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Summary

In the last few years the bank card has overtaken cash as the most used payment
method. This increased use has also given our banks larger amounts of information
on our payment behaviour, whereabouts, and financial situation. In a world where the
value of information has increased this puts clients in a weak position with respect
to their banks. Legislation also requires banks to use this information to ensure that
their clients do not use bank accounts for malicious activities. At the same time many
people start to value their privacy more and more, leading to a conflict of interest.

To solve this conflict we present a digital permissioned decentralised anonymous
payment scheme. Our scheme provides anonimity for its users, whilst also allowing
banks to adhere to current regulations without decreasing anonimity. zk-SNARKs
form the basis for our anonimity and implement possibilities for banks to enforce
certain regulations. Next to making payments from one user to another, our scheme
also allows for banks to (dis)allow their clients access to the payment scheme. Next
to his banks can impose a limit on the amount any client can spend anonymously
in a certain amount of time. We also present the option for clients to apply a ‘time-
lock’ to the output value of a transaction, making the output value of a transaction
unspendable for a certain amount of time.

Finally, we introduce an additional group of actors in our anonymous payment scheme
called judges. These judges have the ability to view encrypted transaction details
of any transaction that does not adhere to the limits imposed by the scheme. The
details can be viewed at any later point in time, as correctness of the values is guar-
anteed by the verifiable encryption scheme.

This thesis not only presents a construction of the payment scheme, but also provides
proofs for correctness and security. Next to this, we discuss the performance of our
proof of concept implementation.
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Chapter 1

Introduction

While in the previous century most of our transactions were still made with cash,
nowadays virtually no one carries cash around. Most people perform all their mone-
tary transaction via their plastic bank card, mobile banking, or another form of digital
transactions. Using these methods, the details of every single transaction are stored
by a person’s bank. This gives the bank great insight in a client’s shopping behaviour,
whereabouts, and financial situation. Even though this might be acceptable in some
situations, it is not desirable as it gives banks a too strong position with respect
to their clients. As a client, one might wonder if a bank actually requires all the
information about every transaction. Moreover, it is generally not insightful to the
client how his or her personal information is processed. Giving control of the data
involved in monetary transaction back to the clients would clearly be beneficial to
their privacy. A recent approach to return the power over financial transactions to
the clients, without requiring them to pack their wallets with physical money, are so
called cryptocurrencies.

At the end of 2008 a person, or group of persons, published under the name of
Satoshi Nakamoto a paper called: “Bitcoin: A Peer-to-Peer Electronic Cash System”
[1]. A couple of months later, in January 2009, the first operational Bitcoin software
was launched. The genesis (initial) block got mined and the foundation for many new
and different decentralised ledger technologies was laid.

In the years that followed, one after the other virtual coin was introduced, most of
them having similar behaviour to Bitcoin. These coins however did not focus on user
privacy. Their main goal was decentralisation of financial power. In most cases the
privacy of users was virtually non-existent as every transaction is publicly available
under a, generally traceable, pseudonym. Eventually, this lead to the introduction of
so called privacy coins, i.e. cryptocurrencies that provide, up to some level, trans-
actional privacy for its users. Unfortunately, these currencies are to some extent in
conflict with current anti-money laundering (AML) regulations, which causes some
governments to take actions against these privacy coins [2]–[5]. In this thesis a
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2 C H A P T E R 1 . I N T R O D U C T I O N

solution that solves the privacy problems with current (AML) regulations in mind is
proposed.

1.1 Related work

Before deciding on a solution direction for the problem as described above, we take a
brief look at existing solutions for this and similar problems. In Section 3 we discuss
these solutions in more detail. There are two main types of solution directions to be
considered: centralised and decentralised.

An early, well-known centralised solution for anonymous payments is Digicash
[6]. This company was founded by David Chaum and provided untraceable e-cash
throughout the early nineties. The company’s solution was based on Chaum’s article
on “Blind Signatures for Untraceable Payments” [7]. Chaum’s solution required a
client and bank to create a new note of a fixed value together. The client then creates
a random value x and asks the bank to sign this, without revealing x. The bank first
deducts the fixed value from the client’s account balance and then issues a signature
σ for x. The client morphs this signature σ to an anonymous signature σ′ that is
still valid. The client can now spend the note anonymously by passing σ′ to another
client, called the receiver. Finally, the receiver can cash in this note by showing σ′ to
the bank. In this process the bank and receiver learn nothing about the identity of
the sender, who remains anonymous.

A disadvantage of the above problem is that anyone can forge arbitrary notes
after the secret signature key of the bank is compromised. Sander and Ta-Shma [8]
propose a (centralised) solution to this problem. Instead of issuing certificates, the
bank should maintain a public Merkle tree of commitments to notes. Every time a
client requests a new note of fixed value, the client sends a commitment, to a secret
x, to the bank. Upon receiving a new commitment, the bank subtracts the fixed
value from the client’s account and includes the commitment in the public Merkle
tree. The client can now send the note to a receiver by sending x along with a proof,
in zero-knowledge, that there is a commitment to x in the public Merkle tree. Finally,
the receiver can cash in this note by showing x and the proof to the bank. In this
process the bank and receiver learn nothing about the identity of the sender.

A big drawback of both methods described above, is that the notes are not divisi-
ble. In other words, the notes have fixed value and can not be split or combined into
one new note. This is not only inconvenient, but also reveals the values spent and
received. Possibly, enough information is leaked to reveal a client’s identity to the
bank or another client.

Another solution frequently mentioned when talking about privacy-friendly pay-
ments is GNU Taler [9], [10]. This is a decentralised payment method, with some
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central control, that does provide it’s users with divisible ‘notes’, and is also auditable
to some extent. GNU Taler also provides anonymity for the payer of a transaction
through an extension of Chaum’s online e-cash [7]. A big disadvantage is that
anonymity of the payee is not present. This is mainly due to a design choice, where
the payer is expected to be an individual who wants to remain anonymous. The
payee is expected to be a merchant, who should be auditable and does not require
anonymity. An important difference with the cryptocurrencies that we discuss below
is that GNU Taler is always backed by an existing fiat currency, and is not a new
currency.

A disadvantage of centralised solution is that all trust lies in one party, there is
a single point of failure. Moreover, in the case of transactions between clients of
different banks a central solution might not even be possible at all. To address these
problems we will take a look at the above mentioned subcategory of cryptocurrencies
called privacy coins. These coins are divisible, and often provide full anonymity,
in contrast to GNU Taler. We will look into some successful techniques currently
used in privacy coins. We distinguish two types of privacy coins, the ones based
on obfuscation and others based on cryptography. This distinction is not always
completely strict, i.e. combinations are possible, but it does give an insight into how
privacy is provided.

In privacy coins of the obfuscation type the source of a transaction is obfuscated,
i.e. the sender/receiver is hidden amongst a subset of the entire user group. This
ought to make it more difficult for an observer to determine the sender or receiver
of a transaction. Because the sender and/or receiver are only hidden amongst
a subset of all the users there is still some structure present on the blockchain.
Specifically, an observer can still construct a transaction graph of the senders and
receivers of all transactions, with one small difference. The edges of this graphs now
represent multiple possible sender-receiver combinations per transaction instead of
one certain sender-receiver pair. Examples of obfuscation type cryptocurrencies are
Monero [11], Verge [12], and Grin [13]. The techniques used in these currencies are
amongst others: traceable ring signatures [14], Tor, Invisible Internet Project (I2P),
(Pedersen) commitments and zero-knowledge (range) proofs.

The cryptocurrencies discussed above provide privacy by obfuscating parts of
the transaction graph. It is however also possible to hide the transaction graph
completely, i.e. to hide the sender/receiver of a transaction among all users of the
currency. When the transaction graph is completely hidden, a transaction is no longer
linkable to a (small) set of people of which one is the actual sender or receiver, since
there is no link at all. In the unspent transaction output (UTXO) model, this implies
that the anonymity set of a transaction input is simply every transaction in the entire
history of the ledger. Transaction graph hiding privacy coins provide a stronger level
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of privacy and are thus more interesting for our solution. There are two well-known
transaction graph hiding privacy coins, called Zerocoin [15] and Zerocash [16].
Zerocash can be seen as the more mature and more practical version of Zerocoin.
Zerocash, or Zcash uses a cryptographic primitive known as a zk-SNARK, a type
of zero-knowledge proof. ZCash does not only provide divisibility of the currency
and sender and receiver anonymity, but also allows for direct payments, whilst hiding
transaction amounts.

Since we want to provide the highest possible level of anonymity for users of our
digital payment scheme, we will disregard the techniques used in the privacy coins
of the obfuscation type. Next to this, the discussed centralised solutions also had
a couple of disadvantages when compared to the decentralised solutions: single
point of failure, required cooperation between different banks. The transaction graph
hiding privacy coins on the other hand perfectly fit our goal of strong anonymity and
decentralised payment and will thus be further considered by us. As Zerocash is an
improved version of Zerocoin and, as far as the author knows, has no competitors
with a similar level of anonymity, we deem the techniques used for the Zerocash
protocol to be an interesting starting point for our solution.

1.2 Research goal and questions

In this thesis we discuss a new distributed ledger based protocol for decentralised
anonymous transactions. This new protocol is the first step in the realisation of a
digital decentralised anonymous payment system that adheres to existing regula-
tions for digital transactions. It can also be implemented on top of the transaction
channels that clients of a bank currently use. The scheme will be implemented on
top of a permissioned blockchain, to allow for customer due diligence or know your
customer (KYC) ‘at the gate’ and prevent misuse of the provided anonymity. On this
permissioned blockchain a select set of actors, i.e. participating banks and other
financial institutions, will have the role of administrator and gatekeeper. In order to
maintain strong anonymity for users we use zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs).

The goal of this research is to make a first step in the development of a de-
centralised, yet permissioned digital payment method that keeps transaction details
private and is compliant with AML regulations. In particular a solution to the following
research questions in the setting as mentioned above will be presented.

1. How can zero-knowledge proof systems help in realising privacy in digital trans-
actions?
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2. How can the amount of value spent, during a certain time frame, be limited
without infringing on the provided privacy?

3. How can transaction details be enclosed in a transaction, such that they can
only be viewed by one select group of actors at a later point in time?

4. How can transferred value be locked for a certain amount of time, before being
transferred again?

1.3 Our contribution

Because the Zerocash protocol already largely fits our problem setting, we choose to
adapt and improve this protocol to suit our goals instead of devising an entirely new
protocol. To address the missing functionality for our use case, this thesis introduces
the following main contributions:

Firstly, we present an account-based and permissioned version of the decen-
tralised anonymous payment scheme as defined in Zerocash [16]. This implies that
any client that wants to perform a transaction using the payment scheme must be
registered. For this registration the potential client must be approved by a so called
administrator, e.g. the bank or any other financial institution. This administrator can
for example perform an identity check and a KYC check. When the administrator
is satisfied, the client can add his or her account to the blockchain and publish new
transactions. Moreover, we also transform the UTXO-model based protocol of Ze-
rocash to an account based model, or actually a combination of the UTXO-model
and the account-based model. This allows for more possibilities regarding audibility,
performing KYC, and limiting spending behaviour.

Secondly, we show how the conversion between existing fiat currency such as
Euros or American Dollars and its anonymous counterpart can be achieved. We
emphasise that this anonymous counterpart is not a new currency. It is simply a
digital and anonymous equivalent with the same value as it’s real-world counterpart.
This conversion makes use of the fact that both banks and their clients are involved
in this payment scheme, such that clients can convert some of their regular account
balance to anonymous virtual notes with the same value.

Thirdly, we add auditability functionalities to the decentralised anonymous pay-
ment scheme, without giving in on the provided level of anonymity. Using the above
mentioned account-based functionality we are able to limit the amount of value that
any user can transfer anonymously in a certain fixed time frame. Next to this, we
present a subsystem that clients can use to transfer value beyond this limit. This
subsystem requires the client to include encrypted transaction details in such a trans-
action. The used encryption scheme is a verifiable encryption scheme in the sense
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that correctness of the ciphertext can be guaranteed without knowing the plaintext.
This allows us to have a designated set of judges that can view the plaintext of such
a transaction at any later point in time if this is required.

Lastly, we introduce anonymous timelocks. Anonymous in the sense that only
the sender and the receiver of a transaction are aware of the timelock being in place.
Since timelocks are an essential feature for making decentralised payment schemes
more efficient – consider for example the Lightning Network [17] – we decided to
also look into introducing this feature. The practical application of these timelocks is
out of the scope of this research and will be left for possible future work.

Next to presenting the specifics of our newly designed protocol, we also validate
our work by presenting a proof of concept implementation as well as a set of
security and completeness proofs. The proof of concept implementation allows
us to validate that the protocol works as intended and could be implemented and
used in practice. Additionally, we use the implementation to measure the efficiency
of our system, in particular the intensive computations caused by zk-SNARKs. The
set of security and completeness proofs shows, more rigorously, that our payment
scheme actually accomplishes secure and anonymous payments between registered
clients of financial institutions.

1.4 Thesis structure

The rest of this thesis is structured as follows. Chapter 2 provides more background
on the used notation and cryptographic techniques, including zk-SNARKs, verifi-
able encryption, and Merkle trees. In Chapter 3 we present a detailed overview of
the briefly discussed existing solutions for anonymous transactions. A step-by-step
sketch of our solution and the reasoning behind it is given in Chapter 4. Subse-
quently, we define our anonymous payment scheme in Chapter 5 and construct it
in Chapter 6. A concrete implementation of the protocol, together with performance
measures are discussed in Chapter 7. We conclude the thesis in Chapter 8, with a
brief discussion and mention some suggestions for future work.



Chapter 2

Preliminaries

We begin this chapter with an explanation of our use of notation. Moreover, we
provide a reference list of the relevant terms and variables. Subsequently, we provide
an overview of existing (cryptographic) building blocks that form the basis of our
protocol. We present a detailed description of the three most important building
blocks: zk-SNARKs, verifiable encryption, and Merkle trees. Moreover, we briefly
touch upon other, more common, cryptographic building blocks such as commitment
and signature schemes.

2.1 Notation and terminology

In this section we discuss the notation that will be used throughout this thesis. We
also provide a list of the used functions with in explanation 2.3, a glossary of relevant
terminology 2.2, and an overview of the variables that are used in the protocol 2.1.

In the context of zk-SNARKs and verifiable encryption we will work over bilinear
groups (p,G1,G2,GT , e, g with the following properties:

• G1,G2,GT are all groups of prime order p;

• e : G1 ×G2 → GT is a bilinear map, also known as the pairing (function);

• g is the generator for G1, h is the generator for G2, and e(g, h) is the generator
for GT

• Computing group operations, evaluating the pairing function, deciding member-
ship of groups, deciding equality of group elements, and sampling generators
of groups can all be done efficiently.

We will use the multiplicative notation in all groups, i.e. we will write ga and not
a ·G, and ga · gb = g(a+b).

7
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Next to the above group notation, we also use some other specific notation in this
thesis. The ‖ operator will be used for concatenating two strings, i.e. 0‖1 = 01. The
exponent notation in strings will be used for repetition of elements, 05 = 00000. For
(uniform) random element selection in a group we use the ∈R operator. In parsing
vectors we will use the symbol ∗ to denote the remainder of the variables that is not
unwrapped from the vector. For example, in the case that we only want to parse x

from the vector v = (x, y, z), we write parse v as (x, ∗).
In the context of zk-SNARKs we will the use the vector x to denote the public

inputs, the vector a contains all witnesses or auxiliary inputs. We will include this
vectors in a statement R that is to be proved as follows: Given x, the prover knows
a, such that the following statement(s) hold: R. We give a detailed description in
Section 2.2 for those unfamiliar with zk-SNARKs.

λ security parameter pp public parameters
sk secret key C arithmetic circuit
pk public key vk verification key
s randomness x public inputs
a auxiliary inputs cm commitment
π zero-knowledge proof m message
σ signature tx transaction
rt Merkle root v value (monetary)
info extra info note (anonymous) note
pos position of leaf in Merkle tree path Merkle path
η nullifier for a note mem memory (cell)
b binary value/bit µ nullifier for a memory cell
data field with encrypted secrets cred user credentials
k hash of public signature key κ message authentication code (MAC)
t (block) time c aggregated outgoing value

Table 2.1: List of variables with meaning.

To denote users in the protocol we will always user the letter u, and when talking
about multiple users we will user uA for the one (Alice) and uB (Bob) for the other.
The other protocol variables are listed in Table 2.1, we use a subscript to denote a
sub-type of a variable, e.g. pathnote and pathmem are both Merkle paths but in different
trees, respectively the Note and Memory tree. A superscript on a variable is used to
denote a different version of the same variable. For example we use vold

note to denote
the note value of the old note and we use vnew

note to denote the note value of the new
note. If we desire to denote a variable in general, without a specific sub-type we use
the asterisk ∗, i.e. rt∗ denotes a Merkle tree root in any of the Merkle trees.
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transaction transfer of value from one entity to another
blockchain/ data structure consisting of blocks that store all past
(distributed) ledger transactions
user/client person using the payment scheme, must be client of

a bank
admin(istrator) bank or financial institution (partly) controlling the

blockchain
judge actor allowed to view transaction details, possibly an

actual judge
sender payer, user that pays with the input of a the transaction
receiver payee, user that receives the output of a transaction
fiat currency regular currency such as Euros or Dollars, cash or

digital
(anonymous) note virtual representation of fiat currency in our payment

scheme
conversion trading fiat currency for an (anonymous) note or vice

versa
account balance aggregated value of fiat currency/notes in a client’s

bank account/on the blockchain
public parameters set of system parameters available for all

users/admins
(public-private) key pair two linked keys of which one is publicly available and

one must be kept secret
address key pair key pair used to identify a target address and send

transactions
encryption key pair key pair used to encrypt/decrypt some transaction

fields
signature key pair key pair used to sign transactions/verify signatures
credentials all key pairs of a user/admin, or (commitment to) the

address key pair
memory (cell) (commitment to) account balance and possible other

account specific values
nullifier unique value for each note to prevent double spending
plaintext message that is to be encrypted/has been decrypted
ciphertext encrypted plaintext
arithmetic circuit encoding of the statements for a zk-SNARK proof
Merkle tree/ data structure containing all notes on the blockchain
(binary) hash tree
Merkle root top-most node of the Merkle tree, public value

Table 2.2: Glossary of relevant terminology.
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For functions we will use the superscript to denote a specific instantiation thereof.
For example, COMMnote is the note commitment function, whereas COMMmem rep-
resent the commitment function for a memory cell. Every now and then a function
will also have a subscript, this subscript will be a variable that is either used as key
or seed.

COMM commitment function PRF pseudo-random function
CRH collision-resistant hash KDF key-derivation function
Prove functions that creates a

zk-SNARK proof
Verify function that verifies a signa-

ture or zk-SNARK proof
KeyGen key generation function for

signature scheme
Sign generates signature for a

message
Setup setup function, can be used

for zk-SNARK, encryption, or
signature scheme

Enc encryption function that trans-
forms plaintexts into cipher-
texts

Dec decryption function that trans-
forms a ciphertext into the
original plaintext

Table 2.3: List of functions.

2.2 zk-SNARKs

In this section we give an overview of the workings of zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs) and dive deeper into one
specific proof system that we deem most suitable for our scheme. A description of
general zero-knowledge proofs is provided in Appendix A.2. In that Appendix we also
provide the definitions that should hold for any type of zero-knowledge proof (ZKP):
completeness, soundness and zero-knowledgeness. For the unfamiliar reader we
strongly advise to read that before continuing with this section.

The notion of a zk-SNARK, or zero-knowledge SNARK, was first mentioned in
2011 by Bitansky et al. [18]. A succinct non-interactive argument of knowledge
(SNARK), named after a creature in one of Lewis Carroll’s novels, is a succinct
non-interactive argument (SNARG) of knowledge and is a well-used and relatively
efficient technique that can be used in proving knowledge. A SNARK is a succinct
non-interactive argument attesting to the fact that there exists a witness that will
evaluate a statement to true, and moreover the prover also knows this witness. It is
similar to a non-interactive zero-knowledge proof (NIZK), in the sense that it requires
only one extra condition:
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• Succinctness. Let R be a polynomial time decidable binary relation. For any
pair (x, a) ∈ R we call y the instance and a the witness, where y = (M,x, t),
|w| ≤ t, and M is Turing machine that accepts (x, a) after at most t steps. Now,
for a proof π returned by the prover for any statement (y, w) ∈ R, the proof size
as well as the verification time is bounded by

p(λ+ |y|) = p(λ+ |M |+ |x|+ log t),

where k is the security parameter and p a universal polynomial independent of
R.

This succinctness provides the users with upper bounds on the verification time
and the memory needed to actually construct, relay, and store the proof. A disad-
vantage of most SNARKs is that in order to achieve succinctness, a rather large
common reference strings is constructed up front, where all users need to trust that
this string is indeed constructed correctly. The size of the common reference string
is generally not a very big problem, although for larger statements this could end up
being several hundreds of Megabytes in size. The fact that the string has to be gen-
erated by a trusted party, or group of trusted parties, might be more problematic to
some users. In the case that no such trusted party can be found, the zero-knowledge
succinct transparent argument of knowledge (zk-STARK) could be considered as an
alternative. However, zk-STARKs are currently too computationally expensive, in the
sense that the computational efforts required for the prover and verifier are just too
large for real-world applications. We will therefore not consider these zk-STARKs
and focus on zk-SNARKs, assuming that a trusted party or group can be found to
perform the setup for the proof system.

Most SNARKs are constructed using the same set of steps, we will later on explain
these steps here. In the first step, a boolean or arithmetic circuit is constructed that
can be used to verify the statement. After that, the circuit is transformed into the rank-
1 constraint system (R1CS) language consisting of three vectors. These vectors can
then be encoded into polynomials, a so called quadratic arithmetic program (QAP).
This QAP can be securely evaluated using blind evaluation of polynomials using a
homomorphic hiding scheme. This homomorphically hidden encoding serves as
the proof, and the evaluation of these polynomials at randomly selected points is
used to empirically verify (with high probability) the correctness of the polynomials.
Different SNARKs use different ways of achieving this, but most SNARKs take an
approach that is mostly similar to the one sketched here, in order to achieve succinct
non-interactive proofs. More details on arithmetic circuits and QAPs are given in
Appendix A.3.

There are several ways to distinguish SNARKs, we choose to adopt the same
distinction as is made in the ZKProof Community Reference document [19]. This
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Preprocessing Non-preprocessing
Non-universal QAP-based unknown (yet)
Universal vnTinyRAM or Bullet-

proofs (with explicit
CRH)

Bulletproofs (with PRG-
based CRH generation)

Universal and scalable impossible Recursive composition of
SNARKs

Table 2.4: Distinction in NIZK’s based on setup phase.

distinction, together with some examples, is shown in Table 2.4. The difference be-
tween the preprocessing and non-preprocessing ZKP’s is determined by the runtime
and output size of the setup algorithm, i.e. if both are at most polylogarithmic the
ZKP is non-preprocessing, otherwise it is preprocessing. Furthermore, if a SNARK
is non-universal the setup needs the constraint system as input. A universal SNARK
only needs a size bound of the circuit as input, when this is also not necessary, i.e.
setup is only dependant on the security parameter, we call a SNARK universal and
scalable.

We choose to use a non-universal, preprocessing SNARK for two reasons. The
first reason being that preprocessing SNARKs have lower proving and verification
time than non-preprocessing SNARKs. Secondly, we do not require the more com-
plex, and therefore also less efficient, universal SNARK because the statements that
we will want to prove are known up front. The specific proving system that we will
use is known as Groth16, named after the author and year of the original publica-
tion [20], since it is most suitable for our research. As far as the author of this thesis
knows, it is more efficient, considering memory usage as well as proof generation
and verification time, than any other non-universal preprocessing SNARK out there.

The Groth16 proving system is a zk-SNARK with perfect completeness and per-
fect zero-knowledgeness. Next to this, it has statistical knowledge soundness against
adversaries that only use a polynomial number of generic bilinear group operations.
It is a pairing-based non-interactive proof system that is used to construct proofs for
F-arithmetic circuit satisfiability. The most relevant details of arithmetic circuits and
their relation with quadratic arithmetic programs are given in Appendix A.3. For more
information on this and other related topics we refer the reader to [21].

The proof system can be used to construct proofs over relations of the form

R = (p,G1,G2,GT , e, g, h, `, {ui(X), vi(X), wi(X)}mi=0, t(X)),

where the bit length of p is equal to the security parameter λ. The arithmetic circuit,
with base field F = Zp, is encoded using a quadratic arithmetic program encoding
of the relation R. The arithmetic program describes a satisfiability problem, with m
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variables and n equations, over the field Zp with ` input variables ai ∈ Zp(1 ≤ i ≤ `)

and m− ` auxiliary variables ai ∈ Zp, (`+ 1 ≤ i ≤ m), with a0 = 1 as

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =
m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 polynomial h(X).
The variables (p,G1,G2,GT , e, g, h) represent the bilinear groups that are used in

the proof scheme. G1,G2,GT are groups of prime order p, e is a bilinear map that
takes one element of G1 and one of G2 to the target group GT . Moreover g is the
generator of G1, h of G2, and e(g, h) of GT . Finally, we require the generic group
operations, which also includes e, to be efficiently computable.

Groth16 is compromised of 3 functions, a setup function that pre-computes the
common reference string that is generated once and is used in every proof and verify
session for the same circuit. The second function is the prove function, with as input
the public inputs, auxiliary variables, and common reference string. After receiving
the inputs, prove outputs three group elements (in G1 and G2) that together form the
proof. The third and final function is the verify function that, on input the three proof
elements, computes two elements in GT using the pairing function e and checks
equality of both elements. For an exact definition of these functions and a security
proof of the system we refer the reader to the original publication [20].

2.3 Verifiable encryption and SAVER

To ensure auditability of conspicuous transactions we will be using a verifiable en-
cryption scheme known as SNARK-friendly, additively-homomorphic, and verifiable
encryption and decryption with rerandomization (SAVER). As far as the authors are
aware, SAVER is the first SNARK-friendly1 encryption scheme out there. Next to
providing us with verifiable encryption, the scheme has more features. SAVER has
verifiable decryption, rerandomisation, and is additively homomorphic. We only need
the verifiable encryption and decryption features, so we will focus on that. A verifi-
able encryption scheme is a scheme in which one can prove certain properties of a
message m, when only given the encryption c of m. We can use this in our use case,
be encrypting transaction details such as address keys whilst simultaneously using
these address keys in our zk-SNARK proof. The verifiable encryption of SAVER
allows us to proof valid decryption of a ciphertext without revealing the decryption
key. This is especially useful in our setting, since the decryption key is also used on
other messages that must remain secret and must thus not be leaked.

1Efficient to use in a SNARK setting.
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Setup(1λ, C):
CRS ← Setupzkp(1λ, C) ∪ {G−γ}
return CRS

KeyGen(CRS):
{si}ni=1, {zi}ni=1, {ti}ni=0, ρ←R Z∗p
PK ←

(
gδ, {gδsi}ni=1, {g

ti
i }ni=1, {hti}ni=0, g

δt0
∏n
j=1 g

δtjsj , g−γ(1+
∑n
j=1 sj)

)
SK ← ρ

V K ← (hρ, {hsizi}ni=1, {hρzi}ni=1)

return SK,PK, V K

Enc(CRS,PK, {mi}ni=1, {φi}`i=n+1, a):
Parse PK → (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r ←R Z∗p
ct←

(
Xr

0 , X
r
1g
m1
1 , . . . , Xr

ng
mn
n , P r1

∏n
j=1 Y

mj
j

)
(
gA, hB, gC

)
← Provezkp(CRS, {mi}i ∪ {φi}i, a)

π ←
(
gA, hB, gCP r2

)
return π, ct

VerifyEnc(CRS,PK, π, ct, {φi}`i=n+1):
Parse PK → (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

Parse π →
(
gA, hB, gC

)
and ct→ (c0, . . . , cn, ψ)

assert
∏n
j=0 e(cj , Zj) = e(ψ, h)

assert e(gA, hB) = e(gα, hβ) · e(
∏n
i=0 ci ·

∏`
i=n+1 g

φi
i , h

γ) · e(gC , hδ)

Dec(CRS, V K, SK, ct):
Parse V K → (V0, {Vi}ni=1, {Wi}ni=1), SK → ρ and ct→ (c0, . . . , cn, ψ)

for i← 1 to n do
e(gi,Wi)

mi ← e(ci,Wi)
e(c0,Vi)ρ

Brute force compute mi ← dlog(e(gi,Wi)
mi)

end
ν ← cρ0
return (m1, . . . ,mn, ν)

VerifyDec(CRS, V K, {mi}ni=1, ν, ct):
Parse V K as (V0, {Vi}ni=1, {Wi}ni=1) and ct as (c0, . . . , cn, ψ)

assert e(ν, h) = e(c0, V0)

for i← 1 to n do
assert e(gi,Wi)

mi = e(ci,Wi)
e(ν,Vi)

end

Algorithm 1: SAVER construction (relevant parts only).
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SAVER builds directly upon the Groth16, and related2, proving systems. Recall
that a proving systems has two types of inputs: public inputs φ = (φ1, . . . , φl) and
secret auxiliary inputs a (witnesses). These public inputs φ combined with a zk-
SNARK proof π = (gA, hB, gC) allow a verifier to ascertain that the prover indeed
has knowledge of these secret inputs a. The verifier achieves this by checking the
verification equation, with gi = g

βui(x)+αvi(x)+wi(x)

γ :

e(gA, hB)
?
= e(gα, hβ) · e(

l∏
i=0

gφii , h
γ) · e(gC , hδ).

SAVER exploits the fact that some values φi might be considered a plaintext
message and that gφii is very similar to ElGamal encryption. The verifiable encryption
scheme SAVER also uses two algorithms from Groth16 as a subroutine, namely
Setupzkp and Provezkp. These algorithms are used for key generation and message
encryption.

Concretely, SAVER splits a plaintext message M into n k-bit blocks {mi}i as
M = (m1‖ . . . ‖mn), with k chosen properly. k should be a non-negative number
that is chosen in such a way that it is still feasible3 to compute the discrete log
mi = dlog(gmi) by brute forcing all options for all k bit blocks. Note that choosing k
too small will result in a large amount of a message blocks, and thus a larger public
and verification key, more encryption time, and a possibly larger prove time. Algorithm
1 depicts the construction of the relevant parts (for this research) of SAVER.

2.4 Cryptographic building blocks

In this section we present the relevant concepts and definitions for the cryptographic
building blocks that comprise a significant part our final protocol. Specifically, we
discuss commitment schemes, collision-resistant hash functions, signature schemes,
secure pseudo-random functions, and encryption schemes.

Commitment schemes. A commitment scheme or commitment function C(·, ·) is
a function that takes as input a certain plaintext x and some randomness r. The
function returns a commitment value c as C(x, r). A commitment scheme is called
secure when it is (computationally) binding and (computationally) hiding. The in-
formal definitions for binding and hiding commitment schemes are given below, for
more details on commitment schemes and the formal definitions we refer the reader
to Appendix A.4 and B.

2See the original publication [22] for more information on this and other details regarding SAVER.
3It should take a practical amount of time, depending on how fast the decryption is required to be.
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Binding. Given the commitment function C(·, ·) it should be hard to find two openings
to the same commitment value. Specifically, it should be hard to find two pairs (x, r)

and (x′, r′) with x 6= x′ such that C(x, r) = C(x′, r′).

Hiding. Given a commitment value c = C(x, r) it should be hard to determine the
value x used as input for C(·, ·). Specifically, when an adversary selects two values
x0, x1 and a challenger computes c = C(xi, r) for some random value r and i ∈ {0, 1},
it should be hard for the adversary to determine the value of i with a probability higher
than 1

2
.

Collision-resistant hash functions. A hash function is a function H(·) that takes in-
puts x of arbitrary bit lengths and produces fixed-length bit strings as output y := H(x).
In this research we consider collision-resistant hash functions (CRHs). For sake
of disambiguation we note that collision-resistant hash functions are not necessar-
ily cryptographic hash functions as collision-resistance does not imply preimage-
resistance. On the other hand, collision-resistance does imply second-preimage-
resistance. In this research we only rely on collision-resistance, though we present
all above mentioned (informal) definitions for completeness.

Preimage-resistance. Given a hash value y it should be hard to find an input, or
preimage, x such that y = H(x).

Second-preimage-resistance. Given an input, or preimage, x it should be hard to
find another input x′ such that H(x) = H(x′).

Collision-resistance. It should be hard to find two different messages m,m′, with
m 6=,m′, such that H(x) = H(x′).

Signature schemes. A digital signature scheme is a form of asymmetric cryptogra-
phy. It allows the sender of message to guarantee three properties on the sent mes-
sage: message integrity, message origin, and non-repudiation. Message integrity
ensures that a message has not been altered by anyone other than the sender,
message origin ensures that the message has been sent by the owner of public
key. Non-repudiation ensures that the owner of the public key cannot claim that the
message was sent by someone else. There exist several security notions for digital
signature schemes. In this thesis we will only consider the security notion called
strong existential unforgeability against chosen message attack (SUF-CMA), which
is strong variant of the more prominent existential unforgeability against chosen mes-
sage attack (EUF-CMA). The informal definition of SUF-CMA is as given below, for
a more detailed definition we refer the reader to Appendix B.

SUF-CMA. Given only the public signature keys and a list of message-signature
pairs (m,σ) signed under the according secret signature key it should be hard to
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construct a new different message-signature pair (m,σ). Specifically, an adversary
gets a public signature key pk belonging to a secret signature key sk. The adversary
is allowed to ask for signatures σ on arbitrary messages m under the secret signature
key sk. If the signature scheme is SUF-CMA secure it should be hard to construct
a pair (m′, σ′) that can be verified using the public signature key pk and for which
(m′, σ′) 6= (m,σ) for any previously constructed pair (m,σ).

