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ABSTRACT 

Hydrothermal minerals indicate inferred permeability in geothermal systems besides being indicative of 

formation temperature, fluid composition and host rock composition. Minerals, particularly hydrothermal 

feldspars (adularia and albite), are important minerals in permeability studies. Adularia has a direct link to 

highly permeable zones, whereas albite is indicative of inferred low permeability. The ability to recognize 

and distinguish adularia from other feldspar minerals is, therefore, crucial. Spectroscopy has been used as 

an alternative approach relative to convectional methods to study feldspars minerals. However, there are 

limited spectroscopy studies on adularia, this study explores LWIR spectroscopy on rock plugs from the 

Karangahake epithermal Ag-Au system to map adularia and other associated minerals. These samples are 

used in the development studies of geothermal systems because the epithermal systems are fossil equivalents 

of geothermal systems, particularly low sulphidation systems, which are mainly found in highly permeable 

zones. The objective is to (1) understand spectral characteristics of feldspars; adularia and other 

hydrothermal minerals associated with it, (2) assess the performance of LWIR in the mapping of feldspar 

minerals and, (3) establish mineral assemblage that can be used to identify adularia-rich areas for permeability 

studies in the future.  

A total of 50 hyperspectral images of 50 rock plugs of approximately 1inch diameter were acquired in the 

LWIR wavelength range by a hyperspectral imaging system. After processing of the acquired images for 

noise reduction and reflectance to emissivity conversion, wavelength mapping and Principal Component 

Analysis (PCA) algorithms were applied to facilitate endmembers collection. Once the endmembers were 

collected, they were compared to reference spectral libraries for mineral identification and naming. Then, 

the Spectral Angle Mapper (SAM) was used to classify and quantify the images based on the most dominant 

mineral per pixel. Also, Iterative Spectral Mixture Analysis (ISMA) algorithm was used to obtain fractional 

abundances of constituent mineral per pixel for easy comparison with TIMA data. Given unrealistic ISMA 

results, i.e., negative fractional abundance values, it was difficult to quantify the sample images for 

comparative analysis. Therefore, mineral quantification was done based on SAM classification results and 

ISMA provided an alternative approach to understand the spectral behavior of mixed pixels. Validation of 

the LWIR identified minerals was done using XRD measurements and TIMA data on the selected 35 

samples. 

Results present various feldspar minerals characterized by broad spectral features within 8100-10000nm 

spectral range. Other identified minerals are silica, carbonate and clay minerals. Spectral differences in 

wavelength position and shape (defined by width, depth and symmetry) of the diagnostic features reflect 

variability in their mineralogical composition and can be used to distinguish the identified minerals. LWIR 

mineral estimates indicate that rock samples have been altered to a certain extent due to the presence of 

alteration minerals such as adularia, albite, pyrite and calcite. The Identified minerals were common in all 

datasets; LWIR, TIMA and XRD data. This is despite the shortcomings in mineral mapping, such as 
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misrepresentation of minerals in LWIR maps. Generally, LWIR data were correlated to TIMA and XRD 

data by up to ~0.5 correlation coefficient. The relationship between albite and adularia maintains its inverse 

relationship, suggesting the possibility of using this relationship in permeability studies. Hydrothermal 

minerals that commonly occur with adularia are quartz, calcite, albite and pyrite; however, this is insufficient 

to establish mineral assemblage for the identification of adularia-rich areas. 

Keywords: LWIR imaging spectroscopy, hydrothermal minerals, adularia, inferred permeability, geothermal 

systems. 
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1. INTRODUCTION 

1.1. Background and Justification 
Geothermal energy is clean, renewable energy with little or no carbon dioxide emission (Lin & Zhu, 2019). 

Its resources are found within the earth’s crust at depths of approximately >1km and only found at a depth 

of 4-5km under pressured reservoir conditions (van der Meer et al., 2014). The heat extracted from the 

geothermal reservoir is for several economic uses depending on reservoir temperature conditions that are 

influenced by circulating thermal fluids (Hochstein, 1988). High-temperature resources (>125°C) are mostly 

used for electricity generation while low temperatures (<125°C) are for direct utilization of heat in industries, 

homes, etc. (Hochstein, 1990). Due to the high demand for such clean energy, more emphasis has been put 

on various methods for geothermal energy exploration and production (Kerr, 2017). 

 

Geothermal energy production highly depend on rock permeability, which indicate the capacity of the rock 

in transmitting fluids (Browne, 1970). Several methods have been used over time to estimate permeability 

and identify permeable zones. Such methods are, for example, geophysical logging and well permeability 

test (Baptiste & Chapuis, 2015; Field, Rafik, & Kamel, 2017). These methods require lengthy site 

preparation, which includes drilling of the well for them to be performed. Prior to the application of such 

methods, mineral assemblage and alterations have been used as indicators for temperature and permeability 

in early stages of exploration and production of geothermal energy. 

 

Mineral alterations can be of hydrothermal or non-hydrothermal origin. Hydrothermal minerals form as a 

result of an interaction between hot circulating fluids and host rock (Pirajno, 2010). Nature of their 

occurrence differs based on variation in temperature, fluid composition, host rock composition and 

permeability (Yang, Huntington, & Browne, 2000). Minerals such as quartz, chlorite, calcite, pyrite and clays 

are known to be temperature indicators due to their stability at specific temperature conditions (Simmons 

& Browne, 2000). Pyrrhotite, pyrite and feldspars are known to be indicative of impermeable and permeable 

zones due to specific occurrence conditions.  

 

Feldspars (plagioclase and K-feldspars) are the most common rock-forming minerals with varying structural 

and chemical composition. Hydrothermal feldspars such as adularia and albite form as a replacement or 

depositional minerals at different temperature and pressure conditions. The formation of, for example, 

adularia (K-feldspar) relates to the boiling zone, which is associated with permeable zones. This association 

has been consistent in previous geothermal studies and led to the assumption that adularia can potentially 

be indicative of high permeability in geothermal systems (Browne & Ellis, 1970; Simmons & Browne, 2000). 
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As reported by Browne, (1970), the occurrence of hydrothermal altered feldspars, adularia and albite relate 

to high and low permeability zones, respectively. Similarly, observations made by Bogie & Lawless, (2000) 

shows the dominance of adularia in productive zones compared to albite. However, there is a lack of 

conclusive explanation on the level of permeability when adularia and albite coexist (Browne & Ellis, 1970; 

Simpson et al., 2019). To better understand different permeability levels where both adularia and albite exist, 

identification, quantification and determination of the spatial distribution of adularia and albite is of 

importance for future permeability studies within geothermal systems. 

 

Several methods have been extensively employed to study feldspar minerals, i.e., identify various members 

of the feldspar mineral group. Such methods include conventional methods; visual inspection, X-ray and 

petrographic analysis. Interpretation by visual inspection can have a user bias and highly depend on the 

knowledge of the interpreter. X-ray analysis includes XRF (X-ray fluorescence) and XRD (X-ray diffraction) 

techniques. XRF and XRD quantitatively determine the elemental and mineralogical composition of a rock, 

respectively (Černý & Chapman, 1984; Nijenhuis, Gateshki, & Fransen, 2009). These methods have been 

used despite their limitation to the determination of the spatial distribution of minerals. Petrographic analysis 

has also been useful in distinguishing feldspars based on differences in crystal structures and appearance 

under the microscope.  

 

Recently, another automated mineral mapping method, TIMA (TESCAN Integrated Mineral Analyzer), has 

demonstrated to be significant in mapping feldspar minerals. This method uses the latest developments of 

automated mineralogy (AM) systems, which allow detailed data collection with a high spatial resolution of 

up to approximately 2µm (Hrstka, Gottlieb, Skála, Breiter, & Motl, 2018). This level of detail was not 

possible to obtain through human-interactive operation of SEM/EDX system. However, mineral 

identification, mineral quantification and determination of their spatial association are limited to mixed 

pixels and very fine mineral grains (Simpson et al., 2019). 

 

Infrared spectroscopy is another alternative method for mineral mapping in the wavelength region of VNIR 

(visible-near infrared), SWIR (shortwave infrared) and LWIR (longwave infrared) (Hecker, der Meijde, & 

van der Meer, 2010). For rock-forming minerals, LWIR imaging is ideal for semi-quantification and spatial 

distribution determination. This is possible due to varying composition and structural state of minerals, 

which result in unique spectral signatures. The spectral signatures of feldspars are characterized by 

reststrahlen features in the LWIR region (Riley & Hecker, 2013). These diagnostics features are pronounced 

at around 8000-14000nm as a result of vibrational processes within the structural framework of feldspar 

minerals (Hunt, 1977).  

 

LWIR spectroscopy of feldspars has been documented since the 1950s. Reflectance and emission infrared 

spectroscopy are the most preferred spectroscopy techniques, ideal for comparison studies with remote 
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sensing data (Hecker et al., 2010). Studies were done using this technique to understand the spectral behavior 

of feldspars. For example, Feely & Christensen, (1997) used LWIR spectroscopy to map feldspars as a group 

of minerals in igneous and metamorphic petrology. These mineral groups, alkali feldspars and plagioclase, 

were useful in rock classification (Graham R. Hunt & John W. Salisbury, 1970). 

 

Nevertheless, few studies have attempted to map various members of the feldspar mineral group using 

LWIR spectroscopy, for example, in Ruff, (1998); Christensen et al., (2000); Hecker & Dilles, (2012). Such 

minerals are albite, oligoclase, orthoclase and labradorite. Results have demonstrated LWIR spectroscopy 

as a potential tool in distinguishing some of the potassic, sodic and calcic endmembers of feldspars. This 

was demonstrated in a study by Hecker et al., (2010), showing distinctive reststrahlen features for albite that 

are distinguishable from other feldspar minerals. 

 

However, limited studies have specifically investigated LWIR spectroscopy of adularia and its discrimination 

from other feldspars. Investigated feldspar minerals, for example, adularia and orthoclase, appear to have 

almost similar spectral signatures except for minor variations in the intensity and wavelength position of the 

diagnostic features (Reitze et al., 2019). Given the nature of feldspar samples used in Reitze et al., (2019), 

mixed mineral composition made the distinction of adularia from other feldspars difficult.  

 

Therefore, this study investigate the possibility of distinguishing adularia from other feldspar minerals using 

LWIR imaging spectroscopy. The scope of the study is limited to available rock samples that were acquired 

from a low sulfidation epithermal gold system, which is known to be a fossil equivalent of a geothermal 

system. These rock samples were also used in the study of Simpson et al. (2019). LWIR imaging spectroscopy 

is used to identify and quantify feldspar and other associated minerals. The results are compared to 

previously published TIMA and XRD results of the same rock samples. The comparison aims at assessing 

the performance of LWIR in the detection of various members of the feldspar mineral group. Finally, the 

results will suggest whether adularia, albite, and other feldspars can be distinguished by LWIR imaging 

spectroscopy. In Addition, information gained can then be used to understand permeability in active 

geothermal systems in the future. 
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1.2. Research Objectives 

1.2.1. Main objective 

The objective is to determine whether LWIR spectroscopy can reliably distinguish adularia from albite and 

other feldspars and work as a permeability indicator in geothermal systems in the future. 

 

1.2.2. Specific objectives 

1. To understand spectral characteristics of feldspar minerals present in the low sulfidation epithermal 

gold system dataset using LWIR imaging spectroscopy. 

2. To assess the capabilities of LWIR imaging spectroscopy in distinguishing adularia from other 

feldspar minerals. 

3. To establish mineral assemblages that can be used to identify adularia-rich areas. 

 

1.3. Research questions 
1. Which feldspar minerals can be identified by LWIR imaging spectroscopy in the investigated 

dataset? 

2. Which minerals can spectrally be confused with adularia? 

3. Which other hydrothermal minerals are spatially associated with adularia? 

4. How well does the spatial distribution of minerals in LWIR mineral maps resemble those in TIMA 

mineral maps? 

5. How well can LWIR quantify feldspars and other associated minerals compare to TIMA and XRD 

data? Is it possible to distinguish adularia from other feldspar minerals using the LWIR techniques?  
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1.4. Feldspar minerals  
Feldspars are a group of rock-forming aluminosilicate minerals that contain potassium [KAlSi3O8], sodium 

[NaAlSi3O8], or calcium [Ca Al2Si2O8]. They occur in various rock types from igneous rocks through magma 

crystallization, metamorphic and sedimentary rocks (Dietrich, 2018). The identification of feldspars is based 

on the composition and arrangement of their constituent atoms and ions and therefore categorized into two 

groups, the alkali feldspars and plagioclase feldspars.  

 

The alkali feldspars vary in composition between sodium aluminosilicate [NaAlSi3O8] and potassium 

aluminosilicate [KAlSi3O8]. They include sanidine, microcline, anorthoclase, orthoclase and perthite. Based 

on their temperature of formation, sanidine and anorthoclase are stable at high temperatures while adularia 

and perthite are known as low-temperature forms. Adularia, a low-temperature variety of orthoclase or 

microcline, contain ~90wt% KAlSi3O8 (Reitze et al., 2019). Adularia commonly occurs in the hydrothermal 

environment and has been documented as a common alteration mineral, indicative of permeable 

zones/structures in geothermal systems.  

