
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

                                                    

 
 

 

                                                             SUPERVISORS: 

                                                           Dr. Y. A. Hussin  
                                                           Drs. E. H. Kloosterman  
 
                                                       

                                                               ADVISOR: 

                                                          Dr. Zulkiflee Abd Latif 

 
 
 
 
 
 
 

ACCURACY OF DTM DERIVED FROM 
UAV IMAGERY AND ITS EFFECT ON 
CANOPY HEIGHT MODEL COMPARED 
TO AIRBORNE LIDAR IN PART OF 
TROPICAL RAIN FORESTS OF 
BERKLAH, MALAYSIA 

SOLOMON BEGASHAW 

 Enschede, The Netherlands, February, 2018 

 





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the 

University of Twente in partial fulfilment of the requirements for the degree of Master of 

Science in Geo-information Science and Earth Observation. 

Specialization: Natural Resource management 

 

 

 

SUPERVISORS: 

Dr. Y. A. Hussin  

Drs. E. H. Kloosterman  

 

ADVISOR: 

Dr. Zulkiflee Abd Latif 

 

 

 

                                                                                                                                                                    
            
 
 
 
 

ACCURACY OF DTM DERIVED FROM 
UAV IMAGERY AND ITS EFFECT ON 
CANOPY HEIGHT MODEL COMPARED 
TO AIRBORNE LIDAR IN PART OF 
TROPICAL RAIN FORESTS OF 
BERKLAH, MALAYSIA 

SOLOMON BEGASHAW 

 Enschede, The Netherlands, February, 2018 

 

THESIS ASSESSMENT BOARD:                                        

prof.dr. A.D. Nelson (Chair)                                                                   

Dr. T. Kauranna  (External Examiner, Lappeenranta University of 

Technology Finland) 

 

 



 
 

 
 
 
 
 
 
 
                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information 

Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain 

the sole responsibility of the author, and do not necessarily represent those of the Faculty



i 
 

ABSTRACT 

Tropical forest play a crucial role to the storage of a large amount of carbon, typically the aboveground biomass 

of trees which is affected by deforestation and degradation. UNFCCC intended to reduce carbon dioxide(CO2) 

emission from land use change and deforestation through (REDD+) program and its MRV Mechanism. 

There is a need in tropical countries for low cost, accurate and timely information to determine tree parameters 

like height and diameter. Direct measurement of tree height with measuring tape is the most accurate, but it is 

not a viable option for forest monitoring and evaluation. LiDAR is one of the remote sensing technology used 

to estimate tree height with the best result in terms of accuracy.  However, the cost of LiDAR can pose financial 

constraints, especially when the study area needs temporal data to monitor vegetation change. UAV 

photogrammetry 3D image photogrammetry using UAV images is a potential cost-effective alternative method. 

The quality of a UAV-DTM directly influences the estimation of tree height and AGB and carbon stock. The 

quality of the UAV-DTM in its turn is influenced by number and configuration of the Ground Control Points. 

Therefore, this thesis present accuracy assessment of UAV DTM with different number and layout of GCPs 

and its effect on CHM. 

The accuracy of UAV DTM with 4,6,8 and ten ground control point, when compared to checkpoints which 

measured by DGPS, achieved RMSE of ±0.9 m and R2 of 0.98 for all DTM’S While R2 of 0.9 and RMSE of 

±1.5 m ALS. On the other hand, The accuracy of UAV DTM with 4,6,8 and ten ground control point, when 

compared to ALS DTM, achieved RMSE of ±3.6 m, ±3.53 m, ±3.51m, and ±3.50 m and R2 of 0.66,0.68,0.67 

and 0.67respectively. 

UAV DTM 8 was selected based on the accuracy assessment result and then tree height derived from UAV 

CHM for the entire area. The accuracy assessment of UAV tree height in comparison to ALS tree height 

revealed that RMSE of ±2.18 m and R2 of 0.6.Additionally, the comparison was made between UAV tree height 

and ALS tree height in relatively Closer altitude of DTM height. The accuracy assessment revealed that R2 of 

0.88 and RMSE of ±2 m. 

Furthermore, the AGB was computed using an allometric equation which utilized Diameter at Breast height 

(DBH), tree height and wood density. In order to assess the effect of tree height difference between UAV and 

ALS  on AGB  the tree height adjusted based on the accuracy result of UAV tree height. Then AGB and carbon 

stock computed using the adjusted tree height. The result revealed that mean biomass of 

0.04Mg,0.05Mg,0.06Mg and 0.06  for RMSE -2,-1,0,1 and 2 respectively. 
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1. INTRODUCTION 

1.1. Background 

Forest play a crucial role in in the global carbon cycle by functioning as a sink and a source of carbon  (Pan et 

al., 2011). This function of forest plays a role in carbon dioxide (CO2) emission balance. Conversely, forest 

degradation and deforestation are being major driving agents to the increment of atmospheric carbon dioxide 

(CO2) (Mohren et al., 2012). Tropical forest contributes to the storage of a large amount of carbon, typically 

the aboveground biomass (AGB) of trees which is affected by deforestation and degradation (Mohren et al., 

2012). 

Even though the role of forest in carbon sequestration is well known, the CO2 increment in the atmosphere is 

one of the main concern since it is a crucial factor for climate change (Crowley, 2000). The anthropogenic 

factor is driving the increment of CO2 concentration at an alarming rate. National Oceanic and Atmospheric 

Administrative (NOAA) show that continuous increment of atmospheric CO2 currently reached 402.5 ppm 

which has been 385.05 ppm 10 years back (NOAA, 2017).Anthropogenic greenhouse gas (GHG) emission 

coupled with lack of information on forest carbon sequestration aggravates the problem (Boudreau et al., 2008). 

United Nation Framework on Climate Change (UNFCCC) intended to reduce carbon dioxide(CO2) emission 

from land use change and deforestation through an agreement between different countries. These countries 

have to report annually on the emission and sequestration from land use change such as deforestation, 

afforestation, and reforestation (UNFCCC, 1997). To reduce emission from deforestation and forest 

degradation (REDD+) program was developed to protect forest and ensure accurate Measurement, Reporting 

and Verification (MRV) of carbon stock of countries. MRV is a mechanism which was established under 

REDD+ program to enable objective evaluation of the implementation status of REDD-plus policies and 

emissions and removals for the credit mechanism. 

 

Malaysia is one of the countries that ratified in UNFCC Convention. The country is blessed with diverse 

rainforests, characterized as unlogged and secondary forest (WWF, 2017).The Ministries of Natural Resources 

and Environment has the obligation to implement this international convention on monitoring of forest for 

carbon sink. REDD+ was developed for implementation on the national and sub-national level of forestry 

which plan to implement MRV techniques. Thus, exploring a cost-effective method for providing accurate and 

timely information to determine forest parameter has been given central emphasis. Various methods are 

developed, destructive as well as non-destructive, to accurately estimate forest biomass and carbon stock. The 

latter using biometric parameters, such as DBH and tree height in combination with an allometric equation. to 

estimate aboveground biomass/ carbon stock (Brown, 2002a). 

Destructive sampling methods provide an accurate biomass estimation. It involves in cutting and weighing 

trees, which is a labor-intensive, time-consuming, hence expensive and environmentally unfavorable method. 

A non-destructive method using an allometric equation is widely recognized method for carbon stock 

estimation. The allometric equation derived from regression model which needs input parameter of field 

measured tree height and diameter at breast height (DBH) (Brown, 2002b; Chave et al., 2014). Even though 

field based estimation of forest carbon stock is commonly used, it lacks field inventory data in remote areas 
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which is a constraint for reliable biomass estimation. Ground inventory demands tedious efforts over large 

areas and is not well suited for monitoring carbon stock change over time. 

Unreliable estimate of AGB occurs due to tree parameters measurement errors. Tree height measurement using 

a traditional field-based instrument, such as hypsometer and handheld laser, are sensitive to measuring errors 

due to forest stand structure. Especially, traditional field-based tree height measurement in the tropical 

rainforest is associated with inaccurate tree height measurement due to multilayer structure (Bazezew, 2017; 

Reuben, 2017). Bazezew (2017) highlighted that handheld laser instrument in closed canopy forest result 

inaccurate tree height measurement due to occlusion effect. 

The need for monitoring change in forest carbon stock and use of earth observation data has been grown 

continuously to acquire forest inventory data over a large area at a regular time interval. This multi-temporal 

remote sensing approach could improve spatial forest inventory and reduce efforts in field inventory. 

Light Detection and Ranging (LiDAR), which uses an actively emitted laser beam as its base for measuring the 

physical aspect of objects, is a more recent remote sensing technology. LiDAR can provide data on the vertical 

structure of a forest through scanning with a laser pulse (Jung et al.,2011; Pirotti, 2011).Different research 

showed that LiDAR is very suitable for generating a canopy height model (CHM) and trees height extraction, 

with high accuracy (Andersen et al., 2006; Ferraz et al., 2016; Hyyppä et al., 2012). Unfortunately, the acquisition 

of LiDAR data is often too expensive for regular forest monitoring (Pirotti, 2011). 

Structure from motion(SfM), or 3D Photogrammetric image matching, using a digital camera mounted on 

small, low-cost Unmanned aerial vehicle (UAV) system is a cost-effective alternative remote sensing technology. 

SfM is built on the principle of the traditional stereoscopic view technique. The 3D structure of an object can 

be perceived from a series of overlapping images, using parallax. UAV Photogrammetry provides a computation 

of metrics measurement of aerial photographs of an object without having any physical contact (Ordóñez et 

al., 2010). 

One of the benefits of UAV over ALS technology is that they can be autonomously programmed to complete 

repetitive missions with high precision (Unmanned Aerial Vehicle Systems Association Advantages of UAVs, 

2017).In addition to that, it has the flexibility to bring the device to the field at very short notice and, UAV has 

a high repeatability and flexibility in data acquisition process (Fritz et al., 2013). UAV has been used to measure 

forest parameter with good results in terms of accuracy (Kachamba et al., 2016; Lim et al., 2015). 

However, a vital component of estimating canopy height and forest parameter from any 3D remote sensing 

product is the ability to accurately characterize ground topography in the form of a Digital Terrain Model 

(DTM) (Drake et al., 2002).Therefore, assessing the DTM accuracy of UAV point cloud to determine forest 

parameter is essential. 

LiDAR provides accurate 3-D point clouds suitable for Digital terrain model (DTM) and Digital surface model 

(DSM) construction, which are important for accurate measurement of tree height (Popescu et al., 2002).The 

accuracy of a DTM derived from UAV point clouds depends on accurate UAV image bundle block adjustment, 

which depends on configuration and distribution of Ground Control Points (GCP) (Nex and Remondino, 

2013).Therefore the GCPs have a direct influence on UAV-DTM and subsequent tree height estimation. 

An accurate  DTM can be created in a forest where a clear view of forest ground is available (Ota et al., 2017; 

Wallace et al., 2016).However, the UAV photogrammetric technique underperformed in capturing the terrain 

surface under increasingly denser canopy cover in the complex tropical rain forest (Ota et al., 2015). Limited 



ACCURACY OF DTM DERIVED FROM UAV IMAGERY AND ITS EFFECT ON CANOPY HEIGHT MODEL COMPARED TO AIRBORNE LIDAR IN 
PART OF TROPICAL RAIN FORESTS OF BERKLAH, MALAYSIA 

3 
 

literature is available in assessing the accuracy of UAV DTM in the tropical rainforest. This study was aiming 

to assess the accuracy of  UAV DTM with different number of ground control point and layout. 

