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ABSTRACT 

Forest carbon estimation currently relies on remote sensing technics, in combination with field 

measurement. High-resolution active sensors are commonly utilized for carbon estimation, but their cost 

prohibits communities from reaping the benefits of maintaining their forest under the UN REDD+ 

programme. Images from these platforms are not readily available, and their use still suffers from species 

identification problems. Multispectral Pleiades is cheaper but lacks sufficient spatial resolution for scene 

description. UAV-RGB platforms are inexpensive and flexible but their low spectral resolution camera limits 

species identification. This study explored the combination of UAV-RGB and multispectral Pleiades images 

for species classification and carbon estimation through Object Based Image Analysis. As a starting point, 

the present study assessed the effect of flight pattern and flight height of the DJ Phantom 4 for optimal 

image calibration. Then, the study investigated the effect of filtering on segmentation accuracy of UAV-

RGB images, and evaluated the effect of combining multispectral pleiades with UAV-RGB on the 

segmentation accuracy for Crown Projection Area estimation. In addition, the study compared the 

performance of Multi-Resolution and Simple Linear Iterative Clustering segmentation algorithms. Further 

more, the effect of combining  multispectral pleiades with UAV-RGB on the classification accuracy was 

measued, and the performance of Support Vector Machines, Random Trees and Maximum Likelihood 

classifiers in ArcMap was assessed. Finally, CPA-DBH relationships for main tree species were evaluated 

and used to model DBH, and carbon. The results show that flight pattern of Phantom 4 with RGB camera  

over forest stands has an effect on the quality of point cloud and orthophoto, with parallele flight plan 

having more chances to produce better quality point cloud and orthophoto. Also, the flight height above 

tree canopy has a strong influence on the number of calibrated images. The study demonstrates that the 

addition of multispectral pleiades image significantly increased the accuracies of segmentating and classifying 

UAV-RGB images (p < 0.05).  Also, the classifications of SVM and RT classifiers is significantly better (p 

< 0.05) than that of the ML classifier. The modelled DBH and AGB for Scots pine and Birch were not 

significantly different from the field derived DBH and AGB. UAV-RGB and UAV-Pleiades images, 

combined in the procedure described in this work have potentiall to isolate tree species, model DBH and 

fores AGB. 

 

Keywords: UAV-RGB, multispectral Pleiades, OBIA, tree-species identification, Carbon estimation. 
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1. INTRODUCTION 

1.1. Background 

Forests play a significant role in the fight against the impacts of climate change. Four billion hectares 

of forest worldwide (equivalent to 31% of the total land area), contribute to the ecology, social, and 

economic proponents of life (FAO, 2010). Forests and forest soils store more than one trillion tons 

of carbon, twice the amount free in the atmosphere (Bonan, 2008). Forests share 80% of total 

exchange of carbon between the atmosphere and the terrestrial ecosystem (Koju, Zhang, & Gilani, 

2017). A healthy and growing forest stand sequesters carbon and reduces the concentration of CO2 

in the atmosphere. On the other hand, a degraded, cleared or burned forest increases the amount of 

heat-confining carbon dioxide (CO2) into the atmosphere, enhancing climate change and its effects. 

The conversion of forest to other land use types is responsible for ten percent of net global carbon 

emissions(IPCC, 2013). Thus, monitoring forest aboveground carbon is vital for assessing the 

effectiveness of policies geared towards halting or reversing deforestation. 

 

Forest aboveground carbon is about 50% of the Above Ground Biomass (AGB)  (Assefa, Mengistu, 

Getu, & Zewdie, 2013). AGB is the mass of all the organic matter in plant tissues above the soil 

including stem, branches, foliage,  bark and seeds (Gibbs & Herold, 2007). There is a growing need 

for consistent forest biomass monitoring, in the context of sustainable livelihood, ecosystem services 

and Reducing Emissions from Deforestation and forest Degradation (REDD+). Under the REDD 

program, member nations must estimate their baseline carbon stocks, monitor, record and verify any 

changes due to the implementation of their emission reduction programs to benefit financially 

(Patenaude, Milne, & Dawson, 2005; Ward, 2013).   

 

Forest emissions reduction and greenhouse gas inventories programs need rigorous scientific 

methods to quantify carbon stocks across different landscapes over time (Gonzalez et al., 2010).  

Approaches to biomass and carbon estimation include field measurements, GIS-based assessments 

and remote sensing (Dengsheng Lu, 2006). GIS-based methods extrapolate existing forest inventory 

volume data to biomass using wood density. Remote sensing based methods use the statistical 

relationship between satellite extracted tree parameters and ground-based measurements for biomass 

estimation (Gibbs & Herold, 2007). 

 

Forest tree parameters such as Crown Projection Area (CPA), Diameter at Breast Height (DBH) and 

tree Height (H) are estimated by recent and accurate remote sensing methods(White et al., 2016; M 

a Wulder, 1998; Z. Zhang, Cao, & She, 2017),  and used together with species-specific allometric 

equations to assess carbon stocks. Remote sensing methods rely on the reflectance of the tree 

crowns, and this is the portion recognised from the image. The relationship between CPA and DBH 

for tree species is essential for estimating aboveground carbon. The relationship is built using the 

CPA extracted from the remotely sensed image. Once the CPA is known, DBH and related biomass 

can be calculated  (Obeyed, 2014; Onilude, Akinyemi, Julius A.J, Ogunremi, & Ogunremi, 2015; Shah 

& Acharya, 2010; Sharma, Vacek, & Vacek, 2016). However, the relation between DBH and biomass 

is species specific, depends on wood density, thus, there is a growing need for carbon assessment 

methods to capture tree species-specific information (Schwenk, Donovan, Keeton, & Nunery, 

2012).Spatial heterogeneity in species composition and stand structure of forest play a sensitive role 

in accurate carbon estimation (Hu, Su, Li, Li, & Ke, 2015). Thus, to sustainably manage the forest, it 
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is crucial to increase the precision of carbon stock measurements with species-specific allometric 

equations to capture biodiversity and ecosystem services.  

 

Multispectral imagery, like Geo-Eye, Worldview, IKONOS, Birdseye and Quick Bird have been used 

to extract forest inventory parameters for individual tree species and vegetation classification (M. A. 

Wulder, White, Niemann, & Nelson, 2004), and carbon estimation ( Karna et al., 2015; Fassnacht et 

al., 2016).  The availability of these high-resolution images brought a shift from the traditional Pixel 

Based (PB) to Object-Based Image Analysis (OBIA), which is considered ideal for tree crown 

delineation and species isolation (Ke, Quackenbush, & Im, 2010; Zhang & Qiu, 2012). The 

fundamental processes in OBIA are segmentation and classification, mostly performed in the 

eCognition environment. Accurate segmentation of individual tree crowns (as CPA) supports 

improved species identification, better estimates of aboveground carbon and sustainable forest 

management (Pouliot, King, Bell, & Pitt, 2002). 

 

The eCognition software package is robust with promising performance and is host to different 

segmentation and classification algorithms. Multiresolution, region growing and multiresolution 

region growing are common segmentation algorithms in eCognition. Classification algorithms in 

eCognition include Maximum likelihood (ML), K-Nearest Neighbour (K-NN), Support Vector 

Machine (SVM) and Random Trees (RT) algorithms. However, other segmentation and classification 

algorithms are implemented in ESRI’s ArcMap and different environments with little or no 

additional cost. It is common practice to use ArcMap, eCognition and other commercial software 

for segmentation and classification because of their robustness. However, a reduction in the number 

of commercial software to estimate AGB could be cost relieving for communities and organisations 

involved. Therefore, the use of ArcMap (commercial) and open-source environments can be 

relatively cheaper compared to the use of ArcMap and eCognition (both commercial). For example, 

segmentation can be done in R-environment (open source), while classification can be done in 

ArcMap. Simple Linear Iterative Clustering (SLIC) is a segmentation algorithm implemented as a 

plugin in QGIS (Crommelinck et al., 2017), GRASS GIS (Kanavath & Metz, 2017).SLIC can also be 

executed in  R (Adelabu, Mutanga, Adam, & Cho, 2013), and Python. Maximum likelihood (ML), 

Nearest neighbour (NN), Random Trees (RT), Random Forest (RF) and Support Vector Machines 

(SVM) are supervised classification algorithms implemented in R, Python, and ArcMap 

environments.  

 

Unmanned Aerial Vehicles (UAVs) are platforms capable of carrying sensors for monitoring, and 

mapping of the environment and natural resources. According to Nex & Remondino (2014), UAVs 

come in varied flavours, and constitute an essential source of relatively cheaper remote sensing data 

for applications in many fields; including, but not limited to agriculture, forestry, mining, urban 

planning, and land management. UAVs can be of fixed wing or Rotary blade and can carry RGB, 

multispectral sensor or even Lidar depending on the weight of the UAV (Bailey, 2012).  

 

Species identification has been carried out using high-resolution optical UAV images (Näsi et al., 

2016; Nevalainen et al., 2017). The extraction of tree structural parameters (Birdal, Avdan, & Türk, 

2017; Ramón, Raúl, Lorenzo, & Pablo, 2015; Zarco-Tejada, Diaz-Varela, Angileri, & Loudjani, 2014) 

for carbon estimation has been performed using High-resolution imagery from optical UAV. The 

results from the mentioned studies have been promising. The processing of UAV images follows a 

photogrammetric workflow to generate 3D products (point cloud, digital surface model, and 

orthophoto) as main outputs. The quality of the point cloud and orthophoto depends on the quality, 

number and distribution of ground control points, focal length of the camera sensor, and flight 

parameters like flight height, forward and side overlap, and flight pattern (Nasrullah, 2016), and 

climatic conditions. 
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Accurate species discrimination requires high spectral resolution, while a precise description of 

texture and shape (in segmentation) needs high spatial resolution (Ghassemian, 2016). UAVs capture 

images with high spatial resolution, and when equipped with multispectral sensors, they provide high 

spectral resolution images required for segmentation and species identification. However, multi or 

hyperspectral sensors are more expensive than the UAV itself. For this reason, most UAVs use low-

cost RGB camera sensors, which produce images with high spatial but low spectral resolution from 

which species recognition is challenging.  

 

Image integration could be the way to enhance tree species identification with UAV-RGB images 

(Sahu & Parsai, 2012; Sheldon, Xiao, & Biradar, 2012; Ghassemian, 2016). Image integration is a 

process of exploiting the strengths of two or more images from same or different sensors to achieve 

better results. Integration here refers to the addition and final mixing of image properties, or the 

addition of image layers (no blending of properties) (Alkema, Bijker, Sharifa, Vekerdy, & Verhoef, 

2013). Image integration can extend to fusion, where relevant information from a set of images is 

combined and mixed into a single, more informative and complete image (Sahu & Parsai, 2012). 

Image fusion could involve merging a high spatial resolution panchromatic image and a rich 

multispectral image to obtain a spatially and spectrally enhanced image (Jagalingam & Hegde, 2015). 

On the other hand, image integration could be limited to the overlaying of multi-source or multi-

sensor images as separate layers in a procedure to enhance the quality of expected output (Alkema 

et al., 2013). The inability of a single imaging sensor to completely capture all the necessary 

information for detecting an object or classify a scene is the reason for the full exploitation of multi-

source data integration and advanced image analytical or numerical procedures (Ghassemian, 2016). 

High spatial resolution imagery produced by UAVs may address the challenge of species 

identification if spectrally enhanced by combining it with an image from a high-resolution 

multispectral sensor which has NIR or Red-edge band.  

1.2. Research problem  

UAVs are relatively cheaper and flexible, producing images with potentials for the estimation of tree 

structural parameters and tree species identification. The quality of images and resulting 3D products 

from UAV platforms depends on a host of factors; including, flight altitude, overlap (side and 

forward), camera sensor on board, camera focal length, shutter exposure speed, lens aperture and 

environmental factors like wind, sun, clouds and rain. However, the determination of optimal flight 

parameters necessary to produce good quality 3D products must precede the use of UAV images for 

segmentation and tree species classification. Studies reported that Canon ELPH 520 HS digital 

camera, when attached to a commercial multirotor UAV produces good quality 3D products at a 

flight height of 20m above trees, with side overlap of 80% (Dandois, Olano, & Ellis, 2015; Nasrullah, 

2016). DJ Phantom 4 is a new and relatively cheaper drone, with RGB inbuilt camera sensor, 

reinforced gimbal for greater flight stability, and refined motors for increased flight efficiency (DJ 

phantom four user manual). DJ phantom 4 images captured with inbuilt RGB camera sensor have 

been used to estimate tree crown projection area, tree height and subsequent carbon estimation 

(Hongoa, 2017; Mtui, 2017; Okojie, 2017). However, setting optimal flight height and pattern over 

forest stands is problematic (Erdbrügger, 2017), with sub-optimal parameters resulting in poor 

quality images and 3D products derived from the processing of corresponding images. There is a 

need to investigate optimal flight parameters systematically. 

 

The high-resolution RGB image produced by UAVs can be integrated with multispectral satellite 

images having the near-infrared band for species identification (Yilmaz & Gungor, 2016) or vice 

versa. Unlike IKONOS, Worldview, Quick Bird and Birdseye,  Pleiades constellations (50cm 
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resolution) provide high-resolution multispectral data in record time with a daily revisit capability at 

any point on the globe (ASTRIUM, 2012). The Panchromatic version of multispectral images are 

relatively cheap but cannot be used as standalone for tree crown delineation due to the effect of 

shadow in the visible spectrum (Srijana Baral, 2011; Haijian, Qiming, & Xinyi, 2008). Most studies 

involving image integration have done so through one of the many fusion methods, which end up 

with spectral and or spatial distortions (Pandit & Bhiwani, 2015; Sivagami et al., 2015; Ghassemian, 

2016). Few studies have integrated UAV and multispectral Pleiades images, especially as separate 

layers.  

 

The eCognition software package provides the opportunity for object-based image analysis (OBIA), 

which is required for the analysis of very high-resolution data. In OBIA,  two images are combined 

as separate layers for segmentation and classification, thus maintaining their spectral and spatial 

characteristics. Most of the OBIA is performed in the eCognition environment, a robust software 

package, with promising performance and a host to different segmentation and classification 

algorithms, but costly (Ke et al., 2010; C. Zhang & Qiu, 2012). Since ArcMap is often used in the 

post-processing of segmentation and classification results, and it is equally expensive, the entire 

process of image analysis for AGB estimation becomes unaffordable for most communities and 

organisations. Despite the availability of different segmentation and classification algorithms in 

eCognition, their performance has not been compared. However, other platforms are available such 

as R,  Python, QGIS, GRASS where segmentation and classification are possible. These algorithms 

have not been deeply exploited in literature, and their performance for species identification and 

carbon estimation has not been compared.  

 

This research aims to explore a low-cost method for high accuracy carbon estimation. The work 

combines UAV-RGB and multispectral Pleiades images in a procedure that could result in accurate 

segmentation,  species identification, and carbon estimation. It investigates optimal flight parameters 

for phantom 4 drone over forest stands, compares the accuracy of segmenting UAV-RGB and UAV-

Pleiades image configurations in eCognition and R, compares the accuracy of classifying the two 

image configurations, and finally estimates above ground carbon of dominant tree species.  

1.3. Research objective  

The primary objective of this research is to assess the added value of combining the UAV-RGB 

image with multispectral Pleiades image in object-based image analysis for accurate tree crown 

segmentation, tree species classification and carbon estimation in a temperate forest.  

The specific objectives  are to; 

1. Determine optimal flight pattern and height over forest stand using DJ phantom 4 with RGB 

camera. 

2. Compare the accuracies of segmenting UAV-RGB and UAV-Pleiades images using 

multiresolution, Simple Linear Iterative Clustering (SLIC), in eCognition, and R environments 

respectively.  

3. Compare the accuracies of tree species classification using Maximum Likelihood, Random Trees 

and support vector machine classifiers ArcMap  

4. Compare the estimated carbon dominant species from field derived DBH and predicted DBH 

using classified image with the highest accuracy. 

 

 



 

7 

1.4. Research questions 

1. Which flight pattern is optimal to generate a high-quality point cloud of forest stands using DJ 

Phantom 4 with RGB camera?, and which flight height yields optimal image calibration? 

2. Which image configuration: produces better segmentation (UAV-RGB or UAV-RGB combined 

with the Pleiades?, and which algorithm: Multi-resolution or SLIC segments with the highest 

accuracy?  

