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Uterine fibroids (UFs) are common benign neoplasms of the uterus, entailing a high socioeco-
nomic burden. MR-HIFU is a recent alternative treatment option for symptomatic UFs and has
an appealing non-invasive character. Shorter procedure times and improved treatment out-
comes could increase the availability of MR-HIFU for patients suffering from UFs. As for now,
no established method is available to assess the treatment progress intraprocedurally, leading
occasionally to unneeded prolongations of ablations and limited treatment outcomes.

Currently, the treatment effect is examined postprocedurally by acquiring a contrast-enhanced
(CE)-T1w scan, visualizing the non-perfused volume (NPV). A major drawback of a contrast agent
is the inability to use it between sonications, due to risk of gadolinium (Gd) entrapment and dis-
tortion of the thermometry. However, there has been some suggestions about applying diffusion
weighted imaging (DWI) to visualize tissue perfusion between MR-HIFU sonications. Until now,
previous work about DWI has only been analyzed with a mono-exponential model in the context
of Gd-free NPV visualization. This thesis has examined the way in which intravoxel incoherent
motion analysis (IVIM) and deep learing (DL) can aid in predicting perfusion based on DWI data
after MR-HIFU treatment.

A dataset of 56 patients with a paired DWI and CE-T1w scan was used to conduct this anal-
ysis. With the first strategy, a bi-exponential IVIM model was applied. Quantitative analysis
disclosed a significant difference between parameters within the perfused and non-perfused
volumes, implicating contrast differences between the ablated and viable tissue.

With the second approach, a DL-based method was used to create synthetic CE-T1w scans
with a conditional generative adverserial network. With quantitative and qualitative evaluation
it was established that the DL-method could produce synthetic CE-T1w scans that can be used
for adequate treatment assessment.

These findings show that these methods for DWI-data analysis are feasible for MR-HIFU
treatment evaluation of UF. Further work should focus on prospective assessment of these meth-
ods and their clinical value. The findings from this work are a next step towards more efficient
healthcare by improving the efficiency of MR-HIFU treatments of UFs.
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Chapter 1

Uterine fibroids

1.1 Description

A uterine fibroid (UF), or uterine leiomyoma, is a common benign fibromuscular tumor of the my-
ometrium. The relatively high prevalence of UF combined with the often occurrence of symp-
toms requiring treatment induces high socioeconomic costs. Major complaints are abnormal
uterine bleeding, pain and discomfort. Both invasive and non-invasive treatment options are
available, including drug therapy, surgery, embolization and high intensity focused ultrasound
(HIFU).

1.2 Epidemiology

UF is the most common type of pelvic tumors in women [1]. Although UF is commonly found,
the true frequency is unclear. In literature, a wide range (between 4.5% and 77%) of prevalences
of UF is reported, mainly caused by study populations and diagnostic methods [2, 3]. In Europe,
the prevalence of diagnosed UF is estimated between 11.7% and 23.6% [4].

In a study processing 100 consecutive hysterectomy specimens with a 2-mm sectioning inter-
val, 649 UFs were found in 77 uteri [3]. Although small UFs may be of no clinical relevance, this
study suggests that prevalence measured by other methods may be an underestimation of true
UF frequency. It has been estimated that the percentage of asymptomatic UFs excess 50% [5].
Risk of malignancy (sarcomas) for UFs is low: retrospective studies have cumulatively shown
7 cases of unexpected leiomyosarcoma and endometrial stromal sarcoma in 4007 cases of hys-
terectomy or myomectomy where a benign UF was expected [6].

1.2.1 Socioeconomic implications

Due to the high prevalence numbers of UF in women and the severity of symptoms it regularly
causes, the socioeconomic burden is relatively high. In five European countries, research has
disclosed a reduction of overall work production of 36.1% and an impairment of general activ-
ity by 37.9% [4]. In The Netherlands, the mean costs of hysterectomy following UF diagnosis
was e15,779 with indirect costs included (i.e. absence of work), retrieved from the EMMY trial
conducted by twenty-eight dutch hospitals between 2002 and 2004 [7]. In the United States,
the annual costs of the UF are estimated between 5.9-34.4 billion dollars, including direct, indi-
rect and obstetric outcomes [8]. In a sample of women with symptomatic UF from the United
States, women waited on average 3.6 years before seeking treatment, 28% of respondents re-
ported missing work due to their UF symptoms, and 24% thought that UFs prevented them for
reaching their career potential [9].
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1.3 Etiology

1.3.1 Risk factors

Several risk factors are associated with the development of UF, including age, ethnicity, hor-
monal factors, weight and lifestyle [1, 10, 11].

Age

In premenopausal women the cumulative incidence of UF increases with age, but this rate de-
creases at older ages after menopause. This suggest that the premenopausal uterus is less sen-
sitive for developing UF, or that women after an age of 40 years are in the low risk group [12].
A study conducting first-trimester or postmiscarriage ultrasound examinations found that UFs
are also common in relatively young women, with a prevalence of 10.7% [13]. Younger age at
menarche has also been established to impact fibroid risk: a 1-year increase in age at menarche
is inversely related to fibroid risk (adjusted risk ratio of 87%) [14].

