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ABSTRACT 

Forest ecosystem plays a crucial role in climate change reduction through their exceptional nature of 

carbon sequestration which regulates the global temperature. The tropical rainforest is one of the forest 

ecosystems which can store and release a vast amount of carbon dioxide depending on the status of forest 

management. Around 78.14% of sequestered carbon in the tropical rainforest is stored in aboveground 

biomass. Tropical deforestation and forest degradation contribute about 20%, the highest global carbon 

dioxide emission next to fossil fuels which contribute to climate change. The UNFCCC was established 

for GHG emission reduction. Following the convention REDD+ initiative was established aiming to 

follow up emission reduction activities. MRV of carbon stock is REDD+ mechanism to measure the 

status of the forest and to monitor the emission balance of REDD+ adopted countries such as Malaysia.  

Accurate measurement of forest inventory parameters has a relationship with accurate aboveground 

biomass estimation which is a major concern of REDD+MRV program as it assists computing accurate 

carbon estimation. However, accurate measurement of these parameters in the multilayered tropical 

rainforest is challenging due to occlusion.  

 

This study aimed to investigate possibilities for accurately assessing the aboveground biomass/carbon 

stock of multilayered tropical rainforest canopy structure using UAV imagery. A circularity measured CPA 

adjustment, and the relationship with DBH as well as the accuracy of tree height extracted from UAV 

derived CHM achieved reasonable results.  

 DTM, DSM, and Orthophoto were generated in Agisoft photo scan professional by photogrammetric 

image processing from UAV high-quality, dense point cloud and CHM was calculated in Arc GIS raster 

calculator by subtracting DTM from DSM. Orthophoto segmentation and incomplete CPA adjustment 

after segmentation as well as tree height extraction from UAV derived CHM were performed. DBH was 

estimated through regression using the adjusted CPA as independent and field DBH as the dependent 

variable. The estimated DBH achieved R2 of 80% with power model. Airborne LiDAR-derive height 

validated the tree height from UAV-CHM, and there was no significant difference between airborne 

LiDAR and UAV derived CHM) with RMSE of 17% in the study area. 

The adjusted CPA as a proxy to DBH and tree height from UAV derived CHM was used to assess 

AGB/carbon stock. The estimated AGB/carbon stock was validated using t-test, and the result is not 

significant due to error multiplication during DBH prediction, and UAV derived CHM generation.  

 

Therefore, a UAV-based AGB/carbon stock estimation in vertically multilayered forest canopy structure 

using generic allometric equation needs integration with other remote sensing tools to achieve REDD+ 

MRV program. However, incomplete tree crowns adjustment using circularity measure achieved a robust 

CPA-DBH relationship.         

            

Keywords: Tropical rainforest, Climate change, REDD+ MRV, UAV, LiDAR, AGB/Carbon stock  
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1.  INTRODUCTION  

1.1. Background information  

Forest ecosystem plays a crucial role in climate change reduction through carbon sequestration which 

regulates the global temperature (Pan et al., 2011). Forest covers about 30% of Earth's land surface and 

stored 45% of the carbon stored on land (Saatchi et al., 2011). Forests store more carbon than any other 

terrestrial ecosystems and serves as the best carbon bank and natural mitigation of climate change (Gibbs 

et al., 2007).  According to Saatchi et al., (2011) researchers found that around 247 billion tons of carbon 

is sequestered in tropical forests, of which 78.14% is stored in aboveground biomass (trunks, branches, 

and leaves) and 21.86% is stored in the roots. Forest ecosystem destruction releases a vast amount of 

carbon back to the atmosphere as carbon dioxide (CO2) (Gibbs et al., 2007; Mohren et al., 2012). The 

tropical rainforest is one of the forest ecosystems which can store and release a vast amount of carbon 

dioxide (Soares Filho et al., 2010). Nowadays, tropical rainforests are declining due to deforestation and 

forest degradation (Jungle Boy, 2013). Tropical deforestation and forest degradation contribute around 

20%, the highest global carbon dioxide emission next to fossil fuels (Hirata et al., 2011).  Carbon dioxide 

is a Green House Gas (GHG) which causes climate change (Paustian et al., 2000). The intergovernmental 

panel on climate change (IPCC) third assessment report (2001) mentioned that Carbon dioxide emission 

due to tropical forest destruction has a serious impact on climate change (Houghton et al., 2001)   

The United Nation Framework Convention on Climate Change (UNFCCC) was established in 1992 for 

the purpose of greenhouse gas (GHG) emission reduction, and countries agreed on the Convention to 

stabilize the GHG emission. Monitoring and reporting the forest carbon emission status is needed by the 

Convention (Peltoniemi et al., 2006). Following the convention, Reducing Emission from Deforestation 

and forest Degradation (REDD+) including sustainable forest management for carbon stock 

enhancement has been initiated to follow-up on emission reduction activities (Graham et al., 2017). The 

REDD+ needs an accurate measurement, reporting, and verification (MRV) mechanism of forest carbon 

stock balance monitoring to offer result based reimbursement for REDD+ adopted countries (Goetz et 

al., 2012).  

Accurate forest biomass estimation is crucial for accurate carbon stock assessment since 47-50% of the 

dry forest biomass is carbon (Drake et al., 2002; IPCC, 2007). The assessment of aboveground biomass is 

a major concern to REDD+ MRV mechanism (Phua et al., 2016). The most accurate method of 

aboveground biomass estimation is cutting, drying and weighing all parts of the tree but, this method is 

destructive, labour-intensive and covers a small area only(Basuki et al., 2009). This destructive method of 

biomass estimation can underpin other nondestructive methods to estimate carbon stock, using allometric 

equation (Clark et al., 2001). The allometric equation needs forest parameters such as tree height, diameter 

at breast height (DBH), Crown projection area (CPA) and wood density as an input (Basuki et al., 2009; 

Ketterings et al., 2001; Sampaio et al., 2010).  

The use of remote sensing technology to extract forest inventory parameters is a nondestructive method 

to estimate aboveground biomass (Ahamed et al., 2011). Numerous studies have been carried to estimate 

or measure these forest inventory parameters, using different types of remote sensing techniques 

(Brovkina et al., 2017; Ene et al., 2016; Kankare et al., 2013; Liang et al., 2014; Nelson et al., 2017). In 

simple forest modelling diameter at breast height from LiDAR data by making a relationship with other 

forest parameters is feasible (Andersen et al., 2005; Drake, Dubayah, Clark, et al., 2002; M. A. Lefsky et al., 

2005; Naesset et al., 2005). Terrestrial LiDAR can scan the stem of trees and estimate DBH comparable to 
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DBH measured in the field (Hopkinson et al., 2004; Pfeifer et al., 2004). Scanning forests using Terrestrial 

LiDAR for DBH measurement needs multiple scans to extract 3-D point clouds of the maximum number 

of individual trees and of sufficient quality. A solitary scan in the dense tropical forest using Terrestrial 

LiDAR is subjected to occlusion (Pfeifer et al., 2004; Yao et al., 2011).  

Various studies have been carried out in retrieving tree height using different  LiDAR types with different 

point densities ( Harding et al., 2001; Harding & Carabajal, 2005; Lefsky et al., 2005; Næsset & Økland, 

2002).Terrestrial LiDAR cannot detect upper canopy of tropical rainforest as it cannot perceive long 

distance vertically. Mostly airborne and spaceborne LiDAR detects the forests upper canopy accurately, 

but it needs canopy openings to record data from the forest floor (Magnussen & Boudewyn, 1998; 

Naesset, 1997). Even though researchers acknowledge the potential of LiDAR in forest inventory 

parameter estimation, but in a dense tropical rainforest are faced with challenges due to occlusion (Coops 

et al., 2007; Lovell et al., 2003). In addition to the DBH and tree height, crown dimension provides an 

estimation of aboveground biomass and carbon stock, since they serve as input for the allometric equation 

(Brown et al., 2005; Popescu et al., 2003).  

Unmanned Aerial Vehicles(UAV) a relatively new tool which can able to supply imagery at high spatial 

and temporal resolution (Turner et al., 2012). According to Turner et al., (2012) there are two kinds of 

UAVs; fixed wing and multi-rotors UAV design. The fixed-wing UAV flies faster and can cover a larger 

space, while multi-rotors can fly slowly and can capture images with any required overlap. The fixed-wing 

UAV needs a larger area for takeoff and landing compared to the multi-rotor (Nonami et al., 2010). Even 

though different UAVs have a different performance when it comes to payload, they can potentially carry 

any camera or sensor. UAV technology can be used for sustainable forest management issues, as it assists 

observation, assessment and mapping forests (Remondino et al., 2011). UAV application in sustainable 

forest management program is crucial because of its applicability in harsh inaccessible places. According to 

Grenzdörffer et al., (2008) the application of this new technology in forest management can facilitate 

estimation of forest inventory parameters and the achievement of aims of REDD+ strategy.   

There are possibilities and advantages in assessing tropical rainforest aboveground biomass and carbon 

stock using UAV since it has a potential to provide a high-resolution image at any moment in time if the 

weather allows (Messinger et al., 2016). UAV image users have the chance to plan the flight mission time 

and minimize the impact of weather on image quality. The advantages of UAV in the forest carbon stock 

assessment are light-weight, low-cost, frequent image acquisition and minimal atmospheric correction, 

which are essential to achieving REDD+ MRV goals (Getzin et al., 2012). UAV imagery can supplement 

LiDAR and labour intensive(field-based) forest inventory methods (Messinger et al., 2016b). In spite of 

open space requirement for GCPs, UAV imagery has a potential to capture multi-view images and can 

reduce shadow effect, as it can capture the object from different directions.  

Structure from motion (SfM) is a photogrammetric processing technique for estimating three-dimensional 

structures (point clouds) from two-dimensional image sequences. SfM image processing approximates 

camera position and scene geometry automatically by matching a series of 2-D overlapping images 

(Westoby et al., 2012).  The use of UAV imagery for extracting tree height and the estimated tree height 

can be used as an input for the allometric equation for biomass estimation (Magar, 2014; Reuben, 2017 

including previous ITC thesis).  

The retrieving of forest parameters using remote sensing can be achieved through object-based image 

analysis (OBIA). Object-based image analysis is a type of image analysis which has been successfully 

applied to crown projection area image segmentation in forests with a simple canopies structure, using 

high-resolution images as an input (Hay et al., 2005; Kim et al., 2009). In object-based image analysis, the 

CPA’s are generated using image segmentation algorithm which portions a large image into the non-

overlapping unit (Chubey et al., 2006). Object-based image segmentation uses spectral and other 

information such as shape, texture and contextual relationships (T. Blaschke, 2010).  
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1.2. Statement of the problem and Justification   

The main element of the agreement reached in Paris at the UNFCCC COP21 in December 2015 for 

climate change mitigation was about the implementation of REDD+ (Pasgaard et al., 2016). The aim of 

the initiative is to encourage sustainable forest management activities leading to the reduced emission of 

greenhouse gases. The REDD+ program provides an incentive for rehabilitation and sustainable 

management of degraded forests (Ansell et al., 2011). Measurement, Reporting, and Verification (MRV) of 

carbon stock is a REDD+ mechanism to measure the status of the forest and to monitor the emission 

balance of REDD+ adopted countries such as Malaysia (Köhl et al., 2009). Also, regular carbon stock 

assessment in tropical rainforest needs a low-cost, accessible and simple method of carbon estimation. 

Accurate measurement of forest inventory parameters has a relationship with accurate aboveground 

biomass estimation, which is a major concern of REDD+MRV program as it assists computing accurate 

carbon estimation (Phua et al., 2016). However, accurate measurement of these parameters in the 

multilayered tropical rainforest is a challenging task due to various uncertainties (Lu, 2005).  

Most of the allometric equations are developed based on forest parameters such as wood density, tree 

height and DBH (Bragg, 2001; Chave et al., 2014). Among those parameters, DBH explains about 95% of 

the variation in aboveground biomass (Brown, 2002). Tree height is a supplementary input into the 

biomass estimation equations (Chave et al., 2014). Measuring DBH and tree height in the field is a labour-

intensive and a time-consuming (Brown, 2002; Kwak et al., 2007). Moreover, these parameters are tree-

based and not applicable to large areas.  

In order to quantify the aboveground biomass timely and efficiently, remote sensing technology is vital, as 

it reaches inaccessible areas and covers large surface (Calders et al., 2011). Although remote sensing can 

repeat identical measurements over time hence fits the aim of REDD+ strategy, measuring DBH from 

remotely sensed data is impossible (Sium, 2015) except near distance measurements through TLS.   

Forests canopy height extraction and mapping are mainly achieved using LiDAR and Digital 

Photogrammetry (Lim & Treitz, 2004). 

Unmanned Aerial Vehicle(UAV) is an elating technology which has a potential to supply high spatial and 

temporal resolution images (Turner et al., 2012). Photogrammetric UAV image processing is a promising 

cost-effective technique, since it yields a 3-D point cloud, comparable to LiDAR data, for estimating 

aboveground biomass (Magar, 2014). The success of LiDAR-based forest inventory parameter estimation 

increases with increasing the point cloud density of LiDAR data but, increasing LiDAR data point cloud 

density is expensive (Gibbs et al., 2007). Compared to LiDAR, UAV images are cheap, and the technique 

is readily available, and a 3-D point cloud obtained through a photogrammetric processing of UAV image 

potentially can replace LiDAR data (Leberl et al., 2010). UAV can collect data over areas of a few hundred 

or few thousand hectares, with a density of 400 points per m2 at a ground sampling distance of 5cm, 

whereas airborne LIDAR has a density of 5 to 6 points per m2.  