3. What is the difference in classification accuracy of UAV-RGB and UAV-Pleiades images, and 

which algorithm: Maximum Likelihood, Random Trees and Support Vector Machine classifiers 

with the highest accuracy? 

4. What is the difference in aboveground carbon of dominant tree species estimated from field DBH 

and predicted DBH using the best-classified image? 

1.5. Research hypothesis 

The assessment of question will be qualitative, thus the hypothesis presented below are for research 

questions 2, 3 and 4. T 

 

RQ 2a. 

HO: There is no significant difference in the accuracies of segmenting UAV-RGB and UAV-Pleiades 

images using Multi-resolution and SLIC algorithms in eCognition and R environments 

respectively.   

HA: There is a significant difference in the accuracy of segmenting UAV-RGB and UAV-RGB 

combined with Pleiades images using Multi-resolution and SLIC algorithms in eCognition and 

R environments respectively. 

RQ 2b. 

HO: There is no significant difference in the accuracies of Multi-resolution(eCognition) and SLIC( 

R) segmentation of UAV-RGB and UAV-Pleiades images.   

HA: There is a significant difference in the accuracies of Multi-resolution(eCognition) and SLIC( R) 

segmentation of UAV-RGB and UAV-Pleiades images.   

RQ 3a. 

HO: There is no significant difference in tree species classification accuracies using segmented   UAV-

RGB and UAV-Pleiades image configurations. 

HA: There is a significant difference in tree species classification accuracies using segmented   UAV-

RGB and UAV-Pleiades image configurations. 

RQ 3b. 

HO: There is no significant difference in the accuracies of tree species classification done by 

Maximum Likelihood, Random Trees and Support Vector Machines classifiers using segmented   

UAV-RGB and UAV-Pleiades image configurations. 

HA: There is a significant difference in the accuracies of tree species classification done by Maximum 

Likelihood, Random Trees and Support Vector Machines classifiers using segmented   UAV-

RGB and UAV-Pleiades image configurations. 

RQ 4. 

HO: There is no significant difference in the above ground carbon of the dominant tree species 

estimated from field DBH and predicted DBH. 

HA: There is no significant difference in the above ground carbon of the dominant tree species 

estimated from field DBH and predicted DBH. 
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2. MATERIALS AND METHODS 

2.1.Description of study area 

This study made use of forest blocks in nature reserves in Amstveen and Neede village. Both 

Amtsvenn and Neede areas are rural with landscape composed of forest patches and agricultural 

fields. Amtsvenn is close to the city of Gronau in Germany, at the boundary of the Netherlands and 

Germany, situated at longitude 32558395m E and 5782262m N of UTM 32 N, ETRS89. As can be 

seen in figure 2-1 below, the Amtsvenn area is host to eight forest blocks, five of which were 

considered for this study. As can be seen in figure 1 below, the blocks with red polygons are those 

recruited for this study. The Amtsvenn area was chosen for this study because related work had been 

started the previous year. Establishing contacts and permit was expected to be much easier.  

 
Figure 2-1: Map, showing forest blocks and selected blocks in Amtsvenn, Germany. 

The area is divided into blocks with different stand density, structure and composition. Block 1 is an 

open forest mainly dominated by Scots pine. The tree crowns occupy same canopy level, with spaces 

between the crowns. Blocks 2 3,4,5 and 6 are dense mixed forest stands, with tree crowns of different 

sizes, and at different canopy levels. Each of these blocks consists of more than two tree species.  

 

Figure 2-2 below shows the forest block in Neede village. Neede village is located in Berkelland 

municipality, within the Gelderland province of Netherlands. The community is host to the State-

owned forest reserve. The red polygon shows the boundary of the forest block used in this study to 

augment the need to investigate the effect of flight height on image calibration. 
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Figure 2-2: State-owned forest block in Neede village, Netherlands. 

2.1.1. Climate 

Both locations of the study areas experience similar climate conditions, along with the Dutch borders 

with Germany. They have a temperate climate with a mean monthly temperature of 9.1oC and annual 

precipitation of about 785mm (Climate-Data.org, 2017). Rainfall is lowest in February (mean of 

45mm) and highest in July (mean of 79mm). Average wind speed in these areas is about 4.1 meters 

per second in the months from January to April and from November to December, while from May 

to October the mean wind speed is approximately 3.5 meters per second (Weather and Climate.com, 

2017). Such wind data guides flight planning for best time to collect data with the drones. 

2.1.2. Vegetation 

Amtsvenn and Neede areas have several forest blocks within agricultural fields. The forest stands 

have different stand densities, the composition of both coniferous and deciduous trees, while the 

farms are predominantly composed of maize and grass. Beech (Fagus sylvatica), Scots pine (Pinus 

sylvestris), Oak (Quercus robur and Quercus petraea), Alder (Alnus sp), Douglas fir (Pseudotsuga menziesii), 

European hornbeam and Birch (Betula sp) are the most common tree species in the Amtsvenn area 

(Erdbrügger, 2017; Okojie, 2017). The forest block in Neede is composed of white Birch of different 

ages, Oak and Scots pine with a mean tree height of 20m for upper story trees.  

2.2. Dataset 

This study made use of remotely sensed and field data. As seen in table 2-1, true orthophoto (UAV) 

and multispectral Pleiades data of the study area were used.   
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Table 2-1: List of data set used, their sources and characteristics 

Data type Characteristic Source 

Multispectral Pleiades with 

R, G, B and NIR bands 

50cm resolution, orthorectified Airbus Ds Geo SA 

(through ITC RS lab) 

UAV-RGB images Captured at different heights 

and flight patterns 

Fieldwork in Amtsvenn 

and Neede 

UAV orthophoto  

Amtsvenn area 

the 5cm resolution, RGB, 

captured with DJ phantom four 

drone 

 

 Erdbrügger (2016) dataset 

Tree species,  

location and DBH 

Plot-based,  TLS scans and 

manual measurements 

Erdbrügger (2016) field 

work dataset 

 

Multispectral sensor data was essential for discriminating vegetation and tree species because of its 

NIR band, and Pleiades data was readily available in the ITC remote sensing lab.  The image was 

aquired on the 4th of September 2014. The UAV flights were scheduled between the 25th August and 

9th of September 2017, to reduce variation in image acquisition dates of the existing Pleiades image. 

However, due to permit issues, the first three flights were done in Amtsvenn, while four flights were 

done in Neede.  

The list of software and equipment used in this study is presented in table 2-2 below. 

 

Table 2-2: List of Software 

Software/Algorithm Uses 

Pix4D Photogrammetric Processing of UAV images 

eCognition/Multi-Resolution  Segmentation-OBIA 

R statistical package segmentation 

ArcMap Image analysis and map production 

Microsoft Office Word  Report writing/Thesis 

Microsoft Office Excel Statistical analysis/visualization 

Differential GNSS Leica CS 15 Mark GCPs 

DJ Phantom 4 drone Acquire images 

2.3. Methods 

This section has four parts, as can be seen in figure 2-3 and figure 2-4 below. 

Part 1 includes UAV flight planning, data capture, and field measurements.  

Part 2 involves the processing of Pleiades and UAV images, data processing steps and formation of 

image configurations. 

Part 3 looks at the segmentation of the UAV-RGB and UAV-Pleiades images to answer research 

questions 2a and 2b. It also includes segmentation accuracy of two image configuration and 

between the two segmentation algorithms. This part will produce the best-segmented image 

based on accuracy assessment. 

Part 4 concentrates on the classification of the resulting images from section 2 using three different 

classification algorithms. It will answer research question 3 which investigates the difference in 

classification accuracy between image configurations and between the three classifiers. 

Part 5 focuses on the modelling DBH and AGB. The modelled DBH and AGB were compared to 

infer statistical difference. This section answers question 4. 



 

11 

 

 
Figure 2-3: UAV data acquisition, processing and image segmentation workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Image classification and AGB/AGC estimation workflow 
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2.3.1. UAV Data acquisition 

UAV flights were performed over the 0.5km2 study area after the establishment of sufficient and 

adequately distributed and appropriately located Ground Control Points (GCPs). The locations of 

GCPs were measured using the differential GNSS Leica CS 15.  Accurate GCPs are essential to 

optimise the rigidity of the bundle block adjustment during image orientation. Preliminary flights 

were performed in Amtsvenn to investigate the influence of flight pattern on point cloud and 

orthophoto quality. All flights were conducted using forward and side overlap of 85% and 70% 

respectively. Three flights were done in Amtsvenn at heights of 40m and 45m in parallel and 

perpendicular grids (figure 2-5) to produce an orthophoto of 1.5cm resolution. Due to permit issues, 

subsequent flights could not be done in Amtsvenn. The three flights were thus used to assess the 

influence of flight pattern over open pine forest on the quality of resulting point cloud and 

orthophoto.  

 
 

 

 

 

 

 

 

 

 

 

 

 

However, four single grid flights were performed over a 17.9ha forest stand in Neede village; The 

single grid flights were done at heights of 40m, 60m, 80m and 100m above tree canopy to investigate 

optimal flight height of the phantom 4 drone over forest stands. With a mean tree height of 20m, 

the flights had mean ground sampling distances of 2.5cm, 3cm, 4cm and 5cm respectively.  

2.3.2. Field Measurements 

Field data for the same area collected in 2016 were used to continue the study. Data harmonisation 

and extraction made use of GIS operations like query, editing of attribute tables, coordinate 

reconciliation, overlays, spatial joins and data export. The extracted point data of tree species and 

location were overlaid on the orthophoto to confirm with the described fifteen plot locations and 

tree identities in five of the blocks. 

2.3.3. Sampling Design 

According to the lineage of the 2016 data, a circular plot-based design was used for data collection 

(Erdbrügger, 2017). All trees with DBH greater than 10cm were recorded within a 500square meter 

circular plot (12.5m radius). Tree species, DBH and location, were recorded. Trees with DBH less 

10cm were not recorded because their contribution to biomass is assumed negligible (Brown, 2002).  

2.4. Data Processing 

UAV-RGB images were captured using DJ Phantom 4 with RGB camera sensor on board, while 

Pleiades image of the same area was obtained from Airbus Ds Geo SA, through ITC RSLAB. 

2.4.1. Pleiades data processing 

The Pleiades dataset provided by ITC is orthorectified panchromatic and multispectral (RGB and 

NIR) images. The reference system of the Pleiades products was assessed. The study area was 

Figure 2-5: Double grid perpendicular and parallel flight patterns: flights at nadir, 85 and 
70%   forward and side overlap, varying flight heights above tree canopy 
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extracted by the mask from the multispectral Pleiades image with a georeferenced shapefile of the 

study area. The multispectral Pleiades image with the 50cm resolution was resampled to 30cm 

resolution in ArcMap to ensure that pixels from UAV and Pleiades fit well. Upscaling does not create 

any new or non-existing data but instead squeezes data occupying 50cm to fit into a 30cm pixel. The 

nearest neighbour resampling algorithm is chosen because it preserves pixel values (Baboo & Devi, 

2010; Bakx et al., 2013). 

2.4.2. UAV data processing 

A total of 554 and 359 images were captured for the parallel and perpendicular flight patterns 

respectively over an area of 4.1ha in Amtsvenn. For the flights in Neede, 233, 157, 122 and 85 images 

were captured at heights of 60m, 80m, 100m and 120m from the ground respectively, over an area 

of 17.9ha. The UAV images were processed using Structure From Motion (SfM), the 

photogrammetric process of constructing three-dimensional structure of the scene, and camera 

position by analysing the sequence of images (Alcantarilla, Bartoli, & Davison, 2012). This process 

begins with tie-point detection, description, and matching to give the images relative orientation. The 

photos were given absolute orientation with coordinates on the ground (GCPs). A Random Sample 

Consensus (RANSAC) operation reduces reprojection errors during image orientation (Fischler & 

Bolles, 1981). Once the images have been correctly orientated, point cloud, digital surface model, 

and orthophoto are generated. The quality of the image orientation process determines the quality 

of the subsequent products. There are some software packages for processing UAV images. Amongst 

them are popular commercial packages like Pix4D Mapper (Pix4D), Agisoft Photoscan (PS), and 

Capturing Reality (ReCap) (Remondino, Nocerino, Toschi, & Menna, 2017). In this study, the UAV 

images were processed in Pix4D. In the pix4D software, processing goes through three critical stages; 

initial processing, point cloud densification and finally DSM and orthomosaic generation. 

 

The initial processing phase involves tie-point detection, description, and matching to give the images 

relative orientation. Due to the side and forward overlap, consecutive images have similar features. 

Tie-points refer to 2D points identifying same features in different images. Once the images are 

loaded into pix4D, the software detects identical elements in the images. Based on these similar 

elements (2D points), a third point is located (3D point in space), and the images are given an 

orientation relative to one another in space  With identified tie-points, the images are calibrated. The 

software then iteratively uses samples of the tie points to build a model that determines the best 

orientation of the images. This iterative process is described as Random Sample Consensus 

(RANSAC). RANSAC reduces the errors associated with giving the photos geolocation on the 

ground (fixed orientation) (Fischler & Bolles, 1981). Once the report shows sufficient image 

calibration, ground control points collected during fieldwork are loaded to optimise the calibration 

process and give the calibrated images geolocation on the ground (fixed orientation). Once the quality 

is appropriate, as revealed by green checks in the quality report, the next phase is initiated. As can be 

seen in the figure below, the green checks indicate sound quality of a successful processing phase. 
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Figure 2-6: A snapshot of an instance of quality check in Pix4D image processing 

In the point cloud densification phase, based on the selected options like image scale, point cloud 

density, a densified point cloud is generated by aerial triangulation. Point cloud densification is 

important for the construction of orthophoto and other 3D products like DEM and DSM. The 

processing choice affects the processing time and quality. In this study, image scale for point cloud 

generation and densification was set to multiscale ½ image size, meaning half of the image quality is 

utilized, while point density was set to optimal. According to the Pix4D user manual, these point 

cloud generation and densification is the most “expensive” phase, requiring time and computer 

resources. These options, therefore, allow for a right balance between cost in time and computer 

resources and product quality(Pix4D SA, 2017). These options allow for a balance between quality 

and processing time.  

 

The last phase, the generation of DSM and orthomosaic also requires the selection of proper options 

based on project requirements. In this project, the resolution of products was set to 1 x ground 

sampling distance (default), and the DSM was generated by triangulation because this method 

preserves the characteristics of points from the original image (Pix4D SA, 2017). At the end of each 

of the phases described above, the quality report guides the user whether to continue or not.  

2.4.3. Filtering and Resampling UAV-RGB image 

The resolution of the UAV-RGB orthophoto was high ( 3.4cm) and had some noise. It was filtered 

with a low pass filter in ArcMap and resampled to 30cm using nearest neighbour algorithm. 

Resampling to 30cm was done because this resolution has been reported to be suitable for 

segmentation of tree crowns (Okojie, 2017). Filtering removed small objects that induce noise, while 

resampling with the nearest neighbour preserves the spectral properties of each tree crown and 

prepares the resolution for better segmentation. However, for this study, filtered and unfiltered 

UAV-RGB images were used to analyse the influence of filtering on segmentation. 

2.4.4. Formation of UAV Pleiades Image Configuration 

UAV-Pleiades image configuration could be assembled through two procedures; uploading required 

bands (RGB from UAV and NIR from the multispectral Pleiades) in eCognition, or layer stacking 

the needed bands into one raster image using the Composite band tool in ArcMap. The first option 

was only possible in eCognition but not in the other segmentation environments. The second option 

was adopted to ensure a fair comparison. Required bands from UAV-RGB were layer stacked with 
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the NIR band from the multispectral Pleiades. This procedure was successful when all the bands to 

be layer stacked were in the same 8unsigned or 16unsigned bits. 

2.5. Object-Based Image Analysis  

Object-based image analysis is a classification procedure that treats spatial features in an image as 

objects, rather than as pixels. The availability of very high-resolution images brought a shift in image 

analysis, from pixel-based to object based. Very high-resolution models are loaded with abundant 

information that cannot be sufficiently handled with pixel-based analysis (Wei, Chen, & Ma, 2005; 

Zhu, Cai, Liu, & Huang, 2016). The main parts of OBIA are segmentation and classification 

2.5.1. Image Segmentation 

Segmentation is the building block of OBIA. It identifies homogenous areas based on shape, colour, 

size, and groups them into specific objects called segments (Möller, Lymburner, & Volk, 2007). There 

are many different segmentation algorithms, amongst which multi-resolution is powerful when 

dealing with very high-resolution images (Belgiu & Drǎguţ, 2014). Most of the other segmentation 

algorithms need to be adapted to extract specific objects of interest (Hay, Castilla, Wulder, & Ruiz, 

2005). Adjusting makes the segmentation process highly subjective to trial-and-error (Arvor, 

Durieux, Andrés, & Laporte, 2013; X. Zhang, Wang, Yang, & Li, 2016). Segmentation algorithms 

are implemented in different environments, amongst which are eCognition, QGIS, GRASS, R 

Studio, Python and ArcMap. Most of OBIA has been developed around eCognition, while R is an 

open source environment which is user-friendly and can host the implementation of some 

segmentation algorithms. In this study, segmentation was done in eCognition and R environments. 

