighing balance to record the fresh biomass of the plants.

Twenty plants from different plots were transported to the laboratory for the dry biomass analysis. Finally,
these plants were dried at 105°C until their mass teached a constant weight (48 hours). In our study area,
the crops were planted at a row spacing of 0.75 m and interplant spacing of 0.15 m and the average plant
density per square meter was found to be 10. Therefore, the Above Ground Biomass (AGB) in kg/m? for
each plot was calculated as the product of the dry weight per plant (kg/plant) and the average plant density
(number plants/m?) which was determined by the interplant and line/row spacing (m).

3.3.  Statistical analysis

Statistical regression analysis was carried out in Microsoft Excel 2013. Different regression models were
used to estimate the total biomass of the crops at the end of the growing season using image characteristics
like the height derived from Crop Surface Models (CSMs) and vegetation indices of the mosaicked
orthophoto of different growing stages of the whole growing season.

Exponential regression analysis using maize dry biomass which was collected at the physiological maturity
as the dependent variable and plant height measured at the field right before harvesting as an independent
variable were fitted in an exponential growth model (Y= a*exp®) to access the relationship between the
maize yield (biomass) and plant height. Determination coefficient (R*) was used to evaluate the strength of
the relationship between Above Ground Biomass (AGB), (fresh and dry biomass), and Plant Height (PH).

In this study, linear and exponential regression equations were also used in describing the regression
relationships of Vegetation Indices versus above ground biomass (dry and fresh) and plant height versus
biomass respectively. In addition to this, stepwise multiple linear regression equations were used to estimate
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fresh/dry biomass using the combined parameters of vegetation indices and plant height derived from the
UAYV images. The maize Fresh and dry biomass, as well as height regression models, were evaluated by the
Coefficient of determination (R? and Root Mean Square Error (RMSE) and percentage normalized Root
Mean Square Error (nRMSE). RMSE is related to the magnitude of the observed variables, while nRMSE
is a normalized value that can be used to compare the performances of different regression models. A lower
nRMSE often indicates a better regression performance. RMSE and nRMSE were calculated using equation
3 and equation 4 respectively (Li et al., 2016):

NRMSE = —— 0, 0000 e )

Ymax-Ymin

Where nis the number of observations, ¥7is the observed values, Y7 the predicted values, ¥max and

Ymin are the maximum and minimum observed value.
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4.  RESULTS AND DISCUSSION

41.  Vegetation Indices and Fractional Vegetation Cover (FVC)

Six Vegetation Indices were tested in mapping Fractional Vegetation Cover (FVC) by comparing with the
classified ortho-mosaicked images. As described in section 3.1.3, these vegetation indices were calculated
from fine spatial resolution RGB images acquired by the UAV. The whole study or the maize farm area
reached near 100% vegetation cover by the end of July-2016. That means vegetation indices obtained from
the first four flights( from early June to late July) were helpful in mapping FVC whereas the rest flights that
were taken on and after August had no importance for FVC mapping since the ground was totally covered
by vegetation during this period. These vegetation indices were used for classifying green vegetation pixels
in the mosaicked images and quantify the vegetation fraction.

The vegetation indices (VIs) were first stored in 8bit unsigned with pixel values ranging from 0 to 255 and
based on Otsu method discussed in chapter 3, thresholds were selected to differentiate the vegetation from
the background (soil). And the result of this study showed that the predefined thresholds for each vegetation
indices are ExG = 110, CIVE = 125, VEG = 90, ExGR = 130, COM = 110 and NGRDI = 90. And the
images of the six vegetation indices were classified based on a pre-defined threshold into two classes
vegetation and non-vegetation (soil) as shown in appendix-1a and 1b.

The thresholds were evaluated and cross-validated with FVC extracted from supervised classification
method of the RGB image. As shown in the Table 4 out of the six vegetation indices tested in this study
two best vegetation indices (ExG and COM) were selected considering their classification accuracy along

with the first four temporal series, for better vegetation cover mapping with classification accuracy ranging
from 94.52% to 99.16% for ExG and 91.45% to 96.94% for COM.

Similarly, J. Torres-Sanchez et al., (2014) studied eight vegetation indices (the Six vegetation Indices which
were studied in this paper and two additional VIs, Woebbecke Index (WI) and one combination VI) for
mapping vegetation fraction based on RGB images for wheat crop. They found ExG and VEG indices are
best in vegetation fraction mapping with the accuracy ranging from 83.93% to 87.75% for ExG, and 83.74%
to 87.82% for VEG at 60 m flight height with spatial resolution of 2.28 cm. Higher accuracy is observed in
our result, the reason could be the crop that is maize in our case can easily be distinguished from its
background when compared with wheat. This is because the maize plants were sown with definite row and
interplant spacing and had larger leaves whereas wheat is scattered by broadcasting which made the
classification accuracy lower.

Table 4: Percentage vegetation fraction, the selected threshold and classification accuracy of each vegetation indices
obtained from the Ortho-mosaic at 07-June, 16-June, 08-July, and 27-July.

Area covered by vegetation in percentage
Vegetation Indices/ Thresholds
Date Classified ExG CIVE VEG ExGR COM NGRDI
Ortho-mosaic Classification Classification Classification Classification Classification Classification
Tresh=110 Tresh=125 Tresh=90 Tresh=130 Tresh=110 Tresh=90
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
7-Jun-16 11.97 15.44 96.53 14.51 97.46 11 89.13 9.13 97.16 342 91.45 1.2 99.23
16-Jun-16 37.85 3237 94.52 43.14 9.7 2.79 84.94 30.7 92.86 44.01 93.84 4.2 93.64
8-Jul-16 93.01 93.85 99.16 58.41 65.4 35.59 42.58 66.43 73.42 91.75 95.26 28.32 35.31
27-Jul-16 94.35 91.8 96.55 65.84 71.49 2.1 21.75 78.06 83.71 97.41 96.94 57.31 62.96
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In addition to visible band vegetation indices for mapping Vegetation fraction Cui et al., (2011) found NDVI
vegetation index which provides a significant relationship with percentage vegetation cover with a
correlation coefficient of 0.710. Furthermore, NDVI regardless of species had also a strong relationship
with percentage ground cover with R? of 0.87 (Prabhakara et al., 2015).
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Figure 11: Single band classified image (FVC map) obtained from the ExG vegetation index upper image and
Mosaicked orthophoto with RGB bands lower image (16-Jun-2016).

Figure 11 for example, shows the FVC map estimated from ExG vegetation index and mosaicked
orthophoto during the eatly growing stage of the whole maize field of the study area using UAV images
acquired on 16-Jul-2016.

Based on the results of this study the hypothesis 1; : There is a significant relationship (correlation) between
Fractional Vegetation Cover (FVC) obtained from classified RGB image and vegetation indices calculated
from visible spectral sands of UAV images at different growing stages was accepted for ExG and COM
vegetation indices during the first four flights, that is from germination Stage (07-Jun-2016) to inflorescence
emergence, heading stage (27-July-2010).

