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Abstract 

Behavior analysis is an important component of any intelligent anomaly detection 

system, where anomalies are abnormal observations that violate a typical behavior or cause a 

sudden change in behavior.  

Recent antivirus and machine learning-based malware detection have all increased their 

effectiveness in detecting file-based attacks, consequently adversaries have migrated to “living 

off the land” (Lotl) techniques to bypass the advanced security detection. The adversaries 

practice this by executing system tools preinstalled within the operating system or commonly 

brought in by administrators to carry out tasks like automating IT administrative tasks, running 

scripts for operations, executing code on remote systems, and much more such tasks, which 

goes undetected by even advanced signature detection based systems. 

Currently there exists wide range of methods that try to detect anomalies from the 

system’s logs by analyzing and applying numerous algorithms such as heuristic based and 

machine learning algorithms. However, experts argue that security anomalies cannot be found 

by looking into a single event, rather looking into the relationship or chains of events is 

necessary to understand the root cause of a problem. One of the tried and tested approach 

against Lotl attacks that has been used by security researchers and security analysts is to use 

the MITRE ATT&CK framework for detecting such attacks by authoring detection rules 

against suspicious parent-child processes.  

In this thesis work, we aim to automate the task of rule generations and propose a novel 

detection method that can effectively capture anomalous parent-child behavior of the system 

processes. The first task for this work would be to look at an event as parent-child relationship 

instead of looking at single events and finding anomalous patters therein, thus enabling us to 

analyze Lotl techniques used by attackers. The detection system is supposed to create rules and 

statistics for detection, based on the parent-child process relationships, which in other case is 

extremely hard to filter manually (writing rules) and no matter how effective is the detector, its 

logic can only solve one specific attack. A failure of detectors to generalize and detect emergent 

attacks presents a unique opportunity for machine learning, explored in this thesis. 
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Résumé 

L'analyse du comportement est une composante importante de tout système intelligent de 

détection des anomalies, où les anomalies sont des observations anormales qui violent un 

comportement typique ou provoquent un changement soudain de comportement.  

Les antivirus récents et la détection des logiciels malveillants basée sur l'apprentissage de la 

machine ont tous augmenté leur efficacité dans la détection des attaques basées sur des fichiers, 

par conséquent les adversaires ont migré vers les techniques de "vivre de la terre" (Lotl) pour 

contourner les détections de sécurité avancées. Les adversaires pratiquent cette technique en 

exécutant des outils système préinstallés dans le système d'exploitation ou couramment 

introduits par les administrateurs pour effectuer des tâches telles que l'automatisation des tâches 

administratives informatiques, l'exécution de scripts pour les opérations, l'exécution de code 

sur des systèmes distants, et bien d'autres tâches de ce type, qui ne sont pas détectées même 

par les systèmes avancés basés sur la détection de signatures. 

Il existe actuellement un large éventail de méthodes qui tentent de détecter les anomalies des 

journaux du système en analysant et en appliquant de nombreux algorithmes tels que les 

algorithmes basés sur l'heuristique et l'apprentissage machine. Cependant, les experts affirment 

que les anomalies de sécurité ne peuvent pas être trouvées en examinant un seul événement, 

mais qu'il faut plutôt examiner la relation ou les chaînes d'événements pour comprendre la 

cause première d'un problème. L'une des approches éprouvées contre les attaques Lotl qui a été 

utilisée par les chercheurs et les analystes en sécurité consiste à utiliser le cadre MITRE 

ATT&CK pour détecter de telles attaques en créant des règles de détection contre les processus 

parents-enfants suspects.  

Dans ce travail de thèse, nous visons à automatiser la tâche de génération des règles et 

proposons une nouvelle méthode de détection qui peut efficacement capturer le comportement 

anormal parent-enfant des processus du système. La première tâche de ce travail serait de 

considérer un événement comme une relation parent-enfant au lieu d'examiner des événements 

uniques et d'y trouver des modèles anormaux, ce qui nous permettrait d'analyser les techniques 

Lotl utilisées par les attaquants. Le système de détection est censé créer des règles et des 

statistiques de détection, basées sur les relations de processus parent-enfant, qui dans d'autres 

cas sont extrêmement difficiles à filtrer manuellement (écriture de règles) et quelle que soit 

l'efficacité du détecteur, sa logique ne peut résoudre qu'une attaque spécifique. L'incapacité des 
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détecteurs à généraliser et à détecter les attaques émergentes présente une opportunité unique 

pour l'apprentissage machine, explorée dans cette thèse.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

The ever-lasting challenge of detecting and mitigating security anomalies in computer 

systems has become more so essential than ever, especially with the enormous number of 

connected devices and growing sophistication of cyber-attacks. 

According to the Symantec Internet Security Threat Report from 2019, zero-day exploit 

usage declined, only 23 percent of attack groups were known to use zero days, down from 27 

percent in 2017. Also, attacks which rely solely on “living off the land” (Lotl) techniques and 

do not use any malicious code were on a rise. The targeted attack group “Gallmaker” is an 

example of this shift, with the group exclusively using generally available tools to carry out its 

malicious activities [1]. Supply chain attacks and Lotl based attacks continued to be a feature 

of the threat landscape, with attacks increasing by 78 percent in 2018 [1]. As pointed out in the 

2017 Data Breach Statistics, roughly nine billion data records were lost/ stolen by hackers since 

2013 (Breach Leve Index, 2017 [2]. Historically, cybercriminals have primarily focused on 

bank customers, stealing bank accounts, or stealing credit card information, however, the new 

generation malwares have become more advanced and ambitious and are targeting the 

infrastructure such as banks themselves, often trying to take millions of dollars in one attack. 

There is one emerging trend in most of the recent cyberattacks, including the famous 

Petya/ NotPetya in 2017, that they were not carried out by installing malware; rather, they used 

supposedly secure programs. According to a report by X-Force in 2018 more than half (57 

percent) of attacks analyzed by X-Force in 2018 [3] did not leverage installing a malware and 

many involved the use of non-malicious tools including PowerShell and PsExec to evade 

detection systems. These so-called dual-use tools provide threat actors with the ultimate 

playground, where they know it is easier to hide inside approved softwares and services than it 

is to drop new, malicious software in another’s environment. 

For that reason, the detection of unseen malwares and zero-day attacks has grown to be 

one of the top security priorities for researchers. High profile incidents of cybercrime show the 
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ease with which cyber threats can spread globally and disrupt business services and facilities. 

Cybercriminals around the world are motivated to steal information, illegitimately receive 

monetary benefits, and acquire new targets. Malware is intentionally created to compromise 

computer systems and take advantage of any weakness in intrusion detection systems, which 

makes it even necessary to develop efficient IDS to detect novel, sophisticated malwares. 

Analyzing and monitoring system logs for threats and intrusion is not a new trend and 

has been historically one of the most researched fields for intrusion detection. System event 

logs is a rich source for detecting anomalies, but the scale and inconsistent formatting of the 

events logs are big issues to tackle, but otherwise it can be good way of detecting anomalies 

across platforms. The value from this thesis would be towards using a rule mining and 

streaming data/ graph-based technique towards anomaly detection that would integrate 

machine learning technique to heuristic and statistics-based anomaly detection. 

 

1.2 Motivation 

The work in this thesis was carried out as part of my internship in ReaQta, and this 

work on behavioral anomaly detection holds both business and academic value, since the 

company works in the field of Advanced Persistent Threat (APT) detection. 

There are several reasons why creating a behavioral anomaly detection system based 

on logs could be an effective system, especially to detect attacks using “Living off the land” 

(Lotl) techniques.  Not only properties like unseen log patterns, absence of certain logs, high/ 

low frequency of logs etc. can indicate potential anomalies but logs-based anomaly detection 

can also help in recreating the incidence and help in post infection analysis. Since the number 

of logs that are generated from modern IT infrastructure is huge finding security anomalies can 

be a tedious task as its equivalent to finding needle in haystack.  

Another problem is the evolution of threats and attacks, and that it is getting harder to 

detect, so it could be difficult to find out if system events are legitimate or malicious. Anomaly 

detection systems are doing a decent job in detecting malicious traffic, but a standard detection 

system must continuously be updated with rulesets or signatures and upgrades should be up to 

date with the recent threat vectors. Big companies like Symantec, Norton etc. releases new 

rulesets on a regular basis, but even these might not be sufficient, considering the vast space of 
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these rules. How to keep up with the ever-increasing rulesets and ensure that these rules are 

effective enough, is something that many security researchers have inquired. 

The objective is not just to create an anomaly detection system but also come up with 

an anomaly scoring mechanism, that adds risk/ threat score to the anomalies, which adds 

business value as well. The motivation also comes from using the existing backend services 

used by ReaQta to generate threats and behavioral process trees for security analysts. Hence, 

we shall aim at detecting attacks that use “Living off the land techniques” (Lotl), where the 

attackers use the existing tools used by system administrators to exploit system. Attackers can 

use trusted OS tools like powershell.exe, wmic.exe, or schtasks.exe, which can be difficult to 

differentiate with normal usage of these tools. To target this, security researchers author rules 

for suspicious parent child relationships and we shall be defining anomalies as anomalous 

parent-child events in this thesis work. 

Many researchers have been using Machine Learning for anomaly detection, and we 

shall be using it as well but look at the anomalies from a parent child process perspective. Since 

manually doing this is a tedious and time-consuming task, we shall be using two approaches – 

one based on association rule learning and one based on statistics on parent child relationships 

and evaluate the results achieved from the same. 

 

1.3 Research Questions 

The motivation mentioned in the earlier section has led us to clearly define the 

following research questions and we shall be trying to find answers to these in this thesis work. 