Ethnicity

Studies have demonstrated a 2-3-fold incidence and an increased lifetime risk (80% vs 70%) in
black compared to Hispanic, Asian and white women. Also, black women have larger tumors
at diagnosis, more severe symptoms and earlier age at diagnosis than Hispanic, Asian or white
women. [10, 11, 13, 15]

Hormonal factors

The influence of hormones on growth of UF is well-established, in particular the female sex
steroids estrogen and progesterone are correlated to UF development [16–18]. It is postulated
that factors correlated the overall lifetime exposure to estrogen in woman are risk factors for
UF growing [19], such as obesity and early age at menarch [14, 20]. Other lifestyle factors that
decrease the total lifetime exposure to estrogen seems to lower risk for development of UF [19].
This includes smoking, although the found inverse association between smoking and UF is weak
[21, 22].

Others

Family history, weight, and pregnancy are other factors correlated with development of UF [11].
First degree relatives have an 2.5 times increased risk of UF [23]. The exact relation between
weight and UF is shown to be complex, but an inverse J-shaped correlation has been described
between UF and BMI in women [24–26]. Literature suggests that pregnancy has an protective
effect for UF, hypothetically caused by remodeling of uterus tissue after pregnancy [27, 28].

1.3.2 Molecular and cellular mechanisms of disease

As described in 1.3.1, UFs are largely dependent on estrogen and progesterone hormones. The
exact pathogenesis of UF is largely unclear, but the traditional definition of UF is that they are
’clonal smooth muscle cell neoplasms that are growth-responsive to gonadal steroids and have
characteristic chromosomal rearrangements underlying their development’ [29]. Research con-
tinues to expand this view on UF.
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Myometrial stem cell

Fibroid stem cell

DNA damage
(MED12)

Progesterone and estradiol
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Clinical �broid
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FIGURE 1.1: Schematic overview of UF development. Due to genetic influences,
myometrical stem cells can be transformed to fibroid progenitor cells, or fibroid
stem cells. Caused by WNT/β-catenin signaling, stem cells in the myometrium
cast mitogenic signals under exposure of progesterone and estrogen. From this
point, the preclinical UF may eventually develop towards a symptomatic UF, stim-

ulated by environmental and biological factors.

MED12-mutation

The myometrium contains myometrial stem cells that give the uterus its plasticity and regener-
ative capacity [30]. It is hypothesized that myometrial stem cells are transformed under certain
circumstances to fibroid progenitor cells. It is shown that UFs have less stem cells that normal
myometrial tissue [31], but contains the somatic mediator complex subunit 12 (MED12) mutation
that contributes to tumorgenesis and genomic instability [32, 33]. The MED12 mutation is shown
in 70% of UFs [34]. MED12 is part of the Mediator complex, that forms the bridge between tran-
scription factors and RNA polymerase [35]. UFs with MED12 mutations show higher activations
of the WNT/β-catenin pathway compared to normal adjacent myometrium [36]. The WNT/β-
catenin pathway is a cell signaling pathway that causes tumor growth of many types [37]. It is
demonstrated that WNT/β-catenin signaling has a paracrine role in the growth of UF, by stimu-
lating UF or myometrial cells to send mitogenic signals to adjacent tissue stem cells in response
to estrogen and progesterone [38]. Other identified gene groups involved in development of UF
are the high mobility group AT-hook 2 (HMGA2), the fumarate hydratase (FH) group and a group
associated with deletion of collagen type IV α5 (COL4A5) and COL4A6 [29].

After UF onset with matured UF cells, growth of UFs are stimulated by ovarian steroid hor-
mones. It has been demonstrated that estrogen promotes proliferation of UF through activation
of fibroblasts. In these activated fibroblasts, the expression of estrogen receptors were found
higher than in smooth muscle cells [39]. Also progesterone plays an important role in devel-
opoment of UFs; it regulates proliferation, apoptosis and collagen deposition of ECM [40, 41].
Besides steroid hormones, growth factors, cytokines and chemokines play an important role as
effectors of estrogen and progesterone in initation and development of UFs [41].

1.4 Clinical presentation

1.4.1 Anatomical overview

The nongravid uterus is a pear shaped hollow organ and is located between the urinary bladder
anteriorly and the rectum posteriorly with a length commonly around 7 cm [42, 43]. The uterus
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FIGURE 1.2: Schematic anatomical overview of the normal uterus (left), and the
uterus bearing UFs (right). For the classification of the UF, see table 1.1

Submucosal
0 Pedunculated intracavitary
1 < 50% intramural
2 ≥ 50% intramural

Other

3 Contacts endometrium; 100% intramural
4 Intramural
5 Subserosal ≥ 50%
6 Subserosal < 50%
7 Subserosal pedunculated
8 Other (e.g. cervical, parasitic)

Hybrid 2-5
Submucosal and subserosal, each with less than half
of the diameter in the endometrial and peritoneal
cavities respectively.