In our protocol we consider a slight variation on SUF-CMA called strong existen-
tial unforgeability against one-time chosen message attack (SUF-1CMA). As the
name already hints, the only difference with SUF-CMA is that the adversary is only
allowed to ask for the signature on one arbitrary message instead of multiple.

Pseudo-random functions. A family of functions {Fk}K can be a so called pseudo
random function (PRF) family if certain requirements are satisfied. We assume that
all functions Fk(·) in the family have the same domain and codomain, and that k is
chosen from the key space K. The input x to a PRF is often called a seed. Such
a family of functions is considered to be a secure pseudo-random function family if
it satisfies the definition below, for a more detailed definition we refer the reader to
Appendix B.

Secure PRF family. Given access to an oracle that computes either the values of
y = Fk(x) for some secret value k or returns completely random values on input x, it
should be hard for the adversary to determine whether the oracle computes Fk(x) or
returns a completely random value. It should be noted that the oracle always returns
the same value y for the same input x, to achieve this it internally stores all previously
computed input-output pairs (x, y).

Encryption schemes. An encryption scheme is generally comprised of two algo-
rithms: an encryption function and a decryption function. The encryption function
takes a regular message, called plaintext, as input and outputs a seemingly random
text called the ciphertext. A ciphertext that is generated by a secure encryption
scheme reveals no information about the original plaintext. The decryption algorithm
is used to transform the ciphertext back into the plaintext. Both methods require
(secret) values, called keys, to encrypt and decrypt messages.

There exist two types of encryption: symmetric key encryption and asymmetric or
public key encryption. In symmetric key encryption the decryption key is equal to the
encryption key and must be kept secret at all times. In asymmetric encryption the
encryption key and decryption key are different. We call the the encryption key the
public key and the decryption key the secret key, referring to their (non)-availability
to other users. In an asymmetric encryption scheme, the sender of a message
uses the public key of the receiver to encrypt the message. The receiver of the
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message is the only person that knows the secret key belonging to the public key.
Therefore, the receiver is the only person who can decrypt the ciphertext to the
original message. There exist several security notions for encryption scheme, we will
consider two: key indistinguishability under chosen ciphertext attack (IK-CCA) and
indistinguishability under chosen ciphertext attack (IND-CCA) [23]. In our protocol
we will be using asymmetric encryption schemes and we will therefore also give the
security definitions in that setting.4 Below, we give the (informal) variant of these
definitions. Fr a more detailed definition we refer the reader to Appendix B.

IK-CCA Given two public keys of the same encryption scheme, and the ability to
request decryptions of arbitrary messages under either key, it should be difficult to
distinguish under which of the two public-keys the encryption of a self-chosen mes-
sage is encrypted. Specifically, an adversary is given two public keys belonging to
the same encryption scheme. The adversary then sends one message of choice to a
challenger. The challenger returns the encryption c of this message under one of the
two public keys and challenges the adversary to say under which key the ciphertext
c is encrypted. Before making this guess the adversary is allowed to request the
decryption of an arbitrary number of arbitrary ciphertexts (not equal to c) under either
key.5 The encryption scheme is called secure if it is hard for the challenger to make
the correct guess with a probability more than 1

2
.

IND-CCA Given the public key of an encryption scheme, and the ability to request
decryptions of arbitrary messages, it should be difficult to distinguish the encryptions
of two self-chosen messages. Specifically, an adversary is given the public key of
an encryption scheme. The adversary then sends two messages of choice to a
challenger. The challenger returns the encryption c of one of these messages and
challenges the adversary to say which of the two messages is encrypted in c. Before
making this guess the adversary is allowed to request the decryption of an arbitrary
number of arbitrary ciphertexts (not equal to c).5 The encryption scheme is called
secure if it is hard for the challenger to make the correct guess with a probability
more than 1

2
.

4Extension to the symmetric case of IND-CCA is rather straightforward. Logically, there exists no
symmetric variant of IK-CCA.

5The adversary is also allowed to encrypt arbitrary messages under either key. We do not define
this explicitly, since the adversary knows the public key(s) and can thus easily encrypt messages by
itself.
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2.5 Merkle trees

A Merkle tree, or hash tree, is a data structure capable of storing large sets of data
that allows for efficient membership proofs. A Merkle tree consists of two types of
nodes: internal nodes and leafs. Each leaf represents one data record, whereas the
internal cells are used to be able to proof membership of a data record efficiently.
We will only consider binary Merkle trees here, i.e. trees where each non-leaf node
has exactly two children. These binary trees allow for membership proofs that scale
logarithmically, in both size and time, in the number of leafs of the tree.

A leaf of a Merkle tree is either a hash of a piece of data, or just the piece of data
if each and every cell has the same suitable length. Each internal node is the hash
of the concatenation of both its children. A Merkle tree has one internal node without
a parent, this node is called the root of the Merkle tree or Merkle root. This root is
used to denote the current state of the Merkle tree, moreover this root plays a key
role in a membership proof.

An example of a small Merkle tree is given in Figure 2.1. This figure also depicts
and describes an example of a membership proof for a certain leaf in a Merkle tree.
Figure 2.1 proofs that the data data3 in LEAF 3 is contained in the Merkle tree with
Merkle root ROOT. This can be done by showing that there are other nodes, the so
called path nodes, that together with data3 compute the value of the Merkle root RT.

ROOT
RT:=H(A||B)

LEAF	3
L3:=H(data3)

NODE	F
E:=H(L3||L4)

NODE	E
D:=H(L1||L2)

LEAF	4
L4:=H(data4)

LEAF	1
L1:=H(data1)

LEAF	2
L2:=H(data2)

NODE	C
C:=H(E||F)

NODE	A
A:=H(C||D)

NODE	B
B:=H(..||..)

NODE	D
C:=H(..||..)

Depth
0

1

2

3

4

Merkle root

Path node

Legend

Own record

Other node

Path
edge

Other
edge

Membership	proof	of	data3:
RT:=H(A||B)
      	H(H(C||D)||B)
      	H(H(H(E||F)||D)||B)
      	H(H(H(E||H(L3||L4)||D)||B)
      	H(H(H(E||H(H(data3)||L4))||D)||B)

Figure 2.1: Example of a Merkle tree of depth 4.
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In general, a membership proof consists of three parts, the Merkle root, a path
of internal nodes, and the leaf/piece of data over which membership is proved. The
path of internal nodes contains exactly d− 1 internal nodes, with d the depth of the
Merkle tree, and one other leaf. To be precise, this other leaf is the sibling of the leaf
over which membership is proved, the first internal node is the sibling of the parent of
both leaves, the second internal node is the sibling of the parent of this parent, and
so on, all the way till the Merkle root is reached. The membership proof checks that
taking the hash recursively over all these nodes gives the value of the Merkle root.

Using Merkle trees in a blockchain setting requires us to store the tree efficiently.
It would be rather inconvenient if each block on the chain contains the full contents
of the Merkle tree at that point. Fortunately, the Merkle root includes the entire state
of the Merkle tree at that point in time, and due to the collision-resistance of the
used internal hash function it is infeasible to find a tree with different contents and
the same root. Therefore, in blockchain applications it is sufficient to store only the
Merkle root on the blockchain and keep other information about the tree ‘off-chain’.



Chapter 3

Related work

In this section we discuss the techniques used in several prominent solutions for
anonymous payments, in more detail. We start with some older centralised anony-
mous e-cash solutions, including Chaum’s Digicash [6]. We then discuss a de-
centralised payment scheme called GNU Taler [10] that is based on the principles
of Digicash. What follows is a discussion of two types of privacy coins, obfuscation
based and cryptography based cryptocurrencies. The first category considers among
others Monero [11], Verge [12], and Grin [13]. Finally, the second category focuses
on the basis for our protocol: Zerocash [16] and its predecessor Zerocoin [15].

3.1 Centralised anonymous e-cash

The first prominent solution for anonymous digital payments, also known as e-cash,
was Chaum’s Digicash. Digicash is based on the scheme presented in Chaum’s
work on blind signatures for untraceable payments from 1983 [7]. Chaum’s system
identifies three parties in a transaction: the bank, the payer, and the payee. The
system relies on a blind signature system that allows to bank to sign certain values
without learning them. This is best explained by a envelope lined with carbon paper.
When the payer want the bank to sign a new note, the payer puts this note in the
carbon paper lined envelope, closes it and sends it to the bank. On receiving this
closed envelope, the bank signs it and returns the signed envelope to the payer.
Because the envelope was lined with carbon paper the signature also left a carbon
copy on the note inside. The payer has now received a signed note without the bank
learning what exactly was signed.

The payer can subsequently give this note to the payee, who can easily verify
that the note was indeed signed by the bank and thus that it is valid. The payee can
later cash this note at the bank and receive the appropriate value in fiat currency on
his or her bank account. In this entire transaction, neither the bank nor the payee

21
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learn anything about the identity of the payer, since the signed note is unlinkable
to the signed envelope. The digital version of this system works similarly, with the
addition that each new note should have a unique number written on it. When the
bank receives this note, the number on it is put on a long list of all spent notes. This
method ensures that double spending of a note is not possible, even though digital
duplications are a lot easier than physical ones.

A big advantage of this system is that it is rather simple to implement and the re-
quired computations can be done very efficiently. Disadvantages are that the notes
in the system are of fixed value, which is not just inconvenient but also leaks the
amount payed in a transaction. Moreover, comprising the secret keys for the blind
signature system allows one to forge an arbitrary amount of notes. This single point
of failure is rather undesirable. Moreover, a centralised digital system might also
inspire less trust regarding the anonymity of it’s users and could even be prone to
side-channel attacks.

A centralised anonymous payment scheme that does not suffer from the drawback
of the single point of failure caused by the secret keys of a blind signature system
is suggested by Sander and Ta-Shma in 1999 [8]. Their system actually does not
rely on the bank to keep a secret at all. Instead the system relies on the ability of
the bank to reliably maintain a public database. This system again identifies three
parties in a transaction: the bank, the payer, and the payee.

The payer start a transaction by withdrawing money from her bank account. Since
this system, like the previous one, only considers fixed value anonymous e-cash,
she withdraws the amount of one ‘note’. The payer also chooses two random secret
values x and r and sends a (hiding and binding) commitment cm = C(x, r) to the
bank. In return for withdrawing a ‘note’ from the payer’s account, the bank adds cm
to the public list of coins. This public list of coins is encoded as a Merkle tree to
significantly increase the performance. The payer can spend the newly minted note
cm anonymously by using zero-knowledge proofs. To be precise, the payer needs to
construct a zero-knowledge proof π that she knows values x and r such that C(x, r)

is in the public Merkle tree. The payee of a transaction can use this proof π to cash
the received note. The payee need only show the proof π to the bank and in return
receive the value of a ‘note’ in his or her bank account. To prevent double-spending
each note is linked to a serial number. However discussing the details of this is
outside the scope of this literature review.

This system is still rather simple to implement, and given the current progress
in the efficiency of zero-knowledge proofs can be made rather efficient. An addi-
tional advantage of this system is that it does not rely on a single secret held by
the bank to prevent forgery. However, the other drawbacks as mentioned for Digi-



3 . 2 . D E C E N T R A L I S E D A N O N Y M O U S PAY M E N T S C H E M E S 2 3

cash still hold and seem to be characteristic for centralised solutions. An additional
disadvantage of centralised systems with multiple banks is that these banks have
to cooperate strongly. There are several hurdles that might make this cooperation
infeasible, such as regulations for financial institutions or unwillingness to cooperate.
Therefore, we decide to disregard centralised solutions for now and take a look at
(more) decentralised solutions.

3.2 Decentralised anonymous payment schemes

Probably the most well-known type of decentralised anonymous payment schemes
are privacy coins, cryptocurrencies with a strong focus on user anonymity. However,
there are also other options out there. In this section we will discuss one of these
options called GNU Taler [9], [10], which is best portrayed as a decentralised payment
scheme with some central control. GNU Taler is especially interesting because of its
focus on both anonymity and auditability. GNU Taler identifies five types of actors:
exchanges, customers, merchants, banks, and auditors. Exchanges could also be
banks, but might also be independent third parties. On a very high level GNU Taler
constructions work as follows. (1) The customer withdraws some coins from an
exchange; (2) The customer spends some coins at a merchant; (3) A merchant
deposits the coins at an exchange; (4) The auditor monitors the behaviour of an
exchange to verify that the exchange operates honestly. The bank is requested to
provide intermediate wire transfers for the customer and the exchange. The customer
and exchange can both use their own, possibly different, bank.

For a customer to be able to pay a merchant, a customer must hold coins at an
exchange that is trusted by the merchant. The exchange is used to hold funds (fiat
currency) of its customers in escrow and to transfer these funds to a merchant when
digital coins are deposited. The system assumes that there exists an anonymous,
bi-directional communication channel, such as Tor, between a customer and the
merchant, and between either party and the exchange. The anonymity of the system
is thus not present in withdrawing or depositing coins. The anonymity of the system
is on the payment level, the deposited coins cannot be linked to the withdrawn
coins, hence the identity of the customer can not be linked to both transfers. On
the other hand, the merchant’s identity will always be learned in GNU Taler, since
that is necessary to send funds to the merchant’s bank account. In other words,
GNU Taler only provides customer/payer/sender anonymity and does not provide
merchant/payee/receiver anonymity.

This last fact is also the biggest drawback of GNU Taler in our use case, we
want full anonymity for both payer and payee. Moreover, the exchanges also form
another party that learn information about its clients, which to us seems undesirable.
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The functionality of keeping ‘digital coins’ or ‘notes’ in escrow that is provided by
the exchanges could also be placed directly with the customers and merchants.
They could even re-spend the received notes in future transactions. Removing the
exchanges from the equation does unfortunately also remove the auditability part of
GNU Taler. We thus need to find a way to incorporate auditability or other financial
measures in our system without relying on intermediaries, i.e. in a fully decentralised
setting. Privacy coins could be a good resource for finding techniques that allow us
achieve this in a fully decentralised setting.

3.3 Obfuscation based privacy coins

In the context of cryptocurrencies, two main types of privacy coins can be identified:
obfuscation based and cryptography1 based. This identification is quite fluent, some
privacy coins might be clearly obfuscation based while others are a bit of both. In
this section we will focus on the more prominent type: obfuscation based. To be
precise, we will discuss several types of privacy coins that together use a wide range
of techniques and give one overall conclusion on this type of currencies.

The first currency we discuss is Monero [11]. The privacy of Monero is based
on a cryptographic technique known as the traceable ring signature [14]. Together
with one-time stealth addresses unlinkability of transactions is provided. The ring
signature is used to hide the sender of a transaction, the stealth address hides the
receiver. On a high level, this works as follows. The sender wants to transfer a certain
amount of value to the receiver and hence constructs a transaction containing the
details of this transaction. This transaction is to be posted on the public blockchain,
and should thus be signed in order to ensure integrity. To sign the transaction, the
sender uses a ring signature. Where a normal signature would sign the transaction
using the sender’s public key, the ring signature sings it on behalf of a group of
different spend keys. One key in the signing group, or ring, has to be the sender’s
public key. Effectively, the sender of a transaction is hidden amongst all the other
(randomly selected) key owners. To hide the receiver’s incoming public key we use
the stealth address. Normally, every transaction to the same user is sent to the same
public address key. However, in Monero the sender of a transaction is forced to create
a unique, per transaction, stealth address based on the receiver’s public address
key. This stealth address is unlinkable to the actual public address key by anyone
other than the receiver, thus providing anonymity for the receiver combined with the
convenience of one incoming public key. Currently, Monero uses an updated version

1This does not imply that obfuscation based privacy coins do not use cryptography. However,
obfuscation based currencies do not use cryptography to hide the full transaction graph.
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of their original ring signature scheme, called ring confidential transactions (RingCT):
a combination of ring signatures and confidential transactions. Next to hiding the
receiver’s address, RingCT also hides the transferred value. Hiding the transferred
value makes side-channel attacks based on the transferred values impossible.

Monero is one of many cryptocurrencies that are based on the CryptoNote [24]
technology and only one of the few that still exists. The history of many CryptoNote
based currencies also reveals one of the biggest issues of unregulated cryptocur-
rencies and why many ceased to exist. Bytecoin, the predecessor of Monero and
one of the first CryptoNote based currencies, has a very ambiguous history. After
the popularity of Bytecoin greatly increased in a short time, it turned out that the cre-
ators of Bytecoin did not have the best intentions, and the value of Bytecoin dropped
significantly in a short time span, causing many users to lose money [25], [26]. This
again shows, that even though the ideas for some cryptocurrencies are very good,
some form of regulation is desired in this domain.

Verge [12] is the second obfuscation based currency we discuss. Verge offers
three types of transactions, in increasing order of anonymity those are: simple,
stealth, and anon. In this discussion we focus on the last one, since it provides
the highest level of anonymity. The anon transaction of Verge are in many ways
similar to those in Monero. Verge also uses RingCT to preserve sender and value
anonymity, and uses dual-key stealth addresses to provide privacy to the sender.
There is one slight difference, Verge also heavily relies on Tor [27] for its anonymity.
Tor is used to hide the IP-addresses of users interacting with the blockchain.

Of the three currencies we discuss here, Grin [13] is probably the most cryp-
tography based. Grin uses a protocol called Mimblewimble [28]. Mimblewimble
does not rely on stealth addresses or something similar to provide privacy, actually
Mimblewimble does not really require addresses. Mimblewimble uses confidential
transactions (second part of RingCT) to hide the transaction amounts that go into
and out of a transaction. To be more specific, all inputs and outputs are combined
into one Pedersen commitment, i.e. they are bulked together. To hide all the values
this transaction also requires a secret blinding factor. Knowing this blinding factor al-
lows one to spend the outputs of a transaction. Grin uses this blinding factor instead
of using public address keys. The sender and receiver are the only ones involved
in a transaction and are therefore also the only ones that know the blinding factor.
Thus the receiver can simply spend the received funds, because he or she knows
the blinding factor. Because of the lack of addresses the transactions in this system
are completely anonymous.

Beam [29] is another currency based on the Mimblewimble protocol. In many
ways it is similar to Grin, apart from the business model. In contrast to most privacy
coins that are community-backed currencies, Beam is venture-backed. Because of
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this, Beam receives expert advise and investments from (financial) enterprises and
also has more focus on regulation and auditability. This business direction is actually
more interesting from the viewpoint of our use case, and shows that obfuscation
based currencies can also include auditability features in their design.

The three above cryptocurrencies rely on different techniques to provide privacy
and do so rather well. A disadvantage of the first two types of transactions is that
the anonymity set that a sender belongs to is rather small. It would be better if
the sender was hidden in a much larger set, possibly the entire user base. Grin
on the other hand provides a larger anonymity set, however the used cryptographic
techniques would make it hard to incorporate in a permissioned and auditable setting.
To conclude, the techniques used in obfuscation based protocols are promising, but
the delivered anonymity could be improved upon. The more cryptographic solution
seem more promising on this terrain and it seems like the right direction to move
forward to, provided that it can still fit our use case of permissions and auditability.

3.4 Zerocoin and Zerocash

The most well known examples of cryptography based privacy coins are Zerocoin
and Zerocash. Both decentralised payment scheme use zero-knowledge proofs to
hide the transaction graph completely. In other words, the anonymity set of the
sender and receiver of a transaction is literally the entire user base of the currency.
We will first discuss Zerocoin [15] and then it’s ‘successor’ Zerocash [16].

In contrast to the earlier discussed anonymous transaction schemes, Zerocoin
does not rely on signatures or a central authority to ensure transaction integrity.
Zerocoin uses zero-knowledge proofs to proof that a ‘coin’ or ‘note’ is part of the
public valid coin list and has not been spent before. Similarly, to the work of Sander
and Ta-Shma [8], Zerocoin stores this valid coin list as a Merkle tree to improve
computation times. On a high level, the protocol works as follows.

The Zerocoin protocol was originally implemented in the cryptocurrency known
as Zcoin [30]. After this currency was used for a while a group of security researcher
found a security fault in the original protocol, even though the protocol was proven
to be secure and had received extensive peer review [31]. One might expect this
to be the end of Zerocoin, however the community and core team decided to fix
the problems by implementing a new protocol, something that is not seen too often
in cryptocurrencies. The devised their own protocol called sigma to revive Zcoin
as a secure and anonymous digital payment scheme. Later on, Zcoin replaced
this protocol with the Lelantus protocol. The advantage of the new Zcoin is that a
trusted setup is no longer required and that the efficiency with respect to the original
publication is greatly increased.
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The ideas of the original Zerocoin protocol also lead to the publication of the
Zerocash protocol. A transaction in Zerocash has two actors: the sender and the
receiver. Moreover, Zerocash requires a backing currency, such as Euros or bitcoin.
There are two types of transactions in Zerocoin: Mint transactions and Spend trans-
actions. A mint transaction is used by the sender to swap the backing currency to
an anonymous coin. A coin consists of a commitment cm to a unique secret serial
number sn (and randomness r). This mint transaction is announced publicly on the
blockchain and includes the commitment and the withdrawal of backing currency.
This commitment cm is then included into the blockchain.

To spend the newly minted coin, the sender creates a spend transaction. This
spend transaction contains a zero-knowledge proof π that proofs that the sender
knows a number sn and randomness r that together form a commitment that belongs
to the Merkle tree. The sender than publishes a transaction containing this proof
π, serial number sn to prevent double spending, and the public address key of the
receiver. Because π is zero-knowledge this spend transaction cannot be linked to
the mint transaction. After verification of this transaction the receiving address get
the same amount of value in the backing currency deposited in his or her account.
The commitments that Zerocoin uses are Pedersen commitments and the zero-
knowledge proofs are double-discrete logarithm proofs. This results in rather large
proof sizes of over 45 kB and a verification time of over 450 ms. These values are
not very practical in blockchain settings, since every transaction needs to be verified
and is also stored for ever. On the other hand, the proof creation time of less than a
second is very suitable for use in real-life.

Zerocash and its current implementation Zcash [32] improve Zerocoin on several
points. Firstly, zk-SNARKs are used to generate the zero-knowledge proofs. This
leads to big decrease in proof size to approximately 300 bytes. The verification time
is also decreased to just a couple of milliseconds. Unfortunately, the time time to
create a proof has increased to around a minute in the first version of Zerocash.
Fortunately, recent improvements in the Zcash implementation have brought the
proof time back to well under 10 seconds. These practical performance measures
make it very suitable for use in practice.

Next to a performance increase, Zerocash also significantly increases on conve-
nience and anonimity. Anonymous notes or coins need not any longer be directly
interchanged with the backing currency as the output notes of a transaction can now
also be used as inputs in a new transaction. Moreover, the notes have been made
fungible, i.e. the sender of a transaction can get change back and thus pay arbitrary
amounts to another party. This also greatly increases anonimity, as the transaction
amounts are not visible any longer. A final addition to the anonimity of users is the
fact that receiver addresses of spend transactions are no longer visible any longer.
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Addresses are only revealed upon conversion of the backing currency to anonymous
coins or vice versa. For a detailed explanation of the Zerocash protocol we refer
the reader to Section 4.3. To emphasise the popularity of the current Sapling ver-
sion of the Zerocash protocol, we note that other currencies such as PIVX [33] and
Tezos [34] have also implemented this protocol.

We conclude this section with the observation that the cryptography based pri-
vacy coins seem to be very suitable for our use case as they provide a significantly
higher level of privacy than the other options. This especially holds for Zerocash
and the revived version of Zcoin, since both are very practical regarding computation
times and transaction sizes. We favor, Zerocash over Zcoin as the used primitives
in Zcoin do currently not allow for the extensive statements that we most likely re-
quire to make our scheme anonymous ánd auditable. The zk-SNARKS used by
Zerocash do provide us with the flexibility of proving nearly any thinkable statement
These zk-SNARKs can also be used to provide auditability functionality and realise
a permissioned blockchain, without diminishing the privacy of the user.



Chapter 4

Solution sketch

In the previous chapters we discuss existing approaches from literature and describe
useful building blocks and definitions. We also set out a direction for our solution
approach. In the first section of this chapter we refine our direction by defining a
set of requirements that our auditable decentralised anonymous payment scheme
should adhere to. In the subsequent sections of this chapter we give a step-by-step
sketch of our final protocol. These steps are presented as incremental versions to
give a complete insight in the design process and the made choices. A general
overview of our payment scheme is given in Section 4.2.

In Section 4.3 we present the basis of our protocol as derived from the original
Zerocash publication [16]. We then move towards an account-based model in Section
4.4 and include access control in Section 4.5. Conversion of anonymous notes to
and from fiat currency is discussed in Section 4.6. A transaction limit is introduced in
Section 4.7 and is extended with verifiable encryption for auditability in Section 4.8.
Our final section 4.9 explains the incorporation of timelocks into the protocol.

4.1 Requirements

Below, we present a set of requirements that the solution to our problem should
adhere to. In total we define a list of nine requirements with a short (informal) de-
scription, that together represent the goal and research questions as mentioned in
Section 1.2. Formal definitions can be found in Appendix C. Since our solution will
be an adaptation of the Zerocash protocol, we use the requirements of that article
as a basis for our nine requirements. In line with the definition of the decentralised
payment scheme from Zerocash [16] we define the following four basis requirements.

Completeness. A digital payment scheme is complete when any received value
that has not yet been spent can actually be spent or stored in the receiver’s account
balance. Moreover, it requires that any value from the account balance that was not
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yet spent can be used, i.e. transferred to another user.

Ledger indistinguishability. This requirement focuses on the fact that no new
information should be leaked to an adversary from everything that is published on
the distributed ledger. The term ‘no new information’ refers to the fact that no other
information should be leaked from the publicly available values than is required for
the payment scheme to work.

Transaction non-malleability. Transaction non-malleability requires valid transac-
tions to be constructed in such a way that no adversary can adapt a transaction such
that it is either no longer valid, or performs a different transfer than the original sender
intended. To be a bit more precise, no adversary should be able to alter any of the
data included in a valid transaction.

Balance. A digital payment system is said to be in balance, if no user can own or
spend1 more value than what he or she received or converted from fiat currency into
the system.

In addition to the requirements from Zerocash we also add five new requirements to
include our own goals and research questions.

Access control. In a digital transaction scheme with access control, the admin-
istrators of the system should be able to decide who does and who does not get
access to the transaction system. In this case, access describes the possibility to
perform transactions in the system and write something on the distributed ledger or
blockchain. Moreover, it should also be possible to revoke access of certain users in
case this is needed. Finally, the access control also influences the way of reaching
consensus on the current state of the distributed ledger. Namely, the administrators
should have full control over this state, the regular users may use the blockchain,
and validate the correctness thereof (possibly as means to check the administrators)
but does not decide on whether or not a transaction gets added to the ledger.

Conversion to/from fiat currency. This requirement describes the linkage be-
tween the transfer of value in the digital transaction scheme and transfer of value
using fiat currency. In order to link these two types of value, a conversion between
both should be possible in the payment scheme. This conversion might be an actual
conversion of one into the other, alternatively the scheme might also contain certain
notes that represent fiat currency without an actual conversion taking place.2

Spend limit. The spend limit requires that the payment system provides a possibility
to limit the amount of value any user can spend in a certain time frame. To make this
more precise, it means that the the sum of the value of all outgoing transactions in

1Conversion to fiat currency is also considered to be a form of spending.
2We will adopt the first option.
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time frame T , for any user u, may not be higher then a certain predetermined limit L.

Auditability. This requirement is defined in coherence with the spend limit. In our
use case, we consider auditability to be only required for transactions that surpass
the spend limit. These transactions should include the important transaction details
in a special field: transferred value, sender address, receiver address. This field
should be encrypted as to not leak information to other users. Decryption of the field
should only be possible by a select group of actors referred to as judges.

Timelocks. It should be possible for a sender to define a transaction with a timelock.
This timelock should make sure that the receiver can only spend the output value
of the transaction after the set amount of time has passed. In order to prevent side-
channel attacks, it should not be visible to actors other than the sender and receiver
that a timelock is in place.

4.2 Overview

Before we dive into the workings of our new protocol, we sketch a general overview
of our payment scheme. Our payment scheme consists of two type of actors: users
and administrators. There is one central data structure, the blockchain or distributed
ledger.

Banks, regulators, and other (financial) institutions together form the administra-
tors in our scheme. The clients of participating banks are all potential users of the
system. To become an actual user of the system, any client needs to request an
account from their bank. In response, the bank performs KYC on any of their clients
requesting permission to use the payment scheme. When the KYC is completed
satisfactory, a new client gets an ‘account’ in the payment scheme.

With an account on the blockchain, any user can create anonymous transactions
that transfer money from their account to another user’s account. When a user
creates a new transaction he needs to add it to the blockchain. The blockchain
stores all valid transactions that were performed using the system. The validity of a
transactions is checked by the group of administrators. When they ascertain that a
transaction is valid it gets included on the blockchain, otherwise the transaction is
discarded.

At the same time, all users are checking the new transactions on the blockchain
to find any value transferred into their account. When such a transaction is found,
the receiver stores the details. The received details can later be used by the receiver
to create a new transactions, where he or she is the sender. For future reference, we
have schematically depicted this overview in Figure 4.1.
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Figure 4.1: Overview A new client (left-most) requests access to the system. One
of the administrators grants this access, only after having performed
KYC. The other users (clients of banks participating in the system) send
and receive the notes using several transactions. Their transactions
are included on the blockchain, amongst the transactions of all other
users. All transactions are checked for their validity by the group of
administrators. These administrators can be banks, finanicial regulators
or other relevant institutions.
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4.3 Zerocash basis

In this section we sketch the parts of the Zerocash protocol that we will use as a
basis for our further additions and improvements. Below, we present four incremental
versions that step-by-step incorporate the four basis requirements as mentioned in
Section 4.1. These requirements will also be taking into account in the versions that
will be presented in later Sections. The versions that we present below are a slightly
adapted and somewhat trimmed version of the original Zerocash protocol [16] and
its implementation in ZCash [32]. The general concept remains the same. In Section
4.4 this adaptation is combined with some ideas in a publication from Dusk [35] about
privacy in account-based cryptocurrencies, to arrive at a new basis protocol. We in-
troduce the elements that are used in this basis protocol step-by-step, until we arrive
at the complete version. For most of these steps or versions, a schematic depiction
of the most relevant new parts and integration thereof is given. We do assume famil-
iarity with the ideas behind distributed ledger technologies and cryptocurrencies, as
briefly described in Appendix A.1.

Differences with Zerocash. The four versions that we present below are similar
to the Zerocash protocol [16], although we incorporated a fix against the Faerie Gold
Attack [32] and made some other minor alterations to make the protocol work with
one input note instead of two. The fifth version, in Section 4.4, implements the (basic)
idea we took from the Dusk publication on anonymity in account-based cryptocurren-
cies [35]. We adopt this idea, make it concrete, work out the details and combine
it with the ideas from Zerocash to obtain a ‘hybrid’ payment scheme that is based
both in the UTXO model as well as in the account-based model. The versions in
subsequent sections are not based on any existing work that the author knows of.
These new ideas, among others, add access control to the payment scheme and
alter the design in such a way that the scheme can be used as an additional layer on
top of existing (digital) payment schemes for fiat currencies.

Version 1: Variable-value notes with owner anonymity. We start with a highly
simplified version of the protocol, where a user can only own a virtual note of a
variable denomination, say ex for some (x ∗ 102) ∈ N, and spend it without revealing
the users identity. To achieve this, we use commitment schemes and zk-SNARKs.
A commitment scheme Comm takes as input a message m and some randomness
r and outputs cm := Commr(m) which reveals nothing about the input m and for
which it is also hard to construct the same output cm for a different input message m′.
zk-SNARKs will be used to proof knowledge of witnesses to certain non-deterministic
polynomial time (NP) statements.
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Figure 4.2: Version1 User u publishes a transaction tx containing a proof π and
nullifier η. These values are linked to the note note that is included via
cmnote in the Note Merkle tree with root rtnote. The value cmnote is a
commitment to both the value of the note vnote and the unique nullifier η.

A user u can create a new note note of value vnote with a unique nullifier η as
follows: he or she samples some randomness snote and then calculates the note
commitment cmnote := Commnote

snote
(vnote‖η). The nullifier η functions as a serial number

for each note that prevents double spending, i.e. once published, the note is spent
and cannot be spent again. It is important that η is a unique value for each note,
since only one note with nullifier η can be spent. The user then needs to get the note
added to the set of all the notes that circulate in the system. He or she can do this
by proving to one of the admins that the corresponding amount of fiat currency vnote

was paid to a backing pool of fiat currency. How this works exactly will be discussed
later, but for now we will assume that this is possible. The admin thus accepts the
commitment and adds it to the current set of notes in circulation in the system, by
adding the commitment as a leaf to a Merkle tree, that we will call the Note Merkle
tree. This Note Merkle tree is included on the blockchain by means of its Merkle root
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rtnote. This Merkle root gets updated every time when a new leaf is added to the tree.
Figure 4.2 schematically depicts this construction.

To recapitulate, the user u now has constructed a valid note note = (snote, vnote,

η, cmnote) with denomination vnote, to which the commitment cmnote is acknowledged
by inclusion in the Note Merkle Tree. u can spend this note note by, anonymously3,
publishing a transaction tx on the blockchain. This tx should contain the unique
nullifier η to the note note and a zk-SNARK proof π that proves the following state-
ment: “I know snote, vnote and cmnote such that cmnote = Commnote

snote
(vnote‖η) and cmnote

is included in the Note Merkle Tree.” The transaction tx is now valid if and only if both
the proof π can be verified, and the nullifier η has not been published in an earlier
transaction. With tx verified, the publisher of this transaction can now again get the
corresponding amount of fiat currency vnote from the backing pool of money. Again,
how this works in practice will be discussed in later steps.

