
 1

Professional Thesis Report

Shubham Rai

August 25, 2020

Behavioral Threat Detection:

Detecting Living of

Land Techniques

Company: ReaQta

Company Supervisor: Giuseppe Massaro

Academic supervisor: Marc Dacier

Non-Confidential

Digital Security Track

EURECOM

http://www.eurecom.fr/fr

 2

I hereby confirm that this report is my own work and I have documented all sources and

material used.

Amsterdam, August 25, 2020

(Shubham Rai)

 3

Abstract

Behavior analysis is an important component of any intelligent anomaly detection

system, where anomalies are abnormal observations that violate a typical behavior or cause a

sudden change in behavior.

Recent antivirus and machine learning-based malware detection have all increased their

effectiveness in detecting file-based attacks, consequently adversaries have migrated to “living

off the land” (Lotl) techniques to bypass the advanced security detection. The adversaries

practice this by executing system tools preinstalled within the operating system or commonly

brought in by administrators to carry out tasks like automating IT administrative tasks, running

scripts for operations, executing code on remote systems, and much more such tasks, which

goes undetected by even advanced signature detection based systems.

Currently there exists wide range of methods that try to detect anomalies from the

system’s logs by analyzing and applying numerous algorithms such as heuristic based and

machine learning algorithms. However, experts argue that security anomalies cannot be found

by looking into a single event, rather looking into the relationship or chains of events is

necessary to understand the root cause of a problem. One of the tried and tested approach

against Lotl attacks that has been used by security researchers and security analysts is to use

the MITRE ATT&CK framework for detecting such attacks by authoring detection rules

against suspicious parent-child processes.

In this thesis work, we aim to automate the task of rule generations and propose a novel

detection method that can effectively capture anomalous parent-child behavior of the system

processes. The first task for this work would be to look at an event as parent-child relationship

instead of looking at single events and finding anomalous patters therein, thus enabling us to

analyze Lotl techniques used by attackers. The detection system is supposed to create rules and

statistics for detection, based on the parent-child process relationships, which in other case is

extremely hard to filter manually (writing rules) and no matter how effective is the detector, its

logic can only solve one specific attack. A failure of detectors to generalize and detect emergent

attacks presents a unique opportunity for machine learning, explored in this thesis.

 4

Résumé

L'analyse du comportement est une composante importante de tout système intelligent de

détection des anomalies, où les anomalies sont des observations anormales qui violent un

comportement typique ou provoquent un changement soudain de comportement.

Les antivirus récents et la détection des logiciels malveillants basée sur l'apprentissage de la

machine ont tous augmenté leur efficacité dans la détection des attaques basées sur des fichiers,

par conséquent les adversaires ont migré vers les techniques de "vivre de la terre" (Lotl) pour

contourner les détections de sécurité avancées. Les adversaires pratiquent cette technique en

exécutant des outils système préinstallés dans le système d'exploitation ou couramment

introduits par les administrateurs pour effectuer des tâches telles que l'automatisation des tâches

administratives informatiques, l'exécution de scripts pour les opérations, l'exécution de code

sur des systèmes distants, et bien d'autres tâches de ce type, qui ne sont pas détectées même

par les systèmes avancés basés sur la détection de signatures.

Il existe actuellement un large éventail de méthodes qui tentent de détecter les anomalies des

journaux du système en analysant et en appliquant de nombreux algorithmes tels que les

algorithmes basés sur l'heuristique et l'apprentissage machine. Cependant, les experts affirment

que les anomalies de sécurité ne peuvent pas être trouvées en examinant un seul événement,

mais qu'il faut plutôt examiner la relation ou les chaînes d'événements pour comprendre la

cause première d'un problème. L'une des approches éprouvées contre les attaques Lotl qui a été

utilisée par les chercheurs et les analystes en sécurité consiste à utiliser le cadre MITRE

ATT&CK pour détecter de telles attaques en créant des règles de détection contre les processus

parents-enfants suspects.

Dans ce travail de thèse, nous visons à automatiser la tâche de génération des règles et

proposons une nouvelle méthode de détection qui peut efficacement capturer le comportement

anormal parent-enfant des processus du système. La première tâche de ce travail serait de

considérer un événement comme une relation parent-enfant au lieu d'examiner des événements

uniques et d'y trouver des modèles anormaux, ce qui nous permettrait d'analyser les techniques

Lotl utilisées par les attaquants. Le système de détection est censé créer des règles et des

statistiques de détection, basées sur les relations de processus parent-enfant, qui dans d'autres

cas sont extrêmement difficiles à filtrer manuellement (écriture de règles) et quelle que soit

l'efficacité du détecteur, sa logique ne peut résoudre qu'une attaque spécifique. L'incapacité des

 5

détecteurs à généraliser et à détecter les attaques émergentes présente une opportunité unique

pour l'apprentissage machine, explorée dans cette thèse.

 6

Acknowledgements

First and foremost, I would like to thank my supervisor Mr. Marc Dacier, for his

continued periodic feedbacks, advices, and suggestions throughout the thesis. The support has

been instrumental in shaping up the thesis related work.

I would also like to take this opportunity to thanks Alberto Pelliccione for making this

thesis possible and giving an opportunity to work or such an interesting topic. Further, goes

without saying, thanks to Giuseppe Massaro, under whose guidance, I have been able to

complete the thesis. Throughout the bottlenecks that I had, Giuseppe has helped me a lot in

overcoming these, brainstorming, and coming up with ideas for the problems. Also, I would

like to extend my gratitude towards everyone at ReaQta, for being so helpful and friendly to

make this time memorable.

Finally, the times have been very uncertain everywhere due to the pandemic, so I would

personally thank everyone who has supported me during this period.

 7

Contents

Abstract 3

Résumé 4

Acknowledgements 6

Chapter 1 9

Introduction .. 9

1.1 Introduction ... 9

1.2 Motivation ... 10

1.3 Research Questions .. 11

Chapter 2 13

Theoretical Background ... 13

2.1 Living off the Land Attacks .. 13

2.1.1 Dual Nature of Tool .. 14

2.2 What are Anomalies? ... 15

2.3 Intrusion Detection System and Categorizations ... 17

2.3.1 Signature-based intrusion detection systems (SIDS) ... 18

2.3.2 Anomaly-based intrusion detection system (AIDS).. 18

2.3.3 Implementation Techniques for Anomaly Based Intrusion Detection System (AIDS) 19

Chapter 3 24

Literature Survey and Related Work .. 24

3.1 Earliest Works - IDS .. 24

3.2 Rule Mining in Anomaly Detection.. 25

3.3 Dynamic Graph based Detection .. 26

3.3.1 Anomaly Detection in Time Evolving Graphs ... 26

Chapter 4 29

Methodology and Proposed Work ... 29

Approach 1: Rule Learning based Approach ... 29

4.1 Data Mining and Association Rule Mining ... 29

4.2 Learning rules for Anomaly detection algorithm (LERAD) .. 31

4.2.1 Rule Learning ... 32

4.2.2 Candidate rule generation .. 32

4.2.3 Removing duplicate rules ... 33

Approach 2: Dynamic Graph based Approach .. 34

4.3 Graphs and why graphs? .. 34

4.4 Streaming Data Structures .. 35

 8

4.5 Count-Min Sketch (CMS) .. 36

4.6 Data Model .. 37

4.6.1 Edge Scoring ... 37

4.6.2 Laplacian Feature Scoring ... 39

4.6.3 Community detection and Scoring .. 40

Chapter 5 42

System Setup and Methodology .. 42

5.1 General Setup and Data Source .. 42

5.2 Data Engineering and Preprocessing ... 44

5.3 Dataset Generation .. 46

Chapter 6 49

Evaluation and Outcome .. 49

6.1 Experiment: LERAD ... 49

6.2 Experiment: Statistical Model ... 50

Chapter 7 54

Conclusion ... 54

7.1 Attacks against the Detection Service ... 54

7.2 Summary .. 55

References 56

 9

Chapter 1

Introduction

1.1 Introduction

The ever-lasting challenge of detecting and mitigating security anomalies in computer

systems has become more so essential than ever, especially with the enormous number of

connected devices and growing sophistication of cyber-attacks.

According to the Symantec Internet Security Threat Report from 2019, zero-day exploit

usage declined, only 23 percent of attack groups were known to use zero days, down from 27

percent in 2017. Also, attacks which rely solely on “living off the land” (Lotl) techniques and

do not use any malicious code were on a rise. The targeted attack group “Gallmaker” is an

example of this shift, with the group exclusively using generally available tools to carry out its

malicious activities [1]. Supply chain attacks and Lotl based attacks continued to be a feature

of the threat landscape, with attacks increasing by 78 percent in 2018 [1]. As pointed out in the

2017 Data Breach Statistics, roughly nine billion data records were lost/ stolen by hackers since

2013 (Breach Leve Index, 2017 [2]. Historically, cybercriminals have primarily focused on

bank customers, stealing bank accounts, or stealing credit card information, however, the new

generation malwares have become more advanced and ambitious and are targeting the

infrastructure such as banks themselves, often trying to take millions of dollars in one attack.

There is one emerging trend in most of the recent cyberattacks, including the famous

Petya/ NotPetya in 2017, that they were not carried out by installing malware; rather, they used

supposedly secure programs. According to a report by X-Force in 2018 more than half (57

percent) of attacks analyzed by X-Force in 2018 [3] did not leverage installing a malware and

many involved the use of non-malicious tools including PowerShell and PsExec to evade

detection systems. These so-called dual-use tools provide threat actors with the ultimate

playground, where they know it is easier to hide inside approved softwares and services than it

is to drop new, malicious software in another’s environment.

For that reason, the detection of unseen malwares and zero-day attacks has grown to be

one of the top security priorities for researchers. High profile incidents of cybercrime show the

 10

ease with which cyber threats can spread globally and disrupt business services and facilities.

Cybercriminals around the world are motivated to steal information, illegitimately receive

monetary benefits, and acquire new targets. Malware is intentionally created to compromise

computer systems and take advantage of any weakness in intrusion detection systems, which

makes it even necessary to develop efficient IDS to detect novel, sophisticated malwares.

Analyzing and monitoring system logs for threats and intrusion is not a new trend and

has been historically one of the most researched fields for intrusion detection. System event

logs is a rich source for detecting anomalies, but the scale and inconsistent formatting of the

events logs are big issues to tackle, but otherwise it can be good way of detecting anomalies

across platforms. The value from this thesis would be towards using a rule mining and

streaming data/ graph-based technique towards anomaly detection that would integrate

machine learning technique to heuristic and statistics-based anomaly detection.

1.2 Motivation

The work in this thesis was carried out as part of my internship in ReaQta, and this

work on behavioral anomaly detection holds both business and academic value, since the

company works in the field of Advanced Persistent Threat (APT) detection.

There are several reasons why creating a behavioral anomaly detection system based

on logs could be an effective system, especially to detect attacks using “Living off the land”

(Lotl) techniques. Not only properties like unseen log patterns, absence of certain logs, high/

low frequency of logs etc. can indicate potential anomalies but logs-based anomaly detection

can also help in recreating the incidence and help in post infection analysis. Since the number

of logs that are generated from modern IT infrastructure is huge finding security anomalies can

be a tedious task as its equivalent to finding needle in haystack.