TABLE 1.1: Classification of UFs based on the FIGO classification [45]. See fig-
ure 1.2 for the visualization of the different UF types.

can be divided in two main parts: the cervix uteri and corpus uteri, separated by the isthmus.
The uterus contains three tissue layers, i.e. the endometrium, myometrium and serosa/perimetrium.
The endometrium is the inner lining of the uterus, and responds to the hormonal stimulation and
changes during the menstrual cycle. The middle tissue layer is the myometrium, containing the
smooth muscle cells UFs arise from. The perimetrium is a very thin outer serosa that is part of
the peritoneum. [44] The anatomy of the uterus is schematically drawn in figure 1.2.

1.4.2 Classification

The classification of UFs that is approved by the International Federation of Gynecology and
Obstetrics (FIGO) contains two classification systems [45]. The first UF classification system dis-
tinguishes submucosal UFs from other locations, because generally submucosal fibroids more
often entail bleeding symptoms. The secondary UF classification was originally submitted by
Wamsteker et al. [46] and includes 9 different subtypes of UFs. In addition to the distinction
between submucosal and other locations, the secondary classification points discriminate intra-
mural, subserosal and transmural lesions (see figure 1.2 in combination with table 1.1).
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1.4.3 Symptoms

Most fibroids are asymptomatic. The extent of symptoms of UFs depends on size, location
and number of fibroids. Submucosal and intramural fibroids generally cause abnormal uterine
bleeding, whereas pedunculated and subserosal fibroids usually entail bulk-related symptoms.
Excessive bleeding may lead to anaemia, a potentially life-threatening condition.

Besides abnormal bleeding, (non-cyclic) pelvic pain is also increased in women with UF.
There seems no clear relation between number or volume of UF and intensity of pain [47]. Other
symptoms besides abnormal bleeding and pelvic pain include dyspareunia, backache, obstruc-
tive effects on bladder or rectum and infertility [29].

Acute presentation

UF may cause acute pain, and could be following degeneration of a UF when it outgrows its
blood supply, torsion of a pedunculated UF or prolapse of a submucosal UF. Haemorrhagic de-
generation can be seen in UF from pregnancy and oral contraceptive pill use due to thrombosis
in the venous outflow of the fibroid. In such cases, the UF rapidly increases in volume and acute
hemorrhagic infarct occurs. [48] Also intra-abdominal haemorrhage can emerge in rare cases
from UFs. It is poorly recognized by clinicians, and may result in hypovolemic shock [49].

1.4.4 Fertility

UFs are found in around 10% of infertile women, and infertile women with no clear cause of
infertily have an incidence of 1-2.4% of UFs [19, 50]. The exact impact of UFs on pregnancy is
poorly understood, but it is hypothesized that UFs can obstruct the fallopian tubes and inhibit
gamete transport or embryo implantation, or distort the endometrial cavity anatomically [50–
52]. The ideas that UFs may cause infertility mainly arise from case series, mostly without con-
trols. In these case reports, various previously infertile women conceive after UF removal, and
indeed suggest UFs cause infertility, although evidence is weak. [53]

What has been shown is that UFs grow significantly in size during pregnancy, involving
71.4% and 66% between the first and second, and second and third trimester respectively [54].
Moreover, the influence of UFs on fertility depends on the anatomical location of the UF; sub-
serosal fibroids do not affect fertility outcomes, while submucosal UFs decrease fertility. Treat-
ment of submucosal UFs seems to benefit fertility rates (43.3% vs 27.2% for submucosal UFs).
[55, 56]

1.4.5 Diagnosis

Diagnosis of UF can be complicated by several factors, including the size, location and number of
fibroids. Symptoms of UFs are relatively common and may be caused by a large number of dis-
orders. For example, abnormal uterine bleeding can derive from endometrial and endocervical
polyps, adenomyosis, malignancy, coagulopathy, ovulatory dysfunction, primary endometrial
disorders and iotrogenic causes [45].

Usually, clinically significant can be found with pelvic examination based on an enlarged,
irregularly shaped, firm and non-tender uterus [11], but several imaging modalities are avail-
able for differential diagnosis. A strong relationship has been demonstrated between the size
estimated based on manual examination and ultrasound, when assessed by an experienced ex-
aminer.
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Ultrasound

Ultrasound is an often used imaging modality for diagnosis of UF and can be performed trans-
abdominally and transvaginally [57]. Transvaginal ultrasound has generally a higher sensitivity,
but transabdominal ultrasound shows a higher sensitivity for fundal UFs [58, 59]. The sensitivity
of transvaginal ultrasound depends on observer experience, but is on average around 93%, and
the specificity ranges between 73 and 91% [60–62]. Additionally, saline infusion sonohysterog-
raphy could be a technique that improves the diagnostic accuracy of transvaginal ultrasound.
It could be helpful by accurate delineation of the submucosal and intracavitary UFs, and by
differentating submucosal UFs from endometrial polyps [59, 63]. With saline infusion sono-
hysterography, the uterine cavity is filled with normal saline solution (0.9% NaCl) to improve
sonographic contrast.