In addition to mapping Fractional Vegetation Cover (FVC), the computed vegetation indices were also
analyzed in predicting end biomass/yield and plant height at respective growth stages. The result of this
study shows that vegetation indices calculated during stem elongation and Inflorescence emergence/heading
stage, which is from early July to early August (Fig. 4), have a potential to estimate the height as well as the
biomass of the crops. This will be further discussed in detail in the next section 4.3.
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4.2.  Crop Surface Models (CSMs) for Plant Height Estimation

The average plant height of each plot obtained from CSMs (PHcsw) and field measured plant height (PH..f)
was fitted on a linear regression model and the result is presented in a scatter plot along with the regression
equation and was analyzed by their coefficient of determination (R?), RMSE, and nRMSE values. The result
showed high correlation between plant height derived from CSMs and field measured plant height with R?
and nRMSE of 0.68 and 11.65% (on 18-August) and 0.85 and 9.14% (on 20-September) respectively (Fig.
12a&Db).

A strong challenge during this study was, the GCP points were not sufficiently distributed over the entire
study area especially to the east part of the field. This results in low accuracy of CSM generation on some
flying dates (such as flights taken on 27-July, 09-August, and 18-August) which gives unexpected plant height
from CSMs in some plots. These plots were removed from analysis to avoid errors aroused from them in
estimating fresh and dry biomass. Still, residual errors might be present due to inaccuracy in CSM generation,
this could be the reason for a decreased R* = 0.68 during the seventh flight (on 18-August).

a b
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Figure 12: Field measured Plant Height in relation to plant Height derived from CSMs (a) at 18-Aug-2016 and (b) at
20-Sep-2016.

An example of CSMs of two sample dates that are 08-Aug-2016 (a); and 27-Jul-2016 (b) are shown in Figure
13. Dark pink to brownish color indicates low growing areas and light green to dark green areas indicate
high plant heights. This height difference comes from excessive water stress (water logging), especially to
the east part. In our study area, extreme rainfall was observed especially during late June and July, for
example, the maximum precipitation in this area was about 60 mm on 24-Jun-2016. Another reason for the
variation crop height could be due to environmental effects such as climatic condition and soil type.
Vegetative growth of the crop was similar on the entire field until the end of June, but from this time
onwards difference on vegetative growth development was observed within the field which leads to the

variation in the end biomass/yield production.
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Figure 13: Plant heights from Crop Surface Model of field two (a) during flight_4 (08-Jul-2016); (b) during flight_5
(27-Jul-2016).
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Plant height derived from Crop Surface Models (CSMs) from different UAV flights, of selected plots were
also plotted on a line graph against time to see the growth development of the crops (Fig. 14). The gray line
shows the growth development of maize for sample plot 19, which is very low growing plot, with a
maximum height of less than 1m in September. As a result, the yield obtained from this plot was also very
low. The orange, light blue, and yellow lines show for plot 2, plot 7 and plot 20 respectively from medium
to high growing plots. And the dark blue line indicates the average growth development of the whole field
(average of all plots). As indicated by the arrow in Figure 14 unexpected drop in plant height is shown on
18-Aug-2016, this is due to inaccurate CSM generation which results from insufficient distribution of GCP

points (as discussed above).
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Figure 14: An example of crop growth development of low, medium and high growing plots through time.
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The Crop Surface Models (CSMs), which were obtained from UAV images at different dates, represent the
surface of the crops with high spatial resolution (2.25 cm) at different growth stage were used to determine
the actual plant height by subtracting from the ground model which was obtained from DSM of the second
flight (07-Jun-16) where there were no crops. The gray colored surface represents the ground model and
the colored surfaces represent the crop canopy surface (CSMs) at different dates. Figure 15 shows a
visualized map of plant height with same spatial resolution with Crop surface Models. Plant growth
(spatiotemporal difference in plant height) between two desired dates can also be measured by subtracting
CSM of earlier date from CSM of the later date.

As described on the literature review and the results obtained in this study very high-resolution multi-
temporal crop surface models (CSMs) were important in determining crop height for growth monitoring
and development by a means of low-cost UAV equipment. The images for this study were collected from
carly June, just before crop germination, to late September just before the date of harvesting. GCPs with
sufficient visibility were also collected during each flight (acquisition date) and which were manipulated
during data processing. Crop Surface models (CSMs) were generated from Pix4D software for maize
biomass estimation using very high-resolution UAV images for monitoring crop growth development.
Comparatively, in other studies the Structure from Motion (SfM) based software Agisoft PhotoScan were
used to process UAV acquired stereo images for CSM generation to accurately estimate crop height and
crop growth monitoring (Juliane Bendig et al., 2015; Geipel et al., 2014; ] Bendig et al., 2013; J. V. Bendig,
2015).

Accurate pre-processing of very high spatial resolution data is very important for accurate crop height and
Biomass/yield estimation. CSM generation is one of the most important output of pre-processing of fine
spatial resolution imagery and its concept includes generating of absolute plant heights as well as monitoring
growth development of crops during the growing season (J. V. Bendig, 2015). In the current study, images
were collected with sufficient overlap (80% forward and 60% side lap). Similarly, other studies used flight
plans with side to forward overlap of 44% to 90% (] Bendig et al., 2013); 60% to 70% (Ruiz et al., 2013);
30% to 60% (Jorge Torres-Sanchez et al., 2013); 50% to 80% at 60m flying height (Mesas-Carrascosa et al.,
2015) respectively to generate CSMs for accurate estimation of crop heights.

The accuracy of the CSMs can be affected by different factors like image overlap and the number and
distribution of GCP points over the study site. As discussed in section 4.2. the coefficient of determination
was 0.68 and 0.85 this is probably due to unevenly distributed GCPs. Enough and well distributed GCPs
increase the absolute accuracy of DSM/CSM generation, Juliane Bendig et al., (2014) for example, took 15
GCP point on an area of about 0.2 ha evenly distributed over the study site which is much smaller as
compared to our study field around 13 ha with only 7 GCPs and were not evenly distributed. Their result
shows high accuracy with R? of 0.92 in estimating crop height of barley (which has considerably more
homogeneous canopy surface as compared to maize) which was a stronger correlation as compared to the
result of this study (R* = 0.70 during Tasselling and R* = 0.85 during ripening). This shows substantially
higher accuracy of crop heights from CSM can be obtained by using sufficient amount, well-distributed and
highly visible GCPs. Similarly, higher correlation was also found by Tilly, (2015) with R* of 0.93 for maize
and N. Tilly et al., (2013) R? of 0.71 for paddy rice using TLS data which was validated by manually measured
plant heights.

Based on the results described above crop heights derived from Crop Surface Models (CSMs) of UAV
images have high potential in accurately estimating plant height. Hereby we accept hypothesis two; (Ho:
Crop Surface Models can calculate crop height accurately); provided that there should be sufficient and well-
distributed GCP points for accurate CSMs generation.
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4.3.  Empirical models for biomass assessment at harvest

This study focused on estimation of fresh and dry biomass at harvest using RGB derived vegetation indices
and plant height obtained from Crop Surface models (CSMs) of different campaigns of the growing season.
The overall objective of this study was to establish robust empirical models for non-destructive crop
biomass of maize at field level for monitoring growth development throughout the growing season.
Therefore, this study developed linear regression models between VI & Biomass, exponential relation
between crop height & biomass and multiple linear regression models with the combined plant height
derived from CSMs and vegetation indices and these regression models showed an optimal result.