Another problem is the evolution of threats and attacks, and that it is getting harder to

detect, so it could be difficult to find out if system events are legitimate or malicious. Anomaly

detection systems are doing a decent job in detecting malicious traffic, but a standard detection

system must continuously be updated with rulesets or signatures and upgrades should be up to

date with the recent threat vectors. Big companies like Symantec, Norton etc. releases new

rulesets on a regular basis, but even these might not be sufficient, considering the vast space of

 11

these rules. How to keep up with the ever-increasing rulesets and ensure that these rules are

effective enough, is something that many security researchers have inquired.

The objective is not just to create an anomaly detection system but also come up with

an anomaly scoring mechanism, that adds risk/ threat score to the anomalies, which adds

business value as well. The motivation also comes from using the existing backend services

used by ReaQta to generate threats and behavioral process trees for security analysts. Hence,

we shall aim at detecting attacks that use “Living off the land techniques” (Lotl), where the

attackers use the existing tools used by system administrators to exploit system. Attackers can

use trusted OS tools like powershell.exe, wmic.exe, or schtasks.exe, which can be difficult to

differentiate with normal usage of these tools. To target this, security researchers author rules

for suspicious parent child relationships and we shall be defining anomalies as anomalous

parent-child events in this thesis work.

Many researchers have been using Machine Learning for anomaly detection, and we

shall be using it as well but look at the anomalies from a parent child process perspective. Since

manually doing this is a tedious and time-consuming task, we shall be using two approaches –

one based on association rule learning and one based on statistics on parent child relationships

and evaluate the results achieved from the same.

1.3 Research Questions

The motivation mentioned in the earlier section has led us to clearly define the

following research questions and we shall be trying to find answers to these in this thesis work.

RQ1: Can we establish parent child relationship in event logs and detect anomalies

based on that?

RQ2: Can we use rule mining approach to build rulesets that can efficiently detect

parent-child anomalies?

RQ3: Since parent-child relationships can be expressed efficiently in graphs, can we

use data streams and graph-based approach to detect parent-child anomalies?

RQ4: What can be possible weaknesses and exploits in the mentioned approaches?

 12

RQ5: What are the possible scenarios and use cases where the mentioned approach can

be adopted?

First three questions shall be answered as the outcome of this thesis, where we would

we exploring 2 techniques for detection anomalies based on parent-child relationship. We will

be generating the parent-child transformations from the events generated by system logs and

apply rule mining and graph-based approach on the transformation, which will be covered in

the Chapter 4, 5, 6, and answer RQ1, RQ2 and RQ3. The goal will also be to measure the

efficiency and performance of these two approaches and their applicability to real world

dataset. RQ4 and RQ5 would be answered in the summary section of the thesis.

We will be looking in detail at the parameters used during our experiments and the

rationale for deciding the tuning parameter for both detection approach. We shall be also

elaborating on the relationships and features used to build the models used in evaluating the

dataset and based on the approach used we will look at the possible attacks possible on our

approach used. The last question will be answered based on the dataset we used and result

outcome, and how applicable is parent-child relationship in outlier detection.

 13

Chapter 2

Theoretical Background

In this Chapter we shall be presenting some necessary background information on

anomaly detection, in general and on necessary related background that will be used throughout

this thesis. A description of the different research fields, on which we have focused, will also

be presented as necessary relevant related work.

2.1 Living off the Land Attacks

The use of “Living off the Land” (Lotl) tactics and tools by cyber criminals has been a

growing trend within the cyber security landscape in recent times. The concept of Lotl

technique is not a novel approach and has been around for as long as 25 years. Using system

tools as backdoors has been a common practice in past, however, in recent years, it has returned

and grown in importance.

In the technology world, Lotl refers to an attacker’s behavior that uses tools or features

that already exist in the target environment. Such attackers exploit ways to fly under the radar

of either intrusion prevention or detection technologies. Generally, hash values/ other

indicators of comprise (IOCs) are used by signature-based intrusion prevention technologies to

detect and quarantine/ isolate malicious processes. Lotl attacks thus get onto an organizations’

systems via trusted programs/ software’s that aren’t going to flag any suspicions, then inject

them with malicious payload. There are multiple advantages of using this tactic: to begin with,

they are able to get around traditional protection systems, which will not be triggered by

unusual use of apparently secure software. Given the circumstances, it is much more difficult

to identify where the attack comes from compared to when certain files are being used. The

reason being that most cybersecurity solutions are unable to detect dangerous behavior when

it is carried out using tools classified as legitimate [4].

While attackers can change IOCs relatively easily, refer Figure 1 for the Pyramid of

Pain, using pre-existing software avoids the process being flagged as suspicious and saves the

attacker cycles in developing a binary from scratch to deliver an attack [5].

 14

Figure 1: The pyramid of pain represents the difficulty levels for attackers to change indicators

that security analysts may use to detect their activity

2.1.1 Dual Nature of Tool

As observed by Symantec in Q1 2019 [4], the most frequently executed dual use tools

observed were net.exe, PowerShell, the certification utility, the task scheduler, and the WMI

command line (WMIC), however, the percentage usage in malicious activities was significantly

low. The context of the event and execution pattern remains one of the key components in

detecting behavior of such attacks and this is what we try to achieve with machine learning and

statistics in this thesis. The same report by Symantec also shows that WMI, the command line

tool, and PowerShell were amongst the most frequently used for malicious purposes,

accounting for 89 percent of all dual-use tools used as downloaders, as also shown in the Figure

2 below.

 15

Figure 2: Dual Use tools reported by Symantec [4].

We also look at the target attack groups, which have been known to using Lotl tactics

for a long time, with almost all active groups were seen using dual-use tools at some point.

Looking at the stats from the six active target groups as in Figure 3, we can observe that

PowerShell is the most common dual-use tool, utilized in about 77% of the target group attacks

[4].

Figure 3: Dual-use tool usage among active targeted attack groups [4].

2.2 What are Anomalies?

Anomalies can be described as patterns in observations/ dataset that do not conform to

a well-defined notion of normal behavior [6]. Figure 4 shows anomalies in a simple 2-

dimensional data set. The data has two normal regions, 𝑁1
 and 𝑁2

 since most observations lie

 16

in these two regions. Points that are sufficiently far away from the regions, e.g., points 𝑜1
 and

𝑜2
 , and points in region 𝑜3

 , are anomalies/ outliers.

Figure 4: Example showing anomalies in a 2D dataset [6].

Anomalies can be introduced in the data due to a variety of reasons, such as malicious

activity, e.g., CC fraud, cyber-intrusion, terrorist activity or system mal-functioning, but all

these reasons still share common characteristics in the global data, which is what is of interest

to the security analyst. Anomalies are however different from noise or novelty in data, where

the former is the objective to reduce in data analysis and the latter is basically appearance of

new patterns that would be later incorporated into the normal characteristic model.

A necessary consideration of an anomaly detection technique is the nature of the desired

anomaly. Anomalies, usually can be divided into following three main categories [6]:

• Point Anomalies – This is probably the simplest form of anomaly and focus of

many security researchers. When an individual data element can be considered

as outlier with respect to the rest of data, then the instance is termed as a point

anomaly.

For example, consider anomaly detection in CPU usage. Let the data set

correspond to the CPU utilization of a system under observation. For the sake

of simplicity, let us assume that the data is defined using only one feature -

memory usage (univariate distribution). A transaction for which the memory

usage is very high compared to the normal range of for a process will be a point

anomaly.

 17

• Contextual Anomalies - When a data element is anomalous in a given context,

but not in general, then it is termed as a contextual anomaly (also referred to as

conditional anomaly [7]).

Using the information of the behavioral attributes in a specific context, the

anomalous behavior is defined. A data instance, in specific context, might be a

contextual anomaly, but similar data observation (in behavioral attributes)

might be deemed normal in a different context. This property is important in

identifying contextual and behavioral attributes for a contextual anomaly

detection technique

• Collective Anomalies. When a collection of related data elements appears

anomalous with respect to the complete data set, then it is can termed as a

collective anomaly. These individual data instances in a collective anomaly

scenario may not be anomalies individually, but their occurrence together as a

collection is anomalous.

2.3 Intrusion Detection System and Categorizations

The main challenge in sophisticated malicious attacks is to identify the novel and

obfuscated intrusion techniques, as the malware authors often use techniques such as

information concealing, and evasion etc. to hide from detection by an IDS. This indeed calls

for more sophisticated anomaly detection systems that can detect unauthorized intrusions at an

early stage. Intrusion detection [8] and fraud detection [9] are one of the most researched fields

within anomaly detection, however, we shall focus on intrusion detection domain in this thesis

work. Algorithms from different domains maybe suitable for our purpose with some

adjustments, for example in intrusion detection it is required to block anomalies real time, while

in fraud detection there is usually a time interval to take action, but accuracy is of utmost

importance so as to not miss a fraud.

Intrusion can originate from both within and outside the network, cause data breach,

hamper the availability of IT systems, and cause monetary losses. IDSs aim at detecting

intrusions and alerting system analysts at an early stage before the entire system gets

 18

compromised. In general, IDS systems can be classified into following 2 groups based on

detection method used:

• Signature-based Intrusion Detection System (SIDS), and

• Anomaly-based Intrusion Detection System (AIDS).

2.3.1 Signature-based intrusion detection systems (SIDS)

Signature intrusion detection systems (SIDS) analyze data for signatures that match

known cyberattacks using pattern matching techniques to detect known intrusions. Basically,

when signature of an intrusion matches with the signature of a previous intrusion that already

exists in the signature database, an alarm is flagged. For SIDS, host’s logs are inspected to find

sequences of commands or actions which have previously been identified as malicious or

malware.

In the literature, SIDS are also referred as Knowledge-Based Detection or Misuse

Detection [10]. The main idea is to build a database of intrusion signatures (from past or known

occurrences) and to compare the current activities against the existing signatures and raise an

alarm in case a match is found. While SIDS is effective in detecting known malware attacks

[11], it does provide much protection against novel attacks or polymorphic variants of

malwares.

2.3.2 Anomaly-based intrusion detection system (AIDS)

AIDS has drawn interest from a lot of scholars due to its ability to overcome the

limitation of SIDS. A normal model of the behavior of a computer system is built in AIDS over

time using statistical-based, machine learning or knowledge-based methods. Any significant

deviation between the observed behavior and the model can regarded as an anomaly, which

can then be interpreted as an intrusion. The assumption for this group of techniques is that

malicious behavior differs from a normal user behavior.

The behavior of a user which is dissimilar to standard behavior is classified as

intrusions. AIDS development comprises of two phases: the training phase and the testing

phase. In the training phase, the normal profile is used to learn or create a model of normal

behavior, and then in the testing phase, a new data set is used to establish the system’s ability

to generalize to previously unseen intrusions. Based on the method used for training, AIDS can

 19

be classified into several categories, for example, statistical based, knowledge-based and

machine learning based [12]. The main advantage of AIDS is its ability to identify zero-day

and novel attacks, since recognizing the abnormal user activity does not rely on a signature

database.

Further, IDS can be categorized based on the dataset used, broadly into 2 categories,

namely, host-based, network-based (router-based is also part of network-based IDS, since both

are based on similar datasets) [13].