 

The plagioclase feldspars vary in composition between sodium aluminosilicate [NaAlSi3O8] and calcium 

aluminosilicate [CaAl2Si2O8]. They include albite, andesine, oligoclase, anorthite, labradorite and bytownite. 

Figure1.1 demonstrates various feldspar minerals based on their composition, which varies in mineral 

percentages of calcium, sodium and potassium. As indicated in the figure below, for example, for 

anorthoclase, Ab10-37 indicates that anorthoclase is composed of 10-37 wt%KAlSi3O8 and the rest is 

wt%NaAlSi3O8. 

 

Figure 1.1: Feldspar classification diagram, endmembers are in wt% (adapted from Kumar, Marcolli, & Peter, 2019) 
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1.5. Spectral characteristics of feldspar minerals 
Spectroscopy is useful in the identification and differentiation of minerals of hydrothermal and non-

hydrothermal origin due to their spectral responses. Spectroscopy measures and analyzes spectra that result 

from the interaction between electromagnetic radiation and rock samples. Spectral characteristics of such 

minerals, particularly feldspars, vary in terms of band position and shape of the spectral features reflecting 

their composition and structural arrangement of their constituent ions. These features are due to asymmetric 

Si-O-Si stretching vibrations and Si-O-Al vibrations as documented by  Salisbury, Walter, Vergo, & D’Aria, 

(1991). A detailed description of the vibrational processes in minerals and their signatures in the LWIR 

region referred to as Mid-Infrared region are presented in studies by Thomson & Salisbury, 1993; 

Christensen et al., 2000; Hunt, 1977. 

 

Generally, feldspar minerals exhibit major diagnostic features between 8000nm and 12000nm. However, 

secondary features beyond 12000nm are also useful in the identification and distinction of minerals, for 

example, albite from other feldspar minerals. Below are the spectral characteristics of previously investigated 

feldspar minerals. The spectral information presented here is obtained from the existing spectral library by 

United States Geological Survey (USGS)(Kokaly et al., 2017), Arizona State University (ASU)(Christensen 

et al., 2000), Johns Hopkins University (JHU) and Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) (Schodlok, Green, & Huntington, 2016) as implemented in The Spectral Geologist 

(TSG) version 8. 

 

Potassium feldspar  

Adularia [KAlSi3O8] has diagnostic features within 8400nm-10000nm due to molecular vibrations. Adularia 

displays two (in usgs) and three (in CSIRO) spectral features with their emissivity minima at ~8400nm and 

9500-9600nm; ~8800, 9400 and 9600nm, respectively. Orthoclase [KAlSi3O8] displays two spectral 

emissivity minima at ~8400nm and 9600nm. Microcline [KAlSi3O8] has four spectral features with their 

emissivity minima at ~8500nm, ~9100nm, 9400nm and 9800nm. The deepest feature varies between the 

9400nm and 9800nm.  

 
Figure 1.2: Emissivity spectra of potassium feldspars in LWIR region (arrows indicate emissivity minima) 



LWIR SPECTROSCOPY ON FELDSPARS FROM ROCK PLUGS FOR THE DETECTION OF PERMIABLE ZONES IN GEOTHERMAL SYSTEMS 

7 

Anorthoclase, (Na,K)AlSi3O8 has spectral emissivity minima at ~8400nm and ~9600nm. The second feature 

appears deep compared to the first feature.  

 
Figure 1.3: Emissivity spectra of anorthoclase in LWIR region (arrows indicate emissivity minima) 

 

Plagioclase feldspar  

Albite, NaAlSi3O8 is characterized by four spectral features. The first emissivity minima occur at ~8400nm 

and the second minima is at ~9200nm, followed by a doublet at ~9600nm and ~9900nm. The ~9600nm 

feature being the deepest feature. Also, albite has four weak absorptions at around 13000nm which can be 

used to distinguish adularia from other feldspar minerals. When mixed with, for example, quartz, the second 

multiple features become less pronounced (Thomson & Salisbury, 1993). Oligoclase, 

(Na,Ca)[Al(Si,Al)Si2O8] displays spectral emissivity minima at 8600nm and 9600nm. The two features can 

form weak doublet features in some cases. Andesine, (Na,Ca)[Al(Si,Al)Si2O8] has two characteristic spectral 

features with their emissivity minima at ~8400nm and ~9600nm with a subtle feature at 9900nm. The 

andesine spectrum resembles anorthoclase except for the additional feature at 9900nm. The deepest feature 

in andesine occurs at ~9600nm, but when mixed with quartz, the presence of quartz might result in the 

~8400nm or ~9200nm becoming the deepest feature. It also has three weak secondary features beyond 

12000nm. 

 
Figure 1.4: Emissivity spectra of plagioclase feldspars in LWIR region (arrows indicate emissivity minima) 
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1.6. Thesis structure 
This thesis is organized into five chapters. Chapter 1 introduces the research background and justification 

of the research problem, research objectives, research questions, theoretical background on feldspars, and 

LWIR spectral characteristics of feldspars. Chapter 2 presents datasets and methods, including image 

acquisition, image pre-processing, endmember extraction, mineral mapping, qualitative and quantitative 

comparison of LWIR, TIMA and XRD mineral abundances, analysis and interpretation. Chapter 3 presents 

the results of the image pre-processing and processing, qualitative and quantitative comparison of various 

datasets. Chapter 4 discusses the methods employed and results obtained from this research in comparison 

to the existing literature. Chapter 5 present a conclusion and recommendations. 
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2. DATA AND METHODS 

Data used in this study include sample materials (rock samples) and supporting analytical data (TIMA and 

XRD) from a study by Simpson et al., (2019). The rock samples were used to acquire hyperspectral images 

using LWIR imaging spectroscopy. The acquired images were pre-processed and processed to extract 

spectral/mineralogical information. The processed images were then analyzed together with XRD and 

TIMA data of the same rock samples to assess the performance of LWIR imaging spectroscopy in 

identification and mapping of minerals present in the investigated dataset. Software used for data analysis 

are ENVI 5.5 + IDL 8.7, Hyppy3 and Excel. The sections below explain all methodological steps in detail. 

 

2.1. Dataset 

2.1.1. Rock samples 

A total of 50 rock samples collected from a low sulfidation gold system of Karangahake, New Zealand, were 

used. These samples are polished miniplugs of ~1inch (2.5cm) diameter labeled with code AU#, which 

stands for Auckland University (figure2.1). 13 samples of the 50 samples were collected from riversides and 

ridges (Keillors crosscut) and the rest were collected from surface outcrops.  

 

The plugs were previously carbon coated for the study of Simpson et al., (2019). For this study, the carbon 

coat was removed by Chris Hecker at Remote Sensing and GIS (RSG) laboratory, ITC faculty, university of 

Twente. The procedure involves the use of a struers wet polishing machine with a fine Silicon Carbide 

Grinding Paper, Grit 4000 to grind and polish the rock surface for about 10-15 seconds per sample with 

about 10kg of pressure. The first three samples AU57540A, AU57540B and AU57577, were done longer. 

Therefore, there is a probability that surface material was grounded away for these particular samples. Then 

samples were rinsed with distilled water and dried in an oven for 48 hours at 50°C not to damage hydrated 

minerals such as zeolites. These procedures were personally communicated to me by Dr. Chris. 

 

 

 
 
 
 
 

 

 

1inch 

Figure 2.1: Rock sample AU57545 
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2.1.2. XRD data 

X-ray diffraction (XRD) is an analytical technique used for the identification and quantification of crystalline 

minerals. As described by Simpson et al., (2019), homogeneous rock powders were scanned with a Philips 

PW 1050/25 diffractometer at the University of Auckland, New Zealand, to determine average bulk 

composition. One hundred nineteen samples were used and only 42 samples were selected for XRD and 

TIMA analysis. Therefore, XRD data available for this study are only for the selected 42 samples. These 

samples are among the 50 rock samples described in section 2.1.1. The mineral abundances calculated from 

42 XRD scans are displayed in appendix4.  

 

2.1.3. TIMA images (PNG) 

A Tescan Integrated Mineral Analyzer (TIMA), also known as an automated mineral analyzer, is an analytical 

scanning electron microscope that measures modal abundance on multiple samples of grain mounts and 

thin or polished sections. TIMA was used to analyse the 42 polished samples at the Australian Resources 

Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Perth, Australia 

(Simpson et al., 2019). The rock samples were scanned at a spatial resolution of 2-5μm, taking up to 2 hours 

for each sample to acquire high-resolution mineral maps. Simpson et al., (2019) created mineral maps 

(figure2.2) by using a spectra-matching library between Energy Dispersive spectrometry (EDS) analyses and 

the EDS profiles of reference minerals. Various analyses, such as XRD and petrography, were used to 

constrain the classification as described by Simpson et al., (2019). Then mineral percentages were calculated 

from the mineral maps, see appendix3 for the mineral percentage estimates. 

 

 
Figure 2.2: An example of a TIMA mineral map (in PNG format) for sample AU57565 

 

2.2. Methods 
Various methods were employed to understand spectral characteristics of feldspars and other associated 

minerals from the available rock samples. These methods include TIMA (PNG) image processing, LWIR 

image acquisition, pre-processing and processing, and data analysis and interpretation. These methods are 

explained in detail in the subsections below and summarized in a methodological flowchart in figure2.3. 
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Figure 2.3: Methodological flowchart 

 

2.2.1. TIMA (PNG) image processing 

TIMA results were available as images in PNG format. These images were processed and converted to a 

suitable format for qualitative comparison with LWIR images. First, endmembers were extracted from 

TIMA images. Then, the extracted endmembers were used to classify TIMA images using Spectral Angle 

Mapper (SAM) algorithm (see section 2.2.6), creating mineral maps in Envi format. These maps had clear 

mineral patterns and texture that were used as markers to rotate them in the direction that was easily 

compared with LWIR images. 
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2.2.2. Hyperspectral image (HSI) acquisition 

High-resolution hyperspectral images were acquired on 50 polished rock samples aiming at detecting 

variation in spectral features with their corresponding wavelength positions. Data acquisition took place at 

BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) in Hannover, Germany, using a sisuROCK 

hyperspectral imaging system. The imaging system was set in LWIR spectral range, with a spatial resolution 

of 400µm. Table 2.1 presents specification of the LWIR camera used. 

 

OWL 3 LWIR wavelength range 

Location BGR 

Wavelength range (nm) 7704.44 to 12571.9 

Pixel size (µm) 400 

Number of bands 101 

Frame rate 12.55 

Exposure time 0.97 

Table 2.1: Specification for an OWL 3 imaging system 

 
The polished rock samples were placed horizontally, attaining the same level/height on a black wooden 

plank, as shown in figure2.4. These samples were scanned in groups; therefore, a total of eight hyperspectral 

images named Kar01- Kar08 were acquired. 

 

 
Figure 2.4: Rock samples on a wooden plank (a yellow arrow showing the scanning direction -top of the HSI) 
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2.2.3. Hyperspectral Image pre-processing 

The acquired hyperspectral data included striping, dropouts and miscalibration, resulting in noisy bands. 

The first pre-processing steps were done by Dr. Martin Schodlok (BGR, Germany) using standard OWL 

processing chain version 4.10. These steps include raw data conversion and destriping. Conversion of raw 

data (DN values) into reflectance values was done using a diffuse reflecting aluminium standard and dark 

current measurements on a blackbody. Destriping was done to improve the signal to noise ratio of the 

hyperspectral image before further image processing and analysis, i.e., endmember extraction. This took into 

account the preservation of spatial and spectral features while minimizing the noise.  

 

For additional noise reduction, I performed spectral subsetting and Minimum Noise Fraction (MNF) 

transformation. First, a spectral subset was performed to remove the noisiest bands at the periphery of the 

spectral range. Number of bands reduced to 97 bands corresponding to the wavelength range 7806nm to 

12475nm from the original 101 bands after the removal of the first and the last three bands.  Afterward, 

MNF, a linear transformation, was employed on the spectrally subsetted image files to segregate and 

suppress noise while preserving spectral features (Green, Berman, Switzer, & Craig, 1988). Forward MNF 

transform was employed first, resulting in output MNF bands and eigenvalue plots. Individual output bands 

and their corresponding eigenvalues were visually inspected to select components with the most 

information. Low order components appeared to contain most of the information and less noise. Therefore, 

an eigenvalue of 3-3.5 was used as a cut-off point for all images to select output MNF bands/components. 

The cut-off point varied from 3 to 3.5, given different images that may have been subjected to a different 

level of noise.  The selected components for each image (typically about 7 to 11 components) were used to 

perform inverse MNF to transform MNF bands back to their original data space of 97 bands. Masking was 

done on the reflectance image during MNF transformation to remove unwanted space outside the sample 

margin that could affect the noise statistics. The masks were built using region of interest (ROI) defining 

the sample image. Finally, the image data cubes with less noise compared to the original data cubes were 

produced.  