In addition, UAV low flight altitude allows an overcast sky. A disadvantage of current UAV systems is that 

they require accurate Ground Control Points (GPS) for geo-referencing, which means sufficient, well 

distributed, large enough open spaces, with markers with known coordinates.  

The Crown Projection Area is the surface of the vertical projection of the outer boundary of the crown. 

This parameter can be detected using object-based remote sensing image processing and can result in a 

segmented image approaching the shape and size of the crowns(CPA) (Gartner et al., 2010; Song et al., 

2010). Object-based image segmentation uses spectral and contextual information and has proven to yield 

good results is with and simple structure and open canopy cover (Baral, 2011; Karna, 2012; Tsendbazar, 

2011).  

Research shows that CPA has a relationship with DBH (Hirata et al., 2009; Shimano, 1997). Numerous 

researchers showed a significant relationship between DBH and tree CPA (Hemery et al., 2005; Lefsky et 

al., 2002; Sium, 2015; Song et al., 2010). Since DBH play a crucial role in the assessment of AGB using an 
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allometric equation, estimating the DBH through the CPA is a promising approach for the measurement, 

monitoring, reporting and verification (MRV) program within the framework of REDD+. The CPA can 

be used as a proxy for DBH in more simple forests, but in multilayer tropical rainforest this is more 

cumbersome, since the CPA cannot be successfully extracted due to occlusion. 

The effect of vertical canopy structure complexity on segmentation for biomass estimation is not much 

studied and has not obtained a solution yet. segmentation of temperate forest Ortho-photo has been 

successfully used to delineate CPA (Magar, 2014; Okojie, 2017) but limited studies in the tropical 

rainforest. In this study, object-based image analysis and CPA adjustment technique were applied to 

complete the lower incomplete crowns of multilayer forest canopies using high-resolution UAV image for 

aboveground forest carbon-stock estimation in Berkelah tropical rainforest, Malaysia. 

This research aims to investigate possibilities of AGB and carbon-stock estimation using adjusted CPA, 

tree height and forest inventory parameters relationship from UAV images within the context of 

REDD+MRV program in Berkelah part of the tropical rainforest, Malaysia(Figure 1).   
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Figure 1: The problem and objective trees of the study. 
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1.3. Research Objective, Questions and Hypothesis   

1.3.1. General Objective 

The main objective of this study is to investigate possibilities to assess AGB/carbon stock using adjusted 

CPA as a proxy for DBH and, tree height derived from UAV imagery in Berkelah tropical rainforest, 

Malaysia. 

1.3.2. Specific objectives  

1. To assess the relationship between adjusted CPA (after segmentation) and DBH measured in field 

in tropical rainforest 

2. To assess the accuracy of tree height estimated from UAV 3-D point cloud compared to airborne 

LiDAR data in tropical rainforest  

3. To assess the accuracy of AGB/Carbon stock-UAV compared to AGB/Carbon stock-

field/airborne LiDAR.  

4. To estimate and map total aboveground carbon stock using CPA and height from UAV imagery    

1.3.3. Research questions  

1. Is there a significant relationship between adjusted CPA (after segmentation) and DBH measured 

in the field in tropical rainforest?  

2. Is there a significant difference between tree heights derived from UAV 3-D point cloud 

compared to tree height derived from airborne LiDAR in a tropical rainforest forest?  

3. Is there a significant difference between AGB/carbon stocks-UAV based and field-

based/airborne LiDAR? 

4. What is the estimated amount of AGB/ carbon stock from UAV imagery in the study area? 

1.3.4. Research Hypothesis  

1. Ho: There is no a significant relationship between  adjusted CPA and DBH measured in the field 

Ha: There is a significant relationship between adjusted CPA and DBH measured in the field  

2. Ho: There is no a significant difference between tree heights derived  from UAV 3-D point cloud 

compared to tree height derived from airborne LiDAR data   

Ha: There is a significant difference between tree heights derived  from UAV 3-D point cloud 

compared to tree height derived from airborne LiDAR data  

3. Ho: There is no a significant difference between AGB/carbon stock-UAV-based and 

AGB/carbon stock field/airborne LiDAR  

Ha: There is a significant difference between AGB/carbon stock-UAV-baesd and AGB/carbon 

stock field/airborne LiDAR  
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1.4. Theoretical framework of the study 

In order to accomplish this study, relevant literature was reviewed, the research problem was identified 

and subsequent questions and research objectives were formulated. Secondary data and required tools 

were requested and fieldwork was carried out. The collected data were processed and analysed and the 

result was discussed, comparing them to literature. Finally, the research was summarized in conclusion and 

recommendation. The general description of the process is illustrated in Figure 2. 

Figure 2: Theoretical framework of the study. 
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2. LITERATURE REVIEW  

2.1. Tropical Rainforest Biomass and Carbon  

The tropical rainforest or low land equatorial evergreen rainforest is, generally composed of broad-leaved 

trees in hot and moist areas near the earth’s equator (Smith, 2015). Tropical rainforests are fundamental to 

carbon storage and carbon sequestration on a global scale. Tropical rainforest includes four layers 

(emergent, canopy, understory and forest floor). The emergent layer is formed by the tallest trees, the 

canopy is the thickest layer, consisting of trees shorter than the emergent layer, the understory tree layer is 

below canopy layer and receives less sunlight and the floor of the forest is full of litterfalls (Figure 3).   

Tree biomass is defined as the total dry weight of the trees per unit area. It includes the above and below-

ground dry weights (Dengsheng Lu, 2006). Below-ground biomass refers to the total mass of live plant 

roots (Ravindranath & Ostwald, 2008). Conversely, the above-ground biomass refers to the dry weight of 

stem, branches and leafs (Gschwantener et al 2009). For this study Above Ground Biomass (AGB) is 

considered, since the main cause of carbon emission is AGB destruction and depletion (Gibbs. et al 

20027). The most appropriate and direct means of quantifying aboveground biomass is through harvesting 

all above-ground parts of the trees, oven-drying and weighting them (Gibbs, 2007).  Some authors state 

the approximately 50% of the biomass is carbon (Brown, 1997; Drake, et al, 2002). The IPCC (2007) 

report suggests that around 47% of the forest biomass is carbon; considering the different density of 

various species. The forest biomass is a vital biophysical parameter for different ecological and biophysical 

models hence, the accurate estimation of biomass is crucial for improving the applicability of those 

models (Luo et al., 2017).   

 

Figure 3: Illustration of tropical rainforest layers (www.ace geography (modified)). 

2.2. Allometric Equation 

According to Bujotzek, (2007) allometry is “measuring and comparing the relation of body mass to 

different biological parameters”. The allometric equation in forest biomass estimation is the most reliable 

and non-destructive approach once the relationship with structural tree parameters (DBH, height, CPA, 

etc) is developed (Ketterings et al., 2001; Wang, 2006). Estimation of AGB should consider the forest 

structure and climatic conditions so as to reduce the generalization of field allometric equations which lead 
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to uncertainty (Drake et al., 2003; Yuen et al, 2016).  Basuki. et al (2009) suggested that site specific 

allometric equation selection for accurate biomass estimation is essential.  

2.3. Overview of UAV and Photogrammetry  

Unmanned Aerial Vehicle (UAV) also known as drones or unmanned aircraft was deployed for the first 

time by Americans Lawrence and Elmer Sperry in 1916 (Nonami, 2007). It was initially fashioned for a 

military purpose without any risk for pilots and later applied for civil and geomatics at the end of the 

1970s  (Colomina & Molina, 2014).  Currently, “the use of UAVs in the civilian domain, as remote sensing 

tool, presents new and stimulating opportunities (Turner et al., 2012). The increased demand UAV’s by 

civilians has to do with its low-weight, low-cost, availability of accurate and miniature Global Positioning 

System (GPS) as well as Inertial Measurement Units (IMUs) (Colomina & Molina, 2014; Fritz et al, 2013, 

Zhang et al., 2016). Generally, UAV types are classified based on their area requirement to takeoff; as 

fixed-wing aircraft (large area needed) and rotary-wing (small area needed) (Figure 4). The flight speed and 

area coverage is smaller in rotary-wings than in fixed-wings  (Nonami et al., 2010).  

A UAV photogrammetry is a 3D footage of ground information as a valid complementary solution of 

terrestrial acquisition (Colomina et al, 2008). According to Mayr, (2011) appropriate design of the UAV 

trajectory and a real-time task management capacity are significant in achieving fruitful and secure 

acquisition missions. UAV data can be acquired under an overcast sky, but the platform is susceptible to 

wind and should not be during high-wind or wind bursts. The UAV flight instability can to some extend 

be compensated by 90% forward and 60-80% cross overlap for proper application of photogrammetry 

and remote sensing (Colomina & Molina, 2014).  

 

Figure 4: major types of UAV (source: www.questuav.com). 

Photogrammetry is a method of estimating structural parameters of topographic features in a 3-

dimensional way from photographs.  The basic principle used by Photogrammetry is triangulation using 

photographs of an object that captured from its different sides based on lines of sights from the camera 

location to points on the object (Figure 5). These lines of sight are scientifically intersected to produce the 

3-D coordinates of the points of interest. Photogrammetry was established for topographic mapping. 

Photogrammetry deals with the precise measurements regarding the size, shape, and position of objects, 

next to recognition and identification of feature visible on the image. Photogrammetry is a structure-from-

motion technique to solve feature positions within a defined coordinate system (Westoby et al., 2012). 
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Figure 5: Illustration of structure from motion (source: (Westoby et al., 2012)). 

2.4. Application of UAV in forestry  

A UAV delivers very high-resolution imagery which can play an important role in forest management 

through its contribution to assessment,  mapping and modelling issues (Remondino et al., 2011). The 

UAV application in forestry is very promising, not only because of its low-cost, but also its ability to 

minimize the accident to pilot in a harsh environment in comparison to traditional airborne platforms. 

According to Grenzdörffer et al., (2008) UAV imagery is a valuable tool in different forest inventories 

activities as well as to perform precision silviculture. Forest production and growth rate research require a 

platform that can be deployed frequently and is readily available (Horcher & Visser, 2004), both 

requirements are strong points of a UAV. Forest monitoring in tropics can be successfully performed 

using the UAV very high-resolution image which is advantageous over the established remote sensing 

techniques (Messinger et al., 2016b). The effect of unfavourable atmospheric conditions, (like clouds and 

rain showers) can be circumvented, since a UAV flight mission can be scheduled and executed on very 

short notice and with an overcast sky. In addition, reduced time and effort for atmospheric correction and 

the relatively low purchase amount guarantees a UAV to be a valuable tool in the framework of REDD+ 

MRV (Getzin et al., 2012).    

2.5. Advantage and disadvantage of UAV imagery  
Different shapes and sizes of UAV have both advantages and disadvantages which eventually leads to the 

operator’s decision which platform will best fit the application (Remondino et al., 2011). Phantom 4 DJI 

UAV is a helicopter with 4 rotor blades that revolve around a fixed mast. Opposed to fixed-wing, rotor 

blades UAV’s do not need constant forward movement and can land vertically which allows small takeoff 

and landing space. Disadvantages are limited battery power, directly affecting the duration of a mission 

and the weight of the payload. Currently, the ability of UAV to stay in the air with a small camera is not 

more than a half hour per single flight mission (Remondino et al., 2011; Torresan et al., 2017) and this 

limits the area which can be covered in one mission (Matese et al., 2015). Geo-referencing of UAV images 

needs additional ground control points, since the quality of the onboard GPS is limited and GPS and 

camera are not aligned to the same point in the ground.  Due to the high spatial resolution a UAV mission 

results in a large amount of data per hectare surveyed, which subsequently requires powerful data 

processing capability (Torresan et al., 2017).  
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2.6. Airborne LiDAR and its Application in forestry  

Airborne LiDAR (Light Detecting and Ranging), is an active remote sensing technology which uses 

airplane and helicopter platforms (Figure 6) and produces high accuracy 3-dimensional topographic data 

(Lafsky et al, 2002). LiDAR uses a medium power laser and generates point clouds with X, Y, Z positions, 

based on measurement of the distance between the sensor and targeted objects. It determines the elapsed 

time between emission of the laser pulse and detection of returned (reflected) laser signals at the receiver. 

An air born LiDAR system carries; a Laser device, an inertial navigational Measurement Unit (IMU) which 

records aircraft orientation, an airborne global positioning system (GPS) unit, which records the X, Y, Z 

positions of the aircraft and a computer interface that manages the communication among devices and 

data storage(Figure 6).   

 

 

Figure 6: Illustration of Airborne LiDAR (Dowman, 2004). 

The laser pulse emitted from the device is reflected back from the forest canopy, leaves, branches and bare 

surface (Evans et al., 2009). Airborne LiDAR systems for forest application and topographic mapping uses 

eye-safe near-infrared laser light, mostly at 1064 nm. This technology has proven its use for forestry 

purposes, due to its ability to assess the 3-D canopy structure and provide high precision data (Patenaude 

et al., 2005; Balzter et al., 2007). Airborne LiDAR plays role in the study of tree height and forest stand 

volume (Nilsson, 1996).  