Host-based IDS (HIDS) is usually deployed on host-machines to monitor activities on

that host machines. Earlier HIDS implementation used to take away much of the computing

power from the users of the host machines, but now with host machines being more powerful,

host-based intrusions systems have become extremely powerful. HIDS also provides the

functionality of sandboxing/ isolating the compromised hosts, that can prevent the spread and

administrators can accordingly handle the threats. HIDS can provide protection against both

insiders and outsiders.

Network-based IDSs (NIDS) are usually installed on some strategic computers

(generally the ones on the network periphery) in the network to monitor data packets sent

between host machines. With NIDS, since network traffic data volume is so huge it presents

difficulty in efficiently processing data and have limited ability to inspect all data in a high

bandwidth network [14].

In my internship project, we have been working on a host-based anomaly detection

system, which works on the event information captured from the hosts. The IDS is light weight

and does not hamper the performance of the system, while the anomaly analysis is performed

at the central server running the service. More on the details of the systems will be covered in

Chapter 5.

2.3.3 Implementation Techniques for Anomaly Based Intrusion Detection System

(AIDS)

AIDS methods can be classified into three main groups [15][16]:

• Statistics-based

• Knowledge based

• Machine learning-based

 20

Statistics-based techniques

A statistics-based IDS builds a distribution model for normal user behavior profile, then

detects low probability events and flags them as potential intrusions. Statistical AIDS often

utilizes the statistical metrics such as the median, mean, mode and standard deviation of dataset

samples. Statistical AIDS can identify any type behavioral differences from the given normal

behavior. In general, statistical IDS normally use one of the following models:

• Univariate Model

“Uni” aka “one”, implies that data source has only one attribute or variable. This

technique is widely used when a statistical normal profile is built for a single measure of

behavior in IT systems. Univariate IDS look for irregularities in each individual metric [17].

• Multivariate Model

It is based on relationships among two or more variables to understand the relationships

between variables. The model can yield better classification, achieved from combinations of

correlated measures rather than analyzing them separately. In [17] the author examines a

detection system using multivariate quality control method by creating a long-term model of

normal activities. The main challenge for a multivariate statistical IDS is that it is hard to

approximate distributions for high-dimensional data.

• Time-Series Model

The observations are made over a certain time interval and a new observation is flagged

abnormal if the probability of its occurrence at that time interval is too low. In [18] authors

used time series for processing intrusion detection alert aggregates. In [19] authors presented a

method for detecting network abnormalities by observing the abrupt variations found in time

series data.

Knowledge-based techniques

Also, referred to as an expert system method, this technique-based approach requires

creating a knowledge base which indicates the normal user profile. Actions which differ from

this standard profile are flagged as an intrusion. Unlike in previous other classes of AIDS, the

standard profile model is usually built by security analysts aka based on human knowledge, in

terms of defining a set of rules that describe normal system activity.

 21

An inherent benefit of knowledge-based techniques is the capability to reduce false-

positives since the system has knowledge about all the normal behaviors. However, in dynamic

environments, these type of IDS needs a regular update on knowledge for the expected normal

behavior which is a time-consuming task. Knowledge-based techniques are further categorized

in 3:

• Finite State Machine

FSM is a computation model that is used to represent and control execution flow. In

general, the model is represented in the form of states, transitions, and activities, where a state

checks the history data.

• Description Language

Description language is used to describe the syntax of rules which may be used to define

the characteristics of a specific attack. These rules could be built by description languages such

as N-grammars and UML [20].

• Signature analysis:

This is one of the earliest techniques applied in IDS, it relies on the simple idea of string

matching, where an incoming packet is inspected, word by word, with a distinct signature and

if a signature is matched, an alert is flagged.

AIDS based on machine learning techniques

• Supervised Machine Learning for Anomaly Detection

In supervised learning method a labeled training dataset with normal and anomalous

samples is required for constructing a predictive model. The most common supervised methods

include decision trees, rule-based systems, neural networks, support vector machines, naive

Bayes and nearest-neighbor.

Arguably, the most popular non-parametric technique in supervised learning is K-

nearest neighbor (k-NN) that calculates an approximate distances between different points on

the input vectors and assigns the point to the class of its K-nearest neighbors. Another effective

model is the Bayesian network that encodes probabilistic relationships among features of

interest.

 22

Theoretically, the supervised models perform better and provide more accurate

detection rate when compared to unsupervised methods. The ability of encoding the

interdependencies between features/ variables, combined with their ability to incorporate both

prior knowledge and current data, supervised models return a better confidence score with the

model output. However, in most practical sense, having labeled data is an unrealistic

assumption.

• Unsupervised Machine Learning for Anomaly Detection

Unsupervised learning techniques do not require any manually labeled training data

unlike in supervised. It presumes that most observations/ datapoints in a scenario present the

normal behavior and only a small amount of percentage of observation is abnormal, thus

anticipating that malicious observation is statistically different from the normal ones. Based on

these above assumptions, frequently occurring groups of similar instances are classified as

normal and infrequent data groups are categorized as malicious. The most popular

unsupervised algorithms include GMMs, PCAs, K-means, Autoencoders, and hypothesis tests-

based analysis [21].

Unsupervised anomaly detection algorithms are roughly categorized into the following

main groups as illustrated in Figure 5. (1) Nearest-neighbor based techniques, (2) Clustering-

based methods and (3) Statistical algorithms as shown in Figure 5. We shall be not going into

the details of each of the category, since it is out of the scope of the thesis work. As mentioned

earlier, we shall be using a machine learning based approach (association rule learning) and

propose a new statistical-based approach to detect novel anomalies in parent-child process.

 23

Figure 5: Categorization of Unsupervised machine learning for anomaly detection.

 24

Chapter 3

Literature Survey and Related Work

In this chapter, we would review and present the literature review of the existing related

work within the scope of this thesis work.

3.1 Earliest Works - IDS

One of the starting works on intrusion detection was a study by Jim Anderson [22] [11]

which suggested ways on analyzing computer system audit data. The study introduced methods

where data that is collected for performance analysis and other reasons was used for batch

processing on audit data.

After Anderson’s study, earlier works focused on developing procedures and

algorithms for automating the offline security analysis of audit trails. The algorithms aim to

provide ways for automated tools to help the security analysts perform assessments on batch

of system activity (usually from last days). A similar project, conducted at SRI proposed using

the audit data-logs, and suggested possible ways of creating automated security analysis of logs

[23]. The work involved performing an extensive statistical analysis on audit data from the

IBM systems running MVS (Multiple Virtual Storage) and VM (Virtual Machines). The

objective of the study was to develop analytical and statistical techniques for screening

computer system accounting data to detect user behavior indicative of intrusions.

IDES (Intrusion Detection Expert System), introduced by Lunt et al., 1992 [24] was a

real time intrusion detection system that used both signatures and anomaly-based detection.

The anomaly detection system of IDES worked by comparing the audit records against the

normal profile of the user and that group the user was part of.

GrIDS (Graph based Intrusion Detection System), introduced by Chen et al., 1996 [25]

used data source modules that run on each host and collects information to build a graph

representation of an activity happening in the network, which is then compared with the normal

profile to detect intrusions. GrIDS uses a central architecture and utilizes anomaly detection

technique for intrusion detection.

 25

Hyperview, introduced by Debar et al., 1992 [26] employs both - an artificial neural

network component and an expert system component to detect intrusions. The expert system

monitors the audit logs for known signatures of intrusions, while the neural network component

learns the user behavior from the events and alerts for intrusions, when deviation is noted from

the learned behavior.

RIPPER, by Lee et al., 1999 [27] uses data mining to generate automated and adaptive

models for intrusion detection. The system extracts extensive feature set to describe the details

of a network session and connection and applies association rule mining to learn the rules for

normal and malicious behavior of the system. These rules are used for both signatures based

and anomaly-based detection based on multiple algorithms used by RIPPER to generate

patterns.

3.2 Rule Mining in Anomaly Detection

F. Silveira and Diot [28] proposed a tool called URCA that looks for anomalous flows

by repeatedly eliminating subsets of normal flows and classifies the type of a detected anomaly.

However, it can be computationally expensive as it requires continuous revaluation of detection

system on different flow subsets.

Dowitcher proposed by S. Ranjan et al. [29] proposes a scalable system for worm

detection and containment in backbone networks. The system automatically constructs a flow-

filter from the intersection of suspicious attributes provided by different detectors leveraging

suspicious attributes from an anomaly detector and study the anomaly extraction problem in

more depth.

Dewaele et al. [30] creates numerous random projections of a traffic trace using

sketches, then using Gamma laws, models the marginals of the sub traces and identify

deviations in the parameters of the models as anomalies. The system tries to find possible

anomalous source or destination IP addresses by taking the intersection of the addresses

hashing into anomalous sub traces.

Lakhina et al. [31] propose a system to detect “network-wide anomalies” using SNMP

data to highlight the origin-destination flow along which an anomaly existed. Li et al. [32],

randomly aggregate flows as an alternative to origin-destination aggregation using sketches. It

 26

showed that more anomalies can be detected using random aggregation compared to the origin-

destination aggregation in the PCA subspace anomaly detection method.

Lee and Stolfo in [33] propose a system for extracting interesting intrusion patterns

from system calls and tcp dump logs using association rule learning. Vaarandi [34] introduces

a tool called LogHound that provides an optimized implementation of Apriori and demonstrates

how to summarize traffic flow records. Yoshida et al. [35] also identifies rare/ interesting

events in traces from the MAWI traffic archive using frequent item-set mining. Chandola and

Kumar [36]59describe rule mining-based approach to find a small set of highly frequent item-

sets that can summarize a large set of flows.

Mahoney and Chan [37] identify rare events that could indicate anomalies in packet

payload data using association rule mining (LERAD). In their approach they use 1999 DARPA/

Lincoln Laboratory traces to evaluate their approach and it aims at edge networks where mining

rare events is possible. We can clearly see most of the work focused on network logs, however,

we would be using similar approach from Mahoney and Chan [37] but on a host logs and

relational data i.e. parent-child events and use the rule mining algorithm (LERAD) to find

anomalous parent-child relations.

3.3 Dynamic Graph based Detection

In this section, we review previous approaches to detect anomalies in dynamic graphs

and data streams. We referred Akoglu, Tong, and Koutra 2015 [38] and [39] for an extensive

survey on graph-based anomaly detection. Since our proposed method focusses on data streams

and dynamic graphs, we will cover techniques within that domain.

3.3.1 Anomaly Detection in Time Evolving Graphs

Anomaly detection in time evolving graphs is categorized based on the kind of

anomalies, the following work tries to detect.

Anomaly detection in graph streams uses as input a series of graph snapshots over a

period. Based on the types of anomaly following work is trying to detect, we categorize the

related works as below:

 Anomalous node detection: Sun, Tao, and Faloutsos 2006 [40] introduced a dynamic

tensor analysis (DTA) method and by approximating the adjacency matrix of the current

 27

snapshot based on incremental matrix factorization, it spots nodes corresponding to rows with

high reconstruction error. The system aims to create summary of high dimensional data and

reveal hidden correlations.

Anomalous subgraph detection: Beutel et al. 2013 [41] proposed COPYCATCH that

detects temporally bipartite cores that are ill-gotten “Likes” of Facebook for a given graph with

timestamps on edges. The proposed method is aimed to catch lockstep Page Like patterns on

Facebook by analyzing the social graph between users and pages and the times at which the

edges in the graph (the Likes) were created. The system spots near bipartite cores where each

node is connected to others in the same core density within a short time.