Hysteroscopy

The advantage of hysteroscopy is the ability to directly visualize the uterine cavity and having
the option to take biopsies. Disadvantages however are the limited view, since the view depth is
limited to the endometrium. However, some general aspects are established that are indicative
for a pathological condition, including irregularities, pronounced hypervascularization, fibrous
cystic appearance and haemorrhagic cystic lesions. [64] Especially in diagnosis of submucous
UFs, hysteroscopy shows excellent diagnostic accuracy, comparable to sonohysterography, with
an higher accuracy than conventional transvaginal ultrasound [65].

Biopsies can be also be collected transvaginally and transabdominally by US guidance. Pre-
operative biopsies can aid differentiation between UFs, adenomyosis and sarcomas. However,
especially with this method it should be considered carefully if the invasive biopsy is in balance
with the clinical benefit of early diagnosis. [66]

1.4.6 Magnetic Resonance Imaging

Due to accessibility and low costs, US is the first diagnostic imaging modality in line. Never-
theless, magnetic resonance imaging (MRI) has better soft tissue contrast, a larger field-of-view
and can display multiplanar images in comparison to US, therefore it can help clinicians in pre-
treatment planning and differential diagnosis of adnexal masses [67, 68]. It has been established
that despite US being an efficient tool for UF diagnosis, when UFs are large or multiple, MRI
mapping is superior [69].

The guidelines of the European Society of Urogenital Radiology (ESUR) propose an MRI-
protocol with at least two T2w orthogonal planes of the uterus including a sagittal sequence of
the uterine corpus. This sagittal sequence allows other sequences to align with the axis of the
uterus, instead to the body. Besides the T2w sequences, an axial T1w sequence is advised for
the assessment of other pelvic pathologies and high-intensity lesions. Also gadolinium (Gd) iv
can be indicated for UFs with rapid grow, high intense areas on T2w, differentation between an
adnexal mass and pre- and post-treatment assessment. [70] In figure 1.3, an example sagittal
T2w MRI scan is depicted with two UFs from a 51 year old patient.

Classically, UFs are sharply demarcated on a T2w sequence and have a lower signal inten-
sity compared to the myometrium. In some intramural and subserosal UFs a high intensity rim
could be visible, composed of edema and dilated vessels. UFs can become degenerative when
they outgrow their blood supply, and can be suggested by an heterogeneous UF appearance on
T2w scans. [71–73].
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FIGURE 1.3: Sagittal T2w slice of two UFs with both Funaki type 2 in a 51-years
old patient. FIGO class 2-5 (*) and 4 (ˆ), and 263 (*) and 14 (ˆ) cm3.

Unfortunately, differentiation between atypical UF and uterine leiomyosarcoma is difficult
on MRI. Four qualitative MR features have been proposed that show strong statistical associ-
ation with leiomyosarcoma at histopathology (nodular borders, haemorrhage, ’T2 dark’ areas
and central unenhanced areas. Three or more present features accurately distinguish atypical
UF from leiomyosarcoma. [74]

1.5 Treatment of uterine fibroids

Nowadays, multiple treatment options for UF with various degrees of invasiveness have been
established. Due to the large scope of the disease, many attempts have been made to find effi-
cient treatment methods during history. [75] It has generally been accepted that patients with
asymptomatic UF and no desire for pregnancy only require periodic monitoring and no special
treatment, due to the largely benign nature of UFs. Therefore, care should be taken to select the
least aggressive options minimizing risks and optimizing outcomes. [76, 77]

1.5.1 Medical treatment

Since 1940 attempts have been made to treat UFs medically with progestins and estrogen-progestins
combinations [78], but evidence for their effectiveness is lacking. When discussing estrogen-
progestin combinations (oral contraceptives) as treatment for UFs, two questions arise: whether
their use can prevent arising of UFs, and whether they can decrease the size of already exist-
ing UFs. There is no large body of literature answering positive or negative on either question.
Therefore the current concept is that oral contraceptives are safe to use in this regard, but have
no inhibitory effect on UFs either. [77, 79]
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GnRH agonists

Godanotropin-releasing hormone (GnRH) agonists are structurally similar to the natural GnRH hor-
mones synthesized in the hypothalamus, stimulating excretion of gonadotropins from the ante-
rior pituitary. GnRH agonists have been proposed as conservative treatment option for UFs in
1983. It causes suppression of gonadal activity by desensitization of GnRH receptors after an
initial increase in the release of gonadotropins. The desensitization leads to a hypogonadal state
that simulates menopause. [80] It has been shown that GnRH agonists shrink UFs significantly,
but the the downside of GnRH agonists usage as treatment besides the vasomotor symptoms
is the regrowth of UFs and recurrence of symptoms. Additionally, the usage can not exceed 6
months due to the increased risk of osteoporosis due to hypoestrogenism. [81, 82] It has exten-
sively investigated if GnRH can be used as pre-treatment medication, and it has been shown
beneficial for several procedures through uterine and fibroid volume reduction. [77, 83]

Another type of medicine in the same category are GnRH antagonists. They cause immediate
suppression of gonadotropins and do not lead to the peak of gondatrophins as with GnRH
agonists. A disadvantageous fact about the GnRH antagonist as medical treatment for UF is the
need to be present in the bloodstream all the time to prevent the action of endogeneous GnRH.
[84]