 

Further processing steps, such as wavelength mapping, as suggested by Abera, Hecker, & Bakker, (2018), 

requires conversion of reflectance to emissivity values for LWIR image files. This is done to avoid 

highlighting features that are not representative of minerals present in the investigated dataset. Wavelength 

mapper performs normalization using the highest reflectance/emissivity values prior to identifying band 

position and depth of local minima. For the case of LWIR reflectance and emissivity data, wavelength 

mapper tends to highlight reflectance lows and emissivity minima, respectively. However, emissivity minima 

are typical diagnostic features. Therefore, the corrected reflectance data were converted to apparent 

emissivity values based on Kirchhoff’s law (ɛ= 1-r) using the band math tool. Equation (i) was used for the 

conversion. 
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                                                                   ( 1000.0 - b1 ) …………. (i) 

                                                                          1000.0                                     

                                                    b1- assigned to a single variable, an image file 

 

Endmembers 

Endmember extraction is a crucial step to image classification. It involves the extraction of distinct spectral 

signatures from a sample image, representative of minerals. Manual endmember selection approach was 

used to create a direct association between endmembers and image in further processing steps, i.e., mineral 

mapping, as suggested by Borengaser, William, Watkins R., & Michael T. Eismann, (2012). Various 

algorithms were performed on the pre-processed LWIR image to enhance distinct spectral features and 

facilitate the manual endmember selection. Below is the description of the two algorithms used, Principal 

component analysis (PCA) and wavelength mapping.  

 

2.2.4. Principal component analysis (PCA) 

PC analysis is a technique used to enhance and compress the image; therefore, it provides a small number 

of components based on its variance. This technique is done through the rotation of a new set of orthogonal 

axes, as a result, maximizes the data variance (Green et al., 1988). To manually select endmembers, forward 

PC rotations were performed on the pre-processed LWIR image to produce uncorrelated output bands. 

The first PC bands contain the most significant percentage of data variance, thus appears to contain most 

information compared to the last PC bands. Therefore, the first six principal components/output bands 

were selected. Different RGB band combinations were used to display the most contrast images from which 

coordinates (x,y) corresponding to various endmembers were manually picked. These coordinates were later 

on used on the pre-processed LWIR image to extract endmembers. 

 

2.2.5. Wavelength mapping 

Wavelength mapping method was employed as a second source to facilitate the manual endmember 

selection from the pre-processed LWIR image files. This method is a two-step approach that highlights 

wavelength position of the deepest features (emissivity minima) representative of dominant minerals per 

pixel. The resulting maps are fused images of interpolated wavelength position of the local minima and their 

corresponding depth displayed in a Hue Saturation Value (HSV) colour ramp.  

 

Wavelength mapping method was performed on 8 LWIR sample images. The selection of these samples 

was based on the presence of feldspar minerals, which was the main focus of this study using TIMA maps 

and their corresponding mineral abundances. Step 1 was run to obtain the wavelength position of the 

deepest emissivity minima in the wavelength range of 7800nm to 11500nm. Continuum removal by division 

was applied during this step to normalize the spectrum (Hecker, van Ruitenbeek, van der Werff, et al., 2019). 
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Step 2 was run on the minimum wavelength image obtained from step 1 with a wavelength stretch and a 

depth stretch. Wavelength stretch was of 8000nm to 10500nm, targeting diagnostic features for feldspars 

and other associated minerals, while depth stretch was set from 0.0 to 0.05, given the lower depth of spectral 

features (less than 10%). Finally, spectral signatures highlighted by various colours corresponding to a 

specific wavelength position of the local minima were selected and added in the endmember list.  

 

2.2.6. Endmember extraction and Identification 

Manually picked endmembers from the pre-processed LWIR data cubes were selected. PCA results and 

wavelength maps aided the endmember collection process (see, section 2.2.4 and 2.2.5 above) as it enhances 

spectral information with varying spectral features at different wavelength positions (Hecker, van 

Ruitenbeek, van der Werff, et al., 2019; Hecker, van Ruitenbeek, Bakker, et al., 2019). Fifty initial spectral 

endmember candidates were extracted based on the PCA and wavelength mapping products. Afterward, 

they were sorted based on their similarities and visually inspected to remove duplicates. Finally, 12 unique 

endmembers out of the initial 50 endmember candidates were selected based on the PCA and Wavelength 

Mapping products.  

 

Determination of mineralogical composition and naming of the 12 endmembers using the knowledge of 

diagnostic spectral absorption features followed. The approach used was spectra matching between the 

endmembers and existing spectral libraries in continuum removal. The spectral libraries used were open 

access USGS, JHU, ASU and CSIRO library and a chalcedony reference spectra provided by Dr. Steven 

Ruff. A list of expected minerals from TIMA results presented by Simpson et al., (2019), and lookup tables 

for wavelength position of minerals presented by Fagbohun, (2015) was used to narrow down the search of 

minerals from spectral libraries to match with the endmembers. Thus mineral identification and naming 

became less challenging. Finally, 12 identified endmembers with their respective spectral features were 

described and summarized in a table. A spectral library that was used in mineral mapping was also created 

from this endmember collection. 

 

Mineral mapping 
Mineral mapping involves assigning a particular mineral class to a specific pixel resulting in a mineral map. 

This determines spatial distribution of minerals as well as quantification of minerals. Mineral mapping was 

done through image classification approach. Two different algorithms were employed, spectral angle 

mapper (SAM) and Iterative Spectral Mixture Analysis (SMA) for mapping of dominant mineral per pixel 

and determining fractional abundances of minerals per pixel, respectively. Subsections below provide details 

on the two algorithms.  

 



 

16 

2.2.7. Spectral Angle Mapper (SAM)  

SAM classification algorithm is a technique that allows rapid mapping of the spectral similarity between 

image spectra and reference spectra. It determines the spectral similarity by calculating the angle (in radian) 

between the two spectra, treating them as vectors in feature space. For this dataset, the reference spectra 

used were the endmembers directly extracted from the pre-processed LWIR sample images. A single value 

of 0.05 radians was set during SAM classification to obtain a match. Also, SAM depends on an overall 

spectral fit rather than an individual emissivity minimum. A specific spectral range was therefore used to 

target specific features, as seen in the identified endmembers. Therefore SAM algorithm was performed on 

bands 1-57 and bands 68-82 corresponding to the wavelength ranges 7753-10478nm and 11014-11695nm. 

SAM output includes a set of rule images (one per endmember) that were used in the post-classification to 

adjust threshold angle values for each endmember to obtain realistic results. Rule image is an image that 

shows intermediate classification results for a selected mineral class.  

 

Post classification was done on a set of rule images to have control over the classification results to reduce 

misclassification. The rule classifier tool was used to assign different thresholds for different endmembers 

based on histogram values, and random inspection of the pixels. This was to investigate the frequency plot 

of the classified pixel and filter out misrepresented pixels. Finally, mineral maps with 12 mineral classes per 

sample image were created from the ruled images. Mineral percentages were estimated from statistics 

calculated for every sample mineral map. SAM classification results were later compared in terms of spatial 

patterns and mineral percentages to TIMA and XRD results. 

 

2.2.7.1. Iterative Spectral Mixture analysis (ISMA) 

Spectral mixture analysis is a tool that analyses and determines the relative mineral abundance of mineral 

constituents per pixel using the purest endmembers. There are several spectral mixture analysis techniques; 

However, Iterative Spectral Mixture Analysis (ISMA) stands out. This technique has previously been used 

to addresses endmember's variability, performs subpixel classification, and calculates fractional abundances 

of mineral constituent. It uses the same principle as unconstrained linear unmixing, except the process is 

repetitive (Rogge, Rivard, Jinkai, & Jilu, 2006). Therefore, it removes irrelevant endmembers per iteration 

until a critical point is reached where only relevant endmembers remain.  

 

ISMA was done in this study due to the presence of a large number of mixed pixels that were not correctly 

classified in the SAM mineral maps. First, sample pre-processed LWIR images were converted from band 

sequential (bsq) to band interleaved by line (bil) format since the process is done simultaneously on a block 

of data. Then IDL was used to perform ISMA on sample images using parameters displayed in table2.2. The 

number of lines in each block varied, given varying number of lines per image. 
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Parameters Values 

Number of lines in each block varying 

Maximum no of EMs 5 

rms threshold 0.1 

Iteration threshold 2 

Table 2.2: Parameters for ISMA tool 

 

A shade endmember, which is used as a multiplicative factor, is automatically added to the process and set 

to value 1. The process was fast given a less computational load due to the use of 12 endmembers, which 

was less than the number of spectral bands (97 bands). Finally, ISMA results, which include root mean 

square error (RMSE), removed and abundance images, were produced. RMS image calculated RMS error 

over each iteration. Removed image shows a specific endmember that was removed at each iteration for all 

pixels. Abundance image presents endmember’s fractional abundances, shadow endmember (shade) fraction 

and RMS error. The fractional mineral abundances per pixel and sample image were determined from 

statistics calculated from the abundance images excluding the shade fraction and RMS error.  

 

2.2.8. LWIR-TIMA-XRD comparative analysis 

The LWIR mineral map, TIMA and XRD results were compared to assess LWIR spectroscopy in mapping 

of feldspars and other minerals present in this dataset. The approach used involved qualitative and 

quantitative comparative analysis. First, a visual comparison was done based on the spatial distribution of 

mineral in the LWIR and TIMA mineral maps. Samples with clear mineral patterns that were used as markers 

in the alignment of TIMA mineral maps in the direction of the LWIR mineral maps were used for this 

analysis. 

 

Then, a quantitative comparison of the aggregated mineralogy of the samples was performed. It involved 

the use of mineral percentage estimates from SAM, TIMA and XRD data for adularia, albite, quartz and 

calcite. This analysis was done for 35 samples that were common in all datasets. Prior to performing 

quantitative comparison analysis, a summation of mineral percentage estimate was done to deal with 

duplicate classes. For example, for adularia mineral class, the mineral percentage was estimated by summing 

up the abundances of the two identified classes that were spectrally distinct enough to be mapped as separate 

classes. However, this did not apply to all classes, especially the mixed mineral classes. Therefore, SAM 

classified images were used in this analysis without accounting for the mixed mineral classes. However, an 

assumption was made to investigate the influence of mineral mixtures in mineral quantification. The 

assumption was that constituent minerals were of equal proportion; thus, for example, 50% of quartz_illite 

mineral abundance was added to a quartz percentage estimate and the difference in relative mineral 

abundances was analyzed. 
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The approach used for quantitative comparative analysis was correlation analysis, a statistical method that 

evaluates strength of the relationship between two quantitative variables. A high correlation means the 

variables highly relate to each other, and vice versa is true. This was done by plotting mineral abundances 

of LWIR results against TIMA and XRD data. Then the coefficient correlation was calculated and analyzed 

for each plot. This was based on the general trendline (regression line) drawn based on sample distribution 

depending on their respective mineral abundances in both datasets. Therefore, the performance of LWIR 

spectroscopy, together with the methodological approach used, for example, in mineral mapping, e.g SAM, 

was assessed. 

 

2.2.9. Establishing mineral assemblage for adularia-rich areas. 

Mineral assemblage for adularia-rich areas includes other hydrothermal minerals that are commonly 

associated with adularia and can, therefore, be used to identify adularia-rich areas. The approach used to 

determine hydrothermal minerals that commonly occur with adularia was based on their spatial association 

with the occurrence of adularia. Prior to that, sampling was done to select samples that are considered to be 

adularia rich. Adularia rich samples are defined by sample mineral maps with >30%adularia relative to other 

minerals. The definition of adularia-rich samples considered other methods such as XRF that can easily 

identify the presence of adularia only when samples have >30%adularia (Simpson et al., 2019). Therefore, 

samples were sorted and filtered from largest to smallest based on the adularia % estimates. 10 of 50 samples 

were selected as adularia rich samples. An observation was made on classified pixels close to adularia 

classified pixels to determine minerals that are spatially associated with adularia. Finally, dominant minerals 

that are associated with adularia in the selected samples were highlighted. Also, adularia was plotted with 

albite mineral abundances to assess their occurrence and comment on whether their relationship can be 

used in permeability studies. Given that adularia and albite are associated with high permeability and low 

permeability zones in geothermal systems, respectively.  
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3. RESULTS 

3.1. Image pre-processing results 
Output MNF bands of the hyperspectral image and eigenvalue plot obtained after forward MNF 

transformation are displayed in the figures below. The number of selected components varied from one 

image to the other from 7 to 11 components. The selection was based on inspection of MNF output bands 

and eigenvalues. Figure3.1a is an example of a sample image from 50 acquired LWIR images, sample 

AU57602, which illustrates the level of information/noise per component. The result shows an increase in 

noise with increasing number of components. Figure3.1b  shows an eigenvalue plot where eigenvalue three 

was selected as a cutoff point. At this point, there is a dramatic increase of eigenvalues, which reflect the 

increase in data variance. Transformed bands beyond the cutoff show no change in their corresponding low 

eigenvalues. Therefore, only the first seven components were selected for the inverse MNF transformation.  

                b1                  b2                 b3                  b4                 b5                  b6                 b7           

 
               b8                  b9                  b10                 b11               b12                b13                b14  

 
               b15               b30                b38                b39               b40                 b96                 b97 

 
 

 
Figure 3.1: a) MNF output bands and b) eigenvalue plot for sample AU57602 

cut-off: 3 

a

b 
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Noises were suppressed after the application of forward and backward MNF. The noise suppression is 

demonstrated in reflectance spectra, as shown in figure3.2a. Spikes that appear as minor features in the 

original reflectance spectrum (solid line) were removed in the resulting spectrum (dotted line) of the same 

pixel location. The resulting spectrum (dotted line) appears smooth with visible spectral features within a 

spectral range of 7806nm and 12475nm. The spectral range was reduced to 7704.43 to 12571.9 nm due to 

noisy bands through spectral subsetting. Also, an exponential increase of reflectance values from ~10500nm 

was observed and appeared consistently in all sample images, as observed in figure 3.2a. Figure3.2b 

demonstrates an emissivity spectrum obtained after the reflectance to emissivity conversion.  