Anomalous event detection: Eswaran et al. 2018 [42] proposed a randomized sketching-

based approach called SPOTLIGHT that provides high statistical guarantees that anomalous

graphs are mapped at a distance from the normal graphs in the sketch space. The system, in

close to real time, points to distinguish atypical graphs containing the sudden appearance or

vanishing of huge dense subgraphs (e.g., close bicliques).

 The system aims to detect anomalous graphs containing the sudden appearance or

disappearance of large dense subgraphs (e.g., near bicliques) in near real-time.

 Yoon et al. 2019 [43] proposed ANOMRANK, that uses a two-pronged approach

defining two novel metrics for anomalousness tracking own version of a ‘node score’ (or node

relevance) function which allows to detect sudden changes in node importance. The system

detects suspicious changes in the structure of the graph, such as through the addition of edges

between previously unrelated nodes in spam attacks and spots sudden changes in 1st and 2nd

derivatives of PageRank.

Anomaly detection in edge streams: In edge streams, a stream of edges over time is

used as input data for detection. We again categorize the related work based the type of

anomaly they detect:

Anomalous node detection: Yu et al. 2013, in [44] proposed for a given edge stream,

methods for dynamically determining anomalous hot spots in network stream. The work used

principal component analysis (PCA) to maintain information about changes in neighborhoods

of a graph and detects nodes whose egonets change suddenly and significantly.

Anomalous subgraph detection: Shin et al. 2017 [45] proposed DenseStream and

DenseAlert, two incremental algorithms that maintains and updates dense subtensors, created

 28

within a short time, in a tensor stream (i.e., sequences of changes in a tensor), and spotting the

sudden appearances of dense subtensors respectively

Anomalous edge detection: Ranshous et al. 2016 [46] focuses on sparsely connected

parts of a graph and uses the global and local structural properties of a stream to build an outlier

detection model. The paper uses Count-Min sketch for approximating these properties, and

provide probabilistic error bounds on edge outlier scoring functions

Eswaran and Faloutsos 2018 [47] proposed a SEDANSPOT that identifies edge

anomalies based on edge occurrence, preferential attachment, and mutual neighbors and scores

the anomalousness of edges by considering the whole (sampled) graph, giving diminishing

importance to far-off neighbors

Siddharth et al. 2019 [48] proposes a system to detect suddenly arriving groups of

suspiciously similar edges or micro-cluster anomalies, such as lockstep behavior along with

detecting DDoS (denial of service) attacks in network traffic data. The paper presents two

algorithms MIDAS, and MIDAS-R, with one having temporal decay factor for time relevance

in data.

Our proposed work is more related to the anomaly detection problem in edge stream,

where we treat the problem of parent-child anomaly as a relationship and learn the behavior

using statistical properties of the relationship in graph to detect anomalous edges.

 29

Chapter 4

Methodology and Proposed Work

In this chapter we shall be discussing LERAD (Learning rules for Anomaly detection)

algorithm and presenting our novel algorithm for detecting parent-child anomalies, since data

in events logs cannot always be treated as points lying in a multi-dimensional space

independently, rather they exhibit inter-dependencies which should be accounted for during

the anomaly detection process. Based on this idea we would discussing on the two algorithms.

Approach 1: Rule Learning based Approach

4.1 Data Mining and Association Rule Mining

Data mining is the process where data is analyzed from different perspectives and then

summarized into useful information [49]. Data mining allows analyzing data, categorizing it,

and summarizing the relationships among data attributes. Technically, data mining can be

described as the process of finding patterns and correlations within large relational databases.

Primarily used to discover interesting relationships, association rules are basically if/

then statements that are used to discover/ establish relations between unrelated data in a

database, relational database, or other information repository i.e. to find the hidden

relationships between the elements that occur frequently together. Use cases of association

rules are manifold including classification, marketing, basket data analysis, recommender

systems, clustering, and loss-leader analysis etc. In 1993, article from Agrawal et al. [50]

popularized the concept of association rules due to the which it is widely used within the Data

Mining field and is regularly cited in academic community. However, what is now called

"association rules" was introduced already in the 1966 paper on GUHA, a general data mining

method developed by Petr Hájek et al [51].

The paper by Aggarwal et al. [50] defines the association rule problem as:

Let 𝑰 = {𝒊𝟏, 𝒊𝟐, … … , 𝒊𝒏} be a set of 𝒏 binary attributes called items.

Let 𝑫 = {𝒕𝟏, 𝒕𝟐, … … , 𝒕𝒏} be a set of transactions called the database.

Each transaction in 𝑫 has unique transaction ID and contains a subset of the items in 𝑰.

 30

A rule is usually is defined in the below form:

𝑿 => 𝒀, where 𝑿, 𝒀 ⊆ 𝑰

In the paper, a rule is defined only as relation between a set and a single itemset,

 𝑿 => 𝒊𝒋, 𝒇𝒐𝒓 𝒊𝒋 ∊ 𝑰

Every rule is composed by two different sets of items, also known as item, sets

𝑿 𝒂𝒏𝒅 𝒀 and, where 𝑿 is called the antecedent and 𝒀 the consequent.

In rule mining there are basically three major quantitative measurements that must be

taken into consideration, the support, the confidence and lift. These parameters are used widely

to decide on the importance or quality of a rule generated.

Support is an indication of how regularly the items appear in the dataset.

Mathematically, support is defined as the fraction of the transactions having item X and Y with

total number of transactions in which the item set occurs.

Support {x} →{y} =
𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔

Confidence defined the number of times the if-then statements of associations rules are

found true. Confidence can hence be defined as the conditional probability of occurrence of

consequent given the antecedent.

Confidence {x} →{y} =
𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚

𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒙

Lift is used to compare the actual confidence with expected confidence. This can be

described given item X was purchased, how likely item Y is purchased, at the same time

controlling the popularity of item Y. So, mathematically,

Lift{x}→{y}=

(𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒃𝒐𝒕𝒉 𝒙 𝒂𝒏𝒅 𝒚)
(𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒙)

(𝑭𝒓𝒂𝒄𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒚)

 31

4.2 Learning rules for Anomaly detection algorithm (LERAD)

LERAD generates rules from arbitrary combinations of nominal attributes, eliminating

the need to select rules in an ad-hoc fashion. The goal of LERAD is to find conditional rules

that can identify unexpected/ rare events in a time-series of tuples of nominal (unordered)

attributes (e.g. packet field values, or words in a TCP session), as introduced in the original

paper by Mahoney and Chan [37]. Given two tuples, the time series exhibits long range

dependencies; the number of matching attribute values decreases as the time interval between

the tuples increases.

Rules generated have the general form:

"if 𝑨𝟏
 = 𝒗𝟏

 and 𝑨𝟐
 = 𝒗𝟐

 and ... and 𝑨𝒌
 = 𝒗𝒌

 then 𝑨𝒌+𝟏
 € 𝑽

 = {𝒗𝒌+𝟏
 , 𝒗𝒌+𝟐

 , …, 𝒗𝒌+𝒓
 }

𝒏 , where

the 𝑨′𝒔
 are attributes and 𝒗′s are values.

From this huge rule space that is created, LERAD aims to select the rules that would

generate the highest anomaly scores, i.e. those that have high n and low r, where n is the number

of training instances that satisfy the antecedent (𝑨𝟏
 = 𝒗𝟏

 , and 𝑨𝒌
 = 𝒗𝒌

 , 𝒌 𝒓 = |𝑽|), and r is the

number of allowed values in the consequent. This goal is different from earlier rule mining

algorithms such as [52] or [53], which have the goal of finding rules that predict a single value

in the consequent with high probability (i.e. high confidence).

Though the target for rule mining algorithms, specifically the above three, is to find

rules having support value (large n), LERAD differs a bit, since regardless of the distribution

within V, it tries to find rules with small r.

For example, one rule might be "if port = 23 then name € {"HELO", "EHLO"}". In

training phase, LERAD checks the number of observations where port = 23, counts n, and

records V i.e. the set of values for name. While in testing phase, when LERAD observes an

instance with port = 23 but the corresponding name value is not "HELO" or "EHLO", then an

anomaly score of tn/r is assigned, where 𝒓 = |𝑽| = 𝟐, and t is the time since the rule was last

violated. This process is repeated for other rules as well and the total score assigned to a

instance during testing would the summation of the anomaly scores assigned by each rule (in

the rule set) for which the antecedent is matched but the consequent is not.

 32

4.2.1 Rule Learning

LERAD aims to generate good rules (high n/r, aims to keep r small) but challenge is

searching the huge rule space, which grows exponentially with the increasing number of

attributes. LERAD uses a randomized algorithm [37] to generate candidate rules, then tests

them on increasingly large subsets of the training data, discarding the redundant rules and those

that do not satisfy the constraint of high n/r. The steps are as follows:

1. haphazardly generate rules with n/r = 2/1 on pairs of training instances.

2. discard redundant rules in favor of those with those with higher n/r on a larger training

sample, S.

3. get rid of the rules that show poor performance on the complete training set (specially,

where r increases towards the end). LERAD makes two iterations over the training data,

first to sample the training instances as in step 1 and 2, and then finally to train the rules

as per step 3.

4.2.2 Candidate rule generation

The candidate rules are made by randomly selecting pairs of instances from the training

set and finding rules that satisfy both instances (one or more attributes have the same value in

both instances). In such case, one attribute becomes the consequent and any subset of the

remaining attributes can become the antecedent. For example, we have two training examples

as given below:

port = 80 word1 = word.exe word2 = / word3 = Microsoft

port = 80 word1 = word.exe word2 = /wmic.exe word3 = Microsoft

There are three matching attributes in the example above namely port, word1, and word3.

Some of the 12 possible rules with n/r = 2/1 are:

- word1 = "word.exe"

- if word3 = "Microsoft" then port = 80

- if port = 80 and word1 = "word.exe" then word3 = "Microsoft"

In general, if there are 𝒌 matching attributes, then there are 𝒌 possible consequents and

𝟐𝒌−𝟏 possible subsets of the remaining attributes to form the antecedent, allowing for

 33

𝒌𝟐𝒌−𝟏possible rules. LERAD does this by randomly picking a subset of these rules as

candidates. LERAD does this as detailed in the following algorithm [37]:

- randomly select a sample S training instances

- repeat L times

- haphazardly select a pair of training instances from S

- randomly order the k matching attributes in a sequence, but not more than 𝒌𝒎𝒂𝒙

- generate 𝒌
 rules using 1 through 𝒌

 attributes, making the first one the consequent and

the others the antecedent.

In the original paper by Mahoney and Chan, it makes little difference whether the

random pairs are selected from S or from the full training set. In our experiment we used |S| =

100000, and notices it makes little difference on increasing the |S|.

4.2.3 Removing duplicate rules

The second major step in LERAD is to get rid of rules generated that really do not

provide any new information about a small sample training set, S. When two rules predict the

same values, LERAD will keep the one with the higher n/r (when its trained-on S), or in case

of a tie in scores, the one with fewer conditions in the antecedent. The algorithm for deduping

is as follows:

- Sort the candidate rules by descending n/r on S, or by ascending size of the antecedent

in case of ties.

- For each rule

- For each sample in S

- if the sample instance satisfies the antecedent, then mark the consequent value

in S unless already marked

- remove the rule if no new values in S could be marked.