4.31. Vegetation Indices modelling for yield assessment

Crop biomass is an important parameter for efficient crop management during the growing season and yield
estimation. Linear relationships were accessed between vegetation indices as the independent variable and
biomass (fresh and dry) at harvest as the dependent variable.
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Figutre 16: Cross-validation relationships of fresh/dry biomass, height and Vegetation indices of different dates; (08-
Jul-16) ExG versus biomass and height (a-¢); (27-Jul-16) CIVE and ExGR wersus biomass and height (d-7); and (09-Aug-
16) ExG versus biomass (j-K).
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At 95% confidence level a significant correlation between fresh/dry biomass at harvest time and vegetation
indices (such as ExG, CIVE, ExGR, COM, NGRDI) were observed during the vegetative growth stages
(Fig. 4). Similarly, correlation with CSM plant heights was also revealed by ExG, CIVE, ExGR, and COM
vegetation indices. Basically, all the vegetation indices had low R?, ranging from 0.004 to 0.50 but have a
significant relationship at p<<0.05, to estimate yield at harvest time and crop height at a respective growth
stages (Table 5) and in addition to R? the RMSE and nRMSE values were used to select the best model for
estimation. For the estimation of biomass (fresh and dry) and crop height the ExG, CIVE, ExGR, and
COM vegetation indices were fitted to linear regression equations and the rest (VEG and NGRDI) were
not significant at 95% confidence level, so they were not included for assessing biomass and plant height.
Based on the results from Table 5 and Figure 16, ExG vegetation index had a higher correlation with
biomass and height during stem elongation stage (08 July) (Fig.4) with a p-value of less than 0.001, and its
correlation declines from late July onwards. During inflorescence emergence and heading stage (27 July),
CIVE and ExGR models had better fit with higher R? and lower RMSE as compared to other vegetation
indices.

As shown in Table 5 and figure 16 the ability of the vegetation indices, predicting the yield at harvest and
crop height at different growth stages, was analyzed based on their behavior with respect to R?, RMSE, and
nRMSE values. On 08-July (stem elongation stage) (Fig.4), ExG had significant relationship with R* = 0.5
and 0.4, RMSE = 1.2 kg/m? and 0.4 kg/m? and nRMSE = 12.3% and 15.6% for fresh biomass and Dry
biomass respectively, and R* of 0.3 for plant height at p<0.001 (Fig. 16a — 16¢). During inflorescence and
heading stage (27-July) ExG, CIVE, ExGR, and COM have significant relationship with biomass and height
at 95% confidence level, out of which CIVE with negative linear relationship (R? = 0.33 - 0.35), and ExGR
with positive linear relationship (R?= 0.42 - 0.45) were better in estimating yield and height with lower RMSE
and nRMSE at p<0.001(Table 5 and Fig. 16d-16i). At flowering stage (09-August) ExG seem to have a
significant relationship with fresh and dry biomass at p<<0.05 with negative correlation but it was supposed
to have a positive relationship, that means from this growth stage it had no importance in estimating biomass

(Fig 16j - 16k).

Based on the results obtained at different dates the vegetation indices performs differently with respect to
time. That is, ExG vegetation index performed better during stem elongation (08-July) with highest R?
Lower RMSE and lower percentage error (nRMSE) in estimating yield and plant height. The CIVE and
ExGR vegetation indices during stage 5 (Fig. 4) had also reasonable estimation accuracy next to ExG. The
relationship between vegetation indices and biomass were found higher (with an estimation error ranging
from 12% - 22%) than those between vegetation indices and plant height (with an estimation error ranging
from 18% - 34%) (Table 5). This could be because of the errors occurred from plant height derived from
CSMs (PHcsw) as described in chapter four.
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Reasonable relationships between the vegetation Indices and biomass/height were measured and different
regression equations of biomass and height were established (Table 5). During the early stages (germination
and leaf development) and during reproductive and maturity growth stages starting from Stage 7, tasselling
(18-Aug-2016) of Figure 4, the Vegetation indices did not have significant relationship with the measured
yield at 95% confidence level, therefore the vegetation indices calculated during this periods were not
suitable for biomass estimation. The reason is that the vegetation indices which were calculated at the early
stages of vegetation growth (that is before 16-June), the background were not covered by vegetation and
there were some weeds germinated on the field, so they have mixed reflectance properties with the
soil/weeds, but after 16-June chemicals were sprayed on the field to kill the weeds. And starting from the
early reproductive stage that is the beginning of tasselling (18-August) the crop starts to turn to
brownish/yellowish which affects the reflectance of vegetation and was thus unsuitable for biomass
estimation from vegetation indices. Juliane Bendig et al., (2015) also described the visible (RGB) spectral
band vegetation indices showed better ability to predict biomass in the early growing stages as compared to
the late growth stages. The established models were evaluated their estimation accuracy by their R RMSE
and nRMSE values (Table 5).

Similar to our study Li et al., (2016); Guijarro et al., (2011); and Geipel et al., (2014) also used visible (RGB)
band vegetation indices in their studies for crop biomass and plant height estimation. Biomass at harvest
time was estimated using different regression models with various vegetation indices derived from visible
spectral bands and low correlation was observed between them. This correlation can be improved using
multispectral vegetation indices such as NDVI, which have high biomass predicting power. For example,
Kross et al., (2015) and Prabhakara et al., (2015) use NDVI vegetation index for biomass estimation with
R%>0.90.

Referring to the result which was discussed above in Figure 16 and Table 5, for the estimation of biomass,
the vegetation indices have generally low correlation with R? of ranging from 0.2 to 0.45 this is due to the
vegetation indices are highly dependent on the photosynthetically active component of the crops (leaves),
but majority of the biomass of maize comes from the stalk and ear which are photosynthetically inactive
component. Similar results were also found by Link et al., (2013), in their study they found R? = 0.34 between
vegetation indices and end biomass. This shows that the relationship between biomass and spectral
vegetation indices is generally low. But for close growing crops such as batley, the visible band vegetation
indices have higher potential in estimating crop height and biomass with higher R? ranging from 0.80-0.82
(Juliane Bendig et al., 2015). Similatly, in the study of Li et al., (2016) Visible band vegetation indices show
low R? for example, CIVE showed a negative relationship in estimating biomass and crop height with
R*=0.35 for biomass, and R*=0.15 for plant height which is comparable to our result, that is R* =0.34 for
biomass and R = 0.19 for plant height.

Based on the result of this study and previous studies the hypothesis 3; the null hypothesis (H,) was accepted
for ExG, CIVE, ExGR, and COM vegetation indices at « = 0.05 and for growing stages starting from stage
3 (stem elongation) to stage 6 (flowering, anthesis). But during the early growing stage that is, (before stem
elongation, 08-July) and late growing stages (after flowering stage, 09-August), there were no significant
relations between VIs and biomass/height, so the alternate hypothesis (Hy) was accepted.
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4.3.2. Field Measured Plant Height and Biomass Relationship

Field Measured fresh biomass and oven-dried biomass was plotted against field measured plant height on a
scatter plot with an exponential relation. As shown in Figure 17 and table 6 the relationship of the field
measured plant height and biomass gives a high correlation of R* = 0.81 for fresh biomass and R* = 0.70
for dry biomass. A higher correlation was observed on fresh biomass as compared to dry biomass, this is
due to only 20 plants from 20 different plots were used for dry biomass analysis and interpolated for 40
plots and as a result, some errors could occur in calculating dry biomass of all plots.
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Figure 17: Graphs showing the relationship between field-measured plant height and biomass at physiological
maturity (right before harvesting) on sept. 15-23, 2016.