1.2. Concept and definitions  

1.2.1. Structure from Motion (SfM) photogrammetry 

Structure from Motion finds its origin in the machine vision community, particularly for finding tracking points 

across a sequence of images, from different positions and angles (Spetsakis & Aloimonos, 1991). SfM is based 

on innovations and mathematical models developed many generations ago, particularly in photogrammetry 

(Micheletti et al., 2015). Photogrammetry provides a computation of metrics measurement of aerial 

photographs about an object without having any physical contact (Ordóñez et al., 2010). 

SfM has built on the principle of a traditional stereoscopic technique, namely that 3D structure can be resolved 

from a series of overlapping images (figure1-1).The advancement in computer vision algorithms, such as Scale-

invariant Feature system (SIFT) and Parallel Bundle Adjustment of graphics processing units, allow the SfM 

technique to generate 3D point clouds from photographs acquired from small  UAVs (Zarco-Tejada et al., 

2014). 

UAV photogrammetry is a helpful tool in topographic applications, surveillance, live video monitoring, forest 

monitoring etc. Their cost-effectiveness and availability has motivated researcher to explore the use of UAV in 

different fields, such as crop monitoring and precision farming (Zarco-Tejada et al., 2014), biomass estimation 

(Kachamba et al., 2016), etc. Recent studies show that attributes like tree height and canopy dimension of a 

tropical lowland rainforest can be derived successfully from 3D Point clouds derived from overlapping UAV 

images (Lim et al., 2015; Reuben, 2017). Forest biomass estimation from UAV imagery depends on how 

accurate forest parameter can be estimated from overlapping images. 

s 

 

Figure 1-1 Structure-from-Motion (SfM). Instead of a single stereo pair, the SfM technique requires 

multiple, overlapping photographs as input to feature extraction and 3-D reconstruction algorithms. 

Source : (Westoby et al., 2012) 
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1.2.2. Airborne LiDAR   

Airborne LiDAR is an active remote sensing technology and stands for Light Detection and Ranging. It is also 

called Airborne laser scanning (ALS). LiDAR uses near-infrared radiation ranging from 90 to 1064 nm as a 

source of illumination and provides 3D geometry of objects using small beam width, multiple pulses, and 

waveform digitization (Wehr & Lohr, 1999). Airborne LiDAR consists 3 components: (i) Laser device for 

accurate distance measurement, (ii) higher precision GPS which record position of the aircraft and (iii) Inertial 

Measurement Unit (IMU) to record orientation (figure 1-2). The laser unit determines the distance between 

aircraft and the targeted object using the travel time of emitted and reflected pulse. LiDAR technology provides 

accurate Digital Terrain Model (DTM), which is helpful to estimate the vertical structure of forest tree height 

extraction (Andersen et al., 2006; Leitold et al., 2015). 

 

Figure 1-2 Airborne LiDAR system; points on surface represent at which laser is reflected back.  

Source: Gallay (2013) 

 

1.2.3. DTM, DSM and CHM 

Digital surface model (DSM) depicts the height values of the surface including the objects (for instance a forest) 

on it, while Digital Terrain Model (DTM) is a topographic model of the underlying terrain, without the objects 

(for instance a forest) on it (figure 1-3). A Canopy Height Model (CHM) is a difference between the (DSM), 

and the DTM.  
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Figure 1-3 Difference between DSM and DTM. 

Source: http://www.charim.net/datamanagement/32 

1.3. Research problem 

Reducing greenhouse emission from deforestation has been long identified as having great potential for global 

climate change mitigation (Böttcher et al., 2009). This case is particular in developing countries where the major 

source of GHG emission is coming from land use change and forest loss (Gibbs et al., 2007). REDD+ initiated 

a program to counteract climate change due to GHG emission in forest-rich developing countries (UNFCC, 

2010). Through REDD+ countries gain economic incentives by demonstrating quantifiable emission reduction 

by protecting their forest. However, the success of REDD+ depends on a consistent methodology for 

monitoring reporting and verification (MRV) so the incentives paid can be evidence based for carbon emission 

reduction (Gibbs et al., 2007).  This leads to anticipated demand in tropical countries for low cost, accurate and 

timely information to determine forest parameters. 

Measurement, reporting, and verification ( MRV ) of forest carbon stock is performed for REDD+ and the 

UNFCCC has suggested the use of remote sensing techniques for this purpose  (REDD+, 2012). It includes 

very high resolution (VHR) optical sensors, Synthetic Aperture Radar (SAR) and Light Detection And Ranging 

(LiDAR) for Above Ground Biomass (AGB) and carbon stock monitoring.  

In order to build and validate remote sensing based forest AGB models, field based AGB measurements are a 

requirement. As was discussed in the introduction, allometric equations provide a non-destructive and efficient 

way to estimate AGB using tree parameters like height and DBH. Tree height improves biomass estimation as 

compared to DBH only allometric model (Chave et al., 2005; Chave et al., 2014). Direct measurement of tree 

height with measuring tape is the most accurate, but it is not a viable option for forest monitoring and 

evaluation. Handheld height measurement equipment like a rangefinder are an alternative, but accurate tree 
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height measurements in the complex tropical rain forest is problematic (Bazezew, 2017).Tree height can be 

estimated using remote sensing data.  

LiDAR is one of the remote sensing technology used to estimate the vertical structure of a forest, including 

tree height, and produces the best results in terms of accuracy (Andersen et al., 2006; Zolkos et., 2013). 

However, the cost of LiDAR can pose financial constraints, especially when the study area needs temporal data 

to monitor vegetation change. 

3D image photogrammetry using UAV images is a potential cost-effective alternative method. Structure from 

motion (SfM) allows the extraction of a 3-D point cloud from a two-dimensional image sequence. The SfM 

method extracts the 3-D structure of a scene from overlapping images using bundle adjustment procedure 

(Micheletti et al., 2015). The resulting 3-D point cloud can be used to construct a DSM, a DTM and a CHM, 

and also for the extraction of forest parameter, like stand density and tree height  (Næsset et al., 2004).  

In order to obtain reliable tree heights from remote sensing data, an accurate DSM, and DTM are pivotal, since 

they determine the quality of the CHM and subsequent tree heights (Maltamo et al., 2004; Næsset et al., 2004; 

Paper & Stere, 2008). In other words, the quality of a UAV-DTM directly influences the estimation of tree 

height and any AGB estimate based on those tree heights  

The quality of the UAV-DTM in its turn is influenced by number and configuration of the Ground Control 

Points (GCP) (Nex & Remondino, 2013; Niyonsenga, 2016; Tahar, 2013). It is due to the fact that GCPs have 

an impact on bundle block adjustment, which is the first step in the process of 3-D point cloud extraction and 

subsequent DTM calculation. In short, the number and layout of GCPs influence quality of  UAV-DTM, which 

in its turn determines the quality of the UAV-CHM. 

Limited literature is available concerning UAV-DTM accuracy assessment and its effect on the canopy height 

model (CHM) and subsequent AGB estimates in tropical lowland rainforest.  

1.4. Objectives  

1.4.1. General objectives 

The main objective of this research is to assess the accuracy of a Digital Terrain Model derived from a UAV 

based 3-D point cloud, in relation to number and distribution of the Ground Control Points and its effect on 

the Canopy Height Model and Above Ground Biomass estimations, in a part of a tropical lowland rainforest, 

Berklah , Malaysia. 

1.4.2. Specific objectives 

1. To assess the accuracy of a DTM derived from UAV 3D point cloud with different number and lay-

out of GCPs by comparing it to Airborne LiDAR DTM. 

2. To extract a CHM and tree height from UAV 3D point cloud and compare it to a LiDAR CHM and 

tree height.  

3. To assess the effect of the tree height differences on the AGB and carbon stock calculation. 
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1.5. Research question 

1. What is the accuracy of DTM derived from UAV in relation to number and layout of GCPs in 

comparison to the DTM derived from Airborne LiDAR? 

2. What is the accuracy of tree heights derived from the UAV based CHM in comparison to tree 

heights derived from the LiDAR based CHM? 

3. How are AGB and carbon stocks estimates affected by tree height difference between UAV and 

LiDAR based data? 

1.6. Hypothesis 

1. Ho: There is no significant difference in the UAV based DTM, using a different number and layout 

of GCPs and the Airborne LiDAR DTM                                                                                                                                     

H1: There is significant difference in DTM generated using different number of GCP and Airborne 

LiDAR DTM 

2. Ho: There is no significant difference in tree heights derived from the UAV-CHM and the tree 

heights derived from the LiDAR-CHM.                                                                                                                

H1: There is a significant difference in tree heights derived from the UAV-CHM and the tree heights 

derived from the LiDAR-CHM  

3. Ho: There is no significant difference between AGB using UAV three height and AGB using ALS 

tree height.                                                                                                                                          

H1: There is a significant difference between AGB using UAV three height and AGB using ALS tree 

height  
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2. MATERIAL AND METHOD 

2.1. Study area  

The study was carried out in Berkelah Forest Reserve, which situated in near Kuantan in the state of Pahang. 

It lies roughly between latitude 3°46'1"N and longitude 103°1'1"E and it is about 234 km to the north-east of 

Kuala Lumpur (figure 2-1). The forest classifies as tropical lowland rainforest and is characterized by species of 

Dipterocarpaceae family (Omar et al., 2015).  

      

Figure 2-1study area. 

Berkelah forest reserve is situated near the equator and the climate is characterized by high humidity, uniform 

temperature, and heavy rainfall with average annual precipitation around 2900mm. The climate is classified as 

a tropical rainforest, with two seasons each year - dry and hot, and very wet. The hot, dry season is due to the 

blocking of the south-west winds, blowing from the land mass of Sumatra towards Peninsular Malaysia's west 

coast by the Titiwangsa mountains (Malaysian Meteorological Department, 2017). The mean monthly 

temperature ranges from 24.2 °C to 29.9 °C while the average monthly rainfall ranges from 90 mm to 300 mm, 

with an air humidity of 70% to 98%. The landscape of the study area is undulating terrain with several different 

topographical characteristics such as hillsides, ridge, and valley. The terrain is moderately steep slope and 

elevation roughly ranges from 43-110m. 
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2.2. Data 

Airborne LiDAR scanner (ALS), UAV images, field-based forest parameters and Ground control point were 

used for this study. The UAV images and field-based parameter were collected from September 22, 2017to 

October 13, 2017.The ALS data provided by Universiti Teknologi MARA (UITM) was acquired on November 

12, 2014.GCP were measured using Differential Global Positioning System (DGPS). The UAV image used to 

acquire 3d point clouds which used to provide DTM, DSM, and CHM. The LiDAR data was used to provide 

DTM, DSM, and CHM. The GCP was used to georeferencing UAV images and assess the accuracy of DTM 

of UAV and LiDAR. Next, to that DBH and  XY coordinates of tree and centre of the plot were measured in 

the field. 

To collect UAV images, design sample plot and tree parameter measurement various field instruments were 

used Details of them with their purpose stated in Table 2-1.  

Table 2-1  Field instruments to be used for the study. 