 
Figure 3.2: a) Reflectance spectra(offset for clarity) before (solid line) and  after (dotted line) forward and backward 

MNF transformation b) emissivity spectrum after reflectance to emissivity conversion 

 

3.2. Principal Component Analysis (PCA) results 

Forward PC analysis resulted in uncorrelated image bands, also known as PC bands. The first six bands 

contain most of the information; therefore, they were used in a band combination image to highlight spatial 

and spectral distinct features per sample image. Figure3.3 displays an example of sample images AU57491 

and AU57602 with band combination 135 and 321, respectively. The images had spatial and spectral contrast 

displayed in different colours that were used to extract endmembers. However, only very distinct colours 

displayed distinct spectra. For example, the deep green and pale/yellowish-green in sample AU57491(left) 

had the same spectra signature.                              

                                                 Band 135                                    Band 321 

                                                   

Figure 3.3: Band combination RGB= PC135 and PC321 for sample AU57491(left) and AU57602(right) 

spikes 

a b
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3.3. Wavelength Map 
Wavelength maps of 8 sample images were produced for a wavelength interval of 8000nm to 10500nm with 

a depth stretch of 0 to 5% emissivity. Results show a spatial and spectral contrast corresponding to different 

colours representative of different wavelength position. For illustration, figure3.4 demonstrate wavelength 

maps of AU57491 and AU57602 sample images. Maps are highlighted by blue, cyan and yellowish colours 

corresponding to wavelengths ~8100nm, 8400nm, and 9400-9600nm, respectively. For sample image 

AU57602, quartz and adularia2 extracted from the wavelength maps were highlighted by yellowish and blue 

colour. 

  

Less spatial contrast was observed relative to spectral contrast. Figure3.5 presents spectra extracted from a 

wavelength map of sample AU57491 (figure3.4), which show different spectral signatures highlighted by the 

same colour. It is because spectral signature of different minerals present in this particular sample image had 

their deepest features at the same wavelength position. Quartz spectrum and a mixed (unidentified) 

spectrum highlighted by blue colour had their deepest feature at ~8100nm, see figure3.5. As highlighted in 

the map, their features are at the same wavelength position despite differences in their shape, which is not 

highlighted in the wavelength map. Also, a spectrum highlighted by cyan colour in the wavelength map with 

its deepest feature at ~8400nm suggests that it is a mineral mixture (figure3.5). The spectrum exhibit subtle 

emissivity peaks at ~8600nm and ~9000nm, shown by arrows in figure3.5.  

 

Figure 3.4: A wavelength map for AU57491 (left) and AU57602 (right) 

 

 

 

  

 

  

  

  

 Figure 3.5: Spectra from wavelength maps of AU57491(left) and AU57602 (right) corresponding to colours 
highlighted in the maps in figure3.4 (Vertical lines show emissivity minima and arrows shows emissivity peaks) 
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3.4. Endmembers 
Twelve unique endmembers were identified. The endmember’s spectral signature differs in shape and 

wavelength position of their emissivity minima and emissivity peaks. Their diagnostic spectral features are 

within the reststrahlen band (8000nm to 11500nm), as summarized in the table3.1. The identified 

endmembers include quartz, adularia, orthoclase, albite, anorthoclase, calcite, diopside, oligoclase and mixed 

spectra. Among the mixed spectra, quartz+ illite and quartz+ calcite were identified. However, some of the 

extracted mixed spectra with overlapping features were insufficiently distinct nor included in the 

endmember list. The endmembers, together with existing reference spectra from various spectral libraries, 

i.e., USGS, JHU, ASU and CSIRO, are described in detail in the subsections below. They are categorized 

into two groups, feldspars and other associated minerals present in this dataset. In general, emissivity spectra 

in continuum removal shows a minor shift in the wavelength position of the spectral features to shorter 

wavelengths. 

# Endmembers Spectral characteristics 

1  Albite displays four spectral features. The first occurs at 8726nm and the 

second subtle spectral feature is at 9213nm, followed by a weak 

doublet at 9554nm and 9797nm. The 9554nm is the deepest feature.  

2 Oligoclase displays spectral features at 8629nm(the deepest) and 9602nm with 

emissivity peak at 9310nm. It also exhibits a calcite related feature at 

11306nm. 

3 Calcite displays a diagnostic feature at 11355nm and two subtle features at 

9262 and 9748nm. 

4 Anorthoclase displays two asymmetrical spectral features with emissivity peak at 

8921nm. The first occurs at 8434nm, and the second deep feature is 

centered at 9602nm. 

5 Orthoclase display two spectral features at 8434 (rounded) and 9456nm (sharp) 

with emissivity peak at 9018nm. 

6 Adularia1 display two spectral features at 8434nm and 9554nm. The emissivity 

peak is at 9018nm. 

7 Adularia2 

 

has spectral features at 8434nm and 9310nm and emissivity peak at 

8823nm. 

8 Diopside first deep wide diagnostic feature within ~9000nm and 9250nm and 

multiple features at 10235nm, 10770nm, 11501nm and 11890nm. 

9 Quartz displays two spectral features at 8239nm and 9310nm with 

emissivity peak at 8629nm. 

10 Quartz_Illite It is characterized by three spectral features at 8434nm, 8823nm and 

9310nm. The emissivity peak is at 8629nm. 
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11 Calcite_quartz displays features that were present in calcite and quartz endmember.  

Features were at 8288nm, 9268nm and 9748nm (subtle) and a calcite 

related feature at 11306nm. The emissivity peak is at 8629nm. 

12 Chalcedony displays two asymmetric features at 8385nm(round) and 9262nm 

(the deepest) with emissivity peak at 8629nm. 

Table 3.1: Description of the 12 selected endmembers 

 

3.4.1. Feldspar minerals 

Generally, the identified feldspar minerals exhibit spectral features in the wavelength range of 8100nm to 

10400nm and appear to have broad spectral features, particularly plagioclases when compared to alkali 

feldspars. Two plagioclase were identified as albite and oligoclase. 

 

Albite exhibit an emissivity peak at 9018nm, emissivity minimum at 8726nm and multiple features at 

9213nm, 9554nm and 9797nm (figure3.6a). The multiple features distinctively distinguish albite from 

oligoclase. However, the multiple features observed in albite were not pronounced as much as in its 

corresponding reference spectrum (CSIRO). The reference spectrum for albite had a feature at 8726nm and 

multiple features at  9164nm, 9602nm and 9894nm. 

 

Oligoclase is characterized by diagnostic spectral features at 8629nm and 9602nm, with its emissivity peak 

at 9310nm (figure3.6b). The reference spectrum for oligoclase (CSIRO) appears more symmetrical compared 

to the oligoclase image spectrum with diagnostic features at 8726nm and 9894nm. It may be attributed to 

the mixture as the oligoclase image spectrum exhibits another feature, carbonate-related at 11306nm. In 

comparison to the reference spectra, albite and oligoclase present in this dataset had minor shifts of their 

second features while maintaining the same wavelength position for their first feature and emissivity peak.  

 
Figure 3.6: Plagioclase spectra from LWIR images (black) versus reference spectra (red) from an existing spectral 

library 

 

 

a b 
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Alkali feldspar minerals identified include adularia, orthoclase and anorthoclase. In this dataset, two different 

adularia were observed named adularia1 and adularia2, see (figure3.7a). Both adularia spectra did not have 

a perfect match with the existing reference spectrum presented in figure3.7b. The adularia image spectrum 

had minor shifts to shorter wavelengths in their emissivity peak and minima. Figure 3.7b shows the adularia 

reference spectrum from CSIRO (dotted) with three features at ~8800nm, 9200nm and 9400nm while the 

spectrum from usgs (solid) shows two doublet features at 8434, 8677nm and 9507, 9846nm with emissivity 

peak at 9067nm. In contrast to the reference spectra, adularia1 has an emissivity peak at 9018nm and 

emissivity minima at 8434nm and 9554nm. Adularia2 is characterized by an emissivity peak at 8823nm and 

emissivity minima at 8385nm and 9310nm, as shown in figure3.8a. In comparison to adularia1, adularia2 had 

spectral features at shorter wavelengths. However, both adularia1 and adularia2 were consistent in terms of 

their feature’s position in various adularia rich rock samples.  

 

Orthoclase had an emissivity peak at 9018nm and emissivity minima at 8434 and 9456nm (figure3.7c). In 

comparison to the reference spectrum (JHU), orthoclase had no split feature for the first emissivity minima 

as it appeared in the reference spectrum. Otherwise, they both had a similar shape and wavelength positions 

of their spectral features. Figure3.7d presents anorthoclase, which appears to have asymmetrical spectral 

emissivity minima at 8434nm and 9602nm with its emissivity peak at 8921. In comparison to anorthoclase 

reference spectra (CSIRO), the features were at similar wavelength positions except for the shape of the 

second feature, which appears deep with sharp V-shape.  

 

 

 
Figure 3.7: Alkali feldspar spectra from LWIR images (black) versus reference spectra from spectral libraries (red) 

a b 

c d 
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In general, the identified adularia spectral features appear to be distinct from other feldspar minerals in 

terms of their wavelength position, e.g., of emissivity minima for albite, emissivity peak for oligoclase, 

emissivity minima and peaks for anorthoclase. Also, adularia differs from anorthoclase in terms of their 

shape as well. An orthoclase spectrum appears to have a close resemblance to the adularia1 spectrum.  

 

3.4.2. Other associated minerals 

Other minerals identified in this dataset are silica minerals, calcite, diopside and a mixture of quartz+illite 

and quartz+calcite. Silica minerals include quartz and chalcedony. Quartz appears to be common in this 

dataset. The quartz spectrum has a diagnostic emissivity peak at 8629nm and minima at 8239nm and 9310nm 

(figure3.8a). In comparison to the reference quartz spectrum (USGS) (figure3.8b), there was a  minor shift on 

the second emissivity minima from ~9200nm to 9310nm. Chalcedony displays asymmetric features at 

~8385nm (round) and 9262nm (the deepest) with emissivity peak at 8629nm. It has a good match with 

chalcedony reference spectrum provided by Dr. Steven Ruff (ASU), as demonstrated in figure3.8d. The 

similarity between chalcedony and quartz is in terms of their wavelength positions. However, the main 

difference appears to be the shape, where chalcedony has more rounded features compared to quartz. 

 

Moreover, quartz emissivity peak appears to persist in most mixed spectra, with a shift of its first emissivity 

minima towards longer wavelengths, from ~8200nm to 8434nm. It is observed in a mixture of quartz with 

illite (figure3.8e) and quartz with calcite (figure3.8f). Illite reference spectrum in figure3.8e exhibits diagnostic 

features at 8823nm and 9310nm, which is observed in the mixed spectrum of quartz and illite. Calcite had 

a diagnostic feature at 11355nm with two minor features at 9262 and 9748nm. In comparison to calcite 

reference spectrum (CSIRO), these minor features were more pronounced in the calcite image spectrum see 

(figure 3.8g). 

 

Another mineral is diopside, a monoclinic pyroxene mineral with composition MgCaSi2O6. It has a deep 

and wide diagnostic feature within ~9000nm and 9250nm, which had a match with its corresponding 

reference spectrum (CSIRO) (figure3.8h). Features at longer wavelengths, as summarised in table3.1 had no 

match with its corresponding reference spectrum.  
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Figure 3.8: Spectra from LWIR images (black) compared with reference spectra from the existing spectral library (red) 

a b 

c d 
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3.5. Mineral mapping results 

3.5.1. SAM classification results 

Mineral maps for LWIR images of the 42 rock samples were produced. Minerals were mapped for the 12 

spectral endmembers, which include plagioclases, K-feldspars, quartz, calcite, and a mixture of quartz, calcite 

and clay minerals. Mineral abundances per sample image were estimated, see appendix2. Table3.2 shows an 

example of mineral percentage estimates for few samples. Duplicate classes, for example, adularia1 and 

adularia2 percentage estimates, were summed up to estimate adularia mineral percentage.  This was because 

adularia1 and adularia2 were distinct enough to be mapped as separate classes in different image samples, 

for example, in AU57504 and AU57555. For samples that had both classes, one endmember became 

dominant over the other, showing a significant difference in proportion. For example, in sample AU57598 

and AU57602, adularia2 is >30% while adularia1 is <1.3%. Except for few samples that had both adularia1 

and adularia2 in almost equal proportion, i.e., AU57565. 