As shown in Table 6 and Figure 17 exponential regression models were derived for fresh and dry biomass
versus PHesw and PHeer and evaluated by their coefficient of determination R2 The result showed that a
reasonable relationship between PHesy and Biomass was obtained (R? = 0.72 for Fresh biomass and R* =
0.68 for dry biomass). Comparatively, higher correlation was observed with Field measured plant height,
PH., (R* = 0.81 for Fresh biomass and R* = 0.70 for dry biomass), this is because some errors might be
introduced due to the CSMs (section 4.2).

Table 6: Coefficient of determination (R?) for crop heights (PHcsy and PHeer, linear regression) and Plant Height with
Fresh and dry biomass (exponential regression) for all plots; at p <0.007. (PHcsm = Crop Surface Model Plant Height;
and PH,.s = Field measured Plant Height).

PHesu(m) PHref(m) Fresh Biomass (kg/m2)  Dry Biomass (Kg/m2)

PHesnm(m) 1

PHce(m) 0.84 1

Fresh Biomass (kg/m?2) 0.72 0.81 1

Dry Biomass (Kg/m?2) 0.68 0.70 0.86 1

The descriptive statistics of the field measured plant height and plant height derived from CSMs along with
fresh and dry biomass were also described in Table 7. The difference between the mean plant heights derived
from Crop Surface Models (PHcsws) and manually measured plant heights (PH.r) is about 0.17 m and
Standard deviation of 0.63 m for PHesw and 0.46 m for PHeer. The average value of the measured biomass
are in the range from 2.24 to 9.58 kg/m? (for fresh biomass) and 0.59 to 2.99 kg/m? (for dry biomass) and
shows similar variability with a coefficient variance of 22.25% (fresh) and 22.22% (dry). Based on the field
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measurements of 40 maize plots (Table 7), the maize fresh/dry biomass showed a larger spatial variability
than field measured plant height with a higher CV (22.2% > 18.8%) this is due to those plants with the same
height could have different biomass. The number of plots for CSMs plant height are shown 27 due to some
of the plots lie outside the area coverage of the image captured by the UAVs, and the plant height derived
from CSM had higher spatial variability than those of manually measured plant height CV (27.7%>18.8%)
these variations were aroused from the uncertainty of the generated CSMs.

Table 7: Descriptive statistics field measured plant height and CSMs plant height and aboveground fresh and dry
biomass of maize of plots (N=40 for PH,.f and biomass; and N=27 for PHcsis) collected between 15-Sept to 23-
Sept-2016, (CV = Coefficient of Variation; SD = Standard Deviation).

Fresh Biomass Dry Biomass
PHcsms (m) PH,s (m) (kg/m2) (Kg/m?2)
N 27 40 40 40
Min 0.67 1.004 2.24 0.586828
Max 3.30 3.024 9.58 2.987614
Mean 2.292273 2.460125 7.078875 2.042200643
SD 0.6352586 0.4637864 1.5749625 0.453714059
Cv 0.27713045 0.18852149 0.22248768 0.2221691883

4.3.3. Plant Height (PHcsm) modelling for biomass estimation

In addition to the investigation of the relationship between vegetation indices and biomass, the relationship
between biomass and crop height were also analyzed and better correlation was observed when plant height
was used to estimate biomass. Crop heights at different growth stages were an interesting parameter to
describe the crop growth development and to estimate yield/biomass. In this study, the crop heights at
different growing stages of the crops were obtained by difference method (which was described in chapter
three) of the ground model and the Crop Surface Models (CSMs). Exponential regression models between
fresh and dry biomass and plant height derived from CSMs (PHcsy) were developed at different dates and
evaluated by their coefficient of determination (R*), RMSE and nRMSE (Table 5 and Figure 18).

As shown in Table 5 and Figure 18 the relationship of crop height and fresh/dry biomass had higher
performance at physiological maturity (ripening stage) with R? = 0.72 and 0.69, RMSE of 1.0 kg/m? and 0.3
kg/m?and nRMSE of 13.6% and 12.40% for fresh and dry biomass respectively at p<0.001(Fig. 18f). A
better fit was also observed during stem elongation stage, 08-July, (R? = 0.6) for both fresh and dry biomass
(Fig. 18a), similarly, during Inflorescence emergence/heading stage, 27-July, (R? = 0.7) for both fresh and
dry biomass (Fig. 18b). Reasonable relationship was also found during silking/fruit development stage, 08
September, (R* = 0.6) for both fresh and dry biomass (Fig. 18e). But the models for estimating biomass
during flowering stage (09-Aug-2016) (Fig. 18c) and tasselling (18-Aug-2016) (Fig. 18d) were weak as
compared to others probably due to the low accuracy of the CSM plant height during these periods (R? =
0.4).
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Figure 18: Cross-validation relationships between fresh/dry Biomass and plant height derived from Crop Surface
Models (CSMs); p<0.001 for all R? except for 09-Aug-2016, p<<0.05.

Based on the results presented in Table 5 and Figure 18 plant height was the most important parameter for
fresh and dry biomass estimation of the maize crop. Generally, the predicting ability of the crop height
derived from CSMs for fresh and dry biomass increases with vegetation growth development of the crops.
The end yield estimation from plant height (PHcsy), during stem elongation stage (08-July) and
Inflorescence emergence and heading stage (27-July) (Fig.4), had better performance with higher R* and
lower RMSE/nRMSE.
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In this study, the PHcsy and manually measured crop height represent the average plant height of all pixels
found on each plot. The regression models for biomass estimation from PHcsy performs differently, that
is, generally higher R* occurs for fresh biomass as compared to dry biomass estimation models. As shown
in table 5 the fresh/dry biomass estimation models have lower performance during dates 09-Aug, 18-Aug,
and 08-Sept., with R? ranging from 0.36 - 0.61 (fresh biomass) and 0.28 - 0.60 (dry biomass), the reason for
this was unexpected plant heights were obtained from CSMs during these periods which affects the strength
of the relationship. To establish the model the extreme plant heights, that is higher than the expected were
removed from the dataset (because these errors were clearly caused due to lack of GCP points on some part
of the field). And the height derived from CSMs at the early stages, that is germination and leaf development
stages (07-June and 16-June) were not suitable for yield estimation since the heights at this period were too
short to use them as biomass estimator.

Similar to our study an Exponential regression equation was used to study the relationship between plant
height derived from Crop Surface Models (CSMs) and biomass of barley by Juliane Bendig et al., (2015) and
by Yin et al., (2011) for maize biomass estimation. Using UAV-based high-resolution images ]. V. Bendig,
(2015) also studied the ability of plant height, derived from crop surface models (CSMs), as the best
estimator for biomass of barley (R* = 0.81 for fresh and R? 0.82 for dry). Similarly, Li et al., (2015) studies
the estimation of biomass of maize at the peak growth (tasselling stage) using airborne LiIDAR-derived
canopy height and LAI as input with RMSE = 0.36 kg/m? which was almost similar to the result of this
study (RMSE = 0.32 kg/m?) at similar growth stage.