Various software packages were used to extract, analyze and present ALS, UAV and field data sets. Details of 

used software’s are provided in Table 2.2  

 

 

 

 

S. No. Instrument Purpose 

1 Chalk To mark measured trees 

2 Diameter Tape Tree DBH measurement 

3 GPS Navigation, plot and tree location record 

5 I pad To import map for navigation 

6 Orthophoto image Sampling design 

7 Measuring tape Plot layout measurement 

8 

Stationaries(Pencil, Datasheet, 

Clipboard, Marker) Measurement recording 

   

9 Differential GPS To measure GCP(ground control point) 

10 UAV Phantom 4 DJI To capture image 

11 
Suunto clinometer Slope measurement 
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Table 2-2 Software's to be used for the study. 

 

2.3. Flowchart of the method 

The method used in this study consists of four (4) parts (see figure 2.2): 

1. Field data collection  

output: Diameter at Breast Height of the trees inside a field plot 

2. UAV image processing 

output: Five (5) DTMs with different number and layout of GCPs, and tree height 

3. Processing of the LiDAR data 

output: DTM and tree height 

4. AGB biomass estimation and comparison 

output. 

S. No. Software Purpose 

1 ArcGIS 10.5 

Data processing, Mapping, Visualization and ALS data 

processing 

2 Agisoft PhotoScan UAV imagery processing 

3 eCognition Image segmentation 

4 ERDAS IMAGINE 2016 For image analysis 

5 Microsoft Excel Data processing and analysis 

6 Microsoft power point Presentation of thesis 

7 Microsoft Word For thesis writing 

8 Las tool To Display LiDAR data 

9 Lucid chart For flowchart drawing 

10 R-statistics Statistical analysis 

11 Mendeley For citation and reference writing 
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          Figure 2-2  Flow chart of the study. 

2.4. Data collection 

This section describes the field data collection and UAV image acquisition, including the layout and DGPS 

recording of the GCPs. 
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2.4.1. Sampling design 

In order to cover the variation in forest conditions and taking terrain conditions, the accessibility of the forest, 

slope steepness, presence of roads and time constraints into consideration, a purposive sampling approach 

adopted. The UAV flight areas were selected based on the availability of open space to place ground control 

points.  

Circular plots were used; with a size of 500 m2 (radius 12.6 m). A circular plot is relatively easy to set and 

minimizes the number of trees standing on the edge.(Kershawe et al., ; Maniatis & Mollicone, 2010). In sloping 

areas, a slope correction factor was applied to maintain an area of 500m2 when vertically projected. 

 

             Figure 2-3 study area shows the part of UAV flight blocks and sample plots. 

2.4.2. Biometric data collection 

Fieldwork was done in September and October 2017. Once the centre point of the plot was established, a 

measuring tape was used to set the plot radius (12.62m) in order to arrive at a sample plot size of 500 m2. The 

XY coordinates of the centre as well as the individual trees was recorded with a handheld GPS. The DBH of 

the trees inside the plot was measured with a measuring tape. All data were entered in a data sheet that was 

prepared prior to the field work (see appendix 1). Normally trees with a DBH smaller than 10 cm are excluded 

since their contribution to the AGB of a forest is negligible (Brown, 2002b). For this study, it was key to have 
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sufficient open spaces to be able to vary number and position of the GCPs (see also section 2.3.1.3). The only 

accessible area meeting this requirement was at the South West border of the fieldwork area (see figure 2-3). 

Unfortunately, a part of this area consists of relatively young regenerating forest (fig 2-4) with very few trees 

with a DBH larger than 10 cm. Excluding trees with a DBH smaller than 10 cm would lead to a gross 

underestimation of the biomass. For this reason, it was decided to lower the threshold and include all trees with 

a DBH of 5cm or more, assuming that this would not affect the outcome of the AGB calculation using the 

allometric equation. 

 

Figure 2-4 Study area which consists of young regenerated forest. 

2.4.3. UAV mission planning 

The UAV dataset used in this study consists of the imagery acquired in four areas in Berklah forest reserve. 

The flight areas were identified based on the availability of open space for placing ground control points. The 

UAV images were acquired by using Phantom 4 DJ (figure 2-5). 
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Figure 2-5 Phantom-4 DJI UAV/Drone. 

The mission planning was done in PIX 4D apps (capture and Pix4D Ctrl DJI) (fig xx) using the settings as 

presented in Table 2-3, taking into consideration that the maximum flying height in Malaysia is 150 m and the 

flying time per mission should not exceed the capacity of the batteries. The area was recorded twice, with 

perpendicular flight lines, in order to assess the effect of using a single or double grid on the UAV-DTM. The 

area for taking off and landing was located in the highest part of the area to be recorded, to ascertain the radio 

contact with the drone. 

 

  Figure 2-6 PIX 4D apps.  
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Table 2-3 Settings of the Phantom4 drone for image acquisition. 

Parameter Value 

Speed Moderate 

Angle 90 (Nadir) 

Overlap 80% 

Side Overlap 60% 

Altitude Area 1 till 4 and 6 120 m 

  

The highest possible overlap (80% forward overlap and 60-80% side overlap) provides more common points 

(key points) and allow to compensate for aircraft instability during photo alignment, resulting in a more accurate 

3-D point cloud (Colomina & Molina, 2014). 

2.4.4. Ground control point  

UAV photogrammetric output is normally lower in quality compared to professional manned airborne systems. 

This has as a consequence that in order to achieve high accuracy products, incorporating Ground Control 

Points (GCPs) is required (Gerke & Przybilla, 2016). 

In this study, the analysis of the effect of number and layout of GCPs was an essential step, because it complies 

with the objectives of this study. The UAV flight areas were identified in such a way that all areas have had 

enough open spaces for placing GCPs. The set control point was split in two, the GCP’s used in the UAV 

image processing and the checkpoints which were used for accuracy assessment. In every point, a marker was 

placed, consisting of a large piece of cardboard with a black and white circle sprayed on it with spray to provide 

good contrast and ensure visibility in the UAV images flying at 120 m altitude (figure 2-7). They were used for 

georeferencing and the checkpoints were used to assess the UAV DTM accuracy (figure 2-7). A total of 10 

GCPs and 6 checkpoints were placed in one flight block. The GCPs and checkpoint locations were measured 

with high accuracy using a Differential GPS system.  
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  Figure 2-7 Distribution of control and checkpoint. 

2.4.5. UAV image acquisition 

Before takeoff the settings (see figure 2-6) and battery capacity were checked. All the images were stored on 

the UAV memory card, transferred onto a laptop and their quality evaluated directly after completion of the 

mission. 
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2.4.6. Controlled experiment  

In order to understand and investigate the effect of canopy closure and undulating terrain on UAV tree 

height estimation, these controlled field experiment was conducted. For the purpose, these experiment DBH  

and XY coordinates of selected 10 trees were collected in steep slope and undulating terrain(figure 2-8). This 

area was located in the second flight block at south west of the study area. 

 

Figure 2-8 Trees which information collected during fieldwork in undulating terrain. 

2.5. Data processing 

2.5.1. UAV image processing  

The photogrammetric software Agisoft® Photoscan Professional was used to generate a 3-D point cloud, 

DTM, DSM and orthophoto from the acquired images. Agisoft was also used in a study done by Kachamba et 

al., (2016) because of its capability to provide dense point cloud in a vegetated area. This software uses both 

SfM and stereo-matching algorithms for image alignment and multi-view stereo reconstruction. SfM involves 

a process that automatically finds and matches a large number of common features between photos which are 

then used to establish both interior and exterior orientation parameters. A subsequent procedure then extracts 
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a high resolution and colour-coded point cloud to represent the object (Micheletti et al., 2015). Processing of 

the images with Photoscan consists of the following step (Kachamba et al., 2016; Torres-Sánchez et al., 2015): 

• Image orientation and Alignment  

• Marker Placement (GCPs’) 

• Optimization of camera alignment 

• Dense point cloud generation 

• Building DSM and DTM and Orthomosaic 

Image orientation and alignment 

The images were uploaded to the software (Agisoft Photoscan). At this stage, PhotoScan finds the camera 

position and orientation for each photo, key points and tie points and builds a sparse point cloud mode.In this 

study, “high accuracy” setting was used since it helps to obtain more accurate camera position estimates, and 

hence improves photo-alignment and results in a more accurate sparse point cloud. 

Marker Placement (GCPs’) 

There are two approaches of marker placement in Agisoft photoscan, manual marker placement, and guided 

marker placement. The manual approach was applied in this study where the ground control points were 

manually identified and indicated on each photo where the marker was visible. GCP’s were used in each block 

to improve the image alignment and georeference the generated model. In order to analyze the effect of number 

and layout of the GCPs on the UAV DTM, the images were processed with 4, 6, 8 and 10 GCPs in different 

configurations (see Appendix 2) 

Optimization of camera alignment 

To achieve higher accuracy in calculating camera external and internal parameters and to correct possible 

distortion the Optimization procedure was executed (Agisoft, 2017). The optimization involved two steps. First, 

the sparse point clouds were edited manually by removing noticeable outliers and misallocated points and 

secondly the GCPs were used to run the optimization process. The GCPs locations were measured in the field 

with high accuracy by a Differential GPS system. 

Dense point cloud extraction 

After camera optimization, the dense 3-D point was generated, using the “high quality” setting of the software. 

DSM, DTM, and orthophoto generation 

Agisoft Photoscan software allows for the automatic generation of a Digital Surface Model (DSM) and Digital 

Terrain Model (DTM). After building the 3-D dense point clouds and 3-D polygonal model the software 

generated a DSM and Orthomosaic. Prior to the generation of the DTM, the dense point cloud was classified 

in in two classes, viz. “ground” pixels and “other”. The software uses an algorithm to identify the “ground” 

pixels and generates a DTM based on these pixels only, resulting in a topographic model of the bare ground or 

underlying terrain.  
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CHM generation  

The DTM and DSM were exported to ArcGIS and with the “Raster calculator” tool the DTM was subtracted 

from the DSM in order to arrive at the CHM. The CHM is the input for tree height extraction (see section 

2.5.4) 

2.5.2. UAV orthophoto segmentation 

The orthophoto was segmented by using eCognition software. Segmentation is a technique of spatial clustering 

in which an image is subdivided into non-overlapping objects or segments (Möller et al., 2007). The process 

involves image partitioning in more or less homogeneous areas representing an individual tree crown based on 

an interactive rule set. In this study, multi-resolution image segmentation approach was used. This method 

follows a bottom-up algorithm, where pixels are merged into real-world large objects until no more adjacent 

pixels comply the algorithm setting (Definiens, 2009). The rule set was developed for a small subset of the 

whole image and was later applied to the whole study area. Segmentation was done in order to delineate the 

crown of individual trees. Individual tree identification was important because it was used for matching ALS 

and UAV based tree height data, which were used to analyze the effect tree height difference on AGB and 

carbon stock.  

After segmentation an accuracy assessment was conducted to compare the number of trees identified by tree 

matching, assuming each image segment was a single tree as stated by (Yao et al., 2014). For this step a number 

of trees crown visible in the orthophoto were manually delineated and compared with the corresponding 

segment on the eCognition output, using equation 2-1, 2-2 and -2-3. 

Equation 2-1: Over segmentation equation model 

 

 

 Equation 2-2: Under segmentation equation model 

 

 

Where; 

xi Reference object manually segment the crown (On screen digitized objects) 

yj Corresponding segmented object by eCognition 

Equation 2-3: Measure of goodness 

 

 

Where; 
D is closeness of fit or segmentation goodness 
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The value of under segmentation and over segmentation lies within the range of 0 to 1, where 0 value for 

both under and over segmentation means perfect segmentation, that is the training object perfectly match 

with the segments (Clinton et al., 2014). The segmentation goodness or closeness of fit (D) is a measure of 

error in segmentation (equation 2-3). The D value lies between 0 and 1, where 0 means perfect segmentation. 