 

 
Table 3.2: Mineral abundance for few sample images 

 

The results show that not all pixels within a sample image are classified. However, the classified pixels cover 

at least 50% of a sample image for 26 images, e.g., AU57555 and less than 50% for the remaining 16 images, 

e.g., AU57504. Most of the unclassified pixels correspond to spectral signature that does not resemble the 

selected spectral endmember. Figure3.10 shows an example of a spectrum extracted from the sample image 

AU57504 corresponding to unclassified pixels. It is insufficiently distinct as it resembles spectral endmember 

in terms of the wavelength position for mixed quartz due to a shift of the first feature from ~8200nm to 

~8400nm. However, the peak appears wide and flat, suggesting a possible overlap of minerals due to spectral 

mixing; therefore, it became difficult to identify the mixed pixel.   

 

Based on random pixel inspection, some pixels were classified as both adularia1 and orthoclase. Their close 

spatial association is also observed on minerals maps of, for example, AU5755 and AU57504. Similarly, 

some albite classified pixels were also classified as oligoclase and anorthoclase. For illustration purposes, 

figure3.9 shows various LWIR maps for different sample images.  

 

AU# Unclassified Adu1 Qz-I Cal Or Olg Di Adu2 Ab Qz Qz_cal Ano Chalc

57504 67.43 13.3 5.97 2.23 0.48 0.15 9.32 0.15 0.97

57555 1.85 60.29 0.26 0.46 1.43 18.02 0.33 1.24 15.97 0.16

57565 61.56 11.4 0.09 13.09 8.04 0.28 0.22 5.11 0.22

57598 25.95 1.28 17.57 53.17 0.94 0.03 0.94 0.13

57602 43.37 0.06 36.97 18.12 1.45 0.03

Mineral abundance (%)
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         AU 57555                 AU57565                 AU57598                  AU57504                AU57602 

 

                       

Figure 3.9: LWIR mineral maps for various rock samples 

 

 

 

 

 

 

 

 

 

Mineral textures were observed on few mineral maps, as shown in figure3.11. These are veins that were also 

observed in rock samples. The veins cut across the rock samples at approximately 1mm width. The veins 

are mapped as calcite with quartz at its periphery in AU57540B; quartz and chalcedony at the periphery in 

AU57568. Based on random inspection of the pixels within the veins using the knowledge of the mineral 

diagnostic features, the spectra appear as a mixture of the two minerals, quartz_calcite (refer to figure3.8f).  

                                                    AU57540B                              AU57568 

 

 

Figure 3.11: Veins (~1mm width) in LWIR maps. 

 

veins 

Figure 3.10: Spectra from AU57504 corresponding to unclassified pixel in the mineral map 
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Figure3.12 demonstrates the influence of mineral mixtures in SAM mineral quantification. The chart shows 

mineral estimates for quartz before accounting for the mineral mixtures (the inner circle) versus mineral 

estimate for quartz after 50% of the mixed classes, i.e., quartz_illite and quartz_calcite, was added to the 

quartz percentage estimate (outer circle). The difference in quartz percentage varies from ~0-4%, as seen in 

the chart and goes up to 15% for other sample images. 

 

 
 
 

 
 
 
 
 
 
 
 
 

3.5.2. ISMA results 

ISMA analysis results present relative fractional mineral abundance per pixel. The result shows both negative 

and positive values for various endmembers. For example, sample AU57535 in table3.3, basic statistics show 

negative and high positive values ranging from ~ -1.28 to 1.33. The root mean squared (rms) error is 

approximately zero. Shadow endmember(shade) has fractional abundances per pixel as well, but in most 

pixels, it appears to have negative values. 

 
Table 3.3: Unmixing results for sample image AU57535 

For the rest of the endmembers, the results show positive fractional abundances only for few image pixels. 

For these pixels, the fractional abundances summed up to less than one, as shown in figure3.13a, excluding 

 No. Statistics Min Max Mean StdDev

1 Adularia1 -1.28 0.33 -0.00 0.05

2 Quartz+illite -0.95 1.33 -0.01 0.10

3 Calcite -0.88 0.19 -0.02 0.09

4 Orthoclase -0.44 0.63 0.14 0.17

5 Oligoclase -0.70 0.43 -0.12 0.19

6 Diopside -0.41 0.31 -0.02 0.06

7 Adularia2 -0.46 0.59 0.01 0.10

8 Albite -0.34 0.00 -0.00 0.01

9 Quartz 0.00 1.54 0.84 0.24

10 Quartz+calcite -0.81 0.40 -0.06 0.14

11 Anorthoclase -0.33 0.50 -0.06 0.11

12 Chalcedony -0.85 0.90 -0.16 0.23

13 Shade -0.02 0.77 0.47 0.12

14 rms 0.00 0.00 0.00 0.00

Fractional abundance 

Figure 3.12: Percentage estimates of quartz(inner circle) versus percentage estimates of Quartz+50% mineral 
mixtures of quartz (outer circle) 
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the shadow endmember. However, other pixels had negative values, which made it difficult to determine its 

fractional abundance for the minerals present in the specific pixel. These pixels, with negative values, also 

appear to have high false-positive values, as shown in figure3.13b. Pixels with positive fractional abundances 

for various minerals/endmembers were inspected to see whether they contribute to the spectral signature 

of that pixel. The results shows similarity between spectral diagnostic features of individual minerals and 

that of the mixed spectrum per pixel, as shown in figure3.13a(right). Band 9, 11 and 13 in the abundance 

profile represent endmember quartz, anorthoclase and shadow endmember, respectively.  

                                     

                                      
Figure 3.13: Abundance profile for fractional abundances per pixel (left) with their corresponding spectral signature 

(right). This is for the pixel where ISMA worked. 

 

Abundance images and their corresponding rms profile showed that pixels with less number of endmembers 

per pixel had a sharp increase of the rms values at lower band number/iteration. Therefore, the critical point 

occurs at higher rms values for a large number of endmembers per pixel. Based on random pixel inspection, 

pixels with negative values and a large number of endmembers tend to have a step up rms profile, as shown 

in figure3.14. Thus it becomes difficult to locate the critical point where optimum number of endmembers 

is determined. 

                                      
Figure 3.14: Abundance plots (left) of one of the problematic pixel with its corresponding rms profile (right) 
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3.6. Comparative analysis 
The hyperspectral LWIR image results of this dataset are compared to auxiliary data sources in two ways: 

firstly, visual rock texture (spatial distribution of minerals) from the classification methods is compared with 

visual rock sample observations in TIMA mineral maps. Secondly, relative mineral abundances aggregated 

over the entire sample surface of the LWIR maps were quantitatively compared to those of  TIMA maps 

and whole-rock XRD data. (see appendix 1, 2 and 3 for data).  

 

3.6.1. Visual comparison: HIS and TIMA 

The comparison between LWIR (SAM mineral maps and wavelength maps) and TIMA maps focused on 

the spatial distribution of minerals. Six LWIR sample images had clear, comparable mineral patterns and 

therefore made it difficult to rotate and compare them with TIMA maps. However, for the few samples, 

there was enough similarity between LWIR  and TIMA maps in patterns but not necessarily the mineral 

content per pixel. These include samples with structures such as veins. Common minerals are mapped in 

both LWIR (SAM) and TIMA maps, but there is a significant difference in their spatial distribution. 

Figure3.15 shows sample which exhibits similar patterns in both datasets but differs in mineral distribution.  

             
                  AU57493                AU57522               AU57540                AU57510 

               

                 

             
 

Figure 3.15: Comparison of the spatial distribution of minerals between wavelength maps, SAM classified images and 
TIMA maps for sample image AU57493, AU57522, AU57540 and AU57510 
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For example, AU57510, pixels classified as anorthoclase (light green) in LWIR (SAM) maps are classified as 

albite(green) in TIMA maps despite the similar pattern. Adularia ring (red) in the TIMA map for AU57510 

is also mapped as adularia 2 (maroon) in LWIR (SAM) map. For sample AU57522 and AU57540, quartz 

veins, as identified from TIMA images, are rarely classified as quartz veins in LWIR (SAM) maps. Instead, 

the veins are classified as quartz_calcite veins. The same vein patterns are also observed in wavelength maps, 

which appear dark, suggesting shallow depth of emissivity minima. LWIR mapped calcite in all the four 

samples presented in figure3.15. However, only sample AU57510, had a matching, spatial distribution of 

calcite with its corresponding TIMA map while the other three TIMA maps show no sign of calcite. 

Moreover, various minerals such as clinochlore, nontronite, pyrite, chalcopyrite present in TIMA maps are 

absent in LWIR maps for all the samples displayed in figure3.15.  

 

Misrepresentation of minerals was highly noticed in sample AU57545 (figure3.15), where SAM mapped 

most pixels as adularia1(red) (figure3.16a). According to TIMA and XRD, no adularia is present and there is 

a significant amount of quartz and rare albite (appendix3 and 4). This is in agreement with spectral 

characteristics of the pixels, which shows mixed spectra with no resemblance to the adularia spectrum. The 

mixed spectrum, as shown in figure3.16b, shows strong bands of quartz highlighted by its emissivity peak at 

8629nm. ISMA results appear to agree with the spectral behavior of the mixed pixel, where quartz contains 

~40%abundance per pixel (figure3.16b). Also, from the RGB of ISMA results, quartz(green) dominates this 

rock sample with rare albite(blue), which agrees with TIMA and XRD for this particular sample. 

                                    

 

 
Figure 3.16: a) SAM classified image(right) and ISMA results for sample AU57545 b) their corresponding spectra 

(right) and abundance profile(left) 

R Adularia1 
G Quartz 
B Albite  

8629nm 
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3.6.2. Quantitative comparison: HSI, TIMA and XRD 

Mineral percentage estimates used in the quantitative analysis are described in appendix 1,2 and 3. It includes 

mineral abundance determined from SAM mineral maps, TIMA and XRD results. Figure3.17 shows mineral 

abundance plots for samples that were common in all datasets. These plots were of TIMA versus 

HSI(LWIR) and XRD versus HSI(LWIR) for adularia, quartz, albite and calcite. The calculated correlation 

coefficient based on the best fit (linear line) for the few selected minerals is displayed within the plots as R-

squared value. Generally, the correlation coefficient of the selected minerals in the different datasets was 

lower than ~0.5. Furthermore, albite shows less than 0.1 coefficient of correlation. 

 

Among the selected minerals, adularia had a close match in the mineralogical content compared to other 

minerals with an R-squared value of 0.485 (TIMA) and 0.3879 (XRD), as shown in figure3.17. Again, plots 

show a lower percentage of classified minerals for various samples in LWIR spectroscopy compared to 

other methods for albite, quartz, and calcite. For albite, most samples had lower mineral percentage 

compared to the other methods. There is no clear trend for quartz. Generally, quartz is present only in small 

amounts, but it appears to be abundant in LWIR mineral maps. Quartz is overestimated for most samples 

compared to other methods showing an increase in LWIR (HIS) mineral maps. Calcite is present in most 

sample images (HSI) but with a very low percentage while it appears in a high percentage in very few samples 

for TIMA and XRD dataset. 
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Figure 3.17: Cross plots of HSI(LWIR) versus TIMA and XRD mineral percentage estimates for adularia, albite 

quartz and calcite 
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3.7. Association of adularia with other minerals 
Determination of minerals associated with adularia was determined by analyzing mineral percentage 

estimates as well as spatial distribution of minerals for the selected adularia-rich samples. Figure3.18 shows 

the distribution of adularia in various sample images with a decreasing percentage of adularia (to the right). 

The occurrence of adularia and albite displays a contrary relationship; adularia percentage estimate increases 

with a decrease of albite percentage estimate and vice versa is true. 

 
Figure 3.18: Adularia versus albite occurrence in the decreasing order of adularia content (to the right) 

 

The first ten samples (>30%adularia) in figure3.18 were selected. Table 3.4 displays the selected samples, 

which are considered to be adularia rich based on the assumption that samples with >30% adularia are 

adularia-rich samples. Ten samples with the highest percentage of adularia common to both dataset, LWIR 

and TIMA were selected. Adularia dominates all the selected samples relative to other identified minerals. 

Quartz is present in all the selected samples as pure and in mineral mixtures. Albite and anorthoclase appear 

to be abundant in sample AU 57555. Calcite is also abundant in sample 57522 relative to other minerals. 

Diopside mineral is present in an insignificant amount (2.73%) in sample AU57493 but is considered to be 

important in a mineral assemblage of unaltered/weakly altered rocks. 