 34

Approach 2: Dynamic Graph based Approach

In this section, we would be presenting a novel way for detecting parent-child

anomalies. We model the problem of detecting parent child anomalies in streaming data as

relational models that are built over time. Our approach considers the dynamic behavior of

changing relationships in attributes of a graph. We use a count min sketch-based approach to

build relationship and score the streaming data on logarithmic and probabilistic scales.

4.3 Graphs and why graphs?

A graph is an abstract data type that requires two basic building blocks: nodes and

vertices as shown in Figure 6. A graph utilizes the basic idea of using vertices to establish

relationships between pairs of nodes. Many real-world relationships specially with

interdependencies or hierarchical structure are best modelled using graph structures.

Figure 6: Graph shows nodes and vertices

A graph 𝐆 = (𝐕, 𝐄) has the following attributes and is composed of:

• nodes, also called vertices, 𝐕 = 𝟏, . . . , 𝐧

• edges 𝑬 ⊆ 𝑽 × 𝑽

• An edge (𝒊, 𝒋) ∈ 𝑬 links nodes i and j, where i and j would be called as neighbors.

• number of neighbors of a node is presented by its degree

 35

Dynamic graphs allow modification to the structure and/or attributes of the graph over

a period, and thus is an efficient way to model an evolving set of entities and their changing

interactions/ relationships. A common example can be social media platforms like Facebook/

Twitter, where vertices of the graph are the users and the edges can represent friendship or

followers, posts, messages, or a bunch of other phenomena.

We also highlight below the importance of using a graph-based approach for our use

case of detecting anomalous parent-child behavior:

• Inter-dependent nature of the data or the problem statement: Data objects or

system logs in our case are often related to each other and exhibit multiple

dependencies. In fact, most relational data can be thought of as inter-dependent,

which necessitates to account for related objects in finding anomalies, especially

since we are interested find parent-child based anomalies.

• Powerful representation: Graphs are intuitively better in representing the inter-

dependencies by the introduction of links (or edges) between the related entities

and thus captures the relationship effectively.

• Robustness: Graphs are much more immune to adversarial attacks, since an

attacker can be assumed to possess limited knowledge of the infrastructure and

even if he/ she can modify a transaction, it’s much harder to fit in without

complete knowledge of all characteristics and interdependencies of the

operations.

4.4 Streaming Data Structures

In general, dynamic graph can be seen as made up of a sequence or streams of static

graphs, and analysis is done by comparing neighboring graphs in the stream, however, this

approach has many limitations for outlier detection. Firstly, it requires storing the entire graph

in memory for offline analysis, which is unfeasible with current scale of nodes and edges that

a graph can grow to in real world data. Secondly, most of the past or historical information is

lost in streams as the most recent graphs in the stream are considered for detection purposes.

Thirdly, comparing graphs at global level misses the element of looking into changing nature

of attributes in the graph.

 36

Since edge stream mining provides a more fine-grained analysis of the changes, we use

that approach to model the relations within the graph. However, addressing memory constraints

and historical information loss issues is still a challenging problem. To address this, we use

Count-Min sketch [54] to approximate the structural properties of the stream that are relevant

to building the model. Using this approximation, we can model probabilistic relationships of

the nodes.

In our approach we use Count-Min sketch [54] to statistically score outliers/ anomalous

events. A record or edge (representing a relation) is marked as anomalous based on the

likelihood of its occurrence when its score exceeds a user-defined threshold. Simply put, an

anomaly is realized as a data point or a group of objects that is rare (for example, atypical

combination of categorical attribute values), and/ or surprising (for example, data points that

don’t align with our statistical model).

4.5 Count-Min Sketch (CMS)

The Count-Min (CM) Sketch is a compact summary data structure capable of

representing a high-dimensional vector and answering queries on this vector, point queries and

dot product queries, with strong accuracy guarantees [54] and space efficient using

probabilistic techniques [54] [55]. Since the data structure can easily process updates in the

form of additions or subtractions to dimensions of the vector (which may correspond to

insertions, deletions, queries (or other transactions), it is capable of working over streams of

updates, at extremely high rates. The Count-Min sketch (CMS) was first proposed in 2005 [54]

with goal being to provide a simple sketch data structure with a precise characterization of the

dependence on the input parameters. The simplicity of creating the sketch and easy probing for

queries has led to its wide use in disparate areas since its initial proposal.

In an ideal scenario for retrieving frequency of any streaming data we would use hash

table as we can store the hash values in the Hash table and retrieve them easily at 𝑶(𝟏).

However, this approach is highly inefficient because in the above approach we end-up storing

all the data in the hash tables which means there is liner memory usage for very large (infinite)

streaming of data.

To tackle this very memory inefficiency, we use count min sketch to calculate the

frequency in sub-liner space , because in this case we don’t store the complete values of data

 37

stream , instead the CMS approach uses a matrix to compute the frequency, where number of

rows are the number of Hash functions that are used and columns are number of outcome of

the hash functions.

The CM sketch is simply an array of counters of width 𝒘 and depth

𝒅, 𝐂𝐌[𝟏, 𝟏]. . . 𝐂𝐌[𝐝, 𝐰]. Each entry of the array is initially zero. Additionally, 𝒅 hash

functions 𝒉𝟏. . . 𝒉𝒅 ∶ {𝟏. . . 𝒏} → {𝟏. . . 𝒘} are chosen uniformly at random from a pairwise-

independent family. Once 𝒘 and 𝒅 are chosen, the memory space required is fixed, ensuring

constant space guarantees: the CMS data structure is represented by 𝒘𝒅 counters and 𝒅 hash

functions (which can each be represented in O(1) machine words [56].

4.6 Data Model

Given a continuous edge stream 𝑬 = < (𝒖, 𝒗), … . . >, where u and v are the vertices

the edge is incident upon. Every edge in the stream is directed, un-weighted and represents the

insertion of a new single edge into the graph. The vertices in the graph are the entities or nodes

among which we want to establish a relationship, for example, vertices can be filename and

parent filename etc. Edges are labeled as the concatenation of the two vertices they are incident

upon and basically indicate the relationship, thus the label of 𝒆 = (𝒖, 𝒗) 𝑖𝑠 𝒍(𝒆) = 𝒍(𝒖) ⊕

𝒍(𝒗), where ⊕ is the concatenation operator, and represents the relationship between 𝒖 𝒂𝒏𝒅 𝒗.

We try to assign weights to the edges in a way that it is indicative of their expected

anomalousness.

4.6.1 Edge Scoring

Probability based edge scoring

Conditional probability is defined as a measure of the probability of an event occurring

with relationship to one or more events (given that this another event has occurred) [57]60If

suppose the event we are interested in is X and the event Y is assumed to have already occurred,

"the conditional probability of X given Y" is P (X | Y).

𝑷(𝑿 | 𝒀) =
𝑷(𝑿 ⋂ 𝒀)

𝑷(𝒀)

, where 𝑷(𝑿 ⋂ 𝒀) is the probability that both events X and Y occur. In our case we calculate

the conditional probability distribution.

 38

If the conditional distribution of X, given Y and Y is a continuous distribution, then its

probability density function is known as the conditional density function. The conditional

probability, for discrete random variables, function of X, given Y = y can be written according

to its definition as [58]:

𝑷(𝑿 = 𝒙 | 𝒀 = 𝒚) =
𝑷({𝑿 = 𝒙} ⋂ 𝑷{𝒀 = 𝒚})

𝑷(𝒀 = 𝒚)

We build relational model based on conditional probability for a combination of

attributes, where we map the relation between node 𝒖 𝑎𝑛𝑑 𝒗 as 𝒍(𝒆) = 𝒍(𝒖) ⊕ 𝒍(𝒗), where e

is the edge in data stream. The score for each edge is given by 𝑷𝒏(𝒖, 𝒗):

𝑷𝒏(𝒖, 𝒗) =
∑ 𝒏

𝒊=𝟎 𝑷({𝑿 = 𝒖𝒊} ⋂ 𝑷{𝒀 = 𝒗𝒊})

∑ 𝒏
𝒊=𝟎 𝑷(𝒀 = 𝒗𝒊)

, where the 𝑷𝒏(𝒖, 𝒗) is the score of the 𝒏
𝒕𝒉edge stream. So 𝑷𝒏(𝒖, 𝒗) indicates how likely is

the edge 𝒆 = (𝒖, 𝒗) to occur given node 𝒗 occurs.

Logarithmic edge scoring

A logarithmic scale (or log scale) represents in a concise way a numerical data over a

wide range of values, which is achieved by displaying the number on a non-linear scale. Similar

to probability-based edge scoring, for an edge 𝒆 = (𝒖, 𝒗), the log score for a relation 𝒍(𝒆) =

𝒍(𝒖) ⊕ 𝒍(𝒗), is defined by 𝑳𝒖𝒗 and given by:

 𝑳𝒏(𝒖, 𝒗) = 𝐥𝐧 (∑ 𝒍(𝒆𝒊)
𝒏

𝒊=𝟎
)

, where the 𝑳𝒏(𝒖, 𝒗) is the score of the 𝒏
𝒕𝒉edge stream and 𝒍(𝒆) = 𝒍(𝒖) ⊕ 𝒍(𝒗), . So 𝑳𝒏(𝒖, 𝒗)

transforms the occurrence of an edge into non-linear logarithmic space.

Further, we wanted to extract a numeric value for the relevance of each relation built,

in an unsupervised setting and for that we use Laplacian score [59] that is designed to evaluate

the importance of every feature which is achieved by optimizing cluster coherence by spectral

gap of the corresponding affinity matrix. The calculated Laplacian score is used to create the

penalizing weight that would be described later.

Laplacian score is based on the observation that data from the same class is often close

to each other and thus it is possible to evaluate the importance of a given feature by its power

 39

of locality preserving. The method consists in embedding the data on a nearest neighbor graph

by using an arbitrary distance measure and then calculating a weight matrix [60]. A Laplacian

score is then calculated for every feature (relations built, in our case namely 𝑷𝒏(𝒖, 𝒗) and

𝑳𝒏(𝒖, 𝒗)) in the data and will have the property that smallest values correspond to the most

important dimensions. However, to select a subset of features another clustering algorithm (e.g.

k-means) is usually applied a-posteriori to select the best performing group. The Algorithm

used is presented in [59] and is given below (the complete details of the algorithm can be

referred from the paper [59]

4.6.2 Laplacian Feature Scoring

Let 𝑳𝒓 denote the Laplacian Score of the r-th feature. Let 𝒇𝒓𝒊 denote the i-th sample of

the r-th feature, 𝒊 = 𝟏, … , 𝒎. The Laplacian Score algorithm is given in [59]:

1. Construct a nearest neighbor graph G with m nodes. The i-th node corresponds to

𝒙𝒊. We put an edge between nodes 𝐢 and 𝐣 if 𝒙𝒊 and 𝒙𝒋 are ”close”, i.e. 𝒙𝒊 is among

𝐤 nearest neighbors of 𝒙𝒊 or 𝒙𝒋 is among k nearest neighbors of 𝒙𝒊 . When the

label information is available, one can put an edge between two nodes sharing the

same label.

2. If nodes 𝐢 and 𝐣 are connected, put 𝑺𝒊𝒋 = 𝒆
| 𝒙𝒊−𝒙𝒋 | 𝟐

𝒕 , where t is a suitable constant.