 

2.5.3. Airborne LiDAR data processing 

Airborne LiDAR dataset was given by Universiti Teknologi MARA (UITM). The ALS point cloud density was 

5 points/m2. Airborne LiDAR dataset was given by Universiti Teknologi MARA (UITM). The ALS point 

cloud density was 5 points/m2.The LiDAR data was processed in Arc Map 10.5.1 to provide DSM and DTM. 

DTM was generated from the ground returns, while DSM created from the first return (Esri, 2011). The 

Triangulated Irregular Network (TIN) interpolation method was performed to generate DSM, DTM, and CHM 

in the ArcGIS program. This process converted LiDAR points into a raster format (Boudreau et al., 2008; Jung 

et al., 2011). 

2.5.4. Extraction of tree height  

Tree height extraction was done using UAV and ALS CHM, which derived by subtracting DTM from DSM. 

Then, the segmented orthophoto shapefile, field circular plot, recorded centre plot and individual tree location 

was later overlaid on the UAV-CHM as well as the ALS-CHM. The UAV-CHM was co-registered with the 

ALS-CHM to ensure a perfect spatial match. The maximum elevation was used to identify tree height using 

ArcMap 10.5.1. Identification of the individual trees was done by overlaying the coordinates of the trees as 

recorded in the field on the segmented image. Due to the error in the GPS measurements, this was not a perfect 

fit and the final step was to visually compare the pattern of the coordinates as recorded in the field with the 

pattern of the segmented tree crows in order to determine which segment belongs to which individual tree in 

the field.  The quality of the DTM is influenced by the density of the points at terrain level and the CHM and 

subsequent tree height are directly depending on the DTM. In areas with a closed canopy, the differences in 

ALS-DTM and UAV-DTM are expected to be larger. For this reason, 154 trees, 60 trees from first flight block, 

18 trees from second flight block and 76 trees from the third flight, were selected in areas where there was a 

small difference in altitude between ALS-DTM and UAV-DTM and the tree heights were compared by means 

of a t-test.  

2.5.5. Above-ground Biomass and Carbon Estimation 

The allometric equation of Chave et.al (2014) was used for AGB estimation. This equation contains a species-

specific wood density constant, but in areas, with a diverse species composition the use of species-specific 

allometric equations is not feasible (Gibbs et al., 2007). Since the study area is a forest contains high diversity 

in tree species, the AGB was estimated based on the generic wood density for tropical forest developed by 

Chave et al. (2014) (see equation 2-4). 

Equation 2-4: Allometric equation for above ground biomass  

AGB= 0.0673*[(𝞺*D^2 H)]^ (0.976)……………………………………………………………4 

Where, 

AGB-Above-ground biomass (kg); D-Diameter at breast height (DBH) (cm); H-height (m); and -wood 

density (g/cm3). 
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Above-ground biomass will be the converted to carbon stock. Carbon amount is approximately 47% of the 

dry biomass of the tree. For this study, the conversion factor by IPCC, (2006) was used. 

Equation 2-5 Carbonstock 

C = B x CF…………………………………………………….5 

Where C is Carbon stock (Mg), B representing the biomass and CF is the fraction of the carbon in the 

biomass (0.47) 

2.5.6. Data analysis 

The comparison of ALS DTM and UAV photogrammetric image matching DTM’S which processed with 4, 6, 

8 and 10 GCPs in different configuration were compared using random points. Since large dataset reduces 

uncertainties, arbitrary 500 random points(see figure 2-9 ) used for comparison in the area of interest. Arc-Map 

10.5.1 was used to Setout randomly distributed points and extract DTM’S value. These 500 random points also 

used for comparison of single and Double grid  UAV DTM’S. 

Furthermore, UAV DTMS and ALS DTM comparison compared in open and closed space by classifying 500 

random points into open and closed space(closed canopy) as shown in figure 2-10. 176points for closed space 

and 324 random points for open space were used. 

 

Figure 2-9 500 Random points for comparison of ALS and UAV DTM. 



ACCURACY OF DTM DERIVED FROM UAV IMAGERY AND ITS EFFECT ON CANOPY HEIGHT MODEL COMPARED TO AIRBORNE LIDAR IN 
PART OF TROPICAL RAIN FORESTS OF BERKLAH, MALAYSIA 

22 
 

 

 Figure 2-10 Open space and closed space random point for comparison of UAV and ALS DTM. 

In this study, a number of statistical analyses were carried out using Microsoft Excel. The regression analysis is 

the most common method for studying the relationship between two or more variables. Regression test 

commonly applied in the field of forestry studies to the quantitative relationship and expressed by an equation, 

regression coefficients, and coefficient of determination (Kahyani et al., 2011). The linear regression and RMSE 

were used to assess the relationship between UAV DTM and checkpoints (CP) which were measured by DGPS. 

Also, the biomass/carbon stocks generated by ALS and UAV  were analyzed using regression analysis. The t-

test was carried out in order to assess whether means of tree height and DTM  of ALS and UAV differ 

significantly. 

In this study LiDAR was used to validate UAV tree heights. To assess the effect of tree height difference on 

AGB, UAV  tree heights were used to model LiDAR tree heights based on the root mean square error (RMSE). 

RMSE was used to assess the deviation of a dependent variable along the line of fit (Equation 2-6). 
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Equation 2-6: Equation for RMSE and %RMSE calculation 

 

                                            

 

Where;  

 

 Yi: -Measured value of the Dependent variable 

 

i: -Estimated the value of the dependent variable 

 

n-Number of samples 
 

RMSE-Root Mean Square Error of the relationship 

%RMSE = RMSE * n * 100/∑ Yi   

 

Where; 

                         Yi: Measured value of the Dependent variable 

 

i: Estimated the value of the dependent variable 

 

n: Number of samples 
 

RMSE: Root Mean Square Error of the relationship 

 

%RMSE: Percentage Root Mean Square Error of the Relationship 
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3. RESULT 

3.1. DSM, DTM and Orthophoto Generation from UAV images 

The DSM.DTM and ortho-mosaic image were generated using Agisoft Photoscan software through the 

structure from motion technique (SfM). A different number of Ground control points (GCPs’) were used to 

provide spatial referencing of the 3D model and final product of UAV images. A total of 1.7 Km2 were covered 

by the three flight blocks where the ortho-mosaic image with ground resolution ranges from 4.53 – 4.98 

cm/pixel. Some particular information on the UAV image processing conducted in Agisoft Photoscan is 

presented in Table 3-1 below. Also, a sample of generated DSM, DTM and ortho-mosaic image are illustrated 

in figure 3-1 and figure 3-2 below. 

Table 3-1 Summary of UAV-image processing report using Agisoft Photoscan Professional. 

 

 

 

 

Figure 3-1 UAV DSM and DTM. 

Area 
Mission 

grid 
type 

Number 
of used 
images 

Number 
of used 
GCP's 

Flying 
Altitude 

(m) 

Coverage 
Area 

(Km2) 

Point 
density 

(points/m²) 

GCP's 
RMSE 
(pix) 

GSD 
cm/pix 

Resolution 
cm/pix 

1 
single  

368 4 133 0.4 107 0.2 4.84 9.68 

368 6 133 0.4 107 0.21 4.84 9.68 

368 8 133 0.4 107 0.24 4.84 9.68 

368 10 133 0.4 107 0.31 4.84 9.68 

double  741 4 131 0.4 108 0.22 4.8 9.61 

2 single  971 6 129 0.8 108 0.25 4.53 9.07 

3 single 470 4 145 0.5 101 0.26 4.98 9.96 
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Figure 3-2 Small part of the ortho-mosaic image generated from the UAV images. 

3.2. Comparison of ALS and UAV photogrammetric image matching  DTM 

Comparison of ALS and UAV DTM’S which processed with 4, 6, 8 and 10 GCPs (i.e. DTM4, DTM6, DTM8 

and DTM 10 ) was a fundamental objective because it has its effect on tree height and consequently on the 

biomass and carbon stock. ALS DTM was considered to be more accurate under a forest canopy (White et al., 

2013). Therefore it was used to assess the accuracy of photogrammetric generated DTM. RMSE, t-test and 

regression analysis conducted to assess the accuracy of UAV DTM’S Which is explained in this subsection. 

3.2.1. Comparison of ALS and photogrammetric image matching DTM’S using Checkpoint recorded by DGPS  

The comparison between UAV  DTM’S  with different number of GCP'S and ALS DTM was done by using 

Checkpoint point altitude which was collected by differential GPS. The accuracy of the DGCP was 2 cm and 

the accuracy assessment of UAV and ALS DTM was assessed using RMSE and RMSE % (Table 3-2 and 3-3)). 

The accuracy of UAV DTM with 4,6,8 and 10 ground control point, when compared to checkpoint revealed 

that RMSE of ±0.9m and RMSE % of 1.6 for all UAV DTM’s. The summary of the comparison is shown in 

Table 3-2 and 3-3. While the relationship of ALS DTM height and Checkpoint is indicated in figure 3-3 and 

figure 3-4. 
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Table 3-2 Accuracy assessment of UAV DTM’S with different GCPs using Check point collected by DGPS. 

 

 

 

Figure 3-3  Relationship between UAV DTM’S with different GCPs and checkpoint height. 

 

UAV DTM 
Number of GCPs 

STATISTICS 

R2 RMSE (m) RMSE % Number of CPs 

DTM 4 0.98 0.9 1.6 6 

DTM 6 0.98 0.9 1.6 6 

DTM 8 0.98 0.9 1.6 6 

DTM 10 0.98 0.9 1.6 6 
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Table 3-3 Accuracy assessment of ALS DTM using checkpoint collected by DGPS. 

 

 

 

 

 

 

 
 

 

     Figure 3-4  Relationship between ALS DTM and Checkpoint height. 

3.2.2. Comparison of single grid and double grid UAV DTM  

In this subsection single grid and double grid UAV photogrammetric image matching DTM with 4 GCP were 

compared. The t-test analysis was done in order to decide whether to provide and analyze double grid DTM 

with different number of GCP. For this reason, 500 points were randomly selected using arc map 10.5.1(Fig 3-

5).Then the single and double grid DTM height were extracted using these 500 points. The results (Table 3-4) 

shows that there is no significant difference between the two  DTM  where t-statistic <  t-critical (p<0.05). The 

relationship of single and double grid UAV DTM height is indicated in figure 3-6 
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Table 3-4 The t-test assuming equal variance for UAV single and double grid extracted DTM height. 

                  Single grid DTM 4                        Double grid DTM4 

Mean 54.60107214 54.38969154 

Variance 36.10579429 34.55783831 

Observations 500 500 

df 998  
t Stat 0.562279369  
P(T<=t) two-tail 0.574051958  
t Critical two-tail 1.962343846   

 

Figure 3-5 Comparison of Single and double grid UAV DTM height based on 500 random points 
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Figure 3-6 Relationship between single and double grid UAV DTM. 