There are two LiDAR laser pulse recording systems; discreet-return, which records the data as separate 

returns and full waveform system, which records the whole return as one continuous wave (figure 7). 

When used for a forest area, the discreet-return system records several returns from many parts of the 

trees. The first return represents the canopy height, while the last return reveals the terrain height. The 

data used in this study has 4 returns and the fourth one is the last return which was used to generate the 

DTM. The waveform system has lower spatial resolution and hence a larger ‘footprint’ and continuously 

records the amount of energy returned back to the receiver  (Evans et al., 2009). Terrestrial LiDAR 

(Terrestrial Laser Scanner) allows for accurate 3D measurement of biophysical parameters in the field 

(Lafsky et al, 2002), basically using the same technology as airborne systems. 
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Figure 7: Illustrations of discreet-return and waveform LiDAR devices conceptual differences 

 (Source: Lafsky et al, 2002). 

2.7. Crown projection area 

The crown projection area(CPA) The crown projection area (CPA) of a tree is the area covered by the 

projection of the outer border of the crown on the horizontal plane (Gschwantner et al., 2009) (see figure 

8). The relationship of crown projection area and DBH (see section 1.2) can be influenced by the sensor 

view angle, sun elevation and topography (Pouliot et al., 2005). According to Culvenor (2002), a small off-

nadir view angle and higher solar zenith angle can help to discriminate the real geometric and radiometric 

properties of tree crown in very high-resolution images. The influence of geometric and radiometric 

properties of trees can be minimized using UAV imagery, since the time of image acquisition and view 

angle can be managed, in combination with high image overlap. Most probably, at the nadir view and solar 

zenith angle, a regular circular crown shape could be seen but such perfect situation can be hardly ever 

found (Pollock, 1996). Erikson (2004) suggested that CPA delineation is tricky when the imagery is 

recorded at low sun angle due to a shade side effect of the trees. 

The CPA of individual trees can be extracted through crown delineation from very high resolution optical 

and LiDAR imagery (Song et al., 2010). Various studies show a significant relation between CPA and 

DBH (Hermery et al, 2005; Song et al, 2010; Lefsky et al., 2002). The UAV image photogrammetry can 

provide height and canopy structure with less-cost and at appropriate solar zenith angle. Since DBH and 

CPA have a relationship (Hirata et al., 2009), it is reasonable to assume that CPA and height could provide 

a better estimate of aboveground forest biomass and carbon stock. In a multilayered tropical forest the 

CPA of the lower trees is not fully visible and due to that, complete crown segmentation is a difficult task. 

Incomplete crowns need adjustment to minimize CPA under segmentation problem. CPA calculation 

assumes circularity from the maximum crown diameter (Kuuluvainen, 1991) 
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Figure 8: Demonstration of crown projection area (Gschwantner et al., 2009). 

2.8. Object-based image analysis  

Object-based image analysis (OBIA) has the ability to incorporate contextual information of an object 

instead of depending on pixel information only. This method received increasing attention with the 

development of high-resolution remote sensing data. High-resolution imagery creates an opportunity to 

derive objects of interest based on the information from several pixels (Blaschke, 2010). OBIA results in a 

segmented image. The OBIA process includes portioning of an image into meaningful separable objects, 

feature set building and optimization to remove undesired objects and classification of objects into 

meaningful categories. OBIA technique differs from the traditional pixel-based image classification 

processes as it works through aggregating of neighbouring pixels into meaningful image objects within 

designated parameters (Riggan &Weih, 2009). Image segmentation is the start of object-based image 

analysis. Segmenting an image is the process of subdividing an image of groups of homogenous pixels to 

build meaningful image objects. The segmented image object needs further classification based on 

textural, spectral, shape and contextual information to make object-based image analysis complete (Hay et 

al., 2005; Li. & Zhang, 2009). 

 

 

 

 

 

 

 

 

 

 

 



TOWARDS A UAV BASED STANDALONE SYSTEM FOR ESTIMATING AND MAPPING 

ABOVEGROUND BIOMASS/ CARBON STOCK IN BERKELAH TROPICAL RAIN FOREST, 

MALAYSIA 

 

14 

 

3.  MATERIALS AND METHODS  

3.1. Study Area  

Berkelah, tropical rainforest is one of the tropical rainforest forest areas in Malaysia. The forest area has 

undulated topography and diverse tree density with various canopy density and structure. It is around 25 

kilometers far from Kuantan city to North West direction. The forest was logged before 40 years ago and 

now it is rehabilitated secondary forest type of tropical rainforest(Barizan, et al. 1997).  

The geographical location of Berkelah tropical rainforest is in Kuantan district-Pahang region, Northeast 

of Peninsular Malaysia, and is located between 3°57′ 43” N and 102°41′ 47”E (Figure 9). 

 

 

Figure 9: Study area location map.  

Berkelah tropical rainforest has a humid tropical climate which characterized by high-temperature, high 

relative humidity and abundant year-round rainfall. The average temperature is around 30oC and the mean 

annual rainfall is 2,540 mm(Barizan et al., 1997).  

The vegetation of Berkelah forest reserve consists of a mixed Dipterocarp hill forest. The forest is 

characterized by a high proportion Shorea species which is categorized under red meranti group. The area 

was logged and after that, the vegetation can be classified as a mixed hill Dipterocarpaceae forest 

dominated by Dipterocarpaceae which is the dominant timber producing tree family (Barizan et al., 1997).  
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3.2. Materials  
The tools and equipment in Table 1 have been used to measure and collect the necessary field data in this 

study.   

Table 1: Field measurement tools and equipment.  

Tools and equipment  Specific function 

Measuring tape (50m) Plot layout and measurement 

Diameter tap (5) Tree girth measurement  

GPS  Navigation and X Y coordinate reading  

Densitometer  Measuring canopy density  

 

In this study, airborne LiDAR, UAV imagery and field-based biometric data were used. The UAV imagery 

and biometric data was acquired and collected during the fieldwork. Airborne LiDAR dataset of the study 

area, with average point density of 6 points/m2 from 2014 was obtained from University Technology 

Mara Malaysia (UiTM). The required software and specific function were as shown in Table-2.   

 

Table 2: Required soft ware. 

Soft wares  Specific Function  

e-Cognition 9.2.1 developer  Image segmentation  

Arc map 10.5 GIS analysis  

SPSS v. 20 software  Statistical analysis  

AGISOFT photo scan professional  UAV image processing  

Erdas imagine  image analysis  

Microsoft Excel  Data analysis   

Arcscene 10.5 for 3-D visualization of images  

3.3. Methods  
The methods which were applied in this study have four main parts; field data collection, remote sensing 
data processing, segmentation and CPA adjustment and data analysis. The main process of the methods 
that were applied was as shown in Figure 10.   
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 Figure 10: Flowchart of the research methods. 
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   3.3.1. Pre-fieldwork  

Field data collection needs pre-fieldwork activities such as field data collection sheet designing, testing of 

equipment and tools, practicing the different field instrument, preparing field data collection sheets 

(appendix1), checking GPS and UAV batteries and all those activities were conducted before fieldwork. 

Black and white paint, 45 cm X 60 cm white marker and plastic tubes were prepared to mark the ground 

control points and to provide good visibility in the UAV images (Figure 11).  

 

Figure 11: 45 cm X 60 cm Marker and plastic tube inserted at centre. 

 

3.3.2. Sampling Method  

In this study, a purposive sampling method was applied because of the fieldwork time and accessibility 

limitation to collect the required number of plots that would take a lot of time. The technique was applied 

to effectively use the fieldwork time and minimize risks of inaccessible places. In the field circular plots, a 

radius of 12.62m (500m2) was laid out. The radius was corrected for the slope when required (Abegg et al., 

2017). UAV flight plans were selected based on the open space available for marker placement.  In total 

four flight plans were established, with 32 sample plots. In every plot, the following data were collected: 
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coordinates of the centre point and 1033 individual trees (Figure 12). From the 1033 trees, the DBH was 

measured with diameter tape.  

 

 

 

Figure 12: Sample plot distribution and UAV flight covered blocks. 

3.3.3. Field Data Collection  

3.3.3.1. UAV Image Acquisition  

UAV image acquisition was carried out using a Phantom 4 DJI UAV with RGB camera model FC330 

(3.61mm), 4000 X 3000 resolution, 3.61mm focal length, and 1.56 X 1.56 μm pixel size. Four areas were 

selected (1, 2, 3 and 4) with a slope range between 0-13.9, 0-14.5, 0-15 and 0.33-26.5 degrees respectively 

and covered by 8 flight missions. Based on open space availability and block area size, 4-8 markers (35 in 

total) were placed for ground control point recording. The Pix4D capture app was used for UAV flight 

plan preparation, with the following settings: moderate speed (approx. 50% of the maximum speed) 90% 

overlap and a flight altitude of 120m (Figure 13). The Ground Control Points (GCPS) were recorded 

using Differential Global Position System (DGPS). The size of the UAV flight mission was determined by 

the capacity of the battery (18-20 minutes).  
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Figure 13: Flight planning and settings for the DJI Phantom-4 UAV. 

3.3.3.2. Biometric Data Collection  

The DBH was measured using diameter tape and recorded on the data collection sheet. Even though trees 

with less than 10 cm DBH have no significant contribution to biomass and carbon stock (Brown, 2002), 

in this study trees with a DBH between 5 and 10 cm were also included, since the main goal of this study 

is to adjust CPA and explore the relationship between DBH and CPA. Folk trees have been considered as 

one tree when the folk is above 1.3 m and as two trees when below 1.3 m. During the fieldwork, the 

coordinates of each tree were recorded to locate the tree in the image. The average tree crown diameter 

was estimated in the field and recorded to decide on the input value for local maxima and local minima 

during the object-based image segmentation process. During the fieldwork, a total of 1033 trees were 

measured.  

3.3.4. Airborne LiDAR Data Processing  

In this study, the airborne LiDAR data was required to extract tree height which is relatively accurate 

hence validate tree height derived from UAV 3-D point cloud only since tree height measurement in the 

tropical rainforest using handheld tools is difficult due to occlusion. The final output of the airborne 
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LiDAR data processing was Canopy Height Model (CHM), to extract tree height from airborne LiDAR-

CHM. The airborne LDAR data which was obtained from University Technology Mara Malaysia (UiTM) 

was LAS dataset file in a *.lased extension. To generate the CHM, generating Digital Surface Model 

(DSM) and Digital Terrain Model (DTM) was the first procedure.  

3.3.4.1. DSM and DTM generation from airborne LiDAR Data 

The airborne LiDAR data were used to generate a Digital Terrain Model (DTM) and a Digital Surface 

Model (DSM) using Arc GIS 10.5. The DSM and DTM were generated after the LAS dataset was defined 

using create dataset geoprocessing tool in Arc GIS and a layer was created by adding the data into Arc 

map. Identifying the last return and first return points were the first step of generating DSM and DTM. 

The last return of the airborne LiDAR data was return 4 hence DTM was generated from the fourth 

return while the DSM was generated from the first return. After identification of the points to process, the 

layer with the selected points was changed to raster in Arc Map using the LAS dataset to raster tool 

(rasterization) (Sumerling, 2011). The interpolation of DSM and DTM was using the same cell size with a 

maximum and average cell assignment respectively (in DSM result biasing to higher elevation but, in DTM 

average interpolation is best).The DSM represents the earth surface including objects on it while the DTM 

is only the bare ground surface. 

3.3.4.2. Airborne LiDAR canopy height model (CHM) generation  

CHM also called normalized DSM represents the heights of all objects above the ground. The CHM was 

generated by subtracting DTM from DSM (DSM-DTM) in Arc GIS using raster calculator. The out of the 

calculation is not the absolute tree height and needs noise removal (Magar, 2014). The output was 

inspected, and the generated CHM showed extreme heights which were not absolute tree heights in reality 

(since the heights of the tree in the forest were not more than 50 m).Thus, all the noise points were 

removed using raster calculator and kept the CHM values between zero and 50m.  

3.3.5. UAV Image Processing   

3.3.5.1. DSM, DTM and Orthophoto generation from UAV imagery  

UAV image was processed with Agisoft photo scan professional version 1.3.4. Software, which was used 

by Torres-Sánchez et al., (2015). Agisoft Photoscan Professional software works through the principle of 

structure from motion (SfM) and contains the following steps: uploading photographs in to Agisoft photo 

scan professional, inspecting uploaded images, removing random photos, load camera positions, photo-

alignment, adding ground control points for geo-referencing, optimize camera alignment, dense point 

cloud generating, building a mesh, creating DTM and DSM, build ortho-mosaic and export results (Figure 

14). During photo-alignment, the software searches for common points on consecutive images and 

reconstructs the approximate camera position based on GPS, pitch roll, and yaw data which were 

recorded simultaneously with the photograph. The result of this step is a sparse 3-D (x, y & z) point cloud. 