 

The entire study area was divided into forest blocks because of differences in forest structure, and 

also to reduce image size for faster processing. The blocks were numbered 1, 2,  3, 4, 5 and 6. Five 

of the blocks are those from which field data were collected in 2016, while block 2 had no recorded 

field data. A total of three image configurations were segmented; filtered UAV-RGB, unfiltered 

UAV-RGB, and UAV-Pleiades. Two segmentation algorithms were used to segment the image 

configurations in two different environments. Multiresolution segmentation was done in eCognition, 

while SLIC segmentation was done in R. 

 
2.5.1.1. Multiresolution segmentation in eCognition 

There are many different segmentation algorithms in eCognition, amongst which multi-resolution is 

powerful when dealing with very high-resolution images (Belgiu & Drǎguţ, 2014). Also, attempts 

have been made to advance methods for objective identification of optimal segmentation parameters 

to some degree of automation (Anders, Seijmonsbergen, & Bouten, 2011; Drǎguţ, Tiede, & Levick, 

2010a; Esch, Thiel, Bock, Roth, & Dech, 2008). Most of these methods have been designed for 

Multiresolution segmentation, making it more robust and popular (Esch et al., 2008). For these 

reasons, MR segmentation algorithm was used in this study with the Estimator of Scale Parameter 

(ESP) tool. The determination of optimal scale parameter for multiresolution segmentation was done 

using the ESP2 tool. This tool automatically segments each image configuration into three levels, 

corresponding to levels of homogeneity. In this process, the tool calculates Local Variance of objects 

for each level (mean standard deviation of objects for each level). The rate of change in local variance 

per iteration is then plotted against increasing scale value to show the optimum scale value for image 

segmentation. Figure 2-7 below shows the Local Variance graph for the segmentation of the open 

forest block in the study area. 
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Figure 2-7: Local Variance, Rate of Change versus Scale parameter for optimal image segmentation using 

ESP2 tool 

The red line represents the local variation in the image objects from pixel level, while the blue line 

represents the rate of change in local contrast as the object size increases, and the vertical dotted  

grid lines are the optimal scale for each scene. As can be seen from the graph, the local variance 

jumps high at the start as the size of objects increases due to the high resolution of the image (Drǎguţ 

et al., 2010), While the rate of change is in the opposite direction, slowly because of the scene (forest).  

 

However, default parameters (step sizes for each of the three levels, shape and compactness) in ESP2 

tool were inappropriate for segmenting the tree crowns within the forest blocks. Thus, step level 

sizes were iteratively reduced, and by visual assessment, the combination with the best segmentation 

levels was selected. Besides setting the shape and compactness parameters, the step level sizes were 

also varied to obtain proper segmentation. Appendix I shows the different settings that were used to 

segment the forest blocks under different image configurations. The best segmentation levels for 

each forest block were exported as shapefile, smoothed polygon for accuracy assessment in ArcMap.  
 

2.5.1.2. SLIC segmentation in R environment 

Amongst the machine learning segmentation algorithms that can be implemented in R environment, 

Simple Linear Iterative Clustering (SLIC) is simple to use and understand, and it adheres to 

boundaries (Stutz, 2015; Stutz, Hermans, & Leibe, 2016). Also, SLIC improves segmentation 

performance and is computationally faster and memory efficient. Like Multiresolution in eCognition, 

SLIC uses Color, brightness, and compactness, to link connected pixels into clusters (Achanta et al., 

2012). SLIC is available in GRASS (Kanavath & Metz, 2017), QGIS, Python and R. The 

implementation of SLIC in GRASS was not possible due to file format compatibility issues. The 

plugin of SLIC in QGIS is limited to the delineation of parcel boundaries and roads. Python and R 

environments require scripts, but the implementation of SLIC in R was chosen because of its user 

friendly scripting language.  

 

SLIC is a gradient-based segmentation algorithm which adopts a k-means clustering approach to 

efficiently generate equally sized superpixels based on image colour space (Crommelinck et al., 2017). 

Superpixels are a cluster of connected pixels(comparable to image objects) with similar features like 

colour, brightness, and texture (Achanta et al., 2012).By k-means clustering, the algorithm initialises 

some centroids(k-centroids) within an image based on the number of colour clusters in the image as 

shown in figure 2-7A(Jeevan, 2015). Based on these k-clusters, supper pixels will be assigned to each 

cluster based on their distances from the centroids. Once assigned, a new centroid(k-mean) will be 

calculated as the mean of all superpixels belonging to a particular centroid as shown in figure 2-8B. 



 

17 

The difference between the first and adjusted middle is calculated as residual. The number of 

centroids or k-means determine the amount of equally sized clusters to be generated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm estimates two parameters; the k-parameter which specifies the number of approximately 

similarly sized superpixels to be produced, and the compactness parameter m which controls the 

trade-off between superpixels’ homogeneity and boundary adherence. SLIC has been applied for the 

segmentation of diseased tree crowns, and it performed well (Yuan & Hu, 2016). 

 

The images to be segmented were exported from ArcMap as a raster in .jpeg format (unsigned 8bits), 

compatible with the SLIC script implemented in R version 3.4.2. SLIC segmentation of both image 

configurations followed the steps as outlined in the R script (Simon, 2017). The detailed script is 

presented in appendix II.  The main steps are shown in figure 2-9 below. 

 

B A 
Figure 2-8: Illustration of k-mean clustering for the creation of a cluster of superpixels: 

A shows the initial means, represented by the blue, red and green stars while 
B shows the re-calculated means and shift of centre from initial mean(white 
stars) 
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Figure 2-9: Input, and output for the main steps in SLIC segmentation(original image (a), 

separating shadows from trees (b), RGB converted to CALIEB colour space (c), grey 
scale representation of colours (d), segmented image (e), post processed segments (f).  

The image (a) is read and loaded into the R environment. K-means clustering is then performed with 

two centres. This process separates shadows from tree crowns (b). Section two converts the image 

from RGB to a colour space that indicates RGB values with three axes: L, a, and b. Light and dark 

along the ‘L’ axis, red and green along the ‘a’ axis, and blue and yellow along the ‘b’ axis. The relative 

scales of spatial to colour dimensions are left as default, but the ratio of spatial and spectral scales is 

divided by 10times the compactness value (Simon, 2017), to ensure that the resulting features(supper 

pixels) have similar scales. Based on the colour space, the grey scale axis is used to create outlines of 

segments (d). Finally, the image is segmented and the layers displayed on the original image(e). The 

layers (e) were exported for post-processing in ArcMap. The post-processed output (f) was used to 

assess segmentation accuracy. 

 

Post-processing comprised of geo-referencing with affine polynomial transformation, extracting 

forest area by the mask, deleting smaller polygons with an area less than one square meter, applying 

minimum bounding geometry and finally smoothening with 300 as value for smoothing tolerance. 

The resulting segments were visually assessed before accuracy assessment.  

2.5.2. Image Classification  

Image classification is the process of assigning landcover classes to specific pixels. It also refers to 

the process of appointing segmented image objects to particular cover types or species following 

image segmentation. Classification can be unsupervised, supervised or object based or both. The first 

two have been very popular and mostly used for pixel-based classification. However, Object-based 

supervised image classification is in recent times used for the classification of very high-resolution 

images (Juniati & Arrofiqoh, 2017; Weih & Riggan, 2010). Some classification methods have been 

used for tree species classification using remote sensing images. Amongst these are Maximum 

Likelihood (ML),  Random Forest (RF), Random Trees (RT) and Support Vector Machines (SVM) 

classifiers (Adelabu et al., 2013; Carleer & Wolff, 2004; Cho et al., 2010; Lobo, 1997). These 
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supervised classification algorithms can be implemented in eCognition and ArcMap environments. 

These classifiers, operate using similar principles; use training samples, validation samples and vote 

of the plurality to finally classify an object into a specific class ( eCognition User guide, 2016). The 

classification environment in eCogniton was not user friendly, with training samples failing to display 

on screen. Segments were thus exported with feafure values into ArcMap for classification. The use 

of ArcMap was engineered by its user friendly environment for the implementation of RT, SVM and 

ML classifiers. 

 
2.5.2.1. Random Trees 

Random Trees is a supervised classification algorithm that uses a bagging operation to create some 

trees (ntree) from a random subset of samples from the training data. In a bagging process, the 

algorithm generates many subsets (ntrees) from the input training data with replication (can choose 

one point more than once) and classifies each into the number of classes (mtry) as in the training set. 

The classification of each subset (tree) is then averaged to get final classification with reduced 

variance. Random trees are a combination of tree predictors that depends on the values from random 

subsets sampled independently with the same number of samples in the training set (eCognition User 

guide, 2016). Each tree is grown autonomously to a maximum size based on a bootstrap sample from 

the training dataset with the same number of classes, and each node (classification) is split using the 

best among a subset of “mtry,” input variables or classes (Breiman, 2001). The decision to classify 

elements in the subset of specific classes (mtry) is based on pure samples that are present in the 

subset. The multiple classification trees then vote by diversity on the correct classification (Lawrence, 

Wood, & Sheley, 2006). The data that are not found in the trees are classified as out-of-bag (OOB) 

data. An average of the OOB error rates gives the OOB classification error for each input variable 

(mtry). The classification is assessed using validation data from the field, and a confusion matrix is 

generated. 

 
2.5.2.2. Support Vector Machine Classification 

A Support Vector Machine (SVM) is a supervised discriminative classifier defined by a separating 

hyperplane. The hyperplane is a line that separates the training data set into the number of classes, 

based on training data statistics. From a given training sample data, the algorithm outputs an optimal 

hyperplane which categorises new examples. It is binary, using two classes (present /absence) of 

training samples in a multi-dimensional feature space to fit an optimal separating hyperplane. The 

classifier then maximises the distance between the closest training sample (support vector) and the 

hyperplane (Burges, 1998; Hsu, Hsu, Chang, & Lin, 2010).  

 
2.5.2.3. Maximum Likelihood Classification 

Maximum Likelihood is a supervised classifier popularly used in remote sensing image classification. 

It considers the variance and covariance of class signatures to assign each object or pixel to a class 

(Sisodia, Tiwari, & Kumar, 2014). The algorithm uses the basis that the mean and covariance of each 

class in the training sample is normally distributed, to fit models describing each class (Bakx et al., 

2013; Hogland, Billor, & Anderson, 2013). Based on the fitted models from the training sample, the 

class of new objects or pixels is determined by calculating which model is more likely to describe the 

object. The model with the maximum likelihood is selected. The Maximum likelihood classifier is 

robust, but also biased to small sample size (Adelabu et al., 2013).  

 

Forest block 4 was selected for classification because it had the highest mean segmentation accuracy 

from all the image blocks. Also, this block had a reasonable number of trees for three of the primary 

species in the study area (Beech, Birch and Scots pine). Maximum Likelihood, Random trees and 

Support Vector Machines classifiers, were implemented in ArcMap to classify the segments. The 

segmented layers were exported from eCognition with eight features in its attribute table for UAV-



 

20 

RGB and ten features for UAV-Pleiades. These features represent segment statistics that would be 

used for classification in ArcMap. The Random trees, Support vector machines and Maximum 

likelihood classifiers in ArcMap require segmented raster as input. For this reason, each feature was 

extracted by conversion to a segmented raster layer. Features were normalised to avoid attributes 

with numerically higher ranges from dominating those with numerically lower ranges during 

classification (Hsu et al., 2010). Linearizing each feature also avoids numerical difficulties during 

calculations of segment statistics by the algorithm. Each feature was normalised to have values 

between 0 and 1, using raster calculator with the expression below. 

 

Normalized feature = (feature value - minimum)/(maximum value -minimum value) 

 

Normalisation also gave each feature the characteristic normal distribution which makes training and 

classification faster (Hua et al., 2006; Kuzmin, Korhonen, Manninen, & Maltamo, 2016). All 

normalised features were layer stacked to create a segmented raster layer (a requirement for 

implementing the classification algorithms in ArcMap), with the number of bands corresponding to 

the number of features used. Amongst the layer stacked features, four were selected for classification 

of UAV-RGB (mean values of Red, Green, Blue, brightness and standard deviation) while eight were 

selected for classification of UAV-Pleiades (1=Red, 2=Green, 3=Blue, 4=NIR, 5=Mean brightness, 

6=compactness, 7=Roundness, 8=Standard deviation) 

 

Two sets of training and reference data were digitised in ArcMap based on field data. Training 

samples were randomly selected, but the digitising was done such that each sample is a pure 

representation of the class it represents. Five classes were used; Birch, Beech, Scots pine, water and 

shadow. From the UAV-RGB image, 30, 21, 20,19 and 14 samples of Scots pine, Birch, water, Beech 

and Shadow were collected respectively. On the other hand, 41, 28, 20, 4 and 29 samples of Scots 

pine, Birch, water, Beech and Shadow were respectively collected from the UAV-Pleiades image. 

Samples for each class were merged for each image configuration to obtain a value for each class. All 

classifiers used the same training and validation data set containing five classes (Birch, Beech, Scots 

pine, water and shadow) for the same image configuration. Class separability of the training samples 

was done using the mean layer statistics. As can be seen in figure 2-10, the plotted ban statistics show 

that the four classes can be better separated in bands (layers) 1 and 2  for the UAV-RGB layer. Within 

band two, there is a possible mixing of Beech and Scots pine. 
 

 
Figure 2-10: Comparing class separability amongst the layers in the UAV-RGB layer stack raster 

(1=Red, 2=Green, 3=Blue, 4=Mean brightness, =Standard deviation) 
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On the other hand, the four classes are separated into bands 2, 3, 4 and 5 for the UAV-Pleiades 

image as shown in figure 2-11. In bands 2 and 3 and 5, there is a possible mixture of Birch and Scots 

pine, while in band 4, all classes are well separated. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-11: Comparing class separability between the different image layers (bands) for UAV-
Pleiades segmented raster layer. (1=Red, 2=Green, 3=Blue, 4=NIR, 5=Mean 
brightness, 6=compactness, 7=Roundness, 8=Standard deviation) 

 

With the training data from each image configuration, all three classifiers were trained to generate 

respective classifier definition files which were later used for classification. In the case of Random 

trees classifier, the number of trees or subset was set to 500 (number of subsets created, classified 

and results averaged to get final classification), with a maximum number of samples and sample 

depth left as default. For Support Vector Machines, the number of subset per class was set at 500. 

This number refers to the number of subsets that need to be classified and averaged to get the final 

classification. These settings were chosen after some iterations. 

 

The detailed segment statistics represented by the classified segmented raster files were converted to 

shapefile. A spatial join between the classified shapefile and the automatically segmented layer(from 

eCognition) was performed. The segments from eCognition were used as a target while the classified 

shapefile was used as a joint feature. In this process, the class values corresponding to cover type 

were transferred to the corresponding segments from eCognition. The attribute table of the resulting 

product was edited to add species name, following the grid code values. The layers were then 

visualised with cover type field as classified segments. 

2.6. Above ground biomass and carbon stock Estimation 

This process made use of allometric equations that relates DBH and CPA, and DBH and AGB. A review of 

common mistakes with the use of allometric equations recommends that simpler models with fewer 

parameters and no polynomial terms, are relatively better because: they are easier to be tested in 

replication and cross-validation tests. Also, because such models suffer less from the influence of 

statistics and collinearity, and parameters are easier to interpret biologically (Sileshi, 2014).  Jose 

(2009) established the relationship between biomass and DBH for some temperate tree species in 

the form you = a(DBH)b with ‘a’ and ‘b’ significantly different from zero (p < 0.01). The nature and 

strength of the predicted relationship for each species were assessed by interpreting the signs of the 

regression coefficients and the magnitude of the R2 and adjusted R2. Appropriate species-specific 
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allometric equations relating biomass (AGB) with DBH for each species were sourced from existing 

literature and GlobAllomeTree (2017) and used to estimate aboveground biomass and carbon for 

each tree species using field derived DBH. Table 2-3 below shows the set of selected allometric 

equations for each species. The selection process considered sample size, location of study, R2  value 

and year of publication  

 

Table 2-3: Selected species allometric equations for eight tree species in the study area. 