RQ1: Can we establish parent child relationship in event logs and detect anomalies 

based on that? 

RQ2: Can we use rule mining approach to build rulesets that can efficiently detect 

parent-child anomalies? 

RQ3: Since parent-child relationships can be expressed efficiently in graphs, can we 

use data streams and graph-based approach to detect parent-child anomalies? 

RQ4: What can be possible weaknesses and exploits in the mentioned approaches? 
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RQ5: What are the possible scenarios and use cases where the mentioned approach can 

be adopted? 

 

First three questions shall be answered as the outcome of this thesis, where we would 

we exploring 2 techniques for detection anomalies based on parent-child relationship. We will 

be generating the parent-child transformations from the events generated by system logs and 

apply rule mining and graph-based approach on the transformation, which will be covered in 

the Chapter 4, 5, 6, and answer RQ1, RQ2 and RQ3. The goal will also be to measure the 

efficiency and performance of these two approaches and their applicability to real world 

dataset. RQ4 and RQ5 would be answered in the summary section of the thesis. 

We will be looking in detail at the parameters used during our experiments and the 

rationale for deciding the tuning parameter for both detection approach. We shall be also 

elaborating on the relationships and features used to build the models used in evaluating the 

dataset and based on the approach used we will look at the possible attacks possible on our 

approach used. The last question will be answered based on the dataset we used and result 

outcome, and how applicable is parent-child relationship in outlier detection. 
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Chapter 2 

Theoretical Background 

In this Chapter we shall be presenting some necessary background information on 

anomaly detection, in general and on necessary related background that will be used throughout 

this thesis. A description of the different research fields, on which we have focused, will also 

be presented as necessary relevant related work. 

 

2.1 Living off the Land Attacks 

The use of “Living off the Land” (Lotl) tactics and tools by cyber criminals has been a 

growing trend within the cyber security landscape in recent times. The concept of Lotl 

technique is not a novel approach and has been around for as long as 25 years. Using system 

tools as backdoors has been a common practice in past, however, in recent years, it has returned 

and grown in importance. 

In the technology world, Lotl refers to an attacker’s behavior that uses tools or features 

that already exist in the target environment. Such attackers exploit ways to fly under the radar 

of either intrusion prevention or detection technologies. Generally, hash values/ other 

indicators of comprise (IOCs) are used by signature-based intrusion prevention technologies to 

detect and quarantine/ isolate malicious processes. Lotl attacks thus get onto an organizations’ 

systems via trusted programs/ software’s that aren’t going to flag any suspicions, then inject 

them with malicious payload. There are multiple advantages of using this tactic: to begin with, 

they are able to get around traditional protection systems, which will not be triggered by 

unusual use of apparently secure software. Given the circumstances, it is much more difficult 

to identify where the attack comes from compared to when certain files are being used. The 

reason being that most cybersecurity solutions are unable to detect dangerous behavior when 

it is carried out using tools classified as legitimate [4]. 

While attackers can change IOCs relatively easily, refer Figure 1 for the Pyramid of 

Pain, using pre-existing software avoids the process being flagged as suspicious and saves the 

attacker cycles in developing a binary from scratch to deliver an attack [5]. 
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Figure 1: The pyramid of pain represents the difficulty levels for attackers to change indicators 

that security analysts may use to detect their activity 

 

2.1.1 Dual Nature of Tool 

As observed by Symantec in Q1 2019 [4], the most frequently executed dual use tools 

observed were net.exe, PowerShell, the certification utility, the task scheduler, and the WMI 

command line (WMIC), however, the percentage usage in malicious activities was significantly 

low. The context of the event and execution pattern remains one of the key components in 

detecting behavior of such attacks and this is what we try to achieve with machine learning and 

statistics in this thesis. The same report by Symantec also shows that WMI, the command line 

tool, and PowerShell were amongst the most frequently used for malicious purposes, 

accounting for 89 percent of all dual-use tools used as downloaders, as also shown in the Figure 

2 below. 



 15 

 

Figure 2: Dual Use tools reported by Symantec [4]. 

We also look at the target attack groups, which have been known to using Lotl tactics 

for a long time, with almost all active groups were seen using dual-use tools at some point. 

Looking at the stats from the six active target groups as in Figure 3, we can observe that 

PowerShell is the most common dual-use tool, utilized in about 77% of the target group attacks 

[4]. 

 

Figure 3: Dual-use tool usage among active targeted attack groups [4]. 

 

2.2 What are Anomalies? 

Anomalies can be described as patterns in observations/ dataset that do not conform to 

a well-defined notion of normal behavior [6]. Figure 4 shows anomalies in a simple 2-

dimensional data set. The data has two normal regions, 𝑁1
  and 𝑁2

  since most observations lie 
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in these two regions. Points that are sufficiently far away from the regions, e.g., points 𝑜1
  and 

𝑜2
 , and points in region 𝑜3

 , are anomalies/ outliers. 

 

Figure 4: Example showing anomalies in a 2D dataset [6]. 

Anomalies can be introduced in the data due to a variety of reasons, such as malicious 

activity, e.g., CC fraud, cyber-intrusion, terrorist activity or system mal-functioning, but all 

these reasons still share common characteristics in the global data, which is what is of interest 

to the security analyst. Anomalies are however different from noise or novelty in data, where 

the former is the objective to reduce in data analysis and the latter is basically appearance of 

new patterns that would be later incorporated into the normal characteristic model. 

A necessary consideration of an anomaly detection technique is the nature of the desired 

anomaly. Anomalies, usually can be divided into following three main categories [6]: 

• Point Anomalies – This is probably the simplest form of anomaly and focus of 

many security researchers. When an individual data element can be considered 

as outlier with respect to the rest of data, then the instance is termed as a point 

anomaly. 

For example, consider anomaly detection in CPU usage. Let the data set 

correspond to the CPU utilization of a system under observation. For the sake 

of simplicity, let us assume that the data is defined using only one feature - 

memory usage (univariate distribution). A transaction for which the memory 

usage is very high compared to the normal range of for a process will be a point 

anomaly. 
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• Contextual Anomalies - When a data element is anomalous in a given context, 

but not in general, then it is termed as a contextual anomaly (also referred to as 

conditional anomaly [7]). 

Using the information of the behavioral attributes in a specific context, the 

anomalous behavior is defined. A data instance, in specific context, might be a 

contextual anomaly, but similar data observation (in behavioral attributes) 

might be deemed normal in a different context. This property is important in 

identifying contextual and behavioral attributes for a contextual anomaly 

detection technique 

 

• Collective Anomalies. When a collection of related data elements appears 

anomalous with respect to the complete data set, then it is can termed as a 

collective anomaly. These individual data instances in a collective anomaly 

scenario may not be anomalies individually, but their occurrence together as a 

collection is anomalous.  

 

2.3 Intrusion Detection System and Categorizations 

The main challenge in sophisticated malicious attacks is to identify the novel and 

obfuscated intrusion techniques, as the malware authors often use techniques such as 

information concealing, and evasion etc. to hide from detection by an IDS. This indeed calls 

for more sophisticated anomaly detection systems that can detect unauthorized intrusions at an 

early stage. Intrusion detection [8] and fraud detection [9] are one of the most researched fields 

within anomaly detection, however, we shall focus on intrusion detection domain in this thesis 

work. Algorithms from different domains maybe suitable for our purpose with some 

adjustments, for example in intrusion detection it is required to block anomalies real time, while 

in fraud detection there is usually a time interval to take action, but accuracy is of utmost 

importance so as to not miss a fraud. 

Intrusion can originate from both within and outside the network, cause data breach, 

hamper the availability of IT systems, and cause monetary losses. IDSs aim at detecting 

intrusions and alerting system analysts at an early stage before the entire system gets 
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compromised. In general, IDS systems can be classified into following 2 groups based on 

detection method used:  

• Signature-based Intrusion Detection System (SIDS), and  

• Anomaly-based Intrusion Detection System (AIDS). 

 

2.3.1 Signature-based intrusion detection systems (SIDS) 

Signature intrusion detection systems (SIDS) analyze data for signatures that match 

known cyberattacks using pattern matching techniques to detect known intrusions. Basically, 

when signature of an intrusion matches with the signature of a previous intrusion that already 

exists in the signature database, an alarm is flagged. For SIDS, host’s logs are inspected to find 

sequences of commands or actions which have previously been identified as malicious or 

malware.  

In the literature, SIDS are also referred as Knowledge-Based Detection or Misuse 

Detection [10]. The main idea is to build a database of intrusion signatures (from past or known 

occurrences) and to compare the current activities against the existing signatures and raise an 

alarm in case a match is found. While SIDS is effective in detecting known malware attacks 

[11], it does provide much protection against novel attacks or polymorphic variants of 

malwares. 

2.3.2 Anomaly-based intrusion detection system (AIDS) 

AIDS has drawn interest from a lot of scholars due to its ability to overcome the 

limitation of SIDS. A normal model of the behavior of a computer system is built in AIDS over 

time using statistical-based, machine learning or knowledge-based methods. Any significant 

deviation between the observed behavior and the model can regarded as an anomaly, which 

can then be interpreted as an intrusion. The assumption for this group of techniques is that 

malicious behavior differs from a normal user behavior.  

The behavior of a user which is dissimilar to standard behavior is classified as 

intrusions. AIDS development comprises of two phases: the training phase and the testing 

phase. In the training phase, the normal profile is used to learn or create a model of normal 

behavior, and then in the testing phase, a new data set is used to establish the system’s ability 

to generalize to previously unseen intrusions. Based on the method used for training, AIDS can 
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be classified into several categories, for example, statistical based, knowledge-based and 

machine learning based [12]. The main advantage of AIDS is its ability to identify zero-day 

and novel attacks, since recognizing the abnormal user activity does not rely on a signature 

database.  