From this point cloud, a mesh (a 3-D surface model) is derived, which is a required intermediate step if 

Ground Control Points (GCP’s) are being used. The next step is locating the markers of the GCP’s on the 

images and entering the corresponding x, y and z value, which were obtained by Differential Global 

Positioning System (DGPS) in the field. After placing the markers, the camera orientation is re-calculated 

and possible distortion is corrected based on the added GCP’s and a dense point cloud can be 

constructed. The dense point cloud is the input for the DSM and DTM. The DSM is a surface model 

consisting of a regular grid of height values. The DTM is also a regular gird with height values, but these 

values are the result of interpolation between those pixels which were classified as “ground points”. The 

DSM in its turn the input for the Ortho-mosaic The DSM, DTM, and Ortho-mosaic were produced from 



TOWARDS A UAV BASED STANDALONE SYSTEM FOR ESTIMATING AND MAPPING 

ABOVEGROUND BIOMASS/ CARBON STOCK IN BERKELAH TROPICAL RAIN FOREST, 

MALAYSIA 

 

21 

 

average point cloud density of 121points/m2 and with ground resolution 4.57 cm/pix. The Ortho-photo, 

DSM, and DTM were generated with an average error of 1.7cm in the X, Y and Z using the ground 

control points. The main steps of UAV image processing in agisoft photo scan are illustrated in Figure 14. 

 

 

Figure 14: Illustration of the main UAV image processing in Agisoft photo scan pro. 

3.3.5.2. UAV Canopy height model (CHM) generation   

The canopy height model (CHM) of UAV 3D point cloud was generated by subtracting the DTM from 

the DSM in Arc-GIS 10.5 using the raster calculator similar to LiDAR CHM. The CHM was made ready 

for individual tree height extraction by removing the negative and more than 50 m height values (Magar, 

2014).  

3.3.6. CPA manual delineation and circularity measure 

Research has shown that there exists a relation between CPA and DBH (see section 1.2) and image 

segmentation, based OBIA using e-Cognition software and has proven to be a successful technique to 

extract the CPA from a remote sensing image. However, the strength of the relationship is negatively 

affected when the tree crowns are interlocking or occluded, and not completely visible in a remote sensing 

image, which is the case in the complex canopy structure of a tropical rainforest. In this research, it is 

attempted to adjust incomplete tree crowns with a circularity measure and establish the relationship with 

the DBH. This was done in some steps: 

1. Manual delineation the outer boundary by on-screen digitizing of fully visible tree crowns (CPA) 

on the UAV-orthophoto and assessing the relation with the corresponding DBH. 

2. Applying a circularity measure in the manually digitized tree crows (Adjusted CPA) and assesses 

the relation with the corresponding actual CPA and DBH. 

3. Segmenting the orthophoto with object-based image analysis using e-cognition software and 

assessing the relation with the DBH 

4. With the segmented image as input, use the circularity measure from step 2 to complete partially 

visible tree crowns, resulting in an adjusted CPA and assess the relationship with the 

corresponding DBH. 
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Manual delineation of the CPA 

In this research identifying and delineating fully visible crowns is crucial for the development of CPA-

DBH relationship in the study area. In this step, 55 visible tree crowns were identified in the UAV 

Orthophot, and the actual CPA was digitized on-screen using ArcGIS. The actual CPA’s are input for the 

accuracy assessment of the Object-based Image Analysis (OBIA), and when combined with the 

corresponding DBH’s was the input for linear regression.  

Circularity measure 

Object-based image analysis for tree crown delineation in the complex forest is hampered by intermingling 

crowns and occlusion incompleteness of crown projection area in lower forest layers. Even though 

roundness is a parameter in multiresolution segmentation algorithm, still it does not solve the challenge of 

incomplete crowns of multilayer forest canopy. For this reason, this study investigates if a circularity 

measure can be used to approximate the CPA of those crowns which are only partially visible on the UAV 

image. The word circularity in this study refers to the crown projection area of a tree assuming the shape 

of tree crown as circular to estimate the actual crown projection area of incompletely visible tree crowns.  

Before adjusting the CPA of incomplete tree crowns (step 4), a test was done to assess the effect of a CPA 

circularity measure (adjusted CPA) on the relationship with the real CPA and DBH. In this test, a circle 

was fitted on the visible tree crowns and comparing the adjusted CPA with actual CPA. Figure 15(a) and 

(b) show the possibilities of fitting circles to the fully visible crowns.    

 

 

 

Figure 15: Illustration of fitting circularity on manually delineated CPA. 

The effect of fitting inner, outer and intermediate circles was tested in the fully visible tree crowns. To test 

the relation between the actual CPA and adjusted CPA (intermediate circle), the following procedure was 

applied.  
1. Fit the inner circle to the arc of  actual in Arc Map 

2. Fit the outer circle to the arc of actual crown in Arc Map 

3. Drive the radius for both circles (R = outer circle radius and r = inner circle radius) 

4. Subtract inner circle radius from outer circle radius and divided by two (R-r)/2 and add to the inner 

circle radius to arrive at the intermediate circle (Appendix 2) 

                         (Inner circle CPA) and                           (outer circle 

CPA) were calculated in Arc Map. The area of an intermediate circle (adjusted CPA) was calculated as 

follows: 
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R adjusted = [(R-r)/2] + r  

Therefore, the area of adjusted CPA is calculated using equation 1. 

Equation 1: Area of adjusted CPA 

 

Adjusted CPA = π(R adjusted) 2......................................................................................................1 

Where;  

CPA; crown projection area 

r; the radius of the inner circle  

R; radius of outer circle  

3.3.7. Multiresolution segmentation   

UAV derived orthophoto was segmented using the region-based segmentation technique within e-

Cognition software. This technique can extract information from the image by classifying spatially and 

spectrally similar pixels to a homogenous area to form an image object (tree crown). In this algorithm, 

segmentation starts from a single pixel and subsequently grows until a particular image object is formed. 

After continuous merging of a single pixel or seed pixels and image object was built, new seeds placed and 

a new process was repeated (Blaschke et al., 2004). Merging of smaller objects to create a bigger object 

were based on homogeneity criteria such as colour, smoothness and compactness parameter which 

determine segment heterogeneity (Carleer et al., 2005).  

The region growing segmentation was implemented through multiresolution segmentation algorithm to 

maximize homogeneity of segmented objects(Benz et al., 2004). Watershed transformation algorithm with 

the aid of average crown diameter estimated in the field and expert knowledge was applied to the analysis 

to separate the tree crown intermingles.  

The orthophoto segmentation was done using multiresolution segmentation algorithm. According to 

Okojie, (2017), the ortho-photo resolution was resampled to 20 cm before segmentation since the high-

resolution image can create the salt-and-pepper problems during segmentation.   

 

 
 

Figure 16: Illustration of multi-resolution segmentation process (Benz et al., 2004). 
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3.3.7.1. Watershed Transformation  

This algorithm is crucial to separate clusters into individual objects. As the watershed has a water dividing 

line which is important to separate one catchment area from the other; tree crowns which are intermingled 

each other needs like a watershed dividing ridge assuming the margin of the tree crows as dividing line. As 

a watershed has a common outlet point in the topographical surface, the tree crowns have braches as the 

water streams and the stem of the tree as a common outlet. Individual objects can split when individual 

catchments touch each other so as manage sub-watersheds separately defining those dams as segmentation 

results Figure 17 (Derivaux et al., 2010). Based on this principle and using this algorithm intermingled 

cluster tree crowns were separated in the e-cognition software. The parameter which was decided in the 

watershed transformation algorithm as a length factor was 40 pixels since the appropriate resolution of the 

segmented ortho-photo was 20cm. This is based on the average size of tree crowns measured in the field, 

viz. 8m, which corresponds to 40 pixels. However, some of the tree crowns are split up into more than 

one segment and have an irregular shape. To minimize this problem refinement of some tree shapes is 

necessary using morphology algorithm.   

 

Figure 17: Illustration of the watershed transformation principle (Derivaux et al, 2010). 

3.3.7.2. Morphology  

Morphology is a mathematical algorithm applied to refine segmented objects by smoothing the boundaries 

of tree crowns. This refinement is either by removing pixels causing an irregular object shape or adding 

surrounding pixels to an image object to fill small holes inside the segmented area (Drǎguţ et al., 2010). 

Moreover the circular and square mask options in morphology are the parameters for refinement of the 

tree crowns. Circular mask and close image object are appropriate to refine the irregular shape since most 

projected tree crown shape is close to circular.   

3.3.7.3. Removal of undesired objects  

Undesired object removal was done to remove the remaining undesired objects after completing the 

segmentation procedure. Some very tiny objects with an area less than 20 pixels have been removed. 

These correspond to trees with a crown diameter of fewer than 2 meters and whose biomass would hardly 

contribute to the total carbon stored in the forest. In addition to this elongated features in the segmented 

image were removed since unlikely represent trees. 

3.3.7.4. Segmentation Accuracy Assessment /Validation 

Segmentation accuracy assessment was performed by confronting the manually segmented tree crowns 

with the corresponding segment in the classified image. The assessment considers the topological and 
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geometrical relationships of the tree crowns (Möller et al., 2007).  Topological relationships of tree crowns 

deal with ‘containment’ and ‘overlap’, while the comparison of crown positions assesses geometric 

relationships. 

If the automatically segmented crown areas fully enclose the manually digitized crown areas, it is a perfect 

segmentation. Minimum acceptable accuracy is 50% of reference and automatic segment overlap (Zhan, 

2005). 

There are four matching cases of segmented objects (CPA) with their manually digitized reference objects 

(CPA) (Figure 18). The orange part of the polygon is matching well between the automatic segment and 

its manually digitize reference polygon; green part is the region in the segmented object not explained by 

its reference whereas blue part is a region in reference object but not described by the segmented object. 

 

Figure 18: Matching cases of an extracted object (Zhan et al., 2005). 

Figure 25 (a) shows the overlap between a reference polygon and an automatic segment of more than 

50%; (b) shows matching of both objects in size and shape but not location and in (c) and (d) the position 

of reference polygon and automatic segments matched but with variation in spatial extent. The 

segmentation accuracy was assessed by comparing the e-cognition results with manually delineated tree 

crowns(Clinton et al., 2010).  

Equation 2: Over segmentation equation model  

Equation 3: Under segmentation equation model  

Where;  

Xi: Reference object manually segment crown (on screen digitized objects) 

 Yj: corresponding segmented object by e-Cognition                       + under segmentation    

Equation 4: Measures of goodness  

 

Where;  

D; is closeness of fit or segmentation goodness 

The value of over and under-segmentation lies within the range of 0 to 1, where 0, for both over and 

under-segmentation, means that training object is matching the segments (Clinton et al., 2010). The 

segmentation goodness or closeness of fit (D) is a measure of error in segmentation (equation 3). D value 

equals to zero (0) means the segmentation is perfect.   
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3.3.8. CPA adjustment  

To complete the CPA of partially visible tree crowns a circularity measure was applied, assuming that a 

circle is a reasonable approximation of the real crown shape and size (see section 3.4). A circle was formed 

using the best fit of the circle with the arc of the outer boundary of the visible part of the crown of the 

lower trees on the segmented orthophoto. The lower tree crowns were identified with the help of the tree 

height derived from the UAV CHM.  

After segmentation in e-Cognition, incomplete tree crowns of lower trees (Figure 19 A, B &C) were 

selected on the high-resolution ortho-photo, taking tree height into consideration (see section 3.8). In 

figure 19 the trees A, B and C are incomplete crowns while trees 1, 2 and 3 are the nearby higher trees 

where the crown is completely visible on the image. Tree A is shorter than tree number 1, tree B is shorter 

than tree number 2, and tree C is shorter than tree number 3 and tree B. All trees have their 

corresponding CPA derived from the segmented orthophoto, but, CPA of the incomplete tree crowns will 

be underestimated.  The underestimation problem was minimized by replacing the original segment by the 

adjusted CPA (the red circles in Figure 19).  

 

 

Figure 19: Illustration of CPA adjustment after segmentation.  

Figure 19: shows 1, 2 and 3 are tall trees and A, B and C are short trees with partially visible crowns while 
the red circles are the adjusted CPA’s of the incompletely visible crowns.  

3.3.9. Tree Height extraction from UAV and airborne LiDAR-CHM 

The allometric equation for aboveground biomass calculation used in this study requires DBH and tree 

height as input parameters (Chave et al., 2014). In this study, the extraction of tree height was done by 

overlaying the segmented shapefile on both the co-registered UAV-CHM and the airborne LiDAR-CHM 

in Arc Map and run the zonal statistics tool. The maximum values in the attribute of zonal statistics 

outputs were used as the tree heights.  
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3.3.10. Individual tree Matching   

Appropriate field data collection and matching with its corresponding image information needs great 

attention. For this reason, the DBH data collected in the field needs to match with its corresponding tree 

height derived from UAV and airborne LiDAR-CHM. A spatial join function was used to match the 

segmented polygons and field DBH using the coordinates of the trees as recorded in the field in Arc Map. 

But, tree matching using tree location coordinate has a shift problem. Therefore, a circle with the radius of 

the field plot was placed in each plot and coordinates which were not inside the plot were matched 

manually through visual identification which segment belongs to which tree using the high-resolution 

orthophoto. Matching trees extracted from UAV-CHM and airborne LiDAR-CHM is not difficult since 

the segmented shapefile used to extract tree height from both CHM was the same. Trees which have 

height and DBH information in both data (extracted from UAV-CHM and airborne LiDAR-CHM) were 

considered for tree height and biomass accuracy assessment. In total 305 trees were matched in both UAV 

and airborne LiDAR-CHM.   