Selective progesterone receptor modulator

Various selective progesterone receptor modulators (SPRMs) have been tested for their effect on UF
reduction, including mifepristone, ulipristal acetate and asoprisnil. As stated earlier, proges-
terone plays stimulates growth of UF, in addition to estrogens. SPRMs bind to progesterone
receptors and function as progesterone antagonist. SPRMs have been evaluated as pregnancy
termination drug, but also as therapeutic option in the treatment of UF. A review of 14 RCTs
and 1021 included women with UF concluded that SPRMs improved fibroid-related symptoms
and quality of life, and decreased menstrual bleeding in comparison to placebo. No conclusions
could be drawn about changes in pelvic pain. [85] Usage of SPRMs could lead to endome-
trial changes, but these changes reversed when SPRM treatment was discontinued. These en-
dometrial changes consist of mild thickening of the endometrium and cyst, gland and vascular
changes, but are not considered dangerous [85, 86].

1.5.2 Surgical interventions

Surgical interventions are still the main treatment strategies for UF, including hysterectomy and
laparoscopic of hysteroscopic myomectomy [87].

Hysterectomy

After cesarean section and removal of the fetus or other procedures involving delivery, hys-
terectomy is the most common major surgery in the United states. UFs are the most common
diagnosis with hysterectomy, in around 30-40% of the cases. [88, 89] Hysterectomy is a surgical
procedure to remove the uterus and in some cases the cervix. Total hysterectomy refers to the
removal of the uterus and (partial) cervix, while a subtotal hysterectomy involves removal of
the uterus without the cervix. This treatment option is the most radical and definitive for UFs,
and prevents the recurrence of UFs.

Hysterectomy can be performed via the abdominal, vaginal and laparoscopic route, even-
tually robot-assisted. Vaginal hysterectomy may result in faster procedures, shorter discharge
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time and smaller blood loss. However, the size of UF limit the applicability of vaginal hysterec-
tomy. [90] Studies with one-year follow up consistently show that outcomes of hysterectomy
are good: low risk of complications and improved quality of life. However, concerns have been
raised about the long-term consequences, regarding increased risk of cardiovascular disease and
dementia [87, 91]. Fed by these concerns, risk of overuse of hysterectomy as UF treatment is is-
sued, including the notion that removal of the female reproductive organs should be considered
carefully [92].

Myomectomy

Myomectomy is a fitting treatment option for patients with submucosal fibroids that wish to pre-
serve their uterus or fertility. With hysteroscopic myomectomy, an endoscope is placed through
the cervix to remove the UF(s) by intruding the endometrial cavity. This is performed under vi-
sual sight via a camera. [87] This procedure is preferred for UFs with a diameter of 6 cm or less
[93], and can be performed abdominally and hysteroscopically. A large part of the UF should be
intracavitary (FIGO class 0 or 1). Removal of the submucous UFs appears likely to improve fer-
tility [94]. UF recurrence rates are cumulatively around 12%, 36%, 53% and 84% after one, three,
five and eight years after laparoscopic myomectomies. Cumulative proabilities for reoperation
for UF are around 7% and 16% after five and eight years. [95]

1.5.3 Uterine artery embolization

Uterine artery embolization (UAE) is a minimally invasive procedure that spares the uterus and
involves occlusion of both the uterine arteries with particulate emboli. This results in ischemic
necrosis of the UF, but no permanent effect on the uterus. To execute the embolization, an an-
giography catheter is inserted in the patients femoral artery, and the contralateral uterine artery
is embolized. This process is repeated for the ipsilateral site, to the femoral puncture. The most
common material for the occlusion agent is polyvinyl alcohol with a size of 150-1000 microns.
Blockage of the arteries can be confirmed by angiography. When both uterine arteries are oc-
cluded, the normal myometrium recovers blood flow by fast establishment of an alternative
blood flow via ovarian or vaginal blood flow, while the UFs are provided by end arteries and
cannot re-establish a collateral blood flow. This can lead to ischemic necrosis of the treated UF,
and eventually symptom relieve of the patient. [96]

Overall, patients have good procedure satisfaction for UAE, and effective post-operative
symptom improvement. Post-operative complication rates are around 18% and 23% for small
and large UFs. Reintervention rates are between 2.5 and 8.6% for small and large UFs respec-
tively, and increase to 28% after five years [97, 98]. Studies show tentative indications that UAE
has a decreased chance of pregnancy compared to myomectomy [96, 99].

1.5.4 High intensity focused ultrasound

An alternative non-invasive treatment option for UF is MR-guided high intensity focused ultrasound
(MR-HIFU), and achieves thermal necrosis by delivering local acoustic energy. Short- and long-
term results are promising in unrestricted treatments [100], and this treatment option will be
discussed in depth in chapter 2.
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Chapter 2

MR-HIFU and DWI

2.1 MR-HIFU

Studies over the past century have established the ability of very short focused soundwaves to
heat tissue non-invasively. It was discovered that by focusing ultrasound waves with a concave
surface, ultrasound energy at the focal spot could be concentrated 150 times as much than at a
point close to the source. This discovery from Grutzmacher [101] in 1935 gave rise to the study
from Lynn et al. in 1942 [102], who showed biologically that focused ultrasound can be used as
method for ablating tissue in living animals. From that time, several clinical studies were con-
ducted, ranging from neurosurgery, ophthalmology to oncology [103–105]. Widespread clinical
used was hindered by the parallel development of alternative treatment options [106]. Several
technological advances, including MR-guidance and -thermometry, made HIFU an easier and
safer approach and a potential treatment option, such as palliative treatment of metastatic bone
disease and UFs [107–111].