 
Source: www.GlobeAllomeTree.org (2017) 

The excel file containing measurements of location; field measured DBH and species information 

was converted to a shapefile in ArcMap. The shapefile was overlaid on the orthophoto, and 

corresponding tree crowns were manually digitised at a constant scale of 1:400. A spatial join between 

the trees shapefile and manually digitised crowns transferred DBH values to corresponding crowns 

of tree species. The resulting shapefile thus contained DBH, species and similar CPA information in 

its attribute table. The trees were sorted in Microsoft office excel based on species, and correlation 

analysis was done to investigate the relationship between CPA and DBH, as well as its significance. 

A regression analysis was then used to quantify any existing relation between DBH and CPA. Based 

on the statistical significance of the modelled relationship, appropriated models were chosen for each 

species.  

 

The chosen models were used to predict AGB of the automatically segmented and classified tree 

crown projection areas. The segments of the selected species were selected and exported as shapefile. 

The areas of the exported segments were calculated and exported to Microsoft Office Excel 2016. 

The DBH of classified crowns for each tree was modelled and used to estimate AGB. This procedure 

was done for the best classification from each image configuration. The modelled AGB was 

compared with field-derived AGB to infer a statistical difference. A conversion factor of 0.47AGB 

equals carbon was used to translate biomass to carbon estimates in kg (IPCC, 2006).  

2.7. Data analysis 

Data analysis made use of software packages like Pix4D (UAV image processing), eCognition and 

R-studio (segmentation) and ArcMap (accuracy assessments and visualization). 

2.7.1. Optimal flight pattern 

The quality of the resulting point clouds was assessed using the quality report from pix4D. The 

geolocation details; mean and median point density (2D and 3D key points) and root mean square 

error of GCPs and Check Points (CPs) were assessed to judge the quality of point cloud and 

orthophoto from the two flight patterns. 2D points represent x and y location of features that have 

been identified, described and matched on two or more images (Nex & Remondino, 2014). These 

points are used for image matching during the photogrammetric process of image orientation. 3D 

Species Equation

Sample      

size R2 Location Source

Fagus sylvatica                           

(Beech) Biomass=0.0798*(DBH)^2.601 38 0.99 netherlands Bartelink(1997)

Pinus sylvestris                             

(Scots pine) log10 Biomass=-1.89+2.74*LOG10((DBH)) 20 0.99 Finland Drexhage and Colin (2001).

Quercus petraea(Oak) log10 Biomass=-1.56+2.44*LOG10((DBH)) 71 0.94 France Drexhage and Colin (2001)

Pseudotsuga menziesii                         

(Douglas fir) Biomass=-1.62+2.41*LOG((DBH)) 23 1 netherlands Bartelink, H. H. 1996

Betula(Birch) Biomass=0.1993*(DBH)^2.2491 13 0.99 uk Hughes(1971)

European hornbeam log Biomass=-5.777+2.481*LOG((DBH)) 15 0.71 Poland Oleksyn et al.(1999)

Mountain ash Biomass=0.1245*(DBH)^2.3585 7 0.97 Bavaria Dietrich et al.(2002)

Alder(alnus) Biomass=0.00079*(DBH)^2.28546 n/a 0.99 Sweden Johansson(2000).

http://www.globeallometree.org/
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points represent x, y, and z location of points in space determined through epipolar geometry, and 

used for relative orientation of the images. The GCPs are the x,y and z location of points collected 

using RTK/GNSS, and used to give the images coordinates on the ground (absolute orientation). 

The differences between the x,y and z locations of images and the GCPs is used to estimate the 

RMSE (Remondino, Nocerino, Toschi, & Menna, 2017). A t-test was performed, comparing the 

errors in GCP location between parallel and perpendicular flight patterns. The relationship between 

the flight height above the tree canopy, the percentage of calibrated images and RMSE of GCPs and 

CPs were assessed to determine the optimal flight height of the DJ Phantom 4 over forest stands. 

The root means square orientation errors were compared for flight patterns, and visualised using 

tables and graphs. Tables and graphs were also plotted to recognise any relationship between flight 

height and the number of calibrated images, flight height and RMSE of the GCPs. 

2.7.2. Segmentation accuracy assessment  

Evaluating the quality of segmentation is essential for the validation of the OBIA process. 

Segmentation quality can be assessed using analytical, empirical goodness of fit, and empirical 

discrepancy methods. Analytical methods directly assess the performance of segmentation algorithm 

based on principle, requirement, and complexities (Zhang, 1996). The empirical goodness of fit 

methods judges the quality of segmented images as a proxy for the performance of the algorithm. 

Empirical discrepancy methods use the difference between the reference (manually delineated tree 

crowns) and segmented crowns, to judge the algorithm performance. A review of image 

segmentation evaluation methods reveals that empirical discrepancy methods are better because they 

try to capture the application throughout the discrepancy measures (Zhang, 1996).  

 

The best way to measure segmentation accuracy depends on the consequences of any segmentation 

error. In this study, segmentation is done to estimate tree Crown Projection Area, to be used as input 

in species-specific allometric equations for AGB and carbon estimation. The consequence of 

segmentation error is either an overestimation or underestimation of CPA and thus AGB and carbon 

of tree species. For this reason, Segmentation accuracy was assessed using area estimation techniques 

(Möller et al., 2007), in a three-step procedure according to Clinton, Holt, Yan, & Gong (2010) and 

as shown in the equations below. 

 

Over segmentation  =  1- (area(ADi ∩ ARi)/area(ADi)…………………………equation 1 

Under segmentation =  1- (area(ADi ∩ ARi)/area(ARi)…………………...……equation 2 

Total detected error = √((Overs segmentation2 + Under segmentation2 )/2)….equation 3 

Where, 

ADi = Area of detected objects, that are in a one-to-one spatial relationship with reference polygons. 

ARi = Area of reference polygons 

Area(ADi ∩ ARi) = Area of reference polygons that have been correctly segmented. 

 

The accuracy assessment made use of manually digitised polygons obtained for each block from the 

filtered and resampled orthophoto. 54 polygons were delineated for block 3, 52 for block 5, 123 for 

block 1, 70 for block 6 and 51 for block 4. A spatial join between reference polygons and the 

segmented layer was done in ArcMap to identify segmented polygons in a spatial relationship with 

the reference polygons based on a join count greater than zero. Selection by attribute of polygons 

from the output based on join count different from zero was made and the results exported as a 

layer. The reference polygons were used as target features while the segmented layer was joined 

feature in a spatial join operation. Upon getting the layer of segmented polygons in spatial contact 

with the reference layer, an intersection was performed with the reference polygon layer to get under 

segmented and over the segmented area. A field was added to the attribute table of the intersection 

output and area (ADi ∩ ARi) was obtained by calculating geometry. The area of reference polygon 
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layer represents “ARi” in the equation above while the area of spatial join output represents “ADi”. 

With ADi, ARi, and area (ADi ∩ ARi), over-segmentation, under segmentation and total detected 

error were calculated.  

 

Three blocks were selected; to investigate a significant difference in the accuracy, of segmenting 

UAV-RGB and UAV-Pleiades image configurations. Using the same reference polygon layer for 

each block, spatial join, and the intersection was performed with the respective segmented layers. 

The resulting area from the outputs (intersection) was extracted for corresponding segments and a 

two-tailed t-test performed at 95% confidence level.  

2.7.3. Classification accuracy assessment 

Accuracy assessment is a comparison between a detailed map and some reference information 

assumed to be correct, following acceptable rules consistently (Strahler et al., 2006). The accuracy of 

a classification can be judged using accuracy parameters like overall accuracy, per-class accuracy, 

producer and consumer accuracies. The rules to consistently observe in the process include; the 

choice of quality index appropriate given the purpose of each study, sampling unit, strategy and 

sample size (D. Lu & Weng, 2007; Strahler et al., 2006).In this study, the classification was done on 

a segmented layer with the purpose of accurately linking segments (CPA) to tree species for the 

modelling of DBH and AGB at the species-specific level. Based on the defined goal, sampling units 

were chosen as polygons (CPA), while sample size was proportional. Since the segments (CPA) 

represents a spatial entity that needs to be given identity in the classification process, the area was 

chosen as the most important index for accuracy (Radoux & Bogaert, 2017). 

 

The detailed raster images were each reclassified and converted to polygons. Through a spatial query 

between the segmented layer and the reference polygon layer, a subset of segmented polygons was 

exported as test polygon layer. In a spatial join between reference polygons layer and the test 

polygons layer, class values were transferred from reference to test polygons. A total of 20 samples 

were taken for Scots pine (692.73m2), Birch (1604.29m2) and water (3087m2), while 10 and 15 

samples were taken for Beech (743.48m2) and Shadow (4103.91m2) respectively. An intersection 

between final test polygons layer and the reclassified polygons was performed, and the output used 

to extract correctly and wrongly classified area for each tree species. A selection query by attribute 

{gridecode=1 (2,3…n) AND Class=1 (2,3..n)} was performed and the area of each species correctly 

and wrongly classified was calculated. The values were input into the confusion matrix for 

classification accuracy assessment. 

 

A selection by location query was performed between a reference layer and each of the classified 

layers to extract samples from each layer for comparison. A spatial joint was done with the three 

layers; reference, and exported test segments from each classified layer. The class values from 

corresponding segments in both classified layers were judged against those from the reference layer, 

and a two by two confusion matrix was created. A statistical test was performed to infer a significant 

difference in the classification of different classifiers using the McNemar test. This test is based on 

chi-square (z2) statistics computed from the two error matrices given as  

z2 =  (f12 – f21)2 / (f12 + f21), 

Where f12 = number of cases wrongly classified by classifier one but correctly classified by classifier 

2, and f21 = number of cases correctly classified by classifier one but wrongly classified by classifier 

2 (Manandhar, Odeh, & Ancev, 2009). From the McNemar test, if the z-score is greater than 1.96 at 

95% confidence level, then the differences in classification results are statistically significant. 
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2.7.4. Comparing DBH, AGB and Carbon 

CPA values were extracted and used to predict DBH of the primary species using different models. 

The models were compared using their RMSE value and coefficient of determination (R2 value), and 

the best models were selected. Using the best models, and CPA samples from the classified segments, 

DBH and AGB were predicted and compared with field-derived DBH and AGB using a t-test for 

normally distributed set, and Man Whitney U test for non-normally distributed set, to infer any 

significant difference.   
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3. RESULTS 

3.1. Descriptive analysis of field data 

Descriptive statistics were performed to understand the nature of field data. The results are 

presented below in graphs and tables.  

3.1.1. Species occurrence 

The pattern, spread and characteristics of field-derived data were described using descriptive 

statistics. The bar chart below(figure 3-1) shows the occurrence of tree species within the Amtsvenn 

area. From the existing data, a total of 391 trees were extracted. From the 391 trees, the dominant 

species are Fir (36%), Birch (19%), Oak (17%) and Scots pine (13%). The other tree species have 

been recorded in less than 10% of the samples. 
 

 

 

 

 

 

 

 

 

 

 
 
 

3.1.2. Diameter at Breast Height 

The diameter at breast height for tree species from all the blocks was summarised and described as 

shown in table 3-1 below. Beech trees had the highest mean DBH followed by Scots pine and Oak. 

The DBH of all species showed positive skewness from the mean. Because trees with DBH < 10cm 

were not considered 

 
Table 3-1: Summary statistics for Field measured DBH 

Tree species/ 

(count) 

Mean Std. 

Error 

Std.  

Dev 

Kurtosis Skewness Skewness 

z value 

Kurtosis 

z-value 

Beech/(18) 33.09 4.2 17.8 2.1 1.5 0.36 0.5 

Birch/(149) 19.96 0.88 10.7 24.8 3.7 4.2 28.31 

Fir/(69) 22.95 0.93 7.7 -0.9 0.3 0.33 -0.96 

Oak/(68) 29.75 1.59 13.1 2.1 1.2 0.78 1.34 

Scots pine/(50) 34.86 1.19 8.4 1.1 0.9 0.79 0.89 

Sorbus aucupari/(2) 12.5 1.7 2.4 n/a n/a n/a n/a 

Alder alnus/(30) 15.55 1.87 10.2 5.4 2.5 1.32 2.91 

Mountain ash/(5) 13.06 0.85 1.9 -2.2 0.1 0.15 -2.6 

European 

hornbeam/(17) 

20.69 1.58 6.5 0 0.4 0.28 -0.03 
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Figure 3-1: Numbers of trees per species recorded within the Amtsvenn area 
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DBH measurements for Alder alnus and Birch are significantly skewed as shown by their respective 

skewness z-values of 4.2 and 2.5 respectively. Mountain ash has a sample size too small to be 

considered for analysis.  

 

The boxplot in figure 3-2 below shows the outliers in the measurements for Beech, Birch, Oak, and 

Alder. Most of the Oak, Scots pine, Douglas fir and European hornbeam trees had DBH greater 

than 20cm, while for the other species, most trees had DBH below 20cm. Some of these presumed 

outliers could be the very few large trees present in the field. The number of trees recorded for Sorbus 

aucupari and Mountain ash were lower than 10, probably because they are rare in the study area. These 

two species were eliminated from further analysis.  

 

 
Figure 3-2: Distribution of Field DBH within and between tree species(raw data) 

The measured DBH for all species was transformed with the log function, followed by outlier 

removal. The identification of outliers was done using the 2.2 threshold as described in Hoaglin, 

Iglewicz, & Tukey (1986). Based on the 2.2 threshold, the upper and lower boundaries were 

calculated, and outliers were identified. Figure 3-3 shows the data distribution after outlier removal. 

 

 

 

 

 

 

 

 

This procedure reduced the number of data points to be deleted as outliers and preserves sample 

size. After transformation, all the data was normally distributed. However, Alder species showed one 

outlier.  

Figure 3-3: Distribution of Field DBH of tree species after Log transformation 
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3.1.3. Estimating Field AGB 

Allometric equations relating aboveground biomass and DBH for the main tree species were sourced 

from Glob allometry (GlobAllomeTree, 2017). The selection process for the most suitable equation 

considered sample size, the location of study and coefficient of determination (R2 value).  Figure 3-

4 below shows the mean and median field AGB for tree species within the study area. Beech trees 

show the highest Kg of AGB per tree. The mean and median AGB for Beech species is 436, with 

most trees having AGB above the mean. Birch species also have mean AGB of 129.4 with most trees 

above the mean value. Scots pine shows equal distribution of AGB on both sides of the mean. 
 

   

 

 

 

 

 

 

 

Figure 3-4: Mean and Median AGB of tree species: possible influence of outliers on AGB 
estimation 

As can be seen in figure 3-4 above, Alder sp and Douglas fir showed the lowest mean AGB among the 

trees sampled in the Amtsvenn area. A ranking of these species based on contribution to above-

ground biomass reveals that Beech, Scots pine and Birch are the three dominant species contributing 

to the biomass of the area. 

3.2. Optimal flight pattern 

The parallel and perpendicular flight patterns captured 346 and 359 images respectively over a forest 

block of 6.7ha. The geolocation details, accuracy and bundle block adjustment details are presented 

below. The geolocation details looks at the reprojection errors in x, y and z values by comparing the 

positions of points on the image to their true position on ground recorded by the differential GNSS. 

3.2.1. Geolocation details 

As presented in table 3-2, the geolocation details reveal errors in the x, y and z directions. The errors 

were all low, in the range of 1.2 and 2.3cm. The mean errors for the parallel flight pattern were 

numerically lower than those of the perpendicular or grid pattern, especially in the z-axis (height).The 

RMSE of parallel flight pattern was also numerically lower than corresponding perpendicular RMSE 

in the x and z-axis.  
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Table 3-2: Comparing geolocation details for parallel and perpendicular flight patterns. 