Version 2: Transfer notes to other users anonymously. Up to now, we have
only discussed how to create a new anonymous note and how to spend this same
note. However, we have not yet seen how one can transfer a note anonymously to
another user. Suppose user ua wants to transfer its note noteold with value vnote to
user ub. ua could send all the details of noteold to ub, however this would give rise to
some problems. Firstly, ua knows all the values that constructed the commitment,
so there is nothing to stop ua from still spending this noteold, before ub can do so.
Secondly, if ub were to be able to spend noteold, he or she would have to publish the
corresponding nullifier η. However, this would break ub’s anonymity, since ua also
knows this nullifier value and can thus easily link the transaction to this same noteold.
To solve this problem, we introduce some additional elements to the protocol.

Firstly, each user needs to generate an address key pair, consisting of a public
address key pkaddr and a secret address key skaddr. The public address key can be
used as the target, or recipient, of a transfer. The accompanying secret address
key can among others be used to prove ownership of a received note. skaddr should
be generated randomly by the user u, who can subsequently construct the public
address key as pkaddr := PRFaddr

skaddr
(0), where PRFaddr

x is an appropriate PRF with
seed x.

Secondly, we need to update the construction of a note. Given a user u with
address key pair (skaddr, pkaddr). u can now construct a note note with value vnote that
looks slightly different from the one in the previous version. u randomly samples
some snote and calculates the note commitment cmnote := Commnote

snote
(pkaddr‖vnote),

which uniquely defines the note note := (snote, vnote, pkaddr, cmnote). We include the
public address key of u in the commitment to ensure that the note belongs to u. The

3We do not discuss this in the thesis, but using Tor [27] would be a way to achieve this.



3 6 C H A P T E R 4 . S O L U T I O N S K E T C H

user can proof ownership of the note by proving knowledge of the secret address key
skaddr that was used to construct the public address key pkaddr. Just as in the previous
version of the protocol, the newly created note can only be used if it is included in
the Note Merkle Tree, which depends on whether the corresponding amount of fiat
currency has been added to the backing pool.
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Figure 4.3: Version 2 User uA transfers note noteold to user uB and thereby effectively
replaces the uA-owned note noteold by the uB-owned note notenew. The
transaction tx includes a proof of validity π and a nullifier η. π ensures
validity of the new note commitment cmnew

note, presence of cmnote
old in the Note

Merkle tree with root rtnote, and validity of η. η is derived from the unique
position of the note in the Merkle tree posnote and the sender’s secret
address key skaddr. Note commitments cmnote are now commitments to
the note value vnote and the public address key pkaddr of the note owner.

Lastly, the nullifier η will also have to be constructed in a different way. To do
this, we introduce another pseudorandom function with seed x: PRFηx. This PRF is
required to be collision-resistant to ensure uniqueness of the value of η for different
notes. But how do went prevent double spending with this function, and construct a
unique nullifier to a spent note? The nullifier η can be determined uniquely for any
note by defining it as η := PRFηskaddr

(posnote), where posnote is the position of the note
in the Note Merkle tree.

Having defined all required building blocks, we can now go about transferring an
existing note noteold := (sold

note, vnote, pkaaddr, cmold
note) from user ua to another user ub, with
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respective key pairs (skaaddr, pkaaddr) and (skbaddr, pkbaddr). To create a correct transaction,
ua firstly determines the position posnote of cmold

note in the Note Merkle Tree. Then, ua
calculates the nullifier to this note as η := PRFηskaaddr

(posnote). Subsequently, ua com-
putes a commitment to the new note with receiver ub as cmnew

note := Commnote
snew

note
(pkbaddr‖

vnote), where snew
note is a randomly sampled value. Lastly, ua constructs a zk-SNARK

proof π for the following statement:

“I know sold
note, vnote, pkaaddr, skaaddr, cmold

note, posnote, pkbaddr, snew
note such that the following

holds:

• The public address key of the sender matches the sender’s secret address key:
pkaddr = PRFaddr

skaddr
(0);

• Both commitments are constructed correctly: cmold
note = Commsold

note
(pkaaddr‖vnote)

and cmnew
note = Commnote

snew
note

(pkbaddr‖vnote);

• The commitment of the old note cmold
note appears at position posnote in the Note

Merkle tree;

• The nullifier to the old note is constructed correctly: η = PRFηskaddr
(posnote).”

Using the above steps, value is transferred from one user to another by creating a
new note with the same value. The nullifier to the old note should also be published to
ensure that the old note becomes unusable. When ua has performed all calculations,
he or she publishes the transaction tx := (cmnew

note, η, π) to the blockchain. The admin
can validate the proof of the transaction and if valid, accept the transaction and add
cmnew

note to the Note Merkle Tree, which finalises the transfer of value from ua to ub.
In this construction ua cannot use the newly created note, since ua does not

know the secret address key of ub, which is required to construct the nullifier and
zero-knowledge proof. Moreover, ua cannot learn when ub spends the newly created
note, since the nullifier of this new note also depends on the secret address key of
ub. Other users that witness tx know even less about the transaction details, hence
they cannot even infer who the sender and receiver are. Namely, the published com-
mitment, nullifier and proof reveal nothing about the address keys or the input note.
So we have achieved anonymous transfer of value with the steps as described here
and depicted in Figure 4.3.

Version 3: Transferring note secrets. There is still an issue with the previous
version of the protocol, namely the receiver of the output note ub should be able to
spend the received note. To do this, ub can use the same protocol as described
above. However, ub would need some of the secret values that ua generated to be
able to use the new note commitment. Therefore, we need to enable ua with a way
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of attaching an encrypted version of these secrets to the transaction, such that they
can only be read by ub, and ub’s anonymity is still maintained.

To enable this additional feature in the protocol, each user should construct an
asymmetric encryption key pair (skenc, pkenc) for a key-private encryption scheme
(IK-CCA)4 to accompany their address key pair. These keys can be derived from the
secret address key using a key derivation function (KDF). Similarly to the address
key pair, the public encryption key pkenc should be publicly available, and the secret
encryption key skenc not.
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Figure 4.4: Version 3 A transaction from uA to uB that creates the ouput note notenew

now also contains a field datanew
note. The field datanew

note is an encryption of
the note value vnew

new and commitment randomness snew
note under the public

encryption key of uB: pkbenc. The asymmetric encryption key pair (pkenc,

skenc) is derived from skaddr using a KDF.

As an addition to the steps that ua takes in the previous version of the protocol, ua
should also compute the ciphertext datanew

note := Encpkbenc
(snew

note‖vnote), where Encx(m) is
the function that encrypts the message m under the public key x. ua adds this cipher-
text to the transaction tx, as shown in Figure 4.4. ub can now find the transaction
that was sent to him or her by trying to decrypt the field datanew

note of every transaction
that is published on the blockchain. If the decryption is successful, ub was indeed the
receiver of the transaction and also knows the required secrets to be able to spend
the newly received note.

This addition of a ciphertext to the publicly visible transaction tx does not infringe
on the provided anonymity, since the ciphertext reveals nothing about the used public
encryption key, nor does it expose the contents of the original plaintext message.

4See Section 2.4 for a definition.
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Version 4: Transaction integrity. The above version of the protocol works as
expected when everyone behaves honestly and does not try to alter the transaction
tx that is published by ua. However, we cannot be certain of all the participants
behaving honestly, therefore we need a way to ensure transaction integrity.
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Figure 4.5: Version 4 A transaction from uA is now signed the secret key sksig of a
randomly sampled signature key pair. This signature σ is also included
in the transaction tx. The related public key pksig is used to tie the
key pair to this message. From pksig we generate a MAC κ through the
intermediate value k. All three values are also included in the transaction
tx and the computation of κ from k and skaddr is verified in the proof π.

To achieve integrity, another cryptographic primitive is needed: strong existential
unforgeability against one-time chosen message attack (SUF-1CMA) scheme. Dur-
ing the construction of a transaction, user ua randomly samples an appropriate asym-
metric signature key pair (pksig, sksig) for this scheme and computes k := CRH(pksig)

and κ := PRFκskaaddr
(k). The intermediate value k is used to ensure that the input

to the PRF has the right size and format. The value of κ functions as a message
authentication code (MAC). κ is needed to tie the signature key pair to this partic-
ular message, since only the sender knows its own secret address key and could
have constructed κ correctly. To show that κ has indeed been constructed correctly,
this computation should also be included in the zk-SNARK proof π as given in the
previous version.
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Once ua has performed all the above steps, see also Figure 4.5, he or she can
sign the public parts of the transaction tx := (cmnew

note, η, π, datanew
note, κ, k) using the

secret signature key sksig, thus obtaining signature σ. Finally, ua publishes the public
signature key pksig, the public transaction values tx and its signature σ.

4.4 Towards an account-based model

In this section we implement the ideas sketched in [35] to move our protocol towards
the account-based model. This change allows us to store an account balance for
every user on the blockchain. Next to this, it plays an essential role in access control
and defining a spend limit later on. What we present here is our take on the ideas
as were presented in [35] mixed with the last version of the previous section. Below
we present one version that incorporates our take on this at once. Many of the used
techniques and data structures should feel familiar to previous versions.

Version 5: Account balance and change. The protocol as described in the pre-
vious section seems to provide a secure way of transferring value anonymously
from one user to another. However, the attentive reader might have noticed that the
transfer of the value in a note does not allow for altering this value, i.e. there is no
change. Moreover, in the case of large amounts of transfer one has to send a lot of
transactions from one user to another, which is neither convenient nor does it provide
a high level of anonymity, i.e. transactions that take place at nearly the same time
are probably part of one batch.

In order to solve these problems, we introduce another data structure: private
memory cells for the storage of an account balance. These memory cells can be
stored in another Merkle tree, which will be called the Memory Merkle tree. Anal-
ogously to the Note Merkle tree it will consist of commitments to memory cells,
which contain the user’s public address key and current account balance vmem:
cmmem := Commmem

smem
(pkaddr‖vmem), where smem is a randomly sampled commitment

trapdoor.
Every time a user makes a transaction, he or she should also update his or her

own memory cell in order to process the change in account balance. This change
in account balance can be positive, negative, or zero, and is used to balance the
difference between the value of the input note and that of the output note. To prevent
linkability of transactions, these updates consist of publishing a new commitment to
the updated account balance and same public address key and publishing a nullifier
to the old memory cell such that it becomes invalidated, i.e. it cannot be used
anymore. We will refer to a memory cell with mem and to the memory nullifier with µ.
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This addition gives rise to several additional and altered steps in the protocol.
Where an old transaction had a single input note and a single output note, a new
transaction has two inputs and two outputs. These inputs are an old, unused note
and the latest memory cell. The outputs are a new note and a new, updated memory
cell. Next to the unspent input note noteold := (sold

note, v
old
note, pkaddr, cmold

note), the user
also has the latest version of its memory cell memold := (sold

mem, v
mem
old , pkaddr, cmold

mem)

as input to a transaction. For the construction of the new note everything stays the
same except for the fact that the value of this new note vnew

note can now be any positive
value, as long as the account balance does not become negative. This updated
account balance is calculated as vnew

mem := vold
note + vold

mem − vnew
note. The commitment to

the new memory cell is then computed as cmnew
mem := Commmem

snew
mem

(pkaddr‖vnew
mem), where

snew
mem is a new randomly sampled trapdoor and pkaddr is the sender’s public address

key. Obviously, the old memory cell should also be invalidated, hence we need to
calculate and publish the nullifier to this. This nullifier µ is computed analogously to
the nullifier of the old note as µ := PRFµskaddr

(posmem), where posmem is the position of
the commitment to the old memory cell in the Memory Merkle tree. A sketch of this
updated construction is given in Figure 4.6.

Finally, the user also needs to proof some more statements in the zk-SNARK
proof π. These additional statements are:

“ I also know posmem, vnew
note, vmem

old , sold
mem, cmold

mem, snew
mem such that the following

additional statements hold:

• The account balance is updated properly: vnew
mem = vold

note + vold
mem − vnew

note;

• The updated account balance is non-negative vnew
mem ≥ 0;

• Both memory commitments are constructed correctly: cmold
mem = Commmem

sold
mem

(pkaddr‖
vold

mem) and cmnew
mem = Commmem

snew
mem

(pkaddr‖vnew
mem);

• The commitment of the old memory cell cmold
mem appears at position posmem in

the Memory Merkle tree;

• The nullifier to the old note is constructed correctly: µ = PRFµskaddr
(posmem).”

Additionally to what is already included in the transaction tx in previous versions,
we now also publish (and sign) µ, cmnew

mem and the updated proof π. It should be noted
that in the case that a user does not have a previous memory cell, he or she can
define posmem := −1 and vold

mem := 0. These additional steps should also be included
in the zk-SNARK proof.
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Figure 4.6: Version 5 A transaction tx now also has an input memory cell memold

and an output memory cell memnew. The commitment to a memory cell
cmmem is computed from the owner’s public address key pkaddr and the
currenct account balance vmem. These commitments are contained in
the newly introduced Memory Merkle tree, and the position in this tree
posmem is used to compute the memory nullifier µ. Finally, this version
allows the output note to take an arbitrary value as long as the account
balance does not become negative and balance is maintained: vnew

mem :=

vold
note+vold

mem−vnew
note. The computations of these new values are all checked

in the zero-knowledge proof π and the public values are visible on the
blockchain.
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Remembering the commitment trapdoor that is used for the new memory commit-
ment is not very practical. Fortunately, there exists a rather simple solution to this.
The sender can include the encrypted version of the commitment trapdoor in the
transaction, by encrypting it under the sender’s own public encryption key. To make
this precise, the field datanew

mem := Encpkenc
(snew

mem) should be added to tx. This ensures
that the user can always find and decrypt this field in the case that commitment
trapdoor to the latest memory cell is forgotten.

4.5 Access control

Two new versions are presented in this section. Together, these versions implement
the access control requirement. We will make use of the elements that were pre-
sented in previous sections to ensure that only clients of the banks that participate
in the system can make transactions. In general terms this means that any potential
user needs to be approved by one of the admin(istrator)s of the payment system. The
request for an ‘account’ on the blockchain is also the point were the administrator
can perform KYC or customer due diligence (CDD) before granting access. This
process is also roughly depicted in the overview in Figure 4.1.

In the first version we will describe the initial process of getting an ‘account’ on
the blockchain. The second version focuses on linking this account to a transaction,
such that it can be verified by any user and admin whether or not the creator of a
transaction has passed the access control, i.e. holds an ‘account’.

Version 6: Access control. The protocol as presented in earlier sections has not
yet touched upon the topic of access control. A specific set of actors, i.e. the banks
that implement this protocol and control the underlying fiat currency payment system,
function as administrators in the protocol. These administrators should be able to
have control over who can use this payment scheme and should also be able to
perform CDD in case a new user wants to use the system. In this new version, we
will add the necessary improvements to achieve this. We will assume for now that the
administrators function as one actor, however the protocol as presented can be easily
extended to a group of administrators that communicate the relevant information.

In order to let the admin function as a gatekeeper to the digital transaction system,
we introduce one more Merkle tree: the Account Merkle Tree – sometimes also
called Credential Merkle tree. This Account Merkle tree stores commitments to all the
accounts that are allowed to perform transactions in the system. Specifically, it stores
commitments of the form cmcred := Commcred

scred
(pkaddr‖skaddr) for every accepted user

u, where (pkaddr, skaddr) is u’s address key pair, or credentials. By giving the admin
control over which credentials are allowed in the Account Merkle tree, the admin
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can also control which users can perform transactions and which not. Additionally,
the admin is required to construct an asymmetric key pair for a strong existential
unforgeability against chosen message attack (SUF-CMA) signature scheme to be
able to publish and sign messages as the admin.

Implementation-wise, this means that whenever a new user u wants to join the
system, u should ask an admin to get an entry in the Account Merkle Tree. To
do this, u first constructs his or her address key pair (pkaddr, skaddr) and encryption
key pair (pkenc, skenc). Subsequently, u randomly samples a commitment trapdoor
scred and computes the credential commitment cmcred := Commcred

scred
(pkaddr‖skaddr). u

also constructs a zk-SNARK proof π for the following statement: “I know scred and
skaddr such that pkaddr and cmcred are constructed correctly.”. The user u then sends
his or her public address key, commitment, and the proof π to the admin. To give
some more insight, this step is also depicted in Figure 4.7. On reception of this
message, the admin verifies the proof, checks that u does not have an account yet,
and performs the required CDD. When everything is correct, the admin adds the
commitment cmcred to the Account Merkle tree. In addition, the admin publishes a
message on the blockchain, in which the addition of the commitment is stated. The
message is signed under the admin’s secret signature key, that can be verified by
any user using the admin’s public key.
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Figure 4.7: Version 6 User u requests access to the payment scheme by sending a
commitment to his credentials to the admin. The commitments is only to
u’s address key pair. Along with this commitment, u also sends a proof of
correct computation of this computation and of the correct construction
of pkaddr from skaddr.
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The admin can revoke an account, if this is needed, by publishing a similar mes-
sage on the blockchain. The admin can in such a case simply remove the appropriate
credential commitment cmcred from the Account Merkle Tree and publish a message,
signed by the admin, that the credentials belonging to that commitment have been
revoked.

Version 7: Proof of access. The access control feature as described above does
not yet provide linkage with performing a transaction as defined before. This implies
that it is currently still possible to publish a transaction without an ’account’ in the
Account Merkle tree. In this version of the protocol, the connection between both
parts is established which leads us to an anonymous digital payment protocol with
access control.

Given a user u, with credentials (pkaddr, skaddr) and credential commitment cmcred

present in the Account Merkle tree, who wants to perform a transaction to another
user. The steps as described in earlier versions are all still valid, the only thing that
really changes in this version is the zk-SNARK proof π. Some additional statements
need to be proved there. These additional statements are: “I know pkaddr, skaddr,
cmcred, and scred, such that cmcred is constructed correctly and is contained in the
Account Merkle tree.” Since these credential values are also used in other parts
of the transaction, i.e. constructing the nullifier, using the old note, et cetera, all
steps are tied together by means of the proof π. This connection implies that a user
can only perform a valid transaction, i.e. construct a true proof π, when the user’s
credentials are acknowledged in the Account Merkle tree.

Because of the inclusion of the public address key pkaddr in the credential com-
mitment, one statement of the earlier version of this protocol can be removed from
the proof. This concerns the statement: “I know pkaddr, skaddr such that pkaddr =

PRFaddr
skaddr

(0).” This statement has become redundant since it is already included in
the zk-SNARK proof required for getting one’s credential acknowledged. We see
here that including the user’s public address key in the credential commitment and
validating the construction before acceptance gives a slight improvement to the per-
formance over not doing this.

4.6 Conversion to and from fiat currency

The Conversion to/from fiat currency requirement is implemented in this section.
The backing pool of fiat currency was mentioned in several of the versions in earlier
sections. Up to now, we have not discussed how to link fiat currency to this backing
pool. Below, we present two new versions that describe how to convert fiat currency
into anonymous notes and the other way around.
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Version 8: Fiat currency to anonymous notes. In this version we describe how
one should actually create a new anonymous note. In earlier version, we assumed
that it was possible to pay some amount of fiat currency to a backing pool and then
be allowed to construct an anonymous note with the corresponding value. In this
version of the protocol, the steps required to create an new anonymous note are set
out.

If a user u wants to have more value that can be transferred anonymously, u
should obtain a new note with a certain value vnew

note. Before we get started on how
to do this, it is important to remark that there are two ways to spend such a new
note: the note can be used as an input note either when u wants to transfer money
to another user, or in a transaction with an output note of value 0 which adds the full
value of the input note to u’s account balance.

To obtain a new note with value vnew
note, the user u pays the amount vnew

note in fiat
currency to the admin. Subsequently, the admin constructs a new note with value
vnew

note destined for the public address key pkaddr of the user u. Explicitly, the admin com-
putes cmnew

note := Commnote
snew

note
(pkaddr‖vnew

note), with snew
note a randomly sampled commitment

trapdoor. The admin also computes the encrypted commitment secrets, analogously
to a user-to-user transfer, as datanew

note := Encpkenc
(snew

note‖vnew
note), where pkenc is the public

encryption key of u.
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Figure 4.8: Version 8 User u sends fiat currency (green dollar bill) of value vnew
note to

the admin. In return the admin publishes a transaction tx that refers to
a newly created note with commitment cmnew

note := Commnote
snew

note
(pkaddr‖vnew

note)

and value vnew
note.
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In addition to these computations, the admin constructs a zk-SNARK proof π
for the following statement: “I know snew

note, vnew
note, pkaddr such that cmnew

note is calculated
correctly.”. As a last step, the admin publishes the new commitment, the proof π and
the encrypted data datanew

note, all signed under the admin’s secret signature key to the
blockchain. The new commitment then also gets added to the Note Merkle tree. The
user u that sees this publication, can decrypt the field datanew

note to ascertain that the
transaction was sent to u and use this note as input for a future transaction. Figure
4.8 gives a schematic representation of these steps.

Version 9: Anonymous notes to fiat currency. The only building block that is
still missing in the basis protocol, is that of converting one’s anonymous notes back
to fiat currency. The required techniques and computations to do this are already
present in the protocol, in this step we will explain how to combine these parts to
achieve conversion from anonymous notes to fiat currency.

Given a user u that wants to convert a received note of value vold
note to fiat currency.5

u should perform a normal transaction to the public address key of the admin, with
one simple addition. The admin should know which user sent the note. This is
achieved by adding u’s public address key pkaddr to the field with encrypted secrets
as dataold

note := Encpkold
enc

(sold
note‖vold

note‖info), where info contains pkaddr and possibly some
extra information.

The rest of the conversion is now up to the admin who finds this transaction on the
blockchain. After parsing the received note, the admin has a couple of computations
to make. The admin calculates the nullifier η to the received note in the usual way,
and then computes a zero-knowledge proof π for the following statement:

“I know skaddr, cmold
note, vold

note , posnote, sold
note such that the following statements hold:

• cmold
note is present in the Note Merkle Tree at posnote;

• The note nullifier is calculated correctly: η = PRFηskaddr
(posnote);

• The commitment is calculated correctly: cmold
note = Commnote

sold
note

(pkaddr‖vold
note);

• The secret address key has been used to construct the public address key:
pkaddr = PRFaddr

skaddr
(0).

As shown in Figure 4.9, the admin then publishes the nullifier η, zero-knowledge
proof π and public values in one message signed under the admin’s public signature
key. Once this message is accepted on the blockchain, the admin transfers the note
value vold

note in fiat currency to the user corresponding to the public address key pkaddr.
Remember that u enclosed pkaddr in the datanew

note field. The admin can identify the
5The explained steps also work for converting (part of) the account balance.
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user that belongs to this public address key, since the admin also received the same
address key for the user on requesting an account in the payment scheme.
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Figure 4.9: Version 9 User u sends a note noteold with commitment cmnew
t extnote

to the admin in the top-left transaction tx. The admin subsequently
publishes a new convert transaction signed under his key, that publishes
the nullifier η to noteold and a proof π that validates the transaction. The
admin also deposits fiat currency with value vold

note in u’s regular bank
account to complete the conversion.

4.7 Transaction limit

In this section we present the incorporation of the spend limit requirement. The one
new version presented below is dedicated to adjusting the protocol such that this
requirement is satisfied as well. Remember that the goal of the requirement is to limit
the amount of value that any user can transfer anonymously during a predetermined
time span.

To explain the required additions to gain this additional feature, we will build upon
the latest version of the solution concept as presented in the previous section. Up
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to now, we have seen four types of transaction: (1) A regular transfer transaction;
(2) An account creation transaction; (3) A transaction that converts fiat currency to
notes; and (4) A transaction that converts anonymous notes to fiat currency. Below,
we explain the additional steps that a user has to take when creating a new regular
transfer transaction. In addition, we discuss the few steps of the algorithm that need
to be adapted to limit the amount a user can spend in a predefined time frame. Since
a user can only transfer notes anonymously by means of a regular transaction, the
steps for conversion and account creation transactions need not be altered.

Version 10: Spend limit. To limit the amount of value a user can spend anony-
mously in a certain time frame, we do not need to add new building blocks. A few
adaptations to existing commitments and algorithm steps will do. The only algorithm
that really needs adaptations is that of a regular transfer transaction, since this is the
type of transaction we actually want to limit.

Say we want to limit the amount that any user can spend during any time span of
size T to L. To do this, the user u should proof, in every transaction where u is the
sender, that the value of u’s new transaction vnote

new plus the amount of all transactions
u spent between now (tnow) and T time ago (tnow − T ) is not more than L. In order to
proof this, the user needs to add some more information to his or her memory cell
and also make use of another old memory cell for construction of the zero-knowledge
proof π. We will denote this second memory cell as the ‘ceiling’ (or ‘ceil’) memory
cell.

Each memory cell gets the following additional fields: c for the total amount of
value transferred anonymously up to and including the transaction that caused this
memory cell update and t for the time this memory cell got updated. To implement
this efficiently, we add c to the commitment of the memory cell, whereas t is added
to the Merkle Tree together with the commitment. The commitment of a memory cell
is now constructed as cmmem = Commmem

smem
(pkaddr‖vmem‖c). When a commitment is

added to the memory tree, it gets added together with the time the transaction was
accepted on the blockchain as a leaf to the Memory Merkle tree, we call this time
t. Explicitly, we compute the Merkle leaf as CRHmem(cmmem‖t) using a new hash
function CRHmem. This is instead of adding just the commitment as a leaf to the
Memory Merkle tree as was the case in previous versions. The new Memory Merkle
tree and memory cell are depicted in Figure 4.10.

When a user u wants to send a new note with value vnew
note at time tnew, u needs to

have two memory cells: the latest memory cell memold = (sold
mem, v

old
mem, pkaddr, cmold

mem,

cold, told) and a memory cell memceil = (sceil
mem, v

ceil
mem, pkaddr, cmceil

mem, c
ceil, tceil), with tceil <

tnew − T . When the limit is defined as L, u needs to ensure that cold − cceil + vnew
note ≤ L.

u also has to proof this in the zero-knowledge proof π, but we first discuss how u
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needs to compute the commitment to the updated memory cell.
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Figure 4.10: Version 10 The commitment cmmem to memory cell is now also a com-
mitment to the value c: the total amount amount of value transferred
up to and including the transaction including this memory cell. Next to
this a leaf of the Memory Merkle tree is now the hash of the time t and
commitment cmmem instead of just cmmem. t is the time that mem got
added to the Memory Merkle tree.

Before the commitment is calculated, u needs to compute cnew := cold + vnew
note. u

then computes the commitment to the new memory cell in the same way as before,
but includes the additional field c: cmnew

mem := Commmem
snew

mem
(pkaddr‖vnew

mem‖cnew). Finally, u
can construct the zk-SNARK proof π, where most statements are the same as before,
apart from the (commitments to and membership proofs of) memory cells that have
been updated to include the newly defined values: c and t. Specifically, the following
additional statements are included in the proof π:

“I also know cmceil
mem, tceil, cold, cceil, vceil

mem, cmceil
mem, sceil

mem, cnew such that the following
holds:
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• The commitment to the ceiling memory cell is constructed correctly: cmceil
mem :=

Commmem
sceil

mem
(pkaddr‖vceil

mem‖cceil);

• The commitment of the ceiling memory cell (cmceil
mem, t

ceil) is included in the
Memory Merkle tree;

• The amount of value spent is not above the limit: cold − cceil + vnew
note ≤ L;

• The ceiling memory cell is old enough: tceil < tnew − T ;

• Correct calculation of new total outgoing value: cnew = cold + vnew
note.”

It should be noted that u should define tnew as the next block time, i.e. the time a next
block in which this transaction will be included is published.6

4.8 Auditability

In this section we explain how we include the auditability requirement. We satisfy
the requirement by the inclusion of the verifiable encryption scheme SAVER in our
existing protocol, building upon all previous version. For a detailed explanation of
SAVER we refer the reader to Section 2.3. The addition of SAVER needs to be
discussed along two lines, the adaptation to the transactions and the key generation
and sharing amongst judges. We thus introduce two new versions of the protocol.
The first new version looks into the topic of enclosing sender identity such that one
trusted authority can, if necessary, learn this identity. The second version will focus
on replacing this single trusted authority with a group of N judges.

Version 11: Enclosing encrypted transaction details. When a user u wants to
send a transaction tx that does not adhere to the spend limit, he should be forced
to include the transaction details of tx in such a way that a trusted authority can
view these details in case of doubts about u’s intentions. Clearly, u does not want to
reveal these details to any other parties involved in the transaction scheme, hence
he wants to hide the enclosed details in such a way that only the trusted authority
can view them. We propose, that u encrypts the transaction details using SAVER
and the public key pksvr of the trusted authority.

Specifically, this means that during the setup of the payment scheme the trusted
authority should generate a SAVER key triplet (pksvr, vksvr, sksvr), using the public
parameters of the zk-SNARK scheme. The public key pksvr and verification key vksvr

should be made publicly available. The secret SAVER key sksvr should be kept secret
6An implementation of this scheme could also define the time a block is released as the block

number, since there is a one-on-one relation between the two.
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at all times. Since the spend limit only influences the regular transfer transactions,
we only need to adapt this type of transactions. The conversion and account creation
transaction remain unaltered.

When u surpasses the spend limit on a transaction tx, he should define some
additional values that are copies of the details that are relevant to tx. In specific, u
defines fields for: (1) his or her (sender) public key pksndr := pkaddr; (2) the receiver’s
public key pkrcvr := pknew

addr; and (3) the value that is transferred vxfer := vnew
note. If u does

not surpass the spend limit, he should define these values in such a way that they
decrypt to rubbish. However, the zk-SNARK proof should still be verifiable, and the
trusted authority should be able to distinguish a decryption of rubbish from one of
valid contents. Therefore, u should define pksndr := 0, pkrcvr := 0, and vxfer := 0, if the
spend limit is not surpassed in tx.7

We also need to ensure that a transaction with valid enclosed details does not
count towards the spend limit. Therefore, the user u should set cnew := cold, instead
of cold + vnew

note, when u’s encrypted details are added to the transaction.
The zk-SNARK proof π should again be updated to include the new conditional

statements. Specifically, the arithmetic circuit should include the following addi-
tional/updated statements:

“In addition to the previous statements EITHER the first statement:

• The encrypted values are null strings: pksndr := 0, pkrcvr := 0, and vxfer := 0;

OR the second set of statements:

• The encrypted values are correct: pksndr := pkaddr, pkrcvr := pknew
addr, and vxfer :=

vnew
note;

• updated: Spend limit is removed:
(((

((((
(((

((hhhhhhhhhhhh
cold − cceil + vnew

note ≤ L;

• updated: Total outgoing value remains unchanged: cnew = cold
���

�XXXX+vnew
note;

hold.”

In the list above, the updated statements (with respect to the previous version) are
denoted with ‘updated’. The new inputs pksndr, pkrcvr, and vxfer are all public inputs to
the arithmetic circuit, they will however not be included as plaintext in the transaction
message. Instead they are included as a ciphertext after being encrypted using the
SAVER encryption method Encsvr. This method not only returns a ciphertext ct but
also the updated zk-SNARK proof π8. From now on, we denote the ciphertext as
datatx := ct. This field also gets added to tx, which is then signed to ensure integrity.

7These values are actually zero-strings with the same length as the value they replace.
8The proof π is altered in such a way that it works in the context of SAVER.
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In all previous versions of the protocol the verifier of a transaction, would simply
verify the correctness of the zero-knowledge proof π using Verifyzkp. However, the
structure of π is slightly altered now. Moreover, the verifier should also check the
validity of the encrypted datatx field. Therefore he should execute VerifyEncsvr, with
the ciphertext datatx, proof π, public transaction values, and public key pksvr as input.
If this algorithms accepts both the proof and the ciphertext, the transaction tx can be
added to the blockchain.

When this is requested, the trusted authority can decrypt the contents of the
datatx field of a questionable transaction tx on the blockchain. This decryption is
performed using the authority’s secret key sksvr and verification key vksvr. These
keys are used as input for the decryption algorithm Decsvr, which returns the sender
and receiver public key, as well as the transferred value in readable form. Next
to this, the algorithm constructs a decryption proof ν which will come in handy in
case of transferring the results to the relevant legal authority if this is required. The
legal authority wants to be certain that the data it gets from the trusted authority
actually corresponds to the transaction at hand. The trusted authority cannot give
its secret key sksvr to the legal authority, as this key opens the ciphertexts of all
transactions on the blockchain. Therefore, the trusted authority hands the plaintext
message and the decryption proof ν to the legal authority. The legal authority can
use VerifyDecsvr on the provided values and the requested ciphertext to verify that
the decryption process was indeed performed honestly, without learning the trusted
authority’s secret decryption key.

We note that a user can also choose to enclose transaction details for the trusted
authority in a certain transaction, when the transaction would not surpass the limit.
This would also entail that the transferred value does not count towards the limit. A
user might want to do this for a transaction that is relatively large (when compared
to the spend limit), and a lower level of anonymity is acceptable.

Version 12: Key sharing over N judges. In this version we purely discuss replac-
ing the single trusted authority by a group of N judges. No changes to the algorithms
or transactions are made.

Replacing the single trusted authority by a group of N judges, requires us to im-
plement a protocol with which the judges can construct a SAVER key triplet together,
with the special property that the secret decryption key is divided amongst the N

judges. In other words, we need to find a way to execute KeyGensvr with N parties in
such a way that only the N judges together can recover any information on encrypted
ciphertexts. This means that any random values that are used to create the public
and verification keys cannot be leaked to one another. We will assume that all judges
are honest-but-curious in that they will honestly follow the steps of protocol, but at
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the same time try to find out as much information as they possibly can.