Referring to our result the Crop Surface Models obtained from RGB-based UAV images acquired at
different dates have a significant relationship with biomass at the end growing season. So, the plant height
data had a general validity to approve its ability for estimating maize biomass non-destructively. Hence the
null hypothesis (H,) of the research hypothesis-4 was accepted.

4.3.4. Biomass modelling from the combined Vis and Plant Height (PHcsm)

As mentioned earlier in chapter 3 (section 3.2) a destructive biomass sampling was done at the physiological
maturity of the crops just before harvesting to compare with the estimated biomass from VIs and plant
height. Stepwise Linear regression models were established between fresh/dry biomass at harvest time as
dependent variable and ExG, ExGR and Plant height at different growing stages as an independent variable
along with their statistical indicators of R%, RMSE and nRMSE values (Table 8). The models were established
during the vegetative growth development from eatly July to mid of August (Fig.4) and are significant at a
p-value less than 0.05. As described in section 4.3.1, the vegetation indices calculated before 08-July and
after 09-August were not significant at 95% confidence level and not presented in Table 8.

Table 8: Multiple linear regression relationships between fresh/dry biomass as an independent vatiable and VIs
together with CSM plant height as independent variables with their respective R>, RMSE, and nRMSE values.

Fresh Biomass/Yield Dry Biomass/Yield
RMSE |nRMSE RMSE |nRMSE
Date |Regtession Equation R’ (Kg/m?) |(%) Regression Equation R (Kg/m?) |(%)
8-Jul-16 | Y=0.0201*ExG+2.5581*PH 5y +0.767  |0.7159%% 10.8937  [12.18 Y=0.0041*ExG+0.8673*PH ¢y +0.2541 0.699%  [0.2665  |11.10
27-Jul-16 | Y=0.03394*ExGR+1.9568*PH (5y-2.9633 |0.7537¢ |0.8186  [11.15 Y=0.0079*ExGR+0.5951*PH ¢53,-0.5713 0.7642%  (0.2271  |10.80
9-Aug-16 |Y=-0.019*ExG+1.939*PH () +5.3213 0.5444% (1.0294 14.02 Y=-0.0052*ExG+0.4531*PH ), +1.7298 10.4581%* 10.3105 14.76

Note:

* Model significance at 0.05 probability level (p<<0.05).
** Model significance at 0.01 probability level (p<<0.01).
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Based on the result of multiple linear regression models shown in Table 8, only ExG vegetation index
together with PHcsw was significant at p<0.01 to estimate biomass during the stem elongation (8-July) and
flowering stage (9-August), and a regression model was established using these two independent variables.
During inflorescence emergence and heading (27-July), only ExGR and PHesm were found to be significant
at p<0.05 for fresh and dry biomass estimation.
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Figure 19: Cross-validation scatter plots for observed fresh and dry biomass versus predicted biomass from the
combination of CSM plant height and vegetation indices of dates; 08-Jul-16 (a&b); 27-Jul-16 (c&d); and 09-Aug-16
(e&f.
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The general concept of the biomass regression models described in Table 8 was to calculate the fresh and
dry biomass and which was validated by comparing the actual and the predicted biomass plotted in Figure
19 by their respective coefficient of determination (R?). The performance of the regression model (ExGR
+ PHcsw) at inflorescence emergence, heading stage (27-July) was relatively high with, R* of 0.75 and 0.76,
and RMSE of 0.82 kg/m? and 0.23 kg/m? for fresh and dry biomass respectively (Fig.19c&d) at p<0.05.
During stem elongation (08-July) the model, with ExG and PHcsy variables, had also good performance in
predicting biomass with higher R* of 0.72 for fresh biomass and 0.70 for dry biomass (Fig. 19a&b) at p<<0.01.
The predicting ability lowered after growth stage 0, flowering stage (09-Aug) with a little bit lower R? and
higher RMSE and nRMSE as compared to the previous stages with, R* = 0.54 and nRMSE = 14.02% for
fresh biomass; R* = 0.46 and nRMSE = 14.76% for dry biomass (Fig.19e&f) at p<0.01.

The multiple regression analysis were carried out to investigate the dependence of the fresh and dry biomass
from the combination of plant height and vegetation indices. In general, a moderate correlation was obtained
for each individual variable to fresh/dry biomass, but the correlation increases when combined variables
(PHcsm and Vs together) were used to estimate yield, that means higher R? and lower RMSE were obtained
from multiple linear regression models. The combination of plant height derived from Crop Surface Models
and vegetation indices allows advanced estimation for fresh and dry biomass (Geipel et al., 2014). The R?,
RMSE and nRMSE values were used to evaluate the strength of the models in estimating the biomass. And
in addition to this, the actual biomass and predicted biomass (fresh/dry) were plotted on a scatter plot to
evaluate the predicting ability of the regression models.

Generally, good performance was found for multiple linear regression model combinations PHcsn + ExG
(on 08-July), PHesy + ExGR (on 27-July) and PHCSM + ExG (on 09-August). All correlation had better
fit with R? above (0.54 and 0.46) and nRMSE below (14.02% and 14.75%) for (fresh and dry) biomass
estimation respectively. So multiple linear regression models with combinations of plant heights and
vegetation indices give better yield estimation with higher R? and lower RMSE and nRMSE values.
Comparably, Juliane Bendig et al., (2015) also described in their study that the combined plant height derived
from Crop Surface models (PHcsm) and selected vegetation indices fitted in multiple linear regression
models performed better than vegetation indices alone with R? ranging from 0.78 to 0.82.

44. Maize Yield at Harvest

The final pixel based maize biomass was calculated using the equation with combined ExG vegetation index
and crop height (derived from CSM) at stem elongation growth stage (08-Jul-16). As shown in table 8 using
this regression model the computed RMSE of the actual and predicted biomass was 0.90 kg/m? for fresh
biomass and 0.27 kg/m? for dry biomass at p<0.01. The equation that best describe the biomass estimation
of maize using VI and crop height relationship was “Y =0.0207*ExG + 2.5581*PHcsu + 0.167” for fresh
biomass and “Y =0.0041*ExG + 0.8673*PHcsu + 0.2541” for dry biomass. The criteria used to select the
optimal model was the model with higher R* and lower RMSE which was significant at 0.01 probability
level.

As shown in the yield map of Figure 20 there is high spatial variability within the field due to variation in
crop height, and highest biomass was represented by green color which corresponds to highest crop height.
The red and yellow colors also represent for lower biomass. The reason for such variation in biomass within
the field was the low growing areas (low plant height) that could be due to water stresses and other
environmental factors during the growth period (section 4.2).
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YIELD MAP AT HARVEST TIME
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Figure 20: Pixel based yield map resulted from modeling of Excess Green (ExG) vegetation index and plant height
derived from Crop Surface Model (PHcsm) of UAV image acquired during Stem elongation of maize.

The descriptive statistics resulted from the selected model at o = 0.05 is desctibed in Table 9, the actual and
predicted fresh and dry biomass had almost the same mean approving the models good performance. But
the standard deviation of actual and predicted biomass are slightly different with least variation in predicted
yield as compared to the variation of actual yield in both Fresh and dry biomass.