Geolocation details in 

Perpendicular pattern  

Geolocation details in 

Parallel pattern 

GCP 

 Name 

Error X 

[m] 

Error 

Y [m] 

Error Z 

[m]  

Error X 

[m] 

Error 

Y [m] 

Error Z 

[m] 

GPS0001 (3D) -0.01 -0.015 0.004  0.007 -0.025 -0.001 

GPS0002 (3D) 0.017 -0.004 -0.018  -0.02 0.024 -0.002 

GPS0003 (3D) -0.031 0.043 0.029  0.017 0.001 0 

GPS0004 (3D) 0.023 -0.025 -0.015  -41.757 6.512 -0.849 

GPS0005 (3D) 0 0 0  0 0 0 

Mean [m] -0.006 0.006 0.004  -0.004 -0.001 -0.001 

Sigma [m] 0.017 0.022 0.017  0.011 0.020 0.001 

RMS Error [m] 0.018 0.023 0.017  0.012 0.020 0.001 

n 5 5 5  5 5 5 

 

As can be seen in figure xxx below, the reduction in RMSE  is higher in the z axis for both flight 

pattern. However, the reduction is more in the case of the parallel flight pattern compared to the 

perpendicular flight pattern. 

 

 
Figure 3-5: A comparison of RMSE resulting from parallel and perpendicular flight patterns 

3.2.2. Bundle block Adjustment 

The bundle block adjustment details reveal that the perpendicular flight pattern observed 807 

thousand 2D and 366 thousand 3D points less than the parallel flight pattern. However, this 

difference could be due to the presences of some uncalibrated images and not necessarily due to 

flight pattern. Table 3-4 below shows the results.  

 
Table 3-3: Comparing the number of 2D and 3D points from two flight patterns 

  perpendicular pattern Parallel pattern 

# of 2D Key point  1139639 1946676 

# of 3D key points  475734 842211 

Mean Reprojection Error [pixels] 0.279 0.189 
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As can be seen in figure 3-6 below, both flight patterns suffer from some uncalibrated images 

represented in red dots. Also, in the orthophotos (appendix III), there are visible deformations in 

areas of uncalibrated images and along the boundaries. The red dots are uncalibrated images, while 

the blue dots are initial positions of images, and the green dots are computed positions of images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7 below is a visualization of the resulting orthophoto from the two flight patterns. Image A is the 

product from processing a single flight at 45m, while image B and C comes from the processing images from 

the parallel and perpendicular flight patterns respectively. As can be seen in the figure, the orthophoto from 

the single and parallel flights show more deformations compared to the orthophoto from the perpendicular 

flights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parallel flight pattern Perpendicular flight pattern 

Figure 3-6: Image calibration for parallel and perpendicular flight patterns (Red dots are 
uncalibrated images while Blue dots are initial position of images, and the green dots are 
computed positions of images) 

 

Figure 3-7: Visual comparison of the orthophotos resulting from single flight(A, at 45m height), 
parallel flight pattern (B, at 40 and 45m height) and perpendicular flight pattern (C, at 40 
and 45mheight). 
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3.2.3. Effect of flight height above canopy on calibration of images 

There is a pattern between flight height above tree canopy and the percentage of calibrated images. 

Table 3-5 below shows that increase in the flight height above tree canopy increases the % of image 

calibration. However, increase in flight height above tree canopy also increases the RMSE of 

georeferencing. 
 

Table 3-4: Relationship between flight height above trees percentage of image calibration 

Flight 

height 

(m) 

Flight 

height 

above 

tree 

canopy 

Orthophoto 

resolution 

(cm) 

Average 

ground 

sampling 

distance (cm) 

Geo-

referencing 

Mean RMSE 

(m) 

% of 

calibrated 

images 

60 40 2.5 2.48 0.014 81 

80 60 3.2 3.22 0.021 88 

100 80 4 4.07 0.028 100 

120 100 4.9 4.93 0.044 100 
 

In table 3-6, increase in the flight height above tree canopy is accompanied by growth in the mean 

and median number of tie points extracted per image. However, this increase comes at the expense 

of accuracy. The geolocation error increases with increasing flight height as shown by the RMSE. 

 
Table 3-5: Comparing variations in flight height above tree canopy (m) to root mean square 

error(m), mean and median tie points recorded per image and mean point density. 

Flight height above 

tree canopy (m) 

Mean key point 

density 

Median of points 

matched per image 

RMSE (m) 

40 17439 15049.9 0.014  

60 15191 15069.2 0.021  

80 13324 10353.1 0.028  

100 11933 9606.36 0.044  
 

As can be seen in figure 3-8 below, increase in flight height above tree canopy is accompanied by an 

increase in the RMSE on GCPs. The increase in RMSE is more pronounced in the z-axis (height), 

compared to the x and y directions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: Influence of Flight height above tree canopy on image geolocation error (variation in 
x,y,z errors with flight height) using four flights at 40m, 60m, 80m and 100m above 
tree canopy (mean tree height is 20m). 
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3.3. Image Segmentation 

The second research question focused on the accuracy of segmenting UAV-RGB and UAV-Pleiades 

using the multiresolution algorithm in eCognition and SLIC algorithm in R-studio. The question 

investigates the effect of filtering on segmentation accuracy of UAV-RGB. It also compares the 

segmentation accuracy of UAV-RGB, UAV-Pleiades, and the performance of SLIC and 

multiresolution segmentations. In eCognition, multiresolution segmentation made use of the ESP 2 

tool. The results are presented below  

3.3.1. Multiresolution segmentation of filtered and unfiltered UAV-RGB images 

The three levels of segmentation for each block were visually assessed and those approved were 

quantitatively evaluated. Visual assessment was done by comparing the sizes of the segments in each 

level to the tree crown sizes in the original image. In the case of Filtered and unfiltered UAV-RGB 

images, segments of block 3 show a few trees grouped in one segment (figure 3-9 below). The 

segmentation of block 1 was visually similar for both image configurations. The Segments that were 

visually approved for quantitative assessment are visualised in figure 3-8 below.  

Figure 3-9: Visualising selected levels of segments from filtered and unfiltered UAV-RGB  images 
for quantitative assessment ( block 1-open forest and block 3-forest close to building). 

Segmentation accuracies of filtered and unfiltered UAV-RGB images show that accuracy for each 

forest block varied across the image configurations. As can be seen in table 3-7, Filtered UAV-RGB 

image has highest accuracy in block 5 (84.8%), dense mixed forest with large tree crowns occupying 

almost same vertical space, and lowest(78.2%) in block 4, which is a dense mixed forest with 

intermingled tree crowns in two canopy levels. On the other hand, the unfiltered UAV-RGB image 

configuration has highest accuracy in block 4 block (85.1%) and lowest in block 5 (54.6%). The 

combined accuracy of segmenting five forest blocks is 73.1% for unfiltered UAV-RGB and 82.1% 

for the filtered UAV-RGB,  The 9% difference could mean that filtering enhanced the segmentation 

accuracy. 
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Table 3-6: Segmentation accuracy of Filtered and unfiltered UAV-RGB image configurations 
using five forest blocks  

Unfiltered UAV-RGB 

  Block 4 Block 6 Block 1 Block 5 Block 3 

Reference area (ARi) 1104.83 4083.41 1622.88 1860.92 4175.35 

segmented area (ADi) 1401.12 2892.15 2423.52 1115.15 3190.68 

Intersection (ADi ∩ ARi) 1104.83 4083.41 1622.88 1830.22 4175.35 

Over segmentation 0.21 -0.41 0.33 -0.64 -0.31 

Under segmentation 0.00 0.00 0.00 0.02 0.00 

Total detected error (Dij) 0.15 0.29 0.23 0.45 0.22 

Accuracy 85.05 70.87 76.64 54.64 78.18 

Filtered UAV-RGB 

Reference area (ARi) 1789.03 5293.69 1608.56 2994.60 2876.43 

segmented area (ADi) 2586.60 4169.79 2065.23 2464.83 2121.26 

Intersection (ADi ∩ ARi) 1789.03 5293.69 1608.56 2994.60 2143.55 

Over segmentation 0.31 -0.27 0.22 -0.21 -0.01 

Under segmentation 0.00 0.00 0.00 0.00 0.25 

Total detected error (Dij) 0.22 0.19 0.16 0.15 0.18 

Accuracy 78.20 80.94 84.36 84.80 81.97 
 

3.3.2. Multiresolution segmentation of filtered UAV-RGB and UAV-Pleiades images using five 
forest blocks. 

As shown in figure 3-10 below, the segmentation results of filtered blocks 6 (dense mixed forest with 

large tree crowns) and 5 (dense mixed forest with closed canopy) show some cases of over and under 

segmentation. However, a quantitative assessment is presented below. 

 
Figure 3-10: Visual comparison of filtered UAV-RGB and UAV-Pleiades segmentation using the 

block 6 (tank), and block 5 (near water)  
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As can be seen in table 3-8 the UAV-Pleiades image show highest accuracy in block 5 (91.9%) and 

lowest in block 5 (64.2%), compared to the filtered UAV-RGB with 84.8% and 78.2% in blocks 5 

and 4 respectively. The addition of Pleiades image seems to have enhanced segmentation accuracy 

in the case of blocks 4, 6 and 5.  

 
Table 3-7: Segmentation accuracy of Filtered UAV-RGB and UAV-Pleiades images using five 

forest blocks 

Filtered UAV-RGB 

  Block 4 Block 6 Block 1 Block 5 Block 3 

Reference area(ARi) 1789.03 5293.69 1608.56 2994.60 2876.43 

segmented area(ADi) 2586.60 4169.79 2065.23 2464.83 2121.26 

Intersection(ADi ∩ ARi) 1789.03 5293.69 1608.56 2994.60 2143.55 

Over segmentation 0.31 -0.27 0.22 -0.21 -0.01 

Under segmentation 0.00 0.00 0.00 0.00 0.25 

Total detected error(Dij) 0.22 0.19 0.16 0.15 0.18 

Accuracy 78.20 80.94 84.36 84.80 81.97 

UAV-Pleiades 

Reference area(ARi) 1104.83 4083.41 1622.88 1860.92 3550.60 

segmented area(ADi) 990.95 4553.46 3289.46 1678.55 5720.45 

Intersection(ADi ∩ ARi) 1104.83 4083.41 1622.88 1830.22 3548.35 

Over segmentation -0.11 0.10 0.51 -0.09 0.38 

Under segmentation 0.00 0.00 0.00 0.02 0.00 

Total detected error(Dij) 0.08 0.07 0.36 0.06 0.27 

Accuracy 91.87 92.70 64.18 93.50 73.15 

3.3.3. Significance test for segmentation accuracies of filtered UAV-RGB, unfiltered UAV-RGB, and 
UAV-Pleiades image configurations using five forest blocks. 

To test the hypothesis that there is no significant difference in the mean area segmented from filtered 

UAV-RGB, Unfiltered UAV-RGB and UAV-Pleiades image configurations, a student t-test was 

performed. As can be seen in tables 3-9 and 3-10 below, the distributions of the data extracted from 

best segmentation of the image categories are sufficiently normal to conduct a student t-test 

(Schmider, Ziegler, Danay, Beyer, & Bühner, 2010), except in the case of the UAV-Pleiades segments 

for block 3. Their skewness  (< |2.0|), and kurtosis (< |9.0|) values are within acceptable range. In 

the case of block 3, a log transformation made it significantly normally distributed (skewness=0.07, 

<|2.0|). 
 

Table 3-8: Normality test using skewness and skewness z-value for data meant for assessing the 
effect of image configuration on area segmented for forest blocks 1 and 6.  

Unfiltered 

block 1 

Filtered 

block 1 

UAV-Pl 

block 1 

Unfiltered 

block 6 

Filtered 

block 6 

UAV-Pl 

block 6 

Mean 19.25 30.42 47.54 60.09 81.31 91.40 

Std. error 0.46 0.84 1.55 2.36 3.14 4.13 

Kurtosis 2.63 2.70 4.08 4.36 3.89 9.54 

Skewness 1.28 1.36 1.60 1.81 1.67 2.33 

Count 665 486 378 367 296 275 

Skewness               

z-value 0.36 0.61 0.97 1.30 1.88 1.77 

Kurtosis                           

z-value 0.17 0.31 0.38 0.54 0.81 0.43 
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Table 3-9: Normality test using skewness and skewness z-value for data meant for assessing effect 
of image   configuration on area segmented for blocks 4 and 3 

 

Unfiltered 

block 4 

filtered 

block 4 

UAV-Pl 

block 4 

Unfiltered     

block 3 

Filtered              

block 3 

UAV-Pl 

block 3 

Mean 65.30 51.23 54.34 64.35 60.25 108.59 

Std. error 3.91 2.57 3.14 3.04 2.80 7.02 

Kurtosis 6.05 3.87 7.33 8.75 5.68 16.69 

Skewness 2.10 1.82 2.12 2.37 1.98 3.44 

Count 166 170 168 232 252 176 

Skewness               

z-value 

1.86 1.41 1.48 1.28 1.41 2.04 

Kurtosis                           

z-value 

0.65 0.67 0.43 0.35 0.49 0.42 

Pl= Pleiades 

 
Also, Levene’s F-test was done to test the assumption of homogeneous variance. As can be seen in 
table 3-11 below, F (11) = 65.91, p = 9.2E-135, there is a significant difference in the variances at 
95% confidence level. Thus, the null hypothesis of equal variances was rejected, and an 
independent t-test with unequal variances was performed.  

 
Table 3-10: ANOVA results of Levene's test for the theory that segmented area from the different 

image configurations has equal variances. 

Source of Var. SS df MS F P-value F crit 

Between Groups 696807.7 11 63346.15 65.91 9.2E-135 1.79 

Within Groups 3477524 3618 961.17    
Total 4174331 3629         

 

The independent t-test with unequal variances (table 3-12), is associated with a significant difference 

in segmented area between filtered and unfiltered UAV-RGB images for blocks 1 (p = 3.81E-29), 6 

(p = 9.39E-08), and 4 (p = 0.003). There is insufficient evidence to reject the null hypothesis in the 

case of block 3 (p = 0.156) as shown in table 3-12. 

 
Table 3-11: Independent t-test results for the hypothesis that filtering does not affect the area 

segmented from UAV-RGB image at the 95% confidence level. 

  Filtered, n=486 

and Unfiltered, 

n=665 block 1 

Ho, µ1 =  µ2 

df=770 

Filtered, n=296 

and 

Unfiltered=367 

block 6 

Ho, µ1 =  µ2,  

df=575 

Filtered, n=170 

Unfiltered, 

n=166 

 block 4 

Ho, µ1 =  µ2, 

df=287 

Log(Filtered, 

n=252 

Unfiltered, 

n=232) 

block 3,  

Ho, µ1 =  µ2, 

df=481 

t Stat -11.68 -5.41 -3.01 1.42 

P(T<=t)one-

tail 

1.918E-29 4.695E-08 0.001 0.078 

t-Critical, 1-tail 1.65 1.65 1.65 1.65 

P(T<=t) 2-tail 3.837E-29 9.391E-08 0.003 0.156 

t-Critical, 2-tail 1.96 1.96 1.97 1.96  
Significant     

difference 

Significant  

difference 

Significant 

difference 

No significant 

difference 
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In the case of filtered UAV-RGB and UAV-Pleiades, as can be seen in table 3-13 below, the one tail 

t-test with unequal variance is associated with a significant difference between blocks 1 (p = 4.93E-

21), 6 (p = 2.60E-02) and 3 (p = 1.05E-16). Block 4 did not show any significant difference (p = 

2.22E-01) in the area segmented for both image configurations. 

  
Table 3-12: Independent t-test results for the hypothesis that there is no significant difference in 

the area segmented for UAV-RGB and UAV-Pleiades images at 95% confidence level 

  Filtered 

UAV, n=486 

and UAV-Pl, 

n=378 

block 1 

Ho, µ1 =  µ2 

df=589 

Filtered 

UAV, n=296 

and UAV-

Pl, n=275 

block 6 

Ho, µ1 =  µ2, 

df=521 

Filtered UAV, 

n=170 and 

UAV-Pl, n=168 

block 4 

Ho, µ1 =  µ2 

df=323 

log(Filtered 

UAV, n=252 and   

UAV-Pl, n=176) 

block 3 

Ho, µ1 =  µ2 

df=379 

t Stat -9.70 1.95 -0.77 -8.60 

P(T<=t) one-
tail 

4.93E-21 2.60E-02 2.22E-01 1.05E-16 

t-Critical,one-
tail 

1.65 1.65 1.65 1.65 

P(T<=t),two-
tail 

9.86E-21 5.20E-02 4.44E-01 2.11E-16 

t-Critical,two-
tail 

1.96 1.96 1.97 1.97 

 
Significant Significant 

(one tail) 

No Significant  significant  

3.3.4. SLIC segmentation 

In the case of SLIC segmentation, the results were visually poor. As can be seen in figure 3-11 below, 

post-processing of the output resulted in segments that cut across tree crowns. Therefore, 

segmentation accuracy assessment was not done for any output from SLIC. 