To begin, each judge 1 ≤ j ≤ N should generate its own shares (additive modulo
p) {sji}ni=1, {z

j
i }ni=1, {t

j
i}ni=0, ρ

j ∈R Z∗p of the key randomness, i.e. {si}ni=1 ≡ {
∑

j s
j
i}ni=1

mod p, etcetera. Given the common reference string, including g, h, gδ, gγ, and g−γ,
each judge j computes the values({

gδs
j
i

}n
i=1

,
{
g
tji
i

}n
i=1

,
{
ht

j
i

}n
i=1

, g−γ
∑n
i=1 s

j
i

)
.

The judges then share all these values with one another, and individually compute({
gδsi
}n
i=1

,
{
gtii
}n
i=1

,
{
hti
}n
i=1

, g−γ(1+
∑n
i=1 si)

)
by calculating the inner product of all vectors, and multiplying the last term with g−γ.

Using the values
{
gδsi
}n
i=1

and gδ each judge calculates and shares with the
other judges the value gδt

j
0
∏n

i=1 g
δsit

j
i . Each judge can combine all these values to

gδt0
∏n

i=1 g
δsiti by a simple multiplication. Together with the previous vector of values

the judges have now all calculated the public key pksvr.

Subsequently, each judge j generates random values {rji } ∈R Zp that will be
used as a blinding factor for some intermediate values. Each judge j then computes
and shares the values

(
hρ

j
,
{
hs

j
i r
j
i

}n
i=1

)
. Given these values every judge j is able

to compute hρ, and from this also the values
{
hρz

j
i

}n
i=1

. Moreover, j can compute{{
hs

j′
i r

j′
i z

j
i

}n
i=1

}N
j′=1

from
{
hs

j
i r
j
i

}n
i=1

. Each judge then shares these newly computed

values. Finally, these new shares can be combined to compute {hρzi}.

Afterwards, each judge j can unmask all the shares of
{{

hs
j′
i r

j′
i z

j
i

}n
i=1

}N
j′=1

for

which j′ = j, and share the resulting unmasked values
{{

hs
j′
i z

j
i

}n
i=1

}N
j′=1

. As a last

step each judge can combine these shares to obtain {hsizi}ni=1. Note that the judges
will not try to construct the secret key ρ from their individual shares ρj, instead they
require a separate decryption procedure to decrypt a ciphertext without revealing
their individual shares.

The judges can easily decrypt the ciphertext ct = (c0, . . . , cn, ψ), using the public
key pksvr, the verification key vksvr, and their respective shares ρj of the secret key.
Using this, every judge computes e(c0, Vi)

ρj and shares this value with the other
judges. Afterwards, all the judges can multiply these values to obtain e(c0, Vi)

ρ and
compute the messages (m1, . . . ,mn) and decryption proof ν in the regular way as is
described in Decsvr.

The rest of the protocol remains unaltered and works just in the way as presented
in all previous versions.
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4.9 Timelocks

The only requirement that is still to be included, is the timelock requirement. In this
section we show how to add this feature to the current protocol. The timelock feature
allows the sender of a note to prevent the receiver to spend that note for a certain
amount of time. To preserve sender and receiver anonimity, presence of a timelock
should not be visible to any other participant in the transaction system. We ensure
this, by applying techniques similar to that in the transaction limit as sketched in
Section 4.7.

Version 13: Timelock on an output note. Suppose that the sender of a trans-
action with transaction time tnew, wants to lock the output note for time tδ. In other
words, the sender creates a transaction at time tnew with output note notenew and
makes the note only spendable at time tnew + tδ or later.

We can achieve this by slightly adapting the Note Merkle tree. Namely, we can
alter the leaf of a Note Merkle tree to have the value of the hash of the transaction
time together with the commitment to the new note cmnew

note. We call this hash function
CRHmem and define our hash tree analogously to the one presented in Figure 4.10.

The sender should also add the value tδ to both the note commitment cmnew
note and

the encrypted note data datanote. Thus each note commitment is now constructed
as cmnote := Commnote

snote
(pkaddr‖vnote‖tδ). Similarly, the encrypted note data is now

computed as datanote := Encpkenc
(snote‖vnote‖tδ‖info).

When tδ has passed and the receiver of notenew wants to spend this note in a new
transaction, he or she also needs to prove that the note is allowed to be spent. For
this we add an additional statement to the zk-SNARK proof π of a transaction: “I also
know tδ such that told

note + tδ ≤ tnew. In this statement told
note is the time that notenew got

added to the Note Merkle tree and tnew is the transaction time of the new transaction.
Next to this additional statement, we also update the zk-SNARK statements for the
note commitments to the new computation.

Together, these steps allow a sender to lock an output note for a certain amount
of time. In the case that the sender of a transaction does not want to lock the output
note for a certain amount of time, he or she simply sets tδ := 0. Furthermore, we
force users and administrators to set tδ := 0 on creating a note as input for one
of the conversion transactions. This is achieved by setting this value for tδ in the
computation of the note commitment in the zk-SNARK proofs for both conversions.
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Chapter 5

Solution definition

In this chapter we formally define the solution as sketched in the previous chap-
ter. We will first present and explain all the data structures in our scheme. In the
subsequent section we will present the four arithmetic circuits that will be used to
generate zk-SNARK proofs. Finally, we will define the algorithms that comprise our
final payment scheme.

5.1 Data structures

The data structures form the backbone of the protocol and store all transaction de-
tails, users of the system, and account balances. Some data structures are also
used as inputs and outputs of the algorithms that are defined in Section 5.3.

Blockchain ledger. The blockchain ledger B consists of several connected blocks,
where each block contains the transactions that happened between the previous
block and the next block. Thus at any time t the blockchain Bt contains a complete
overview of all transactions that happened before time t. We further note that B is
append-only, meaning that everything that was added to B at some point in time t is
still part of B at a later point in time. Next to transactions, the blockchain also con-
tains (references to) other data structures that are relevant for the state of the system.
For more information on blockchains in general we refer the reader to Section A.1.

Public parameters. The public parameters pp form a list of values that is avail-
able to all participants in the system. This includes public keys of the admin, public
parameters of encryption and signature schemes and proof and verifying keys for
zk-SNARKs and SAVER. All these parameters are created before the initial launch
of the system, and should be constructed by a trusted party/group, e.g. at least all
the administrators and possibly some external trusted entities.

57
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Credentials. Every user has a tuple of credentials consisting of four elements. A
public address key pkaddr that is published openly, such that other users can send
transactions to that address. A public encryption key pkenc that is also published
openly, such that the sender of a transaction can also transfer secrets to the receiver.
The secret address key skaddr is used to receive and send transactions using the
notes and memory cell that belong to the corresponding public key as input. Simi-
larly, the secret encryption key skenc is used to decrypt the secrets in a transaction
that are encrypted under the corresponding public encryption key. There is also a
commitment associated to the address credentials, namely cmcred. The set of all four
keys, and related values, or user credentials, is denoted as cred.

Any administrator has the same set of credentials as the user, but also has a
asymmetric key pair of signature keys: skasig and pkasig. All six keys together form
the admin credentials, denoted as credadm.

Note. A note, our digital representation of value, is connected to a couple of values.
Obviously, a note has a monetary note value vnote and an owner who is represented
with his or her public address key pkaddr. A note also has a publication time tnote.
Next to this, a note also has a commitment cmnote to all of these values. Finally, each
note has an associated value that prevents double spending, namely its nullifier η.
All these values, except for η, are encoded in a single note tuple, denoted as note.

Memory cell. A memory cell contains four values: (1) the owner’s public address
key pkaddr; (2) current account balance vmem; (3) publication time tmem; and (4) the
total amount of value that the owner has transferred, up to and including the trans-
action that introduced this memory cell, c. A memory cell also has a commitment
to its contents: cmmem. cmmem, on its turn, has an associated nullifier µ that is used
to invalidate an old memory cell every time a new memory cell is created. All these
values, except for µ, are encoded in a single memory cell tuple, denoted as mem.

Transactions. There are five types of transactions, all denoted as tx, all of which
contain a different collection of elements:

• Regular transaction. In short denoted as Transfer. A regular, note-to-note,
transaction contains several elements. It contains the Merkle roots rt∗ to the
three Merkle trees used. Moreover, it contains the values k and κ that tie the sig-
nature key pair to the particular message by including it in the zero-knowledge
proof π. There are also two nullifiers η and µ to respectively the input note and
the old memory cell. Next to this, the transaction contains the creation time tnew,
commitments to the newly created output note and the updated memory cell.
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Finally, there is a zero-knowledge proof π that accompanies all of this for prov-
ing validity, as well as three encrypted data∗ fields, two of which contain secrets
to their respective newly created commitments. The third data field contains
the encryption of either the SAVER transaction details or the null string.

• Account creation. In short denoted as NewAccount. This ‘transaction’ is origi-
nally sent from a user to an administrator and contains a credential commitment
cmcred, public address key pkaddr, and zero-knowledge proof π. The receiving
admin publishes this transaction on the blockchain without the public address
key and zero-knowledge proof and after signing it.

• Account revocation. In short denoted as RvkAccount. This transaction is
published by an admin on the blockchain when a user’s account is revoked. It
contains the credential commitment cmcred belonging to the public address key
that is revoked.

• Conversion to note from fiat. In short denoted as ConvertTo. This trans-
action consists of a commitment to a new note cmnote, encrypted secrets of
the commitment datanote, and a zero-knowledge proof π for correctness of this
transaction.

• Conversion from note to fiat. In short denoted as ConvertFrom. A conversion
in the other direction, consists of a nullifier η to an old note commitment, the
root of the current Note Merkle tree rtnote, and the public address key pkaddr

of the admin that performs the conversion. Finally, there is a zero-knowledge
proof π that verifies the correctness of certain computations.

Merkle trees. Another frequently used data structure is the (binary) Merkle tree.
In our proposed protocol there are three different Merkle trees: the Account Merkle
tree, the Note Merkle tree, and the Memory Merkle tree. The roots rt∗ of the most
recent state of each of the Merkle trees are stored in every new block that is added to
the blockchain ledger. Each Merkle tree is used to store a commitment to a different
value, either credentials, a note, or a memory cell. Every time a message with a
new commitment is added to the blockchain, this commitment also gets added to the
corresponding Merkle tree. When adding a value to the Merkle tree as a leaf, this
also leads to an update of its parent nodes and eventually the root rt∗ of that Merkle
tree. Proving membership of a value in a set using zk-SNARKs can be performed
by proving presence of a commitment in a Merkle tree. To prove this presence we
require knowledge of the position pos (leaf number) of and path path (list of hashes)
to this commitment in the Merkle tree state that is represented by the Merkle root rt
of the tree at that moment in time.
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Nullifier lists. These lists are not a necessity for a working system, but they do
help improve efficiency. We make use of two nullifier lists, one for note nullifiers and
one for memory cell nullifiers. These lists simply store all the nullifiers that have
already been included in a transaction, in order to make them easily findable when
verifying a newly published transaction. These values could also be derived directly
from the blockchain, however this would take more time since the nullifiers are not
sorted efficiently on the ledger.

5.2 Arithmetic circuits

In order to construct a zk-SNARK proof for a statement using the Groth16 proving
scheme (and also many other schemes) the statement needs to be transformed into
an arithmetic circuit. For our protocol we will define four of these circuits, all of which
are used to prove validity of certain statements and public values in the protocol. In
this section we shortly describe the purpose and usage of each circuit. In Chapter 6
the exact definition of the circuits will be set out.

• CRED. The circuit CRED is used by a user when he or she first wants to enter
the system by sending a commitment to its credentials to the admin. In other
words, the circuit is used for the proof in an Account creation transaction. These
credentials should be accompanied by a proof of knowledge on the input values
to the circuit CRED. To be precise, the arithmetic circuit includes the derivation of
the public address key from the secret address key, as well as the computation
of the credential commitment.

• CTO. In CTO only one calculation is included, that of the commitment to the
newly created note. This circuit is used to proof correctness of the newly cre-
ated note commitment by the admin in case of a conversion from fiat currency
to an anonymous note.

• CFROM. When the admin converts a note to fiat currency a transaction is
published on the blockchain. This transaction tx should also include proof that
verifies correct computation of the nullifier that is published in this transaction.
Moreover, it should verify that the transaction is performed by the admin that
received the note for conversion.

• XFER. In the construction of a regular, note-to-note, transaction a lot of values
need to be computed honestly. To be able to verify these computations, the
XFER circuit should include all the calculations that are performed on the inputs
to generate the public values shown in the transaction tx. The computations
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to check include the construction of the commitments to the new note and
updated memory cell, the computation of the nullifiers to the old commitment,
and the balance equation. Moreover, the circuit is used to tie the signature key
pair to the transaction by means of k and κ, and to check if the sender of the
transaction has an acknowledged account in the Account Merkle tree. XFER
also uses the SAVER plaintext as public input to the circuit. The correct value of
the plaintext is ensured by the conditions in the arithmetic circuit. Finally, XFER
should take into account the possible lack of an input note or old memory cell.
This lack of an old memory cell can occur when the user has not yet interacted
with the system apart from creating an account.

5.3 Algorithms

The functionality of the payment scheme as presented in Chapter 4 of this report
is comprised of several algorithms. In this section we define those algorithms and
sketch their intended purposes. We provide an overview of the inputs and outpus for
each algorithm and present a rough sketch of the algorithm’s steps. The implemen-
tation of these algorithms will be discussed in Chapter 6. The presented algorithm
are either supposed to be used by administrators or users and possibly by both.

Setup
Input: security parameter λ
Output: public parameters pp; signature secret key skasig; address secret key skaddr;
encryption private key skenc

The algorithm Setup is run by a group that contains at least the (set of) admin(s)
and possibly some other actors that together form a trusted party. The main goal
of this algorithm is the initialisation of all proof and verification keys for the different
arithmetic circuits. Next to this, the algorithm also requires the admin to construct
a number of keys that are relevant for the function as admin in the protocol. The
algorithm uses the AddAdmin algorithm to construct the keys. Finally, the setups for
SAVER, the used encryption and the used signature schemes are performed at this
point. After completion, the algorithm returns all relevant public parameters for the
separate parts of the protocol.

AddAdmin
Input: security parameters λ; public parameters pp
Output: admin credentials credadm

This algorithm is called by every admin that participates in the Setup, but can
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also be called by a new admin at any later point in time. AddAdmin takes the public
parameters of the system as input and constructs the credentials of an administrator.
These credentials consist of an address, encryption, and signature key pair. The
public keys of these pairs are added to the public parameters.

CreateAccount
Input: public parameters pp
Output: credentials cred

CreateAccount is called by any client that wishes to join the system. The algo-
rithm creates all the credentials that the user needs, and computes a commitment
to the address credentials. This commitment and public address key are sent to the
admin together with a zero-knowledge proof π of the CRED circuit. The admin is sup-
posed to further handle these credentials, as described in the algorithm AddAccount.
After the admin has finished AddAccount , the user is informed whether or not the
credential commitment has been added to the Account Merkle tree. The algorithm
returns the user’s credentials that are needed for performing future transactions.

AddAccount
Input: public parameters pp; public credential values x; credential proof πCRED; Cre-
dential Merkle root rtcred; admin credentials credadm

Output: tx

On reception of a CreateAccount query, the admin performs CDD and verifies
that the user does not have an account yet. If these checks are satisfied, the admin
executes the rest of this algorithm, which verifies the construction of the received
commitment, adds it to the Merkle tree and posts a message to the blockchain.

RevokeAccount
Input: credential commitment cmcred; Credential Merkle root rtcred; admin credentials
credadm

Output: tx; notenew

On input of a commitment to a user’s credentials, the algorithm RevokeAccount
removes the commitment from the Account Merkle tree. Moreover, it publishes a
signed revocation message to the blockchain that confirms that it was the admin who
performed the revocation.

ConvertToNote
Input: public parameters pp; conversion value vnew

note; public destination address pknew
addr;

destination encryption key pknew
enc ; extra info info; admin credentials credadm

Output: transaction tx
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On getting paid with value vnew
note in fiat currency by a user with public address key

pknew
addr, the admin calls the algorithm ConvertToNote, to add a new note to the system

of the same value destined for public address key pknew
addr. The algorithm calculates a

commitment to the new note, encrypts the necessary secrets under the user’s public
encryption key, and constructs a zero-knowledge proof for the circuit CTO. Finally, the
admin signs the transaction tx and publishes it on the blockchain. Subsequently, the
new note commitment gets added to the Note Merkle tree which completes the con-
version in such a way that the user can now spend a note of value vnew

note anonymously.

ConvertFromNote
Input: public parameters pp; input note noteold; Note Merkle root rtnote; admin creden-
tials credadm

Output: transaction tx

When the admin receives a note from a user with public address key pkaddr
1, the

algorithm ConvertFromNote makes the note unspendable by publishing the nullifier
η to the note. The admin publishes the transaction containing this nullifier on the
blockchain, with a signature under the admin’s secret signing key. This transaction
also includes a zero-knowledge proof for the circuit CFROM. After having done all this,
the admin transfers the value of the note vnote in fiat currency to the user with public
address key pkaddr to complete the conversion.

CreateTransaction
Input: public parameters pp; credentials cred; Note Merkle root rtnote; Memory Merkle
root rtmem; Credential Merkle root rtcred; old note noteold; previous memory cell memold;
ceiling memory cell memold; new note value vnew

note; new public address pknew
addr; new

public encryption key pknew
enc ; extra info info; new block time tnew; boolean value for

including SAVER encrypted values bsaver

Output: transaction tx

When a user wants to transfer value to another user in an anonymous way he
or she uses the algorithm CreateTransaction. As input, the sender provides the
public address key of the receiver, the user’s own credentials and memory cell, an
optional input note and some optional extra info info that the user wants to include
in the transaction. The algorithm then requires the user to construct an output note,
produce an updated memory cell, calculate nullifiers to the input commitments, sam-
ple a one-time signature key pair, and compute a zk-SNARK proof that validates all
components, ties them together, and verifies that the sender has a valid account.
This zk-SNARK proof is also accompanied by a SAVER encryption of either the zero
string, or the transaction details depending on the value of bsaver. The sender then

1The address is included in the datanote field
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signs the message using the one-time signature key pair and publishes the signed
message (anonymously) on the blockchain to complete the transaction.

VerifyTransaction
Input: public parameters pp; transaction tx; current blockchain B
Output: boolean value for correctness b

The admins of the blockchain should validate transactions before they get ac-
cepted and added to a new block on the blockchain, by entering every transaction as
input to VerifyTransaction. Moreover, any user can also verify the admins in doing this
by checking accepted transactions with this algorithm. VerifyTransaction verifies the
provided zero-knowledge proof along with the SAVER ciphertext, checks if the public
inputs that are used actually exist and are recent and verifies that the transaction has
not been tampered with. Finally, the algorithm verifies that the produced nullifiers
do not yet appear on their respective nullifier lists. If all tests pass successfully, the
transaction is valid and gets added to the blockchain.

ReceiveTransaction
Input: public parameters pp; new transaction tx; credentials cred; current blockchain
B

Output: received note notenew

ReceiveTransaction is called by users to check if new transactions on the blockchain
were sent to their address. If this is the case the algorithm outputs all relevant details
of the received note. Firstly, the algorithm calls VerifyTransaction to confirm the va-
lidity of the transaction. Secondly, the algorithm tries to decrypt the datanote field of
the transaction. If the decryption output makes sense, the algorithm continues and
checks if the the commitment to the note can be reconstructed with the decrypted
secrets. If this is possible the user has received a valid transfer and can store the
note for later use. If this was not the case, either the transaction was not meant
for this user or the secrets have been invalidly encrypted, making the created note
unusable.2

2We note that this is not a security risk, since doing this only negatively affects the sender.
Therefore, the sender has more than sufficient incentive to encrypt the secrets honestly.



Chapter 6

Solution construction

In this chapter we present the detailed construction of our payment scheme. We
begin with a concrete description of the cryptographic building blocks that will be
used. In the next section we present a precise list of zk-SNARK statements. This list
is followed by the construction of the algorithm and we end with a discussion on the
completeness and security of our construction.

6.1 Building blocks

Before we continue to the construction of the earlier defined algorithms, we need
to introduce some of the cryptographic building blocks that will be used by these
algorithms. For more details on these building blocks we refer the reader to Chapter
2. Throughout the definitions below, λ denotes the desired security parameter.

Pseudorandom functions. We use a keyed family of pseudo random functions
{PRFk(s) : {0, 1}n → {0, 1}O(λ)}k, where k is the key, s the seed or input, and n the
input size. From any keyed pseudorandom function PRFk we derive four versions
that are used directly in different parts of the algorithms: PRFaddr

x (s) := PRFx(00‖
s), PRFηx(s) := PRFx(01‖s), PRFµx(s) := PRFx(10‖s), and PRFκx(s) := PRFx(11‖
s). As mentioned before, we require the family of pseudorandom functions to be
collision-resistant with respect to (x, s).

Collision-resistant hash function. We use a collision-resistant hash function
(CRH) function that takes as input a message of arbitrary length and outputs a fixed
length value: CRH : {0, 1}∗ → {0, 1}O(λ). We use four instantiations of CRH. The
standard CRH is used to compute the parent of two Merkle nodes in a Merkle tree.
CRHmem is used to compute the leaf of the Memory Merkle tree from a memory
commitment cmmem and a time t. Analogously, CRHnote is used to compute the leaf of

65
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the Note Merkle tree from a note commitment cmnote and a time t. Finally, we define
CRHsig to obtain a fixed length bit string from the public signature key, so that it can
be used as input to a function with fixed input length.

Key derivation function. A key derivation function (KDF) is a function that takes
as input the public parameters of an encryption scheme and a secret input. The KDF
outputs a public and private key pair that are derived from the secret input and satisfy
the desired properties of the encryption scheme without revealing any information
about the secret input. In our case it is a function KDFenc(ppenc, x) → (pkenc, skenc),
where pp is the list of public parameters and x the secret input. The function output
is the public and private encryption key pair.

Commitments. We choose to use a commitment scheme that is computationally
binding and statistically hiding, since transactions will be visible for a very long time
on the blockchain, whereas forging a commitment would cost more than the benefit.1

A commitment cm is computed as: cm = COMMr(x) : {0, 1}n → {0, 1}O(λ), where r is
the commitment trapdoor, x the input and n the input size. The protocol makes use of
several different instantiations, which will be discussed in Chapter 7. In accordance
with Section 2.1, the different versions are denoted by their respective superscripts.

Digital signature schemes. In our protocol we require two different digital signa-
ture schemes. One scheme that is strongly-unforgable, and one that is only one-time
strongly-unforgable. Both security definitions should hold against chosen-message
attacks, i.e. SUF-CMA and SUF-1CMA. The first of these schemes is used by the
admin, who needs to be able to sign many different messages with the same key
pair. The second scheme is used by users to sign a transaction, where a signature
key pair is generated for only one transaction, hence we only need one-time security
here. Both schemes, denoted with a superscript asig respectively sig, consist of the
following algorithms:

• Setup(a)sig(1λ) → pp(a)sig constructs the public parameters of the signature
scheme given the security parameter.

• KeyGen(a)sig(pp(a)sig)→ (pk(a)sig, sk(a)sig) generates a public and secret signature
key for the signature scheme given its public parameters.

• Sign(a)sig
sk(a)sig

(m)→ σ computes a signature σ on message m under the secret key
sk(a)sig.

1It is not possible for a scheme to be both information-theoretically binding and information-
theoretically (or statistically) hiding. [36]
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• Verify(a)sig
pk(a)sig

(m,σ)→ b verifies if σ is a valid signature on m given the public key
pk(a)sig. If the signature is indeed valid b = true, else b = false.

Public key encryption. Another important cryptographic building block is public
key encryption, which is used to send commitment secrets to the receiver of a trans-
action. To keep these secrets secret, they need to be encrypted under the receiver’s
public encryption key. In order to prevent that an encrypted message can be linked
to the key it is encrypted under, we require a scheme that is key private. To be
precise, we require an asymmetric encryption scheme that is not only IND-CCA,
but also IK-CCA. We require an encryption scheme that has at least the following
functionality:

• Setupenc(1λ)→ ppenc construct the public parameters of the encryption scheme
given the security parameter.

• Encpkenc
(m)→ c computes the ciphertext c from the message m given encryp-

tion key pkenc.

• Decskenc(c) → m computes the message m (or ⊥ if decryption is impossible)
from the ciphertext c given the decryption key skenc.

We note that, in order to generate the encryption key pair, the protocol uses a
key derivation function (KDF) as described above.

zk-SNARK scheme. As discussed in Section 2.2, we make use of a zk-SNARK
scheme known as Groth16. This zk-SNARK scheme contains three algorithms:

• Setupzkp(1λ, C) → (pk, vk) is the setup function that generates the proving pk
and verifying vk key, given the security parameter and a circuit C over which
proofs will be generated.

• Provezkp(pk, x, a) → π constructs a zk-SNARK proof π given a proving key pk
that encodes the circuit over which the proof is constructed. The function also
requires the right amount of public inputs x and auxiliary inputs a.

• Verifyzkp(vk, π, x) → b verifies the proof π over the circuit that is encoded in
the verifying key vk, given public inputs x. The result is b = true if verification
succeeds, otherwise b = false.
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Verifiable encryption scheme. In Section 2.3 we discuss the verifiable encryption
that is used in our protocol: SAVER. In this section we give an exact definition of the
relevant algorithms. For completeness we present the relevant algorithms below2:

• Setupsvr(1λ, C) → (pk, vk) is the setup function the generates the proving pk
and verifying vk key, given the security parameter and a circuit C over which
proofs will be generated. This algorithm calls Setupzkp with the same arguments
and adds some extra values that are required for SAVER. In the case of multiple
administrators we use our multi-party adaptation on this function as presented
in Section 4.8.

• KeyGensvr(pk, vk) → (pksvr, sksvr, vksvr) constructs the public pksvr, secret sksvr,
and vksvr verifying key for SAVER. These keys are generated using the zk-
SNARK proving pk and verifying vk key.

• Encsvr(pk, pksvr,m, x, a) → (π, c) computes the SAVER adapted zk-SNARK
proof π and SAVER ciphertext c using the plaintext message m, other pub-
lic inputs x, and auxiliary variables a. The algorithm also requires the SAVER
public key pksvr and zk-SNARK prover key pk. This prover key is used as input
for Provezkp as well.

• VerifyEncsvr(vk, pksvr, π, c, x) → b verifies the proof π along the SAVER cipher-
text c that are encoded in the verifying key vk, given SAVER public key pksvr

and public inputs x. The result is b = true if verification succeeds, otherwise
b = false.

The specific instantiations of these building blocks, apart from the zk-SNARK and
SAVER scheme, will be discussed in Chapter 7. That Chapter focuses on imple-
mentation details, and discusses which schemes have the best efficiency-security
trade-off. In that same chapter we also provide more details on input and output size
of the specific schemes.

6.2 zk-SNARK statements

In this section we construct the statements that are proved in the four circuits that
were defined in Section 5.2. The intuition for the statements is presented in Section
4. A statement has two types of inputs: public and auxiliary. The public inputs are
contained in the public transaction tx and are thus visible to the verifier. The auxiliary
inputs are only known by the prover, i.e. the user that constructs the proof, and need

2We do not present the decryption Dec and decryption verification VerifyDec algorithm here, since
these are not explicitly used in any of the algorithms in our payment scheme.
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to stay secret. At the same time, the prover wants to convince the verifier that he or
she knows these secret auxiliary inputs.

Additionally, the inputs should satisfy the relations as defined in the statements.
Our description of the statements includes these elements as follows: “Given [pub-
lic inputs], the prover knows [auxiliary inputs], such that the following statement(s)
hold(s): [relations].”. For more information on the used notation and on zk-SNARK
proofs we refer the reader to Chapter 2. Furthermore we note that T and L are
respectively time and value limits that are hard coded in the arithmetic circuit, accord-
ing to Section 4.7.

CRED

Given (cmcred, pkaddr), the prover knows (skaddr, scred), such that the following statements
hold:

• Correct derivation of public address key
from secret address key: pkaddr =

PRFaddr
skaddr

(0);

• Correct computation of credential com-
mitment: cmcred := Commcred

scred
(pkaddr‖

skaddr).

CTO

Given (cmnew
note), the prover knows (snew

note, v
new
note, pknew

addr), such that the following statement holds:

• Correct computation of output note commitment: cmnew
note = Commnote

snew
note

(pknew
addr‖vnew

note‖0).

CFROM

Given (rtnote, η, pkaddr), the prover knows (skaddr, s
old
note, v

old
note, t

old
note, cm

old
note, pathnote, posnote),

such that the following statements hold:

• Correct derivation of public address key
from secret address key: pkaddr =

PRFaddr
skaddr

(0);

• (posnote, pathnote) is the valid Merkle
Tree path from CRHnote(cmold

note, t
old
note)

to rtnote;

• Correct computation of input note com-
mitment: cmold

note = Commnote
sold

note
(pkaddr‖

vold
note‖0);

• Correct computation of input note nulli-
fier: η = PRFηskaddr

(posnote).

XFER

Given (pksndr, pkrcvr, vxfer, rtmem, rtnote, rtcred, k, κ, η, µ, cmnew
note, cm

new
mem, t

new), the prover knows
(rtreal

mem, rtint
mem, rtint

note, η
int, pkaddr, skaddr, scred, cmcred, v

old
note, s

old
note, t

old
δ , cmold

note, t
old
note, v

old
mem, s

old
mem, c

old,

cmold
mem, t

old
mem, v

ceil
mem, s

ceil
mem, c

ceil, cmceil
mem, t

ceil
mem, pathcred, pathnote, pathmem, pathceil, posnote, posmem,

poscred, posceil, s
new
note, s

new
mem, v

new
note, v

new
mem, c

new, pknew
addr, bnote, bmem, bsaver, tδ), such that the follow-

ing statements hold:
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• Correct computation of credential com-
mitment: cmcred := Commcred

scred
(pkaddr‖

skaddr);

• Correct computation of input note com-
mitment: cmold

note = Commnote
sold

note
(pkaddr‖

vold
note‖told

δ );

• Correct computation of previous mem-
ory cell commitment: cmold

mem :=

Commmem
sold

mem
(pkaddr‖vold

mem‖cold);

• Correct computation of ceiling mem-
ory cell commitment: cmceil

mem :=

Commmem
sceil

mem
(pkaddr‖vceil

mem‖cceil);

• (poscred, pathcred) is the valid Merkle
Tree path from cmcred to rtcred;

• (posnote, pathnote) is the valid Merkle
Tree path from CRHnote(cmold

note, t
old
note) to

rtint
note;

• (posmem, pathmem) is the valid Merkle
Tree path from CRHmem(cmold

mem, t
old
mem)

to rtint
mem;

• (posceil, pathceil) is the valid Merkle
Tree path from CRHmem(cmceil

mem, t
ceil
mem)

to rtint
mem or cceil = 0;

• Correct computation of previous
memory cell nullifier: µ =

PRFµskaddr
(posmem);

• Correct computation of input note nulli-
fier: ηint = PRFηskaddr

(posnote);

• If there is no previous memory cell
set the related values accordingly:
if bmem = false, then (vold

mem =

0 and posmem = −1 and rtmem =

rtreal
mem and cceil = 0 and cold = 0),

else if bmem = true, then rtmem =

rtint
mem;

• If there is no input note set the re-
lated values accordingly: if bnote =

false, then (vold
note = 0 and η =

0 and rtnote = 0), else if bnote =

true, then (η = ηint and rtnote =

rtint
note);

• Correct calculation of new account bal-
ance in memory cell: vnew

mem = vold
note +

vold
mem − vnew

note;

• The new total outgoing value is correct:
cnew = cold + vnew

note · (1− bsaver);

• The output note value and new account
balance lie in the correct range: 0 ≤
vnew

mem, v
new
note ≤ vmax;

• The transaction is not an empty trans-
action: 0 < vnew

note + vold
note.

• The ceiling memory cell is old enough:
tceil
mem < tnew − T ;

• The spend limit is not surpassed:
cnew − cceil ≤ L or bsaver = true;

• The note is unlocked: told
note + t

old
δ ≤ tnew.

• Correct computation of output
note commitment: cmnew

note =

Commnote
snew

note
(pknew

addr‖vnew
note‖tδ);

• Correct computation of new mem-
ory cell commitment: cmnew

mem :=

Commmem
snew

mem
(pkaddr‖vnew

mem‖cnew);

• The public signature key is tied to
this message with the sender’s secret
address key by means of κ: κ =

PRFκskaddr
(k);

• The saver encrypted values are de-
fined correctly if bsaver = true: pksndr =

pkaddr ·bsaver, pkrcvr = pknew
addr ·bsaver, and

vxfer = vnew
note · bsaver;

• bnote, bsaver, bmem ∈ {0, 1}.
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6.3 Algorithms

After having constructed the arithmetic circuits and discussed the necessary crypto-
graphic building blocks, we continue with the construction of the algorithms. Below,
all the steps that an algorithm takes to fulfil its desired functionality are given in com-
plete detail. Each steps either compute a certain value, parses a piece of data, or
incorporates functionalities of a certain cryptographic building block.