3.3.11. Data analysis  

Data analysis was performed using appropriate techniques of statistical analysis to test the hypothesis and 

achieve specific objectives. The main methods of statistical analysis which were applied in this study are 

descriptive statistics, regression, RMSE, the percentage of RMSE, correlation, F-test, paired t-test and 

independent t-test for two samples. Data normality was checked using SPSS software. The RMSE and 

percentage of RMSE were calculated using the equation used by Sherali et al., (2003) to compare the 

closeness of two parameters of the forest(Equation 5 &6).  

 
Equation 5: Equation of RMSE computation 

 
.................................................5   

Equation 6: Equation of %RMSE computation  

 
...........................................6 

Sources: (Sherali et al., 2003) 
Where;  

RMSE: Root mean square error 

%RMSE: Percentage of RMSE 

Yi; Original value of dependent variable  

Ŷ; Predicted value of dependent variable and n is number of observations 

3.3.11.1. Comparison of actual and circularity measured CPA  

The inner, outer and intermediate circularity measures of CPA accuracy assessment before applying the 

method on incompletely visible tree crowns is important. Based on this principle, 76 fully visible tree 

crowns were delineated manually following the outer edge of individual tree crowns. And inner and outer 

circles were fitted to it in Arc Map. Since these selected trees were measured by fitting three rings (inner, 

outer and intermediate) it is time-consuming to delineate more than 76 trees. The area of the intermediate 

circle was calculated using equation1 (section 3.3.6). The mean difference between actual and circularity 

measured CPA’s was tested using paired t-test since the CPA comparison is between the same tree 

measured by one hand.  The RMSE and %RMSE were used to evaluate the deviation of the circularity 

measured CPA from the actual CPA.  
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3.3.11. 2. Delineated and circularity measured CPA and DBH relationship    

A total of 55 fully visible tree crowns (55 trees) were manually delineated (onscreen digitizing) using Arc 

GIS on the orthophoto for preliminary analysis of the relationship between CPA and DBH. Similarly, a 

circularity measure was applied with the best fit circle. A linear regression analysis was performed, and the 

linear and power trend line was fitted to check the relationship between actual CPA and DBH as well as 

between circularity measured CPA and DBH.  

3.3.11.3. Relationship between DBH and CPA  

CPA obtained from segmentation result is an important variable to predict DBH (see section 1, 1.2 &2.8). 

In this study, the linear and power models were proposed to assess the relationship between CPA and 

DBH. To do that, the area of the segmented shapefile was calculated in Arc GIS. Out of 305 matched tree 

207 trees (matched trees in section 3.3.10) was used for relation. The DBH of matched trees were 

regressed with their corresponding DBH using linear regression. The scatter plot was plotted, and trend 

line was fitted. The root mean square error and percentage of root mean square error was calculated. The 

result of the relationship was observed and used to evaluate the relationship between adjusted CPA and 

DBH.  

Incompletely visible tree crowns were selected and adjusted using the fittest circularity measure, and the 

adjusted CPA replaced the segmented CPA. Since the objective is to assess the relationship between CPA 

and DBH after incompletely visible tree crowns adjustment, the adjusted CPA and normal CPA were 

mixed. The mixed CPA hereafter called adjusted CPA. The adjusted CPA and DBH were regressed and 

the scatter plot and trend line was fitted. The root mean square error and percentage of root mean square 

error was calculated to evaluate the relationship.  

The improvement in the relationship between CPA and DBH after CPA adjustment was observed and 

discussed. Based on the best model, DBH was predicted using 88 trees which were not used in the model 

development and the predicted DBH was validated using DBH measured in the field. The scatter plot was 

plotted, and the trend line was fitted to check if it is close to linear. Two sample t-test assuming equal 

variance was performed to test the significance of the mean difference between predicted and observed 

DBH.     

3.3.11.4. Comparison of UAV and airborne LiDAR derived tree height  

Altitudes from UAV derived DTM and airborne LiDAR-derived DTM were validated by altitudes from 

DGPS (differential global positioning system) to check the influence of DTM heights on absolute tree 

height estimation(Jensen & Mathews 2016). During the field data collection, 35 location coordinates were 

collected from 4 UAV flight plans using DGPS to generate and georeference orthophoto. Those collected 

data were used to test the deviation of UAV DTM and airborne LiDAR DTM from the ground truth. The 

UAV and LiDAR DTM heights were extracted from point locations where the ground truth Z-values 

(altitudes) was collected. The RMSE and percentage of RMSE were calculated, and the UAV derived 

DTM accuracy was observed and evaluated in the open land surface. The tree height derived from the 

UAV-CHM was compared to the tree height derived from the airborne LiDAR-CHM, using a two-sample 

assuming equal variance t-test for means of two samples. The tree height from airborne LiDAR CHM was 

considered as accurate since they are actual measurements(Jensen & Mathews 2016; Magar, 2014; 

Ruben,2017; Patenaude et al., 2005; Balzter et al., 2007; Lafsky et al., 2002), while the UAV-CHM tree 

height is an approximation. Also, the two sample t-tests assuming equal variance, RMSE, and percentage 

of RMSE were performed to compare between tree heights derived from UAV derived CHM and 

airborne LiDAR-derived CHM.  
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3.3.11.5. Aboveground Biomass estimation   

The most common nondestructive method of AGB estimation is applying allometric equation (ketterings 

et al., 2001) which allows estimating AGB of large forest areas. The allometric equation uses structural 

forest parameters that can be regularly measured in the field as input.  Even though there are numerous 

allometric equations for biomass estimation, environmental suitability should be undertaken into 

consideration in selecting the appropriate equation. In tropical rainforest which is endowed with species 

diversity, applying regional or local model is not recommended (Gibbs et al., 2007). A model which 

developed based on large trees enhances the precision of AGB estimation (Gibbs et al, 2007;Chave et al.., 

2005).Therefore, the AGB was assessed using the generic allometric equation developed by Chave et al., 

(2014) which is widely used in a tropical rainforest (Equation 7).  

Equation 7: Allometric equation model  

AGB = 0.0673 *[(p*D2*H)] ^ (0.976) ………………............................................7  

Where;  

AGB is the aboveground biomass in (kg) 

D; is Diameter at Breast Height (DBH) (cm) 

H; is tree height (m) 

P; is tree specific wood density (g/cm3)  

The carbon stock was calculated using the equation proposed by (Brown, 1997; Drake et al., 2002; 

Burrows et al., 2002; Houghton & Hackler, 2000), 50% of estimated biomass is carbon.  

Equation 8: Carbon stock estimation  

    C = AGB X CF………………………………….....................................................................8 

Where:  

C:  is above ground carbon stock (Mg) 

CF: is a fraction of aboveground biomass (0.5)  

The above ground biomass estimation was tree based. Because the relationship between CPA and DBH 

depends on the number of matched trees and the model should be apply to the whole study area. 

Therefore, it would be easy to estimate the total above ground biomass in the study area.    

3.3.11.6. Regression and model validation  

Regression analysis is a technique which determines the relationship between dependent and independent 

variables statistically. It determines the change in the dependent variable as the result of a change in the 

independent variable (Husch et al., 2003). This statistical method of analysis is important for modelling the 

relationship between remotely sensed and observed data (Popescu, 2007; Lim et al., 2003). Since the 

objective of this study is to estimate AGB/carbon stock from UAV derived forest parameters, regression 

is very important to develop the relationship between CPA from UAV derived orthophoto and DBH 

measured in the field.  To assess the relationship between Circularity measured CPA and DBH measured 

in the field as well as the relationship between actual CPA and DBH measured in the field as preliminary 

analysis. In addition to that regression analysis was performed to develop the best model (linear or power) 

before segmented CPA adjustment and after adjustment to predict DBH. To assess the performance of 

the selected model RMSE was calculated using equation 5 (section 3.3.11)  

3.3.11.7. Comparison of AGB-UAV and AGB-field   

The above ground biomass of matched trees in both airborne LiDAR and UAV derived CHM was used 

for biomass accuracy assessment calculation using the allometric equation in section 3.3.11.4. The input 

parameters were the trees matched between UAV and airborne LiDAR-derived CHM and the field DBH. 
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To assess the accuracy of AGB-UAV 150 trees (75 adjusted CPA and 75 segmented not need adjustment) 

were selected. Since the objective is to estimate aboveground biomass based on segmentation and CPA 

adjustment, fifty-fifty sample supports to evaluate the impact of the adjusted CPA on biomass. The above 

ground biomass estimated from UAV (AGB-UAV) was used the tree height extracted from UAV-CHM 

and predicted DBH. The aboveground biomass estimated from field or field-based (AGB-field) was used 

tree height extracted from airborne LiDAR-CHM, and DBH measured in the field.  

The calculated AGB-UAV and AGB-field was compared using scatter plot and RMSE. In addition to that, 

independent t-test (assuming equal variance) was applied to test if there is a significant difference between 

the AGB-UAV and AGB-field.  Finally, the mean difference between AGB-UAV and AGB-field was 

evaluated.  

3.3.11.8. Carbon stock mapping 

Carbon stock mapping based on the UAV-AGB/carbon stock estimated from manually adjusted CPA for 

the entire study area is tedious work and needs time. In this study, as an example, the amount of carbon 

stock based on segmented CPA and tree height derived from UAV imagery was used and mapped. The 

estimated AGB/carbon stock is to show the possibility of carbon stock mapping using UAV imagery. The 

allometric equation for the tropical forest was used to calculate the carbon stock of each tree in UAV 

flight plan-2 (block2) of the study area. DBH and tree height were predicted and estimated from 

segmented CPA and UAV-CHM respectively. Carbon stock map of UAV flight block two was prepared 

in Arc Map 10.5 due to time limitation though the method could be applied to the whole study area.  
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4. RESULTS 

4.1. DTM, DSM and CHM generation from airborne LiDAR data  

Airborne LiDAR data was processed, and the DSM, DTM and CHM were produced (Figure 20). The 

extracted ground and first return points were interpolated, and the DTM and DSM were generated 

respectively (Figure 20 a  & b). The CHM was produced by subtracting DTM from DSM (Figure 20 c). 

Figure 20: Airborne LiDAR-derived images (the top left DSM, top right DTM, and bottom CHM). 

Figure 20: shows the products of airborne LiDAR data process, the top left airborne LiDAR-derived 

DSM, the top right DTM and the bottom is a sample 3-D representation of the CHM based on airborne 

LiDAR data. Where minimum 0 m is ground surface and 50 m maximum canopy height after negative and 

above 50 m heights were removed.  
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4.2. DSM, DTM , CHM,  and orthophoto generation  from photogrametric image processing  

The photogrammetric image processing was done. The canopy height model was generated from the 

UAV 3-D point cloud (Figure 21). The dense point cloud was used as input for the DSM and DTM. After 

the dense point cloud was classified into the ground points and the rest, DTM and DSM were created 

(Figure 21 top left DSM, top right DTM). The orthophoto was generated from the dense point cloud 

automatically by selecting the build orthomosaic command from the work flow of the agisoft photo scan 

(Figure 21).  

 

  
Figure 21: Agisoft UAV image processing results: DSM (a) DTM (b) CHM (C).  

Figure: 21 showed the Agissoft photo scan UAV image processing results of flight block 2 (The top left 

DSM, the top right DTM, the bottom 3-Drepresentation of CHM after extreme heights removal. 

 

The DSM height (Figure 21top left) ranges from 31.6 to 126.7m while the DTM (Figure 21 top right) 

ranges from 31.6 to 89.9 m. the DSM height is larger than the DTM height. The obtained CHM and DTM 

were used to assess UAV derived tree height accuracy assessment.     
 

 



TOWARDS A UAV BASED STANDALONE SYSTEM FOR ESTIMATING AND MAPPING 

ABOVEGROUND BIOMASS/ CARBON STOCK IN BERKELAH TROPICAL RAIN FOREST, 

MALAYSIA 

 

33 

 

 
Figure 22 : Small part of orthophoto generated from UAV image. 

Figure 22 shows an example of orthophoto generated in agisoft photo scan pro. The produced 

orthophoto is input for segmentation and manual delineation of tree crowns.  

4.3. Multiresolution segmentation  

In this study, multiresolution segmentation was done on the resampled 20 cm resolution orthophoto. The 

scale parameter, shape, and compactness which perform the best segmentation are 25, 0.8 and 0.5 

respectively for flight blocks two and three while 25, 0.7 and 0.5 for flight blocks one and four (Figure 23).  
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Figure 23: Orthophoto before and after segmentation. 

4.4.  segmentation accuracy  

 The accuracy of segmentation was assessed by comparing with manually delineated crown polygons. 

Visible crowns were digitized manually on screen in Arc Map. Manually digitized polygons were then 

compared with automatically generated polygons of ortho photo as shown in Figure 24.  

 

 

Figure 24: Manually delineated and segmented crowns for accuracy assessment.  

Figure 24, the purple lines show the segmented shapefile and the blue lines are manually delineated tree 
crowns while the red lines are the segments corresponding with the manually delineated crowns.  

The automatically segmented polygons were compared with manually delineated reference crowns and the 

over and under-segmentation errors were assessed. Accuracy assessment was done based on assessing 

segmentation goodness (D) (Equation 4). The segmentation error was 26.6% hence the segmentation 

accuracy was 73.4% while, using 1:1 manual matching of polygons resulted in 77% accuracy. The 

segmentation accuracy assessment result is summarized in Table 3    

 
Table 3: Segmentation accuracy assessment result.   