Table 9: Descriptive statistics of the actual and predicted biomass (fresh and dry) of maize at harvest (IKg/m?)

Fresh Biomass Predicted Y. Dry Biomass Predicted Y.

Mean 6.936 6.944 2.018 2.023
Std. Deviation 1.704 1.443 0.494 0.413
Variance 2.905 2.083 0.244 0.171
Minimum 2.24 2.268 0.587 0.770
Maximum 9.58 8.862 2.988 2.676

95% Confidence Level of the mean

The mean and standard deviation of dry biomass for this study were found to be 2.02 kg/m? and 0.41 kg/m?
respectively, with RMSE of 0.27 kg/m? Comparably, Li et al., (2016) estimated above ground biomass of
maize with an average of 1.75 kg/m? and standard deviation of 0.86 kg/m?.
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5. CONCLUSION AND RECOMMENDATION

Based on the results and discussion presented in chapter four of the present study, this section also presents
the following parts:

» Conclusions with summary answer to each research question and

» Recommendations for further studies.

5.1. Conclusions

This study demonstrates the potential of very high-resolution multi-temporal UAV images for monitoring
crop growth development during the whole growing season for efficient planning and decision making. The
primary objective of this thesis is to evaluate UAV-based RGB imaging and its products, like the vegetation
indices and plant height derived from crop surface models (PHcsy) for modelling fresh and dry biomass of
maize and mapping fractional vegetation cover (FVC) at different growing stages.

Six vegetation indices were tested in mapping Fractional Vegetation Cover (FVC), out of which only two
vegetation indices (ExG and COM) were found to be significant in calculating percentage vegetation cover
during the first four UVA flights ( from germination to inflorescence emergence and heading stage).

Furthermore, these vegetation indices were also evaluated at 95% confidence level for their use to estimate
fresh/dry biomass at harvest and crop height at a respective growth stage. Optimal vegetation indices were
selected by their strength of correlation with the biomass at harvest time and significant relationship was
found with ExG at the stem elongation stage with higher R* and lower RMSE. Next to ExG, the ExGR
with the positive relationship and CIVE with negative correlation at inflorescence emergence and heading
stage had a reasonable relationship with biomass.

The CSMs was assessed as the predictor for the crop height and biomass at harvest time. It was found that
CSMs can accurately estimate crop height with an accuracy between 68% and 85% and can be improved by
taking sufficient and well-distributed GCP point on the study site. In addition, crop height derived from
UAV-based Crop Surface Models (CSMs) at the different growing stage were evaluated for assessing the
biomass at harvest. And the result assured there is a strong correlation between plant height and biomass
with higher R? especially during mid of vegetative development. And the predicting ability of crop height is
found to be better as compared to vegetation indices.

Answers to the research questions

Q1: Which vegetation index/ indices is/ are best for fractional vegetation cover mapping in relation to time/ growth stage of
the crops?

e Based on this study, Fractional Vegetation Cover (FVC) can be mapped from germination stage,
07-June (around 0% vegetation cover) to inflorescence emergence and heading stage, 27-July
(around 100% vegetation cover) (fig. 4). After July-27, that is from flowering/anthesis stage the
ground is totally covered by vegetation. Out of the six vegetation indices tested for mapping FVC,
ExG and COM vegetation indices were best in mapping FVC by differentiating the vegetation from
its background with higher classification accuracy.
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Q2: What is the accuracy of crop surface models to caleulate plant height?

e To validate the accuracy of plant height estimated from Crop Surface Models (CSMs), this study
uses two datasets of different growing stages, that is crop heights measured manually during (13-
to-17-Aug) and (15-to-23-Sep) which corresponds with UAV flight of (18-Aug) and (20-Sep)
respectively. And found an accuracy of 68% during the first dataset and 85% accuracy during the
last campaign. The reason for low accuracy for August 18 is that in some plots the plant heights
obtained from CSMs were higher than the expected height. This can be improved by generating
accurately georeferenced DSM/CSM by using enough and well-distributed GCP points.

Q3: Which V egetation Index is best to estimate maize yield and how is it related to the crop height and yield during the

growing season?

e Based on the results presented in this thesis some of the visible band vegetation indices have a
potential in estimating end biomass of maize. As described in chapter 4 the vegetation indices are
only significant between 08-July to 09-August (from stem elongation to flowering stage) in
estimating biomass and plant height. The ExG vegetation index has better performance at stem
clongation stage (08-July) (fig. 4). CIVE and ExGR (at inflorescence emergence and heading stage,
27-July) have also reasonable estimation accuracy next to ExG.

Q4: What are the relationships of biomass versus crop height derived from CSMs and biomass versus 1 egetation indices?

e A linear regression model with vegetation indices, an exponential relationship with plant height
(PHcswm) and stepwise linear regression model using both parameters, Plant height, and vegetation
indices was fitted to estimate fresh and dry biomass. The detailed relationships are shown in tables
5 & 8. Multiple linear regression models with a combined plant height and vegetation indices show
better biomass estimation performance than models with vegetation indices alone. And except for
three flights (09-Aug, 18-Aug, and 08-Sep), due to inaccurate CSMs, the exponential relationship
of plant height performs better for biomass estimation with higher R? >0.71. And the plant height
obtained on 08-July is short enough to estimate end biomass but still, it is significant for estimation
(R#=0.60).

Q5: Which growth stage or best time to record the crop using UAVs for accurate yield estimation?

e For efficient management and monitoring of crops during the growing season, it is important to
know the best time or growth stage to survey the crops for optimal yield estimation. This is one of
the objectives to be assessed by this study, accordingly based on the products obtained from high-
resolution multi-temporal UAV images, like CSM plant height and vegetation indices best yield
estimations were observed during stem elongation (08-July) and Inflorescence emergence, heading
(27-July) stage of figure 4. During this growing stages, fresh and dry biomass can be estimated from
both PHcsy and vegetation indices with an error of only (1.2 kg/m? - 1.6 kg/m? for fresh and 0.35
kg/m? - 0.38 kg/m? for dry). Therefore, the best time to record maize field using UAVs for accurate
yield estimation is after one month from germination that is stages 3-5 (fig. 4), July in this case.
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5.2.

Recommendations

The present study investigated and reached a conclusion on estimating fresh and dry biomass using RGB-
based vegetation index (ExG) and CSM derived crop height acquired by the UAVs. But in terms of

agricultural crop monitoring during the whole growing season, it has some limitations and needs some

improvement for improved crop yield/biomass assessment. To improve the assessment of yield using very

high-resolution UAV images the following recommendations are suggested for further studies:

>

Accurately georeferenced Digitals Surface Model (DSM), CSM in this case, should be generated for
accurate plant height measurement. This can be achieved by putting well, sufficiently distributed
and visible Ground Control Points (GCPs) over the entire field. Or some improvements should be
made on the UAV-based image collection by mounting on-board GPS with high accuracy which
enables direct geo-referencing of the images, this omits GCP measurement and speeds up data

collection and processing.