Setup
Input: security parameter λ
Output: public parameters pp

1. Construct the arithmetic circuits
CXFER,CCRED, CCTO, CCFROM at security level
λ.

2. Generate the proving and verification key
pairs for all four circuits
(pkXFER, vkXFER) := Setupsvr(1λ, CXFER)),
(pkCRED, vkCRED) := Setupzkp(1λ, CCRED)),
(pkCTO, vkCTO) := Setupzkp(1λ, CCTO)), and
(pkCFROM, vkCFROM) := Setupzkp(1λ, CCFROM)).

3. The admin(s) together compute (pksvr,

sksvr, vksvr) := KeyGensvr(pkXFER, vkXFER)
and store their individual shares of sksvr.

4. Create the public parameters for the en-
cryption scheme ppenc := Setupenc(1λ).

5. Create the public parameters for the signa-
ture scheme ppsig := Setupsig(1λ).

6. Create the public parameters for the admin
signature scheme ppasig := Setupasig(1λ).

7. Set pp := (pkXFER, vkXFER, pkCRED, vkCRED,
pkCTO, vkCTO, pkCFROM, vkCFROM, ppenc, ppsig,

ppasig, pksvr, vksvr).

8. Each admin calls AddAdmin(λ.pp)

9. Publish pp.

AddAdmin
Input: security parameters λ; public parameters pp
Output: admin credentials credadm

1. Parse pp as (ppenc, ppasig, ∗)

2. Generate the public and secret key
for the admin signature scheme as
(pkasig, skasig) := KeyGenasig(ppasig).

3. Randomly sample an address secret key
skaddr that is also a seed to PRFaddr.

4. Define the address public key as

pkaddr := PRFaddr
skaddr

(0).

5. Generate the encryption public-private key
pair (pkenc, skenc) := KDFenc(ppenc, skaddr).

6. Add (pkasigpkaddr, pkenc) to pp.

7. Set credadm = (pkasig, skasig, skaddr,pkaddr,

pkenc, skenc).

CreateAccount
Input: public parameters pp
Output: credentials cred

1. Parse pp as (pkCRED,ppenc, ∗).

2. Randomly sample an address secret key
skaddr that is also a seed to PRFaddr.

3. Generate the encryption public and private
key pair (pkenc, skenc) := KDFenc(ppenc,

skaddr).
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4. Define the address public key pkaddr :=

PRFaddr
skaddr

(0).

5. Randomly sample a commitment trapdoor
scred.

6. Calculate the hiding commitment cmcred as
cmcred := Commcred

scred
(pkaddr‖skaddr).

7. Define x := (cmcred, pkaddr) and a :=

(skaddr, scred).

8. The user computes the proof πCRED :=

Provezkp(pkCRED, x, a).

9. Send x and πCRED to the admin, and wait
until cmcred is included in the Credential
Merkle Tree.

10. Define cred := (pkaddr, skaddr, pkenc, skenc,

scred, cmcred).

AddAccount
Input: public parameters pp; public credential values x; credential proof πCRED; Credential Merkle root
rtcred; admin credentials credadm

Output: tx

1. Parse pp as (vkCRED, ∗).

2. Parse credadm as (skasig, ∗).

3. Parse x as (cmcred, ∗).

4. If Verifyzkp(vkCRED, πCRED, x) outputs false,
then return ⊥.

5. Define madd := (“Add credential”, cmcred).

6. Compute the signature on the message as
σadd := Signasig

skasig
(madd).

7. Publish tx := (madd, σadd).

8. Add cmcred to the Credential Merkle Tree
and update rtcred.

RevokeAccount
Input: credential commitment cmcred; Credential Merkle root rtcred; admin credentials credadm

Output: tx

1. Parse credadm as (skasig, ∗).

2. Definemrvk := (“Revoke credential”, cmcred).

3. Compute a signature on the message as
σrvk := Signasig

skasig
(mrvk).

4. Publish tx := (mrvk, σrvk).

5. Remove cmcred from the Merkle tree and
update rtcred.

ConvertToNote
Input: public parameters pp; conversion value vnew

note; public destination address pknew
addr; destination

encryption key pknew
enc ; extra info info; admin credentials credadm

Output: transaction tx; notenew

1. Parse pp as (pkCTO, ∗).

2. Parse credadm as (skasig, ∗).

3. Randomly sample the commitment trap-
door snew

note for the new note.

4. Compute the commitment cmnew
note for the

new note as cmnew
note := Commnote

snew
note

(pknew
addr‖vnew

note)‖0.

5. Define datanew
note := Encpknew

enc
(snew

note‖vnew
note‖info).

6. Set x := (cmnew
note).

7. Set a := (snew
note, v

new
note, pknew

addr).

8. Obtain a zero-knowledge proof for the
transaction πCTO := Provezkp(pkXFER, x, a).

9. Define mcto := (x, πCTO,datanew
note).

10. Compute a signature on the transaction
message σcto := Signasig

skasig
(mcto).

11. Set notenew := (vnew
note, pknew

addr, s
new
note).

12. Publish tx := (mcto, σcto).
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ConvertFromNote
Input: public parameters pp; input note noteold; Note Merkle root rtnote; admin credentials credadm

Output: transaction tx

1. Parse pp as (pkCFROM, ∗).

2. Parse credadm as (skaddr, skasig, ∗).

3. Parse noteold as (vold
note, cm

old
note, t

old
note, s

old
note,

∗).

4. Determine the position posnote of cmold
note in

the Note Merkle Tree and its path pathnote

to rtnote.

5. Determine the nullifier to noteold as
η := PRFηskaddr

(posnote).

6. Set x := (rtnote, η,pkaddr).

7. Set a := (skaddr, s
old
note, v

old
note.t

old
note, cm

old
note,

pathnote, posnote).

8. Create a zero-knowledge proof for the
transaction πCFROM := Provezkp(pkCFROM, x, a).

9. Define mcfrom := (x, πCFROM).

10. Compute a signature on the transaction
message σcfrom := Signasig

skasig
(mcfrom).

11. Publish tx := (mcfrom, σcfrom).

CreateTransaction
Input: public parameters pp; credentials cred; Note Merkle root rtnote; Memory Merkle root rtmem;
Credential Merkle root rtcred; old note noteold; previous memory cell memold; ceiling memory cell
memceil; new note value vnew

note; new public address pknew
addr; new public encryption key pknew

enc ; extra info
info; new block time tnew; boolean value for including SAVER encrypted values bsaver; lock time new
note tδ
Output: transaction tx

1. Parse pp as (pkXFER,ppenc, ppsig,pksvr∗).

2. Parse cred to (skaddr, pkaddr, cmcred, scred).

3. Determine the position poscred of cmcred

in the Account Merkle Tree and its path
pathcred to rtcred.

4. Randomly sample two commitment trap-
doors snew

note, snew
mem for the new note.

5. If noteold = ⊥, then set bnote = 0,
posnote = 0, pathnote = 0, vold

note = 0,
sold

note = 0, η = −1, told
δ = 0, told

note = tnew,
compute cmold

note and rtint
note accordingly, and

go to step 8.

6. Parse noteold as (vold
note, cm

old
note, t

old
δ , told

note,

sold
note).

7. Determine the position posnote of cmold
note in

the Note Merkle Tree and its path pathnote

to rtnote and set rtint
note = rtnote.

8. Determine the nullifier ηint to noteold as
ηint := PRFηskaddr

(posnote).

9. Calculate the commitment cmnew
note for the

new note as cmnew
note := Commnote

snew
note

(pknew
addr‖

vnew
note‖tδ).

10. Define datanew
note := Encpknew

enc
(snew

note‖vnew
note‖tδ‖

info).

11. If memold = ⊥, then set bmem = 0, posmem =

−1, told = −(T + 1), vold
mem = 0, sold

mem = 0,
cold

mem = 0, pathmem = 0, rtreal
mem = rtmem, and

compute cmold
mem and rtint

mem accordingly and
go to step 14.

12. Parse memold as (vold
mem, cmold

mem, s
old
mem, c

old
mem,

told
mem).

13. Determine the position posmem of
CRHmem(cmold

mem, t
old
mem) in the Memory

Merkle Tree and its path pathmem to rtmem

and set rtreal
mem = rtint

mem = rtmem.

14. If memceil = ⊥, then set tceil = −(T + 1),
vceil

mem = 0, sceil
mem = 0, cceil

mem = 0, and com-
pute cmceil

mem accordingly, and go to step 17.

15. Parse memceil as (vceil
mem, cmceil

mem, s
ceil
mem, c

ceil
mem,

tceil
mem).
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16. Determine the position posceil of
CRHmem(cmceil

mem, t
ceil
mem) in the Memory

Merkle Tree and its path pathceil to rtmem.

17. Determine the nullifier µ to memold as
µ := PRFµskaddr

(posmem).

18. Determine vnew
mem := vold

note + vold
mem − vnew

note.

19. Determine cnew := cold + vnew
note · (1− bsaver).

20. Calculate the new memory commitment
cmnew

mem := Commmem
snew

mem
(pkaddr‖vnew

mem‖cnew).

21. Define datanew
mem := Encpkenc

(snew
mem).

22. Randomly generate a signature pub-
lic and private key pair (pksig, sksig) :=

KeyGensig(ppsig).

23. Compute k := CRHsig(pksig) and calculate
κ := PRFκskaddr

(k), which ties the signature
public key to the secret address key of the
sender.

24. Determine the inputs for the SAVER en-
cryption: pksndr = pkaddr · bsaver, pkrcvr =

pknew
addr · bsaver, and vxfer = vnew

note · bsaver

25. Set msvr := (pksndr, pkrcvr, vxfer).

26. Set x := (rtmem, rtnote, rtcred, k, κ, η, µ,

cmnew
note, cm

new
mem, t

new).

27. Set a := (rtreal
mem, rtint

mem, rtint
note, η

int,pkaddr,

skaddr, scred, cmcred, v
old
note, s

old
note, t

old
δ , cmold

note,

told
note, v

old
mem, s

old
mem, c

old, cmold
mem, t

old
mem, v

ceil
mem,

sceil
mem, c

ceil, cmceil
mem, t

ceil
mem, pathcred, pathnote,

pathmem, pathceil, posnote, posmem, poscred,

posceil, s
new
note, s

new
mem, v

new
note, v

new
mem, c

new, pknew
addr,

bnote, bmem, bsaver, tδ).

28. Obtain a zero-knowledge proof and cipher-
text for the transaction (πXFER, datasaver) :=

Encsvr(pkXFER, pksvr,msvr, x, a).

29. Define mxfer := (x, πXFER,datanew
note, datanew

mem,

datasaver).

30. Compute a signature on the transaction
message σxfer := Signsig

sksig
(mxfer).

31. Set notenew := (vnew
note,pknew

addr, s
new
note).

32. Set memnew := (vnew
mem, pkaddr, s

new
mem).

33. Publish tx := (mxfer, pksig, σxfer).

VerifyTransaction
Input: public parameters pp; transaction tx; current blockchain B
Output: boolean value for correctness b

1. Parse pp as (vk∗, pksvr∗).

2. Parse tx as (m, pksig, σ), if transaction type
is not regular transfer transaction get the
public admin key pkasig.

3. Parse m as (x, π,datasaver, ∗).

4. If the transaction type is not a regular trans-
fer transaction, go to step 10.

5. Parse x as (rtcred, rtmem, rtnode, k, κ, η, µ,

tnew, ∗).

6. If rtmem, rtcred and rtnode do not appear in
the same block on B, then output false.

7. If tnew is not close to the current block time,
then output false.

8. If η or µ does appear on B, then output
false.

9. If k does not equal CRHsig(pksig), then out-
put false.

10. If Verify(a)sig
pk(a)sig

(m,σ) outputs false, then
output false.

11. Define b := VerifyEncsvr(vk∗, pksvr, π,

datasaver, x) if the transaction type is
a regular transaction, otherwise b :=

Verifyzkp(vk∗, π, x).



6 . 4 . C O M P L E T E N E S S A N D S E C U R I T Y 7 5

ReceiveTransaction
Input: public parameters pp; new transaction tx; credentials cred; current blockchain B
Output: received note notenew

1. If transaction type is not a regular transfer
transaction, then output ⊥.

2. If VerifyTransaction(pp, tx, B) outputs
false, then output ⊥.

3. Parse cred as (skenc, pkaddr, ∗).

4. Parse tx as (mxfer, ∗).

5. Parse mxfer as (x, datanote, ∗).

6. Parse x as (cmnew
note, ∗).

7. Compute (snew
note, v

new
note, t

new
δ , info) =

Decskenc(datanew
note), if the output was ⊥, then

output ⊥.

8. If cmnew
note does not equal Commnote

snew
note

(pkaddr‖
vnew

note), then output ⊥.

9. Set notenew := (vnew
note, s

new
note, info, cmnew

note).

6.4 Completeness and security

The construction as presented in the above Section is also complete and secure. We
verify this by showing that all our requirements, as defined in Section 4.1, hold. In
Appendix C we prove for each individual requirement that it holds for the concrete
scheme as defined in this Chapter. It should be noted that even though all require-
ments hold separately, we cannot guarantee that they all hold at once. Given that not
all of the used cryptographic primitives are universally composable, we were unable
to achieve a proof of this more general statement. Nevertheless, we have no reason
to doubt that all requirements do hold in a universal setting.
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Chapter 7

Implementation

In this chapter we discuss some considerations to take into account when implement-
ing the concrete scheme as presented in the previous chapter. In Section 7.1 we
discuss some details regarding key management for both administrators and users.
The concrete instantiation of the cryptographic building blocks is discussed in Section
7.2.

Some details regarding the transformation of our zk-SNARK statements into
arithmetic circuits as well as implementation details thereof are discussed in Section
7.3. An implementation of our scheme in Rust is discussed in Section 7.4. In this
final section we also present performance benchmarks for the key generation, prove,
and verification times for all four arithmetic circuits.

7.1 Key management

Since the administrator and regular users have different sets of keys, and require
different management of these keys, we discuss the key management separately
for both roles. We also, briefly discuss the key management of the secret SAVER
decryption key for the judges, as well as the other individually generated randomness.
We do not focus on public parameters or proof and verification keys since these public
parameters should just be visible for all participants and require no special attention.1

Administrator. An administrator has three public-private key pairs, one for a signa-
ture scheme, one for an encryption scheme, and one that functions as an address.
The keys for the signature scheme can be generated at random by the admin that
uses it. In the case of more administrators, each one should have their own key pair
to make the sender of each message identifiable. The size of these keys depends
on the security parameter and the type of signature scheme that is used.

1This also holds for the SAVER public key and verification key.

77
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Each admin should generate a random secret address key with the amount of
bits that the seed of a PRF is required to have, from which the public address key
can be derived. This secret address key should be kept secret at all times by the
administrator. From this secret address key, the admin also derives the asymmetric
encryption key pair. The secret encryption key should also be kept secret. The size
of the encryption keys depends on the security parameter and the type of encryption
scheme used.

After having generated all the keys, the admin should post all public keys in a
location that is open to any (potential) user of the system. These keys should also
be posted in such a way that it is clear to all other users to which legal entity these
keys belong.

User. A regular user has two public-private key pairs: an encryption key pair and an
address key pair. These key pairs have the same details as those of the admin and
are also obtained in the same way. The user need however only publish its public
key pairs to the people that the user wants to receive transactions from. This could
either be sent to another user directly, or published openly visible to the world. A
user could treat the keys similar to how one would normally deal with a bank account
number.

Next to this, the user also has a commitment to its address key pair, which requires
a trapdoor scred to create randomness. The commitment is sent to an admin along
with the public address key. This ensures that the admin knows which public address
key belongs to which physical entity. This is important for connecting the anonymous
values to fiat currency. It also allows the bank to perform KYC for any new user.

We want to ensure that users do not have to remember a large amount of keys,
trapdoors to commitments, and other secrets. Therefore, the protocol is designed
in such a way that only two values need to be remembered by the user: the secret
address key skaddr and the credential commitment trapdoor scred. This secret address
key can be used to derive all the other keys, and together with the commitment
trapdoor these keys allow a user to proof knowledge of the credential commitment in
the Account Merkle tree.

The user could then easily obtain all existing unspent notes by scanning the
blockchain for any received notes, to which the nullifiers have not been published
yet. Moreover, all the user’s memory cells can be found by scanning the blockchain
for transactions to which the datamem field can be decrypted and leads to a valid
trapdoor for the related memory cell commitment. The user does not need to have
more information to re-obtain the current state of its account in the payment scheme.
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Judge. All judges participate in a secure multi-party computation protocol to per-
form the joint key generation for SAVER. During this protocol each judge j generates
some random values sji , z

j
i , t

j
i , and ρj. These first three values should all be kept

secret from other judges, as they do leak some information about the exponents in
the public and verification keys that can be used to decrypt ciphertexts. The value
ρj should clearly be kept secret as well, since each value ρj is a share to the secret
decryption key. Finally, the judges also generate some random values rji as masking
for intermediate values. These masking values should also be kept secret as they
do reveal some intermediate values that could be used to decrypt ciphertexts.

7.2 Instantiation of cryptographic building blocks

We will now discuss how to instantiate the cryptographic building blocks as were de-
fined above. We will do this by making some choices that give a level of security of at
least 128 bits. Many of these choices can also be made differently to try and improve
performance, security or make implementation simpler when this is needed. We
make no claim that the made choices are optimal considering performance, imple-
mentation or security. Though, the choices should prove decent for all three factors.

CRH, PRF, COMM and Merkle trees. These primitives could all be based
on several different hash functions, with minor adaptations. Options include: SHA-
256, MiMC, Blake2s, Poseidon, Starkad, or the Pedersen hash. Some of these
hashes are more efficient in arithmetic circuits, while others provide a higher level of
security. SHA-256 and Blake2s are both very secure and well-known hash functions.
A downside to both algorithms is that they require a lot of constraints when modelled
as an arithmetic circuit, i.e. they are not so efficient. On the other hand we have
MiMC, Poseidon, Starkad, and the Pedersen hash. All of these algorithms require
a low amount of constraints when modelled as an arithmetic circuits, i.e. they are
very efficient. A downside of the first three algorithms is that the constructions are
relatively new and security seems weaker. Already, some collision and preimage
attacks have been constructed against instantiations of these algorithms [37]. That
leaves us with the Pedersen hash. The Pedersen hash is very efficient, and is also
known to be rather secure. We do note that it is considered to be less secure than
SHA-256 and Blake2s due to its discrete log based security assumption. Interestingly,
this assumption is not weaker than the knowledge of exponent based assumptions of
our zk-SNARK scheme. Therefore, using a Pedersen hash in a zk-SNARK scheme
does not weaken security on that front.
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In light of the above discussion we decide to use Blake2s2 as building block for our
PRF. We decide to use a stronger level of security here in order to make stealing or
destroying a note more difficult. Both stealing and destroying a note of another user
requires the attacker to publish the true nullifier, i.e. finding a collision or learning
skaddr. The security thereof is thus independent of the security of the zk-SNARK
scheme and using Pedersen hash would thus decrease this level of security. Forgery
and duplication of a note is another matter, since an attacker simply produces a
valid proof for a random nullifier. This can be done by either breaking the zk-SNARK
scheme, or finding a collision in COMM or CRH. Therefore, using Blake2s for our
commitment scheme or CRH would not really increase security with regard to forgery
or duplication. Practically this implies that we can use the more efficient Pedersen
hash as building block for COMM and CRH [38]. We will use the Pedersen hash and
Pedersen commitment as defined in the ZCash protocol [32]3 since it is optimised for
use in our zk-SNARK scheme.

For our PRF we will use Blake2s with a 512 bit (32 byte) input and a 256 bits
output, which provides us with a 128-bits security level against collision attacks and
a 256-bits security level against (second-)preimage attacks. We denote our Blake2s
function by H.

We define our Note and Memory Merkle trees to have depth 32, this allows for
232 leafs, which should be more than sufficient for the protocol to function a long
time without needing a reset of the Merkle trees. This implies that the position of a
commitment in a Merkle tree pos can be represented by a 33-bit number (32 bits for
the position and 1 bit extra for the case of using −1 as the position). The Credential
Merkle tree has depth 20.

Using the hash function H we define our pseudorandom function as PRFx(s) :=

H(x‖s), with x, s ∈ {0, 1}256. Specifically the four versions of our PRF are now defined
as follows, with [·]x being the function that truncates its input to a size of x bits:

• PRFaddr
x (s) := H(x‖00‖s), with x ∈ {0, 1}256 and s ∈ {0, 1}254;

• PRFηx(s) := H(x‖01‖0191‖s), with x ∈ {0, 1}256 and s ∈ {0, 1}33;

• PRFµx(s) := H(x‖10‖0191‖s), with x ∈ {0, 1}256 and s ∈ {0, 1}3;

• PRFκx(s) := H(x‖11‖[s]254), with x ∈ {0, 1}256 and s ∈ {0, 1}256.

Consistently with the above defined PRFs, we take our public and secret address
key to have bit length 256. Using this fact we can define the credential commitment
using the Pedersen hash. We will denote the Pedersen hash function as P. Our

2It is slightly more efficient than SHA-256 and has similar level of security.
3See Section 5.4 Concrete cryptographic schemes for the specification.
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Pedersen hash function takes as input a bit string of arbitrary length and outputs an
element in the Jubjub curve as defined in the ZCash protocol [32]. It should be noted
that this hash function is only collision-resistant for fixed-length inputs. Fortunately,
given the fixed size keys and randomness this is not an issue for our implementation.

Given this Pedersen hash function and three pre-defined elements on the Jubjub
Curve J1, J2, and J3 we define our commitment functions as:

COMMcred
scred

(pkaddr‖skaddr) := P(pkaddr‖skaddr) · Jscred
1 ,

with scred ∈ {0, 1}252. Moreover, we define vmax := 264 − 1 for convenience. This
implies that v will have bit length of 64 which is sufficient to denote any existing
amount of fiat currency existing. Consistently, we define c and tδ to have a bit length
of 64 as well. This gives rise to the following construction of a note commitment

COMMnote
snote

(pkaddr‖vnote) := P(pkaddr‖vnote‖tδ) · Jsnote
2 .

Similarly, we define our memory commitment as

COMMmem
smem

(pkaddr‖vmem) := P(pkaddr‖vmem‖cmem) · Jsmem
3 .

Similarly, we define the hash function for our Merkle tree CRH as P, which takes
as input two Merkle nodes and outputs their parent. In order to obtain collision-
resistance we require our input to be of fixed size. When used to compute a parent
Merkle noe, this function is the concatenation of two child Merkle nodes, therefore
our requirement is trivially satisfied. We will now show, that our other instantiations
of CRH also satisfy the fixed input size requirement.

We define CRHmem and CRHnote using P as CRHmem(cmmem, t) = P(cmmem‖t)
and CRHnote(cmnote, t) = P(cmnote‖t). To ensure collision-resistance we also require
these inputs to be of fixed size. The memory commitment is trivially of fixed size,
and we can define the length of t as fixed ourselves. To ensure the ability to store
enough values of time we define our time t to be stored in a 64 bit value. That should
be more than sufficient to store time accurately enough for a long time.

On the other hand, we define our collision-resistant hash CRHsig function to use
H. Because this hash function needs not be encoded inside the arithmetic circuit,
efficiency does not matter as much and we simply choose the more secure option.

Signatures. Both signature schemes, the one used by the admin and the one used
in anonymous transactions can be instantiated using EdDSA [39]. Normally, EdDSA
only provides EUF-CMA security, however if one introduces an additional check on
the domain of the signature [40] it provides SUF-CMA (and thus also SUF-1CMA)
security.
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Encryption and KDF. For the key private encryption scheme we choose to use
ECIES [41], with any appropriate key derivation to derive the user’s private key.
Specifically, we use a SHA-512 derived Hash KDF to generate X25519 key pairs. The
used encryption algorithm is CHACHA20-POLY1305. We choose to adopt ECIES
since it is a standardised and widely adopted scheme with available implementations
and fits our security requirement.

7.3 Arithmetic circuit construction

The four arithmetic circuits as presented earlier in this report form the backbone of
our transaction scheme. Most of the statements in the circuits follow rather straightfor-
wardly from the algorithms and data structures that are used, however some details
require some extra clarification. In this paragraph, we give some more insight in the
design choices that might be somewhat unclear and give some details on how one
could implement these circuits in such a way that actual proofs can be constructed
an verified.

Design choices. One of the choices that was made is allowing a transaction
without an input note, this means that the user only pays with value from the account
balance. This gives the necessary opportunity to allow a user to spend value, without
having an unspent transaction output. One could wonder, if users should also be
allowed to perform a transaction without an output note. We choose not to, since this
would not give rise to a new feature, i.e. the user can just produce an output note
with value 0 to achieve the same thing. This increases the set of notes in the Merkle
tree, which is favourable for anonymity. Hence, it is preferable when users produce
an output note with value 0 instead of allowing for the option of no output note.4

We also choose not to verify the encrypted data fields in the transactions. Firstly,
encryption algorithms are rather complex and would thus require a lot of constraints
in the arithmetic program. This would result in a significant increase in prover and
verifier time. Also, the sender of a transaction has no reason to want to tamper
with the encrypted field, since if the receiver can not use the transaction output the
transferred value is simply lost by the sender. Next to this, other users cannot tamper

4Our scheme functions as a sort of hybrid between the account-based and UTXO model. A full
account-based model would also have been possible, by splitting a note-to-note transaction in a
spend and a receive transaction, where the spend transaction publishes the new note for the receiver.
The receive transaction, subsequently, adds the value of the note to the receiver’s account and
publishes to note nullifier. However, because of the zk-SNARKs involved, this would be less efficient.
Moreover, since sender and receiver are likely to act at almost the same point in time in such a purely
account-based system, resilience against side-channel attacks might be reduced.
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with the data field due to the non-malleability of the message. This leads us to
conclude that there would be no benefits in including this in the zk-SNARK proofs,
whereas there are non-negligible disadvantages.

The XFER arithmetic circuit contains a statement that prohibits a transaction from
being empty, i.e. when there is no value transferred to either the account balance
or the output note. Even though this statement is not strictly necessary, it seems
desirable to include this since it prevents flooding of the blockchain with ‘empty’ trans-
actions. Moreover, this statement is rather efficiently implementable in an arithmetic
circuit and thus has negligible influence on prover and verifier time.

In most of the arithmetic circuits we need to prove membership of a commitment
in the Merkle Tree. In the statements this is defined as the sender knowing a path
from the specific commitment cm to the Merkle root rt of the tree that contains the
commitment. We also need pos to be the position of cm in the Merkle tree. This
path is actually a sorted list of hashes containing all the values of the nodes that are
needed to reconstruct rt from cm. So a path contains as first element the hash (in
this case a commitment) of cm’s sibling, then it contains the hash value of the sibling
of cm’s parent, and the hash of that parent’s sibling, and so on. By recursively taking
hashes over all these values one should eventually end up at rt, which then proves
that cm is indeed contained in the Merkle tree with root rt. The position pos comes
into play when determining whether the current node in the tree is a left or right child
of its parent. In the binary representation of pos a 0 at position i denotes that the
child at level i is on the left, and a 1 denotes that the child is on the right. Hence, we
can use this fact to calculate rt using cm and path and also verify that cm is indeed
at position pos.

The commitment’s position pos is used in the construction the nullifier to a com-
mitment. As far is the authors know, this idea was adopted for the first time in ZCash
Sapling [32]. Since pos is unique for each commitment, and our PRF is collision-
resistant we know that the produced nullifier is unique and deterministic for each
commitment. It needs to be deterministic to prevent double usage of a commitment,
and it needs to be unique to ensure that every commitment can be used at least
once. Together, this implies that each commitment can be used exactly once, which
is precisely the goal of the nullifier for memory cells and notes.

Implementation. Another aspect of the arithmetic circuits used is how to implement
these circuits such that one can actually construct and verify proofs over these circuits.
There is a small number of libraries that implement zk-SNARK logic [42], of which
two seem the most promising: libsnark and bellman. In our opinion bellman is the
better library, it provides more gadgets, has been updated more recently and has
been developed for use in ZCash. Since our protocol is based on the protocol of
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ZCash it seems most efficient to use the bellman library.
Due to the difficulty of implementing circuits of complex hash functions and other

cryptographic primitives, one is mainly limited to using the primitives provided in
bellman. Fortunately, our use case is similar to that of ZCash so the building blocks
that we choose to use are also present in the library.

For completeness, we note that the library uses the BLS12-381 elliptic curve for
implementing zk-SNARKs. It also provides us with the possibility of implementing
elliptic curve arithmetic in an arithmetic circuit efficiently on an embedded curve
inside BLS12-381, otherwise known as Jubjub. This last feature is very useful in
implementing our use of Pedersen hash and commitment functions.

7.4 Performance

Using the bellman library as discussed above, we implemented a proof of concept
of our payment scheme in Rust. This implementation, not only focuses on the zk-
SNARK proof construction, but also implements all other steps in the protocol. This
proof of concept is tested extensively to validate that our protocol works as desired.
Next to this, we use the proof of concept to obtain performance metrics on our
scheme. We will discuss the performance metrics below.

For each type of transaction we will discuss the proof size, SAVER ciphertext
size if present, and the full transaction size. Next to this, we will discuss the relevant
time-related metrics for the zk-SNARK scheme Groth16 and the verifiable encryp-
tion scheme SAVER. These two parts of the transaction time together account for
the significant part of the time measurements. The time it takes to perform other
computations relevant for the payment scheme are implementation dependent and
negligible with respect to Groth16 and SAVER times.

For Groth16 we will discuss the time cost of the parameter generation, proof
construction, and proof validation for all four arithmetic circuits. For the Transfer
transaction the parameter generation time includes the generation of SAVER pa-
rameters. Similarly, the proof generation time of Transfer includes the time of the
ciphertext encryption. The validation will consider the SAVER adapted validation of
the Groth16 proof. Next to this, we discuss the time at takes to decrypt the SAVER
ciphertext and verify that decryption.

In Table 7.1 we list all the relevant sizes of all transactions in our system. Apart
from the RvkAccount transaction as it plays no major role in our payment scheme,
and the size is relatively small compared to the other transactions.

We do note that all size in Table 7.1 are implementation-dependent and could be
made slightly smaller with some minor optimisations or different choices of primitives.
We have set the block size of the SAVER encryption to 2 bytes (16 bits), giving us a
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Transaction type Proof size SAVER ciphertext size Total size
NewAccount 192B - 320B
ConvertTo 192B - 376B
ConvertFrom 192B - 352B
Transfer 192B 1824B 2640B

Table 7.1: The proof size, SAVER ciphertext size (if present), and total transaction
size in bytes for all transaction types.

good trade-off between ciphertext size and decryption speed. With a total plaintext
size of 72 bytes, this gives us a total ciphertext size of 1824 bytes. This is somewhat
larger than we would like, however it is not infeasible. It causes the blockchain to grow
quite sizeable, but not so large that it cannot be stored any longer. For comparison
we note that a shielded transaction in Zcash also has a size of approximately 2000
bytes [32].

The proof size of our SNARK proof is always constant, irrespective of the size of
the statement. This helps in keeping the transaction sizes at a practical level. This
especially helps us to keep the size of the complex Transfer transaction proof within
practical bounds.

The size of a zk-SNARK statement and the time it takes to compute a proof is
best expressed in the amount of constraints required to encode the statement and
the size of the common reference string. These values shown in Table 7.2 for all four
circuits. The size of the SAVER keys for a Transfer transaction are approximately
27.9KiB. It is evident that none of the common reference string sizes are so large
that it is inconvenient to store them locally. All strings could even be easily stored on
a thumb drive or a mobile phone if that were required.

Arithmetic circuit Number of constraints CRS size
CRED 23,148 11.7MiB
CTO 1,972 841.1KiB
CFROM 89,305 42.2MiB
XFER 239,138 100.6MiB

Table 7.2: The number of constraints and the size of the common reference string
(CRS) for each arithmetic circuit.

The number of constraints in a circuit tells us something about the amount of time
it takes to compute and validate a zk-SNARK proof for that circuit. The higher the
number of constrains, the longer the computations take. We show the computation
times of our implementation in Table 7.3. We tried to optimise the computation
times in our implementation as much as possible, but not to every extent. There
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are still some minor optimisations possible regarding the number of constraints and
in parallelising smaller computations. We did not implement these optimisations as
they would not result in significant improvements in any of the computation times.

The computation times in Table 7.3 are the median computation times of 9 runs.
The runs were performed on a Windows 10 desktop PC with a Ryzen 3600 CPU with
6 cores and 12 threads @4.0GHz and dual-channel DDR4 RAM at 3600MHz. The
Rust version is 1.46. No particular effort was taken in preventing other processes
from running at the same time.

As can be seen in Table 7.3 the time it takes to verify a proof is very small. Tens
to hundreds of transactions can be verified in one second, allowing all participants
in the payment scheme to verify all new transactions. Next to this, we see that
the parameter generation times are quite a bit larger. However, as this parameter
generation only needs to be executed once this is not a problem at all.

Table 7.3 also shows us that proof creation does not take up a too large amount of
time. This was also a necessary requirement, since users and administrators should
not have to wait too long before a transaction is completed. A proof time of 0.5 to
2 seconds is more than reasonable in practice. With older hardware this proof time
might increase to 5 to 10 seconds. This would still be acceptable, however not ideal.
We can thus conclude that the proof times are practical, but could be improved upon.

Arithmetic
circuit

Parameter
generation

Proof
creation

Proof
verification

SAVER
decryption

SAVER
decryption
verification

CRED 2.8170 0.2182 0.0029 - -
CTO 0.2566 0.0535 0.0026 - -
CFROM 9.9939 0.8155 0.0030 - -
XFER 24.5045 1.8742 0.0226 0.8799 0.0345

Table 7.3: The median computation time in seconds for zk-SNARK parameter gen-
eration, proof construction, and proof verification for all four circuits. In
the XFER circuit these times also include the complementary SAVER com-
putations. We also show the decryption time and decryption verification
time for the SAVER ciphertext. We take the median value of 9 runs on a
desktop PC with 6 core CPU @4.0GHz and RAM at 3600MHz.