Total reference 

polygon  

Total 1:1 matched 

polygon  

Over-

segmentation  

Under-

segmentation  

Goodness of fit 

(D) 

277 212 0.24 0.29 0.266 

Accuracy (%) 77   73.4 
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4.5. Descriptive statistics of field data 

 The descriptive statistics result of collected DBH is shown in Table 4. 

Table 4: Descriptive statistics of field DBH.  

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation Variance 

Statistic Statistic Statistic Statistic Statistic Statistic 

DBH(cm) 1033 5.00 104.50 20.6171 12.48672 155.918 

 

The normality of the collected data was checked in SPSS software and it was not normally distributed. The 

histogram and normal distribution curve of the data were as shown in figure 25. The Kolmogorove 

Smirnov and Shapiro Wilk test are indicating not normally distributed data. The skewness value is less 

than one and skewed to the right.  

 

 

Figure 25: Histogram and normal distribution curve of DBH data. 

4.6. Circularity measured CPA accuracy  

The descriptive statistics are presented in Table 5. The scatter plot and t-test results are presented in 

Figure 26 and Table 6  

  

Table 5: Descriptive statistics of actual and adjusted CPA (inner, outer and intermediate circles). 

Statistics  Actual CPA(m2) 
Outer circle 

CPA(m2) 
Inner circle 

CPA(m2) 

Intermediate 
circle 

CPA(m2) 

Minimum 2.16 6.19 2 4.093951 

Maximum 52.76 53.51 46.47 49.92796 

Mean 21.95566 24.53737 19.09293421 21.65171 

Standard Deviation 11.20297 11.15349 11.00144031 11.01117 

Number of trees 76 76 76 76 
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Figure 26: Scatter plot of actual and adjusted CPA (intermediate, inner & outer circles). 
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Table 6: Result summary of paired t-test between actual and adjusted CPA (inner, outer and intermediate 
circles). 

 

The calculated RMSE and %RMSE for the inner, intermediate and outer circles results are 2.34 m2 
(10.66%), 1.69 m2 (7.7%) and 3.61m2(16.77%) respectively.  

4.7. Relation DBH and manual delineated CPA 
To test the relation between DBH and CPA (actual and adjusted), 55 trees with a fully visible crown which 

were measured their DBH in the field were selected. Manual delineation and circularity measure using the 

fittest circle was done. The descriptive statistics is presented in table 6. Through the scatter plot a linear 

and power trend line was fitted. 

 

Table 7: Descriptive statistics of delineated and adjusted CPA and field DBH. 

Statistics  
Delineated CPA    
(m2) Field DBH (cm) 

Adjusted CPA 
(m2) 

Minimum 3.222696        10 4.216904 

Maximum 75.14157         82 77.67953 

Mean 18.43683 24.07455 20.06938 

Standard Deviation 15.70804 14.01739 15.27549 

Number of trees 55 55 55 

 

The CPA and DBH data normality test were performed in SPSS software and the data was not normal. 

The adjusted CPA, actual CPA and the DBH were skewed. Figure 27 shows the histogram and the 

distribution curve of the data.  
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Figure 27: Histogram and normal distribution curve of actual CPA, adjusted CPA and DBH. 

The scatter plot was plotted and the linear and power trend line was fitted (Figure 28). The regression 

result of the manually delineated fully visible crowns CPA and observed DBH are presented in Table 8. 

 
Figure 28: scatter plot of relationship between delineated CPA (actual CPA), adjusted CPA and field 

DBH. 
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The power function performs slightly better than the linear model as is shown in Table 8.   

 

Table 8: Result summary of regression analysis between manually delineated CPA and Observed DBH. 

Relationship  Model 

type 

R(correlation 

determination 

coefficient) 

R 

square(R2) 

Adjusted R Pearson 

correlation 

coefficient value  

Actual CPA  

& DBH 

Linear 0.913 0.834 0.831 0.914** (p< 0.01) 

Power 0.915 0.837 0.834 

Adjusted CPA 

& DBH 

Linear 0.92 0.85 0.849 0.923**  (p< 0.01) 

Power 0.904 0.81 0.81 

 

The Pearson correlation coefficient shows, a significant relationship between actual CPA and DBH in 

both the linear and power model and the results of this test justified to continue with (Appedix 3). 

4.8. Relation segmented CPA and DBH 

The relationship between the segmented CPA (i.e. the result of OBIA with e-Cognition) and DBH 

measured in the field was assessed based 207 matched trees.  

Table 9: Descriptive statistics of segmented CPA and field DBH.  

Statistics  CPA_m2 DBH (cm) 

Minimum 4.375116 10 

Maximum 101.4573 90 

Mean 21.49524 28.17681 

Standard Deviation 17.49075 16.22092 

Number of trees 207 207 

 

The CPA and DBH data normality were tested and the histogram and normal distribution curve of the 

CPA and DBH data is presented in Figure 29. Since the DBH data is not normal. The CPA is also 

influenced by the DBH normality and both skewed to the right.  
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Figure 29: Histogram and normal distribution curve of CPA and DBH data. 

The results of the regression analysis are presented in Figure 30 and Table 10.  
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Figure 30: scatter plot of relationship between segmented CPA and observed DBH. 

 

 
Table 10: Result summary of regression analysis between segmented CPA and Observed DBH. 

Model 

type 

R(correlation 

coefficient)  

R2 Adjusted R RMSE(c

m) 

RMSE 

(%) 

Pearson correlation 

coefficient (value) 

Linear 0.819 0.67 0.67 9.27 32.9  0.819**(p< 0.01) 

 Power 0.873 0.76 0.76 8.66 30 

The Pearson correlation value is less than 0.05 at 95% level of confidence (Appendix 3).   

4.9. Relation adjusted CPA and DBH 

Trees with an incompletely visible crown in the segmented orthophoto were identified and the CPA’s 

were adjusted with the help of UAV-CHM and extracted tree heights. 75 trees out of the 305 trees were 

identified and adjusted using the intermediate circularity measured CPA. These adjusted CPA substitute 

the incomplete corresponding CPA. The relationship between adjusted CPA and observed DBH was 

analysed using a linear regression with linear and power model. The descriptive statistics of adjusted CPA 

and observed DBH is presented in Table 11. The scatter plot and results of the regression and RMSE are 

shown in Figure 31 and Table 12.  
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Table 11: Descriptive statistics of the adjusted CPA and observed DBH. 

 Statistics CPA(m2) DBH(cm) 

 Mean 24.51382 28.17681 

Minimum 4.375116 10 

Maximum 101.4573 90 

Standard Deviation 18.00577 16.22092 

Number of trees 207 207 

 

 

Figure 31: scatter plot that shows relationship between adjusted CPA and DBH. 

Table 12: Result summary of regression analysis between adjusted CPA and Observed DBH. 

Model 

type 

R 

 

R2 Adjusted 

R 

RMSE 

(cm) 

RMSE 

(%) 

 

Pearson correlation 

coefficient  value 

Linear 0.85 0.724 0.722 8.54 29.45 0.851** (< 0.01) 

 Power 0.89 0.803 0.802 7.98 27.53 

 

CPA adjustment improves the relationship in both linear and power models. In the linear model, the error 

reduced from 33% to 29.4% and in the power from 30% to 27.5%. Compared to the segmented CPA, in 

the models using the adjusted CPA’s the R2 increases from 0.67 to 0.72 for the linear model and from 0.76 

to 0.80 in the power model, indicating that the models with the adjusted CPA explain a higher percentage 

of the variation in the data. Based on the error of the relationship between adjusted CPA and DBH the 

model which has low error was selected for validation and DBH prediction.   
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Equation 9: Regression model 

DBH = 3.36385CPA0.6741………………………...............................................................................9 

 Where; 

DBH; Predicted diameter at breast height (cm)  

CPA; Canopy projection area of individual trees after adjustment (m2) which includes the adjusted with 

circularity measured CPA and CPA which do not need adjustment.    

Therefore, the 30% of matched trees (305 trees) which have been separated for validation were used to 

check the consistency of the model. DBH was predicted using 88 trees CPA. The descriptive statistics of 

the data is summarized in Table 13. The scatter plot was plotted and the RMSE was calculated. The results 

of the RMSE and the scatter plot are shown in Figure 32.  

 

Table 13: Summary statistics of data used for validation.  

 
CPA(m2)  Predicted DBH(cm) DBH (cm)_ 

Minimum 5.653241 11.69624 6 

Maximum 76.11729 67.48858 55 

Mean 19.41342 25.83043 22.15852 

Standard Deviation 13.4 11.27035 10.7557 

Number of trees  88 88 88 
 

 

 

Figure 32: scatter plot of predicted and Observed DBH.  

The result of the calculated RMSE is 6.58 cm (29.7%) as shown in the above figure 32. In addition to the 

RMSE, the mean difference between predicted and observed DBH was calculated using t-test. The result 

summary of the calculated t-test is shown in Table 14.  
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Table 14: Result summary of two-sample t-test between predicted and observed DBH of power model. 

  
predicted 
DBH(cm) DBH (cm) 

Mean 25.83043 22.15852 

Variance 127.0207 115.6851 

Observations 88 88 

Pooled Variance 121.3529 
 Hypothesized Mean Difference 0 
 df 174 
 t Stat 2.211024 
 P(T<=t) one-tail 0.014169 
 t Critical one-tail 1.653658 
 P(T<=t) two-tail 0.028338 
 t Critical two-tail 1.973691   

 
The P (T<=t) two-tailed t-test p-value is less than 0.05 at 95% level of confidence.  

4.10. UAV derived CHM  accuracy  

Before the absolute tree height derived from UAV and airborne LiDAR-CHM comparison, the UAV and 

airborne LiDAR DTM accuracy were checked as compared to ground truth (altitude from DGPS) using 

scatter plot and RMSE. In addition to that, comparison between UAV derived DTM and airborne LiDAR 

derived DTM was done. The result of calculated RMSE was used to evaluate the UAV-DTM accuracy 

compared to airborne LiDAR DTM in open land surface. Descriptive statistics of the data and scatter 

plots are shown in Table 15 and Figure 33 respectively. 

 
Table 15: Descriptive statistics of UAV-DTM, airborne LiDAR-DTM and ground truth DTM. 

Statistics  DGPs Altitude (m) 
airborne LiDAR 

DTM(m) UAV DTM(m) 

Minimum 38.611 40.52534 38.5793 

Maximum 74.428 80.19007 74.47193 

Mean 56.03152571 53.88073 56.26719 

Standard Deviation 8.605524909 7.544805 8.402651 

Number of pixels  35 35 35 
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Figure 33: scatter plot UAV DM, airborne LiDAR DTM and DGPS altitude.  

The RMSE between UAV DTM and airborne LiDAR DTM, UAV DTM and DGPS altitude and airborne 

LiDAR DTM and DGPS altitude was calculated and the obtained results are summarized in Table 16. 

Table 16: Result summary of RMSE of UAV DTM, airborne LiDAR DTM, and altitude from DGPS.   

 

DGPS & UAV 
Altitude(m) 

DGPS & airborne LiDAR 
Altitude(m) 

UAV and airborne 
LiDAR  DTM (m) 

RMSE(m) 0.96 4.4 
3.75  

RMSE (%) 1.7 7.8 
6.9 

 

 

Following the DTM comparison, CHM comparison was done using two-sample t-test assuming equal 

variance, scatter plot and RMSE. The descriptive statistics of the trees height used for t-test analysis are 

presented in Table 17.  
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Table 17: Descriptive statistics of tree heights derived from UAV-CHM and airborne LiDAR-CHM.  

Statistics 
airborne LiDAR derived 

height(m) UAV derived height(m) 

Minimum 3.141674 4.51844 

Maximum 43.86 42.3515 

Mean 22.52421 23.39252 

Standard Deviation 8.794501 9.748218 

Number of trees 292 292 

 

The two sample t-test assuming equal variance was done. The scatter plot and t-test result shown in figure 

34 and Table 18.  

 

Figure 34: Scatter plot of UAV and airborne LiDAR CHM. 

The RMSE was calculated and the result is 3.9 m (17%).  
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Table 18: Two-sample assuming equal variances t-test for means of tree heights from UAV and airborne 
LiDAR CHM. 

  UAV derived CHM (m) 
Airborne LiDAR 
derived CHM(m) 

Mean 23.39252367 22.52421264 

Variance 95.02775065 77.34324488 

Observations 292 292 

Pooled Variance 86.18549777 
 Hypothesized Mean Difference 0 
 df 582 
 t Stat 1.130146254 
 P(T<=t) one-tail 0.129440069 
 t Critical one-tail 1.647475985 
 P(T<=t) two-tail 0.258880138 
 t Critical two-tail 1.964048309   

 

The p (T<=t) two-tailed t-test p-value is greater than 0.05.  

4.11. Comparison of AGB-UAV and AGB-field 

 The descriptive statistics of the tree parameters used to compare AGB-UAV and AGB-field in the 

analysis are presented in Table 19.  

 

Table 19: Descriptive statistics of CPA, tree height and DBH data for AGB/carbon stock estimation.  