Further, IDS can be categorized based on the dataset used, broadly into 2 categories, 

namely, host-based, network-based (router-based is also part of network-based IDS, since both 

are based on similar datasets) [13]. 

Host-based IDS (HIDS) is usually deployed on host-machines to monitor activities on 

that host machines. Earlier HIDS implementation used to take away much of the computing 

power from the users of the host machines, but now with host machines being more powerful, 

host-based intrusions systems have become extremely powerful. HIDS also provides the 

functionality of sandboxing/ isolating the compromised hosts, that can prevent the spread and 

administrators can accordingly handle the threats. HIDS can provide protection against both 

insiders and outsiders.  

Network-based IDSs (NIDS) are usually installed on some strategic computers 

(generally the ones on the network periphery) in the network to monitor data packets sent 

between host machines. With NIDS, since network traffic data volume is so huge it presents 

difficulty in efficiently processing data and have limited ability to inspect all data in a high 

bandwidth network [14]. 

In my internship project, we have been working on a host-based anomaly detection 

system, which works on the event information captured from the hosts. The IDS is light weight 

and does not hamper the performance of the system, while the anomaly analysis is performed 

at the central server running the service. More on the details of the systems will be covered in 

Chapter 5. 

2.3.3 Implementation Techniques for Anomaly Based Intrusion Detection System 

(AIDS) 

AIDS methods can be classified into three main groups [15][16]: 

• Statistics-based 

• Knowledge based   

• Machine learning-based  
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Statistics-based techniques 

A statistics-based IDS builds a distribution model for normal user behavior profile, then 

detects low probability events and flags them as potential intrusions. Statistical AIDS often 

utilizes the statistical metrics such as the median, mean, mode and standard deviation of dataset 

samples. Statistical AIDS can identify any type behavioral differences from the given normal 

behavior. In general, statistical IDS normally use one of the following models: 

• Univariate Model 

“Uni” aka “one”, implies that data source has only one attribute or variable. This 

technique is widely used when a statistical normal profile is built for a single measure of 

behavior in IT systems. Univariate IDS look for irregularities in each individual metric [17]. 

• Multivariate Model 

It is based on relationships among two or more variables to understand the relationships 

between variables. The model can yield better classification, achieved from combinations of 

correlated measures rather than analyzing them separately. In [17] the author examines a 

detection system using multivariate quality control method by creating a long-term model of 

normal activities. The main challenge for a multivariate statistical IDS is that it is hard to 

approximate distributions for high-dimensional data. 

• Time-Series Model 

The observations are made over a certain time interval and a new observation is flagged 

abnormal if the probability of its occurrence at that time interval is too low. In [18] authors 

used time series for processing intrusion detection alert aggregates. In [19] authors presented a 

method for detecting network abnormalities by observing the abrupt variations found in time 

series data.  

 

Knowledge-based techniques 

Also, referred to as an expert system method, this technique-based approach requires 

creating a knowledge base which indicates the normal user profile. Actions which differ from 

this standard profile are flagged as an intrusion. Unlike in previous other classes of AIDS, the 

standard profile model is usually built by security analysts aka based on human knowledge, in 

terms of defining a set of rules that describe normal system activity. 
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An inherent benefit of knowledge-based techniques is the capability to reduce false-

positives since the system has knowledge about all the normal behaviors. However, in dynamic 

environments, these type of IDS needs a regular update on knowledge for the expected normal 

behavior which is a time-consuming task. Knowledge-based techniques are further categorized 

in 3: 

• Finite State Machine 

FSM is a computation model that is used to represent and control execution flow. In 

general, the model is represented in the form of states, transitions, and activities, where a state 

checks the history data. 

• Description Language 

Description language is used to describe the syntax of rules which may be used to define 

the characteristics of a specific attack. These rules could be built by description languages such 

as N-grammars and UML [20]. 

• Signature analysis:  

This is one of the earliest techniques applied in IDS, it relies on the simple idea of string 

matching, where an incoming packet is inspected, word by word, with a distinct signature and 

if a signature is matched, an alert is flagged. 

 

AIDS based on machine learning techniques 

• Supervised Machine Learning for Anomaly Detection 

In supervised learning method a labeled training dataset with normal and anomalous 

samples is required for constructing a predictive model. The most common supervised methods 

include decision trees, rule-based systems, neural networks, support vector machines, naive 

Bayes and nearest-neighbor. 

Arguably, the most popular non-parametric technique in supervised learning is K-

nearest neighbor (k-NN) that calculates an approximate distances between different points on 

the input vectors and assigns the point to the class of its K-nearest neighbors. Another effective 

model is the Bayesian network that encodes probabilistic relationships among features of 

interest. 
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Theoretically, the supervised models perform better and provide more accurate 

detection rate when compared to unsupervised methods. The ability of encoding the 

interdependencies between features/ variables, combined with their ability to incorporate both 

prior knowledge and current data, supervised models return a better confidence score with the 

model output. However, in most practical sense, having labeled data is an unrealistic 

assumption. 

• Unsupervised Machine Learning for Anomaly Detection 

Unsupervised learning techniques do not require any manually labeled training data 

unlike in supervised. It presumes that most observations/ datapoints in a scenario present the 

normal behavior and only a small amount of percentage of observation is abnormal, thus 

anticipating that malicious observation is statistically different from the normal ones. Based on 

these above assumptions, frequently occurring groups of similar instances are classified as 

normal and infrequent data groups are categorized as malicious. The most popular 

unsupervised algorithms include GMMs, PCAs, K-means, Autoencoders, and hypothesis tests-

based analysis [21]. 

Unsupervised anomaly detection algorithms are roughly categorized into the following 

main groups as illustrated in Figure 5. (1) Nearest-neighbor based techniques, (2) Clustering-

based methods and (3) Statistical algorithms as shown in Figure 5. We shall be not going into 

the details of each of the category, since it is out of the scope of the thesis work. As mentioned 

earlier, we shall be using a machine learning based approach (association rule learning) and 

propose a new statistical-based approach to detect novel anomalies in parent-child process. 
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Figure 5: Categorization of Unsupervised machine learning for anomaly detection. 
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Chapter 3 

Literature Survey and Related Work 

In this chapter, we would review and present the literature review of the existing related 

work within the scope of this thesis work. 

 

3.1 Earliest Works - IDS 

One of the starting works on intrusion detection was a study by Jim Anderson [22] [11] 

which suggested ways on analyzing computer system audit data. The study introduced methods 

where data that is collected for performance analysis and other reasons was used for batch 

processing on audit data. 

After Anderson’s study, earlier works focused on developing procedures and 

algorithms for automating the offline security analysis of audit trails. The algorithms aim to 

provide ways for automated tools to help the security analysts perform assessments on batch 

of system activity (usually from last days). A similar project, conducted at SRI proposed using 

the audit data-logs, and suggested possible ways of creating automated security analysis of logs 

[23]. The work involved performing an extensive statistical analysis on audit data from the 

IBM systems running MVS (Multiple Virtual Storage) and VM (Virtual Machines). The 

objective of the study was to develop analytical and statistical techniques for screening 

computer system accounting data to detect user behavior indicative of intrusions.  

IDES (Intrusion Detection Expert System), introduced by Lunt et al., 1992 [24] was a 

real time intrusion detection system that used both signatures and anomaly-based detection. 

The anomaly detection system of IDES worked by comparing the audit records against the 

normal profile of the user and that group the user was part of. 

GrIDS (Graph based Intrusion Detection System), introduced by Chen et al., 1996 [25] 

used data source modules that run on each host and collects information to build a graph 

representation of an activity happening in the network, which is then compared with the normal 

profile to detect intrusions. GrIDS uses a central architecture and utilizes anomaly detection 

technique for intrusion detection. 
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Hyperview, introduced by Debar et al., 1992 [26] employs both - an artificial neural 

network component and an expert system component to detect intrusions. The expert system 

monitors the audit logs for known signatures of intrusions, while the neural network component 

learns the user behavior from the events and alerts for intrusions, when deviation is noted from 

the learned behavior. 

RIPPER, by Lee et al., 1999 [27] uses data mining to generate automated and adaptive 

models for intrusion detection. The system extracts extensive feature set to describe the details 

of a network session and connection and applies association rule mining to learn the rules for 

normal and malicious behavior of the system. These rules are used for both signatures based 

and anomaly-based detection based on multiple algorithms used by RIPPER to generate 

patterns. 

 

3.2 Rule Mining in Anomaly Detection 

F. Silveira and Diot [28] proposed a tool called URCA that looks for anomalous flows 

by repeatedly eliminating subsets of normal flows and classifies the type of a detected anomaly. 

However, it can be computationally expensive as it requires continuous revaluation of detection 

system on different flow subsets.  

Dowitcher proposed by S. Ranjan et al. [29] proposes a scalable system for worm 

detection and containment in backbone networks. The system automatically constructs a flow-

filter from the intersection of suspicious attributes provided by different detectors leveraging 

suspicious attributes from an anomaly detector and study the anomaly extraction problem in 

more depth. 

Dewaele et al. [30] creates numerous random projections of a traffic trace using 

sketches, then using Gamma laws, models the marginals of the sub traces and identify 

deviations in the parameters of the models as anomalies. The system tries to find possible 

anomalous source or destination IP addresses by taking the intersection of the addresses 

hashing into anomalous sub traces.  