The decryption of a SAVER ciphertext can be performed in under a second, and
the time it takes to verify this decryption is nearly negligible. We do not expect that
both algorithms will be executed many times, and a waiting time of under a second
is more than sufficient for the use case. We are thus more than satisfied with the
efficiency thereof. Increasing the block size of the SAVER ciphertext to decrease
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the ciphertext size is unfortunately not possible. The decryption time increases
exponentially with the block size. Thus, increasing the block size with only a couple
of bits would make the decryption practically infeasible.

All in all, the proof of concept implementation shows that our payment scheme
works as desired. Even though we would like to decrease some elements of the
transaction in computation time and size, the transaction sizes and computation
times are suitable for use in practice.
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Chapter 8

Discussion and future work

8.1 Conclusion

In this thesis we have seen that zero-knowledge proofs and in particular zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are a
very suitable primitive for anonymous payment solutions. Especially, when we expect
a system to do more than anonymously transferring value. We have seen that zk-
SNARKs are useful when making a permissioned, yet anonymous, payment scheme.
Moreover, without zero-knowledge proofs it would be very hard to integrate spend
limits, verifiable encryption, and timelocks in a system without losing anonymity. One
might even say that zero-knowledge proofs should be the primitive of choice for more
advanced anonymous payment schemes.

We have been able to incorporate a spend limit in our payment scheme, without
giving in on transaction anonimity. This spend limit ensures that users cannot anony-
mously spend a lot of money in a short amount of time. Limiting spending behaviour,
together with the ability for know your customer (KYC) in our permissioned payment
scheme, should help a lot in preventing abuse.

When a spend limit turns out to be not sufficient for a user, the user can also use
verifiable encryption to spend more money. With the incorporation of the SAVER
scheme we enable users to enclose transaction details in any transaction. These
transaction details are not visible to any other user of the system. Only a select
set of judges can view these transaction details, if at any later point in time certain
transactions are mistrusted by authorities. The advantage of using SAVER for this
system, is that we do not require a lot of additional computation time for creating a
transaction.

Finally, we have also shown how to introduce anonymous timelocks in our pay-
ment scheme. This can be used to prevent users of just received funds to immediately
spend them. This might be used in future work to enable faster payment schemes,
or escrow systems.

89
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We have also proven security and completeness of our decentralised anonymous
payment scheme in a formal way. These proofs ensure that no user can forge or steal
money, and that published transactions reveal nothing about the sender, receiver, or
transferred value. An implementation of our scheme was also provided to show that
the system actually works in practice and has a more than acceptable performance.
The validation times for our transactions are very low and the creation of a new
transaction only lasts a couple of seconds.

8.2 Discussion

The protocol as introduced in this thesis is a first approach to combining auditability
and anonimity in a permissioned decentralised payment scheme. Even though all
initial requirements are satisfied there is still room for improvement. In this section
we briefly discuss the parts of our solution that we feel could be improved.

Security of our protocol is proven extensively in the appendix. However, the
security could still be improved. The anonimity of our protocol is not quantum-proof or
information-theoretically secure. This implies that a great increase in computational
capacity of adversaries anonimity cannot always be guaranteed. Moreover, not all
building blocks in our protocol are universally composable. Even though unlikely, this
could lead to some compromises in the proved security. Lastly, the used verifiable
encryption scheme SAVER is only IND-CPA and not IND-CCA secure. In the unlikely
case that an adversary manages to let the judges decrypt a lot of chosen ciphertexts,
this might compromise the security.

A disadvantage of our scheme is the common reference string that is created for
our zk-SNARK scheme. This common reference string is the weak spot of security
of this scheme. Knowledge of the generation parameters for this common reference
string would render the created zero-knowledge proofs completely useless. It is
therefore important that this common reference string is created honestly by multiple
parties, and that the used randomness never shared or simply destroyed. The re-
liance on this common reference string is thus not ideal, but relying on a zk-SNARK
scheme without such a string would significantly decrease performance. Addition-
ally, we feel that in our use case the honest generation of this common reference
string and destroying the randomness could be achieved more easily and is more
trustworthy.

Furthermore, the computational efficiency of our scheme especially with regards
to the sender of a transaction could be improved upon. We showed in Section 7.4
that the transaction creation and verification times are suitable for use in practice.
However, the creation time of a transaction is rather large. Most of this time is spent
on generating a zero-knowledge proof. We would like to see the proof generation



8 . 3 . F U T U R E W O R K 9 1

time decrease significantly, without giving in on the security of the proofs. Further
research into other schemes for generating zero-knowledge proofs could possibly
help to improve this.

The size of our SAVER ciphertext in a Transfer transaction is also a bit larger
than desirable with approximately 1.8kB. We would like to decrease this to well
under 1kB. However, as their currently does not exist a SNARK-friendly verifiable
encryption scheme with smaller proof size this is not possible at the moment. It is the
hope of the author that such a scheme will be constructed in the future, as it seems
rather unlikely that the same functionality can be achieved without SNARK-friendly
verifiable encryption.

Finally, one might wonder whether a blockchain, or distributed ledger, is a strict
requirement for our scheme. The short answer would be: no. However, the long
answer is a bit more complex. Namely, using a distributed ledger does simplify
things in the case of multiple administrators that do not want to or are not allowed
to cooperate. This might even be quite likely in the administrators of our case:
financial institutions. A distributed ledger can be combined with a suitable consensus
mechanism to resolve cooperation issues. This also allows for dividing the verification
process amongst multiple parties in order to increase efficiency. Moreover, the use
of a distributed ledger generates distributed control. This might increase the trust of
regular users in the security of the scheme and the honesty of the administrators. In
conclusion, a distributed ledger is not strictly necessary for our scheme but is advised
due to the advantages it provides.

8.3 Future work

Throughout the process of this thesis and after obtaining the results, we also con-
structed some suggestions for future work. The first of these suggestions would be
building a post-quantum secure version of this protocol. This would require special
focus on the used zk-SNARK scheme as it is currently not post-quantum secure. The
adaptation of other primitives should be more straightforward.

On a related note it would also be a good idea to look into simulation-extractable
SNARKs. The security proofs for our scheme only hold separately and it would be
a great improvement to use universal composability to ensure that our system is
secure in general. Simulation-extractable SNARKs are a rather new and interesting
way to ensure that zk-SNARKs can also be used in such proofs.

The final security improvement that could be improved in future work is applying a
transformation on the SAVER encryption scheme to obtain IND-CCA security. One
could for example look into the Fujisaki-Okamoto Transformation [43] to achieve this
stronger notion of security.
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We also have two more suggestions regarding functionality of our payment scheme.
The first one is the implementation of anonymous multi- or threshold-signatures. Cur-
rently, this is a significant feature in many cryptocurrencies and also certain banks
allow for shared accounts. The inclusion of this kind of signatures would be an
interesting step towards a more mature payment scheme.

In this thesis we did not yet really touch upon the use of timelocks. Our last
suggestion actually concerns the use of timelocks for improving transaction speed.
Timelocks could for example be used in realising intermediate off-chain transaction
in a Lightning Network-like fashion. Future research into the use of timelocks in
a similar fashion as for example the Lightning Network is needed to see what the
possibilities are.
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Appendix A

Building Blocks

This chapter of the appendix provides more details to several building blocks that are
used in the digital payment scheme as describe in this report. We begin with dis-
cussing distributed ledgers and cryptocurrencies in order to provide some more back-
ground to the general concept of the payment scheme. Subsequently, some more
background on zero-knowledge proofs and quadratic arithmetic programs (QAPs)
is given. In the last section we present some theory on commitment schemes and
presents an algebraic commitment scheme known as the Pedersen Commitment.

A.1 Distributed ledgers and cryptocurrencies

A distributed ledger is a technology that allows for a consensus on shared data in a
decentralised manner. In our application the data consists of financial transactions,
and the ledger thus contains a history of all transactions of all users. Probably the
most popular way to implement a distributed ledger is by means of a blockchain, as
known from the Bitcoin project [1]. For most decentralised currencies the blockchain
is open to anyone, we call this a permissionless blockchain.

In a permissionless blockchain anyone can join the network, participate in it,
and read or write to the network. There is no verification of someone’s identity or
intentions. This blockchain setting is used in many cryptocurrencies such as Bitcoin
and ZCash.

On the contrary, permissioned blockchains require anyone who wants to join the
network to get approved by the administrators of the network. This option is mostly
used by organisations and enterprises, where it is unwanted for just anyone to read
from or write to the blockchain.

A permissioned network does however not always have to defined so strictly that
you can either do absolutely nothing with the blockchain, or everything. One might
for example want to design a network where everyone can view the blockchain, but
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only a certain set of authorised identities can write to it. This is still considered a
permissioned network, even though it is only partly restricted. [44]

We will now shift our focus to a particular usage of distributed ledger technologies,
namely virtual currencies. A virtual currency as a form of digital payment has gotten
increased popularity and usage in the past decade. The best way to explain how
these so called cryptocurrencies works is by explaining it via Bitcoin, as it was the
first widely adopted implementation thereof. Bitcoin [1], [44], [45] is a decentralised,
i.e. not governed by a single entity or small group of entities, virtual currency. This
decentralisation is achieved by making use of a distributed ledger, frequently called
blockchain. Before describing how such a blockchain works, we will firstly describe
the setup in which Bitcoin can be used.

Suppose Alice wants to transfer a (digital) coin to Bob, she can do this by generat-
ing a signed statement stating “I, Alice, transfer 1 coin to Bob.”. She then announces
this publicly, i.e. to everyone else in the community that uses the coin, and therefore
everyone agrees that Bob got a coin from Alice. In Bitcoin, such a signed contract is
called a transaction. The statement contains the address of the sender (Alice), the
address of the receiver (Bob), the amount of the currency that is being transferred,
and a signature from Alice. This signature is computed using the public-private key
pair of Alice, such that everyone in the community can verify that Alice approved this
particular transaction, and that no one has altered it. Everyone in the community
can store this transaction in his or her copy of the (decentralised) ledger. There is
however a subtlety that is missing in this approach. It might be possible for someone
to replay this message. Does this mean that Alice wants to send the same amount
of currency to Bob again, or is it a malicious replay?

Figure A.1: Schematic depiction of a Bitcoin transaction [45].
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In order to prevent this Bitcoin made its transactions a little bit more complex, as
can be seen in Figure A.1. Each transaction (tx) has a transaction hash txHash,
which is a hash of all the information in the transaction, and several inputs and out-
puts. Each input links to the output of a previous transaction by means of the previous
transaction hash prevTxHash and the index of the output in that previous transaction
index. Furthermore each input has a signature scriptSig which proves that the
sender, or set of senders in the case of a multi-signature (multisig) transaction, actu-
ally wants to send the money. lockTime can be used to specify a timelock, i.e. make
the output value only usable from a certain moment in the future. Each output has a
value value, i.e. the amount of currency, and an address of the receiver of the money
scriptPubKey. This address might be different for every output. It should always
hold that the sum of the input values is larger than or equal to the sum of the output
values. The difference between the two is a transaction fee. Once a transaction is
published, the peers in the community should check if the transaction is correct, i.e.
the hash is correct, the signatures are good, the values add up, and the inputs have
not yet been spent before. If all this is the case, they should add the transaction
to their own copy of the ledger. This last check is necessary to prevent so called
double-spending.

Double-spending a cryptocurrency means spending the same coin or using the
same transaction multiple times. With a physical currency this is very hard, because
copying a physical banknote is extremely difficult, however digital currencies are
rather easy to copy. Fortunately, most cryptocurrencies have a lot of measures
in place to prevent this from happening, such as signing your transaction, as well
as other nodes checking if a transaction has not been used before. But now the
question rises, how do the participants structure the connections between and state
of transaction inputs and outputs in a meaningful way?

Figure A.2: Schematic (and simplified) depiction of a blockchain [45].

The blockchain was introduced to solve this problem. Simply said, a blockchain
aggregates transactions in blocks, whereas these respective blocks together form
one big chain representing the ledger of this particular currency. A simplified version
of such a blockchain is shown in Figure A.2. A block in a blockchain contains several
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values. Firstly, it has a BlockHash, which is a hash over all values in the block,
ensuring integrity. For Bitcoin, a hash should be smaller than a certain number. In
order to achieve this, every participant in the network keeps trying different values for
the Nonce until this is achieved. When this is achieved he or she publicly announces
the block as is, and everyone in the network can verify the block and come to the
consensus that it should be added to the block chain ledger. They then start to collect
new transactions and build a new block. In Bitcoin the transactions are aggregated
per 10 minutes.

Figure A.3: Schematic (and simplified) depiction of a small Merkle Tree [45].

A block contains several more important values, among others it contains a
pointer to the previous block, PrevBlockHash and a time at which it was announced.
Moreover, it contains the transaction details in the form of a Merkle Tree, as shown
in Figure A.3. In order to make finding a transaction more easy, every transaction
contains a reference MerkleRoot, which points to the root of Merkle Hash Tree. But
how exactly do peers in the network keep their ledgers consistent with one another?

A new block is added to chain when consensus has been reached. In case of
ambiguity, or multiple branches on a chain, the participants select the longest chain
of blocks. This method prevents most attacks, since constructing one new block is
very time consuming. Namely, one needs to find the right value of the Nonce, such
that the BlockHash value is low enough. Finding this value takes a lot of time, but
verifying is relatively simple. This is also the reason why this method is called Proof-
of-Work: finding a new block consumes a lot of electricity and therefore money. It
is thus economically irrational to try and create a long false chain of blocks, since
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the costs outweigh the benefits. For completeness, an overview of the entire Bitcoin
Protocol is shown in Figure A.4.

The workings of Bitcoin [1] as explained above, make it rather clear that it was
invented for the sole purpose of transferring value, with the possible addition of some
really simple extra requirements on the money by the means of small scripts. More-
over, Bitcoin also provides a weak form of anonymity, through the use of pseudonyms
which cannot be directly related to a specific electronic device or person. However,
with a bit of analysis it becomes rather easy to trace a subset of transactions back to
a single person. Similar to Bitcoin, most of the cryptocurrencies currently out there
also have the same goal and level of anonymity, though there is a set of exceptions.

Figure A.4: Steps in the Bitcoin Protocol [45].

A.2 Proving of Knowledge

One of the arguments that is generally used for showing that a certain language L
is in NP is showing the existence of a proof system for that language. Such a proof
system can be visualised as a prover (not computationally bounded), who supplies
a certain certificate, or proof, π on input x, which attests to the fact that x ∈ L. The
verifier should then be able to verify, in polynomial time, with help of the proof π that
indeed x ∈ L. Please note that the prover should only be able to verify such a proof
π when x ∈ L. A generalisation of such interactive proof systems is provided by
the class IP, i.e. the class of languages for which such interactive proof systems
exist. It has later been proven that IP = PSPACE, and thus NP ⊆ IP. This implies
that interactive proof systems exist for all problems in NP, including NP-complete
problems. The two required (informal) properties for an interactive proof system are
the following:
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• Correctness. A prover that knows the witness for a given true statement should
be able to (efficiently) convince the verifier thereof;

• Knowledge soundness. A prover that does not know the witness to a given
statement should not be able (with a more than negligible probability) to con-
vince the verifier that he or she does know the witness.

These definitions state explicitly that the prover should (or should not) know a
witness. This is needed for the proof to be a proof of knowledge. If the prover does
not know a witness, he or she might still be able to proof the correctness of the
statement, we call this a proof of membership. An example stating this difference
is that of a proof of knowledge of a hash pre-image, i.e. a proof that the prover
knows the input to a hash function for a given hash. This is different from the proof
of membership that would only proof that a given hash has a pre-image, which for
most hash functions is a trivial statement.

Zero-knowledge proofs

In 1989 Goldwasser, Micali, and Rackoff [46] introduced the privacy-preserving proof
of knowledge technique, otherwise known as zero-knowledge proofs. These zero-
knowledge proofs enable a prover to proof to a verifier his or her knowledge about
a witness that will evaluate a given statement to true, without revealing this witness.
These zero-knowledge proofs are interactive proofs with one extra requirement. They
should in addition to completeness and soundness also satisfy the following (informal)
definition:

• Zero-Knowledgeness. The proof should not reveal anything other than the
fact that the prover has a witness for the given statement, it should especially
not reveal any information about the witness.

The addition of this extra property leads to the definition of a new complexity
space CZK (Computational Zero-Knowledge). It has been proven that NP ⊆ CZK.
Moreover we know that CZK = IP = PSPACE, if one-way functions exist. This fact
implies that we can use these proofs to ensure, in zero-knowledge, that someone
knows the solution to a problem that is hard, e.g. NP-complete, to calculate. An
example of this is proving knowledge of the discrete logarithm, or prime factorisation
of a large composite number, which would be computationally infeasible to calculate.
A verifiable proof of knowledge implies that someone actually constructed this group
element, or composite number. Zero-knowledgeness implies that the constructor, or
prover, can prove that he or she constructed the value without revealing how. Useful-
ness of this comes from the fact that the discrete logarithm or prime factorisation is
generally used in cryptographic protocols, such as asymmetric cryptography.
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As a side remark, we note that a zero-knowledge proof, or ZKP, can be either
transferable or deniable. A transferable proof can be passed on to other verifiers
who can also verify that the original prover actually had knowledge of the correct
witness. This setting is convenient in a distributed ledger settings, since the prover
wants everyone to be able to verify his or her statement. In some cases this might
be unwanted, in the sense that a prover wants to proof to a single verifier his or her
knowledge, and later plausibly deny that he or she constructed this proof. Such a
proof is called deniable.

One of the problems with standard (interactive) zero-knowledge proofs is the
amount of communication that is necessary for a single proof. Therefore we want to
transform an interactive zero-knowledge proof into a non-interactive zero-knowledge
proof, or NIZK. One of the most popular and early techniques to do this is the Fiat-
Shamir heuristic [47]. It should be noted that this technique can only be used to
transform public-coin protocols. In the article, the authors propose the use of a non-
interactive random oracle in order to remove communication. However, since these
are uninstantiable, they are replaced by cryptographic hash functions in practical
applications.

A.3 Arithmetic circuits and QAPs

An F-arithmetic circuit is a circuit consisting of only addition and multiplication gates
for which the inputs are all elements of the finite field F. Each gate has exactly two
input wires and one output wire. Some of the input wires are part of the statement,
the public inputs, the other wires are all part of the witness, the auxiliary variables.
When all wire values, or variables, are chosen properly, i.e. all values fit the gates,
we consider the circuit to be satisfied.

A circuit can also be depicted by a set of quadratic arithmetic constraints. We
define one input variable as a0 = 1, used for representing a constant wire value, and
denote the other variables, the wire values, as a1, . . . , am, where m is the number
of non-constant wires. The arithmetic circuit that belongs to the relation R can be
represented by a set of n equations of the form∑

i

aiui,q ·
∑
i

aivi,q =
∑
i

aiwi,q,

where ui,q, vi,q, wi,q are the constants (in F) of the qth equation.
The multiplication and addition gates that are used in an F-arithmetic circuit can

easily be mapped to these equations. A multiplication gate with input ai, aj and
output ak, can be modelled with one constraint as ai · aj = k. An addition gate does
not require an extra constraint, due to the sums in the constraints. For example, if
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ai + aj = ak and ak · al = am, we model this with one constraint as (ai + aj) · al = am

and neglect the variable ak.
These quadratic constraints can be transformed in an Quadratic Arithmetic Pro-

gram (QAP), given that F contains sufficient unique elements. Given n constraints,
as defined above, we pick n distinct values r1, . . . , rn ∈ F arbitrarily, and define our
target polynomial as t(x) =

∏
q(x− rq). Furthermore, we define ui(x), vi(x), wi(x) to

be the n− 1 degree n− 1 polynomials such that

ui(rq) = ui,q, vi(rq) = vi,q, wi(rq) = wi,q, for all 0 ≤ i ≤ m, 1 ≤ q ≤ n,

by means of Lagrange interpolation. We now have that our previous n constraints
can be rewritten to the following n equations in the points {rq}nq=1:∑

i

aiui(rq) ·
∑
i

aivi(rq) =
∑
i

aiwi(rq).

Since, t(X) is the lowest degree monomial with t(rq) = 0 for all rq, we can reformulate
these equations into one big QAP as∑

i

aiui(X) ·
∑
i

aivi(X) ≡
∑
i

aiwi(X) mod t(X).

In this QAP a1, . . . , a` ∈ F are the public inputs and a`+1, . . . , amF are the auxiliary
inputs. [20], [21]

A.4 Commitments

Suppose Alice wants to play “rock-paper-scissors(-lizard-spock)” over the phone with
Bob. When playing this game in real-life, Alice and Bob just make and show their
choice simultaneously. However on the phone they have to decide who goes first.
There is one problem with this, if Alice (resp. Bob) goes first, Bob (resp. Alice)
can just make such a choice that he (resp. she) always wins, since he (resp. she)
can adapt to Alice’s (resp. Bob’s) choice. A way to solve this problem is by means
of a commitment, i.e. both Alice and Bob tell one another a commitment to their
choice, in any order, which hides their choice. They then reveal how they made
this commitment, and can figure out who won. Of course, neither player should
be able to change their original decision, thus a commitment needs to be binding.
In short, a proper commitment scheme c = C(x, r) should satisfy the following the
definitions [36]. In these definitions P denotes the plaintext domain, and R the
randomness domain, i.e. C(·, ·) is the commitment function, that takes plaintext x,
and randomness r as input, and outputs commitment c.



A . 4 . C O M M I T M E N T S 1 0 7

Definition 1 (Binding). A commitment C is said to be information-theoretically (resp.
computationally) binding if no infinitely powerful (resp. computationally bounded)
adversary can win the binding game (with a non-negligible probability):

• The adversary outputs values x ∈ P, r ∈ R.

• The adversary wins the game if she is able to output values x′ ∈ P : x′ 6= x, and
r′ ∈ R, such that C(x, r) = C(x′, r′).

Definition 2 (Hiding). A commitment scheme C is said to be information-theoretically
(resp. computationally) hiding if no infinitely powerful (resp. computationally bounded)
adversary can win the following game (with a non-negligible advantage):

• The adversary outputs two messages x0, x1 ∈ P of equal length.

• The challenger generates r ∈R R and a bit b ∈R {0, 1}.

• The challenger computes c = C(xb, r), and sends c to the adversary.

• The adversary wins the game if she correctly guesses the bit b.

The advantage of the adversary is defined as

Advantage = 2

∣∣∣∣P [Adversary wins the hiding game]− 1

2

∣∣∣∣ .
We should note that there exists no commitment scheme that is both information-

theoretically binding as well as information-theoretically hiding. One of the most used,
additively homomorphic, commitment schemes is known as the Pedersen commit-
ment. This scheme is computationally binding (under the discrete-log assumption)
and information-theoretically hiding. It is defined, for a finite abelian group G = 〈g〉
of prime order and h ∈ G, as C(x, r) = hxgr.
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Appendix B

Security games and definitions

In this appendix chapter we list the formal definitions of the existing cryptographic
building blocks that we use. Some security games, that play a part in our proofs in
Appendix C, will also be described. An informal description of all building blocks and
their definitions is already provided in Chapter 2.

zk-SNARK.1 There are four definitions that a zk-SNARK needs to adhere to: com-
pleteness, succinctness, knowledge soundness, and zero-knowledgeness. Let R be
a relation generator that given a security parameter λ in unary returns a polynomial
time decidable binary relation R. For any pair (x, a) ∈ R we call x the statement and
a the witness. We define Rλ to be the set of possible relations R, that the relation
generator may output given 1λ. R might output some additional information z, which
will be given to the adversary. A zk-SNARK forR is a tuple of probabilistic polynomial
algorithms (Setup,Prove,Verify, Sim) such that:

• (crs, τ)← Setup(R): The setup produces a common reference string crs and a
simulation trapdoor τ for the relation R;

• π ← Prove(R, crs, x, a): The prover takes as input the common reference string
crs, statement-witness pair (x, a) ∈ R and returns an argument (or proof) π;

• 0/1← Verify(R, crs, x, a): The verification algorithm takes as input the common
reference string crs, statement x, and argument π and returns 0 (reject) or 1
(accept);

• π ← Sim(R, τ, x): The simulator takes as input the simulation trapdoor τ and
statement x and returns an argument π.

A zk-SNARK should satisfy the definitions below. We give the ‘computational’
forms of the definitions, they can be easily extended to the ‘perfect’ forms by replacing
≈ by =.

1We take the definition from [20] and [18].
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Definition 3 (Completeness). Completeness implies that, given any true statements,
an honest prover should be able to convince an honest verifier. In other words: for
all λ ∈ N, R ∈ Rλ, (x, a) ∈ R:

P [(crs, τ)← Setup(R);π ← Prove(R, crs, x, a) : Verify(R, crs, x, π) = 1] ≈ 1.

Definition 4 (Zero-knowledgeness). An argument is zero-knowledge if it does not
leak any information besides the truth of the statement. We say that (Setup,Prove,
Verify, Sim) is zero-knowledge if for all λ ∈ N, (R, z) ← R(1λ), (x, a) ∈ R and all
adversaries A:

P [(crs, τ)← Setup(R); πProve(R, crs, x, a) : A(R, z, crs, τ, π) = 1]

≈ P [(crs, τ)← Sim(R);πProve(R, crs, x) : A(R, z, crs, τ, π) = 1] .

Definition 5 (Knowledge soundness). We call (Setup,Prove,Verify, Sim) an argu-
ment of knowledge if there is an extractor E that can compute a witness whenever
the adversary produces a valid argument. The extractor gets full access to the adver-
sary’s state, including any random coins. Formally, we require that for all non-uniform
polynomial time adversaries A there exists a non-uniform polynomial time extractor
E such that:

P

[
(R, z)← R(1λ); (crs, τ)← Setup(R); ((x, π);w)← (A‖E)(R, z, crs) :

(x, a) 6∈ R and Verify(R, crs, a, π) = 1

]
≈ 0.

Definition 6 (Succinctness). We call (Setup,Prove,Verify, Sim) a succinct argument
if the proof size and verification time are scale poly-logarithmically in the statement.
Let y := (M,x, t) be the instance, |w| ≤ t, and M the Turing machine that accepts
(x, a) after at most t steps. Given π ← Prove(R, crs, x, a), R ∈ Rλ, (x, a) ∈ R, both the
length of π and the running time of Verify(R, crs, x, π) should be bounded by

p(k + |M |+ |x|+ log t),

where p is a universal polynomial that does not depend on R.

Commitment schemes. There are two definitions that a commitment scheme needs
to have: binding and hiding. Below, we repeat the definitions form Appendix A.4 for
easy of use. For more information on commitment schemes we refer the reader to
that section of the appendix.

Definition 7 (Binding). A commitment C is said to be information-theoretically (resp.
computationally) binding if no infinitely powerful (resp. computationally bounded)
adversary can win the binding game (with a non-negligible probability):
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• The adversary outputs values x ∈ P, r ∈ R.

• The adversary wins the game if she is able to output values x′ ∈ P : x′ 6= x, and
r′ ∈ R, such that C(x, r) = C(x′, r′).

Definition 8 (Hiding). A commitment scheme C is said to be information-theoretically
(resp. computationally) hiding if no infinitely powerful (resp. computationally bounded)
adversary can win the following game (with a non-negligible advantage):

• The adversary outputs two messages x0, x1 ∈ P of equal length.

• The challenger generates r ∈R R and a bit b ∈R {0, 1}.

• The challenger computes c = C(xb, r), and sends c to the adversary.

• The adversary wins the game if she correctly guesses the bit b.

The advantage of the adversary is defined as

Advantage = 2

∣∣∣∣P [Adversary wins the hiding game]− 1

2

∣∣∣∣ .
Hash function. In our protocol we often use hash functions. Those hash functions
are required to be collision-resistant. Below we give the definition thereof.

Definition 9 (Collision-resistance). A hash function H is collision resistant if for all
probabilistic polynomial-time adversaries A the advantage in the following game is
negligible:

• The adversary is given an instantiation of the hash function H should output a
pair x and x′.

• The adversary wins the game if x 6= x′ and H(x) = H(x′).

Pseudo-random functions. These functions form a big part of our protocol. Often,
we require them to be collision-resistant next to being a proper PRF. The definition
for collision-resistance is the same as that for hash functions. A definition for secure
PRF’s, that includes the PRF game is given below.

Definition 10 (Secure PRF). A function family {Fk}K : D → C, with key space K

is a secure PRF-family if no probabilistic polynomial-time adversary A has a non-
negligible advantage in the following game:

• The challenger randomly selects a bit b ∈R {0, 1}.

• The adversary is allowed to query, as many times as desired, an oracle OFk
that on input x ∈ D returns the following value for y:(1) if x was seen before,
return the same value y as before; (2) if b = 0 then y ∈R C; or (3) if b = 1 then
return y ← Fk(x).
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• The adversary ends the game by returning a bit guess b′.

• If b′ = b the adversary wins the game.

The advantage of the adversary is defined as

Advantage = 2

∣∣∣∣P [Adversary wins the PRF game.]− 1

2

∣∣∣∣ .
Signature scheme. Below, we give a definition for a SUF-CMA secure signature
scheme. Remember that a signature scheme has the following functions:

• (pk, sk)← KeyGen(): The key generator returns a public pk and private sk key
pair.

• σ ← Signsk(m): The signature algorithm returns a signature σ, when given a
message m ans signature key sk.

• 0/1 ← Verifypk(σ,m): The verification algorithm returns a 0 (accept) or 1 (re-
ject), when given a verification key pk, signature σ, and message m.

Definition 11 (SUF-CMA). We call a signature scheme SUF-CMA secure if no prob-
abilistic polynomial-time adversary can win the following game with non-negligible
probability:

• The challenger generates a key pair (pk, sk) ← KeyGen() and sends pk to the
adversary.

• The adversary is allowed to sign arbitrary messages m, as many times as
desired, using the signature oracle Osig, that on input m returns σ ← Signsk(m)

and stores m.

• The adversary ends the game by returning a message-signature pair (m,σ).

• The adversary wins the game if Verifypk(σ,m) = 1 and (m,σ) has not been
seen before.

In our proofs we also use the SUF-1CMA definition. The only difference with
SUF-CMA security is that the adversary is only allowed to call Osig once.

Encryption scheme. Below, we give a definition for a IND-CCA and IK-CCA se-
cure asymmetric encryption scheme. In these definitions we also give the IND-CCA
and IK-CCA game definitions. Remember that an asymmetric encryption scheme is
comprised of the following algorithms:

• (pk, sk)← KeyGen(): The key generator returns a public pk and private sk key
pair.
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• c ← Encpk(m): The encryption algorithm returns a ciphertext c, when given a
plaintext message m and encryption key pk.

• m← Decsk(c): The decryption algorithm returns the original plaintext m, when
given a decryption key sk and ciphertext c.

Definition 12 (IND-CCA). We call an encryption scheme IND-CCA secure, if no
probabilistic polynomial-time adversary can win the following game with a non-
negligible probability:

• The challenger generates a key pair (pk, sk) ← KeyGen() and sends pk to the
adversary.

• The adversary outputs two messages m0,m1.

• The challenger generates a random bit b and returns the ciphertext c∗ ←
Encpk(mb).

• The adversary is allowed to decrypt arbitrary ciphertexts c 6= c∗, using the
oracle Odec, that on input c 6= c∗ returns m← Decsk(c).

• The adversary ends the game by returning a bit guess b′.

• The adversary wins the game if b′ = b.

The advantage of the adversary is defined as

Advantage = 2

∣∣∣∣P [Adversary wins the IND-CCA game.]− 1

2

∣∣∣∣ .
Definition 13 (IK-CCA). We call an encryption scheme IK-CCA secure, if no prob-
abilistic polynomial-time adversary can win the following game with a non-negligible
probability:

• The challenger generates two key pair (pk0, sk0)← KeyGen() and (pk1, sk1)←
KeyGen() and sends pk0 and pk1 to the adversary.

• The adversary outputs a messages m.

• The challenger generates a random bit b and returns the ciphertext c∗ ←
Encpkb(m).

• The adversary is allowed to decrypt arbitrary ciphertexts c 6= c∗, using the oracle
Odec

0 respectively Odec
1 , that on input c 6= c∗ returns m ← Decsk0(c) respectively

m← Decsk0(c).

• The adversary ends the game by returning a bit guess b′.
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• The adversary wins the game if b′ = b.

The advantage of the adversary is defined as

Advantage = 2

∣∣∣∣P [Adversary wins the IND-CCA game.]− 1

2

∣∣∣∣ .



Appendix C

Security proofs

Below, we will present the definition of the several security aspects as translations
of the requirements. Moreover we will prove that our payment scheme Π satis-
fies these security definitions one by one. From now on Π will be used to denote
the following set of functions (Setup, CreateAccount, AddAccount, RevokeAccount,
ConvertToNote, ConvertFromNote, CreateTransaction, VerifyTransaction,
ReceiveTransaction) that together form the payment scheme as defined in this doc-
ument. We note that all the proofs as presented below, only hold separately since
not all of our building blocks our universally composable. On the other hand, we have
no reason to assume that this results in any practical threat against the security of
our scheme.

We first present the completeness, ledger indistinguishability , transaction non-
malleability , and balance proofs and definitions. These proofs and definitions are
very similar to the ones provided in the original Zerocash publication [16]. However,
we do fix some issues and inconsistencies and work the proofs out in more detail.
The subsequent proofs and definitions for spend limit , access control , accountability ,
and timelock are all completely original and were, as far as the author knows, first
introduced in this thesis.