Otherwise, put 𝑺𝒊𝒋 = 0. The weight matrix 𝐒 of the graph models the local structure

of the data space.

3. For the r-th feature, we define:

𝑓𝑟 = [𝑓𝑟1, 𝑓𝑟2, … , 𝑓𝑟𝑚] 𝑇 , 𝐷 = 𝑑𝑖𝑎𝑔(𝑆1), 1 = [1, … , 1] 𝑇, 𝐿 = 𝐷 − 𝑆,

where the matrix 𝐿 is also called the graph Laplacian. Let

𝑓𝑟
~ = 𝑓𝑟

 −
𝑓𝑟

𝑇

𝐷1

1
𝑇

𝐷1

 1

4. Compute the Laplacian Score of the r-th feature as follows:

𝐿𝑟 =
𝑓𝑟

~𝑇

𝐿𝑓𝑟

~

𝑓𝑟
~𝑇

𝐷𝑓𝑟

~

Using the Laplacian score for each feature or relation, we define a penalizing weight of a

relation, which is given by 𝑃𝑟,

 40

𝑃𝑟 =
𝐿𝑟

min 𝐿𝑟𝑛

, where 𝐿𝑟𝑛 = [𝐿𝑟1, 𝐿𝑟2, … , 𝐿𝑟𝑛] i.e. set of Laplacian scores of features/ relations.

For each edge stream score 𝐿𝑛(𝑢, 𝑣) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣), we penalize the score by dividing

with the 𝑃𝑟, for each relation where 𝐿𝑛(𝑢, 𝑣) <

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐿 (𝑢, 𝑣)) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣) < 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑃 (𝑢, 𝑣)) and obtain

the corrected score 𝐿𝑛′(𝑢, 𝑣) 𝑎𝑛𝑑 𝑃𝑛′(𝑢, 𝑣) for each edge stream.

Final anomaly score 𝐹𝑛, is given by:

𝐹𝑛(𝑢, 𝑣) =
∑ 𝑛

𝑖=0 (𝐿𝑛′(𝑢, 𝑣) + 𝑃𝑛′(𝑢, 𝑣))

n

, where n is the number of relations used.

4.6.3 Community detection and Scoring

Now that for each edge stream we have a score, 𝐹𝑛(𝑢, 𝑣), one major consideration is to

look at the noise that is generated and control the false positives (FPs) that we have in the

results. The number of FPs is a major issue in any unsupervised learning detection. For, our

threshold parameter (details in Chapter 6), we observe that there are ~17k events that are

flagged as anomalies, where most of them are one-off system activities that obtained low score.

Hence to reduce the number of events a security analyst needs to look at, we create

communities for the events in the dataset. The communities in our case is defined as a process

tree, where the parent process spawns another process and so on as showing in Figure 7. We

create communities based on the process tree and calculate a score for the community, based

on the score calculated in earlier section (assuming that in a malicious process, each process

would be breaking the multiple relations threshold) and define threshold for describing

malicious communities. The score is calculated as the total relations broken 𝐿𝑛(𝑢, 𝑣) <

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐿 (𝑢, 𝑣)) 𝑎𝑛𝑑 𝑃𝑛(𝑢, 𝑣) < 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑃 (𝑢, 𝑣)) within a

community, divided by the depth of the process tree.

 41

This approach reduced the noise by ~200x for an analyst investigating the detections.

Figure 7: Figure showing process tree to define communities and score communities.

 42

Chapter 5

System Setup and Methodology

In this Chapter, we would present more details about the engineering and system setup

for the project, the dataset preparation and the general pipeline of the service created for

anomaly detection. We will be covering the necessary and important details of how the service

is setup and how the features for the experiments are being fetched. In our case the dataset

prepared would be specially targeted to hunt for malicious parent-child anomalies and by doing

so, we try to detect “living of the land” attacks that is earlier described in Chapter 2.

5.1 General Setup and Data Source

In this section, we elaborate on the general setup of the entire service and how the

system has been setup. Since most of the components where event logs are captured, processed

is an intellectual property (IP) of ReaQta and hence cannot be elaborated, we would try and

describe the setup from a macroscopic view in this work.

The general setup as also represented in the Figure 7, the entire system can be seen as

built of 4 major components: Driver/ Kernel setup, Agent, Event Hive, Detection service.

Driver/ kernel setup:

This is primarily a kernel level implementation of callbacks to generate the data source

for ReaQta Hive, the core part of ReaQta service including the Nano OS (live hypervisor-based

monitoring of the OS from outside). We shall, however, be not covering details about ReaQta

Hive, since we use the service only to gather the data for our analysis though we shall look

briefly on the driver routines that fetch the data for Event Hive service. Driver support routines

are routines that the Windows operating system provides for kernel-mode drivers to use.

Drivers do not use Microsoft Win32 routines; instead, they use the driver support routines that

are organized by kernel-mode managers and libraries.

For instance, the “PsSetCreateProcessNotifyRoutineEx” 60[61] routine registers or

removes a callback routine which simply notifies the caller when a process is created or exits.

Highest-level drivers can call “PsSetCreateProcessNotifyRoutineEx” to register a

PCREATE_PROCESS_NOTIFY_ROUTINE_EX routine. An installable file system (IFS) or

highest-level system-profiling driver may register a process-creation callback routine to track

which processes are created or deleted against the driver's internal state across the system.

 43

Agent:

This is small service running of target endpoints that collects the data from callbacks

and other sources. In case, any data is missing in the collection phase the Agent generates the

information from other sources and prepares the data to be sent to ReaQta Event Hive service.

Event Hive:

This has primarily a Cassandra database, an open source NoSQL database management

system, that stores the event information fetched from the Agent. Details of the implementation

of this is an IP of ReaQta and outside the scope of the work presented in the thesis.

Detection Service:

This is the main part where our anomaly detection engine primarily resides. This is a

python based microservice build on top of Flask framework
𝟏 , that fetches the data from Event

Hive.

The detection system basically has two components: one for transformation and other

for detection. The transformer part ingests the feed from Event Hive and prepares the events

with attributes that are required for training and transforming event with parent child relations,

that is described in more details in the next section. The detection part is where our algorithm

for rule generation and statistical detection sits and consumes the data post transformation.

1. https://flask.palletsprojects.com/en/1.1.x/

 44

Figure 7: Diagram showing system flow for Detection System

5.2 Data Engineering and Preprocessing

Data from Event-Hive before being fed to the detection system is transformed into

parent-child events. While the payload from Event Hive has many attributes associated with

an event, we necessarily pull the attributes described in Table 1. The parent child relationship

is built on an infrastructure level using fields “lerad_id” and “lerad_parent_id”, which we build

using 3 data sources, namely, “endpoint_id”, “pid” and “start_time”. The details of the fields

are covered in Table 1. The combination ensures that parent child events can be identified on

an infrastructure level, since the rules and model is built for the entire infrastructure level.

Once the event transformation is completed, the parent-child relationships are stored in

PostgreSQL Database.

 45

lerad_id Unique ID and is a combination of 3 attributes to build child

identity. Includes: endpoint_id, pid, and start_time

lerad_parent_id Unique ID and is a combination of 3 attributes to build parent

identity. Includes: endpoint_id, ppid, and pstart_time

pstart_time Unix timestamp of parent process start time

start_time Unix timestamp of process start time

cmd_line Command line argument associated with the process

pid Process ID of the event

ppid Parent process id of the event

hive_event_id Unique ID from Event Hive

hive_endpoint_id Endpoint ID

hive_event_local_id Local event ID

path_abs Encodes value from path of the directory where the process started

from.

privilege_level Privilege level of execution (possible values – Low, Medium,

High)

user_sid User serial ID

path Path of directory of execution

size Size (in bytes) if the file

md5 MD5 hash of the file

sha1 SHA1 hash of the file

sha256 SHA2 hash of the file

arch Program architecture (x32 or x64)0

filename Filename of the executable

cert_issuer Certificate issuer

cert_signer Certificate signer

cert_expired Boolean value for if the certificate is expired or not

cert_trusted Boolean value for if the certificate is trusted or not

Table 1: Fields for parent-child transformation and training

 46

5.3 Dataset Generation

The problem of having opensource and labelled dataset was evident in our case, since

there is no labelled dataset that could be used to build parent-child relationships. We evaluated

the popular publicly available datasets such as DARPA [62], KDD [63], NSL-KDD and

ADFA-LD [64] as they are widely used as benchmarks, however, most of these are not HIDS

logs, besides being unusable to get parent-child relationships from them. Further, we evaluated

the dataset [65], which is built , however, the dataset is too small and inconsistent to be

used. Therefore, we decided to extract data from one of the customers to build and train the

model and execute three malwares know to utilize “Lotl” tactics and evaluate the detection

capability based on that (the evaluations is aimed to prove the hypothesis and not set/ compare

against benchmark).

We executed Guildma (also known as Astaroth) malware and extracted logs created by

the malware’s execution. Written in Delphi, this malware (targeted towards Latin banks), uses

some novel innovative execution and attack techniques. In Guildma, the attack is orchestrated

by its C&C server rather than storing the fake pop-up windows it uses within the binary. One

of the defining characteristics of Guildma’s distribution chains is using tools already present

on the system, often in new and unusual ways aka Lotl techniques. The detailed breakup of the

TTPs used by Astaroth as reported by Microsoft security team is also shown below [66].

 47

Figure 8: Astaroth attack chain 2020

We picked 2 more malwares that were real incidents namely Dridex malware [67] and Azorult

malware [68], both affecting the banking industry and known to use “Lotl” techniques.

 48

Figure 9: Stages of execution of Dridex

 49

Chapter 6

Evaluation and Outcome

 We performed our analysis on a customer data and used actual malware (known to

use Lotl techniques) execution logs to test the detection capabilities of the proposed system.

The dataset consists of 1788561 parent-child transformed events and was used in training,

building the model. The logs were extracted for 44 days.

6.1 Experiment: LERAD

 The experiments were performed on an 8th Gen Intel Core i5-8550U, 8GB SSD

system. We use the following features for training to create the model:

- 'filename',

- 'parent_filename',

- 'parent_path_abs',

- 'path_abs',

- 'cert_signer',

- 'cert_trusted',

- 'privilege_level',

- 'parent_cert_signer',

- 'parent_cert_trusted',

- 'parent_privilege_level'

 Further, we used following thresholds for rule generation based on multiple attempts

at different threshold values.

 Sample Size = 100,000

 Max rules per pair = 50

 Training/ Validation set % = .8 (80% of sample data for training and 20% for

validation of candidate rules generated)

 Candidate rule generation with sample size 100k, took 19,064.37 secs and generated

300 rules. The second pass is made for validation and rule pruning which took 33,492 secs and

produced 232 validated rules that we would be using for detection.

 The highest n/r (higher anomalousness) in the validated rule space was 28957 (n =

28957, r, =1) and the lowest n/r was 124.5 (n = 249, r =2) as shown below:

“IF parentfile_path_tr = svchost.exe->winsys+exe->SYSTEM

THEN parentfile_cert_tr = svchost.exe->Microsoft Windows->TRUE Score n = 28957 r = 1”,

and

 50

“IF path_tr = pf+exe->pf+exe AND file_parent_tr = firefox.exe->firefox.exe AND

parentfile_cert_tr = firefox.exe->Mozilla Corporation->TRUE AND parentfile_path_tr =

firefox.exe->pf+exe->MEDIUM AND file_cert_tr = firefox.exe->Mozilla C

orporation->TRUE

THEN file_path_tr = firefox.exe->pf+exe->LOW or firefox.exe->pf+exe->MEDIUM Score n

= 249 r = 2”

 We used the model created to test on the malware execution logs, however, there

were no rules that were broken by the malware logs. We further, tried using more/ less features,

but that did not lead to more rules or flagging malware logs as malicious.