2.1.1 MR-HIFU treatment of UF

MR-HIFU is a non-invasive, organ-sparing, trans-cutaneous ablation technique. Since the first
feasibility study of MR-HIFU treatment of UFs was published in 2003, many MR-HIFU proce-
dures of UF ablation have been performed [112]. MR-HIFU treatment of UF received a European
CE mark in 2002 and FDA approval in 2004 [113]. Since then, MR-HIFU have become a major
non-surgical treatment option for UFs, and have an evident appeal of complete non-invasiveness
[114].

Patients with an (US) confirmed diagnosis of UF in the pre- or peri-menopausal state can
receive a MR-HIFU treatment. Not all patients are eligible: an UF with a diameter < 1 cm,
current pregnancy, an abdominal fat layer > 4 cm, MRI contra-indications or high T2 signal of
the UF (assessed with Funkaki classification) are examples of inhibitors of MR-HIFU treatment.

Funaki classification

It is well-established that the response of UF to MR-HIFU treatment is correlated to the T2 signal
intensity [115]. Funaki et al. (2007) [114] proposed a classification system for UF based on T2
signal intensity that is widely adopted into clinical practice. This classification consists of:

• Type 1: low T2 signal, i.e. comparable to skeletal muscle.

• Type 2: intermediate T2 signal, i.e. higher than skeletal muscle, but lower than my-
ometrium.

• Type 3: high T2 signal, i.e. equal or higher than myometrium.

This characterization of UFs aid the response prediction of MR-HIFU. Funaki et al. argued that
UFs of type 1 and 2 are suitable candidates for MR-HIFU treatment, while type 3 are not.
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FIGURE 2.1: Schematic illustration of the HIFU-procedure inside an MRI-scanner
of a UF. The patient is in prone position, with the US transducer inserted in the

HIFU-table. Image adopted from Profound, Sonalleve R©.

Procedure

An example of a MR-HIFU procedure for UF treatment is described in this paragraph. At mo-
ment of screening, an MRI is performed to assess the location and UF characteristics. Before
treatment, patients fast 6h and are asked to shave their lower abdomen and pubic area when el-
igible. Patients receive premedication (paracetamol 1000 mg, diclofenac 100 mg and oxycodone
10 mg). A catheter and intravenous line are also inserted. The ablation procedure is executed
in an MRI-scanner, as illustrated schematically in figure 2.1. Patients are positioned in a prone
position on a HIFU table, that is placed over the MRI table. The HIFU US transducer is inserted
in the HIFU table, within a water tank. A membrane lays on top of the transducer, with actively
cooled water in between, to reduce the risk of skin burns. Prior to the treatment, conscious seda-
tion (propofol-fentanyl) is administered to the patients during the procedure to control patient’s
reactions and movement. The patients are asked to lie still, and report any discomfort or pain.
At first, a screening T2w scan is made to assess the position of the UF, that may deviate from
the position during screening due to the mobility of the uterus. With several manipulation tech-
niques, the location of the UF can be adjusted to a certain degree. A protocol for manipulation
is recently proposed by Verpalen et al. (2020) [116].

When the positioning of the UF is finished, the ablations are started. Different ablation cell
sizes (focal spot areas) can be chosen, and the the location of the acoustic focus can be electron-
ically controlled. It has been shown that energy efficiency improves with cell size, independent
of distance to the US source or T2 signal intensity [117]. After the sonications, when the abla-
tion is expected to be finished, a post-procedural contrast-enhanced (CE) T1w scan is acquired to
visualize the treatment effect, the non perfused volume (NPV). With the NPV, the non-perfused
ratio (NPV%) can be calculated by dividing the NPV by the UF volume. Finally, the patients are
transferred to a clinical ward, and typically discharged on the same day.

Side effects

Side effects of MR-HIFU treatment are relatively rare, potential side effects include:

• peri-interventional pain (usually low and of short duration), can usually be managed well
with analgesia,

• (slight) skin burns,

• slight inflammation of subcutaneous fat tissue and of the abdominal muscles,
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• paraesthesia of the legs due to irritation of, or damage to, the nerves,

• deep vein thrombosis of the legs (very rare),

• intestinal lesions or intestinal perforation (extremely rare),

• discharge of vaginal tissue,

• increased and/or irregular bleeding for around 3 months post procedure.

These side effects are adopted from [118]. The most common complication are skin burns, ab-
dominal pain or discomfort, sciatic nerve paresthesia, or leg pain [119].