Lakhina et al. [31] propose a system to detect “network-wide anomalies” using SNMP 

data to highlight the origin-destination flow along which an anomaly existed. Li et al. [32], 

randomly aggregate flows as an alternative to origin-destination aggregation using sketches. It 
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showed that more anomalies can be detected using random aggregation compared to the origin-

destination aggregation in the PCA subspace anomaly detection method.  

Lee and Stolfo in [33] propose a system for extracting interesting intrusion patterns 

from system calls and tcp dump logs using association rule learning. Vaarandi [34] introduces 

a tool called LogHound that provides an optimized implementation of Apriori and demonstrates 

how to summarize traffic flow records. Yoshida et al. [35] also identifies rare/ interesting 

events in traces from the MAWI traffic archive using frequent item-set mining. Chandola and 

Kumar [36]59describe rule mining-based approach to find a small set of highly frequent item-

sets that can summarize a large set of flows. 

Mahoney and Chan [37] identify rare events that could indicate anomalies in packet 

payload data using association rule mining (LERAD). In their approach they use 1999 DARPA/ 

Lincoln Laboratory traces to evaluate their approach and it aims at edge networks where mining 

rare events is possible. We can clearly see most of the work focused on network logs, however, 

we would be using similar approach from Mahoney and Chan [37] but on a host logs and 

relational data i.e. parent-child events and use the rule mining algorithm (LERAD) to find 

anomalous parent-child relations. 

 

3.3 Dynamic Graph based Detection 

In this section, we review previous approaches to detect anomalies in dynamic graphs 

and data streams. We referred Akoglu, Tong, and Koutra 2015 [38] and [39] for an extensive 

survey on graph-based anomaly detection. Since our proposed method focusses on data streams 

and dynamic graphs, we will cover techniques within that domain.  

3.3.1 Anomaly Detection in Time Evolving Graphs 

Anomaly detection in time evolving graphs is categorized based on the kind of 

anomalies, the following work tries to detect.  

Anomaly detection in graph streams uses as input a series of graph snapshots over a 

period. Based on the types of anomaly following work is trying to detect, we categorize the 

related works as below:  

 Anomalous node detection: Sun, Tao, and Faloutsos 2006 [40] introduced a dynamic 

tensor analysis (DTA) method and by approximating the adjacency matrix of the current 



 27 

snapshot based on incremental matrix factorization, it spots nodes corresponding to rows with 

high reconstruction error. The system aims to create summary of high dimensional data and 

reveal hidden correlations.  

Anomalous subgraph detection: Beutel et al. 2013 [41] proposed COPYCATCH that 

detects temporally bipartite cores that are ill-gotten “Likes” of Facebook for a given graph with 

timestamps on edges. The proposed method is aimed to catch lockstep Page Like patterns on 

Facebook by analyzing the social graph between users and pages and the times at which the 

edges in the graph (the Likes) were created. The system spots near bipartite cores where each 

node is connected to others in the same core density within a short time.  

Anomalous event detection: Eswaran et al. 2018 [42] proposed a randomized sketching-

based approach called SPOTLIGHT that provides high statistical guarantees that anomalous 

graphs are mapped at a distance from the normal graphs in the sketch space. The system, in 

close to real time, points to distinguish atypical graphs containing the sudden appearance or 

vanishing of huge dense subgraphs (e.g., close bicliques). 

 The system aims to detect anomalous graphs containing the sudden appearance or 

disappearance of large dense subgraphs (e.g., near bicliques) in near real-time. 

 Yoon et al. 2019 [43] proposed ANOMRANK, that uses a two-pronged approach 

defining two novel metrics for anomalousness tracking own version of a ‘node score’ (or node 

relevance) function which allows to detect sudden changes in node importance. The system 

detects suspicious changes in the structure of the graph, such as through the addition of edges 

between previously unrelated nodes in spam attacks and spots sudden changes in 1st and 2nd 

derivatives of PageRank. 

Anomaly detection in edge streams: In edge streams, a stream of edges over time is 

used as input data for detection. We again categorize the related work based the type of 

anomaly they detect: 

Anomalous node detection: Yu et al. 2013, in [44] proposed for a given edge stream, 

methods for dynamically determining anomalous hot spots in network stream. The work used 

principal component analysis (PCA) to maintain information about changes in neighborhoods 

of a graph and detects nodes whose egonets change suddenly and significantly. 

Anomalous subgraph detection: Shin et al. 2017 [45] proposed DenseStream and 

DenseAlert, two incremental algorithms that maintains and updates dense subtensors, created 
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within a short time, in a tensor stream (i.e., sequences of changes in a tensor), and spotting the 

sudden appearances of dense subtensors respectively 

Anomalous edge detection: Ranshous et al. 2016 [46] focuses on sparsely connected 

parts of a graph and uses the global and local structural properties of a stream to build an outlier 

detection model. The paper uses Count-Min sketch for approximating these properties, and 

provide probabilistic error bounds on edge outlier scoring functions 

Eswaran and Faloutsos 2018 [47] proposed a SEDANSPOT that identifies edge 

anomalies based on edge occurrence, preferential attachment, and mutual neighbors and scores 

the anomalousness of edges by considering the whole (sampled) graph, giving diminishing 

importance to far-off neighbors 

Siddharth et al. 2019 [48] proposes a system to detect suddenly arriving groups of 

suspiciously similar edges or micro-cluster anomalies, such as lockstep behavior along with 

detecting DDoS (denial of service) attacks in network traffic data. The paper presents two 

algorithms MIDAS, and MIDAS-R, with one having temporal decay factor for time relevance 

in data. 

Our proposed work is more related to the anomaly detection problem in edge stream, 

where we treat the problem of parent-child anomaly as a relationship and learn the behavior 

using statistical properties of the relationship in graph to detect anomalous edges. 
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Chapter 4 

Methodology and Proposed Work 

In this chapter we shall be discussing LERAD (Learning rules for Anomaly detection) 

algorithm and presenting our novel algorithm for detecting parent-child anomalies, since data 

in events logs cannot always be treated as points lying in a multi-dimensional space 

independently, rather they exhibit inter-dependencies which should be accounted for during 

the anomaly detection process. Based on this idea we would discussing on the two algorithms.  

 

Approach 1: Rule Learning based Approach 

4.1 Data Mining and Association Rule Mining 

Data mining is the process where data is analyzed from different perspectives and then 

summarized into useful information [49]. Data mining allows analyzing data, categorizing it, 

and summarizing the relationships among data attributes. Technically, data mining can be 

described as the process of finding patterns and correlations within large relational databases. 

Primarily used to discover interesting relationships, association rules are basically if/ 

then statements that are used to discover/ establish relations between unrelated data in a 

database, relational database, or other information repository i.e. to find the hidden 

relationships between the elements that occur frequently together. Use cases of association 

rules are manifold including classification, marketing, basket data analysis, recommender 

systems, clustering, and loss-leader analysis etc. In 1993, article from Agrawal et al. [50] 

popularized the concept of association rules due to the which it is widely used within the Data 

Mining field and is regularly cited in academic community. However, what is now called 

"association rules" was introduced already in the 1966 paper on GUHA, a general data mining 

method developed by Petr Hájek et al [51]. 

The paper by Aggarwal et al. [50] defines the association rule problem as: 

Let 𝑰 = {𝒊𝟏, 𝒊𝟐, … … , 𝒊𝒏} be a set of 𝒏  binary attributes called items. 

Let 𝑫 = {𝒕𝟏, 𝒕𝟐, … … , 𝒕𝒏}  be a set of transactions called the database. 

Each transaction in 𝑫 has unique transaction ID and contains a subset of the items in 𝑰. 
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A rule is usually is defined in the below form: 

𝑿 => 𝒀, where 𝑿, 𝒀 ⊆ 𝑰 

In the paper, a rule is defined only as relation between a set and a single itemset, 

 𝑿 => 𝒊𝒋, 𝒇𝒐𝒓 𝒊𝒋 ∊  𝑰  

Every rule is composed by two different sets of items, also known as item, sets 

𝑿 𝒂𝒏𝒅 𝒀 and, where 𝑿  is called the antecedent and 𝒀 the consequent. 

In rule mining there are basically three major quantitative measurements that must be 

taken into consideration, the support, the confidence and lift. These parameters are used widely 

to decide on the importance or quality of a rule generated. 

Support is an indication of how regularly the items appear in the dataset. 

Mathematically, support is defined as the fraction of the transactions having item X and Y with 

total number of transactions in which the item set occurs. 

Support {x} →{y} =  
𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔
 

 

Confidence defined the number of times the if-then statements of associations rules are 

found true. Confidence can hence be defined as the conditional probability of occurrence of 

consequent given the antecedent. 

Confidence {x} →{y} =  
𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚

𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒙
 

 

Lift is used to compare the actual confidence with expected confidence. This can be 

described given item X was purchased, how likely item Y is purchased, at the same time 

controlling the popularity of item Y. So, mathematically, 

Lift{x}→{y}=  

(𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚)
(𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒙)

(𝑭𝒓𝒂𝒄𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒚)
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4.2 Learning rules for Anomaly detection algorithm (LERAD) 

LERAD generates rules from arbitrary combinations of nominal attributes, eliminating 

the need to select rules in an ad-hoc fashion. The goal of LERAD is to find conditional rules 

that can identify unexpected/ rare events in a time-series of tuples of nominal (unordered) 

attributes (e.g. packet field values, or words in a TCP session), as introduced in the original 

paper by Mahoney and Chan [37]. Given two tuples, the time series exhibits long range 

dependencies; the number of matching attribute values decreases as the time interval between 

the tuples increases. 