3.2.3. Comparison of photogrammetric image matching DTM’S and ALS DTM using their height 

In this subsection, ALS-DTM and UAV-DTM with different number of GCP  were compared. First, the images 

were co-registered to ensure a perfect spatial match between UAV-DTM and ALS-DTM (figure 3-7 ).  Using 

Arc-Map 10.5.1, 500 points were generated randomly in the area of interest.Then altitude value of all UAV-

DTM’S and ALS-DTM pixels was extracted using these 500 random points. The coefficient of determination 

(R2), RMSE, RMSE% and t-test (Appendix 3) were carried out the results were summarized in Table 3-5.   

Table 3-5 Summary for comparison of ALS-DTM and UAV-DTMs altitude. 

Statistics DTM 4 DTM 6 DTM 8 DTM 10 

R2 0.66 0.68 0.67 0.67 

RMSE (m) 3.65 3.53 3.51 3.5 

RMSE (%) 6.57 6.38 6.33 6.31 

n 500 500 500 500 
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             Figure 3-7 Comparison of UAV from ALS DTM height based on 500 random points 

Furthermore, UAV-DTMs and ALS-DTM were compared in open terrain and under the closed canopy by 

grouping the 500 random points into open and closed space (see figure 2-10). The t-test results (Table 3-6) 

shows that in open space there was no significant difference between all UAV-DTMs with different number 

of ground control point and the ALS-DTM  where t-statistic <  t-critical (p<0.05).In the case of closed canopy, 

there was a significant difference between UAV-DTM with different number of ground control point and ALS-

DTM. The coefficient of determination (R2), RMSE, RMSE% and t-test (see Appendix 4) results were 

summarized in Table 3-7. 

Table 3-6 The t-test assuming equal variance for UAV-DTMS   and ALS-DTM in open space.  

  
ALS 
DTM DTM 4 ALSDTM DTM6 

ALS 
DTM DTM 8 

ALS 
DTM DTM 10 

Mean 55.2803 55.98014 55.2803 55.73095 55.2803 55.81224 55.2803 55.81262 

Variance 46.18783 35.44697 46.18783 36.24936 46.18783 35.87869 46.18783 35.84033 

Observations 176 176 176 176 176 176 176 176 

df 350  350  350  350  
P(T<=t) 
one-tail 0.152428  0.255338  0.218256  0.218037  
P(T<=t) 
two-tail 0.304857   0.510675   0.436512   0.436073   
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Table 3-7 Summary for comparison of ALS and UAV DTMs in closed canopy altitude. 

Statistics DTM 4 DTM 6 DTM 8 DTM 10 

R2 0.67 0.69 0.68 0.68 

RMSE (m) 4.1 3.54 3.53 3.49 

RMSE (%) 7.4 6.4 6.37 6.31 

n 324 324 324 324 

3.3. CHM Generation from ALS and UAV photogrammetry  and segmentation accuracy assessments  

The UAV and ALS-CHM were generated by subtracting the DTM from the DSM using the Raster calculator 

in ArcGIS 10.5.1. The UAV-CHM using the UAV-DTM with 8 GCPs which was relatively the best DTM 

based on comparison with the ALS-CHM (see Table 3-5 and 3-7). The UAV-CHM is displayed in the 3D 

view. (figure 3-8).  

 

Figure 3-8 UAV Photogrammetry CHM.  

Segmentation was done in order to delineate the crown of individual trees. Individual tree identification was 

important because it was used for matching  ALS and UAV estimated tree height. The accuracy of segmentation 

was assessed by comparing with manually delineated crown polygons. Clearly visible crowns on orthophoto 

were digitized manually on screen in ArcMap. Manually digitized polygons were then compared with the 

automatically generated polygons of orthophoto image as shown in figure 3-9. The segmentation goodness (D) 

value of the 3 areas flown with the UAV ranges from 73 %, 74% and 75% for three flight block respectively. 

The accuracy was accepted for delineation of the crowns of the individual trees, which were later used for 

extraction three heights of UAV-CHM and ALS-CHM. The UAV-CHM and ALS-CHM  were co-registered to 

ensure a perfect spatial match. The shapefile with the segmented tree crowns on the UAV-orthophoto was also 

used to extract the tree height from the ALS-CHM.  
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  Figure 3-9 Sample showing comparison of manually and eCognition delineated tree crown. 

3.4. Comparision between the tree heights extracted from UAV–CHM and ALS-CHM 

A total of 212 matched trees were used to assess the accuracy of tree heights derived from UAV-CHM (i.e. 

derived from DTM8) to ALS tree heights. The scatter plot illustrate the relationship between the UAV-CHM 

and ALS-CHM extracted heights (figure 3-10) coefficient of determination (R2) of 0.605. The root mean square 

error (RMSE) was ±2.1m which are equivalent to 24% of the total estimated tree height from UAV-CHM 

(Table 3-8). 
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Figure 3-10 The scatter plot of ALS-CHM and UAV-CHM extracted tree height. 

 

Table 3-8 Summary for comparison of ALS and UAV tree heights.  

Statistics   

R square 0.60 

RMSE(m) 2.18 

RMSE% 24.37 

Observation 212 

 

Furthermore, The F-test was conducted to find out if the two samples (ALS-CHM and UAV-CHM tree heights) 

have an equal variance or unequal variance, in order to determine which t-test to use to detect the difference 

between the two methods. The results of the F-test shows equal variance between the two samples see Table 

3-9 where the F-statistic < F-critical (P> 0.05). Therefore a t-test assuming equal variance was conducted. 
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Table 3-9 F-test of two samples for variance. 

  ALS UAV 

Mean 8.954264 12.87427206 

Variance 10.40554 10.92142691 

Observations 212 212 

df 211 211 

F 0.952764  
P(F<=f) one-
tail 0.362792  
F Critical one-
tail 0.796934   

 

To find out if there is a significant difference between the tree heights extracted from UAV-CHM and ALS-

CHM a t-test assuming equal variance was conducted. The results (Table 3-10) shows that there is a significant 

difference between UAV-tree height and ALS-tree height where t-statistic > t-critical (p<0.05). 

Table 3-10 The t-test assuming equal variance for ALS and UAV extracted tree height. 

  ALS Tree height UAV Tree height  
Mean 8.954264047 12.87427206  
Variance 10.40553968 10.92142691  
Observations 212 212  
df 422   

t Stat -12.35919945   

P(T<=t) one-tail 1.83592E-30   

t Critical one-tail 1.648472442   

P(T<=t) two-tail 3.67183E-30   

t Critical two-tail 1.965601364    
 

3.4.1. Comparison of tree heights extracted from UAV–CHM, and ALS-CHM in areas where the DTMs are nearly 
the same. 

The quality of the DTM is influenced by the density of the points at terrain level and the CHM and subsequent 

tree height are directly depending on the DTM. In areas with a closed canopy, the differences in ALS-DTM 

and UAV-DTM are expected to be larger. For this reason, 154 trees, 60 trees from first flight block, 18 trees 

from second flight block and 76 trees from the third flight, were selected in areas where there was a small 

difference in altitude between ALS-DTM and UAV-DTM and the tree heights were compared using t-test. 

The results indicated that the mean tree height measured by ALS was 14.5 m with a standard deviation of 5.8. 

While mean of UAV estimated trees height was 15.53 m with a standard deviation of 6.45m. The detailed 

summary statistics of the tree height estimated by UAV and ALS was shown in Table 3-11. 

 

 



ACCURACY OF DTM DERIVED FROM UAV IMAGERY AND ITS EFFECT ON CANOPY HEIGHT MODEL COMPARED TO AIRBORNE LIDAR IN 
PART OF TROPICAL RAIN FORESTS OF BERKLAH, MALAYSIA 

35 
 

Table 3-11 Descriptive statistics of the ALS and UAV measured tree height in the area where DTMs have 
slightly difference. 

                              ALS Tree height                         UAV Tree height 

   
Mean 14.50930169 15.53643511 

Standard Error 0.47417898 0.520408701 

Standard Deviation 5.884406394 6.458102146 

Sample Variance 34.6262386 41.70708333 

Range 32.86878204 29.53923035 

Minimum 5.192390442 6.044624329 

Maximum 38.06117249 35.58385468 

Sum 2234.432461 2392.611008 

Count 154 154 

 

Furthermore, the relationship between ALS-CHM and UAV-CHM tree heights was established in order to 

assess how well UAV-tree heights can predict ALS tree heights. The scatter plot illustrate the relationship 

between the UAV-CHM and ALS-CHM extracted heights (figure 3-11) coefficient of determination (R2) of 

0.88. The root mean square error (RMSE) was ± 2.4 m which are equivalent to 13% of the total estimated tree 

height from UAV-CHM (Table 3-8). 

 

Figure 3-11 The scatter plot of ALS-CHM and UAV-CHM extracted tree height in areas where the DTMs are 
nearly the same. 
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Table 3-12 Summary for comparison of ALS and UAV tree heights in areas where the DTMs are nearly the same. 

statistics   

R square 0.88 

RMSE(m) 2 

RMSE% 13 

Observation 154 

 

The F-test was conducted to find out if the two samples (ALS-CHM and UAV-CHM tree heights) have an 

equal variance or unequal variance, in order to determine which t-test to use to detect the difference between 

the two methods. The results of the F-test shows equal variance between the two samples (Appendix 5) where 

the F-statistic < F-critical (P> 0.05). Therefore a t-test assuming equal variance was conducted. The results 

(Table 3-13) shows that there is no significant difference between the two methods where t-critical > t-statistics 

(p<0.05). 

Table 3-13  The t-test assuming equal variance for ALS and UAV extracted tree height in areas where the DTMs are 
nearly the same. 

  ALS Tree height UAV Tree height 

Mean  14.50930169 15.53643511 

Variance 34.6262386 41.70708333 

Observations 154 154 

df 306  
t Stat -1.458915505  
P(T<=t) one-tail 0.072807033  
t Critical one-tail 1.649848466  
P(T<=t) two-tail 0.145614066  
t Critical two-tail 1.967746738   

 

3.5. Biometric data  

In this study DBH and XY coordinates were collected as biometric data. The following section describe the 

detail of descriptive statistic of DBH calculated by Microsoft excel. 

Diameter at Breast Height (DBH) 

Diameter at breast height was collected in 13 plots in, a total of 600 trees were recorded while total of 212 trees 

were matched (Appendix 6) between ALS and UAV . The descriptive statistic on DBH was carried out using 

Microsoft excel. The mean tree DBH of 11.81 cm was recorded. The summary of the descriptive statistics is 

shown in Table 3-14. 
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 Table 3-14 Descriptive statistics of DBH height. 

 DESCRIPTIVE   

  

Mean DBH [cm] 11.81 

Standard Error (cm) 0.37 

Standard Deviation [cm] 5.34 

Minimum DBH [cm] 5 

Maximum DBH  [cm] 35 

Total number of Matched trees  212 

 

3.5.1. Controlled Field experiment 

Ten trees were selected in undulating terrain in which UAV camera unable to image the ground (see figure 3-

8).Then accuracy of UAV tree height estimation was assessed by ALS Tree heights. The accuracy assessment 

of selected Trees height of UAV by ALS tree height revealed that RMSE of ±5.1 (Appendix 7) meter which 

are equivalent to 16% of the total estimated tree height from UAV-CHM.  

3.6. Biomass and carbon estimation 

The amount of biomass of the trees was calculated using an allometric question. Tree height estimated from 

first flight block using UAV-CHM and ALS-CHM , DBH and default wood density value of 0.57 g/cm3 was 

used for AGB computation. The total Biomass of 212 tress was 10.63 Mg for ALS and 15.41 Mg for UAV 

estimated tree height. The summary of descriptive statistics (Table 3-14) and relationship in regression line 

(Appendix 8 ) and accuracy of UAV biomass is shown in Table 3-15.    