 

 

Figure 3-11: Visual assessment of SLIC segmentation output using forest block 5 
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3.4. Classification of UAV-RGB and UAV-Pleiades image configurations  using three 
classifiers 

The classification of UAV-RGB and UAV-Pleiades images was performed using ML, RT and SVM 

classifiers in ArcMap. The classification accuracies were compared between the two image 

configurations and across the three classifiers.The results presented in subsequent sections below. 

3.4.1. Classification of  UAV-RGB images (area-based) 

The detailed maps of Maximum likelihood, Random trees and Support vector machine classifications 

for forest block 1 are presented in figure 3-12 below. From the maps, it can be deduced that the 

identification of tree species ( Beech, Birch and Scots pine) and their surrounding environment from 

the UAV-RGB image configuration yielded good results using the three classifiers. The Random 

Trees classification produced a higher overall accuracy of 62%, compared to the 60.6% and 51.7% 

for Support Vector machines and Maximum likelihood classifiers respectively. Errors could, 

however, be visually recognised between the water and shadow classes. 

 

 
Figure 3-12: Map of block 4 showing classification of UAV-RGB image configuration using 

Maximum Likelihood (ML), Random Trees (RT) and Support Vector Machine (SVM) 
algorithms in ArcMap 

 

As can be seen in figure 3-13 below, the classification of Scot pine is 44.7%, 39.3% and 49.3% for 

SVM, RT and ML classifiers respectively.  24.2% of Beech was correctly classified by SVM and RT, 

while ML classifier correctly classified 18.2%. All three classifiers registered an accuracy >40% for 

classification of Birch species. Greater than 50% of the classifications of SVM and RT are in better 

agreement (Kappa of 53.5% and 53.7% respectively), while < 50% of the classification of ML is in 

better agreement (kappa of 45.7%).  
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Figure 3-13: Class accuracy for the classification of Scots pine (n=20), Beech (n=10), Birch (20), 

and their environment (water and shadow) using Support Vector Machines (SVM), 
Random Trees (RT) and Maximum Likelihood (ML) classifiers. 

3.4.2. Classification of UAV-Pleiades image using three classifiers 

The tree species maps from Maximum Likelihood, Random Trees and Support Vector Machine 

classifications for block 4 are presented in figure 3-14. From the maps, it is clear that using the three 

classifiers, the discrimination of tree species (Beech, Birch and Scots pine) and their surrounding 

environment yielded good results from the UAV-Pleiades image configuration. The Support Vector 

Machine and Random Trees classification produced a higher overall accuracy of 84%, compared to 

the 74.8% for Maximum Likelihood classifiers respectively. 
 

Figure 3-14: Map showing the classification of UAV-Pleiades block 4 using Maximum Likelihood 
(ML), Random Trees (RT), and Support Vector Machine (SVM) algorithms in 
ArcMap. 
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The classification results were best in depicting Scots pine and Birch using all three methods as 

shown in figure 3-15. Amongst the tree species, Beech had the lowest classification accuracy for all 

classifiers.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

comparison of class accuracy reveals a  general increase in the class accuracies recorded for UAV-

Pleiades image compared to the UAV-RGB image. As can be seen in figure 3-16, the addition of 

Pleiades to UAV-RGB image increased the classification accuracy when using all three of the 

Classification algorithms. The classification accuracy of UAV-Pleiades image configuration is higher 

when using  SVM and RT, compared to the ML classifier. 

 

 

Figure 3-16: Comparing the classification accuracy of UAV-RGB and UAV-Pleiades image   
configurations using Maximum Likelihood (ML), Random Trees (RT) and Support  

                     Vector Machine (SVM) algorithms in ArcMap. 

3.4.3. Classification accuracy assessment 

The confusion matrix derived from the classification of both image configurations by the three 

classifiers is presented in table 3-14. The matrices consist of overall accuracy (OA), the degree of 

agreement between the detailed image and reality (kappa value), and class accuracy (CA). The kappa 

value, OA and CA for UAV-Pleiades image configuration are higher compared to that from the 

UAV-RGB image. The three classifiers could identify Scots pine (Sp) and Birch (Bi) from the UAV-

Pleiades image with an accuracy of greater than 80%. Random trees and support vector machines 
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Figure 3-15: Class accuracies for each cover type using Support Vector Machines (SVM), 
Random Trees (RT) and Maximum likelihood (ML) classification algorithm. 
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classifiers were able to discriminate Beech (Be) and Birch (Bi) species from UAV-Pleiades image with 

an accuracy (CA) of greater than 60%, compared to the 14% accuracy recorded by maximum 

likelihood classifier for the same UAV-Pleiades image configuration. 

 
Table 3-13: Comparison of the classification accuracies (%) of tree species and their environment  

for two image configurations and three classifiers 

UAV-RGB     
 UAV-Pleiades       

  Sp Bi Be Wa Sh OA Kappa Sp Bi Be Wa Sh OA Kappa 

SVM 44.7 43.1 24 97.7 61.7 62 0.54 84.2 83.3 63.5 100 64.2 84.3 0.8 

RT 39.3 44.3 24 98 61.7 62 0.54 85.3 81 65 100 63.4 84.4 0.8 

ML 49.3 41 18 99.1 52.5 51.7 0.46 85 84.4 14.3 100 71.2 70.8 0.62 

Sp-Scots pine, Bi=Birch, Be=Beech, Wa=Water, Sh=Shadow, OA= Class accuracy, RT=Random trees, 

SVM=Support vector machines, ML=Maximum likelihood. 

 

Details of the confusion matrix is presented in appendix IV. The UAV-Pleiades classifications were 

used to investigate significant differences in the performance of the three classifiers using McNemar 

test. The results are presented below. 

3.4.4. Comparing SVM, RT and ML classifications results. 

From the classified segments, a total of 113 test segments were extracted using the reference 

polygons. The McNemar’s test (Adelabu et al., 2013), investigates if the difference in the number of 

misclassified test polygons is significant. As can be seen in table 3-15, the McNemar’s Chi-squared 

statistic between SVM and RT classifiers is <1.98 as described in (Manandhar et al., 2009), at the 95% 

confidence level. The differences in these classifications were found not significant. In the case of 

SVM and ML, and between RT and ML classifiers, the McNemar’s Chi-squared statistic is > 1.98. 

There is a significant difference in the classification of SVM and ML, and between RT and ML. 

Details of the 2x2 confusion matrix comparing these classifiers is presented in Appendix V. 

 
Table 3-14: Comparison between SVM, RT and ML classifiers using McNemar's Chi-squared 

statistic. 

 

McNemar's Chi-
squared statistic 

SVM Vs RT 0.6 

SVM Vs ML 2.8 

RT Vs ML 2.5 

3.5. Modelling DBH from CPA, and Predicting AGB 

Based on the relationship between DBH and CPA, models were developed, validated and used to 

model AGB. The results are presented in subsequent sections below. 

3.5.1. Relationship between DBH(field derived) and CPA(derived from image segmentation and 
classification) of tree species 

Except for Beech species with a correlation coefficient of 0.27, there is a strong positive relationship 

between CPA and DBH of all the other tree species in the Amtsvenn area evidenced by the 

correlation coefficients of 0.85 0.85, 0.94, 0.92 and 0.87 for Scots pine, Birch, Oak and Douglas fir 

respectively. As can be seen in figure 3-17 below, more than 70% of the variations are explained for 

each species as shown by the R2 values.  
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Figure 3-17: Regression analysis between CPA and DBH of main tree species within the 

Amtsvenn area. 

As can be seen in figure 3-18 below, less than 10% of the variations in the CPA and DBH relationship 

is explained in the case of Beech trees. 

 

 
Figure 3-18: Relationship between DBH and CPA for Beech species. 

The significance of the CPA and DBH relationship for each of these species was verified in an 

ANOVA analysis as shown in table 3-16 below. The relationship between CPA and DBH (after the 

removal of outliers) for Scots pine, Oak, Birch and Douglas fir are significant at 95% confidence 

level. Based on the significance of the relationships, models were developed. In the case of Beech, 

the CPA and DBH relationship was weak as can be seen in the figure below. The detailed table 

showing the t-test results is presented in appendix VI. 
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Table 3-15: ANOVA test showing the significance of CPA and DBH relationship for tree species 
at 95% confidence level. 

Species df r F F-critical P-value 

Scots pine 17 0.85 49.2 4.1 6.00E-08 

Oak 28 0.93 15.6 4 0.0002 

Birch 11 0.94 12.5 4.4 0.002 

Douglas fir 12 0.87 26.4 4.3 4.00E-05 

Beech 8 0.33 0.1 4.6 0.74 

3.5.2. Model development and Validation 

Different models were developed and validated using the root mean square errors (RMSE). As can 

be seen in table 3-17, the RMSE for the Logarithmic model is lowest for Scots pine, and Birch 

species. The Linear and Power sigmoid models yield almost similar RMSEs for Oak species while 

the quadratic model yields the lowest RMSE for the Douglas fir species. There was a significant 

difference between the field derived DBH and predicted DBH from the linear, and power sigmoid 

models for Scots pine species as shown by their p-values from a one way ANOVA (p < 0.05). In the 

case of Birch and Douglas fir trees, predicted DBH is not significantly different from field DBH (p-

values > 0.05). For Oak trees, the logarithmic model predicted DBH which is substantially different 

from field DBH (p-value < 0.05).  
 

Table 3-16: Comparing DBH and CPA models for Birch, Scots pine, Oak and Douglas fir using 
R2 and RMSE. 

 Scots pine    Birch   

 R2 RMSE(cm) P-value   R2 RMSE(cm) P-value 

Linear 0.77 4.99 7.97E-08  Linear 0.87 2.4 0.808 

Log 0.65 3.71 9.98E-01  Log 0.83 1.3 0.866 

Power 0.66 13.67 3.96E-04  Power 0.79 1.7 0.845 

Quadratic 0.85 4.86 5.03E-01  Quadratic 0.88 3.9 0.748 

         

 Oak     Fir   

 R2 RMSE(cm) P-value   R2 RMSE P-value 

Linear 0.87 3.75 0.786  Linear 0.82 4.63 0.430 

Log 0.8 14.49 0.004  Log 0.76 4.83 0.452 

Power 0.82 3.88 0.785  Power 0.76 4.15 0.412 

Quadratic 0.87 7.97 0.607  Quadratic 0.88 3.71 0.407 

3.5.3. Model selection 

All models with p-values < 0.05 for each species were rejected. The models with p-values > 0.05 at 

the 95% confidence level were considered good. However, the best model for each species was finally 

selected based on the magnitude of p-values and RMSE values. Models with large p-values at 95% 

confidence level, and accompanied by lower RMSE values were chosen as best for each species. The 

best models are presented in table 3-18 below. 
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Table 3-17: Best selected DBH (cm) and CPA (m2) models for Scots pine, Birch, Douglas fir and Oak trees 
species. 

Species Equation  R2 RMSE(cm) 

Scots pine DBH= 16.425*ln(CPA) - 12.702 0.65 3.71 

Birch DBH = 13.477*ln(CPA) - 11.165 0.83 1.3 

Douglass 
fir 

DBH= 0.5897*CPA2 - 7.2282*CPA + 34.959 0.88 3.71 

Oak DBH= 0.8363*CPA + 15.34 0.87 3.75 

3.5.4. Predicting DBH with best models using samples from classified map 

A total of 17 and 11 segments were used for predicting DBH in the case of Scots pine and Birch 

respectively. The predicted DBH had means of  32.3cm and 18.2cm for Scots pine and Birch, with 

respective standard deviations of 5.6cm and 5.9cm.  A correlation analysis between field derived and 

predicted DBH shows a strong positive association in both species; Scots pine (r = 0.76) and Birch 

(r = 0.90). As can be seen in figure 3-19 below, 64% of field DBH was predicted by the model for 

Scots pine, while the model for Birch predicted 88%. 

 

 

 

A paired t-test was performed to investigate a significant difference in the predicted and field-derived 

DBH. As shown in table 3-19, the log-transformed field-derived, and predicted DBH for Scots pine 

were significantly normally distributed (|skewness and kurtosis z-values| < 1.98) to conduct a t-test. 

Additionally, both variables were assumed to have homogenous variance based on visual assessment 

of variations in their descriptive statistics. The field derived from DBH for Birch was significantly 

not normally distributed (|skewness z-values| ≥ 1.98). To test for a significant difference between 

field and modelled DBH for Birch species, the Man Whitney U-test was performed. The details of 

the test are presented in appendix VII. 
 

Table 3-18: Descriptive statistics and normality test for field derived and predicted DBH (Scots 
pine and Birch) 

 log(Field derived DBH) log(Predicted DBH) 

 Scots pine Birch Scots pine Birch 

Mean 1.50 1.23 1.50 1.24 

SD 0.09 0.16 0.08 0.14 

Skewness z-value 0.03 -1.98 -0.07 -0.97 

Kurtosis z-value 0.03 -0.03 0.04 -0.03 
 

The paired t-test (appendix 5) was associated with insufficient evidence to reject the null hypothesis 

that there is no significant difference between mean modelled and mean field derived DBH for Scots 
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Figure 3-19:The relationship between Field derived and Predicted DBH for Scots pine and Birch tree species. 
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pine at the 95% confidence level. In the case of Birch species, the Man Whitney U-test for the average 

field and modelled DBH values is associated with a p-value of 0.409, higher than the 0.05 probability 

level. The results show that there is no statistically significant difference between modelled and field-

derived DBH for Birch species.  

3.5.5. Predicting AGB using samples from classified map 

The predicted AGB had means of  169kg and 154.5kg per tree of Scots pine and Birch, with 

respective standard deviations of 1.12kg and 31kg.  A correlation analysis between field derived and 

predicted AGB shows a strong positive association for both species; Scots pine (r = 0.83) and Birch 

(r = 0.96). As can be seen in figure 3-20 below, 68% of field AGB was predicted by the model for 

Scots pine, while the model for Birch predicted 92%. 
 

A paired t-test was envisaged to investigate a significant difference in the predicted and field-derived 

AGB, a. A check for normality, as a requirement for the t-test, shows that the variables were not all 

sufficiently normally distributed. As shown in table 3-20, the log-transformed field-derived, and 

predicted AGB for Scots pine is normally distributed (|skewness and kurtosis z values| < 1.98). 

Additionally, both variables were assumed to have homogenous variance based on visual assessment 

of variations in their descriptive statistics. On the contrary, this was not the same in the case of Birch. 

Thus a paired t-test was performed for Scots pine, while the Man Whitney U-test was done for Birch 

species. Details of the paired t-test for Scots pine trees is presented in appendix VIII, while the details 

of the Man Whitney U test for Birch species is presented in appendix IX. 

 
Table 3-19: Descriptive statistics and normality test for log-transformed field and predicted AGB 

for Scots pine and Birch tree species. 

 

Log (Field derived 
AGB) 

Log (Predicted 
AGB) 

 

Scots 
pine Birch Scots pine Birch 

Mean 2.23 2.06 2.23 2.09 

SD 0.21 0.36 0.21 0.32 

Skewness z-value -0.19 -4.45 -0.19 -2.18 

Kurtosis z-value 0.11 -0.06 0.11 -0.07 

 

The paired t-test for Scots pine is associated with a statistically significant difference (p < 0.05). Thus, 

the AGB prediction for Scots pine is significantly higher than the field derived AGB. With this 

Figure 3-20: Relationship between field derived and modelled AGB for Scots pine and Birch 
tree species. 

 

R² = 0.9234

0

100

200

300

400

0 200 400F
ie

ld
 d

e
ri

ve
d

 A
G

B
 (

k
g

/
tr

e
e
)

Modelled AGB (kg/tree)

Birch

R² = 0.6815

0

100

200

300

400

500

600

0 100 200 300 400

F
ie

ld
 d

e
ri

ve
d

 A
G

B
 (

k
g

/
tr

e
e
)

Modelled AGB (kg/tree)

Scots pine



 

45 

evidence, the null hypothesis is rejected in favour of the alternative hypothesis that there is a 

significant difference in the mean log-transformed field and modelled AGB for Scots pine at the 

95% confidence level. The Man Whitney U-test comparing field derived and modelled AGB for 

Birch species is associated with a statistically non-significant difference in the field and modelled 

AGB mean values for Birch species, at the 95% confidence level. The resulting p-value of 0.409 is > 

0.05. The relationship between AGB and CPA for Scot pine is linear while AGB has a linear 

relationship with the natural log of CPA in the case of Birch species.  
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4. DISCUSSION 

4.1. Optimal flight pattern and height of DJ Phantom 4 to produce good quality point cloud 
and orthophoto of the forest scene. 