Rules generated have the general form: 

"if 𝑨𝟏
  = 𝒗𝟏

  and 𝑨𝟐
  = 𝒗𝟐

  and ... and 𝑨𝒌
  = 𝒗𝒌

  then 𝑨𝒌+𝟏
  € 𝑽 

 = {𝒗𝒌+𝟏
 , 𝒗𝒌+𝟐

 , …, 𝒗𝒌+𝒓
 }   

𝒏 , where 

the  𝑨′𝒔 
 are attributes and 𝒗′s are values.  

From this huge rule space that is created, LERAD aims to select the rules that would 

generate the highest anomaly scores, i.e. those that have high n and low r, where n is the number 

of training instances that satisfy the antecedent (𝑨𝟏
  = 𝒗𝟏

 , and  𝑨𝒌
  = 𝒗𝒌

 , 𝒌 𝒓 = |𝑽|), and r is the 

number of allowed values in the consequent. This goal is different from earlier rule mining 

algorithms such as [52] or [53], which have the goal of finding rules that predict a single value 

in the consequent with high probability (i.e. high confidence).  

Though the target for rule mining algorithms, specifically the above three, is to find 

rules having support value (large n), LERAD differs a bit, since regardless of the distribution 

within V,  it tries to find rules with small r. 

For example, one rule might be "if port = 23 then name € {"HELO", "EHLO"}". In 

training phase, LERAD checks the number of observations where port = 23, counts n, and 

records V i.e. the set of values for name. While in testing phase, when LERAD observes an 

instance with port = 23 but the corresponding name value is not "HELO" or "EHLO", then an 

anomaly score of tn/r is assigned, where 𝒓 = |𝑽| = 𝟐, and t is the time since the rule was last 

violated. This process is repeated for other rules as well and the total score assigned to a 

instance during testing would the summation of the anomaly scores assigned by each rule (in 

the rule set) for which the antecedent is matched but the consequent is not. 
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4.2.1 Rule Learning 

LERAD aims to generate good rules (high n/r, aims to keep r small) but challenge is 

searching the huge rule space, which grows exponentially with the increasing number of 

attributes. LERAD uses a randomized algorithm [37] to generate candidate rules, then tests 

them on increasingly large subsets of the training data, discarding the redundant rules and those 

that do not satisfy the constraint of high n/r. The steps are as follows: 

1. haphazardly generate rules with n/r = 2/1 on pairs of training instances. 

2. discard redundant rules in favor of those with those with higher n/r on a larger training 

sample, S. 

3. get rid of the rules that show poor performance on the complete training set (specially, 

where r increases towards the end). LERAD makes two iterations over the training data, 

first to sample the training instances as in step 1 and 2, and then finally to train the rules 

as per step 3. 

4.2.2 Candidate rule generation 

The candidate rules are made by randomly selecting pairs of instances from the training 

set and finding rules that satisfy both instances (one or more attributes have the same value in 

both instances). In such case, one attribute becomes the consequent and any subset of the 

remaining attributes can become the antecedent. For example, we have two training examples 

as given below: 

port = 80        word1 = word.exe              word2 = /                 word3 = Microsoft 

port = 80 word1 = word.exe              word2 = /wmic.exe word3 = Microsoft 

There are three matching attributes in the example above namely port, word1, and word3.  

Some of the 12 possible rules with n/r = 2/1 are: 

- word1 = "word.exe" 

- if word3 = "Microsoft" then port = 80 

- if port = 80 and word1 = "word.exe" then word3 = "Microsoft" 

 

In general, if there are 𝒌  matching attributes, then there are 𝒌 possible consequents and 

𝟐𝒌−𝟏 possible subsets of the remaining attributes to form the antecedent, allowing for 



 33 

𝒌𝟐𝒌−𝟏possible rules. LERAD does this by randomly picking a subset of these rules as 

candidates. LERAD does this as detailed in the following algorithm [37]: 

- randomly select a sample S training instances 

- repeat L times 

- haphazardly select a pair of training instances from S 

- randomly order the k matching attributes in a sequence, but not more than 𝒌𝒎𝒂𝒙
  

- generate 𝒌 
  rules using 1 through 𝒌 

 attributes, making the first one the consequent and 

the others the antecedent. 

In the original paper by Mahoney and Chan, it makes little difference whether the 

random pairs are selected from S or from the full training set. In our experiment we used |S| = 

100000, and notices it makes little difference on increasing the |S|. 

 

4.2.3 Removing duplicate rules 

The second major step in LERAD is to get rid of rules generated that really do not 

provide any new information about a small sample training set, S. When two rules predict the 

same values, LERAD will keep the one with the higher n/r (when its trained-on S), or in case 

of a tie in scores, the one with fewer conditions in the antecedent. The algorithm for deduping 

is as follows: 

- Sort the candidate rules by descending n/r on S, or by ascending size of the antecedent 

in case of ties. 

- For each rule 

- For each sample in S 

- if the sample instance satisfies the antecedent, then mark the consequent value 

in S unless already marked 

- remove the rule if no new values in S could be marked. 
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Approach 2: Dynamic Graph based Approach 

In this section, we would be presenting a novel way for detecting parent-child 

anomalies. We model the problem of detecting parent child anomalies in streaming data as 

relational models that are built over time. Our approach considers the dynamic behavior of 

changing relationships in attributes of a graph. We use a count min sketch-based approach to 

build relationship and score the streaming data on logarithmic and probabilistic scales. 

 

4.3 Graphs and why graphs? 

A graph is an abstract data type that requires two basic building blocks: nodes and 

vertices as shown in Figure 6. A graph utilizes the basic idea of using vertices to establish 

relationships between pairs of nodes. Many real-world relationships specially with 

interdependencies or hierarchical structure are best modelled using graph structures.  

 

Figure 6: Graph shows nodes and vertices 

 

A graph 𝐆 = (𝐕, 𝐄)  has the following attributes and is composed of: 

• nodes, also called vertices, 𝐕 = 𝟏, . . . , 𝐧  

• edges 𝑬 ⊆ 𝑽 × 𝑽  

• An edge (𝒊, 𝒋)  ∈  𝑬  links nodes i and j, where i and j would be called as neighbors.  

• number of neighbors of a node is presented by its degree 
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Dynamic graphs allow modification to the structure and/or attributes of the graph over 

a period, and thus is an efficient way to model an evolving set of entities and their changing 

interactions/ relationships. A common example can be social media platforms like Facebook/ 

Twitter, where vertices of the graph are the users and the edges can represent friendship or 

followers, posts, messages, or a bunch of other phenomena.  

We also highlight below the importance of using a graph-based approach for our use 

case of detecting anomalous parent-child behavior: 

• Inter-dependent nature of the data or the problem statement: Data objects or 

system logs in our case are often related to each other and exhibit multiple 

dependencies. In fact, most relational data can be thought of as inter-dependent, 

which necessitates to account for related objects in finding anomalies, especially 

since we are interested find parent-child based anomalies. 

• Powerful representation: Graphs are intuitively better in representing the inter-

dependencies by the introduction of links (or edges) between the related entities 

and thus captures the relationship effectively. 

• Robustness: Graphs are much more immune to adversarial attacks, since an 

attacker can be assumed to possess limited knowledge of the infrastructure and 

even if he/ she can modify a transaction, it’s much harder to fit in without 

complete knowledge of all characteristics and interdependencies of the 

operations. 

 

4.4 Streaming Data Structures 

In general, dynamic graph can be seen as made up of a sequence or streams of static 

graphs, and analysis is done by comparing neighboring graphs in the stream, however, this 

approach has many limitations for outlier detection. Firstly, it requires storing the entire graph 

in memory for offline analysis, which is unfeasible with current scale of nodes and edges that 

a graph can grow to in real world data. Secondly, most of the past or historical information is 

lost in streams as the most recent graphs in the stream are considered for detection purposes. 

Thirdly, comparing graphs at global level misses the element of looking into changing nature 

of attributes in the graph. 
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Since edge stream mining provides a more fine-grained analysis of the changes, we use 

that approach to model the relations within the graph. However, addressing memory constraints 

and historical information loss issues is still a challenging problem. To address this, we use 

Count-Min sketch [54] to approximate the structural properties of the stream that are relevant 

to building the model. Using this approximation, we can model probabilistic relationships of 

the nodes. 

In our approach we use Count-Min sketch [54] to statistically score outliers/ anomalous 

events. A record or edge (representing a relation) is marked as anomalous based on the 

likelihood of its occurrence when its score exceeds a user-defined threshold. Simply put, an 

anomaly is realized as a data point or a group of objects that is rare (for example, atypical 

combination of categorical attribute values), and/ or surprising (for example, data points that 

don’t align with our statistical model). 

 

4.5 Count-Min Sketch (CMS) 

The Count-Min (CM) Sketch is a compact summary data structure capable of 

representing a high-dimensional vector and answering queries on this vector, point queries and 

dot product queries, with strong accuracy guarantees [54] and space efficient using 

probabilistic techniques [54] [55]. Since the data structure can easily process updates in the 

form of additions or subtractions to dimensions of the vector (which may correspond to 

insertions, deletions, queries (or other transactions), it is capable of working over streams of 

updates, at extremely high rates. The Count-Min sketch (CMS) was first proposed in 2005 [54] 

with goal being to provide a simple sketch data structure with a precise characterization of the 

dependence on the input parameters. The simplicity of creating the sketch and easy probing for 

queries has led to its wide use in disparate areas since its initial proposal. 

In an ideal scenario for retrieving frequency of any streaming data we would use hash 

table as we can store the hash values in the Hash table and retrieve them easily at 𝑶(𝟏). 