Table 3-15  Descriptive statistics for ALS and  UAV biomass. 

Statistics                      ALS  
                                                

UAV  

   
Mean Biomass [Mg] per tree 0.05 0.07 

Standard Deviation 0.07 0.10 

Minimum biomass (Mg) per tree 0.01 0.01 

Maximum Biomass (Mg) per tree 0.47 0.76 

Total biomass of 212 trees  10.63 15.41 

Observation (Total Trees) 212 212 
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Table 3-16 Summary of relationship and accuracy of UAV computed Biomass. 

statistics   

R square 0.93 

RMSE(Mg) 0.02 

RMSE% 33 

Observation 212 

  

 

Furthermore, Carbon stock of the  trees was estimated based on a conversion factor of 0.47 of the calculated 

biomass. The descriptive statistics indicated that in the total matched trees 212 the average mean carbonstock 

of ALS and UAV was 0.023 and 0.034 Mg respectively. The summary of descriptive statistics is shown in Table 

3-16 and relationship regression line (Appendix 9 ) and accuracy of the UAV carbon stock is shown in Table 

3-17.     

Table 3-17 Descriptive statistics for ALS and  UAV carbon stock. 

Statistics                        ALS                            UAV 

   
Mean Carbon Stock [Mg] per tree 0.0235 0.0341 

Standard Deviation 0.0312 0.0451 

Minimum Carbon stock per trees 0.0023 0.0041 

Maximum Carbon stock per trees 0.2210 0.3549 
Total Carbon stock  [Mg]  of 212 
trees 4.997 7.2417 

Observation (Total Trees) 212 212 
 

Table 3-18 Summary of relationship and accuracy of UAV computed carbon stock. 

statistics   

R square 0.93 

RMSE(Mg) 0.07 

RMSE% 33 

Observation 212 

  

 

3.7. Comparison of UAV-AGB and ALS-AGB  

To reveal the effect of differences of tree height estimation on the AGB a total of 30 trees were selected 

randomly from first, second and third flight block. Tree height of 30 trees estimated from UAV-CHM and 

ALS-CHM, DBH and default wood density value of 0.57 g/cm3 was used for AGB computation. Then, F-test 
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was conducted to find out if the two samples (ALS computed AGB and UAV-Computed AGB) have an equal 

variance or unequal variance, to determine which t-test use to detect the effect of ALS and UAV tree height 

difference on AGB. The results of the F-test shows equal variance between the two samples (see Appendix 10) 

where the F-statistic < F-critical (P> 0.05). Therefore a t-test assuming equal variance was conducted. The 

results (Table 3-19) shows that there is no significant difference between the two computed AGB where t-

critical> t-statistics (p<0.05). 

Table 3-19 The t-test assuming equal variance for UAV and ALS computed AGB.   

  ALS AGB UAV AGB 

Mean AGB (Mg) per tree 0.0494242 0.054409341 

df 58  
t Stat -0.30  
P(T<=t) one-tail 0.38  
t Critical one-tail 1.67  
P(T<=t) two-tail 0.76  
t Critical two-tail 2.00   

 

On the other hand, The relationship between tree height estimated by UAV and ALS  indicated that RMSE of 

±2 m. Thus, the RMSE was used as a basis to assess the effect of differences of trees height measurements on 

AGB. It was done by adjusting the UAV trees height based on the potential RMSE obtained and realize how 

it was affecting the AGB. Thus, the effect of differences of trees height measurements in the AGB  of random 

selected thirty (30) trees was plotted by adjusting the value of tree height in the range of -2 m to +2 m due to 

RMSE of ±2 m (see Table 3-20 and figure 3-12). 

 

Table 3-20 Effect of differences of measured field tree height on biomass estimation. 

Statistics RMSE[-2]  RMSE[-1] RMSE[0] RMSE[+1] RMSE[+2] 

      
Mean biomass [Mg] per 
tree 0.04 0.05 0.05 0.06 0.06 
Standard Deviation 0.06 0.06 0.07 0.07 0.08 
Range 0.29 0.33 0.36 0.40 0.43 
Minimum biomass [Mg] 
per tree 0.01 0.01 0.01 0.01 0.02 
Maximum biomass [Mg] 
per tree 0.30 0.34 0.37 0.41 0.45 
Total biomass [Mg] of 30 
trees 1.34 1.49 1.63 1.78 1.92 

Selected trees 30 30 30 30 30 
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 Figure 3-12 Effect of differences of field measured tree height on AGB estimation. 
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4. DISCUSSION  

4.1. Accuracy of UAV DTM with different number of Ground control point 

 

In this study, DTM of UAV imagery with different number of GCP'S  number of GCPs was derived. The flight 

altitude was 120 m, the side overlap 60-70% and front overlap 90%.These parameters influence the quality of 

a DTM generated from UAV images. The study by  Carrascosa et al. (2016) emphasizes that increase in the 

percentage of side and front overlap reduces error in positional accuracy. Higher overlap increases the number 

of extracted tie points, which positively affects  the quality of the DTM. 

The accuracy of UAV-DTM with different number of GCPs and ALS DTM was assessed by Checkpoints. The 

result revealed that R2 of 0.98 for DTM4, DTM6, DTM8 and DTM 10 With RMSE of ±0.9. while ALS DTM 

had R2 of 0.90 with RMSE of ±1.5 m. When comparing the RMSE of UAV-DTM’S and ALS-DTM it becomes 

clear the UAV-DTM performs better that the ALS-DTM. This may be due to point density difference, UAV 

has 106 points/m2 while ALS with 5 points/m2. 

These results contradict with Reuben (2017). When comparing to (checkpoints) DGPS, the UAV-DTM 

performs better than  ALS-DTM indeed due to a higher point density. On the other hand, Reuben (2017) 

results revealed that ALS DTM Better than UAV DTM compared to (Checkpoint) DGCP point. If the claim 

of Reuben (2017) was correct, the UAV-DTM in open spaces to be similar to the ALS-DTM. That is not the 

case.  

The Accuracy assessment result of UAV DTM by ALS DTM (RMSE ±3 m up to ±4.05 m) of Reuben (2017) 

was very close to the results of this study (RMSE± 3.5m up to ±3.65m) when the comparison made using all 

500 random points. It could very well because of the error in the ALS-DTM. Although the ALS accurately 

measure the tree height (Andersen et al., 2006) while the UAV estimates the tree height, both systems are 

hampered by the fact that the canopy limits the information obtained from the forest floor. It all boils down to 

the density of the point cloud on which the DTM is constructed. The larger the number of points, the better 

the DTM (Estornell, Ruiz, Velázquez-Martí, & Hermosilla, 2011). This is in line with this study result where 

UAV DTM performs better than ALS DTM  in comparison to Checkpoints due to the number of point density. 

This study also goes further and compare UAV DTM in the open space and closed canopy by classifying 500 

random points into open and closed ( see fig 3-7). The t-test assuming equal variance shows that there was no 

significant difference between UAV-DTM and ALS-DTM in open space (Bare land ).On the other hand in 

closed canopy (densely vegetated area) RMSE of ±4.1, ±3.54,±3.53, ±3.49 for DTM4, DTM6, DTM8 and 

DTM10 respectively. The reason for high RMSE was due to the fact that UAV Camera was not able to image 

the ground. This result in missing information in the ground and form DTM by interpolation for closed canopy 

ground surface.  

A similar study was conducted by Debella-Gilo & Iii, (2016) in which different UAV DTM generated using 

different interpolation method in four sites including bare area and undulating area with dense forest. RMSE 

was used to assess the accuracy of UAV DTM. The RMSE of bare land lower than dense forest area(Table 4-

1) which is  very cose to the result with this study.  
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Table 4-1 The RMSE error variables of the DTMs interpolated by the four different methods for the two test 
sites. 

Interpolation method RMSE Bare area Dense forest+ open 
areas 

Inverse distance 
Weighted 

RMSE 0.7 2.4 

 Standard error 0.7 2.3 

Natural Neighbor RMSE 0.6 2.2 

  0.5 1.1 

Regular spline RMSE 0.7 2.5 

 Standard error 0.5 1.3 

ANDUEM Standard error 0.5 2.1 

 

Source: (Debella-Gilo & Iii, 2016)  

4.2. Source of Tree height variation by UAV photogrammetry 

This study shows that UAV tree height is not significantly different from ALS tree height in areas where the 

DTMs are nearly the same. For the main study area (first flight block) flight, there are significantly different 

between ALS and UAV tree heights with RMSE of ±2 meters. The error was due to that in a very dense area 

UAV unable to image the ground thus interpolation made from the open area. The undulating area was not 

characterized correctly which result in an error in tree heights of UAV. The error from UAV tree height is 

depicted in trees which collected in steep slope and undulating terrain in flight block 2.Ten tree was selected in 

undulating terrain in which UAV camera unable to image the ground (see Fig 2-8 ).Then accuracy of UAV tree 

height estimation was assessed by ALS Tree heights. 

The accuracy assessment of selected Trees height of UAV by ALS tree height indicates that RMSE of ±5.1 m 

(Appendix 6) which are equivalent to 16% of the total estimated tree height from UAV-CHM. The error from 

UAV tree height is attributed to the inaccuracy of the terrain model from UAV-DTM. This result was 

comparable to the study done by Reuben ( 2017)  in Ayer Hitam  forest where he reported that RMSE of 

±3.65m  in flight six block. As he explained in his study the UAV point cloud unable to penetrate the ground 

to characterize the ground terrain which results in inaccuracy in tree height Estimation. 

4.3. UAV Tree height Estimation 

In total, 212 matched trees were estimated by UAV-CHM (i.e. derived from DTM8).The mean tree height 

estimated was 12.91 with the standard deviation of ±3.3 m and trees height was ranging from 8 m to 23.6m 

minimum and maximum respectively. Next the UAV tree height is compared with tree heights of ALS. When 

UAV tree height was regressed with ALS derived tree height, R2 of 0.6 was obtained. This indicated that the 

variation in tree height estimated by UAV was explained by ALS tree height by 60%.    
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The accuracy assessment of UAV tree height was evaluated by using tree height derived from ALS and the 

RMSE of ±2.18 (RMSE=24.37%) was obtained . on the other hand t-test assuming equal variance was 

computed and shows that there was a significant difference between UAV and ALS DTM (Table 3-10). This 

study is comparable to the study conducted by Reuben ( 2017) in which in his study 388 trees matched between 

tree heights of ALS and UAV. The study revealed that R2 of 0.62 and RMSE of  2.45 when UAV tree height 

assessed by ALS tree height.  

Furthermore, this study compares tree heights of UAV and ALS in areas with a small difference in altitude 

between ALS-DTM and UAV-DTM. A total of 154 trees from three flight block were used to assess the quality 

of UAV-CHM in comparison to ALS-CHM. The result revealed that  R2 of 0.88 and RMSE of ±2.1 (RMSE 

=13%). This indicated that the variation in tree height estimated by UAV was explained by ALS tree height by 

88%.there was a strong relation between UAV tree height and ALS Tree height. The t-test revealed that there 

was no significant difference between UAV and  ALS tree height since it was derived in in areas where the 

DTMs are nearly the same. The study conducted by Wallace (2016 ) is comparable to this result. The study 

indicates that R2 of 0.68 with RMSE of ±1.3 in comparison to UAV tree heights with ALS tree height. 