Statistics DBH(cm) 

Airborne 
LiDAR 

derived CHM 
(m) CPA(m2) 

Predicted 
DBH(cm) 

UAV derived 
CHM (m) 

Minimum 10 3.14 5.65 11.7 4.52 

Maximum 45.4 47.74 45.2 47.49 38.97 

Mean 18.62667 21.1756 16.31093 23.36507 21.49553 

Standard Deviation 8.122325 9.442017 7.915917 7.330822 9.446079 

Number of trees 150 150 150 150 150 

 

The AGB-UAV and AGB-field was calculated and the mean difference between AGB-UAV and AGB-

field were compared using two samples t-test assuming equal variance. The scatter plot and t-test results 

are showed in Figure 35 and Table 20.  
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Table 20: Results summary of UAV-based and field-based AGB  

Statistics AGB_UAV (Kg) AGB_field (Kg) 

Minimum 44.94307318 14.69149319 

Maximum 2223.204622 2258.938004 

Mean 424.3533072 309.9441478 

Standard Deviation 380.5347567 385.8138741 

Sum 63652.99608 46491.62217 

Number of trees 150 150 

 

 

 

Figure 35: scatter plot between AGB-UAV and AGB-field  

Table 21: Result summary of two sample t-test assuming equal variance between AGB-UAV and AGB-
field. 

  AGB-field(Kg) AGB-UAV(Kg) 

Mean 424.3533 309.9441 

Variance 144806.7 148852.3 

Observations 150 150 

Pooled Variance 146829.5 
 Hypothesized Mean Difference 0 
 df 298 
 t Stat 2.585739 
 P(T<=t) one-tail 0.005096 
 t Critical one-tail 1.649983 
 P(T<=t) two-tail 0.010192 
 t Critical two-tail 1.967956   
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The P (T<=t) two-tail value is 0.01. The calculated RMSE and %RMSE are 138.7355 Kg and 32.69% 

respectively.   

4.12. Carbon  stock  map 

AGB/carbon stock estimation using predicted DBH and UAV derived CHM was done for UAV flight 

plan-2 (block2). The CPA from segmentation (i.e., OBIA in e-cognition) was used to predict DBH. A 

total of 1204796.603Kg AGB was estimated from the 33.35-hectare area of block-2 equivalent to 180.62 

Mgha-1. The tree level carbon stock map of flight block-2 is demonstrated in Figure 36. 

Figure 36: Carbon stock map of UAV flight block 2 based on UAV imagery.  

The amount of carbon stock per tree varies from less than 500 Kg to more than 2000 Kg/tree. The 

variation in carbon stock per tree was inspected and the trees with large CPA have large carbon stock.  
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5. DISCUSSION  

5.1. Distributions of DBH data 

The distribution of 1033 DBH collected in the field showed high skewness. The result indicates lop-

sidedness of data distribution as it tilts to the right of the middle point of the distribution curve( Cam & 

Cam, 2017). In a probability distribution, the data which is not normal can be positively or negatively 

skewed(Doane & Seward, 2011) (Figure 37). In case of this study, the DBH data is skewed to the right 

(long-tailed in the positive direction). The possible reason for high skewness could be that measurement 

was taken for trees with a DBH greater than 5cm (since these with less than 5cm DBH have invisible 

crowns in the image) and if trees with less than 5cm DBH would have been measured, the distribution 

would be close to normal.  

 
Figure 37: Graphs showing data skewness position[source: (Doane & Seward, 2011)]. 

5.2. Accuracy of  circularity measured CPA  

The potential of this study is incomplete CPA adjustment. The inner, outer and intermediate circles 

accuracy assessment was done using 76 fully visible trees. Even though this new method of incomplete 

CPA adjustment has no related literature, the obtained results discussion is crucial. The obtained R2 value 

of inner circle is 0.95 and RMSE is 2.3 m2 (10.6%). The obtained result shows, applying inner circle to 

adjust incompletely visible tree crowns deviates by 10.6% from the actual CPA. The obtained result of the 

intermediate circle was R2 of 0.97 and RMSE of 1.69 m2 (7.7%). The obtained result of the outer circle is 

R2 of 0.94 and RMSE of 3.6m2 (16.7%). The CPA obtained from these circles was compared to the actual 

CPA in order to select the best circle close to the actual CPA. Thus, paired t-test and RMSE was used as 

factors to select the best fit. The circularity measure with an intermediate circle has the smallest error. In 

addition to that, the result of paired t-test showed insignificant difference compared to the actual. 

Therefore, fitting the intermediate circle was found the best method.  

5.3. Relationship of delineated and circularity measured CPA and DBH  

In this study, testing the relationship between actual CPA and field DBH was done. 55 trees which were 

matched with field DBH were manually delineated, and the best fit circle was used to calculate its CPA. 

The reason to take the small number of trees is due to the field measured DBH restriction, and the 

selected tree must have fully visible crowns. The regression result of the linear and power model showed a 

relationship with a coefficient of determination 85% and 81% respectively in the circularity measured CPA 

while in the actual CPA were 83.3% and 83.6% respectively. The calculated Pearson correlation coefficient 
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indicates, there is a statistically significant relationship between CPA and DBH in both CPA types (actual 

and circularity measured, see appendix 3).   

The obtained result of the circularity measured CPA explains more variation in DBH in the linear model 

while in the actual CPA shows in the power model. The possible reason to obtain high R2 value could be 

due to the delineated tree crowns variations and CPA measurement precision. The manually delineated 

CPA restricted by the DBH measured in field hence number of trees and distribution was not considered. 

The selected data (DBH, circularity measured CPA and delineated CPA) normality was tested, and it was 

not normally distributed. 

.  

The obtained result of this preliminary analysis is comparable to the result obtained by Dubravac et al., 

(2013) R2 of 0.80 (Figure 38 left side graph). The study was done in natural regeneration of beech forest 

and the method was experimental field based while CPA measurement in this study was by manual 

delineation and circularity measure technique. A research conducted by Malinovski et al., (2016) with 

Eucalyptus plantation was revealed 0.87 correlation coefficient and linear relationship with R2 of 0.76 

(Figure 38 right side graph). Since the aim of this section was to check if there is a relation between DBH 

and CPA in the fully visible tree crowns, the obtained result encourages continuing with.     

 

 
Figure 38: Relationship between field DBH and CPA. 

Errors in the GPS measurements of the coordinates of the individual trees in the field hamper 

identification of the corresponding tree crown in the segmented orthopohoto.  This may have negatively 

influenced the relation between DBH and CPA.  
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5.4. Relationship of adjusted CPA and DBH 

The relationship between segmented CPA and DBH was used to evaluate the contribution of adjusted 

CPA in the relationship. The regression determination coefficient of the model (R2) indicates the 

independent variable explaining potential of the dependent variable. In the regression the independent 

variable was CPA, and the dependent variable was DBH.   

The obtained R2 value of DBH before CPA adjustment is 0.67 and RMSE of 9.27cm (32.9%) with the 

linear model while with the power model is R2 of 0.76 and RMSE of 8.66 cm (30%). The result of the 

linear model is lower than the result obtained by Malinovski et al., (2016) R2 of 0.76 with the leaner model 

(see figure 38 right side graph). The study was done in plantation forest while this study is in the tropical 

forest before CPA adjustment. Thus, the observed difference is expected. The possible reason of tropical 

forest to show the week relationship between CPA and DBH is either species variation or the effect of the 

vertically multilayered canopy on segmentation.  

The obtained result with the power model before CPA adjustment is lower than the result obtained by 

Malinovski et al., (2016) R2 of 0.79 with power model. Relatively power model shows a small difference 

compared to the linear model. Bautista, (2012) stated that power model is more consistent than the linear 

model.. The correlation result indicates a significant relationship between CPA and DBH (see appendix 3).  

The obtained R2 value of DBH after CPA adjustment is 0.724 and RMSE of 8.54 cm (29.4%) with the 

linear model while with the power model is R2 of 0.80 and RMSE of 7.9 cm (27.5%). A result obtained by 

Shah et al., (2011) who study in subtropical forest based on selected species was R2  range from 0.62-0.74 

in the linear model which is comparable to the linear model result of this study. The result indicates the 

CPA adjustment in multilayer forest canopy can predict DBH comparable to the DBH predicted in simple 

forests.  

The power model explains the variation in DBH better than the linear model. Adjusted CPA showed an 

increase in CPA with constant DBH made the relation close to power. Thus, the relationship with power 

model raises from 0.76 before adjustment to 0.80 after CPA adjusted. Similarly, Sium (2015) obtained a 

non-linear but close to a linear relationship between CPA and DBH in tropical forest with R2 of 0.79 using 

a Worldview-2 high-resolution satellite image. This study obtained comparable result after CPA 

adjustment with the power model. Moreover, Shimano, (2000) revealed that power function fits DBH 

class distribution in natural broadleaved forests.  

The calculated RMSE was used as the best parameter to select the best model which has a smaller error. 

The RMSE of the relationship before and after CPA adjustment in the linear model were 32% and 29% 

respectively while in the power model were 30% and 27% respectively. In all the relationships the power 

model has a smaller error as compared to linear. Based on the RMSE values before and after CPA 

adjustment the best model which has a small error is power model. The adjusted CPA explains the field 

DBH better in the power model up to 80%.  

The better relation with power model could be due to variation in the age of the trees. The young trees 

can prepare enough food using their green leafs and show a high rate of increase in DBH while the old 

trees could not prepare enough food as leafs could shade. As the branches of a tree increase, food 

competition between the stem and branches increase and the rate of stem size increment slow.  

A similar result obtained by Iizuka et al., (2017) who study on Cypress forest in Japan heterogeneous 

micro-topography using UAV imagery with power model R2 of 0.79 (Figure 39b). The method of 

segmentation used to compute CPA was watershed Algorithm of SAGA-GIS (System for Automated 

Geoscientific Analyses) while this study was used multiresolution segmentation in e-Cognition. Even 

though this study was done in the multilayered forest canopy, CPA adjustment helps to obtain similar 

results. A study done by Hermey et al., (2005) revealed a linear relationship between crown diameter and 

DBH with a determination coefficient of R2 > 0.8 in major broad-leaved tree species (example beech trees 

R2 = 0.92).  Iizuka et al., (2017) also obtained a significant relationship between crown diameter and DBH 
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with R2 of 0.77. The relationship between DBH and crown diameter could be a good indicator of the 

relationship between CPA and DBH since CPA is a function of crown diameter. So, this result could be a 

robust result.  

 
Figure 39: Scatter plot of a relationship between CPA and DBH in compare to another research result. 

In Figure 39, the top (a) shows the R2 value of DBH in this study while the bottom (b) shows the R2 value 

of DBH and scatter plot obtained by lizuka et al., (2017).  

The correlation coefficient of the power model in this study was 89% which is comparable with the result 

revealed by Bautista, (2012) which was 85% in the subtropical forest using airborne LiDAR.  
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In order to validate the power model, other trees (30% of the matched) which are not used during model 

development were used for DBH prediction. A scatter plot was plotted using predicted DBH as 

independent and field DBH as dependent variables. The obtained R2 is 0.62 and RMSE is 6.58 cm (29%). 

The result shows predicted DBH can explain 62% of field DBH. Except for the uncertainty of GPS 

measurement of the coordinates of individual trees which may have negatively influenced the relation 

between DBH and CPA, still the relationship achieves a robust result.   

In order to compare the mean DBH of predicted and observed DBH, two-sample t-test assuming equal 

variance was performed and the result shows a significant difference. The result indicates, the mean 

predicted DBH deviates from the observed. But, the result of the t-test does not mean the relationship is 

not valid. The test was done only to check how the mean predicted DBH deviated from the observed. 

The possible reason not significant could be because of the segmentation error. The over segmentation 

leads to larger predicted DBH since the mean predicted DBH showed greater than DBH measured in the 

field.  

5.5. Accuracy of  UAV derived tree height   

The UAV and airborne LiDAR DTM heights accuracy assessment using altitude from the ground truth 

(DGPS) is crucial and the first step to assess the accuracy of tree height derived from UAV 3-D point 

cloud and airborne LiDAR data. The accuracy of UAV and airborne LiDAR DTM height was compared 

to the ground truth heights which were collected using DGPS. The obtained RMSE between UAV 

derived DTM, and DGPS altitude is 0.96 m (1.7%) with R2 value of 0.98 while from airborne LiDAR 

DTM is 3.75 m (6.9%) with R2 of 0.74. The result indicates the UAV DTM deviate by 0.96 m from the 

ground truth and 3.75 m from the airborne LiDAR.  

A similar study by Ruben (207) obtained RMSE of 2.53 to 6.32 m and % RMSE ranges from 6.6% to 13% 

and R2 range from 0.14 to 0.94. The RMSE between the altitude derived from airborne LiDAR and 

ground truth was 3.86 m (7.8%).  The altitude from UAV derived DTM has smaller error compared to the 

ground truth while the altitude from airborne LiDAR-DTM has a larger error. The closeness of heights 

from UAV derived DTM to the ground truth could be the ground control points used during dense point 

cloud generation to georeference the orthophoto and point cloud density/m2. The UAV 3-D point cloud 

has more points per m2 than the airborne point density, and the interpolation distance is smaller in open 

land surface.   

A similar study by Ruben (2017) obtained R2 of 0.99 with heights from airborne LIDAR derived DTM 

and 0.96 with heights from UAV derived DTM. The height from UAV derived DTM is close to the 

outcome obtained in this study. But, the height derived from airborne LiDAR derived DTM deviates from 

the result of this study. The reason for the difference in the airborne LiDAR result could be due to the 

place where ground control points placed. If the ground control points located close to cracks and narrow 

valleys, the airborne LiDAR laser pulse could pass through that and obtain information of the most in-

depth sites. UAV imagery cannot pass through such sites, and the data could be similar to DGPS. The 

accuracy of the UAV imagery processing has a direct impact on the quality of UAV derived DTM. If the 

GCPS are not placed in the centre of markers during the dense point cloud generation, there would be 

positional errors in X, Y or Z positions.  