However, this approach is highly inefficient because in the above approach we end-up storing 

all the data in the hash tables which means there is liner memory usage for very large (infinite) 

streaming of data. 

To tackle this very memory inefficiency, we use count min sketch to calculate the 

frequency in sub-liner space , because in this case we don’t store the complete values of data 



 37 

stream , instead the CMS approach uses a matrix to compute the frequency, where number of 

rows are the number of Hash functions that are used and columns are number of outcome of 

the hash functions. 

The CM sketch is simply an array of counters of width 𝒘 and depth 

𝒅, 𝐂𝐌[𝟏, 𝟏]. . . 𝐂𝐌[𝐝, 𝐰].  Each entry of the array is initially zero. Additionally, 𝒅 hash 

functions 𝒉𝟏. . . 𝒉𝒅 ∶ {𝟏. . . 𝒏} → {𝟏. . . 𝒘} are chosen uniformly at random from a pairwise-

independent family. Once 𝒘 and 𝒅 are chosen, the memory space required is fixed, ensuring 

constant space guarantees: the CMS data structure is represented by 𝒘𝒅 counters and 𝒅  hash 

functions (which can each be represented in O(1) machine words [56]. 

4.6 Data Model 

Given a continuous edge stream 𝑬 = < (𝒖, 𝒗), … . . >, where u and v are the vertices 

the edge is incident upon. Every edge in the stream is directed, un-weighted and represents the 

insertion of a new single edge into the graph. The vertices in the graph are the entities or nodes 

among which we want to establish a relationship, for example, vertices can be filename and 

parent filename etc. Edges are labeled as the concatenation of the two vertices they are incident 

upon and basically indicate the relationship, thus the label of 𝒆 = (𝒖, 𝒗) 𝑖𝑠 𝒍(𝒆) = 𝒍(𝒖) ⊕

𝒍(𝒗), where ⊕ is the concatenation operator, and represents the relationship between 𝒖 𝒂𝒏𝒅 𝒗. 

We try to assign weights to the edges in a way that it is indicative of their expected 

anomalousness. 

4.6.1 Edge Scoring 

Probability based edge scoring 

Conditional probability is defined as a measure of the probability of an event occurring 

with relationship to one or more events (given that this another event has occurred) [57]60If 

suppose the event we are interested in is X and the event Y is assumed to have already occurred, 

"the conditional probability of X given Y" is P (X | Y). 

𝑷(𝑿 | 𝒀) =
𝑷(𝑿 ⋂ 𝒀) 

𝑷(𝒀)
 

, where 𝑷(𝑿 ⋂ 𝒀) is the probability that both events X and Y occur. In our case we calculate 

the conditional probability distribution. 
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If the conditional distribution of X, given Y and Y is a continuous distribution, then its 

probability density function is known as the conditional density function. The conditional 

probability, for discrete random variables, function of X, given Y = y can be written according 

to its definition as [58]: 

𝑷(𝑿 = 𝒙 | 𝒀 = 𝒚) =
𝑷({𝑿 = 𝒙} ⋂ 𝑷{𝒀 = 𝒚}) 

𝑷(𝒀 = 𝒚)
 

We build relational model based on conditional probability for a combination of 

attributes, where we map the relation between node 𝒖 𝑎𝑛𝑑 𝒗 as 𝒍(𝒆) = 𝒍(𝒖) ⊕ 𝒍(𝒗), where e 

is the edge in data stream. The score for each edge is given by 𝑷𝒏(𝒖, 𝒗): 

𝑷𝒏(𝒖, 𝒗) =
∑  𝒏

𝒊=𝟎 𝑷({𝑿 = 𝒖𝒊} ⋂ 𝑷{𝒀 = 𝒗𝒊}) 

∑  𝒏
𝒊=𝟎 𝑷(𝒀 = 𝒗𝒊)

 

, where the 𝑷𝒏(𝒖, 𝒗) is the score of the 𝒏 
𝒕𝒉edge stream. So 𝑷𝒏(𝒖, 𝒗) indicates how likely is 

the edge 𝒆 = (𝒖, 𝒗) to occur given node 𝒗 occurs. 

Logarithmic edge scoring 

A logarithmic scale (or log scale) represents in a concise way a numerical data over a 

wide range of values, which is achieved by displaying the number on a non-linear scale. Similar 

to probability-based edge scoring, for an edge 𝒆 = (𝒖, 𝒗), the log score for a relation 𝒍(𝒆) =

𝒍(𝒖) ⊕ 𝒍(𝒗), is defined by 𝑳𝒖𝒗 and given by: 

    𝑳𝒏(𝒖, 𝒗) = 𝐥𝐧  ( ∑ 𝒍(𝒆𝒊) 
𝒏

𝒊=𝟎
) 

, where the 𝑳𝒏(𝒖, 𝒗) is the score of the 𝒏 
𝒕𝒉edge stream and 𝒍(𝒆) = 𝒍(𝒖) ⊕ 𝒍(𝒗),  . So 𝑳𝒏(𝒖, 𝒗) 

transforms the occurrence of an edge into non-linear logarithmic space. 

 

Further, we wanted to extract a numeric value for the relevance of each relation built, 

in an unsupervised setting and for that we use Laplacian score [59] that is designed to evaluate 

the importance of every feature which is achieved by optimizing cluster coherence by spectral 

gap of the corresponding affinity matrix. The calculated Laplacian score is used to create the 

penalizing weight that would be described later. 

Laplacian score is based on the observation that data from the same class is often close 

to each other and thus it is possible to evaluate the importance of a given feature by its power 
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of locality preserving. The method consists in embedding the data on a nearest neighbor graph 

by using an arbitrary distance measure and then calculating a weight matrix [60]. A Laplacian 

score is then calculated for every feature (relations built, in our case namely 𝑷𝒏(𝒖, 𝒗) and 

𝑳𝒏(𝒖, 𝒗)) in the data and will have the property that smallest values correspond to the most 

important dimensions. However, to select a subset of features another clustering algorithm (e.g. 

k-means) is usually applied a-posteriori to select the best performing group. The Algorithm 

used is presented in [59] and is given below (the complete details of the algorithm can be 

referred from the paper [59] 

4.6.2 Laplacian Feature Scoring 

Let 𝑳𝒓 denote the Laplacian Score of the r-th feature. Let 𝒇𝒓𝒊 denote the i-th sample of 

the r-th feature, 𝒊 = 𝟏, …  , 𝒎.  The Laplacian Score algorithm is given in [59]: 

1. Construct a nearest neighbor graph G with m nodes. The i-th node corresponds to 

𝒙𝒊. We put an edge between nodes 𝐢 and 𝐣 if 𝒙𝒊 and 𝒙𝒋 are ”close”, i.e. 𝒙𝒊 is among  

𝐤 nearest neighbors of  𝒙𝒊 or  𝒙𝒋 is among k nearest neighbors of  𝒙𝒊 . When the 

label information is available, one can put an edge between two nodes sharing the 

same label. 

2. If nodes 𝐢 and 𝐣 are connected, put 𝑺𝒊𝒋 = 𝒆
| 𝒙𝒊−𝒙𝒋 | 𝟐

𝒕 , where t is a suitable constant. 

Otherwise, put 𝑺𝒊𝒋 = 0. The weight matrix 𝐒 of the graph models the local structure 

of the data space. 

3. For the r-th feature, we define: 

𝑓𝑟 = [𝑓𝑟1, 𝑓𝑟2, … , 𝑓𝑟𝑚] 𝑇 , 𝐷 = 𝑑𝑖𝑎𝑔(𝑆1), 1 =  [1, … , 1] 𝑇, 𝐿 = 𝐷 − 𝑆, 

where the matrix 𝐿 is also called the graph Laplacian. Let 

𝑓𝑟
~ =  𝑓𝑟

 −  
𝑓𝑟

𝑇
 
𝐷1 

1 
𝑇

 
𝐷1

 1 

4. Compute the Laplacian Score of the r-th feature as follows: 

𝐿𝑟 =
𝑓𝑟

~𝑇
 
𝐿𝑓𝑟

~ 

𝑓𝑟
~𝑇

 
𝐷𝑓𝑟

~
  

Using the Laplacian score for each feature or relation, we define a penalizing weight of a 

relation, which is given by 𝑃𝑟,  
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𝑃𝑟 =
𝐿𝑟

min 𝐿𝑟𝑛
 

, where 𝐿𝑟𝑛 = [𝐿𝑟1, 𝐿𝑟2, … , 𝐿𝑟𝑛] i.e. set of Laplacian scores of features/ relations. 

 

For each edge stream score 𝐿𝑛(𝑢, 𝑣) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣), we penalize the score by dividing 

with the 𝑃𝑟, for each relation where 𝐿𝑛(𝑢, 𝑣) <

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐿 (𝑢, 𝑣)) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣) < 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑃 (𝑢, 𝑣)) and obtain 

the corrected score 𝐿𝑛′(𝑢, 𝑣) 𝑎𝑛𝑑 𝑃𝑛′(𝑢, 𝑣) for each edge stream. 

Final anomaly score 𝐹𝑛,  is given by: 

  

𝐹𝑛(𝑢, 𝑣) =
∑  𝑛

𝑖=0 ( 𝐿𝑛′(𝑢, 𝑣) +  𝑃𝑛′(𝑢, 𝑣)) 

n
 

, where n is the number of relations used. 

 

4.6.3 Community detection and Scoring 

Now that for each edge stream we have a score, 𝐹𝑛(𝑢, 𝑣), one major consideration is to 

look at the noise that is generated and control the false positives (FPs) that we have in the 

results. The number of FPs is a major issue in any unsupervised learning detection. For, our 

threshold parameter (details in Chapter 6), we observe that there are ~17k events that are 

flagged as anomalies, where most of them are one-off system activities that obtained low score. 