4.4. Estimation of above ground biomass and carbonstock 

The general allometric equation by developed by Chave et al. (2014) was used. The equation uses DBH, tree 

height and wood density as an input to compute AGB. The use of generic allometric equation in a tropical 

forest is suitable due to that the equation developed using a large number of trees from different regions (Chave 

et al., 2005; Gibbs et al., 2007). 

To get the input to the allometric equation such as tree height and DBH identification of the individual trees 

was done using the coordinates of the trees as recorded in the field and segmented image. Due to the error in 

the GPS measurements, this was not a perfect fit, and the final step was to visually compare the pattern of the 

coordinates as recorded in the field with the pattern of the segmented tree crowns in order to determine which 

segment belongs to which individual tree in the field. This tree matching error is one of the sources of error on 

AGB calculations using ALS and UAV. 

For the total of 212 matched trees, the total amount of biomass computed from ALS was 10.63 Mg and 15.41 

Mg for UAV. This result contradicts with the result of Reuben (2017)  which reported the AGB  of ALS and 

UAV 189.48 Mg and 177.13Mg respectively for 388 trees. The lower in the amount of AGB is due to that the 

study area is characterized by young trees (see section 2.4.2).The relationship between ALS and UAV  GB show 

that R2 of 0.93 and RMSE of 0.02 Mg. The R2 indicated that 93% of AGB of UAV was explained by ALS. 

Carbon stock of UAV and ALS was computed using a conversion factor of 0.47. The total amount of carbon 

stock  computed from ALS was 4.997Mg and 7.2417Mg for UAV. 

4.5. Effect of differences of UAV and ALS tree height on biomass  

A comparison was made, based on a root-mean-squared error, between UAV tree height and ALS tree height. 

The RMSE was ±2 m which are equivalent to 13% of the total estimated tree height from UAV-CHM. To 

assess the effect of differences of trees height measurements on AGB , a scatter plot of random selected thirty 

(30) trees were plotted by adjusting the value of tree height in the range of -2 m to +2 m due to RMSE of ±2 

m (see figure 3-12) . The above ground biomass estimated using allometric equation by Chave et al (2014) and 

ranges from 0.01Mg-0.45 Mg per tree for randomly selected 30 trees. Further more t-test conducted and the 
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result revealed that This indicates that there is no significant difference between the two computed AGB (see 

Table 3-19). .AGB is not  affected by tree height since the allometric equation by Chave et al (2014) entails that 

tree height has little contribution to AGB when compared to DBH. 

4.6. Limitation 

✓ Handled GPS error was Limitation for tree matching process for tree height comparison and AGB 

estimation. This is one of the sources of error for AGB calculation. 

✓ The difference in data acquisition time between UAV and ALS may be the source of error for tree 

height comparison.   

✓ Data processing of UAV images consumed time which generated  point clouds, DSM and DTM. 

✓ The flying height of UAV which has an effect on UAV DTM restricted by aviation regulation. 
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5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

What is the accuracy of DTM derived from UAV in relation to number and layout of GCPs in comparison to 

the DTM derived from Airborne LiDAR? 

The UAV DTM and ALS DTM were assessed by Checkpoint recorded by DGPS. The R2 of 

0.9806,0.9816,0.9811 and 0.9805 and RMSE of 0.9m,0.8m,0.8m and 0.8m were achieved for DTM4,6,8, and 

10 respectively .The accuracy of ALS DTM, when compared to the checkpoint, achieved an R2 of 0.93 and 

RMSE of 1.9m. The accuracy of ALS DTM was less than UAV because of the difference in point density and 

time of acquisition of UAV and LiDAR data. Furthermore, the accuracy of UAV DTM with different number 

of ground control point when compared to ALS DTM achieved an RMSE of ±4.1m, ±3.54m, ±3.53m and 

±3.49m for DTM4, DTM6, DTM8 and DTM 10 respectively. The t-test revealed that there was a significant 

difference between the DTM of ALS and UAV DTM. Hence The null hypothesis was rejected.  

What is the accuracy of tree heights derived from the UAV based CHM in comparison to tree heights derived 

from the LiDAR based CHM? 

The accuracy of tree height estimated from UAV assessed by ALS tree height since ALS provides an accurate 

DTM. The tree height derived from UAV compared to ALS tree height in relatively closer altitude. The result 

showed that R2 0f 0.88 and RMSE 0f ±2.1m.The t statistics showed that there was no significant difference 

between the two measurements. On the other hand, the tree height derived in the entire area using best UAV 

DTM (DTM8) was assessed by ALS tree height. The result revealed that tree height was estimated by the 

accuracy of 80.9%  (RMSE=±2.5 m, RMSE%=19.07 and R2=0.50). The t-statistics result showed that there 

was a significant difference between the two measurements. Therefore, The null hypothesis was rejected. 

How are AGB and carbon stocks estimates affected by tree height difference between UAV and LiDAR 

based data? 

ALS tree height and UAV  tree height was used to estimate biomass and carbon stock. The RMSE of UAV 

tree height, when validated by ALS tree height, was used to adjust UAV tree height. Then AGB  and carbon 

stock estimated from the adjusted tree height. The  t-statistics result showed that there was no a significant 

difference between ALS AGB and UAV AGB. Therefore, The null hypothesis was not rejected 

5.2.  Recommendation 

The GPS receiver used for this study had an error due to the closed canopy of a forest. This made difficulties 

in tree matching process. Therefore it is recommended to use Differential GPS to record the plot centre to 

make easier for tree matching process for other studies in tropical forests. 

Since the UAV photogrammetric unable to characterize the terrain inside the closed canopy and result 

inaccurate estimation of tree height. It  is recommend to use UAV LiDAR for future other studies.
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Appendix 2 Configuration of GCPs for UAV DTM 4,6,8 and 10. 
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Appendix 3 t-test to compare height for ALS and UAV DTM’s using 500 points. 

  ALS DTM 
UAV 

DTM4 ALD DTM 
UAV DTM 

6 
ALS 

DTM  
UAV 

DTM8 
ALS 

DTM 
UAV DTM 

10 

Mean 56.80 55.66 56.80 55.49 56.80 55.54 56.80 55.50 
Variance 50.49 39.83 50.49 39.81 50.49 37.69 50.49 37.42 
Observations 500 500 500 500 500 500 500 500 
df 998.00  998  998  998  
t Stat 2.69  3.08  3.00  3.10  
P(T<=t) one-
tail 0.00  0.00  0.00  0.00  
t Critical 
one-tail 1.65  1.65  1.65  1.65  
P(T<=t) two-
tail 0.01  0.00  0.00  0.00  
t Critical 
two-tail 1.96   1.96   1.96   1.96   

 

Appendix 4  t-test to compare height for ALS and UAV DTMs in closed space 

t-Test: Two-Sample Assuming Equal Variances  

 

 

 

 

 

 

 

 

 

  ALS DTM DTM4 ALS DTM DTM 6 DTM8 ALS DTM DTM 10 

Mean 57.62555 55.48135 57.62555 55.35874618 55.39161 57.62555 55.33107 
Variance 51.03796 42.23877 51.03796 41.81874939 38.72133 51.03796 38.30909 
Observations 324 324 324 324 324 324 324 
df 646  646   646  
t Stat 3.996228  4.234276   4.369332  
P(T<=t) one-tail 3.59E-05  1.31E-05   7.26E-06  
t Critical one-
tail 1.647216  1.647216   1.647216  
P(T<=t) two-tail 7.18E-05  2.63E-05   1.45E-05  
      1.963643     1.963643   
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Appendix 5  F-test to compare tree height for ALS and UAV tree heights in closer altitude. 

F-Test Two-Sample for Variances 

   

  UAV tree height ALS tree height 

Mean 15.53644 14.5093 

Variance 41.70708 34.62624 

Observations 154 154 

df 153 153 

F 1.204494  
P(F<=f) one-tail 0.125483  
F Critical one-tail 1.30576   

 

Appendix 6 matched trees for comparison of UAV and ALS CHM. 

Tree_No Latitude longtiude DBH_cm 
ALS_Tree 

height 
UAV_Tree 

height 

1 3.728245000 102.9497725 14.9 11.90 10.40 

7 3.728175278 102.9497672 23.2 5.70 11.03 

15 3.728281389 102.9496244 13.3 5.09 10.62 

16 3.728290556 102.9497578 12.0 12.45 14.50 

18 3.728371111 102.9497244 12.0 11.35 10.66 

19 3.728337500 102.9497372 9.0 12.64 13.70 

24 3.728410278 102.9497394 11.2 10.17 10.65 

27 3.728419444 102.9498308 17.0 8.16 10.34 

28 3.728323889 102.9500000 6.4 8.37 12.07 

29 3.728333889 102.9500000 15.5 6.13 10.23 

30 3.728371944 102.9498342 17.5 6.99 9.58 

31 3.728341944 102.9498572 6.1 5.52 9.30 

34 3.728352222 102.9498100 9.5 4.69 9.71 

35 3.728352500 102.9498267 6.5 7.89 8.79 

38 3.728295000 102.9498228 9.2 13.14 13.84 

41 3.728290278 102.9500000 5.7 4.93 9.32 

44 3.728351389 102.9500000 6.3 13.11 12.05 

45 3.728298333 102.9500000 16.5 5.64 9.25 

50 3.728248611 102.9500000 7.5 7.38 10.25 

53 3.728265278 102.9500000 7.1 9.16 10.79 

56 3.728225556 102.9498514 9.5 7.22 9.50 

60 3.728293889 102.9498389 10.5 5.26 9.02 

61 3.728223056 102.9500000 7.6 5.64 9.25 

62 3.728247778 102.9498069 6.5 8.94 10.01 

72 3.727966944 102.9503081 6.2 7.30 9.92 

77 3.728184722 102.9502917 5.1 8.46 12.51 

79 3.728209722 102.9503250 5.5 4.79 12.06 
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80 3.728209722 102.9503044 8.8 4.79 12.06 