  

 

 

 

 

 

 

 

 

No. AU# Adularia Qz Chalc Qz-I Qz_cal Cal Or Olg Di Albite Ano

1 57555 60.29 0.33 0.16 0.26 1.24 0.46 1.43 18.02 15.97

2 57522 57.9 8.45 4.91 0.16

3 57598 54.45 0.03 0.94 17.57 0.94 0.13

4 57556 51.5 0.03 1.82 0.79 14.57 0.09

5 57567 50.74 6.29 0.09 19.68 6.07

6 57493 45.3 3.76 2.24 3.42 3.32 2.44 6.03 2.74

7 57488 43.52 8.22 0.46 0.83 0.96 0.43 0.4 0.6 1.03 0.03

8 57541 40.22 3.02 0.19 4.6 0 14.38 0.13 0.25 0.38

9 57595 37.42 0.11 0.42 0.07

10 57602 37.03 18.12 1.45 0.03

Mineral Abundances (%)

Table 3.4: LWIR mineral percentage estimates for the ten selected adularia-rich samples with >30% adularia 
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Based on mineral percentage estimates and spatial distribution of minerals obtained from LWIR maps, a list 

of minerals that commonly occur with adularia were determined. Table3.5 present dominant minerals in 

adularia rich samples as well as spatially associated minerals based on observation of their corresponding 

minerals maps. Commonly associated hydrothermal minerals with the occurrence of adularia are highlighted 

by pale yellow colour as seen in table3.5, which includes quartz, calcite and albite. 

 

Sample code 

(AU#) 

LWIR mineral estimates 

(decreasing % to the right) 

LWIR minerals maps (Spatial 

association) 

57555 Albite, anorthoclase, quartz Anorthoclase, quartz, albite 

57522 Quartz, calcite Quartz 

57598 Oligoclase, quatz, albite Oligoclase 

57556 Oligoclase, quartz, albite Oligoclase 

57567 Oligoclase, quartz, albite Quartz, oligoclase 

57493 Albite, quartz, anorthoclase, oligoclase, 

diopside 

Anorthoclase, calcite, diopside 

57488 Quartz, calcite, albite, diopside Quartz 

57541 Orthoclase, quartz - 

57595 Quartz, calcite - 

57602 Quartz, calcite Quartz 

Table 3.5: Common minerals associated with the occurrence of adularia from LWIR classified results 
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4. DISCUSSION 

4.1. Methods 
Hyperspectral image of the rock plugs was acquired in the longwave infrared (LWIR) of 7704.44nm to 

12571.9nm wavelength range. Due to noisy bands, the spectral range was reduced to 7753nm-12400nm 

through spectral subsetting. The use of this wavelength range influenced the distinction of the identified 

minerals. This is because of wavelengths beyond 12000nm exhibit secondary features that could be useful 

to identify and confirm the presence of minerals such as quartz, albite, or mineral mixtures (Ruff, 1998). 

 

The acquired hyperspectral image has shown an exponential increase of reflectance values from ~10500nm 

to 12400nm, as observed in an image spectrum presented in figure3.2. This may have attributed to the self-

emission effect when the rock gets exposed to light. Due to the slow scanning process, the rock gets ample 

time to heat up and emit energy. Therefore, the total recorded reflected energy may have incorporated the 

emitted energy as well. This has affected the position of diagnostic features and to reduce the effect, 

continuum removal was used to determine the exact wavelength position of diagnostic features, particularly 

in endmember identification. However, an improved acquisition method would be useful to account for this 

effect completely. 

 

Four algorithms were used to process images; wavelength mapper and PCA for endmember collection, SAM 

and ISMA for mineral mapping. Wavelength mapper facilitated endmember extraction, highlighting 

emissivity minima, which are typical diagnostics features of mineral present in the investigated dataset. 

However, endmember picking became difficult from wavelength maps, particularly for spectral signatures 

that exhibit emissivity minima at the same wavelength position but differs in shape and wavelength position 

of their emissivity peaks. This was demonstrated in the wavelength map of sample AU57491 (figure3.5), 

where different spectral features at the same wavelength position were highlighted by blue colour despite 

their differences in shape and emissivity peaks. PCA was also used to facilitate endmember extraction. For 

example, albite and adularia1 endmembers with their deepest feature at ~9554nm were differentiated by 

different colours in PCA results. The use of PCA and wavelength mapper has, therefore, complemented 

each other in the endmember collection. 

 

SAM classification method depends on the SAM algorithm and endmember list; however, the quality of the 

output map highly depends on the user. This was demonstrated in the SAM classification algorithm applied 

to the pre-processed LWIR images. This method is straight forward; however, user-interaction is necessary 

for the attainment of realistic results. The use of a single threshold value (~0.05radians) for all endmembers 

led to the misrepresentation of pixels. Most misrepresented pixels were mixed and their spectral signatures 

were absent in the endmember list. Therefore, multiple values for different endmembers were used. The 
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use of multiple threshold values is user-biased because the selection of threshold values depend on 

histogram inspection and random pixel inspection.  

 

Prior to the quantification of SAM classification results, duplicate mineral classes were dealt with, i.e., 

adularia, as described in section 3.5.1. However, mixed classes were not accounted for because the 

proportion of the mineral constituent of that mainly mixed spectra is unknown. However, their presence 

influenced the quantification of minerals for SAM classified images. Figure 3.12, where an assumption was 

made and 50% of, for example, quartz_illite was added to quartz mineral estimate. Distribution of quartz 

minerals dramatically changes especially for few samples that had less than 40% shoot up to ~60% which 

resembles  is observed with most samples that had low values of  

 

Mixture analysis (ISMA) was also performed to account for the percentage estimates of mixed pixels for 

comparative studies with TIMA and XRD data.  ISMA was used to investigate fractional mineral abundances 

of such pixels. This method highly depends on the purity of endmembers and this can be a disadvantage to 

the analysis given the presence of mineral mixtures. The results obtained were unrealistic, displaying both 

negative and positive abundance values. The presence of negative values made data interpretation difficult 

for the whole sample image. However, ISMA analysis results demonstrated the possibility of determining 

fractional mineral abundance per pixel as it retains endmembers that have spectral information relevant to 

a given mixture. This was observed in few pixels that had positive fractional abundance summed up to ~1, 

and their spectral signatures were characterized by subtle diagnostic features representing their mineral 

constituents per pixel (figure3.13). This suggests the use of ISMA technique to study spectral behaviour of 

mineral mixtures using an abundance image. 

 

4.2. Spectral characteristics of feldspars and other minerals  
Feldspar minerals are spectrally characterized by diagnostic features within ~8100- 10500nm wavelength 

range. In this study, various feldspar minerals were identified based on their distinct spectral signature. The 

identified feldspars include plagioclases (albite and oligoclase) and alkali feldspars (adularia, orthoclase and 

anorthoclase). Other identified minerals were quartz, calcite, chalcedony, quartz_illite and quartz_calcite.  

 

Compositional variations have shown a significant influence on band position of spectral features, as shown 

in section 3.4.1. For example, adularia exhibit features within 8100nm- 10500nm related to Si-O-Al bond 

within its structural framework while calcite exhibit carbonate related feature at 11300nm. Symmetry, width 

and depth of spectral features were useful in the distinction of identified minerals beside band position. 

Spectral features in plagioclases appear broad and shallow compared to spectral features in alkali feldspars, 

which appears sharp and deep. Also, albite has multiple features at 8726nm, 9213nm, 9554nm and 9797nm 

(figure3.6a). An anorthoclase spectrum also appears to have an asymmetrical shape with its second feature at 
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9602nm being deep compared to the first feature at 8434nm. This is in comparison to adularia1 with almost 

two symmetrical features at 8434nm and 9554nm. Likewise, emissivity spectra of quartz and chalcedony are 

both asymmetrical with their corresponding spectral features at 8239nm, 9310nm and 8385nm, 9262nm, 

respectively. Their difference was mainly highlighted by band position and shape of emissivity minima where 

chalcedony had smooth/round features (figure3.8c) relative to quartz, which had sharp emissivity minima 

(figure3.8a).  

 

Features within 8400-11000nm wavelength range characterizes feldspar minerals. These features result from 

Si-O and Si-Si and Si-Al stretching modes. Pure cation (Ca, Na, K) stretching modes cause features beyond 

~18500nm. However, its effect is highlighted in the reststrahlen band as well, whereas, for albite (Sodic 

feldspar), well defined multiple features reflect the presence of sodium. The intensity of these diagnostic 

features decreases with an increase in calcium content. In this study, the presence of calcium was highlighted 

by weak and poorly defined features of albite, as seen in figure3.6. This suggests that albite present in this 

dataset is Ca-rich. 

 

Deviations between image and reference spectra, as described in section 3.4.1 and 3.4.2, are due to variability 

in the composition of minerals. The identified mineral spectra had minor shifts of their emissivity minima 

while maintaining their peak at the same wavelength position, for example, of oligoclase and quartz. The 

image spectrum of oligoclase had a shift of its spectral features towards shorter wavelengths by ~ 48nm and 

97nm from its corresponding reference spectrum, maintaining its peak at 9310nm. The first and second 

spectral feature of quartz appears to shift to shorter wavelength by ~150nm and longer wavelength by 

110nm, respectively maintaining its peak at 8629nm. Mineral mixtures may have contributed to this as 

observed in the oligoclase spectrum (figure3.6) and quartz spectrum (figure3.8a), where a subtle carbonate 

related feature is highlighted at ~11300nm. This has demonstrated the presence of mineral mixtures as well 

as suggests that the emissivity peak (the Christiansen feature) can be a useful indication of mineralogy, as 

suggested by Salisbury et al., (1991), especially when in a mineral mixture. 

 

Salisbury et al., (1991) showed that minerals such as quartz persist in their respective reststrahlen bands 

despite changes observed in the intensity or shape of the spectra. In this study, the presence of minerals 

with persistent features such as quartz influenced the detection of other minerals as well as affected balance 

in mineral quantification. This is because quartz bands are so strong and when present even in small 

amounts, they tend to be more prominent in most pixels, including mixed pixel, as observed in figure3.8. 

This may obscure spectral features of other minerals that are present in a small amount. However, the 

persistent features such as quartz emissivity peak at 8629nm made identification of quartz easy even when 

in a mineral mixture.  
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4.3. LWIR mapping of feldspars and associated minerals 
Mineral mixtures had a significant influence not only in mineral identification but also in mineral mapping 

and quantification. Most minerals expected in these rock samples based on TIMA results were not mapped 

by LWIR spectroscopy. Such minerals are clay minerals, clinochlore, chamosite, chlorite, montmorillonite, 

hornblende and anorthite. This may have attributed to the mineral mixtures or insignificant amount of these 

minerals present in the dataset, given the low spatial resolution of LWIR maps (400µm) relative to high 

spatial resolution of TIMA maps (2-5µm). Based on TIMA results, minerals such as smectite, Kaolinite and 

hornblende were present in less than 1% and there was no evidence of their presence in LWIR mineral 

maps. Clay minerals such as illite were present in a significant amount of up to 35% in TIMA results but 

were only detected as a mixture of quartz and illite in LWIR data. The Illite_quartz spectrum showed an 

overlap of absorption features diagnostic for quartz and illite. Given these circumstances, SWIR could be 

an alternative wavelength range to identify and confirm the presence of, for example, clay minerals, which 

are active in SWIR spectral range. 

 

Only six LWIR mineral maps had clear spatial patterns that could easily be compared with TIMA maps. 

Mostly, this was due to the presence of a large number of unclassified pixels observed in most sample 

images. Only 26 out of the 42 sample images were classified by atleast 50% of the pixels. For those few 

samples, patterns look similar despite their differences in mineral content, which suggests misrepresentation 

of minerals. Misrepresentation of minerals resulted in underestimation and overestimation of minerals from 

LWIR mineral maps (SAM classified results), as demonstrated in figure3.16. This was observed in the 

comparative analysis between LWIR, TIMA and XRD data. Albite classified pixels in TIMA were classified 

as anorthoclase and oligoclase in LWIR maps. Albite has multiple diagnostic features within a 9400nm-

9900nm wavelength range. These features distinguish it from anorthoclase, adularia, and oligoclase. As 

discussed in section 4.2, the weak and less pronounced features in albite almost resemble anorthoclase and 

oligoclase spectral signature in terms of band position. This explains the confusion between albite, 

anorthoclase and oligoclase in SAM mineral mapping. 

 

Adularia dominates most samples, while other feldspars such as albite, only dominate few samples. Adularia 

dominates most rock samples, as shown in both LWIR and TIMA mineralogical estimates (see Appendix 1 

and 2). At least in 22 samples, the amount of adularia exceeds that of other identified minerals such as albite 

and quartz. However, adularia is higher than 30% in mineralogical estimates in LWIR data for only 27% of 

the rock samples (figure3.18). Based on LWIR results, the percentage estimate for albite is higher than 18% 

of the pixels in only three samples AU57510, AU57540 and AU57555. Among the three, only AU57510 

had a match with TIMA and XRD data. The other two samples show no sign of albite. Despite the less 

correlated results, especially for albite, the relationship between adularia and albite remains to be contrary 

where adularia is high whenever albite is low. This information is useful in permeability studies in geothermal 

systems. 
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Comparison between LWIR, TIMA and XRD data on identification and mapping of the minerals in the 

rock samples shows that LWIR data take advantage, particularly in the identification of minerals such as 

silica minerals. Spectral information reported the presence of chalcedony at the periphery of some 

quartz_calcite veins. This is in agreement with a study by Simpson et al. (2019), who documented the 

presence of quartz, calcite, chalcedony and pyrite occurrence to mainly occur in veins. However, TIMA 

could not distinguish different forms of silica and mapped all as quartz. This may have been attributed to 

the mapping algorithm in TIMA, which is based on chemical composition. Given, both Chalcedony and 

quartz are silica minerals with the same chemical formula of Si2O. 