2.1.2 Treatment outcomes

In general, evidence of treatment outcomes for MR-HIFU treatment of UF is still poor to mod-
erate, mainly because the existing literature has a case series methodology. The point estimate
of 18 articles of NPV% is 68.1% (59.9%-76.0%). The mean sonication time of 10/18 studies was
145.6 minutes. Re-intervention percentages after 3-22.6 months post-HIFU ranged from 0 to 21%.
All the studies described UF shrinkage, and the transformed symptom severity scores (tSSS) where
46.1% after 3 months, 56.1% after 6 months and 53.6% after 12 months. [120] The outcomes of
several studies writing on MR-HIFU ablation of UFs must be interpreted with caution, as not
all study sites aimed for complete UF ablation, due to earlier regulations. Therefore, distinction
should be made between targeting complete or incomplete ablation. When focusing on stud-
ies aiming for complete ablation only, it can be concluded that MR-HIFU is a safe and effective
method for symptom reduction of symptomatic UF, in a non-invasive manner. Other reviews
endorse the proposition that MR-HIFU is a safe, promising and effective therapeutic technique
for decreasing of UF volume and symptoms [120]. However, more systematic research is needed
to move the debate forward [119, 121].

Fertility

Literature on fertility after MR-HIFU treatment of UF is scarce, but fertility may be reserved
after MR-HIFU, studies disclosed [118, 122, 123]. In the study from Rabinovici et al. (2010)
[122], 54 pregnancies in 51 women occurred after MR-HIFU treatment of UF. The mean time of
conception was 8 months after treatment, life birth was present in 41% of pregnancies with a 28%
spontaneous abortion rate, 11% elective pregnancy terminations, and 20% ongoing pregnancies
beyond 20 gestational weeks. Another study from Li et al. (2017) [123] described 131 from 189
patients that got pregnant with a 76.3% full-term birth rate and a cesarean section rate of 72.0%.
The authors advocate that (nulliparous) women who undergo MR-HIFU treatment of UF can
have successful pregnancy and deliver safely.

Cost-effectiveness

Although data regarding cost-effectiveness is limited, a few studies have shown that MR-HIFU
treatment of UF can be equally assumed cost-effective in a five year time frame, compared to
UAE and myomectomy [124, 125]. The study from Cain-Nielsen et al. (2014) [124] conducted
in the United States, MR-HIFU, UAE and myomectomy costed on average respectively $21,232,
$22,819 and $22.599.
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2.1.3 Physical principles of HIFU

The main goal of HIFU as non-invasive tissue ablating technique, is to selectively destruct tissue
and keeping the surrounding tissues intact. This is achieved by using high frequency sound
waves, that propagate through a medium. Instead of using catheters or antennas to deliver
energy as with other minimally invasive techniques, MR-HIFU uses sound waves to propagate
energy through a medium. When sound waves propagate through a medium in the x direction,
the intensity I decreases exponentially with distance. This phenomenon is called attenuation,
and is described by:

Ix = I0e−αx , (2.1)

where I0 is the incident intensity, α is the overall attenuation coefficient and x the traveled
distance through the medium. The pressure fluctuations of the wave lead to a microscopical
shearing motion within the tissue, causing friction and thereby heat. This means that a part
of the mechanical energy carried by the soundwave is absorbed by the tissue, constituting the
main principle of ultrasound-induced hyperthermia. Other causes of attenuation of soundwave
by propagating through a medium are scattering and reflection [126].

The total attenuation α is the sum of attenuation caused by absorption, scattering and reflec-
tion. This can be viewed as follows:

α = α(absorption) + α(scattering) + α(re f lection) , (2.2)

Attenuation is strongly dependent on frequency, since absorption and scattering also fre-
quency dependent. This dependence can be summarized with:

α = k f 1.1 , (2.3)

where k is a tissue-specific constant, and f the frequency. Note that the intensity decline is often
displayed on the logarithmic decibel (dB) scale. The relation between the logarithmic overall
attenuation coefficient µ and α is: µ = −4.3α. [127] This frequency dependency makes ultra-
sound well-suited as mechanism for a non-invasive treatment. The depth of application of the
ultrasound energy can be increased by decreasing the frequency of the incident sound waves.

The use of sound waves as method of energy transfer has been established as safe within the
diagnostic frequencies [128, 129], and clinically for MR-HIFU a beam around 1.5 MHz is typi-
cally used. Sonic intensity is a measure for the time-average rate of sonic energy-flow through an
area, and expressed in W/cm2. The sonic intensity of diagnostic ultrasound is often lower than
0.1 W/cm2 [130], while MR-HIFU can deliver 103 to 104W/cm2 at the focal spot [131].