Throughout these proofs we will refer to five different types of transactions pub-
lished on the blockchain, see also Section 5.1. We briefly repeat the types below to
improve legibility:

• Transfer : A regular note-to-note transaction, produced by CreateTransaction;

• NewAccount : New credential commitment that is added to the Credential
Merkle tree, produced by AddAccount;

• RvkAccount : Credential commitment that is removed from the Credential Merkle
tree, produced by RevokeAccount;
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• ConvertTo: Conversion to anonymous note from fiat currency, produced by
ConvertToNote;

• ConvertFrom: Conversion from anonymous note to fiat currency, produced by
ConvertFromNote.

C.1 Completeness

To show that Π is complete, we show that no polynomial-sized adversary A has
a non-negligible advantage in the completeness game COMP. First we give the
definition of completeness, we then describe the completeness game and end with
a proof that shows that our scheme is complete.

Definition 14 (Completeness). We call a payment scheme Π complete if, for ev-
ery poly(λ)-time adversary A and sufficiently large λ, AdvCOMP

Π,A (λ) < negl(λ), with
AdvCOMP

Π,A (λ) := P [COMP(Π,A, λ) = 1] being A’s advantage in the completeness
game.

Game (COMP). The definition of the completeness game COMP is as follows. Given
a scheme Π, an adversary A, and a security parameter λ, the game consists of
interactions between A and a challenger C. This interaction terminates with an
output bit from C. Finally, let L≤tx denote the ledger containing tx and all transaction
that were posted before tx. At the start of the game the challenger performs the
setup of Π, i.e. he computes pp := Setup(λ), and sends pp to A. Subsequently, A
sends a ledger L, one pair of admin credentials credadm and a proposed transaction
tx to C. This transaction tx can be one of the five types as defined in the start of this
chapter. The proposed transaction contains the following values, depending on the
type:

• Transfer : input note noteold, input memory cell memold, ceiling memory cell
memceil, sender credentials cred, new note value vnew

note, receiver credentials
crednew, info string info, boolean value for including SAVER encrypted values
bsaver, lock time new note tδ;

• NewAccount : secret address key skaddr;

• RvkAccount : credential commitment cmcred;

• ConvertTo: new note value vnew
note, receiver credentials cred, info string info;

• ConvertFrom: input note noteold;
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On receiving pp, L, credadm and tx, C first checks the valid construction of pp and
credadm. Depending on the type of tx, C does the following additional checks:

• Transfer (1) The input note noteold, input memory cell memold, and ceiling mem-
ory cell memceil are well-formed or are ⊥; (2) Not more than one of noteold and
memold equals ⊥; (3) If memold = ⊥ then memceil = ⊥; (4) The sender and
receiver credentials cred and crednew are well-formed; (5) The commitment to
the input note appears in a transaction tx∗ in L; (6) tx∗ is well-formed and
noteold = ReceiveTransaction(pp, tx∗, cred, L≤tx∗); (7) The balance equation is
satisfied vnew

note ≤ vold
note + vold

mem; (8) memceil is old enough, i.e. tceil
mem < tnew − T 1, or

memceil = ⊥, or bsaver = 1; (9) The transaction limit is satisfied: cnew − cceil ≤ L

or bsaver = 1; (10) The input note is ‘unlocked’: told
note + told

δ ≤ tnew; and (11) The
input note noteold and input memory cell memold have not yet been used as an
input in any transaction on L2. This can be checked using E , the zk-SNARK
extractor for A, to compute witnesses for all transactions on L that contain the
nullifier for the input note or memory cell. If the extractor fails to output a valid
witness for any of the transactions on L, C aborts and outputs 1;

• ConvertFrom (1) The input note noteold is well-formed; (2) The value tδ of the
input note noteold is equal to 0; and (3) The input note noteold has not yet been
used as an input in any transaction on L. This can again be checked using E ,
the zk-SNARK extractor for A, to compute witnesses for all transactions on L
that contain the nullifier for the input note. If the extractor fails to output a valid
witness for any of the transactions on L, C aborts and outputs 1;

• For any of the other transaction C performs no additional checks.

If any of the above tests fail, C aborts and outputs 0. Else C computes rtcred,
rtnote, and rtmem over all valid transactions on L, i.e. for which VerifyTransaction
returns true. If necessary, C also obtains the transaction time tnew, and computes
vnew

mem in such a way that the balance equation is fully satisfied. Subsequently C uses
the algorithm corresponding to the transaction type to compute the transaction tx
as proposed by A. For the input values C uses the values received from A and if
necessary the just computed values. Finally, C outputs 1 if and only if any of the
following conditions hold, otherwise C outputs 0:

• tx is not well-formed, Verifytransaction(pp, tx, L) does not return true;

• In the case of a Transfer transaction, ReceiveTransaction(pp, tx, crednew, L)

does not return notenew.
1T is the fixed time limit as introduced in Section 4.7.
2L is the fixed spend limit as introduced in Section 4.7.
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Remark. In the last case, we do not need to check if the receiver is able to spend
this newly received note. For otherwise, A would then have added the proposed
transaction to the ledger itself and asked C to spend the newly received note, and
thus winning the game with larger probability.

Theorem 1. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The zk-SNARK scheme has computational knowledge soundness;

• PRF is a collision-resistant function;

• All used primitives, PRF, COMM, CRH, and the zk-SNARK scheme, satisfy
their respective completeness properties;

is complete.

Proof. To prove the theorem we make a case distinction based on the transaction
type. But before we do so, we note that the probability that A wins this game by
failure of the zk-SNARK extractor E is negligible in λ. This follows directly from the
knowledge soundness of our zk-SNARK scheme. Thus, it only remains to show that
probability with which A wins the game when E does not fail is negligible. We do this
be showing per case that the probability that A wins is negligible.

Transfer. The computed transaction tx has the following form (rtmem, rtnote, rtcred,

k, κ, η, µ, cmnew
note, cmnew

mem, t
new, πXFER, datanew

note, datanew
mem, datasaver, pksig, σxfer). We will first

show that tx is well-formed. The Merkle roots rt∗ are trivially well-formed, and com-
puted from the same state of the ledger. The correctness of k follows from the
correctness of CRHsig. Similarly, the correctness of κ, η, µ follows from the correct-
ness of PRF. Moreover, the correctness of both output commitments cmnew

∗ follows
directly from that of their respective commitment schemes COMM∗. Moreover, C
chooses tnew on its own and simply selects the correct current time.

The correctness of the above discussed public inputs, combined with the verified
assumptions, lead us to conclude that the zero-knowledge proof π is valid as well.
Moreover, the correctness of the transaction signature follows directly from the cor-
rectness of the used signature scheme. Similarly, the enclosed data in both datanew

∗

fields can also be decrypted correctly given the secret key, due to correctness of
the encryption scheme and the verified correctness of cred. Analogously, due to the
correctness of the SAVER scheme datasaver can also be decrypted using the SAVER
secret and verification key.

From the above argumentation and the initial checks performed by C, we see that
the only way left in which A wins the game is the option that either η or µ appears
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in a valid transaction tx′ on L. Therefore, it remains to show that this probability is
negligible in λ. To the contrary, suppose that there exists a valid transaction tx′ on
L with η′ = η, then either one of two cases holds: (1) η′ = PRFηsk′addr

(pos′note); or (2)
η′ 6= PRFηsk′addr

(pos′note). Firstly, we know by the initial checks that noteold has not been
spent yet, implying that pos′note 6= posnote. Therefore, case (1) implies that a collision
in PRF has been found. Because PRF is collision-resistant this can only happen
with a probability negligible in λ. Case (2) implies that the (knowledge) soundness
property of the zk-SNARK scheme has been broken, however the used zk-SNARK
scheme has computational (knowledge) soundness this can happen with negligible
probability. Thus we can conclude that only with negligible probability, η′ = η. The
proof for negligible occurrence of the event µ′ = µ is analogous.

From the above argumentation it follows that A cannot win this case with a non-
negligible advantage.

ConvertFrom. The computed transaction tx has the following form (rtnote, η, pkaddr,

πCFROM, σcfrom). We will show that tx is well-formed. The Merkle root rtnote is trivially
well-formed. The correctness of η follows from the correctness of PRF and the fact
that pkaddr is a valid admin public address key stems from the initial checks. This fact,
together with the initial checks ensures us that πCFROM will also verify correctly. Next
to this, the validness of the signature follows form the correctness of the signature
scheme. The only way in which A can now the game is the option that η already
appears on another transaction tx′ on L. From a proof that is identical to the previous
case we conclude that this can only happen with negligible probability.

Other. For all other transactions it is easy to check that the fact that A can only win
with negligible probability, follows directly from the correctness of the building blocks
and the initial checks performed by C.

From the above case distinction and our initial argument it follows that A cannot win
the COMP game with a non-negligible advantage.

C.2 Payment oracle

For the remaining security proofs we require an oracle that allows for simulation of
honest users of our payment scheme Π. To be more precise, an adversary A should
be able to send queries to this oracle. As response to these queries the oracle
should either elicit behaviour of honest users and administrators on the blockchain,
or insert transactions of users and administrators under A’s control.
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The payment scheme oracle Opay is initialised with public parameters pp and one
pair of honest admin credentials credadm constructed by a run of Setup. In reality,
there could me multiple honest admins, however for the proofs it suffices to simulate
all these admins as one entity with one key pair. Next to this, the oracle stores five
data structures, all of which are initially empty:

• a ledger L;

• a list of admin credentials under A’s control ADMIN;

• a list of credentials ADDR;

• a list of memory cells MEM;

• a list of old memory cells MEM-OLD

• a list of notes NOTE.

The oracleOpay accepts several different query typesQ3, to which we describe the
responses below. All queries, apart from Insert(admin), elicit behaviour of honest
users that call the algorithm from Π with the same name. An Insert query is used to
insert any transaction that was created by a user underA’s control. The InsertAdmin
transaction is used to add a new administrator to the system with credentials credadm

4

who is under control of the adversary A. Note that, because the honest admin owns
at least one of the shares of the SAVER secret key sksvr, A cannot decrypt any of the
SAVER ciphertexts datasaver.

• Q = (InsertAdmin, credadm)

1. Verify that credadm is a valid set of administrator credentials, else abort.

2. Add credadm to ADMIN.

• Q = (CreateAccount)

1. Compute (cred, txcred) := AddAccount ◦ CreateAccount(pp).

2. Add cred to ADDR.

3. Add txcred to L.

• Q = (RevokeAccount, pkaddr)

1. Compute rtcred.

2. Compute txrvk := RevokeAccount(pkaddr, rtcred, credadm).

3The first entry of a query tuple is its type, the entries after that are input values.
4These credentials can be generated using the steps of the AddAdmin algorithm.
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3. Remove cred belonging to pkaddr from ADDR.

4. Add txrvk to L.

• Q = (ConvertToNote, vnew
note, pknew

addr, pknew
enc , info)

1. Compute (notenew, txcto) := ConvertToNote(pp, vnew
note, pknew

addr, pknew
enc , info, credadm).

2. Add notenew to NOTE.

3. Add txcto to L.

• Q = (ConvertFromNote, idxold)

1. Let cmold be the idxold-th note commitment on L.

2. Let noteold be the first note on NOTE with commitment cmold.

3. Verify that the public address of noteold is that in credadm, else abort.

4. Compute rtnote.

5. Compute txcfrom := ConvertFromNote(pp, noteold, rtnote, credadm).

6. Verify that VerifyTransaction(pp, txcfrom, L) returns true, else abort.

7. Remove noteold from NOTE.

8. Add txcfrom to L.

• Q = (CreateTransaction, idxold, pkold
addr, vnew

note, pknew
addr, pknew

enc , info, bsaver, tδ)5

1. Compute rtcred, rtnote, and rtmem.

2. Let cmold be the idxold-th note commitment on L.

3. Let noteold be the first note on NOTE with commitment cmold.

4. Verify that pkold
addr is the address used in noteold, else abort.

5. Let cred be the first entry in ADDR containing pkold
addr.

6. Let memold be the memory cell belonging to cred in MEM.

7. Let tnew be the new block time.

8. Let memceil be the last memory cell in MEM-OLD beloning to cred with
tceil
mem < tnew − T .

9. Compute (notenew,memnew, tx) := CreateTransaction(pp, cred, rtnote, rtmem,

rtcred, noteold,memold,memceil, vnew
new, pknew

addr, pknew
enc , info, tnew, bsaver, tδ);

10. Verify that VerifyTransaction(pp, tx, L) returns true, else abort.

11. Remove noteold from NOTE.
5idxold could be ⊥, in case of no input note.
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12. Add notenew to NOTE.

13. Replace memold by memnew on MEM.

14. Add memnew to MEM-OLD.

15. Add tx to L.

• Q = (Insert, tx)

1. Verify that VerifyTransaction(pp, tx,L) returns true, else abort.

2. Add tx to L.

3. Run ReceiveTransaction(pp, tx, cred, L) for all cred on ADDR, and add
any returned note notenew to NOTE.

C.3 Ledger indistinguishability

In this section, we first give the definition of Ledger Indistinguishability and present
the L-IND game. We also define what public consistency means in the L-IND game.
Finally, we define a simulation of the L-IND game and use this simulation to proof
that our scheme satisfies the ledger indistinguishability property.

Definition 15 (Ledger indistinguishability). We say that a payment scheme Π sat-
isfies the ledger indistinguishability property if, for every poly(λ)-time adversaryA and
sufficiently large λ, AdvL-IND

Π,A (λ) < negl(λ), with AdvL-IND
Π,A := 2 · P [L-IND(Π,A, λ = 1]− 1.

Game (L-IND). The Ledger Indistinguishability game is defined as follows. Given a
scheme Π, adversary A, and security parameter λ, the game consists of interactions
between A and a challenger C. The game terminates with an output bit from C.
At the start of the game, the challenger randomly samples b ∈R {0, 1}, computes
pp := Setup(λ), initialises two separate oracles Opay

0 and Opay
1 , and sends pp to

A. The protocol then proceeds in steps, where in each step C provides A with two
ledgers (Lleft, Lright) := (Lb, L1−b), where Li is the current ledger state of oracle Opay

i .
Subsequently, A sends a pair of queries (Q,Q′), which must be of the same type.
Depending on the type of query, the challenger C does the following:

• If the query type is Insert(Admin), C forwards Q to Opay
b and Q′ to Opay

1−b. In
the case of InsertAdmin C first checks if Q and Q′ are publicly consistent
(explained below). This allows A to insert transactions produced by users or
administrators controlled by A directly into (Lleft, Lright).

• If the query type is not Insert(Admin), C forwards Q to Opay
0 and Q′ to Opay

1 .
However, before doing this C checks if Q and Q′ are publicly consistent. A
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uses these types of queries to simulate behaviour of honest users and honest
administrators. Since A does not know the bit b he does not know whether the
resulting transaction of query Q can be found on ledger Lleft or Lright (and vice
versa for Q′).

A can also decide to end the game by sending b′ ∈ {0, 1} which is a guess of the
bit b, instead of sending a pair of queries. If b′ = b, C aborts and outputs 1, else C
outputs 0.

Definition 16 (Public consistency). A pair of queries (Q,Q′) is publicly consistent if
they satisfy the requirements as set out below. The first and foremost requirement
being that the queries must both have the same type. Depending on the type of
query, there might be more requirements:

• If the query is of type InsertAdmin we require that credadm is equal in Q and
Q′;

• If the query is of type CreateAccount we require that both oracles generate
the same address.

• If the query is of type RevokeAccount we require that the public address key
in both queries is the same.

• If the query is of type ConvertToNote we require that the public information
(with respect to A) is consistent: (1) If pknew

addr does not appear on ADDR in Q,
then it should equal pknew

addr in Q′ (and vice versa for Q′) (2) If pknew
addr does not

appear on ADDR in Q, then info and vnew
note are equal in both Q and Q′;

• If the query is of type ConvertFromNote we require that the input is well-
formed: (1) The note commitment referenced by idxold appears on NOTE; (2)
idxold refers to a note that is owned by the admin (3) The input note was never
locked: told

δ = 0 for both Q and Q′.

• If the query is of type CreateTransaction we require that the input is well-
formed: (1) The note commitment referenced by idxold appears on NOTE or
equals ⊥; (2) idxold refers to a note that is owned by pkaddr; (3) The balance
equation is satisfied vnote

old + vmem
old >= vnote

new .

Moreover, the public information (with respect to A) must be consistent and the
transaction must succeed: (1) If idxold = ⊥ in Q then idxold = ⊥ in Q′ (vice versa
for Q′); (2) If idxold 6= ⊥ in Q, then if noteold was inserted with an Insert query,
vold

note should be equal on Q and Q′ and noteold in Q′ should also be inserted with
an Insert query (vice versa for Q′); (3) If pknew

addr does not appear on ADDR in
Q, then it should equal pknew

addr in Q′ (and vice versa for Q′); (4) If pknew
addr does not
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appear on ADDR in Q, then info, vnew
note, and tδ are equal in both Q and Q′; (5)

tnew is equal in both Q and Q′; (6) If pknew
addr is on ADMIN or in the honest admin

credentials credadm, then tδ = 0 for both Q and Q′; (7) The input notes noteold

in both Q and Q′ are both unlocked, i.e. told
note + told

δ ≤ tnew; (8) The spend limit
is not surpassed for both Q and Q′: if bsaver = false then cnew − cceil ≤ L; (9)
If idxold 6= ⊥ in Q, then if noteold was inserted with an Insert query, told

δ should
also be equal on Q and Q′ and if told

δ 6= 0, then told
note should be equal on Q and

Q′ (vice versa for Q′).

We proof that our payment scheme satisfies the ledger indistinguishability property by
showing that our game is computationally indistinguishable from a simulation thereof,
through a series of hybrid experiments. In other words, we will show that there is
a negligible difference between the L-IND game and the simulation. We will first
define our simulation, which differs from the L-IND game in the fact that all ledger
entries computed by honest users are replaced with random values independent of
the ledger state. This implies that the advantage of A in distinguishing the ledgers
will be 0 in the simulation.

Definition 17 (Simulation). The simulation starts by sampling a bit b ∈R {0, 1}. It
then computes the setup of our scheme Π, with the adaptation that we now also
store the zk-SNARK trapdoor τ of each key pair, to obtain pp := Setup(λ). We then
continue as in the L-IND argument, with C sending pp to A. The simulation then
continues in steps where A sends a pair of publicly consistent queries (Q,Q′) to C
who passes these queries along to the respective oracles. Then C returns the state
of both ledger as (Lleft, Lright). These steps continue until C receives a bit guess b′

from A.
The adaptation in the above part concerns how the oracles Opay handle the

queries, we will discuss these alterations per query:

• InsertAdmin is not altered.

• In CreateAccount step 1 is altered as follows. Generate pkaddr uniformly at
random with the appropriate size, instead of deriving it from the address secret
key. We compute the proof π using Sim(τ, x) instead of Prove(x). Note that we
still require that the values generated for Q and Q′ are identical.

• RevokeAccount is not altered.

• In ConvertToNote step 1 is altered as follows, only if pknew
addr appears on ADDR.

Compute cmnew
note as a commitment to a random string of the appropriate length.

Next to this, the zero-knowledge proof π is computed using Sim(τ, x). We also
replace datanew

note by an encryption of a random string of the appropriate length
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under a randomly generated key. If pknew
addr does not appear on ADDR nothing is

altered.

• In ConvertFromNote we alter step 5 as follows, η is replaced by a random
string of the appropriate length and π is computed using Sim(τ, x). The other
values in x remain the same.

• In CreateTransaction step 9 is altered in the following ways:

– κ and µ are replaced by (independent) random strings of the appropriate
length. Moreover, cmnew

mem is replaced by a commitment to a random string
of the appropriate length, and datanew

mem is replaced by an encryption of a
random string of the appropriate length under a randomly generated key.
datasaver is replaced by an encryption of a random string of the appropriate
length under the same key, independent of the value of bsaver;

– If there is an input note, η is replaced by a random string of the appropriate
length;

– If pknew
addr appears ADDR, cmnew

note is replaced by a commitment to a random
string of the appropriate length, and datanew

note is replaced by an encryption
of a random string of the appropriate length under a randomly generated
key;

– The proof π is computed using Sim(τ, x).

• Insert is not altered.

Theorem 2. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The zk-SNARK scheme has perfect zero-knowledgeness;

• The encryption scheme Enc is IND-CCA and IK-CCA secure;

• The SAVER encryption scheme with encryption function Encsvr is IND-CPA
secure;

• The function family PRF is a pseudo-random function family;

• The commitment scheme COMM is computationally hiding;

satisfies the ledger indistinguishability property.

Proof. To show that Lleft and Lright both reveal nothing about the bit b in the simulation,
we only need show that the new entries to the ledger as induced by one pair (Q,Q′)

reveal no information about b. The identical distribution of the full ledgers then follows
from induction and the fact that the query types of Q and Q′ are equal.
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• InsertAdmin and Insert both are applied directly to Lleft and Lright and are thus
independent of the bit b.

• CreateAccount publishes the same pkaddr value on both ledgers. Next to this
both values of cmcred are randomly distributed. Therefore, both proofs π have
the same distribution. Therefore, our message and thus also signature are
distributed identically.

• RevokeAccount trivially reveals nothing about b since it has identical input,
and thus removes the commitment that is in the same position in both ledgers.

• In the case that pknew
addr does not appear on ADDR then ConvertToNote re-

ceives identical input from both queries (publicly consistent), thus cmnew
note and

datanew
note are identically distributed on both ledgers. In the case that pknew

addr does
appear on ADDR we have that cmnew

note has the same random distribution on
both ledgers. Moreover, datanew

note is an encryption of a random string under a
randomly generated key on both ledgers. Therefore, in both cases also π and
σ are identically distributed.

• In ConvertFromNote rtnote is computed in the same way on both ledgers,
namely given all the previous note commitments on the ledger. This value is
thus deterministic and reveals nothing more about b than the note commitments
already present on the ledger. Moreover, pkaddr is identical on both ledgers, and
η is chosen uniformly at random. Therefore all public inputs to the proof are
identically distributed, giving us that also π and σ are identically distributed.

• Similarly to the previous case, in CreateTransaction all Merkle roots rt and
tnew are deterministic values revealing nothing about b. Since k is computed
in the same way on both ledgers, independently of b, k also reveals nothing
about b. Next to this κ and µ all have the same random distribution on both
ledgers, and η is either the empty nullifier on both ledgers (publicly consistent)
or identically and randomly distributed on both ledgers. Moreover, cmnew

mem is
a commitment to randomly generated data on both ledgers and datanew

mem is an
encryption of random data under a randomly generated key, similarly datasaver is
the encryption of a random string independent of the input of the query. Finally,
cmnew

note is a commitment on the same input if pknew
addr is not in ADDR (publicly

consistent), otherwise it is randomly distributed and the same holds for datanew
note.

This leads us to the conclusion that all public inputs for the zk-SNARK proof
and signature scheme are identically distributed, and thus π and σ are also
identically distributed.

The above case distinction proves that the results of the queries tell A nothing
about the bit b, which leads us to conclude that A’s advantage in the simulation is 0.
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It remains to proof that the simulation is indistinguishable from the real L-IND
game. As mentioned before we will prove this through a series of hybrid experiments
(Greal, G1, G2, G3, G4, Gsim), with Greal := L-IND and Gsim the simulation as described
directly above.

Before we continue with setting out these hybrid experiments, we first define
some useful notation. Let AdvδGx,Gy := |AdvGxΠ,A − AdvGyΠ,A|. Moreover, let nCTo be
the amount of valid ConvertToNote queries sent by A, nCFr the amount of valid
ConvertFromNote queries sent by A, nTr the amount of valid CreateTransaction
queries sent by A, and nAcc the amount of valid CreateAccount queries sent by A.

We now describe the hybrid experiments by listing the modifications with respect
to the previous experiment in the series:

• G1 differs from Greal in one way, namely G1 simulates all zk-SNARK proofs.
I.e. it calls Sim instead of Prove in all places where a proof π is constructed.
However, since the used zk-SNARK scheme is perfect zero-knowledge, the dis-
tribution of a proof π generated by Sim is the same as one by Prove. Therefore
we can conclude AdvδG1,Greal

= 0.

• G2 differs from G1 by replacing the note and memory ciphertexts in Convert-
ToNote and CreateTransaction transactions by encryptions of random strings
under random keys if the receiver is an honest user. To be precise, we al-
ways replace datanew

mem, and we replace datanew
note only when pknew

addr is in ADDR.
Replacing happens in two steps: (1) Generate a new encryption key pair (skenc,

pkenc) (2) Sample a random message r (of the right length) uniformly at random
and compute the ciphertext Encpkenc

(r). We will proof below that AdvδG2,G1
is

negligible in λ.

• G3 differs from G2 by replacing the SAVER ciphertexts in CreateTransaction
transactions by encryptions of random strings under the same key. Irrespective
of the receiver or the value of bsaver. Specifically, replacing datasaver is done
by generating a random message r (of the right length) uniformly at random
and compute the ciphertext Encsvr

pksvr
(r). We will proof below that AdvδG3,G2

is
negligible in λ.

• G4 differs from G3 by replacing all PRF outputs by random strings of the same
length. More specifically, in CreateAddress queries pkaddr is replaced by a ran-
dom string. Moreover, η is replaced by a random string in ConvertFromNote
queries, and finally η, µ, and κ are all replaced by independent random strings
in CreateTransaction queries. Below, we will proof that AdvδG4,G3

is negligible
in λ.
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• We already gave a complete definition of Gsim, nevertheless we will describe
the differences with G3 for clarity. The simulation modifies G3 by replacing the
input to the commitment functions by random strings of the same length. To
be precise, we replace the input for cmnote in both ConvertToNote and Cre-
ateTransaction queries with a random string, when pknew

addr appears on ADDR.
Additionally, the input for cmmem is replaced by a random string of the same
length in CreateTransaction queries. The same holds for the input to cmcred in
CreateCredentials queries. We will proof below that AdvδGsim,G4

is negligible in
λ.

From G1 to G2. Let Advenc be the maximum of any adversary’s advantage in either
the IND-CCA or the IK-CCA game for the used encryption scheme. We use another
hybrid game H in between G1 and G2 to prove that AdvδG2,G1

is negligible in λ. This
game H alters G1 by encrypting each ciphertext under a randomly generated key,
instead of the receiver’s public encryption key. G2 on its turn modifies H by replacing
the plaintext that forms the input the encryption function by a random string of the
same length.

We first discuss AdvδH,G1
. We show how to build an adversary against the IK-

CCA experiment using A by letting the challenger for G1 act as normal, except for
the following. The challengers picks some j ∈ [nAcc] and when A makes the j-th
CreateAccount query, the challenger starts the IK-CCA game and thus receives
two public encryption keys (pk0

enc, pk1
enc). C than sets pkenc := pk0

enc in this transaction.
Moreover, the challenger also picks an index i ∈ [nj], with nj being the number of
encryptions made under the public key of the j-th user. i is the index of the ciphertext
that should be encrypted using the IK-CCA oracle. When A sends the query of
type ConvertToNote or CreateTransaction that results in the i-th encryption under
j’s public key, the challenger queries the IK-CCA challenger on the plaintext m
and receives c := Encpkb̄enc

(m), where b̄ is the internal bit of the IK-CCA challenger.
Effectively, we replace the i-th ciphertext for user j, that belongs to the current
transaction, by c and continue as normal. When A ends the experiment with a
guess b′ we return this same b′ as our guess in the IK-CCA game. To see that this
makes sense, we note that when b̄ = 0 the view of A is identical to that in G1. When
b̄ = 1 the view of A is identical to that of an intermediate hybrid H ′ (between G1 and
H) where the key of only on ciphertext is replaced. Thus we get that Advenc is an
upper bound for AdvδH′,G1

. Then by a hybrid argument over all 2nTr + nCTo ciphertexts
it follows that AdvδH,G1

≤ (2nTr + nCTo) · Advenc.
We now discuss AdvδG2,H

. The argument is analogous to the one above. The
only difference is that for this step we replace the plaintext message m by a random
message of the same length, instead of replacing the encryption key. Using an
argument analogous to the above reasoning, we can construct an adversary against
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the IND-CCA challenger instead of of the IK-CCA challenge, to arrive at the result
that AdvδG2,H

≤ (2nTr + nCTo) · Advenc.

Finally, we use the triangle inequality to conclude that AdvδG2,G1
≤ (4nTr + 2nCTo) ·

Advenc, which is negligible in λ.

From G2 to G3. Let Advenc be the maximum advantage of any adversary in the IND-
CCA game for the SAVER encryption scheme. Below, we will prove that AdvδG3,G2

is
negligible in λ.

We show how to build an adversary against the IND-CCA experiment using A by
letting the challenger for G3 act as normal, except for the following. The challengers
picks some j ∈ [nTr] and when A makes the j-th CreateTransaction query, the
challenger starts the IND-CCA game and obtains the SAVER public encryption key
pksvr. The challenger than sets m0 := msvr, i.e. to be the plaintext message that
would normally be encrypted under pksvr, and m1 := r with r a randomly generated
message of the appropriate length.

Afterwards, the challenger queries the IND-CCA challenger on the plaintexts
(m0,m1) and receives c := Encpksvr

(mb̄), where b̄ is the internal bit of the IND-CCA
challenger. Effectively, we replace the j-th SAVER ciphertext by c and continue as
normal. When A ends the experiment with a guess b′ we return this same b′ as our
guess in the IND-CCA game. To see that this makes sense, we note that when b̄ = 0

the view of A is identical to that in G2. When b̄ = 1 the view of A is identical to that
of an intermediate hybrid H (between G2 and G3) where the plaintext of only one
ciphertext is replaced. Thus we get that Advenc is an upper bound for AdvδH,G2

. Then
by a hybrid argument over all nTr ciphertexts it follows that AdvδG3,G2

≤ nTr · Advenc.
We can thus conclude that AdvδG3,G2

is negligible in λ.

From G3 to G4. Let Advprf be the maximum advantage of any adversary in the
PRF game against the used PRF-family. We show how to build an adversary that
distinguishes our PRF from a true random function in the PRF game. We achieve
this by using the adversaryA as a subroutine and by making a small adaptation to G3.
Let with sk∗addr be the secret address key corresponding to the first CreateAddress
query. We replace all calls to PRFsk∗addr

, with calls to the oracle of the PRF game
using the same input.

To be precise, on receiving the first CreateAddress query we start the game
against the PRF challenger, which gives us access to an oracle OPRF which either
computes PRFskaddr for some secret skaddr or returns a completely random output
of the same length, depending on the value of the secret bit b̄. If b̄ = 0, OPRF

computes the value using the PRF. When b̄ = 1, a random value is returned. We
use this oracle to compute pk∗addr. Now on each query of type ConvertFromNote or
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CreateTransaction we use OPRF to compute µ, η, and κ.
When A ends the game by outputting a guess b′, we send this guess to the PRF

challenger. To see that this makes sense, we note that when b̄ = 0, the view of A is
identical to that in G2. When b̄ = 1 the view of A is identical to that of an intermediate
hybrid H (between G3 and G4) where only the PRF of the ‘first user’ is replaced by
a true random function. We thus get that Advprf is an upper bound for AdvδH,G3

. By
a hybrid argument over all nAcc generated address secret keys (functioning as PRF
keys), we derive that AdvδG4,G3

≤ nAcc · Advprf, which is clearly negligible in λ.

From G4 to Gsim. Let Advcomm denote the maximum advantage of any adversary
in the hiding game against the used commitment scheme. We show how to build
an adversary in the hiding game by using A as a subroutine, and making a small
adaptation to G4. We replace one of the commitments in a ConvertToNote, Create-
Transaction or CreateAccount transaction by a commitment to a random string of
the same length. To be precise we select an index i ∈ [nCTo + 2 · nTr + nAcc] repre-
senting one of the commitments that is computed, with pknew

addr in ADDR. When the
transaction containing the i-th commitment is computed, we replace this commitment
to a certain value x by the result of a call to the challenger in the hiding game. This
call to the hiding game challenger has the inputs x and r where r is a random string
of length |x|. When A ends the game by outputting a guess b′, we send this guess to
the hiding game challenger. To see that this makes sense, we note that when b̄ = 0

(the secret bit of the hiding game challenger), the view of A is identical to that in G3.
When b̄ = 1, the view ofA is identical to that of an intermediate hybrid H (between G4

and Gsim) where only the i-th commitment is replaced by a commitment to a random
string. We thus conclude that Advcomm is an upper bound for AdvδH,G4

. By a hybrid
argument over all nCTo + 2nTr + nAcc commitments that are possibly replaced, we find
that AdvδGsim,G4

≤ (nCTo + 2nTr + nAcc) · Advcomm, which is clearly negligible in λ.

From the results above and our definition of Advδ we can conclude that AdvδGsim,Greal

is negligible in λ.

C.4 Transaction non-malleability

This paragraph outlines the definition of Transaction non-malleability, and also gives
a definition of the Transaction non-malleability game. Next to this, we show that our
payment scheme satisfies the transaction non-malleability definition.

Definition 18 (Transaction non-malleability). We say that a payment scheme Π has
the transaction non-malleability property if, for every poly(λ)-time adversary A and
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sufficiently large λ, AdvTR-NM
Π,A < negl(λ), with AdvTR-NM

Π,A := P [TR-NM(Π,A, λ) = 1].