 

LWIR maps have demonstrated the ability to detect calcite. However, calcite spectra present in this dataset 

suggest the presence of another mineral other than calcite, which has contributed to subtle features at 

8288nm, 9268nm, and 9748nm that are non-calcite related (figure3.8g). SAM algorithm classifies the image 

based on spectral fit of the specified spectral range. Therefore pixels that had features similar to the ones at 

shorter wavelengths were as well classified as calcite despite the absence of a calcite-related feature at 

~11300nm. This observation was made based on a random pixel inspection. This explains the identified 

calcite present in more than 50% of the rock samples. This is not in agreement with a study done by Simpson 

et al., (2019), who reported the presence of calcite in only 33% of the rock samples using TIMA. However, 

calcite percentage estimate for 50% of the LWIR image samples is underestimated relative to TIMA results 

(figure3.17). The underestimation might be attributed to the mineral mixtures that were not accounted for in 

SAM mineral quantification. For example, a diagnostic feature for calcite at 11350nm present in oligoclase 

and quartz_calcite spectra was not accounted for during mineral quantification.   

 

LWIR and TIMA had relatively close mineral estimates compared to XRD. For example, calcite is 

significant, ranging up to 24% in XRD. However, it is present up to 2% and 10% in LWIR and TIMA. This 

may be attributed to the difference observed in the mode of measurement. XRD measuresurements took 

place on powdered rock samples. In comparison to LWIR and TIMA, whose measurements were done on 

the same surface of the investigated rock plugs of 1inch diameter. 

 

Generally, LWIR results show similarity in mineral abundances relative to other datasets, particularly for 

adularia (figure3.17). This is demonstrated by the coefficient of correlation between LWIR, TIMA and XRD 

relative mineral abundances, which was ~0.5 for adularia. Other minerals, such as albite, had a correlation 

coefficient of up 0.1 for albite. This suggests that mapping of minerals by different techniques correlated 

well with adularia relative to other minerals.  

 

Pyrite is a common hydrothermal alteration mineral present in most vein-rich rock samples. Pyrite was 

identified through visual observations of the rock samples as it appears in brass-yellow with a metallic luster 
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on rock surfaces and from TIMA maps. Pyrite was distributed throughout the samples, particularly around 

veins. TIMA maps mapped pyrite, which was in agreement with the rock samples. Pyrite has no spectral 

absorption features; hence was not determined by LWIR.  

 

TIMA results were used to facilitate endmember collection and assess the methodological approach used, 

i.e., mineral mapping. However, the use of TIMA had an influence on adularia endmember collection as 

well as quantification of adularia. Given the limited number of studies on adularia, TIMA minerals maps 

were used to pinpoint adularia-rich samples that were used to extract adularia endmembers from LWIR 

images. This was done despite that TIMA maps were used in comparative analysis to validate LWIR data. 

The endmember collection presents two adularia endmembers, adularia1 and adularia2, that were selected 

based on the TIMA maps. Wavelength mapping results show that adularia2 is a mixture of a feldspar mineral 

and quartz, while in ISMA results, adularia2 appears to be a mixture of orthoclase and quartz. This suggests 

further studies of adularia in order to understand spectral behavior of adularia before applying it to mixed 

samples. 

 

4.4. Hydrothermal alteration 

This study used data from Karangahake low sulfidation Au-Ag epithermal system. Rock samples are from 

vein rich area based on alteration zones, as suggested by Simpson et al., (2019). No other alkali feldspars 

were identified apart from adularia/orthoclase and anorthoclase. This is not in agreement with the 

previously identified K-feldspar from the rock samples collected from Karangehake, where the only alkali 

feldspar documented was adularia (Simpson et al., 2019). However, anorthoclase is not strictly defined as 

alkali feldspar due to its composition (refer to figure1.1). Still, a common alteration mineral in the 

Karangehake Au-Ag epithermal system remains to be adularia, which is in significant amount in LWIR, 

TIMA and XRD data. This suggest dominance of K-metasomatism alteration process in epithermal veins 

where the formation of K-bearing minerals and loss of Ca and Na is common. 

 

Given the high percentage of unclassified pixels (~ more than 50% of the pixels observed in 16 sample 

images), hydrothermal alteration minerals that are spatially associated with adularia are insufficient to 

establish mineral assemblage that would significantly be used to identify adularia-rich areas. LWIR mineral 

maps show that hydrothermal minerals; quartz, calcite and albite are spatially associated with the occurrence 

of adularia. Quartz is present in significant amounts in all adularia rich samples in comparison to albite and 

calcite, which are present in an insignificant amount in most of those samples. Minerals such as quartz are 

common in several minerals assemblages in different geological environments. Therefore, a combination of 

these hydrothermal minerals; quartz, calcite and albite are not sufficient enough to be used as a mineral 

assemblage to identify adularia-rich areas. However, these hydrothermal minerals can be used to identify 

vein rich areas. 
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Calcite and quartz are mapped veins and quartz at the periphery of the veins in LWIR images. This suggests 

different episodes of deposition, which is calcite came later relative to the occurrence of quartz mineral. 

This is in agreement with the study done by Simpson et al., (2019), which documented calcite as an alteration 

mineral that formed in the late-stage cavity in some quartz veins.  

 

In summary, the results of this analysis demonstrate the importance of LWIR imaging spectroscopy in 

understanding feldspar minerals from the investigated rock plugs. It enabled the identification and 

discrimination of various feldspar and other associated minerals such as adularia, albite and quartz. These 

are important hydrothermal minerals in a geothermal system. The identified minerals were validated with 

documented minerals from a previous study by Simpson et al., (2019). However, this technique is limited to 

the detection of minerals that were either present in complex mineral mixtures or present in an insignificant 

amount or inactive in the LWIR spectral range.  
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5. CONCLUSION AND RECOMMENDATIONS 

The primary objective of this study was to assess whether LWIR imaging spectroscopy can identify and 

distinguish adularia from albite and other feldspar minerals. Results and discussion on the spectral study 

together with TIMA and XRD data of the rock plugs from Karangahake epithermal system has led to the 

following conclusions; 

 

 LWIR imaging spectroscopy can identify various feldspar minerals, as discussed above. Expected 

feldspar minerals that were not detected by LWIR were present in an insignificant amount based 

on the relative abundance of minerals derived from TIMA data of the same rock plugs. This may 

have attributed to the fact that such minerals were not spectrally prominent. Also, the presence of 

minerals with strong bands such as quartz may have obscured spectral features for such minerals, 

especially their emissivity peaks (an indication of mineralogy), which appears wide and flat for most 

mixed spectra.  

 

 Adularia has a distinct spectral signature, which can easily be distinguished from other minerals, for 

example, from albite by subtle variations in intensity, wavelength position, symmetry, width and 

number of diagnostic spectral features. In mineral mixtures, especially feldspar to feldspar mixture, 

adularia can spectrally and spatially be confused with other feldspar minerals given their broad 

features within ~8100nm to 10000nm spectral range. However, emissivity peaks that persist at the 

same wavelength position as in reference mineral spectra can be used to indicate mineralogy of 

various minerals even when in mineral mixtures. Also, albite present in these rock plugs tends to 

have calcium, thus spectrally confused with oligoclase. 

 

 There is a possibility of using the relationship of adularia and albite in future permeability studies 

in geothermal systems. This is based on spectral signature for adularia, which is distinct enough 

from albite and adularia versus albite occurrence relationship, which is inverse. However, when 

mixed or when albite is calcium-rich, there is a possibility of spectral confusion between the two 

minerals. In addition, it is crucial to understand their occurrence phases as well, which would have 

been possible with LWIR spectroscopy if mineral patterns were clear enough to extract information 

on adularia-albite mineral phases. 

 

 Based on LWIR mineral maps, the investigated rock samples are altered due to the presence of 

alteration minerals such as adularia, calcite, albite, etc. Hydrothermal minerals; quartz, calcite and 

albite are spatially associated with the occurrence of adularia. Quartz is present in a significant 

amount compared to other hydrothermal alteration minerals, i.e., calcite and albite. However, 



LWIR SPECTROSCOPY ON FELDSPARS FROM ROCK PLUGS FOR THE DETECTION OF PERMIABLE ZONES IN GEOTHERMAL SYSTEMS 

45 

minerals such as quartz are common in other geological environments and given high percentages 

of unclassified pixels (~>50%) observed in 16 sample images, it is inconclusive that these are the 

only hydrothermal minerals present in this dataset. Therefore, a combination of these hydrothermal 

minerals is not sufficient enough to be used as a mineral assemblage to identify adularia-rich areas.  

 

 From the results of algorithms used in this study, wavelength maps give an overview of the mineral 

patterns; however, not all spectral information can be displayed based on emissivity peaks and shape 

of the spectral features. PCA gives an overview of the number of uncorrelated bands from the 

sample image. SAM is a straight forward technique; however, the quality of output maps requires 

user intervention. ISMA technique provides an alternative approach in understanding spectral 

behavior of mixed pixels based on the abundance images due to the realistic results obtained for 

specific pixels. However, it is not likely to provide realistic results for the whole sample image as 

the results of negative abundance values. The approach used in this study has demonstrated 

usefulness of various methods. Individual methods provided unique information that 

complemented each other.  

 

 The performance of LWIR imaging spectroscopy relative to TIMA and XRD technique was 

evaluated based on comparative analysis. LWIR, XRD, and TIMA perform differently from sample 

preparation to data acquisition to data processing. LWIR and TIMA were expected to highly 

correlate given measurements were done on the same rock surfaces. That was not the case, given a 

poor correlation coefficient of up to 0.5 for various minerals. This may have been attributed to an 

insignificant amount of minerals whose spectral features were hardly pronounced, mineral mixtures, 

differences in modes of measurement and spatial resolution. However, there were common 

minerals mapped by all three techniques despite their differences in mineral proportion and spatial 

distribution. 

 

 TIMA was used not only used to assess the LWIR performance on rock plugs but also to facilitate 

the endmember collection process in particular for adularia. This had an influence on adularia 

endmember as well as quantification of adularia mineral. Therefore, analysis of secondary features 

can be used to confirm whether adularia2 a mineral mixture. 
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Based on the results, the following are recommended; 

 This study used LWIR spectral range of ~8000nm -12000nm. Various minerals were identified; 

however, not all minerals were identified and due to mineral mixtures, it was challenging to identify 

complex mixed spectra. Therefore, an optimal spectral range is highly recommended in the 

identification and distinction of minerals present in the investigated dataset. SWIR spectral range 

can be useful in targeting other associated minerals active in this specific range (e.g., muscovite, 

kaolinite, chlorite, calcite) and confirm the presence of mixtures of, for example, clay minerals. 

LWIR wavelengths beyond 12000nm can also be useful to identify and confirm the presence of, 

for example, quartz and feldspars in mineral mixtures. 

 

 ISMA worked well for specific pixels for LWIR data. Therefore, research on this technique is 

strongly recommended, particularly on LWIR images. This is because the ISMA technique proved 

to be reliable in various studies on SWIR data, such as a study by Rogge et al. (2006) and Cecilia & 

Acosta, (2017). Based on the spectral results, as discussed in section 4.3, adularia2 is yet to be well 

understood, whether it is adularia or a mineral mixture. Therefore, further research on adularia is 

recommended to better understand the behavior of adularia in spectroscopy for reference purposes. 

This would also assure the possibility of having pure endmembers for a successful spectral mixture 

analysis. 
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6. APPENDICES 

Appendix 1: SAM classified images 
Below is a general overview of SAM classified images of 50 rock plugs, ~1inch diameter each. 
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Appendix 2: Mineral estimates for LWIR maps 
A table below shows relative mineral abundances estimated from SAM classified images for 37 sample 
images. 