This study focusses on multi-temporal analysis which enables accurate monitoring of plant height
and plant growth development, but in further studies, hyperspectral analysis should be included to
derive physiological plant parameters like Leaf Area Index (LAI), chlorophyll and nitrogen content
of the plants which are very important information for monitoring crop growth and studying crop
stresses. This can be done using new technologies like hyperspectral camera systems which can
provide the above mentioned hyperspectral and 3D spatial information which is powerful for
monitoring agricultural crops and biomass estimation.

In addition to the RGB sensor, in further studies, it is advisable to use NIR camera for UAV by
combining high spectral and spatial resolution which are a promising development in further
researches and enable a new and advanced crop monitoring possibilities. Because NIR can provide
a clear picture of crop health and moisture variations and also have greater opportunity for visual
interpretation and digital analysis.

This study does not consider factors that could affect the end yield, like soil type, fertilizer/chemical
treatments, temperature, and rainfall. In further Studies, those factors should be considered in the

analysis for accurate yield/ biomass estimation.

The small area coverage is the main limitation of studies from UAV imagery, so integration of UAV
imagery with satellite imageries like Sentinel_2 & 3 (with low spatial resolution as compared to UAV
imagery but freely available) or WorldView_1 & 2 (very high resolution but not freely available) can
provide promising result with large spatial coverage.

Different results of vegetation indices might occur because of the lighting condition (sometimes
full of sun and sometimes cloudy) during the flight periods which was not studied in this research.
So the vegetation indices of different flights were difficult to compare, and more work should be
done to calibrate the biomass estimation from these vegetation indices.
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Appendix— 1B
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Appendix - 2

Quality Report

i,

Generaied WIth Pro verson 2.2 25
Important: Click on the different icons for:
@ Help to analyze the results in the Quality Report
o Additional information about the sections
() Gick hea for additional is to analyze the Quality Report
Summary (i ]
Project flight_4
Processed 2016-11-01 23:1920
Camera Model Name(s) FC330_3.6_4000:3000 (RGB)
Average Ground Sampling Distance (GSD) 212an/083in
Area Covered 0.143 km? / 14.2974 ha / 0.0552 5Q.mi./ 35.3479 aces
Quality Check i ]
@ images median of 9958 keypoints per image VAN
® Dataset 505 outof 515 images calibrated (98%), all images enabled °
@&m«am 0.41% relative difference between initial and opbmized intemal camera parameters °
@ Matching median of 3513.83 malches per calibrated image (]
@ Georeferencing yes, 3 GCPs (330), mean RMS error =0m (.
@Provlow 0

Figure 1: O and the sparse Digital Surface Model (DSM) before densification.
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Calibration Details [ ]

Mumber of Calibrated Images 505 outof 515
Murmber of Geolocaled Images 515 eutof 515
@ Initial Image Positions i ]
Figure 2: Top wiew of the Initial image position The green line follows the position of the images in time starting from the large blue dot.
o

)] Computed Image/GCPs/Manual Tie Peints Positions
e oo oo S & T QU000
C OIS €T €& orn o
O GO O vue -“Iﬁ‘ T IO oo o

bl LT PRI | A ——— P
CEEE 05 ofe © oon 6s e goen 6 ;‘\%ﬁ-ﬂmu-:;:-.,eg

Uncertainty ellipses Sxmagnified

Figure 3: Offset between Inltial (blue dots) and computed (grean dots) image positions as well as the offsst between the GCPs initial positions (biue crosses) and
helr compuited positions jgreen crosses) in the topawiaw XY plane), frontyiew (XZ plane), and side- lew [YZ plane). Red dots indicate digabled or uncalibrated
images. Dark green ellipses indicais the absslute posifion uncertsinty of the bundie block ad]ustment result

® Absolute camera position and orientation uncertainties ﬂ
X[m] ¥ [m] Z[m] Omega [degree] Phi [degree] Kappa [degres]
Mearn a2 0.811 1823 1426 0.553 0294
Sigma 0.190 0.190 0387 0.006 0.158 0.096
i ]

® Overlap

. |
Mumber of cverdapping images: 1 2 3 4 &+

Figune 4: Murnber of overlapping Images computed for each plxel of the arthomosalc.
Red and yellow areas indicate low overlap for which poor results may be generated. Green areas indicate an overlap of over 5 images for every plxel. Good
quality results will be generated as long s the numiber of keypoint matches I8 also suMiclent for these sreas (see Figure 5 for keypoint matches).
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Bundle Block Adjustment Details °

Murriber of 20 Keypoint Obsenations for Bundle Block Adjustrment 1662952
MNurnber of 3D Points for Bundle Block Adjustment 587233
Mean Raprojection Emor [pixels] 0.148

@ Internal Camera Parameters

2 FC330_3.6_4000x3000 (RGB). Sensor Dimensions: 6.317 [mm] x 4.738 [mm] B

[EXIF I0: FCI30_3.6_4000:3000

Initial Valuas

Optimized Values

Uncartainties (Sigma)

-

T = [ e [ [m [ [
e e | e tavel | o001 | 0002 0000 | 0001 | 0001
ﬁf};ﬁ’mlf’“] mmlfﬂ ;ﬁﬁ'ﬁ_ﬂ[?ﬂl 0005 | 0002 | 0001 | 0000 | D000
;:g Il:ﬁ]l ;ﬁﬁ m‘ gﬁ; ml oo | 0001 | 0001 | D001 | 0001

Thi numbser of Automatic Tie Points (ATPs) per pixel averagaed over all images of the camera model
is color coded between black and whila. While indicates that, in average, more than 16 ATPs am
erdracted at this pisal location. Black indicates that, in average, 0 ATP has bean edracted at this pisel
location. Click an the image to the see the average direction and magnitude of the reprojection emor
for each pixel. Mole that the veclors are scaled for befler isualization.

@ 2D Keypoints Table (i ]
Murmber of 2D Keypoints per image Murmber of Matched 20 Keypoints per Image
Mesdian 9958 514
Min 5561 149
M 13418 6633
Mean 9938 3203
@ 3D Points from 2D Keypoint Matches i ]
Number of 30 Points Cbsenved
In 2 Images 360985
In 3 Images 105587
In 4 Images 42648
In & Images 20666
In & Images 11266
In 7 Images 6784
In & Images 4412
In 9 Images 3200
In 10 Images 2325
In 11 Images 1801
In 12 Images 1312
In 13 Images 834
In 14 Images 860
In 15 Images 665
In 16 Images 564
In 17 Images 469
In 18 Images 388
In 1% Images 355
In 20 Images 318
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1n21 Images 258
In 22 Images 245
1023 Images 266
In 24 Images 198
In 25 Images 152
In 26 Images 160
In27 Images 137
In 28 Images 102
1n 28 Images 8
1n 30 Images 46
In 31 Images 20
1032 Images 6
1033 Images 3
In 34 Images 2
135 Images 3
OF] Keypoint Matches o
LS D S B
BTUIIINI  L  y ;
__.ﬂ :- L= =] OIS oeen R T ':
-——rm pE [ = TR —. g--q ) e s g o M =
E=" 1% S mAE RN R g T ] ..-...i’l-........‘.‘ :
--._..'. Y, '.'I." LY VaYas :
ST T, T :