 Post analysis of what is wrong with detection using LERAD, we believe that it makes

too lazy rules because the fields are not strict. Further, the random pair selection in LERAD

picks haphazardly a pair for candidate rule generation, however, in case there are no matching

attributes, there are no rules generated, which perhaps is the reason why we don’t have more

rules (as expected). LERAD with network traffic as used in the original paper [37] would

generate more rules because with network traffic there are more common attributes shared by

the pairs selected in the random selection (during initial rule making). However, because in

host logs, the event data is not too strict, the rules are more loose, which we tried to solve using

pairwise relations (as also used in the statistical model, we proposed), however, the rules were

still not good enough for detecting the Lotl techniques. This brings us to the conclusion that

we need to modify the random selection part of LERAD algorithm to use with host logs and

produce more effective rules.

6.2 Experiment: Statistical Model

 The experiments were performed on an 8th Gen Intel Core i5-8550U, 8GB SSD

system. We use the following features to create the model. The following features are selected

to create the relationship pairings in the data stream as shown in Table 2.

Features for model creation

lerad_id

filename

Parent_lerad_id

Parent_filename

Parent_path_abs

Path_abs

Cert_signer

Cert_trusted

Privilege_level

Parent_cert_signer

Parent_cert_trusted

Parent_privilege_level

Table 2: Features used for building model.

 We build 15 pairwise relationships between the features for every parent-child

process such as: parent filename → filename, parent filename + parent path → filename + path

 51

etc. relations that are used to build and add contextual information for each edge stream. These

approximations are made using count min sketch with default parameters as 𝑤 =
1000000 𝑎𝑛𝑑 𝑑 = 10 (for our dataset, we observed no collisions using these default values)

 We used 10 runs (to calculate the average timing) to build the model using count min

sketch and it took ~1583 sec (averaged time) to compute the scores for all 15 pairwise relations.

 We divide the dataset into 70+30, where 30% of the records are used for evaluating

the performance of the learnt model and we look at the scoring we obtained for the malware

logs that we simulated. We used the score of 0.1 as the anomaly threshold, where values lower

than that indicate that events are suspicious. There were approximately 17k anomalous events

in the prediction set with the chosen threshold (0.1) as shown in Figure 10. This obviously has

a huge number of FPs (even if the detection is good), hence, we used our proposed community

detection method as described in Chapter 4, with default values for depth >4 and mean

community score > 0.2, which provides ~220x less anomalous processes to look at. This

produced 60 anomalous communities out of approximately 13k total communities created, as

also can be seen in Figure 11.

Figure 10: Count of events in prediction dataset with buckets

 52

Figure 11: Reduction is overall anomaly space using community detection

 Detection for Astaroth: The anomaly score generated by our proposed model puts

the event from the Astaroth malware execution at bottom 0.2% of the prediction set. Higher

score implies lower chances of being an anomaly and the event from malware received a score

of 0.00631, which falls in the bottom 0.2%, thus indicating extremely high anomalousness. The

highest score in the prediction set was reported to be .9683, implying least suspiciousness.

 Further, using community detection, we observe that Astaroth produced 2

communities and both were in the 60 anomalous communities reported as seen in Figure 11.

Details are in Table 3 below (Lower rank implies higher anomalousness).

Rank of

Community

Depth Mean Relations

broken

Mean Community Score

4 6 18.5 0.0234

24 30 9.1 0.0725

Table 3: Detection Statistics for Astaroth

 Detection for Azorult: The anomaly score generated by our proposed model puts the

event from the Azorult malware execution at bottom 0.002% of the prediction set. Higher score

implies lower chances of being an anomaly and the event from malware received the lowest

score in the prediction set, score being 0.00356, which falls in the bottom 0.002%, thus

indicating extremely high anomalousness. The highest score in the prediction set was reported

to be .9683, implying least suspiciousness.

 53

 Further, using community detection, we observe that Azorult produced 1 community

and was in the 60 anomalous communities reported as seen in Figure 11. Details are in Table

4 below.

Rank of

Community

Depth Mean Relations

broken

Mean Community Score

4 34 16.2 0.0316

Table 4: Detection Statistics for Azorult

 Detection for Dridex: The anomaly score generated by our proposed model puts the

event from the Dridex malware execution at bottom 0.02% of the prediction set. Higher score

implies lower chances of being an anomaly and the event from malware received the lowest

score of 0.01034, which falls in the bottom 0.02%, thus indicating extremely high

anomalousness. The highest score in the prediction set was reported to be .9683, implying least

suspiciousness.

 Further, using community detection, we observe that Dridex produced 1 community

and was in the 60 anomalous communities reported as seen in Figure 11. Details are in Table

5 below.

Rank of

Community

Depth Mean Relations

broken

Mean Community Score

9 7 13.5 0.127

Table 5: Detection Statistics for Dridex

 54

Chapter 7

Conclusion

7.1 Attacks against the Detection Service

Keeping in mind that IDS is a key component of security layer for any organization, it is also

necessary to look at how would it perform against adversarial attacks specially targeted

against IDS. A detailed analysis on the adversarial attacks on IDS and a general taxonomy on

the adversarial tactics is presented in paper by I. Corona et al. [69].

The paper lists out following main attacks goals against IDS:

Evasion and Response Hijacking: The intrusion pattern is modified in such a way that

the system no more detects an intrusion and hence no alarms are raised. In hijacking, a pattern

is crafted to generate an incorrect alert description and mislead IDS.

Overstimulation: The adversary mine patterns in logs that mimic the attacks patters but

are benign and this causes poor performance in IDS by overwhelming them with high false

positive rates.

Poisoning: This is rather complex technique, where the adversary creates attack

patterns in the logs that are intended to corrupt the model in IDS systems that reply on historical

data to learn the model, thus significantly hampering the accuracy of the IDS.

Denial of Service (DoS): The adversary overwhelms the IDS with increased traffic/ logs

that overloads or slows down the IDS and pattern detection mechanism.

Reverse Engineering: The adversary gathers information about the internal detection

processing of IDS, enabling the attacker to carry out any of the above attacks.

We would analyze our Detection System against the relevant attack tactics:

Corrupting the input data: The adversary can try to introduce errors or corrupt data

from sensors employed by IDS. However, in our case the trust is placed on the callbacks from

kernel itself and the adversary would need to attack the driver support routines (kernel-mode

drivers) to corrupt the data. Further, there are custom kernel integrity checks placed to detect

any such compromise that try to tamper OS kernel data structure.

 55

Evasion and Overstimulation: An emerging technology called Generative Adversarial

Network (GAN) that tries to attack any kind of machine learning systems using AI can be

effectively used against our detection systems, since our detection learns based on the historic

information generated from the host logs. Attacks generated by a GAN on machine learning

systems act to confuse or fool the algorithm, and thus they can be used to poison the historic

information or mine logs that mimic normal traffics and introduce high number of fresh

contextual parent child relationships that would overwhelm the system with false positives.

For example, our first variant of rule-mining based IDS would be subjected to

Exploratory Integrity attack that would focus on flooding the system using false negatives,

allowing malicious traffic to enter the system. Fooling a sequence-based IDS involves sending

a mass number of inputs, each with a slightly different intent, to try and get by all the rules set

by the IDS. While in this thesis work we have not explicitly tested our detection service against

attacks, however, we believe that the statistical variations introduced in the model can be used

to detect when the learnt models differ significantly from the historic ones, however, this still

assumes having the ground truth to build the initial models.

7.2 Summary

We have seen and evaluated two approaches in detecting Lotl techniques, where we

were able to successfully detect with our proposed statistical method based on streaming data,

however, with LERAD we were not able to produce rules that would detect the stealthy attacks.

We also observed that using community detection approach, we were able to significantly

reduce the FPs that a security analyst would have to look at while analyzing the detections

results. The approach of looking at events as parent-child process enables us in building robust

relational and graphical model to detect advanced techniques and tactics used by adversaries.

The performance of our proposed work is decently fast enough, though, there is still possible

improvements/ optimizations in speed using other languages such as C.

This thesis work helps us validate and cements the initial hypothesis that parent-child

relationships can be used effectively in detecting novel attacks and identify anomalous parent-

child anomalies. We believe our proposed work could be effectively used in domains of

intrusion detection and fraud detection, specially where data can be visualized as graphs or

hierarchical data. The approach can be used to incorporate contextual information and discover

 56

abnormal behavior as rare occurrences or outliers. Further, we understand and recognize that

the proposed work has not been tested against more robust and varied datasets. That’s one of

the limitation of the thesis work, since it hasn’t been tested against a large subset of attacks

simply because it’s difficult and time consuming to stimulate behavior of malwares that use

Lotl techniques and no publicly available dataset exists that can be transformed into parent-

child relations to benchmark our findings. Possible future work in this direction would be to

test against larger subset of malware attacks and to further improve on the reducing the FP rate

using semi supervised setting in community detection.

 57

References

[1] "Symantec, "Internet security threat report 2019"," [Online]. Available:

https://docs.broadcom.com/doc/istr-24-2019-en.

[2] "Breach_LeveL_Index. (2017, November). Data breach statistics.," [Online]. Available:

http://breachlevelindex.com/.

[3] "Preventing Attackers from Living off the Land," April 2019. [Online]. Available:

https://www.edgewise.net/blog/preventing-attackers-from-living-off-the-land.

[4] "Living off the Land: Attackers Leverage Legitimate Tools for Malicious Ends," December 2019.

[Online]. Available: https://symantec-enterprise-blogs.security.com/blogs/threat-

intelligence/living-land-legitimate-tools-malicious.

[5] "What Are Living Off the Land Attacks?," March 2020. [Online]. Available:

https://logrhythm.com/blog/what-are-living-off-the-land-attacks/.

[6] V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection: A survey. ACM Computing Surveys,"

(CSUR), 41(3):15,, 2009.

[7] X. Song, M. Wu, C. Jermaine, and and S. Ranka, "Conditional anomaly detection,"

IEEETransactions on Knowledge and Data Engineering 19,5, 631–645, 2007.

[8] A. Patcha, and and J.-M. Park, "An overview of anomaly detection techniques: Existing solutions

and latest technological trends," In: Computer networks 51.12 (2007). Elsevier, pp. 3448–3470..

[9] T. Fawcett, and and F. Provost., "Adaptive fraud detection," In: Data mining and knowledge

discovery 1.3 (1997). Springer, pp. 291–316..

[10] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and and M. Rajarajan., "A survey of intrusion

detection techniques in cloud," JNCA, 2013.

[11] Kreibich C and C. J, "Honeycomb: creating intrusion detection signatures using honeypots,"

SIGCOMM Comput Commun Rev 34(1):51–56, 2014.

[12] I. Butun, S. D. Morgera, and and R. Sankar, "A survey of intrusion detection systems in wireless

sensor networks," IEEE communications surveys & tutorials, vol. 16, p. 266–282, 2014.