A similar study was done by Jensen & Mathews (2016) that compare height from UAV derived DTM and 

airborne LiDAR derived DTM using height from GPS. The result revealed that height from UAV derived 

DTM and height from GPS with R2 of 98.8% while with airborne LiDAR derived DTM was 99%. The 

obtained R2 value of height from UAV derived DTM of this study supports the result obtained by Jensen 

& Mathews (2016). But, the obtained R2 value of height from airborne LiDAR derived DTM of this study 

is lower than their result from airborne LiDAR-height. The result of this research indicates height from 
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UAV derived DTM is much closer to the ground truth. The reason could be due to topographic 

characteristics of the study area and airborne LiDAR data point density difference. In addition to that, the 

GPS used by Jensen & Mathews (2016) for recording ground truth height might have similar accuracy 

with the airborne LiDAR GPS.  

 

In order to assess the accuracy of tree height from UAV derived CHM and airborne LiDAR derived CHM 

scatter plot was plotted and RMSE was calculated. The obtained R2 value is 0.83. The CHM from UAV 

deviates from airborne CHM by 3.9m (17.05%). The R2 obtained in this study supports the R2 obtained by 

Ruben (2017). A similar study by Dandois & Ellis (2013)  obtained RMSE 2.3 m stating that the two 

sensors were characterizing the canopy with a similar degree of precision. The obtained result has small 

error compared to the RMSE obtained in this study. The difference between RMSE of this study and the 

Dandois & Ellis (2013) could be the difference in topographic characteristics, airborne LiDAR data point 

density and time of data acquisition between the two sensors. The average point density of airborne 

LiDAR data in this study was 6 points/m2 while Dandois & Ellis (2013) was used 78 points/m2). A study 

by Birdal et al., (2017) who compare tree height estimated from UAV-CHM and field-measured tree 

height in an open forest obtained R2 value of 0.94 and RMSE was 28 cm. The result is better compared to 

the result obtained in this study.  In a sparse forest, tree height measured in the field is comparable to tree 

height derived from airborne LiDAR-CHM. thus, the possible reason for the lower result obtained in this 

study could be the available open land surface in the open forest than the tropical forest. 

The minimum and maximum tree heights estimated from UAV derived CHM were 4.5 m and 42.3 m 

while the tree heights from airborne LiDAR derived CHM were 3.1m and 43.8 m respectively. The 

shortest and tallest estimated tree height was obtained from airborne LiDAR derived CHM. Relatively 

airborne LiDAR laser pulse can pass through the small opening of the forest canopy and can acquire 

ground information. The airborne LiDAR laser pulse reached the forest floor reduces the ground 

interpolation distance (Lisein et al., 2013).  UAV derived CHM has an accuracy close to airborne LiDAR 

in sparse forest canopy since DTM generation is georeferenced. Lisein et al., (2013) stated that in dense 

forest airborne LiDAR point cloud could pass through forest openings and take ground information and 

it is better than UAV point cloud (Figure 40).  
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[Source: Lisein et al (2013) modified]. 

Figure 40: Illustration of UAV point cloud andairborne LiDAR point cloud in the forest canopy. 

In Figure 40, the yellow colour shows the airborne LiDAR point cloud in the dense forest while blue 

colour shows the UAV point cloud. In the dense forest, the airborne LiDAR point cloud shows higher 

distribution compared to the UAV point cloud which needs more abundant open space.   

The mean tree heights derived from UAV 3-D point cloud and airborne LiDAR data were 23.39 m and 

22.52 m respectively, and the t-test result indicates, the mean tree height estimated from UAV derived 

CHM, and airborne LiDAR derived CHM has no significant difference. The possible reason for this result 

could be due to the open space available on the roads inside the forest and the small altitude difference 

between the dense forest location and nearby open area (Figure 41).     
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Figure 41: Illustration of open land surface location effect in DTM interpolation. 

Figure 41 shows, the dense forest to the left locates at a higher altitude than location point (a) hence 

height estimated from UAV derived CHM is overestimated. The dense forest to the right locates at a 

lower altitude than the altitude of location point (a) and tree height could be underestimated.   

In my onion, there are three UAV based estimated tree height accuracy conditions depending on the 

forest location altitude compared to the nearby open surface location altitude. 

1. When the forest is located at a higher altitude than the open land surface location (left side) of (a) 

Figure 41, the UAV derived CHM is overestimated since DTM interpolation starts at a lower 

altitude.  

2.  When the forest is located at a lower altitude than the open land surface location (left side) of (a) 

Figure 41, the UAV derived CHM is underestimated since DTM interpolation starts at higher 

altitude.  

3. When the forest is located at the same altitude with the open land surface location, the estimated 

tree height is close to accurate.  

5. 6. AGB/ Carbon stock  accuracy  

In this study, UAV-based and field-based aboveground biomass/carbon stock was estimated from 150 

trees using a general allometric equation. The minimum, maximum, mean and total field-based estimated 

aboveground biomass was 14.69, 3164.29, 395.36 and 69585 Kg respectively while UAV-based was 44.94, 

4768.82, 604.12 and 106325.46 Kg respectively. Half of the obtained result is carbon stock. The AGB-

UAV was larger than field-based. The calculated RMSE obtained 138.55 Kg and %RMSE 32.6%. The 

RMSE indicates the mean deviation of AGB-UAV from AGB-field. The obtained result is comparable to 

the result obtained by Ediriweera et al., (2014) who obtained R2 of 0.81 by combining airborne and multi-

spectral data in subtropical eucalyptus forest area. The result is also in the range of the result obtained by 

Karna et al., (2015) for the reforested tropical forest that obtained R2 ranging from 0.78 to 94% using a 

combination of Worldview-2 high-resolution satellite image and airborne LiDAR. The highest result 

obtained could be due to the use of the same height values to estimate both the modelled and field-based 
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AGB/carbon stock while this study, uses airborne LiDAR derived height and field DBH as a standard. 

The result is lower than the study of Lawas, (2016) for tropical rainforest that obtained R2 of 0.98 

AGB/carbon stock estimation through the integration of airborne LiDAR and TLS. The possible reason 

for the difference in R2 could be the use of the same height values to estimate both the modelled and 

field-based AGB/carbon stock.  

To check the mean difference in biomass of the AGB-UAV and AGB-field t-test was done and the 

obtained result shows, there is a significant difference between the mean AGB-UAV and AGB-field. The 

reason for the significant difference between AGB-UAV and AGB-field result is due to the error created 

during DBH prediction and CHM generation (error-multiplication).    

5.7. AGB/Carbon stock of the study area   

The amount of aboveground biomass in UAV flight plan-2 (block-2) of the study area was estimated using 

the segmented CPA (which is not adjusted). Even though the estimated result is not based on the adjusted 

CPA, comparing the obtained result with other literature is crucial.  

 The amount of aboveground biomass in UAV flight block-2 of the study area was estimated to be 

361.2583Mgha-1 that is, 180.63Mgha-1 of carbon stock. The estimated amount of carbon stock is similar to 

the result revealed by Laumonier et al.(2010) in hill Dipterocarp old-growth tropical rainforest of the south 

and central Sumatra. They revealed a range of 135-240 Mgha-1 of carbon stock with a mean of 180 Mgha-1 

using a universal allometric equation. In addition to that, a result obtained by Sium (2015) who study in 

the tropical forest of the same country (Malaysia), but the different site was revealed 185 Mgha-1 of 

carbon stock based on a model developed using CPA from the Worldview-2 high-resolution image. The 

reason to obtain more significant result than the result of this study could be the method of the model 

development. The model was developed using CPA and carbon relationship directly while in this study the 

model is a generic allometric equation which uses modelled DBH and estimated tree height from UAV-

CHM. Dirocco (2012) revealed 146 Mgha-1 of carbon in a similar site of Temenger forest reserve which is 

lower than the result of this study. Even though variation observed in the results of different studies, the 

result of this study is not outside the range of aboveground biomass in the tropical rainforest of Asia 

which is 120-680 Mgha-1 (Aalde et al., 2006). Sium (2015) stated that the environmental condition of the 

study area, the allometric equation used, Sensor types used, forest management and methods applied could 

result in carbon stock estimation variations. 

Even though, the estimated AGB of the study area per hectare has comparable result with the other 

researchers, the amount of estimated carbon is not as expected. If the whole area was manageable to 

adjust incomplete CPA with the limited time the estimated biomass would have been better than the 

obtained result.  
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6. CONCLUSION AND RECOMMENDATION  

6.1. Conclusion  

This study investigated the possibilities of accurate assessment of AGB/carbon stock of the tropical 

rainforest in Berkelah, Malaysia using UAV imagery stand alone. A generic allometric equation used to 

estimate AGB/carbon stock input parameters (DBH and height) were derived from UAV 3-D point 

cloud. AGB/carbon stock of the multilayered forest made use of incompletely visible CPA adjustment 

after segmentation to derive a robust result of DBH through linear regression and the modelled DBH 

achieved R2 of 0.80 in the power model. UAV derived height compared to airborne derived height showed 

no significant difference at 95% level of confidence in the study area. The UAV height and modelled 

DBH was applied to estimate the AGB/carbon stock using the generic allometric equation and compared 

to the AGB/carbon stock estimated from field DBH and airborne LiDAR height using t-test. The result 

shows a significant difference due to error multiplication during DBH prediction, and UAV derived CHM 

generation. Based on the obtained result, the following conclusions made to address research questions.  

1. Is there a significant relationship between adjusted CPA (after segmentation) and DBH measured in 

the field? 

The adjusted CPA and DBH measured in the field were correlated as the correlation coefficient was 89%. 

Similarly, the regression determination coefficient of the relationship was 80% with power model. Test of 

Pearson correlation indicated that the relationship is significant (p<0.01). Power model showed a better 

relationship between CPA and DBH, and it is better to follow it for DBH prediction. There was a 

significant relationship between adjusted CPA and DBH measured in the field at 95% level of confidence.  

Hence, the null hypothesis which state there is no significant relationship was rejected.  

2. Is there a significant difference between tree height estimated from UAV 3-D point cloud and airborne 

LiDAR data?  

Tree height derived from UAV 3-D point cloud deviated from airborne LiDAR derived CHM by 3.9 m 

(17%). The p (T<=t) two-tailed t-test p-value was 0.258 which is greater than 0.05. Hence, there is no a 

significant difference between the mean of tree heights derived from UAV 3-D point cloud and ALS data 

at 95% level of confidence in the study area. Thus, the null hypothesis which state there is no significant 

difference was not rejected.  

 

3. Is there a significant difference between estimated AGB/carbon stock-UAV-based and field-

based/airborne LiDAR? 

 The calculated RMSE between UAV-based and field-based estimated AGB/carbon stock obtained 

138.55 Kg (32.6%). In addition, the estimated AGB-UAV was compared to AGB-field using t-test 

and the obtained result shows there is a statistically significant difference at 95% level of confidence. 

Hence, the null hypothesis which state there is no significant difference was rejected.  

4. What is the estimated amount of carbon-stock in the study area? 

A total of 6023981.603Kg carbon-stock equivalent to 180.18Mgha-1 was estimated in UAV flight block-2 

of the study area.   
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6.2. Recommendation  

Use of UAV imagery and object-based image analysis with CPA adjustment improves the relationship 

between CPA and DBH in the power model though; the estimated AGB/carbon stock shows a significant 

difference due to error multiplication from predicted DBH and estimated height thus, it is recommended 

to integrate UAV imagery with other promising remote sensing tools to implement REDD+MRV 

program in tropical rainforest, Malaysia. However, some recommendations are listed for further research. 

1. Automatic CPA adjustment technique is strongly recommended to apply this technique in a large 

area and an algorithm should be developed to save time and energy.   

2. Further research can be done in AGB/carbon stock estimation using tree height from UAV-DSM 

and airborne LiDAR-DTM integration as DTM is not changing abruptly. Once the forest area is 

surveyed by airborne LiDAR a regular carbon stock assessment using UAV combing with the 

existed DTM from ALS. 

3. The UAV and airborne LiDAR data acquisition time should be at the same time to validate tree 

height estimation using UAV standalone by airborne LiDAR. 
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APPENDICES 

Appendix 1: Field data collection sheet form   

COLLECTION SHEET (BERKELAH FOREST RESERVE MALAYSIA  2017) 

Recorder:  Plot Number: plot radius: Date: 

Plot 
center:  

Latitude  Slope (%)  

Longitude   Crown cover (%)  

Photograph number:  Photographer Name: 

Tree 
No. 

Latitude  Longitude  Diameter 
/DBH(cm) 

Species Crown 
diameter(m) 

Remark 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

11       

12       

13       

14       

15       

16       

17       

18       

19       

20       

21       

22       

23       

24       

25       

26       

27       

28       

29       

30       

31       

32       

33       

34       

35       
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Appendix 2: Sample calculated adjusted CPA using intermediate circle  
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Appendix 3:  Correlation between CPA and DBH results  
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Appendix 4 : Field photos 

  