Hence to reduce the number of events a security analyst needs to look at, we create 

communities for the events in the dataset. The communities in our case is defined as a process 

tree, where the parent process spawns another process and so on as showing in Figure 7. We 

create communities based on the process tree and calculate a score for the community, based 

on the score calculated in earlier section (assuming that in a malicious process, each process 

would be breaking the multiple relations threshold) and define threshold for describing 

malicious communities. The score is calculated as the total relations broken 𝐿𝑛(𝑢, 𝑣) <

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐿 (𝑢, 𝑣)) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣) < 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑃 (𝑢, 𝑣)) within a 

community, divided by the depth of the process tree. 
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This approach reduced the noise by ~200x for an analyst investigating the detections. 

 

Figure 7: Figure showing process tree to define communities and score communities. 
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Chapter 5 

System Setup and Methodology 

In this Chapter, we would present more details about the engineering and system setup 

for the project, the dataset preparation and the general pipeline of the service created for 

anomaly detection. We will be covering the necessary and important details of how the service 

is setup and how the features for the experiments are being fetched. In our case the dataset 

prepared would be specially targeted to hunt for malicious parent-child anomalies and by doing 

so, we try to detect “living of the land” attacks that is earlier described in Chapter 2. 

5.1 General Setup and Data Source 

In this section, we elaborate on the general setup of the entire service and how the 

system has been setup. Since most of the components where event logs are captured, processed 

is an intellectual property (IP) of ReaQta and hence cannot be elaborated, we would try and 

describe the setup from a macroscopic view in this work. 

The general setup as also represented in the Figure 7, the entire system can be seen as 

built of 4 major components: Driver/ Kernel setup, Agent, Event Hive, Detection service. 

Driver/ kernel setup:  

This is primarily a kernel level implementation of callbacks to generate the data source 

for ReaQta Hive, the core part of ReaQta service including the Nano OS (live hypervisor-based 

monitoring of the OS from outside). We shall, however, be not covering details about ReaQta 

Hive, since we use the service only to gather the data for our analysis though we shall look 

briefly on the driver routines that fetch the data for Event Hive service. Driver support routines 

are routines that the Windows operating system provides for kernel-mode drivers to use. 

Drivers do not use Microsoft Win32 routines; instead, they use the driver support routines that 

are organized by kernel-mode managers and libraries. 

For instance, the “PsSetCreateProcessNotifyRoutineEx” 60[61] routine registers or 

removes a callback routine which simply notifies the caller when a process is created or exits. 

Highest-level drivers can call “PsSetCreateProcessNotifyRoutineEx” to register a 

PCREATE_PROCESS_NOTIFY_ROUTINE_EX routine. An installable file system (IFS) or 

highest-level system-profiling driver may register a process-creation callback routine to track 

which processes are created or deleted against the driver's internal state across the system. 
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Agent: 

This is small service running of target endpoints that collects the data from callbacks 

and other sources. In case, any data is missing in the collection phase the Agent generates the 

information from other sources and prepares the data to be sent to ReaQta Event Hive service. 

Event Hive: 

This has primarily a Cassandra database, an open source NoSQL database management 

system, that stores the event information fetched from the Agent. Details of the implementation 

of this is an IP of ReaQta and outside the scope of the work presented in the thesis. 

Detection Service: 

This is the main part where our anomaly detection engine primarily resides. This is a 

python based microservice build on top of Flask framework   
𝟏 , that fetches the data from Event 

Hive.  

The detection system basically has two components: one for transformation and other 

for detection. The transformer part ingests the feed from Event Hive and prepares the events 

with attributes that are required for training and transforming event with parent child relations, 

that is described in more details in the next section. The detection part is where our algorithm 

for rule generation and statistical detection sits and consumes the data post transformation. 

 

 

 

 

 

 

 

 

 

1. https://flask.palletsprojects.com/en/1.1.x/ 
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Figure 7: Diagram showing system flow for Detection System 

 

5.2 Data Engineering and Preprocessing 

Data from Event-Hive before being fed to the detection system is transformed into 

parent-child events. While the payload from Event Hive has many attributes associated with 

an event, we necessarily pull the attributes described in Table 1. The parent child relationship 

is built on an infrastructure level using fields “lerad_id” and “lerad_parent_id”, which we build 

using 3 data sources, namely, “endpoint_id”, “pid” and “start_time”. The details of the fields 

are covered in Table 1. The combination ensures that parent child events can be identified on 

an infrastructure level, since the rules and model is built for the entire infrastructure level. 

Once the event transformation is completed, the parent-child relationships are stored in 

PostgreSQL Database.  
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lerad_id Unique ID and is a combination of 3 attributes to build child 

identity. Includes: endpoint_id, pid, and start_time 

lerad_parent_id Unique ID and is a combination of 3 attributes to build parent 

identity. Includes: endpoint_id, ppid, and pstart_time 

pstart_time Unix timestamp of parent process start time 

start_time Unix timestamp of process start time 

cmd_line Command line argument associated with the process 

pid Process ID of the event 

ppid Parent process id of the event 

hive_event_id Unique ID from Event Hive 

hive_endpoint_id Endpoint ID 

hive_event_local_id Local event ID 

path_abs Encodes value from path of the directory where the process started 

from. 

privilege_level Privilege level of execution (possible values – Low, Medium, 

High) 

user_sid User serial ID 

path Path of directory of execution 

size Size (in bytes) if the file 

md5 MD5 hash of the file 

sha1 SHA1 hash of the file 

sha256 SHA2 hash of the file 

arch Program architecture (x32 or x64)0 

filename Filename of the executable 

cert_issuer Certificate issuer 

cert_signer Certificate signer 

cert_expired Boolean value for if the certificate is expired or not 

cert_trusted Boolean value for if the certificate is trusted or not 

Table 1: Fields for parent-child transformation and training 
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5.3 Dataset Generation 

The problem of having opensource and labelled dataset was evident in our case, since 

there is no labelled dataset that could be used to build parent-child relationships. We evaluated 

the popular publicly available datasets such as DARPA [62], KDD [63], NSL-KDD and 

ADFA-LD [64] as they are widely used as benchmarks, however, most of these are not HIDS 

logs, besides being unusable to get parent-child relationships from them. Further, we evaluated 

the dataset [65], which is built  , however, the dataset is too small and inconsistent to be 

used. Therefore, we decided to extract data from one of the customers to build and train the 

model and execute three malwares know to utilize “Lotl” tactics and evaluate the detection 

capability based on that (the evaluations is aimed to prove the hypothesis and not set/ compare 

against benchmark).  

We executed Guildma (also known as Astaroth) malware and extracted logs created by 

the malware’s execution. Written in Delphi, this malware (targeted towards Latin banks), uses 

some novel innovative execution and attack techniques. In Guildma, the attack is orchestrated 

by its C&C server rather than storing the fake pop-up windows it uses within the binary. One 

of the defining characteristics of Guildma’s distribution chains is using tools already present 

on the system, often in new and unusual ways aka Lotl techniques. The detailed breakup of the 

TTPs used by Astaroth as reported by Microsoft security team is also shown below [66]. 
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Figure 8: Astaroth attack chain 2020 

 

We picked 2 more malwares that were real incidents namely Dridex malware [67] and Azorult 

malware [68], both affecting the banking industry and known to use “Lotl” techniques. 
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Figure 9: Stages of execution of Dridex 
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Chapter 6 

Evaluation and Outcome 

 

 

 We performed our analysis on a customer data and used actual malware (known to 

use Lotl techniques) execution logs to test the detection capabilities of the proposed system. 

The dataset consists of 1788561 parent-child transformed events and was used in training, 

building the model. The logs were extracted for 44 days. 

 

6.1 Experiment: LERAD 

 The experiments were performed on an 8th Gen Intel Core i5-8550U, 8GB SSD 

system. We use the following features for training to create the model: 

 

- 'filename',  

- 'parent_filename',  

- 'parent_path_abs',  

- 'path_abs', 

- 'cert_signer', 

- 'cert_trusted',  

- 'privilege_level', 

- 'parent_cert_signer',  

- 'parent_cert_trusted', 

- 'parent_privilege_level' 

 

 Further, we used following thresholds for rule generation based on multiple attempts 

at different threshold values. 

 

 Sample Size = 100,000 

 Max rules per pair = 50 

 Training/ Validation set % = .8 (80% of sample data for training and 20% for 

validation of candidate rules generated) 

 

 Candidate rule generation with sample size 100k, took 19,064.37 secs and generated 

300 rules. The second pass is made for validation and rule pruning which took 33,492 secs and 

produced 232 validated rules that we would be using for detection. 

 

 The highest n/r (higher anomalousness) in the validated rule space was 28957 (n = 

28957, r, =1) and the lowest n/r was 124.5 (n = 249, r =2) as shown below: 

 

“IF parentfile_path_tr = svchost.exe->winsys+exe->SYSTEM  

THEN parentfile_cert_tr = svchost.exe->Microsoft Windows->TRUE Score n = 28957 r = 1”, 

and 

 



 50 

“IF path_tr = pf+exe->pf+exe AND file_parent_tr = firefox.exe->firefox.exe AND 

parentfile_cert_tr = firefox.exe->Mozilla Corporation->TRUE AND parentfile_path_tr = 

firefox.exe->pf+exe->MEDIUM AND file_cert_tr = firefox.exe->Mozilla C 

orporation->TRUE  

THEN file_path_tr = firefox.exe->pf+exe->LOW or firefox.exe->pf+exe->MEDIUM Score n 

= 249 r = 2” 

 

 We used the model created to test on the malware execution logs, however, there 

were no rules that were broken by the malware logs. We further, tried using more/ less features, 

but that did not lead to more rules or flagging malware logs as malicious. 