The first question in this study was to investigate optimal flight pattern and height that the DJ 

Phantom 4 with RGB camera sensor will fly over forest stands and produce sound quality point 

cloud and orthophoto. The findings are discussed in section 4.1.1 and 4.1.2 below. 

4.1.1. Effect of flight pattern on the quality point cloud and orthophoto generation. 

Nasrullah (2016) reported that cross or perpendicular flight pattern showed increased bounded block 

accuracy and eliminated the systematic radial error, especially in the z-coordinate. The results from 

this study also shows increased accuracy in the z-axis, and further expose that parallel flight pattern 

results in a much greater accuracy in the z-axis (height component), and registered more 2D and 3D 

tie points in the bounded block adjustment process. This means that the parallel flight pattern will 

result in better construction of point cloud and orthophoto (Khoshelham, 2012; Remondino et al., 

2017). The lower RMSE for the height component (z) compared to the perpendicular flight pattern 

could be due to the differences in the plane of vision.  In the parallel flight pattern, the sensor 

captures information along the same horizontal plane, making the extrapolation of height 

information more accurate. In the case of perpendicular flight pattern, the plane of vision is different 

(crossing), thus resulting in greater RMSE. 

 

Nasrullah (2016) used flight height of 70m and 50m to configure the cross flight. In this study, flight 

heights of 40 and 45m were used to configure cross or perpendicular and parallel flight pattern. There 

is a possibility that for the effect of flight pattern in this study may have been influenced by the sub-

optimal flight height that resulted to some uncalibrated images. Also, the height difference between 

two flights needs to be sufficient (greater than or equal to 20m) for the effect of flight pattern to be 

clearly noticed. In addition, the third flight, used to complete the perpendicular and parallel patterns, 

was acquired on a different date, with slightly different weather conditions. The differences in scene 

characteristics might have reduced tie point detection, image matching, and masking of the effect of 

flight pattern on geolocation and bundle block details. Although height information has not been 

used in this study, the smaller RMSE recorded by the parallel flight pattern is suggestive that parallel 

flight pattern could be better in the event that height information is needed. However, the observed 

differences in geolocation and bounded block adjustment details in this study qualitatively informs 

that the parallel flight pattern has chances of producing better quality point cloud and orthophoto.  

4.1.2. Effect of flight height on the quality point cloud and orthophoto generation. 

Increase in flight height above tree canopy increased the number of calibrated images, the number 

of 2D and 3D key points, and the RMSE error especially in the z-axis (height). This increase was 

relatively small and consistent with the results from the studies of Tahar, (2015) and Udin & Ahmad, 

(2014), who used Sony NEX-5n camera sensor on a multirotor UAV. The observed pattern in flight 

height and image calibration, 2D and 3D tie points and RMSE could be explained by the dynamic 

nature of remotely sensed target (trees). The leaves and branches of trees are always in motion from 

the movement of air, resulting in blurring of images. The movements change the orientation of the 

leaves at the time of image capture. At lower altitudes, the UAV camera sensor captures very fine 

details like changes in leave orientation, the intensity of sunshine, water on leaves. Once images are 

captured under such circumstances, the scenes appear to be different, irrespective of the overlap, 

and thus the description, identification and matching of tie points during the photogrammetric 

process are negatively influenced. Because the scene will be slightly different, the number of tie points 
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identified and matched reduced, and image matching and calibration becomes a problem, leaving 

gaps in the areas where un-calibration occurred as shown in figure 4-1 below with red points.  

 

At  

 

 

higher flight altitudes, the camera sensor captures images with coarse resolution, making each image 

scene identical. This eases feature identification, description, tie point identification and matching in 

the photogrammetric process, and enhances image calibration. However, increase in flight height 

above tree canopy increases the geolocation error related to GCPs and CPs, especially in the z-axis 

(height component).This is so because, at higher flight altitudes, the ground control points (GCPs) 

become less visible. Thus while marking them in Pix4D, their centres are not very visible. This result 

is in line with the work of (Tahar, 2015), who reported a jump in the RMSE of the GCPs in the 

vertical axis while using a Hexacopter UAV (Rotary-wing).   

 

According to the Pix4D user manual, a minimum flight height of 60m is sufficient for image 

calibration. Contrary to this prescription, this study reveals a minimum flight height of 80m above 

tree canopy (higher for the DJ Phantom 4 drone resulted in a 100% calibration, all things being equal. 

This minimum flight height is different for different camera sensors. A Canon ELPH 520 HS digital 

camera attached to a commercial multirotor UAV produces optimal image calibration and good 

quality 3D products at a flight altitude of 20m above trees (Dandois et al., 2015). The minimum flight 

may also vary slightly over different forest types (open or closed, deciduous or coniferous). However, 

the number of flights used in this study are limiting. There is a need to do many more replications, 

and over different forest structures and types to ascertain this claim. 

40m above tree canopy 60m above tree canopy 

100m above tree canopy 80m above tree canopy 

Figure 4-1: Variation in flight height and effect on image calibration (red points are 
uncalibrated   images, while blue points are calibrated images) 
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4.2. Segmentation of UAV-RGB and UAV-Pleiades image blocks using Multiresolution and 
SLIC segmentation algorithms. 

The second question in this research was to investigate which image configuration; UAV-RGB and 

UAV-Pleiades result in a better segmentation. The objective begins with investigating the effects of 

filtering on segmentation accuracy of UAV-RGB image, then proceeded to investigate segmentation 

accuracy between UAV-RGB and UAV-Pleiades image configurations. Also, this question extended 

to evaluate which segmentation algorithm (SLIC or Multiresolution) does a better segmentation of 

the image configurations. The results are discussed in sections 4.2.1 and 4.2.2 below. 

4.2.1. Segmentation of UAV-RGB and UAV-Pleiades image blocks using Multiresolution 
segmentation algorithm in eCognition. 

The multi-resolution segmentation accuracy was numerically different for all the image 

configurations. The difference reflects variations in forest structural properties of the blocks. These 

properties include; stand density, crown size,  vertical structure, the proximity to neighbouring trees 

and spectral variation in each canopy level. According to Block 1 is an open forest dominated by 

Scots pine. The tree crowns occupy same canopy level, with spaces between the crowns. The other 

blocks are mixed dense forest, with tree crowns at different canopy levels. However, the crown sizes 

were variable within each block. For all the segmented forest blocks, filtering resulted in a significant 

effect on the segmentation of UAV-RGB image blocks 1, 4, 5 and 6. Blocks 1, 5 and 6 show 

enhancement in segmentation accuracy, while block 4 show a decrease in segmentation accuracy.  

 

According to Pu & Landry (2012), at higher resolutions, branches and within crown variations 

become prominent as noise, with the potential of complicating segmentation. Block 1 is an open 

forest with spaces between tree crowns and very low understory shrubs with branches that constitute 

noise. Filtering must have sharpened the crown boundaries, eliminate background noise from 

branches and irregularities within crowns and reduce over-segmentation, thus enhancing 

segmentation accuracy.  

 

Variation in crown size (Gomes & Maillard, 2016), the absence of gaps between neighbouring tree 

crowns (Mike Wulder, Niemann, & Goodenough, 2000) and the lack of sufficient spectral variations 

between crowns of different species (Pu & Landry, 2012) limits segmentation accuracy. Blocks 5 and 

6 are dense mixed forests with tree crowns touching each other within the same canopy level. 

However, the blocks show a high degree of spectral variability within the canopy level. Filtering of 

this blocks must have sharpened the boundaries between crowns with different spectral properties, 

reduce over-segmentation and significantly enhance segmentation accuracy.  The enhancement could 

have been so because the crowns were not too intermingled.  

 

Contrary to the segmentation of 20 and 25cm resolutions producing best segmentation (Okojie, 

2017), the segmentation of 30cm resolution UAV-RGB image blocks yielded accuracies higher than 

80%. The high accuracy is probably due to the filtering process which averages spectral values and 

reduces noise inherent to high-resolution images (Yong, Shi, Benediktsson, & Gao, 2018). Also, the 

partitioning of the area into blocks may have reduced complexity and thus enhance segmentation 

accuracy (Larsen et al., 2011). 

 

The segmentation accuracy of the UAV-Pleiades image blocks was higher than the accuracy of 

segmenting UAV-RGB image blocks. The high accuracy could mean that the addition of the NIR 

band reduced the effect of shadow that exists in the UAV-RGB image.  It, therefore, suggests that 

the addition of Pleiades to UAV-RGB enhanced the segmentation accuracy. The enhancement was 

statistically significant in blocks 1, 6 and 3. The significant improvement could be likened to the 

spatial arrangement and vertical structure of tree species within each of these blocks. Block 1 is an 
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open forest with mostly Scots pine, with visible crowns that are closed within the same canopy. 

Addition of the NIR band from the Pleiades must have increased spectral variation, clearly showing 

boundaries and increase segmentation accuracy (Pu & Landry, 2012). Block 6 is composed of Scots 

pine, Oak, Birch and Beech, with each species grouped within the same canopy level. Block 3 has 

the Birch and Scots pine occupying specific locations and also within same canopy level. This spatial 

arrangement of tree species in these blocks, with each species occupying a particular vertical space, 

might have contributed to the high segmentation accuracy. Also, the addition of the NIR band from 

the Pleiades must have increase spectral variations between the crowns of tree species in these blocks 

and so enhance segmentation. The segmentation accuracy associated with the addition of Pleiades 

to UAV-RGB is higher than the results of segmenting high-resolution images like Geo-eye, and 

worldview (SK Baral, Malla, & Ranabhat, 2010; Srijana Baral, 2011).  The differences in results might 

be partly because of the ESP2 tool, which was not used in the cited cases.  

4.2.2. Segmentation of UAV-RGB and UAV-Pleiades image blocks using SLIC segmentation 
algorithm in R. 

The segmentation of UAV-RGB and UAV-Pleiades using SLIC algorithm in R-environment was 

not very successful.  The segments were visually rejected for quantitative assessment. The segments 

were of the same sizes, cutting tree crowns in parts and mixing tree crowns. The poor performance 

is probably because the forest scene is too complicated for the algorithm. The variation in colour 

and texture gradient in the forest seems too narrow for the algorithm to sufficiently differentiate and 

clearly segment. SLIC segmentation algorithm may not be suitable if the purpose of segmentation is 

to extract area for AGB modelling accurately. However, Yuan & Hu (2016) used the algorithm 

successfully for the identification of diseased tree crowns. In their work, the purpose of segmentation 

was to identify diseased trees. They generated equally sized SLIC superpixels, capturing mostly the 

colour information which denoted disease infestation. Pure training and validation samples of 

diseased and healthy trees were then extracted and used for classification.  

 

4.3. Classification of UAV-RGB and UAV-Pleiades image blocks using Maximum 
likelihood, Random trees and Support vector machine classifiers. 

The third research objective was to investigate the hypothesis that there is no significant difference 

in tree species classification accuracy using segmented layers from UAV-RGB and UAV-Pleiades 

images. Also, the objective evaluated classification results from three classifiers. The results are 

discussed in section 4.3.1 below. 

4.3.1. Classification of UAV-RGB image blocks using Maximum likelihood, Random trees and 
Support vector machine classifiers. 

The classification of different tree species in a mixed forest can be challenging using high-resolution 

UAV-RGB or the multispectral Pleiades as standalone The observed high accuracy can be explained 

by the sensitivity of the NIR band from the Pleiades to species. On the other hand, the class 

accuracies for UAV-RGB image block range from 49.3% in Scots pine to 24% in Beech species for 

all three classifiers. The low accuracy of classifying Beech species is probably because of fewer 

samples of Beech and high spectral mixing between Beech and Scots pine. Also, the Beech trees were 

younger, and so mostly occupied the lower canopy, and so its crowns were shaded by the shadows 

of mature and taller trees, causing it to be seen and classified as a shadow.  

 

The overall accuracy and kappa value recorded in this study for the three classifiers are higher than 

that discussed in some works (Adelabu et al., 2013; Manandhar, Odeh, & Ancev, 2009). The higher 

accuracy could be due to the high spatial resolution of images used in this study compared to the 5m 

resolution of RapidEye dataset used in the other studies. High spatial resolution images display more 

features and allow the features to be differentiated, compared to lower or coarse resolution images, 
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thus resulting in higher classification accuracies (Adam Van Etten, 2016; Baker, Warner, Conley, & 

McNeil, 2013; Hsieh, Lee, & Chen, 2001). The classification procedure and environment may also 

have had an influence. The present study performed classification in ArcMap, while the cited case 

classified in Matlab. This study made use of feature normalisation method as described in Hsu et al., 

(2010). According to (Kuzmin et al., 2016), different normalisation methods may exert different 

effects on different classifiers. However, the impact of feature normalisation methods on classifiers 

was not assessed in this work. The McNemar test z-score < 1.96 for SVM and RT, mean that there 

is no significant difference between the classifiers. However, the classifications of ML and SVM, and 

ML and RT are significantly different at the 95% confidence level (test statistic >1.96). SVM and RT 

performed significantly better than the ML. This result is in line with other works (Adelabu et al., 

2013; Manandhar et al., 2009; Pouteau, Collin, & Stoll, 2013), stating that RT and SVM are much 

better classifiers for tree species identification compared to Maximum Likelihood. The reason might 

be because SVM and RT classifiers perform multiple classifications of each object as specified by the 

user, then perform a vote of the plurality to get the best classification for each object. The iterative 

process minimises chances of misclassification. Also, these two classifiers require a limited number 

of pure samples to get a reasonable classification. 

4.4. Modelling DBH and AGB for Scots pine and Birch. 

The last objective of this study was to model DBH using CPA from classified segments and use 

this to model AGB and carbon. The objective was to answer the hypothesis that there is no 

significant difference between modelled and field measured DBH of dominant tree species within 

the study area. The selected species are Scots pine and Birch, and the findings are discussed in 

sections 4.4.1 below. 

4.4.1. Modelling DBH and AGB for Scots pine and Birch 

Logarithmic models were selected for predicting DBH from CPA for Scots pine and Birch. These 

logarithmic models reveal that as much as the increase in CPA increase DBH of both species, the 

rate of increase decreases as the competition for space, nutrients increases in the forest. The 

predictions made by these models were not significantly different from the estimations using field 

data. However, these models are more valid within the data range used for their development, and 

their statistical power is limiting due to the small sample size of trees used in their development and 

validation. The relationship between AGB and CPA is linear for Scots pine, meaning an increase in 

CPA increases AGB. This outcome is similar to the work of Wardani (2014), who reported a linear 

relationship between AGB and CPA for Scot pine species. In the case of Birch species, AGB has a 

linear relationship with the natural log of CPA. There is a need for further studies in this location to 

comprehensively ascertain the true statistical power of these models using larger sample size for each 

tree species. 

4.5. The Limitations of this research. 

Based on the highlighted results and their implications vis a vis other works, the following limitations 

are highlighted. 

4.5.1. UAV data acquisition 

The collection of data to test the effect of flight height on quality of point cloud ought to have been 

done over the same forest for which flight pattern was investigated. However, this was not possible 

due to permit issues. Also, the number of flights were limited to efficiently determine flight height 

thresholds for the Phantom 4 over the forest with different structures. 
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4.5.2. Field data collection and classification 

The field data from last year was collected not for species classification, thus would not be most 

appropriate for classification. Species like Beech, Douglas fir, and European hornbeam were not 

adequately represented in the dataset for classification. Of the Scots pine, Birch and Oak that had a 

reasonable count, their locations were conflicting in some cases.  The classification made use of 

feature normalisation without investigating the potential effect of this on classifiers, and so might 

have introduced anomalies.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions. 

This study has demonstrated that the relatively cheaper and flexible UAV platform with RGB camera 

sensor on board can produce images (UAV-RGB) from which the classification of tree species and 

their environment is possible. It has also demonstrated the added value of combining UAV-RGB 

and multispectral Pleiades images on segmentation and tree species identification for carbon 

estimation in a temperate forest. The study had four research questions and six hypothesis. The 

specific conclusions are presented below. 