Game (TR-NM). Given a scheme Π, adversary A, and security parameter λ, the
game consists of an interaction between A and a challenger C, which terminates
with an output bit from C. At the start of the game the challenger performs the setup
of Π, computes pp := Setup(λ) and initialises an oracle Opay. A is then allowed to
send queries to Opay, where after each query, Opay returns the added transaction to
A. At the end of the game, A sends C a transaction tx∗, and C returns a 1 if and only
if tx∗ satisfies the following requirements:

• tx∗ is of type Transfer ;

• tx∗ does not appear on L as maintained by the oracle Opay;

• ∃tx′ ∈ L such that at least one of η and µ appears both on tx′ and tx∗;

• VerifyTransaction(pp, tx∗, L≤tx′) returns true.

Otherwise, C aborts and outputs 0.

Theorem 3. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The used signature scheme Sig is SUF-1CMA secure;

• CRHsig is a collision resistant hash function;

• The used zk-SNARK scheme is perfect zero-knowledge;

• The function family PRF is a pseudo random function family;

• PRF is a collision resistant function;

• The used zk-SNARK has computational knowledge soundness;

satisfies the transaction non-malleability property.

Proof. We begin with defining the set Tpk as the collection of all public signature keys
created as a response to a CreateTransaction query. The event that A wins this
game can be split in four parts:

• E V E N T forge (forgery): A wins and ∃pk′′sig ∈ Tpk such that pk′′sig = pk∗sig;

• E V E N Tcol (collision in CRH): A wins, the above event does not occur, and
∃pk′′sig ∈ Tpk such that k∗ = CRHsig(pk′′sig);

• E V E N Tmac (PRFκ is broken): A wins, the above two events do not occur, and
κ∗ = PRFκsk′addr

(k∗);
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• E V E N Tnull (PRFη/µ or ZKP-scheme is broken): A wins, and the above three
events do not occur.

Clearly, AdvTR-NM
Π,A is equal to the sum of the probabilities of all these events. Thus

showing that the probabilities of all these events are negligible in λ suffices to argue
that AdvTR-NM

Π,A is negligible in λ.

Bounding forgery event. Define ε := P [E V E N T forge]. Let (m∗, σ∗) and (m′′, σ′′)

be the message signature pairs in tx∗ respectively tx′′, where tx′′ is the transaction
containing pk′′sig. Moreover, note that pk∗sig = pk′′sig and that σ∗ is a valid signature on
the message m∗. We will first proof that tx∗ 6= tx′′. Firstly note that tx∗ and tx′ share at
least one nullifier, and that tx∗ 6= tx′. Now, suppose for the sake of contradiction that
tx∗ = tx′′. This would imply that tx′ and tx′′ also share at least one nullifier. However,
we do not allow two transactions on the blockchain to have the same nullifier (η or µ),
hence we must have tx∗ 6= tx′′. We can now conclude that (m∗, σ∗) 6= (m′, σ′), since
tx∗ 6= tx′′.

We now describe how to construct an adversary for the SUF-1CMA game against
the proposed signature scheme using A. Firstly, we select a random index j ∈R [nTr].
We then perform the TR-NM game as usual, apart from the j-th CreateTransaction
query. When this query is sent by A we start the SUF-1CMA game and query the
challenger to obtain both a public signature key pk′′sig and a signature σ′′ on the
created transaction tx′′. When A wins the game by outputting a transaction tx∗, and
if pk∗sig = pk′′sig we return (m∗, σ∗) as a forgery, otherwise we abort and lose the game.

Since j is selected uniformly at random from the set [nTr], we win the game with
probability ε/nTr. However, since our signature scheme satisfies the SUF-1CMA prop-
erty we know that ε/nTr and thus also ε must be negligible in λ.

Bounding collision event. Define ε := P [E V E N Tcol]. When this event occurs, we
know that pk′′sig 6= pk∗sig. However we also have that CRH(pk∗sig) = k∗ = CRHsig(pk′′sig).
Together this implies that A found a collision in CRH. However, because CRHsig is
collision-resistant this only happens with negligible probability. We thus conclude
that ε is negligible in λ.

Bounding mac event. Define ε := P [E V E N Tmac]. When this event happens we
have pk′sig 6= pk∗sig, k∗ 6= k′, and κ∗ = PRFκsk′addr

(k∗). We also adapt the TR-NM game
slightly, by simulating all zk-SNARK proofs instead of actually computing the proof.
Notice that, since the used zk-SNARK scheme is perfect zero-knowledge, A’s view
is not altered, and hence ε is not influenced by this minor alteration.

We will show how to construct an adversary in the PRF game using A. In the
PRF game we get access to an oracle Opay

prf that computes PRFk for some secret key
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k when the internal bit of the PRF game is b = 0. When b = 1 it returns a completely
random value.

Firstly, we randomly select an index j ∈R [nAcc]. Secondly, we use this index
to select the PRF calls that are to be replaced, namely all calls using the function
PRFsk′′addr

, with sk′′addr being the secret address key generated in the j-th CreateAc-
count query. All these calls are replaced with a call to OPRF, the oracle of the PRF
game. Note, that we do not need to know the value sk′′addr since all zk-SNARK proofs
are simulated.

Finally, when A outputs a transaction tx∗ we first check if PRFsk′′addr
(k∗) has been

requested from OPRF before. When this is the case, we abort and output b′ = 0.
Otherwise, we request PRFsk′′addr

(k∗) from OPRF and if the result equals κ∗, we output
our bit guess b′ = 0 otherwise we return b′ = 1.

Note that our advantage in the PRF game can be defined as P [b′ = 0|b = 0] −
P [b′ = 0|b = 1]. We can analyse both terms separately, when defining ω to be the
length of the PRF output:

• P [b′ = 0|b = 0]: Note that j is selected uniformly at random from the set [nAcc],
which implies that P [b′ = 0|b = 0 ∩ no abort] = ε/nAcc. This results in the follow-
ing equality P [b′ = 0|b = 0] := P [no abort] · ε/nAcc + P [abort].

• P [b′ = 0|b = 1]: Note that P [b′ = 0|b = 1 ∩ no abort] = 2−ω. This implies that
P [b′ = 0|b = 1] := P [no abort] · 2−ω + P [abort].

Observe that, we only abort if PRFsk′′addr
(k∗) is requested before A sends the

forged transaction tx∗. However an evaluation of this exact value, implies that either
E V E N T forge or E V E N Tcol happened before, which contradicts E V E N Tmac. So we
conclude that P [abort] = 0. Moreover, it is trivial to see that 2−ω is negligible in
λ. Hence, the probability that we win the PRF game is ε/nAcc. However, since we
selected a proper PRF-family this probability and thus also ε must be negligible in λ.

Bounding nullifier event. Define ε = P [E V E N Tnull] and let E be the zk-SNARK
extractor for A. We show how to use A to construct a collision for either PRFµ or
PRFη.

First, we run A and wait until if finishes and returns a transaction tx∗. We then
apply the zk-SNARK extractor E for A on tx∗ to obtain a witness a∗ for the proof
π∗ in tx∗. With probability negligible in λ, E fails in obtaining a valid witness a, in
that case we abort. Otherwise we parse a∗ as (µ∗, η∗, sk∗addr, ∗) and check whether η
respectively µ appears on tx′. Now, if sk′addr 6= sk∗addr we have clearly found a collision
in PRFη respectively PRFµ.

We now recall that π∗ is a valid proof and a∗ a valid witness. Moreover, since
tx∗ is a valid transaction we know that κ∗ = PRFκsk∗addr

(k∗). And by the conditions
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of the event we know that κ∗ 6= PRFκsk′addr
(k∗). Hence, we can conclude that for this

event it always holds that sk′addr 6= sk∗addr. And hence our probability of finding a
collision equals ε−negl(λ), where the last term comes from the possibility that E fails.
Thus, since PRFη and PRFµ are both collision-resistant we conclude that ε must be
negligible in λ.

C.5 Balance

This section outlines the definition of Balance, and also gives a definition of the
Balance game. We also show that our payment scheme has the balance property.

Definition 19 (Balance). We say that a payment scheme Π satisfies the balance
property if , for every poly(λ)-time adversary A and sufficiently large λ, AdvBAL

Π,A <

negl(λ), with AdvBAL
Π,A = P [BAL(Π,A, λ) = 1].

Game (BAL). Given a scheme Π, adversary A, and security parameter λ, the game
consists of an interaction between A and a challenger C, which terminates with an
output bit from C. At the start of the game the challenger performs the setup of Π,
computes pp := Setup(λ) and initialises an oracle Opay. A is then allowed to send
queries to Opay, where after each query Opay returns the added transaction to A. At
the end of the game, A sends C a set of notes N and a set of memory cells M . C
then computes the following quantities:

• vUnspent is the total value of all spendable notes in N which belong to a public
address key pkaddr not in ADDR. Recall, that a note is spendable if its nullifier
has not yet been published. The challenger can verify spendability of a note by
constructing a ConvertFromNote query with the note as input.

• vMemory is the total value of all unused memory cells in M that belong to a public
address key pkaddr not in ADDR. Recall, that a memory cell is unused if its
nullifier has not yet been published. The challenger can verify usability of a
memory cell by constructing a CreateTransaction query consuming the old
memory cell, using no input note, and setting the value of the new note equal
to the value of the memory cell.

• vConvertFrom is the total value of all input notes of ConvertFrom transaction that
were placed on the ledger by an Insert query.

• vA→ADDR is the total value of all transfer transaction from addresses controlled
by A to addresses in ADDR. This can be computed by determining the set of
notes N ′ that contains all notes in NOTE that are newly created in a transfer
transaction placed on the ledger by an Insert query.
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• vConvertTo is the total value of all ConvertTo transactions on the ledger (either
added via a ConvertToNote or Insert query), where the receiver of the note is
not in ADDR.

• vADDR→A is the total value of all transfer transaction from addresses in ADDR
to an address controlled by A. This can be computed by looking at all transfer
transactions that were added to the ledger via a CreateTransaction query and
summing up the value of all notes that were transferred to an address not in
ADDR.

After having computed this, C outputs 1 only if vUnspent + vMemory + vConvertFrom +

vA→ADDR > vConvertTo + vADDR→A. Otherwise C outputs 0.

Theorem 4. The payment scheme Π as defined in Section 6 that satisfies the follow-
ing assumptions:

• The used zk-SNARK has computational knowledge soundness;

• CRH is a collision-resistant hash function;

• The used commitment scheme COMM is computationally binding and compu-
tationally hiding;

satisfies the balance property.

Proof. We modify the experiment slightly, but in such a way that A’s view is not
altered in any way. For all zero-knowledge proofs constructed by the oracle we store
the witness a. Next to this, we use E , the zero-knowledge extractor for A, to obtain
the witness a on all zk-SNARK proofs on L that were added as result of an Insert
query. If E fails to obtain a valid witness, we abort and output 1. Because this only
happens with probability negligible in λ, this plays no contradictory role in proving
that AdvBAL

Π,A is negligible in λ. In other words, to show that AdvBAL
Π,A is negligible, it

suffices to show that the probability that A wins our slightly altered experiment is
negligible in λ.

We will proof this by first defining properties of a so called balanced ledger. Then,
we show that a balanced ledger implies that A always loses. To complete our proof,
we show that the probability that the ledger in our experiment is not a balanced ledger
is negligible in λ. Combining these steps allows us to conclude that that AdvBAL

Π,A is
negligible in λ.

Balanced ledger properties. We begin by defining the properties that a ledger
needs to satisfy, to be a balanced ledger.
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1. no note forgery: Each transaction-witness pair (tx, a) of type Transfer or Con-
vertFrom that contains a cmold

note, has a valid opening thereof. Moreover, cmold
note

appears as output (note) commitment on a preceding ConvertTo or Transfer
transaction. If there is no cmold

note then vold
note = 0.

2. no memory forgery: Each (tx, a) of type Transfer contains a valid opening of
cmold

mem. Moreover, one of the following two statements must hold: (1) cmold
mem

appears as output (memory) commitment on a preceding Transfer transaction;
or (2) vold

mem = 0.

3. no note duplication: There exist no two (tx, a) and (tx′, a′) of type Transfer or
ConvertFrom (both might have different types), with the same value of cmold

note.

4. no memory duplication: There exist no two (tx, a) and (tx′, a′) of type Transfer ,
with the same value of cmold

mem.

5. ‘intra’-transaction balance: For every (tx, a) of type Transfer the balance equa-
tion holds: vold

note + vold
mem = vnew

note + vnew
mem.

6. ‘inter’-transaction note consistency: For every (tx, a) of type Transfer or Con-
vertFrom the following holds. If cmold

note is the output note commitment of (tx, a)

(of type ConvertTo or Transfer ) then vnew
note = vold

note.

7. ‘inter’-transaction memory consistency: For every (tx, a) of type Transfer the
following holds. If cmold

mem is the output memory commitment of (tx, a) then
vnew

mem = vnew
mem.

8. no note steal: For every (tx, a) where tx was added to L by an Insert query
and with tx of type Transfer or ConvertFrom, if cmold

note appears on a preceding
transaction tx then pknew

addr does not appear on ADDR.

9. no memory steal: For every (tx, a) where tx was added to L by an Insert query
and with tx of type Transfer , if cmold

mem appears on a preceding transaction tx
then pknew

addr does not appear on ADDR.

Balanced ledger ⇒ A loses. We will now prove by induction, over the queries
issued by A, that if L is a balanced ledger then vUnspent + vMemory + vConvertFrom +

vA→ADDR ≤ vConvertTo + vADDR→A.
For the base case, we note that the empty ledger is clearly a balanced ledger.

We have vUnspent + vMemory + vConvertFrom + vA→ADDR ≤ vConvertTo + vADDR→A, since all
terms equal 0.

For the induction step, assume that we have a balanced ledger after n queries
issued by A and moreover vUnspent + vMemory + vConvertFrom + vA→ADDR ≤ vConvertTo +
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vADDR→A. We will now show that for the following query issued by A such that the
balanced ledger properties do not become violated, we still have vUnspent + vMemory +

vConvertFrom + vA→ADDR ≤ vConvertTo + vADDR→A. From now on we will refer to this
inequality as the ledger balance inequality.

We will proof the induction step by a case distinction on the type of the n + 1-th
query:

• InsertAdmin, CreateAccount, Revokeaccount, and ConvertFromNote do
not influence any of the terms in the ledger balance inequality , thus for those
transaction types our ledger balance inequality will still hold. For clarity, we
emphasise that ConvertFromNote queries do not count towards vConvertFrom as
this value only includes transactions placed on the ledger by an Insert query.

• ConvertToNote: A transaction of this type always increases vConvertTo with vnew
note,

and it possibly increases vUnspent with the same value vnew
note (follows from property

6). This implies that either only the right-hand side of the inequality increases,
or that both sides of the inequality increase with the same value. In both cases
the ledger balance inequality will still be satisfied.

• CreateTransaction: A transaction of this type clearly cannot influence any
terms other than vADDR→A and vUnspent, since the input note can only be owned
by an address in ADDR. Moreover, these terms are only influence when pknew

addr

is not in ADDR. When that happens, it follows from property 6 that both values
are increased with the same value vnew

note. Hence, the ledger balance inequality
will still hold.

• Insert We make a case distinction on the type of transaction that is inserted:

– NewAccount and RvkAccount clearly have no influence on any of the
terms in the ledger balance inequality , thus the inequality will still hold.

– ConvertTo: A transaction of this type increases vConvertTo with vnew
note, and it

increases vUnspent with the same value vnew
note (follows from property 6). It

trivially follows that the ledger balance inequality will still be satisfied.

– ConvertFrom: An inserted ConvertFrom transaction increases vConvertFrom

with vold
note, however by property 1, property 3, property 6 and property 8

the value of vUnspent is also decreased with this same value. Hence, the
left-hand side of ledger balance inequality keeps the same value, and
therefore the inequality still holds.

– Transfer : The input memory cell of an inserted transfer transaction has
value vold

mem. By property 2, property 4, property 7 , and property 9 we
know that the value of vMemory is decreased with exactly this value vold

mem.
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Remember that, if there is no input memory cell vold
mem equals 0, so nothing

happens. Next to this, the input note has value vold
note, and by property 1,

property 3, property 6, and property 8, the value of vUnspent is decreased
with exactly this value vold

note. Combined, these inputs decrease the value
of the left hand side of the inequality with vold

mem + vold
note.

Concerning the outputs, the value vMemory increases by vold
mem, since this is

the value of the new memory cell, that will be unused after this transac-
tion. Moreover, the output note with value vnew

note influences either vUnspent or
vA→ADDR, depending on the receiver address of the note pknew

addr. If this ad-
dress key is in ADDR, the value vA→ADDR increases with vnew

note, otherwise
vUnspent increases with vnew

note. Irrespective thereof, the left hand side of the
inequality is increased with vnew

mem + vnew
note.

By property 5 vold
mem + vold

note = vnew
mem + vnew

note, and therefore the value of the left
hand side of the ledger balance inequality has the same value as before
this transaction. The right hand side of the inequality remains unaltered.
Thus we can conclude that the inequality is still satisfied.

Violating balanced properties. It now remains to show that the probability of vi-
olating any of the balanced ledger properties is negligible in λ in order to conclude
that AdvBAL

Π,A = negl(λ). We proof this by showing per condition that the probability of
violating that condition is negligible.

1. By construction of the oracle Opay, all transactions that are not inserted via
Insert queries automatically satisfy this property. Therefore the only way to vio-
late this property is by an Insert transaction tx of type Transfer or ConvertFrom.
This transaction should then satisfy two conditions: (1) cmold

note does not appear
as output note commitment on any preceding transaction on L; and (2) vold

note 6= 0.
Note that tx must be a valid transaction, thus for vold

note to be unequal to 0, we
must have a valid Note Merkle tree path pathnote. Otherwise the soundness of
our zk-SNARK scheme would be broken. However, if cmold

note does not appear in
the Note Merkle tree preceding this transaction, A must have found a collision
in the hash function CRH. Since CRH is collision-resistant by definition, the
probability that A violates this condition is negligible in λ.

2. The proof for this condition is analogous to the previous one, but only considers
transactions of type Transfer.

3. For this property to be violated, L must contain two transactions tx and tx′ of
type Transfer or ConvertFrom. Both should use the same input note cmold

note

but publish different values for η, i.e. η 6= η′, since both transactions are valid.
These values η are both computed as η = PRFskaddr(posnote), implying that
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either (1) skaddr 6= sk′addr or (2) posnote 6= pos′note. Otherwise, the soundness of
the zk-SNARK scheme would be broken. We will show that both cases can
only happen with probability negligible in λ:

(a) Together with the fact that cmold
note is equal in both transactions, this im-

plies one of the following: (1) pkaddr 6= pk′addr; or (2) not the previous, but
cmcred 6= cm′cred; or (3) neither of the previous two, but (pathcred, poscred) 6=
(path′cred, pos′cred). However, all of these can only happen with negligible
probability: (1) because of the binding property of COMMnote; (2) because
of the binding property of COMMcred; (3) because of collision-resistance
of CRH.

(b) As both pairs (pathnote, posnote) and (path′note, pos′note) are valid Note Merkle
tree path for the commitment, A must have found a collision in CRH. Due
to CRH being collision-resistant this can only happen with negligible prob-
ability.

4. The proof for this condition is analogous to the previous one, but only considers
transactions of type Transfer.

5. The fact that this condition can only be broken with negligible probability follows
directly from the fact that all transactions on L are valid, and that the balance
equation vold

note + vold
mem = vnew

note + vnew
mem is enforced in the zk-SNARK proof. From

the soundness of this proof we conclude that this condition cannot be broken
with a probability non-negligible in λ.

6. If cmold
note = cmold

note, but vold
note 6= vold

note we contradict the binding property of COMMnote.
Obviously, this can only happen with probability negligible in λ.

7. The proof for this condition is analogous to the previous one, but only considers
transactions of type Transfer.

8. If this condition is broken, A is able to generate a valid proof using pkaddr for
cmold

note belonging to pknew
addr in ADDR. This can happen in one of the following

ways: (1) (vnew
note, pknew

addr) 6= (vold
note, pkaddr); or (2) skaddr 6= skaddr; or (3) (pathcred,

poscred) 6= (path′cred, pos′cred); or (4) A knows skaddr, pkaddr, scred. We will now
show that all of this cases can only occur with probability negligible in λ: (1)
because of the binding property of COMMnote; (2) because of the binding prop-
erty COMMcred; (3) because of the collision-resistance of CRH; (4) because of
the hiding property of COMMcred.

9. The proof for this condition is analogous to the previous one, but only considers
transactions of type Transfer.
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C.6 Access control

In this section we define the access control property and game and show that our
payment scheme satisfies this property.

Definition 20 (Access control). We say that a payment scheme Π satisfies the ac-
cess control property, if for every poly(λ)-time adversary A and sufficiently large λ,
AdvAC

Π,A < negl(λ), with AdvAC
Π,A = P [AC(Π,A, λ) = 1].

Game (AC). The Access Control game AC is defined as follows. Given a scheme Π,
an adversary A, and security parameter λ, the game consists of a series of interac-
tions between A and a challenger C, which terminates with an output bit from C. The
game starts with the challenger performing the setup of Π and initialising the oracle
Opay. Subsequently, A receives the public parameters pp from the challenger. A is
then allowed to send all types of queries to Opay, apart from the Insert and Inser-
tAdmin query type. Effectively, A is only allowed to elicit behaviour of honest users.
After receiving a query, Opay updates the ledger accordingly and sends the resulting
ledger L to A. A ends the game by sending a transaction tx to the challenger. A
wins the game only if this transaction is a valid transaction and if there is no other
transaction tx′ on the blockchain for which tx′ = tx. The challenger can verify this by
using tx as input to an Insert query, that should update the ledger accordingly.

Theorem 5. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The used signature scheme Sig is SUF-CMA secure;

• The used zk-SNARK scheme has computational knowledge soundness;

• The used commitment scheme COMM is binding;

• CRH is a collision resistant hash function;

satisfies the access control property.

Proof. We distinguish the event that A wins the AC game in two cases.
The first case considers the transaction tx having type Transfer. It should be noted

thatA does not know the opening to any of the commitments on the Credential Merkle
Tree. In order to show that A can only construct a transaction tx of type Transfer with
negligible advantage, we slightly adapt the experiment. On receiving tx, C also uses
the zk-SNARK extractor E for A to obtain the witness a for tx. If E fails in doing so,
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we abort and output 1, otherwise C continues as above. We note two things, (1) the
view of A is not altered, and hence A’s advantage in this game, when E does not fail,
is the same as in AC, (2) E only fails with negligible advantage. Thus we only need
to show that A has negligible advantage in this altered game, when E was able to
extract a valid witness.

A valid witness a must contain the values (cmcred, pkaddr, skaddr, scred), such that
either (i) cmcred = Commcred

scred
(pkaddr, skaddr) for some cmcred in the Credential Merkle

tree; or (ii) there exists a valid Merkle path to rtcred for some cmcred not in the Creden-
tial Merkle tree. In the case of (i), since there is no pair (cmcred, pkaddr) for which A
knows (skaddr, scred). Thus by the hiding and binding property of Commcred this can
only happen with probability negligible in λ. In case (ii) the adversary has found a
collision in CRH, which can only happen with negligible probability. Because of this,
the first case can only occur with probability negligible in λ.

The second case tx has any of the other types: RvkAccount , NewAccount , Con-
vertTo, ConvertFrom. All these transactions must be signed using a secret signature
key of (one of the) admins. Since A does not know such a key, and since tx does
not appear on the blockchain yet, we can use A to construct an adversary in the
SUF-CMA game. Since the used signature scheme has the SUF-CMA property, A
cannot construct tx in this case with a more than negligible advantage.

Since both cases only occur with negligible probability, also the event that A wins
occurs only with probability negligible in λ.

C.7 Spend limit

Definition 21 (Spend limit). We say that a payment scheme Π satisfies the spend
limit property if, for every poly(λ)-time adversary A and sufficiently large λ, AdvLIM

Π,A <

negl(λ), with AdvLIM
Π,A = P [LIM(Π,A, λ) = 1].

Game (LIM). Given a scheme Π, adversary A, and security parameter λ, the game
consists of an interaction between A and a challenger C, which terminates with an
output bit from C. At the start of the game the challenger sends to A a time span
T and spend limit value L. Subsequently, the challenger performs the setup of Π,
computes pp := Setup(λ) and initialises an oracle Opay. A is then allowed to send
queries to Opay, where after each query Opay returns the added transaction to A. At
the end of the game, A sends C a set of Transfer transactions T X . C first computes
the witness a for each Transfer transaction on the ledger, using the witness extractor
E for A. If E fails to produce any of the valid witnesses C aborts and outputs 1. Then,
C outputs a 1 if and only if all of the following statements hold:

• All transactions in T X have type Transfer ;
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• For any witness a belonging to a transaction tx ∈ T X , we have bsaver = 0;

• The input notes of all transactions in T X are owned by the same public address
key. This can be verified for any transaction using the corresponding witness a;

• The transaction time of all transactions in T X falls in the range [Tmin, Tmin + T ],
with Tmin defined as the minimum transaction time tnew of all transactions in
T X . ;

• The sum of the output notes of all transactions in T X is larger than L.

Otherwise C aborts and outputs 0.

Before we prove that our payment scheme Π satisfies this property, we first give
some useful lemmas.

Lemma 1. For any pkaddr the first Transfer transaction tx, with witness a, of that
address uses no input memory cell and returns an output memory cell with value
cnew = vnew

note · (1− bsaver). Additionally, this transaction outputs a memory nullifier equal
to µ = PRFµskaddr

(−1). The above holds will but negligble probability.

Proof. We will first show that the transaction has no input memory cell by means of
contradiction. Suppose to the contrary, that the first Transfer transaction of pkaddr

does have a value for cmmem. Clearly, we must have that cmold
mem is a commitment to

pkaddr, and some other inputs and randomness. This implies that one of the following
conditions hold: (1) cmold

mem is present in the Memory Merkle tree; or (2) cmold
mem is

not present in the Memory Merkle tree. Both cases give rise to a contradiction: (1)
contradicts the binding property of Commmem; and (2) contradicts collision-resistance
of CRH.

It now remains to show that the output memory cell will have value cnew = vnew
note ·

(1 − bsaver). This follows directly from the fact that, due to there not being an input
memory cell, the zk-SNARK proof ensures we have cold = 0. By the soundness of
our proof we immediately conclude that cnew

note = vnew
note · (1− bsaver), which concludes the

proof of our lemma.

Lemma 2. For any pkaddr, any Transfer transaction tx, with witness a, that is not
the first Transfer transaction of that address, uses the memory cell of the previous
transaction of pkaddr as input and outputs a new memory cell with cnew = cold + vnew

note ·
(1− bsaver). The above holds will but negligble probability.

Proof. Given pkaddr, we first prove that any of these transactions must have an input
memory cell. Suppose, for the sake of contradiction, that there is a transaction tx∗

(not the first) for which there is no input memory cell. By the previous lemma, this
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implies that there are two transaction with no input memory cell: the first transaction
tx0 and tx∗. For both transactions to be accepted it most hold that µ0 6= µ∗. Since
there is no input memory cell, the zero-knowledge proof implies that sk0

addr 6= sk∗addr.
Given the above, we consider two cases that both lead to a contradiction: (1) cmcred is
present in the Memory Merkle tree; or (2) cmcred is not present in the Memory Merkle
tree. Case (1) contradicts the binding property of Commcred; and (2) contradicts
collision-resistance of CRH.

Next, we show that the input memory cell must be the output memory cell of the
previous transaction of pkaddr. Suppose to the contrary, that there exists a transac-
tion tx∗ for which the input memory cell is not the output memory cell of the previous
transaction. Due to the previous part of this lemma, we know that we must have
an input memory cell, so that leaves us with the following possibilities: (1) the com-
mitment cmold

mem belongs to another transaction tx′ of pkaddr; or (2) the commitment
cmold

mem belongs to another public address key pkaddr; or (3) the commitment cmold
mem

is not present in the Memory Merkle tree. In case (1) we must have µ′ 6= µ∗, which
implies that either sk′addr 6= sk∗addr or pos′mem 6= pos∗mem. The first contradicts either
the binding property of Commcred or collision-resistance of CRH. The second also
contradicts collision-resistance in CRH. In case (2) we directly contradict the binding
property of Commmem. Finally, case (3) contradicts the collision-resistance of CRH.

Finally, we show that cnew = cold + vnew
note · (1− bsaver). This follows directly from the

fact that we have an input memory cell, and from the soundness of our proof. This
also concludes the proof of this lemma.

Theorem 6. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The used commitment scheme COMM satisfies the binding property;

• CRH is a collision-resistant hash function;

• The used zk-SNARK scheme has computational knowledge soundness;

satisfies the spend limit property.

Proof. Assume that A wins the game with probability non-negligible in λ. Let tx∗

be the last, with regards to tnew, transaction in T X with ceiling memory cell commit-
ment cmceil

mem. The ledger contains another transaction tx′ of pkaddr for which the new
memory commitment is equal to cmceil

mem. By definition of T X , we know that tx′ 6∈ T X .
Now, remember that the sum of the output notes of all transactions, i.e. vnew

note in T X is
larger than L. We combine this fact with Lemma 1, Lemma 2, and the soundness of
zk-SNARK proofs to conclude that cnew − cceil > L, with all but negligible probability.
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This clearly contradicts the soundness of our zk-SNARK proof, also with all but
negligible probability. Therefore, A can not win with a more than negligible probability.

C.8 Accountability

In this section we define the accountability property and game and show that our
payment scheme satisfies this property.

Definition 22 (Accountability). We say that a payment scheme Π satisfies the ac-
countability property, if for every poly(λ)-time adversary A and sufficiently large λ,
AdvACC

Π,A < negl(λ), with AdvACC
Π,A = P [ACC(Π,A, λ) = 1].

Game (ACC). The Accountability game ACC is defined as follows. Given a scheme
Π, an adversary A, and security parameter λ, the game consists of a series of
interactions between A and a challenger C, which terminates with an output bit from
C. The game starts with the challenger performing the setup of Π and initialising the
oracle Opay. Subsequently, A receives the public parameters pp from the challenger.
A is then allowed to send all types of queries to Opay. After receiving a query, Opay

updates the ledger accordingly and sends the resulting ledger L to A. A ends the
game by sending a transaction tx to the challenger. C then uses the witness extractor
E for A to obtain the witness a for tx. A wins the game only if either the witness
extractor fails to produce a valid witness a, or if bsaver 6= 0 and datasaver cannot be
decrypted to pkaddr. pknew

addr, and vnote
new .

Theorem 7. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The used zk-SNARK scheme has computational knowledge soundness;

• The used SAVER encryption scheme computationally satisfies the encryption
knowledge soundness and decryption soundness properties.

satisfies the accountability property.

Proof. Suppose that A does win the ACC game with non-negligible probability. A
can do so in two ways. The first is, when E fails to provide a valid witness a. This
only happens with negligible probability. Hence, A should succeed in the second
case with non-negligible probability. In the second case we must have that bsaver = 0

and datasaver does not decrypt to pknew
addr, and vnote

new . However, by definition of datasaver

our zero-knowledge proof π, the knowledge-soundness of our zk-SNARK scheme,
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and the encryption and decryption soundness of SAVER this cannot happen with
non-negligible probability.

Therefore we have reached contradiction, and must thus conclude that A cannot
win the ACC game with more than negligible probability.

C.9 Timelock

In this section we define the timelock property and game and show that our payment
scheme satisfies this property.

Definition 23 (Timelock). We say that a payment scheme Π satisfies the accountabil-
ity property, if for every poly(λ)-time adversary A and sufficiently large λ, AdvTL

Π,A <

negl(λ), with AdvTL
Π,A = P [TL(Π,A, λ) = 1].

Game (TL). The Timelock game TL is defined as follows. Given a scheme Π, an
adversary A, and security parameter λ, the game consists of a series of interactions
between A and a challenger C, which terminates with an output bit from C. The game
starts with the challenger performing the setup of Π and initialising the oracle Opay.
Subsequently, A receives the public parameters pp from the challenger. A is then
allowed to send all types of queries to Opay. After receiving a query, Opay updates
the ledger accordingly and sends the resulting ledger L to A. A ends the game
by sending two transactions tx′ and tx∗ to the challenger. C then uses the witness
extractor E for A to obtain the witness a for both transactions. A wins the game only
if either the witness extractor fails to produce a valid witness a, or if all of the following
statements hold:

• Both transactions are valid, i.e. VerifyTransaction returns true on both tx∗ and
tx′.

• cmnew
note in tx′ is equal to cmold

note in tx∗;

• For the values tδ and tnew in tx′ and tnew in tx∗ the following holds: tδ+tnew > tnew.

Theorem 8. The payment scheme Π as defined in Chapter 6 that satisfies the fol-
lowing assumptions:

• The used zk-SNARK scheme has computational knowledge soundness;

• CRH is a collision-resistant hash function;

• The used commitment scheme COMM satisfies the binding property;

satisfies the timelock property.
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Proof. Suppose that A wins the game with non-negligible probability. The first of
two cases in which this happens is when E fails to produces a valid witness for both
transactions. By the soundness of our zk-SNARK scheme this is not possible with a
more than negligible probability. Hence the other case must occur with non-negligible
probability.

By soundness of the zk-SNARK scheme and the condition that the input note
for tx∗ must be unlocked, (tδ, t

new) in tx′ cannot be equal to (told
δ , told

note) in tx∗ with a
more than negligible probability. Hence, we must have that both tuples are unequal.
However, by the condition of our case we must have that cmnew

note = cmold
note, if the values

of tδ are to be unequal with more than negligible probability, we contradict the binding
property of COMM. When tnew in tx′ is not equal to told

note in tx∗, but cmnew
note = cmold

note

with more than negligible probability we contradict the collision-resistance of CRH,
since the Merkle roots in both transactions must be valid.

Since, there is no other case in which A can win, we have reached contradiction.
We can now conclude that A cannot win the TL game with more than negligible
probability.
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