 

 Post analysis of what is wrong with detection using LERAD, we believe that it makes 

too lazy rules because the fields are not strict. Further, the random pair selection in LERAD 

picks haphazardly a pair for candidate rule generation, however, in case there are no matching 

attributes, there are no rules generated, which perhaps is the reason why we don’t have more 

rules (as expected). LERAD with network traffic as used in the original paper [37] would 

generate more rules because with network traffic there are more common attributes shared by 

the pairs selected in the random selection (during initial rule making). However, because in 

host logs, the event data is not too strict, the rules are more loose, which we tried to solve using 

pairwise relations (as also used in the statistical model, we proposed), however, the rules were 

still not good enough for detecting the Lotl techniques. This brings us to the conclusion that 

we need to modify the random selection part of LERAD algorithm to use with host logs and 

produce more effective rules. 

 

 

6.2 Experiment: Statistical Model  

 The experiments were performed on an 8th Gen Intel Core i5-8550U, 8GB SSD 

system. We use the following features to create the model. The following features are selected 

to create the relationship pairings in the data stream as shown in Table 2. 

 

Features for model creation 

lerad_id 

filename 

Parent_lerad_id 

Parent_filename 

Parent_path_abs 

Path_abs 

Cert_signer 

Cert_trusted 

Privilege_level 

Parent_cert_signer 

Parent_cert_trusted 

Parent_privilege_level 

 

Table 2: Features used for building model. 

 

 We build 15 pairwise relationships between the features for every parent-child 

process such as: parent filename → filename, parent filename + parent path → filename + path 
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etc. relations that are used to build and add contextual information for each edge stream. These 

approximations are made using count min sketch with default parameters as 𝑤 =
1000000  𝑎𝑛𝑑 𝑑 =  10 (for our dataset, we observed no collisions using these default values) 

 

 We used 10 runs (to calculate the average timing) to build the model using count min 

sketch and it took ~1583 sec (averaged time) to compute the scores for all 15 pairwise relations.  

 

 We divide the dataset into 70+30, where 30% of the records are used for evaluating 

the performance of the learnt model and we look at the scoring we obtained for the malware 

logs that we simulated. We used the score of 0.1 as the anomaly threshold, where values lower 

than that indicate that events are suspicious. There were approximately 17k anomalous events 

in the prediction set with the chosen threshold (0.1) as shown in Figure 10. This obviously has 

a huge number of FPs (even if the detection is good), hence, we used our proposed community 

detection method as described in Chapter 4, with default values for depth >4 and mean 

community score > 0.2, which provides ~220x less anomalous processes to look at. This 

produced 60 anomalous communities out of approximately 13k total communities created, as 

also can be seen in Figure 11. 

 

 
Figure 10: Count of events in prediction dataset with buckets 
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Figure 11: Reduction is overall anomaly space using community detection 

 

 

 

 Detection for Astaroth: The anomaly score generated by our proposed model puts 

the event from the Astaroth malware execution at bottom 0.2% of the prediction set. Higher 

score implies lower chances of being an anomaly and the event from malware received a score 

of 0.00631, which falls in the bottom 0.2%, thus indicating extremely high anomalousness. The 

highest score in the prediction set was reported to be .9683, implying least suspiciousness.  

 

 Further, using community detection, we observe that Astaroth produced 2 

communities and both were in the 60 anomalous communities reported as seen in Figure 11. 

Details are in Table 3 below (Lower rank implies higher anomalousness). 

 

Rank of 

Community 

Depth Mean Relations 

broken 

Mean Community Score 

4 6 18.5 0.0234 

24 30 9.1 0.0725 

 

Table 3: Detection Statistics for Astaroth 

 

 

 Detection for Azorult: The anomaly score generated by our proposed model puts the 

event from the Azorult malware execution at bottom 0.002% of the prediction set. Higher score 

implies lower chances of being an anomaly and the event from malware received the lowest 

score in the prediction set, score being 0.00356, which falls in the bottom 0.002%, thus 

indicating extremely high anomalousness. The highest score in the prediction set was reported 

to be .9683, implying least suspiciousness.  
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 Further, using community detection, we observe that Azorult produced 1 community 

and was in the 60 anomalous communities reported as seen in Figure 11. Details are in Table 

4 below. 

 

Rank of 

Community 

Depth Mean Relations 

broken 

Mean Community Score 

4 34 16.2 0.0316 

 

Table 4: Detection Statistics for Azorult 

 

 

 Detection for Dridex: The anomaly score generated by our proposed model puts the 

event from the Dridex malware execution at bottom 0.02% of the prediction set. Higher score 

implies lower chances of being an anomaly and the event from malware received the lowest 

score of 0.01034, which falls in the bottom 0.02%, thus indicating extremely high 

anomalousness. The highest score in the prediction set was reported to be .9683, implying least 

suspiciousness.  

 

 Further, using community detection, we observe that Dridex produced 1 community 

and was in the 60 anomalous communities reported as seen in Figure 11. Details are in Table 

5 below. 

 

Rank of 

Community 

Depth Mean Relations 

broken 

Mean Community Score 

9 7 13.5 0.127 

 

Table 5: Detection Statistics for Dridex 
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Chapter 7 

Conclusion 

 

7.1 Attacks against the Detection Service 

Keeping in mind that IDS is a key component of security layer for any organization, it is also 

necessary to look at how would it perform against adversarial attacks specially targeted 

against IDS. A detailed analysis on the adversarial attacks on IDS and a general taxonomy on 

the adversarial tactics is presented in paper by I. Corona et al. [69].  

 

The paper lists out following main attacks goals against IDS: 

 

Evasion and Response Hijacking: The intrusion pattern is modified in such a way that 

the system no more detects an intrusion and hence no alarms are raised. In hijacking, a pattern 

is crafted to generate an incorrect alert description and mislead IDS. 

Overstimulation: The adversary mine patterns in logs that mimic the attacks patters but 

are benign and this causes poor performance in IDS by overwhelming them with high false 

positive rates. 

Poisoning: This is rather complex technique, where the adversary creates attack 

patterns in the logs that are intended to corrupt the model in IDS systems that reply on historical 

data to learn the model, thus significantly hampering the accuracy of the IDS. 

Denial of Service (DoS): The adversary overwhelms the IDS with increased traffic/ logs 

that overloads or slows down the IDS and pattern detection mechanism. 

Reverse Engineering: The adversary gathers information about the internal detection 

processing of IDS, enabling the attacker to carry out any of the above attacks. 

We would analyze our Detection System against the relevant attack tactics: 

Corrupting the input data: The adversary can try to introduce errors or corrupt data 

from sensors employed by IDS. However, in our case the trust is placed on the callbacks from 

kernel itself and the adversary would need to attack the driver support routines (kernel-mode 

drivers) to corrupt the data. Further, there are custom kernel integrity checks placed to detect 

any such compromise that try to tamper OS kernel data structure. 
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Evasion and Overstimulation: An emerging technology called Generative Adversarial 

Network (GAN) that tries to attack any kind of machine learning systems using AI can be 

effectively used against our detection systems, since our detection learns based on the historic 

information generated from the host logs. Attacks generated by a GAN on machine learning 

systems act to confuse or fool the algorithm, and thus they can be used to poison the historic 

information or mine logs that mimic normal traffics and introduce high number of fresh 

contextual parent child relationships that would overwhelm the system with false positives. 

For example, our first variant of rule-mining based IDS would be subjected to 

Exploratory Integrity attack that would focus on flooding the system using false negatives, 

allowing malicious traffic to enter the system. Fooling a sequence-based IDS involves sending 

a mass number of inputs, each with a slightly different intent, to try and get by all the rules set 

by the IDS. While in this thesis work we have not explicitly tested our detection service against 

attacks, however, we believe that the statistical variations introduced in the model can be used 

to detect when the learnt models differ significantly from the historic ones, however, this still 

assumes having the ground truth to build the initial models. 

 

7.2 Summary 

We have seen and evaluated two approaches in detecting Lotl techniques, where we 

were able to successfully detect with our proposed statistical method based on streaming data, 

however, with LERAD we were not able to produce rules that would detect the stealthy attacks. 

We also observed that using community detection approach, we were able to significantly 

reduce the FPs that a security analyst would have to look at while analyzing the detections 

results. The approach of looking at events as parent-child process enables us in building robust 

relational and graphical model to detect advanced techniques and tactics used by adversaries. 

The performance of our proposed work is decently fast enough, though, there is still possible 

improvements/ optimizations in speed using other languages such as C.  

This thesis work helps us validate and cements the initial hypothesis that parent-child 

relationships can be used effectively in detecting novel attacks and identify anomalous parent-

child anomalies. We believe our proposed work could be effectively used in domains of 

intrusion detection and fraud detection, specially where data can be visualized as graphs or 

hierarchical data. The approach can be used to incorporate contextual information and discover 
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abnormal behavior as rare occurrences or outliers. Further, we understand and recognize that 

the proposed work has not been tested against more robust and varied datasets. That’s one of 

the limitation of the thesis work, since it hasn’t been tested against a large subset of attacks 

simply because it’s difficult and time consuming to stimulate behavior of malwares that use 

Lotl techniques and no publicly available dataset exists that can be transformed into parent-

child relations to benchmark our findings. Possible future work in this direction would be to 

test against larger subset of malware attacks and to further improve on the reducing the FP rate 

using semi supervised setting in community detection.   
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