 

Question1: Which flight pattern is optimal to generate a high-quality point cloud of forest stands using DJ Phantom 

4 with RGB camera, and which flight height is optimal for image calibration? 

 

The first part of question one sort to assess the effect of flight pattern on the quality of point cloud, 

and orthophoto of forest stands, using DJ Phantom 4 with RGB camera onboard. This assessment 

is based on geolocation and bundle block adjustment details. The study reports that the parallel flight 

pattern results in a lower RMSE and higher numbers of 2D and 3D points, presuming that it has 

more chances of producing better quality products. The study thus concludes that flight pattern has 

an effect on the geolocation and bundle block adjustment details, and thus quality of point cloud and 

orthophoto of forest stands using DJ Phantom 4 with RGB camera on board.  

 

The second part of question one investigated the relationship between flight height of DJ Phantom 

4 above tree canopy and image calibration. The findings conclude that increase in flight height above 

tree canopy increases the % of images calibrated. Furthermore, the study identifies a minimum flight 

height of 80m above tree canopy as optimal for image calibration. However, the study equally notes 

that this minimum flight height may vary for different forest types, as well as for different camera 

brands mounted on the UAV. 

 

Question 2: Which image configuration; produces better segmentation (UAV-RGB or UAV-RGB combined 

with - the Pleiades), and which algorithm performs better segmentation: multiresolution (in eCognition) 

or SLIC (in R)? 

Two null hypothesis are investigated here. The first hypothesis states that there is no significant 

difference in the segmentation accuracies of UAV-RGB and UAV-Pleiades images. From statistical 

results, the study reports that the segmentation accuracy of UAV-Pleiades image was significantly 

higher than that of the UAV-RGB. Therefore, the work concludes with 95% confidence that the 

addition of multispectral Pleiades significantly increases the segmentation accuracy of UAV-RGB 

image. 

 

The second hypothesis presumes that there is no significant difference in the accuracies of 

Multiresolution and SLIC segmentations of UAV-RGB and UAV-Pleiades images. From the results, 

the study concludes that multiresolution performs better to extract tree crowns for modelling DBH 

and forest carbon. 

 

Question 3: What is the difference in classification accuracy of tree species from UAV-RGB and UAV-Pleiades 

images using Maximum Likelihood, Random trees and support vector machine classifiers in ArcMap? 

 

Two null hypothesis are investigated in this question. The first is that the addition of multispectral 

Pleiades has no significant effect on the classification accuracy of UAV-RGB image. To this 
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hypothesis, findings show both class and overall accuracy of UAV-Pleiades image significantly higher 

than that of UAV-RGB image. The study concludes with 95% certainty that the addition of 

multispectral Pleiades significant enhances and increase the accuracy of classifying Scots pine, Birch, 

and Beech tree species within their environment. 

 

The second hypothesis states that there is no significant difference in the classification accuracy of 

ML, RT and SVM classifiers. The results reveal that the classification accuracies of RT and SVM 

were significantly higher than that of the ML classifier. Also, the classification accuracies of RT and 

SVM were significantly not different. The study thus concludes with 95% certainty that RT and SVM 

classifiers are significantly better in classifying Scots pine, Birch, and Beech tree species within their 

environment. 

 

Question 4: What is the difference in aboveground carbon of dominant tree species estimated from field DBH and 

predicted DBH using the best-classified image? 

The logarithmic relationships between CPA and DBH for Scots pine and Birch species are significant 

at the 95% confidence level and can be used to predict DBH as well as AGB/Carbon from classified 

segments with 95% confidence. However, these models are limiting due to a small sample size of 

tree species used. 

 

Overall, combining the relative cheap UAV-RGB and multispectral Pleiades (50cm) images yields a 

better segmentation and classification of tree species. Multiresolution segmentation is better for AGB 

modelling while SLIC could be used for classification. Considering low cost, and simplicity, the 

implementation of SVM, ML and RT in ArcMap is preferred over environments like eCognition and 

R. Also, the use of support vector machine and random trees classifier with limited training samples 

is preferred to maximum likelihood classifier. The resulting CPA-DBH, and DBH-AGB models and 

be used to estimate forest carbon with certainty but low statistical power due to a limited sample size 

of trees used.  

5.2. Recommendations. 

Based on the highlighted limitations of the study, the following recommendations are highlighted  

 

1. More regular and replicative flights should be performed with the  Phantom 4 drone over a variety 

of forest stands at different flight heights to determine the minimum and maximum flight height 

that may result in good quality  3D products. Once optimal flight height is resolved, then the 

influence of flight pattern can be further investigated. 

2. Exploiting the use of ESP2 tool for better segmentation could yield some impressive results, 

especially comparing it across different image resolutions. 

3. Exploring the impact of feature normalisation on classification accuracy is in prospect. 

4. The use of DJ Phantom 4 drone with multispectral and RGB camera sensor mounted on board 

could be used and comparison between UAV-RGB, UAV-RGB-NIR and UAV-Pleiades image 

configurations on segmentation and classification investigated. In this scenario, comparison of 

segmentation and classification with and without canopy height model could yield interesting 

results. 
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APPENDICES 

 
Appendix I: Variation in parameters for the segmentation of forest blocks under three imaged 

configurations, and segmentation levels selected for assessment. 

  Filtered UAV-RGB    

Forest block 

Step size 

level 1 

Step size 

level 2 

Step size 

level 3 Shape Compactness 

Level 

selected 

1(Open forest) 0.2 0.4 5 0.6 0.9 1 

3(Building) 0.5 1 20 0.7 0.9 1&2 

4(Water) 0.5 1 20 0.7 0.8 1&2 

5(Near water) 0.5 1 20 0.7 0.8 1&2 

6(Tank) 0.5 1 20 0.7 0.9 1&2 

       

  Unfiltered UAV-RGB    

Forest block 

Step size 

level 1 

Step size 

level 2 

Step size 

level 3 Shape Compactness 

Level 

selected 

1(Open forest) 0.5 1 20 0.6 0.8 1&2 

3(Building) 0.5 0.8 1.6 0.8 0.9 2&3 

4(Water) 0.5 1 20 0.6 0.8 1&2 

5(Near water) 0.5 1 20 0.7 0.8 1&2 

6(Tank) 0.5 1 20 0.6 0.8 1&2 

       

  UAV-Pleiades    

Forest block 

step size 

level 1 

step size 

level 2 

step size 

level 3 shape compactness 

Level 

selected 

1(Open forest) 0.2 0.4 5 0.7 0.9 1&2 

3(Building) 0.5 1 20 0.7 0.8 1&2 

4(Water) 0.5 1 20 0.7 0.8 1&2 

5(Near water) 0.5 1 20 0.6 0.8 1&2 

6(Tank) 0.4 0.8 1.6 0.5 0.8 1&2 
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Appendix II: SLIC segmentation 

 
#SEGMENTING UAV-RGB AND UAV-PLEIADES IMAGE CONFIGURATIONS WITH SLIC# 

#-Section 1-------------------------------------------------------------------------------------------------------- 

library(tidyverse) 

library(imager) 

library(rgdal) 

library(maptools) 

library(rgdal) 

library(spdep) 

library(rgeos) 

library(raster) 

library(spatstat) 

library(sp) 

Path=("C:/Users/Effiom/Desktop/SLIC_segmentation_filtered_30cm/Near_Water") 

setwd(Path) 

im <- load.image("Path/Near_water_3x3filtered_30cm1.jpg") 

#Convert to CIELAB colour space, then create a data.frame with three colour channels as columns 

d <- sRGBtoLab(im) %>% as.data.frame(wide="c")%>% 

  dplyr::select(-x,-y) 

#Run k-means with 2 centers 

km <- kmeans(d,2) 

#Turn cluster index into an image 

seg <- as.cimg(km$cluster,dim=c(dim(im)[1:2],1,1)) 

plot(im,axes=FALSE) 

highlight(seg==1) 

#-Section 2------------------------------------------------------------------------------------------------------- 

#Compute SLIC superpixels 

#im: input image 

#nS: number of superpixels 

#ratio: determines compactness of superpixels. 

#low values will result in pixels with weird shapes 

#... further arguments passed to kmeans 

slic <- function(im,nS,compactness=1,...) 

{ 

  #If image is in colour, convert to CIELAB 

  if (spectrum(im) ==3) im <- sRGBtoLab(im) 

  #The pixel coordinates vary over 1...width(im) and 1...height(im) 

  #Pixel values can be over a widely different range 

  #We need our features to have similar scales, so 

  #we compute relative scales of spatial dimensions to colour dimensions 

  sc.spat <- (dim(im)[1:2]*.28) %>% max #Scale of spatial dimensions 

  sc.col <- imsplit(im,"c") %>% map_dbl(sd) %>% max 

  #Scaling ratio for pixel values 

  rat <- (sc.spat/sc.col)/(compactness*10) 

   X <- as.data.frame(im*rat,wide="c") %>% as.matrix 

  #Generate initial centers from a grid 

  ind <- round(seq(1,nPix(im)/spectrum(im),l=nS)) 

  #Run k-means 

  km <- kmeans(X,X[ind,],...) 

  #Return segmentation as image (pixel values index cluster) 

  seg <- as.cimg(km$cluster,dim=c(dim(im)[1:2],1,1)) 

  #Superpixel image: each pixel is given the colour of the superpixel it belongs to 

  sp <- map(1:spectrum(im),~ km$centers[km$cluster,2+.]) %>% do.call(c,.) %>% as.cimg(dim=dim(im)) 
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  #Correct for ratio 

  sp <- sp/rat 

  if (spectrum(im)==3) 

  { 

    #Convert back to RGB 

    sp <- LabtosRGB(sp)  

  } 

  list(km=km,seg=seg,sp=sp) 

} 

#-Section 3--------------------------------------------------------------------------------------------------------- 

#400 superpixels 

out <- slic(im,1800, compactness = 1) 

#Superpixels 

plot(out$sp,axes=FALSE) 

#Segmentation 

plot(out$seg,axes=FALSE) 

#Show segmentation on original image 

(im*add.colour(abs(imlap(out$seg)) == 0)) %>% plot(axes=FALSE) 

segPoly<-((abs(imlap(out$seg)) == 0)) 

plot(segPoly) 

#--------------------------------------------------------------------------------------------------------- 

Source: (Simon, 2017) 

 
 
Appendix III: Orthophotos produced from images taken at different heights above tree 

canopy 
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Appendix IV: Comparison of the confusion matrix obtained after the classification of tree species 

from UAV-RGB and UAV-Pleiades image configurations using Maximum 

Likelihood (ML), Random Trees (RT) and Support Vector Machines (SVM) in 

ArcMap. 

UAV-RGB-MLC     UAV-Pleiades-MLC    

 Sp Bi Be Wa Sh   Sp Bi Be Wa Sh 

Sp 499.4 78.0 69.1 1.1 364.5  Sp 472.5 23.3 28.4 30.2 1.7 

Bi 32.5 722.7 83.6 63.3 862.2  Bi 6.1 381.8 53.6 6.9 4.0 

Be 73.2 458.2 453.5 100.5 1405.2  Be 128.7 178.9 520.4 39.6 28.7 

Wa 0.2 18.5 0.0 2143.9 0.5  Wa 0.0 0.0 0.0 1252.0 0.0 

Sh 87.5 326.7 137.2 779.1 1471.6  Sh 11.9 20.1 19.2 0.0 126.5 

CA(%) 49.3 41 18.2 99.1 52.5  CA(%) 85 84.4 14.3 100 71.2 

 OA=51.7%, k=0.46     OA=70.8%, k=0.62   
             

UAV-RGB-RT     UAV-Pleiades-RT    

 Sp Bi Be Wa Sh   Sp Bi Be Wa Sh 

Sp 552.4 141.2 141.2 5.1 564.4  Sp 489.1 34.4 42.9 12.4 1.7 

Bi 58.5 940.6 104.9 232.2 787.1  Bi 6.4 399.8 67.9 0.0 5.8 

Be 6.8 39.3 61.0 9.6 135.3  Be 104.1 145.6 484.3 1.4 27.0 

Wa 1.1 41.9 0.3 2170.0 1.0  Wa 0.0 0.0 0.0 1314.8 0.0 

Sh 74.0 441.2 308.7 798.3 2616.2  Sh 19.7 24.1 26.6 0.0 126.5 

CA(%) 39.3 44.3 24.2 98 61.7  CA(%) 84.2 83.3 63.5 100.0 64.2 

 OA=62.0%, k=0.54     OA=84.4%, k=0.797                             

UAV-RGB-SVM     UAV-Pleiades-SVM    

 Sp Bi Be Wa Sh   Sp Bi Be Wa Sh 

Sp 551.4 126.1 118.0 3.0 435.9  Sp 486.4 43.2 32.3 6.5 1.6 

Bi 61.2 955.9 219.1 154.5 828.8  Bi 5.1 391.9 80.6 0.0 6.6 

Be 27.0 154.1 240.9 20.1 554.0  Be 115.2 120.0 486.4 0.2 27.1 

Wa 1.4 46.8 0.1 2174.4 2.3  Wa 0.0 0.0 0.0 1322.0 0.0 

Sh 51.7 321.1 736.0 165.3 2283.0  Sh 12.5 48.9 22.3 0.0 125.6 

CA(%) 44.7 43.1 24.2 97.7 61.7  CA(%) 84.2 83.3 63.5 100 64.2 

 OA=62.0%, k=0.54     OA=84.4%, k=0.797   
Sp-Scots pine, Bi=Birch, Be=Beech, Wa=Water, Sh=Shadow, CA= Class accuracy, RT=Random trees, SVM=Support 

vector machines, ML=Maximum likelihood. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

Appendix V: 2x2 Confusion matrix, comparing the performance of SVM, RT and ML classifiers 

using the McNemar’s test. 

 SVM-CC SVM-WC Total  McNemar's Chi-squared statistic 0.321 

RT-CC 23 12 35  Degrees of freedom 1 

RT-WC 16 62 78  P-value  0.571 

Total 39 74 113  Odds ratio 0.75 

     Lower 95% CL 0.324 

     Upper 95% CL 1.69 

        

 SVM-CC SVM-WC Total  McNemar's Chi-squared statistic 2.8 

ML-CC 22 13 35  Degrees of freedom 1 

ML-WC 23 55 78  P-value  0.134 

Total 45 68 113  Odds ratio 0.565 

     Lower 95% CL 0.263 

     Upper 95% CL 1.164 

        

 RT-CC RT-WC Total  McNemar's Chi-squared statistic 2.5 

ML-CC 24 9 33  Degrees of freedom 1 

ML-WC 17 63 80  P-value  0.556 

Total 41 72 113  Odds ratio 0.733 

     Lower 95% CL 0.305 

     Upper 95% CL 1.709 
CC=Correctly classified, WC=Wrongly classified 

 

 

Appendix VI: Results of t-test investigating the significant difference between Field and modelled 

DBH for Scots pine at 95% confidence level. 

 log(Modelled DBH (cm)) log(Field DBH (cm)) 

Variance 0.01  0.01 

Observations 17.00  17 

Pearson Correlation 0.76   
µ1- µ2  0.00   

df 16.00   

t Stat 0.24   

P(T<=t) one-tail 0.408    

t Critical one-tail 1.75    

P(T<=t) two-tail 0.816    

t Critical two-tail 2.12    
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Appendix VII: Results of Man Whitney U-test, comparing the difference in mean field derived 

and modelled DBH values for Birch species. 

 Modelled DBH(cm) Field derived DBH(cm) 

Rank Sum 130 123 

U 64 57 

Minimum U 57 
 

Mean value 60.5 
 

SD 15.23 
 

p-value 0.409 
 

 
 
Appendix VIII: Results of t-test investigating the significant difference between field and modelled AGB 

for Scots pine, at 95% confidence level. 

  
log(Modelled 

AGB(kg/tree)) 
log(Field 

AGB(kg/tree)) 

Mean 2.23 2.13 

Variance 0.04 0.06 

Observations 17 17 

Pearson Correlation 0.76  
µ1- µ2  0  

df 16  

t Stat 2.49  

P(T<=t) one-tail 0.012  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.024  

t Critical two-tail 2.12  
 

 

 

Appendix IX: Man Whitney U-test comparing mean field and modelled AGB values for Birch 

species at 95% confidence level. 

 Modelled AGB(kg/tree) Field derived AGB(kg/tree) 

Rank Sum 130 123 
U 64 57 
Minimum U 57  
Mean value 60.5  
SD 15.23  
p-value 0.409  

 

 

 