B i T T S R O 8 T S | g g, T g g e R i

Uncertaintyallipses 10x magnified

25 222 444 666 B8B 1111 1333 1555 1777 2000

Nurmber of malches

Figure 5: Compued inmge positions with links between matched images. The darkness of the links indicates the number of matched 2D keypoints between the
Images. Bright links indicats weak links and require manual fie points or more images. Dark gresn ellipses indicate the relative camera position uncertainty of the

bundle block adjustment result

@‘ Relative camera position and erientation unce rtainties o
X[m] ¥ [m] Z[m] Omega [degree] Phi [degrea] Kappa [degrea]

Maan 0.156 0.137 0104 0.120 0.131 0077

Sigma 0075 0.054 0.050 0.048 0.078 0.036
Geolocation Details 0
@ Ground Control Points ﬂ'

GCP Nama Apcuracy XYIZ [m] Emor X[m] Ermor Y [m] Error Z [m] Projection Emor [pixel] erifisd Marked

GPS0006 (30D) 0.020/ 0,020 0.000 0.000 0,000 0238 29/29

GPS0004 (30D) 0.020/ 0,020 0.000 0.001 0,000 0816 L]

GPS0002 (3D) 0.020/ 0,020 -0.000 -0.001 0,000 0.324 33/33

Maan [m] 0.000003 0.000047 -0.000014

Sigma [m] 0.000338 0.001102 0.000064

IRMS Error [m] 0.000339 0.001103 0.000065

1 out of 4 check points hav e been labeled as inaccurate.
Check Point Name Aocuracy XYIZ fm)] Emor X[m] Ermar ¥ [m] Error Z [m) Projection Eror [pixel] VerifiedMarked
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GPS0007 0.0200/0.0200 -0.0164 0.2322 -0.1981 02473 21121

GPS0005 0.0200/0.0200 00037 02145 0.2464 05831 12112
GPS0003 0.0200/0.0200 00469 00054 0.0209 03798 24124
Mean [m] 0022326 0004103 | 0.023034
Sigma [m] 0018107 0182507 | 0181465
RMS Error [m] 0028745 0162553 | 0182021

Losalisafion accuracy per GCP and mean ermars |n the three coordinate directions. The last column counts the number of callbrated Images where the GCP has
been autsmatically verified vs. manually marked.

@ Absolute Geolocation Variance ﬂ
Min Emor [m)] Max Error [m)] Geolocation Ermor X [%) Gaolocation Emror Y [3%] Geolocation Emror Z [3%)]
- -15.00 0.00 0.00 000
-15.00 -12.00 0.00 0.00 0.00
-12.00 -8.00 0.00 0.00 0.00
2.00 6.00 0.00 0.00 000
£.00 -3.00 218 0.00 020
-3.00 0.00 4713 5762 47.72
0.00 300 50.10 4198 5168
300 6.00 0.58 040 040
6.00 9.00 0.00 0.00 0.00
9,00 12.00 0.00 0.00 000
1200 15.00 0.00 0.00 0.00
15.00 - 0.00 0.00 0.00
Mean [m] -3 626820 1487506 -12.418860
Sigma [m] 1425458 0574633 1138618
RMS Error [m] 3 BOGRS4 1504662 12470048

Min Error and Max Error represent geclocation error inlervalsbetwean -1.5 and 1.5 fimes the maximum accuracy of all the images. Columns X, Y, Z show the
percentags of images with geslocation arrars within the predefined error Intsrvals. The gealocation errar |5 the differance batwesn the Intial and camputed Imags
posiSons. Note that the image geslotation errars do ot correspand to the accuracy of the chserved 30 poirts.

Gaolocation Bias X ¥ 7
Translation fm) -3626520 1487506 -12.418860

Blas batween image Inifial and computed geclesation given In ouput cocrdinate system.

@ Relative Geolocation Variance B
Relative Geclocation Error Images X[%] Irmages ¥ [3] Images Z[%]
[-1.00, 1.00] 100.00 100.00 100.00
2100, 2.00] 10000 100.00 100.00
[F3.00, 3.00] 100.00 100.00 100,00
Mean of Geolocation Accuracy [m] 5000000 5.000000 10.000000
Sigma of Gedlocation Accuracy [m] 0.000000 0.000000 0.000000

Images X, ¥, Z represent the percentage of images with a relafive geclocation emorin X, ¥, Z

Gaolocation Orientational Varance RMS [dogree]
Omega 0544
Phi 2585
Kappa 1114

Geclocation RMS error of the orientaon angles given by the difference between the Initial and computed image orlentafion anghes.
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System Information

Hardwarna

Operaling Syslem

Coordinate Systems

Image Coordinate Systam

Ground Cantrol Paint (GCF) Coordinate Systam

Output Conrdinate System

Processing Options

Delected Template

Keypaints Image Scale
Advanced: Matching image Pairs
Advanced: Matching Strateqy
Advanoed: Keypoint Extraction

Advanced: Calibration

Point Cloud Densification details _

Processing Options

Image Scale
Paint Density
Minimum Mumber of Matches
3D Tendured Mesh Genaration

3D Tedursd Mesh Settings:

Initial Processing Details

CPU: Intel(R) Xeon(R) CPU E3-1270 43 @ 3.50GHz
RANt 326G

GPU: RDPUDD Chained DD (Driver: unknawn)
Windows Server 2012 R2 Datacenter, B4-bil

WGSE4 (agmB6)
WGSE4 / UTMzone 32N (egmB6)
WGSE4 / UTMzone 32N (egmB6)

Mo Template Aailable

Cusiom, Image Scale: 0.5

Perial Grid or Cormidor

Use Geometrically Verifiad Malkching: yes
Targeted Number of Keypoints: Automatic
Calibration Method: Standard

Internal Parameters Optimization: Al
Exemal Parametars Oplimization: Al
Rematch: Aulo, no

mulliscale, 1/2 (Hall image sizs, Defaull)
Optimal
k]

yos

Resolution: Medium Resolution (default)
Color Balanding: no

Advanced: 30 Testured Mesh Setings mﬁﬁﬁﬂﬁ@mwma
Advanced: Matching Window Size T pirels

Advanoed: Image Groups groupd

Advanced: Use Processing Area yas

Advanced: Use Annolations yas

Advanoed: Limit Camera Depth Automatically no

Advanced: Point Cloud Classification {Bata)

Tirme for Point Cloud Densification
Tirme for Point Cloud Classification
Tirme for 30 Texured Mesh Generation

Results
Mumbar of Ganerated Tiles

Number of 3D Densified Points
Muerage Densily (per m¥)

mmuh Object Length m]: 0.1
Maximium Object Length [m]: 400
Minirrurm Obsject Height [m]: 0.1

04h:10m:28s
01h01m:59s
38m:15s

44615872




DSM, Orthomosaic and Index Details

Processing Options

DEMand Orthomiosaic Resolution
DEMFilters

Raster DSM

COrthomosaic

Grid DSM
Tirme for DSM Generation
Tirme for Othomosaic Generation

1% GSD (2.13 [emipibel])

Noise Fllerng: yes

Surface Smoathing: ves, Type: Sharp
Ganerated: yos

Mathod: Inverse Distance Weighting
Merge Tiles: yes

Ganerated: yos

Mearga Tiles: yos
GaaTIFF Without Transparency: no
Google Maps Tiles and KM_: yes

Ganerated: yes, Spacing fam]: 100
59mE1s
Odh:11mc1Ts
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