81 3.728202778 102.9502717 12.5 7.03 12.46 

87 3.728212778 102.9502858 6.5 5.56 12.53 

88 3.728278889 102.9503022 8.0 6.19 10.45 

89 3.728228333 102.9503006 8.8 5.85 9.19 

90 3.728231389 102.9503681 10.2 5.50 9.04 

91 3.728287778 102.9503175 5.3 8.44 12.20 

92 3.728267222 102.9502622 7.5 7.25 10.41 

96 3.728282778 102.9502583 7.1 7.39 9.11 

97 3.728282778 102.9502481 6.9 5.07 9.25 

103 3.728198056 102.9502289 6.9 8.69 13.64 

104 3.728150278 102.9501744 9.3 6.18 10.60 

105 3.728152500 102.9501769 7.6 5.56 9.97 

106 3.728184167 102.9501861 9.4 7.66 11.44 

107 3.728152222 102.9501861 10.6 4.58 9.79 

118 3.728098889 102.9502233 16.0 8.50 12.08 

121 3.728074167 102.9502614 7.3 8.35 12.22 

122 3.728075833 102.9502758 12.0 8.89 12.12 

126 3.728020833 102.9502472 6.0 5.83 10.43 

127 3.728190000 102.9502233 7.3 8.69 13.64 

128 3.728131944 102.9502233 7.1 9.39 11.53 

129 3.728131944 102.9502500 6.0 8.46 12.51 

130 3.728121944 102.9503011 14.5 8.42 11.94 

131 3.728161667 102.9503011 9.9 5.27 10.39 

133 3.728188611 102.9503453 10.2 5.48 10.59 

134 3.728169722 102.9503408 12.0 5.48 10.59 

135 3.728152500 102.9503303 10.5 8.42 11.94 

137 3.728125278 102.9503889 15.0 6.52 10.16 

140 3.728197222 102.9504467 9.5 15.14 15.99 

144 3.728158889 102.9503692 5.3 8.42 11.94 

145 3.728211389 102.9503692 7.4 5.23 9.66 

146 3.728211389 102.9504075 14.4 9.52 12.07 

147 3.728189722 102.9503939 13.5 12.87 15.78 

153 3.728014722 102.9505375 6.1 6.14 10.23 

154 3.728047500 102.9506028 8.2 5.28 9.52 

155 3.727965556 102.9507036 10.7 8.39 15.44 

157 3.727977222 102.9507072 6.5 8.87 15.61 

158 3.728058056 102.9506319 8.2 12.83 18.12 

160 3.728021944 102.9506769 14.0 6.79 13.30 

161 3.728099167 102.9505600 8.3 17.66 19.94 

164 3.728077222 102.9506011 30.0 12.83 18.12 

165 3.728062500 102.9505642 8.0 15.93 16.92 

167 3.728042222 102.9506506 6.0 6.89 11.97 

169 3.728113889 102.9505811 11.5 14.69 17.66 

170 3.728124722 102.9507811 8.0 13.54 16.65 
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171 3.728023056 102.9504533 8.0 7.80 9.03 

179 3.727995556 102.9504875 7.0 8.58 11.12 

180 3.727962500 102.9505542 9.4 7.40 12.65 

181 3.727954444 102.9505425 11.0 8.78 11.40 

185 3.728042222 102.9506956 11.0 7.00 13.84 

196 3.728042778 102.9506744 14.0 12.69 13.99 

197 3.728036111 102.9507061 14.0 5.97 14.06 

198 3.727992222 102.9506844 12.3 8.87 15.61 

199 3.727961944 102.9506594 15.0 10.04 11.52 

202 3.727977778 102.9506647 16.7 6.26 12.45 

203 3.727993611 102.9506286 8.3 9.29 12.64 

205 3.727933611 102.9506064 7.6 8.19 11.56 

207 3.729873333 102.9500658 17.0 10.77 16.66 

210 3.729636389 102.9500000 14.0 19.69 21.96 

211 3.729660000 102.9500061 7.6 14.61 21.54 

216 3.729637500 102.9500547 9.6 15.32 23.12 

217 3.729649167 102.9500472 6.0 16.36 21.08 

218 3.729655556 102.9500686 5.5 13.93 23.23 

220 3.729651667 102.9500519 30.5 16.39 20.10 

221 3.729670000 102.9500000 14.2 19.63 23.20 

225 3.729671389 102.9500000 10.1 16.02 20.51 

228 3.729756944 102.9500500 26.5 18.81 18.99 

231 3.729784722 102.9501586 9.5 10.02 12.57 

232 3.729536667 102.9503772 35.0 11.92 20.22 

241 3.729474444 102.9502853 12.5 11.05 19.33 

242 3.729428889 102.9502364 8.5 13.33 20.68 

249 3.729308056 102.9502544 31.5 13.94 22.85 

252 3.729378333 102.9501881 10.7 12.11 20.72 

256 3.729362500 102.9503022 12.0 13.24 21.81 

263 3.729500833 102.9504575 9.0 16.92 23.66 

264 3.729456944 102.9504872 14.2 14.13 20.39 

265 3.729446944 102.9505217 29.1 7.05 14.92 

274 3.726534722 102.9520700 19.5 8.69 10.15 

275 3.726620000 102.9520778 21.4 6.00 10.13 

276 3.726593611 102.9521467 13.5 7.09 9.16 

279 3.726486667 102.9520256 11.8 5.44 8.25 

283 3.726561667 102.9519939 11.0 6.49 9.33 

286 3.726481944 102.9520342 12.0 7.65 10.27 

292 3.726422500 102.9520283 11.9 5.50 8.24 

297 3.726371389 102.9520708 18.0 12.11 10.58 

308 3.726353611 102.9520794 13.5 6.72 8.24 

310 3.727585556 102.9519578 12.6 9.05 14.48 

311 3.727559444 102.9519881 11.0 9.94 14.68 

312 3.727592222 102.9520217 7.0 12.42 14.13 

313 3.727555833 102.9520453 6.8 12.42 14.13 
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314 3.727579167 102.9520397 6.9 8.04 12.72 

315 3.727614167 102.9520289 39.2 9.12 13.58 

316 3.727658333 102.9520442 10.2 8.36 14.19 

317 3.727596111 102.9519692 19.5 7.12 11.96 

323 3.727626944 102.9520425 15.0 7.18 13.50 

324 3.727602500 102.9519839 8.0 9.10 14.52 

326 3.727571944 102.9520269 8.0 6.10 11.83 

327 3.727530278 102.9520514 10.0 6.15 12.77 

328 3.727518056 102.9520031 14.1 6.41 12.16 

331 3.727506944 102.9519922 15.5 8.73 12.72 

333 3.727515833 102.9519664 9.6 10.77 11.49 

334 3.727553056 102.9519422 5.0 9.77 14.09 

335 3.727553056 102.9519422 7.2 9.77 14.09 

336 3.727681111 102.9521003 15.0 6.66 12.40 

337 3.727681111 102.9521003 7.0 9.78 12.06 

338 3.727664444 102.9520944 6.0 5.11 12.04 

339 3.727654167 102.9520878 11.0 7.07 11.93 

340 3.727647778 102.9520739 19.7 11.17 14.69 

341 3.727647778 102.9520739 22.3 8.36 14.19 

343 3.727573889 102.9521275 17.1 10.91 15.87 

344 3.727588611 102.9521331 12.5 18.04 20.57 

347 3.727623056 102.9520039 13.2 8.68 13.19 

350 3.728214167 102.9496172 8.6 12.70 14.17 

351 3.728214167 102.9496172 15.1 12.70 14.17 

356 3.728259444 102.9496003 16.7 7.83 13.40 

357 3.728202500 102.9495867 11.0 12.76 13.32 

365 3.728196389 102.9496694 15.0 12.96 11.78 

369 3.728204167 102.9497167 11.5 14.00 16.79 

372 3.728286111 102.9496700 9.8 7.26 10.41 

373 3.728289167 102.9496406 22.5 6.64 10.68 

378 3.728344444 102.9496242 14.0 5.89 10.28 

380 3.728363611 102.9495236 13.8 7.30 13.62 

381 3.728310000 102.9495608 8.2 8.86 14.43 

383 3.728305556 102.9495331 6.2 9.06 14.47 

384 3.728259722 102.9495544 12.5 9.27 12.80 

385 3.728256111 102.9495322 10.4 8.39 13.68 

411 3.729087778 102.9491681 10.0 11.64 12.62 

412 3.728945000 102.9494325 15.3 9.93 13.50 

413 3.728945000 102.9494325 5.2 9.93 13.50 

414 3.728945000 102.9494325 10.5 9.93 13.50 

439 3.729662778 102.9493967 12.1 7.32 11.88 

440 3.729542222 102.9494883 8.9 10.22 13.31 

441 3.729640278 102.9492169 8.2 8.54 13.65 

442 3.729541667 102.9494889 18.3 10.22 13.31 

443 3.729570278 102.9494811 7.6 6.85 11.50 
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444 3.729733611 102.9494261 10.1 10.59 10.08 

445 3.729584722 102.9494408 17.6 9.83 10.66 

446 3.729661389 102.9494753 10.8 7.12 11.81 

447 3.729650278 102.9495211 11.6 8.62 12.51 

448 3.729684444 102.9495025 9.0 7.72 10.97 

449 3.729650556 102.9494889 18.8 7.45 12.68 

450 3.729650556 102.9494889 17.0 7.45 12.68 

451 3.729630000 102.9494431 9.4 10.70 13.98 

452 3.729557500 102.9494025 17.1 6.41 13.27 

453 3.729610556 102.9493783 12.8 12.04 11.60 

455 3.729639444 102.9493758 8.7 6.95 12.08 

459 3.729465278 102.9493922 12.1 10.81 10.85 

462 3.729678889 102.9493475 7.9 11.15 10.09 

463 3.729694167 102.9492703 10.5 6.75 11.67 

465 3.729698889 102.9492417 12.4 9.53 12.71 

466 3.729698889 102.9492417 8.0 9.53 12.71 

468 3.729645000 102.9492853 12.5 9.61 12.53 

471 3.729638056 102.9493675 13.9 13.36 11.12 

474 3.729631667 102.9492686 6.2 5.75 12.45 

476 3.729521111 102.9493869 6.1 11.26 9.50 

486 3.728209722 102.9503250 23.7 4.79 12.06 

487 3.728209722 102.9503044 12.3 4.79 12.06 

488 3.728202778 102.9502717 11.7 7.03 12.46 

496 3.728228333 102.9503006 10.8 5.85 9.19 

497 3.728231389 102.9503681 17.0 5.50 9.04 

498 3.728287778 102.9503175 5.8 8.44 12.20 

502 3.728269444 102.9502583 13.0 4.77 11.57 

503 3.728282778 102.9502583 11.0 7.39 9.11 

510 3.728198056 102.9502289 10.0 8.69 13.64 

511 3.728150278 102.9501744 13.7 6.18 10.60 

512 3.728152500 102.9501769 21.4 6.40 11.20 

513 3.728184167 102.9501861 18.0 7.66 11.44 

514 3.728152222 102.9501861 20.0 4.58 9.79 

525 3.728098889 102.9502233 16.0 8.50 12.08 

533 3.728020833 102.9502472 25.2 5.83 10.43 

534 3.728190000 102.9502233 17.0 8.69 13.64 

536 3.728131944 102.9502500 8.0 8.46 12.51 

537 3.728121944 102.9503011 19.0 8.42 11.94 

538 3.728161667 102.9503011 16.0 5.27 10.39 

540 3.728188611 102.9503453 8.0 5.48 10.59 

541 3.728169722 102.9503408 8.0 5.48 10.59 

542 3.728152500 102.9503303 18.0 8.42 11.94 

543 3.728072222 102.9503353 5.0 8.12 10.37 

544 3.728125278 102.9503889 15.0 6.52 10.16 

545 3.728188611 102.9503972 7.5 12.87 15.78 
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551 3.728158889 102.9503692 19.6 8.42 11.94 

552 3.728211389 102.9503692 12.0 5.23 9.66 

553 3.728211389 102.9504075 10.0 9.52 12.07 

554 3.728189722 102.9503939 8.0 12.87 15.78 

555 3.728209722 102.9503250 11.0 4.79 12.06 
 

 

Appendix 7 Comparison of UAV ALS CHM in controlled experiment.. 

 

 

 

 

 

 

 

 Appendix 8 Relationship between ALS and UAV biomass. 
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Appendix 9 Relationship between ALS and UAV carbon stock. 

 

 

 

Appendix 10 F-test to compare ALS and UAV AGB. 
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  ALS AGB UAV AGB 

Mean Biomass (Mg)  per 
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Variance 0.004 0.005 
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df 29 29 

F 0.774  
P(F<=f) one-tail 0.247  
F Critical one-tail 0.537   
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