 

AU# = Sample number 

Easting and northing coordinates are New Zealand map grid 

Mineral abbreviations 

Ab = albite, Adu = adularia, Calc = calcite, Di = diopside, Qz-I = Quartz-Illite Olg= oligoclase, Qz = 

quartz Ano- anorthoclase chalc = chalcedony 

 

 

 

 

 

 

 

 

 

 

 

 

 

AU# Easting Northing Location Unclassified Adu1 Qz-I Cal Or Olg Di Adu2 Ab Qz Qz_cal Ano Chalc
57488 2751631 6414877 Keillors crosscut 43.52 0.33 0.96 0.43 0.40 0.60 43.19 1.03 8.22 0.83 0.03 0.46
57491 2751625 6414879 Keillors crosscut 26.10 13.8 7.56 0.06 0.06 0.15 4.56 2.26 39.75 3.52 0.34 1.84
57493 2751618 6414884 Keillors crosscut 30.74 24.53 2.24 3.42 3.32 2.44 20.77 6.03 3.76 2.74
57495 2751601 6414886 Keillors crosscut 55.91 0.39 0.23 0.35 6.92 23.61 3.03 6.51 0.26 0.06 2.64 0.10
57498 2751583 6414890 Keillors crosscut 30.73 11.4 9.73 0.16 0.44 0.22 0.96 35.46 1.12 9.79
57501 2751544 6414902 Keillors crosscut 54.71 40.85 0.03 2.60 0.12 0.06 1.56 0.06
57504 2751532 6414902 Keillors crosscut 67.43 13.3 5.97 2.23 0.48 0.15 9.32 0.15 0.97
57507 2751513 6414907 Keillors crosscut 53.13 11.09 0.13 0.03 6.03 2.61 1.07 24.03 1.32 0.57
57510 2751483 6414911 Keillors crosscut 28.50 3.66 4.15 0.21 15.49 3.15 8.62 30.23 1.21 2.78 1.69 0.30
57515 2751433 6414920 Keillors crosscut 72.85 9.06 0.10 0.10 6.94 6.65 0.63 0.32 1.62 1.74
57519 2751393 6414928 Keillors crosscut 39.66 9.92 2.15 3.03 1.96 0.35 0.06 41.81 1.04
57522 2751373 6414927 Keillors crosscut 28.58 0.13 4.91 57.77 0.16 0.00 8.45
57526 2751357 6414933 Keillors crosscut 67.00 11.94 0.76 0.20 1.81 8.56 1.48 0.13 2.27 5.86
57531 2750829 6416565 Surface 73.65 2.68 0.03 16.46 1.78 3.82 1.58
57535 2751125 6416128 Surface 68.75 3.82 0.13 0.13 0.03 26.16 0.98
57540 2751390 6415735 Surface 38.88 8.44 2.36 0.00 0.00 0.03 19.09 20.07 1.68 6.94 2.51
57541 2751395 6415705 Surface 36.83 40.22 4.60 0.00 14.38 0.13 0.25 3.02 0.38 0.19
57544 2753030 6415084 Surface 35.46 0.3 3.39 0.06 0.27 0.00 3.60 0.7 3.39 35.34 2.27 4.24 10.96
57545 2752941 6415115 Surface 22.36 62.75 0.49 0.03 0.31 9.22 0.49 1.54 0.89 1.54 0.31 0.06
57548 2752715 6415673 Surface 31.11 0.18 6.67 0.00 0.15 0.03 0.18 57.99 0.03 3.66
57551 2752330 6415754 Surface 97.02 0.06 0.00 0.30 2.61
57554 2751400 6415595 Surface 47.30 3.38 0.12 0.15 10.83 4.67 0.15 29.80 1.35 0.09 2.15
57555 2751519 6415544 Surface 1.85 60.29 0.26 0.46 1.43 18.02 0.33 1.24 15.97 0.16
57556 2751636 6415555 Surface 31.20 3.28 0.79 14.57 48.22 0.09 0.03 1.82
57562 2751662 6416279 Surface 38.17 6.12 0.15 0.21 2.59 0.03 52.40 0.06 0.27
57565 2751984 6416424 Surface 61.56 11.4 0.09 13.09 8.04 0.28 0.22 5.11 0.22
57567 2752203 6416463 Surface 17.13 26.72 0.09 19.68 24.02 6.07 6.29
57568 2752287 6416488 Surface 5.39 11.49 37.25 2.25 0.06 0.12 0.06 26.24 2.43 0.21 14.51
57569 2752432 6416529 Surface 91.60 0.54 0.60 0.00 7.19 0.06
57574 2750379 6416670 Surface 9.41 11.81 29.75 0.78 6.70 0.18 1.05 3.64 25.27 0.60 0.69 10.13
57577 2753788 6416450 Surface 77.86 0.03 0.44 0.03 5.79 13.23 0.37 0.16 2.02 0.06
57584 2751827 6414516 Surface 85.01 0.43 1.65 1.07 3.52 0.34 0.00 3.00 4.99
57589 2751392 6415336 Surface 58.26 9.03 17.24 5.74 3.49 0.07 0.16 0.16 5.57 0.26
57595 2751133 6414706 Surface (rhyolite) 61.97 0.07 37.42 0.11 0.42
57598 2751455 6415805 Surface 25.95 1.28 17.57 53.17 0.94 0.03 0.94 0.13
57601 2751390 6415855 Surface 50.02 1.96 2.53 15.08 1.33 17.77 3.52 7.79
57602 2751369 6415854 Surface 43.37 0.06 36.97 18.12 1.45 0.03

Mineral Abundances (%)
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Appendix 3: Mineral estimates for TIMA mineral maps  
A table below shows relative mineral abundances in percentage from 42 TIMA mineral maps. The mineral 
estimates was adapted from a study by Simpson et al., (2019). 

 

AU# = Sample number 

Easting and northing coordinates are New Zealand map grid 

Mineral abbreviations 

Ab = albite, Adl = adularia, Ap = apatite, Bt = biotite, Cal = calcite, Chl = chlorite, Di = diopside, En = 

enstatite, Ep = epidote, Hbl = hornblende, Hm = hematite, Ill = illite, Ilm = ilmenite, I-S = mixed-

layered illite-smectite, Kln = kaolinite, Pl = plagioclase, Py = pyrite, Qz = quartz, Rt = rutile, Sm = 

smectite, Tmag = titanomagnetite, Ttn = titanite 

 

 

 

 

 

 

 

 
 

Mineral abundances (%)
AU# Easting Northing Location Qz Adl Ab ill I-S Sm Chl Ep Kln Cal Py Hm Pl Di En Hbl Ap Rt Bt Ilm Ttn Tmag Unclassified
57488 2751631 6414877 Keillors crosscut 18 64 2 0 2 4 1 9
57491 2751625 6414879 Keillors crosscut 19 24 1 9 4 0 6 1 0 1 34
57493 2751618 6414884 Keillors crosscut 21 36 5 1 2 7 2 0 1 25
57495 2751601 6414886 Keillors crosscut 19 3 20 8 1 12 2 0 34
57498 2751583 6414890 Keillors crosscut 24 2 6 4 2 2 7 0 1 3 11 0 39
57501 2751544 6414902 Keillors crosscut 17 16 7 8 5 0 4 0 2 0 1 39
57504 2751532 6414902 Keillors crosscut 21 27 3 7 1 6 1 0 1 33
57507 2751513 6414907 Keillors crosscut 18 4 15 7 4 1 8 4 0 3 0 0 35
57510 2751483 6414911 Keillors crosscut 16 7 15 3 3 1 8 1 4 1 6 0 0 1 35
57515 2751433 6414920 Keillors crosscut 22 6 16 5 4 0 7 4 2 0 0 0 32
57519 2751393 6414928 Keillors crosscut 20 26 2 10 0 5 2 0 1 34
57522 2751373 6414927 Keillors crosscut 37 40 5 0 3 0 14
57526 2751357 6414933 Keillors crosscut 25 34 10 3 2 0 1 25
57531 2750829 6416565 Surface 13 0 0 3 21 3 7 0 0 53
57535 2751125 6416128 Surface 19 3 7 2 2 2 5 3 0 0 11 0 0 45
57540 2751390 6415735 Surface 31 47 3 0 0 1 0 16
57541 2751395 6415705 Surface 22 48 1 1 0 3 0 2 21
57544 2753030 6415084 Surface 27 1 0 3 1 3 1 5 25 0 0 34
57545 2752941 6415115 Surface 29 21 3 1 1 4 1 6 1 0 33
57546 2752853 6415147 Surface 24 1 0 1 3 1 2 27 0 40
57547 2752822 6415400 Surface 30 10 5 3 1 5 2 6 2 0 36
57548 2752715 6415673 Surface 48 0 35 2 0 15
57551 2752330 6415754 Surface 34 17 9 2 0 5 2 0 29
57554 2751400 6415595 Surface 21 2 1 2 1 6 2 2 20 3 0 0 39
57555 2751519 6415544 Surface 16 48 1 2 2 0 4 27
57556 2751636 6415555 Surface 34 55 0 2 0 9
57561 2751598 6416266 Surface 22 1 1 1 1 5 3 1 19 2 1 0 0 45
57562 2751662 6416279 Surface 38 37 7 1 0 17
57565 2751984 6416424 Surface 35 53 2 1 0 8
57567 2752203 6416463 Surface 27 55 2 2 1 0 0 13
57568 2752287 6416488 Surface 35 8 12 1 0 4 10 0 27
57569 2752432 6416529 Surface 35 1 5 8 2 9 1 7 1 0 30
57573 2752934 6416526 Surface 25 1 1 1 3 0 1 26 5 1 35
57574 2750379 6416670 Surface 25 1 5 1 1 4 1 4 0 23 0 36
57577 2753788 6416450 Surface 23 0 6 1 0 0 30 1 39
57584 2751827 6414516 Surface 31 8 23 1 4 1 3 0 30
57589 2751392 6415336 Surface 15 63 1 1 1 3 0 17
57595 2751133 6414706 Surface (rhyolite) 36 51 1 1 12
57597 2751375 6415765 Surface 6 46 4 4 7 0 1 2 31
57598 2751455 6415805 Surface 10 74 0 0 2 0 1 0 11
57601 2751390 6415855 Surface 30 51 1 1 3 1 0 13
57602 2751369 6415854 Surface 25 61 2 1 0 12



LWIR SPECTROSCOPY ON FELDSPARS FROM ROCK PLUGS FOR THE DETECTION OF PERMIABLE ZONES IN GEOTHERMAL SYSTEMS 

53 

Appendix4: XRD mineral percentage estimates 
A table below shows relative mineral abundances in percentage obtained from 40 XRD scans. The mineral 
estimates was adapted from a study by Simpson et al., (2019). 

 

AU# = Sample number 

Easting and northing coordinates are New Zealand map grid  

Mineral abbreviations 

Ab = albite, Adl = adularia, Cal = calcite, Chl = chlorite, Gp = gypsum, Ill = illite, I-S = mixed-layered 

illite-smectite, Kln = kaolinite, Pl = plagioclase, Py = pyrite, Qz = quartz, Sm = smectite 

 

 

Appendix 5: Image acquisition log file  

Attached is the measurement log file, which describes camera settings, sample’s arrangement during the 

scanning process, preliminary data observation and preprocessing steps. 

BGR_Measurements_
13nov2019_logfile.pdf 

 

Mineral abundances (%)
AU# Easting Northing Location Qz Adl Ab Ill I-S Sm Chl Kln Cal Py Gp Pl Total

57488 2751631 6414877 Keillors crosscut 20 66 10 4 100
57491 2751625 6414879 Keillors crosscut 28 16 35 9 11 1 100
57493 2751618 6414884 Keillors crosscut 25 37 12 2 13 8 3 100
57495 2751601 6414886 Keillors crosscut 23 7 41 4 22 3 100
57498 2751583 6414890 Keillors crosscut 25 15 37 3 16 4 100
57501 2751544 6414902 Keillors crosscut 29 14 33 8 15 1 100
57504 2751532 6414902 Keillors crosscut 19 32 14 5 24 6 100
57507 2751513 6414907 Keillors crosscut 11 7 43 5 21 13 100
57510 2751483 6414911 Keillors crosscut 22 9 48 13 5 3 100
57515 2751433 6414920 Keillors crosscut 20 6 50 1 16 7 100
57519 2751393 6414928 Keillors crosscut 22 39 15 5 16 3 100
57522 2751373 6414927 Keillors crosscut 19 60 4 9 8 100
57526 2751357 6414933 Keillors crosscut 30 55 15 100
57531 2750829 6416565 Surface 2 1 97 100
57535 2751125 6416128 Surface 20 2 13 24 1 40 100
57540 2751390 6415735 Surface 30 53 9 3 5 100
57541 2751395 6415705 Surface 18 65 17 100
57544 2753030 6415084 Surface 22 65 7 6 100
57545 2752941 6415115 Surface 33 40 7 10 10 100
57546 2752853 6415147 Surface 27 7 2 64 100
57547 2752822 6415400 Surface 38 13 10 3 36 100
57548 2752715 6415673 Surface 61 28 11 100
57551 2752330 6415754 Surface 35 43 10 7 3 2 100
57554 2751400 6415595 Surface 27 17 56 100
57555 2751519 6415544 Surface 28 48 13 11 100
57556 2751636 6415555 Surface 44 56 100
57565 2751984 6416424 Surface 42 51 3 4 100
57567 2752203 6416463 Surface 32 51 1 13 3 100
57568 2752287 6416488 Surface 45 28 6 8 13 100
57569 2752432 6416529 Surface 42 11 15 13 14 5 100
57573 2752934 6416526 Surface 28 1 10 1 60 100
57574 2750379 6416670 Surface 24 9 3 64 100
57577 2753788 6416450 Surface 20 9 5 66 100
57584 2751827 6414516 Surface 36 16 6 23 10 9 100
57589 2751392 6415336 Surface 37 52 8 3 100
57595 2751133 6414706 Surface (rhyolite) 41 56 3 100
57597 2751375 6415765 Surface 26 49 7 11 7 100
57598 2751455 6415805 Surface 32 64 4 100
57601 2751390 6415855 Surface 30 58 10 2 100
57602 2751369 6415854 Surface 39 58 3 100