[13] R. Durst, T. Champion, B. Witten, E. Miller, and and L. Spagnuolo, "Testing and evaluating

computer intrusion detection systems," Communications of the ACM, 42(7), pp. 53-61, 1999.

[14] M. Bhuyan, D. Bhattacharyya, and and J. Kalita, "Network Anomaly Detection: Methods, Systems

and Tools," , IEEE Communications Surveys & Tutorials 16, vol. 1, pp. 303-336, 2014.

[15] I. Butun, S. D. Morgera, and and R. Sankar, "A survey of intrusion detection systems in wireless

sensor networks," IEEE communications surveys & tutorials, vol. 16, pp. 266-282, 2014.

[16] Khraisat et al, "“Survey of intrusion detection systems:techniques, datasets and challenges”,"

Vols. https://doi.org/10.1186/s42400-019-0038-7, 2019.

 58

[17] N. Ye, SM Emran, Q. Chen, and and S. Vilbert, "Multivariate statistical analysis of audit trails for

host-based intrusion detection," IEEE Trans Comput 51(7):, p. 810–820, 2002.

[18] J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and and M. Tarvainen, "Processing intrusion detection

alert aggregates with time series modeling," Information Fusion, vol. 10, pp. 312-324, 2009.

[19] W. Qingtao, and and S. Zhiqing, "Network anomaly detection using time series analysis,," Joint

international conference on autonomic and autonomous systems and international conference

on networking and services - (icasisns'05), pp. 42-42, 2005.

[20] I. Studnia, E. Alata, V. Nicomette, '. M. Kaâniche and Y. Laarouchi, "A language-based intrusion

detection approach for automotive embedded networks," Int J Embed Syst 10(1), pp. 1-12, 2018.

[21] "Anomaly Detection – Another Challenge for Artificial Intelligence," [Online]. Available:

https://www.experfy.com/blog/anomaly-detection-another-challenge-for-artificial-

intelligence/.

[22] J. P. Anderson, "Computer Security Threat Monitoring and Surveillance. Technical report,,"

James P. Anderson Company, Fort Washington, Pennsylvania, April, 1980.

[23] H. S. Javitz, A. Valdes, D. E. Denning, and and P. G. Neumann., "Analytical Techniques

Development for a Statistical Intrusion Detection System (SIDS) Based on Account-ing Records.

Technical report," SRI International, Menlo Park, California,, July 1986.

[24] T. F. Lunt, A. Tamaru, and and F. Gillham, "A real-time intrusion-detection expert system (IDES).,"

1992.

[25] S. Chen, S. Cheung, R. Crawford, M. Dilger, J.Frank, J. Hoagl and e. al, "Grids—a graph based

intrusion detection system for large networks," Proceedings of the 19th national information

systems security conference, pp. 361-370, 1996.

[26] H. Debar and et.al, "A Neural Network Component for an Intrusion Detection System," IEEE

Computer Society Symposium on Research in Computer Security and Privacy. Oakland,, pp. 240-

250, 1992.

[27] W. LEE, S. J. STOLFO and K. W. ANDMOK, "A data mining framework for building

intrusiondetection models," Proceedings of the 1999 IEEE Symposium on Security and

Privacy(Oakland, California, May, 1999.

[28] F. Silveira, and and C. Diot, " URCA: Pulling out anomalies by their rootcauses," Proc. IEEE

INFOCOM, pp. 1-9, March, 2010.

[29] S. Ranjan, S. Shah, A. Nucci, M. M. Munafò, R. L. Cruz, and and S. Muthukrishnan, "Dowitcher:

Effective worm detection and containment in the Internet core," Proc. IEEE INFOCOM, , pp.

2541-2545, 2007.

[30] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and and K. Cho, "Extractinghidden anomalies using

sketch and non Gaussian multi resolution statistical detection procedures," Proc. LSAD, pp. 145-

152., 2007.

 59

[31] A. Lakhina, M. Crovella, and and C. Diot, "Diagnosing network-widetraffic anomalies," Proc. ACM

SIGCOMM, pp. 219-320, 2004.

[32] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and and A. Lakhina, "Detection

and identification of network anomaliesusing sketch subspaces," Proc. 6th ACM SIGCOMM IMC,

pp. 147-152, 2006.

[33] W. Lee, and and S. J. Stolfo, "Data mining approaches for intrusion detection," Proc. 7th USENIX

Security Symp, vol. 7, p. 6, 1998.

[34] R. Vaarandi, "Mining event logs with SLCT and LogHound," Proc.IEEE NOMS, pp. 1071-1074, April

2008.

[35] K. Yoshida, Y. Shomura and a. Y. Watanabe, "Visualizing networkstatus," Proc. Int. Conf. Mach.

Learning Cybern, pp. 2094-2099, Aug 2007.

[36] V. Chandola, and and V. Kumar, "Summarization—Compressing data intoan informative

representation," Knowl. Inf. Syst., vol. 12, pp. 355-378, 2007.

[37] M.V.Mahoney, and and P. K. Chan, "Learning rules for anomaly detection of hostile network

traffic," Proc. 3rd IEEE ICDM, pp. 601-604, 2003.

[38] L. Akoglu, H. Tong and D. Koutra, "Graph-based anomaly detection and description: a survey.,"

Data Mining Knowl Discov 29(3), no. doi:10.1007/s10618-014-0365-y, p. 626–688. , 2015.

[39] M. Salehi, and and L. Rashidi, "A survey on anomaly detection in evolving data: [with application

to forest fire risk prediction]," ACM SIGKDD Explorations Newsletter20(1), pp. 13-23, 2018.

[40] Jimeng Sun, Dacheng Tao, and and C. Faloutsos, "Beyond streams and graphs:dynamic tensor

analysis," Proceedings of the 12th ACM International Conferenceon Knowledge Discovery and

Data Mining (SIGKDD), Philadelphia, PA, p. 374–383, 2006.

[41] A. Beutel, W. Xu, V. Guruswami, C. Palow, and and C. Faloutsos, "Copy-Catch: stopping group

attacks by spotting lockstep behavior in social networks," Proceedings of the 22nd International

Conference on World Wide Web, pp. 119--130, 2013.

[42] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha and a. N. Mishra, "Spotlight: Detecting

anomalies in streaming graphs," Proceedings of the 24thACM SIGKDD International Conference

on Knowledge Discovery & DataMining. ACM, p. 1378–1386, 2018.

[43] Minji Yoon, Bryan Hooi, Kijung Shin, and and C. Faloutsos, "Fast andaccurate anomaly detection

in dynamic graphs with a two-pronged approach," Proceedings of the 25th ACM SIGKDD

International Conference on KnowledgeDiscovery & Data Mining, p. 647–657, 2019.

[44] W. Yu, C. C.Aggarwal, S. Ma, and and H. Wang, "On anomalous hotspot discovery in graph

streams.," 2013.

[45] K. Shin, B. Hooi, J. Kim, and and C. Faloutsos, "Densealert: Incremental dense-subtensor

detection in tensor streams.," KDD, 2017.

 60

[46] S. Ranshous, S. Harenberg, K. Sharma, and and N. F. Samatova, "A scalable approach for outlier

detection in edge streams using sketch-based approximations," Proceedings of the 2016 SIAM

International Conference on Data Mining, no. SIAM, p. 189–197, 2016.

[47] D. Eswaran, and and C. Faloutsos, "Sedanspot: Detecting anomalies in edge streams," IEEE

International Conference on Data Mining(ICDM), p. 953–958, 2018 .

[48] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin and C. Faloutsos, "MIDAS: Microcluster-

Based Detector of Anomalies in Edge Streams," AAAI , 2020.

[49] Ming-Syan Chen, Jiawei Han and P.S.Yu, "Data mining: an overview from a database

perspective," IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. ISSN: 1041-4347,

pp. 866 - 883.

[50] R. Agrawal, T. Imieliński and A. Swami, "Mining association rules between sets of items in large

databases," Proceedings of the 1993 ACM SIGMOD international conference on Management of

data - SIGMOD '93, p. 207, 1993.

[51] P. Hájek, I. Havel and M. Chytil, "The GUHA method of automatic hypotheses determination,"

Computing. 1 (4): , p. 293–308, 1966.

[52] W. Cohen, "Fast Effective Rule Induction," Proc. of the 12th Intl. Conf. on Machine Learning,

Tahoe City, CA., pp. 115-123, 1995.

[53] R. Agrawal, and and R. Srikant, "Fast algorithms for mining association rules," Proceedings of the

20th International Conference on Very Large Data Bases, VLDB, Santiago, Chile, pp. 487-499,

1994.

[54] G. Cormode, and and S. Muthukrishnan, "An improved data streamsummary: the count-min

sketch and its applications," J.Algorithms, vol. 55, no. no. 1, pp. 58-75, 2005.

[55] G. Cormode, "Count-Min Sketch," LIU L., ÖZSU M.T. (eds) Encyclopedia of Database Systems.

Springer, Boston, MA. , no. https://doi.org/10.1007/978-0-387-39940-9_87, 2009.

[56] R. Motwani, and and P. Raghavan, "Randomized Algorithms," Cambridge University Press, 1995.

[57] Gut and Allan, "Probability," A Graduate Course (Second ed.). New York, NY: Springer, no. ISBN

978-1-4614-4707-8, 2013.

[58] "Conditional probability distribution," [Online]. Available:

https://en.wikipedia.org/wiki/Conditional_probability_distribution.

[59] He, Xiaofei, et and al., "Laplacian Score for Feature Selection," NIPS, 2005.

[60] "Feature Selection — Overview of Everything You Need to Know," [Online]. Available:

https://mc.ai/feature-selection%E2%80%8A-%E2%80%8Aoverview-of-everything-you-need-to-

know/.

[61] "PsSetCreateProcessNotifyRoutineEx function," [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-

pssetcreateprocessnotifyroutineex.

 61

[62] "MIT Lincoln Laboratory. (1999, June). DARPA Intrusion Detection Data Sets," [Online]. Available:

https://www.ll.mit.edu/ideval/data/.

[63] M. Tavallaee, E. Bagheri, W. Lu, and and A. A. Ghorbani, "A detailed analysis of the KDD CUP 99

data set," IEEE symposium on computational intelligence for security and defense applications,

pp. 1-6, 2009.

[64] G. Creech G and J. Hu, "A semantic approach to host-based intrusion detection systems using

contiguous and Discontiguous system call patterns," IEEE Trans Comput 63(4), p. 807–819,

2014b.

[65] [Online]. Available: https://mordordatasets.com/introduction.html.

[66] "Latest Astaroth living-off-the-land attacks are even more invisible but not less observable,"

[Online]. Available: https://www.microsoft.com/security/blog/2020/03/23/latest-astaroth-

living-off-the-land-attacks-are-even-more-invisible-but-not-less-observable/.

[67] "Dridex: the secret in a PostMessage()," [Online]. Available:

https://reaqta.com/2020/06/dridex-the-secret-in-a-postmessage/.

[68] "AZORULT Malware Information," [Online]. Available:

https://success.trendmicro.com/solution/000146108-azorult-malware-information-

kAJ4P000000kEK2WAM.

[69] I. Corona, G. Giacinto, and and F. Roli, "Adversarial attacks against intrusion de-tection systems:

Taxonomy, solutions and open issues," Information Sciences 239 (0) , p. 201 – 225, 2013.