The goal of MR-HIFU is to maximize the energy delivery at the focal spot, while minimizing
the heat deposition in surrounding tissues. Ultrasound waves interact with tissue it propagates
through by the particle motion and pressure variation. Since the ultrasound waves are contin-
uously losing energy through absorption, the temperature of the medium elevates. When this
temperature rise is above a certain threshold and maintained for an adequate period, the tissue
damages. This thermal effect can be used for coagulation or ablation, and is similar to other
ablative techniques that deliver energy to tissue. The threshold at which thermal damage occurs
depends on tissue type (absorption and attenuation coefficient) and physiological factors such
as pH and O2. Moreover, the heat build up is highly depending on local blood perfusion rate.
At short ablation times, the influence of blood perfusion is small and the heat transfer is mainly
causes by thermal conduction. When exposure time increases, the influence of blood perfusion
is increased, and this relation is visualized in figure 2.2. [132]
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FIGURE 2.2: Relative temperature rise in relation to sonication time in seconds,
measured at 11 locations in 5 kidneys for different perfusion flows. Adopted from

[133]

2.1.4 MR thermometry

During the application of a thermal dose, monitoring the temperature distribution is paramount.
This is possible with MR thermometry, based on the proton resonance frequency (PRF) shift of
the water proton. The PRF has an almost linear dependency on temperature, regardless of the
tissue [134]. Due to an increasing temperature, Brownian motion in increased, and the bonds
of hydrogen are stretched, broken and bent, resulting in a shift in PRF. Caused by the changing
bonds, the average time the water molecules are in a hydrogen-bonded state is reduced, and
thus decreasing the local magnetic field and thereby the PRF of water. [135]

MR-phase images help deriving the temperature change, by finding the difference between
the successive phase images:

∆T =
∆Φ

αγTEB0
, (2.4)

with Φ being the change in PRF, α the temperature dependent water resonance chemical shift
(0.0094 ppm/◦C), γ the gyromagnetic ratio (42.58MHz/T), TE the echo time and B0 the magnetic
field strength. Since the temperature is measured relative to another time, the tissue needs cool-
ing down to body temperature to prevent unforeseen heat build up, with possible skin burns as
a result.

Besides PRF, other quantitative temperature measurements can be performed with MR-techniques,
including techniques based on altered Molecular Diffusion Coefficient:

D ≈ D0e
Ea
kT , (2.5)

where D is the diffusion coefficient, D0 the initial diffusion value, Ea the activation energy of the
material, k the Boltzmann’s constant and T the absolute temperature in Kelvin. The coefficient
D can subsequently be derived by diffusion weighted imaging (DWI) with MRI, see section 2.2.
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2.1.5 Limitations HIFU

Limitations of MR-HIFU treatments are mainly caused by contra-indications. First of all, UFs
with relatively high T2 signal (Funaki type 3) are often excluded from MR-HIFU treatment,
since adequate heat build-up is inhibited. Also, application of MR-HIFU treatment is limited
by UF size, mainly because of the risk of deep venous thrombosis. Although this risk is rela-
tively small, a large number of UFs or UFs with a diameter larger than 10 cm are controversial
for MR-HIFU treatment [136, 137]. Another reason for limitation of MR-HIFU application is the
technical aspect that the MR-HIFU beam typically cannot reach deeper than 12 cm from the skin.
This also dictates the incapability of MR-HIFU to treat UFs from patients with a large abdominal
subcutaneous fat layer. Therefore, UFs that are distant from the skin, or too close to the sacral
bone cannot be treated. [138]. Earlier, bowel interposition was also a limiting factor, but new
methods have proposed methods to minimize this problem [116]. Other factors limiting the use
of MR-HFU are abdominal scarring, concomitant adenomyosis, a postmenopausal state and pe-
dunculated UFs.

Targeted vessel occlusion

Methods are searched to decrease the overall duration of the MR-HIFU treatment, to make this
treatment option more cost-effective, compared to the alternatives [139]. There are suggestions
that so called targeted vessel occlusion might increase the efficiency of MR-HIFU treatment of
UF. With this proposed method, MR-HIFU is intentionally aimed at the uterine arteries supply-
ing the UF. Preliminary results indicate that this might be a feasible and eventually cost-effective
to maximize the devascularization ratio of UF within acceptable treatment times. [140]

However, one limitation to this approach is the current inability to clearly visualize the NPV
during treatment. This is entailed by the fact that currently a Gd-based contrast agent is needed
for clear visualization of the devascularized region of the treated area. However, due to safety
concerns (i.e. trapping, dissociation and long-term deposition of Gd), it is often adopted that
MR-HIFU treatment cannot be continued after injection of a Gd based contrast agent. Although
some argue that MR-HIFU can be performed carefully after administration of Gd, thermometry
cannot be adequately performed after Gd injection due to susceptibility artifacts caused by Gd
[141, 142].

2.2 Diffusion weighted imaging (DWI)

2.2.1 Diffusion

Around 60%-70% of the human body exists of water. In the complex environment of the human
body, water molecules are divided between cells and extracellular compartments. The water
molecules move, either in an ’orderly’ manner, of randomly.

Random motion

Due to the inherent thermal energy, water molecules at body temperature move constantly.
When no obstacles are present, they would move infinitely in the same direction (Newton’s
first law of motion). But in a medium, water molecules collide constantly and change in direc-
tion. This occurs in a short space of time and very often due to the amount of molecules present,
and is therefore too complex to predict exactly. From a practical standpoint, these events can
be viewed effectively as random motion, and is therefore sometimes called random walk. The
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random motion of particles is referred to as Brownian motion. This Brownian motion is inde-
pendently, and has no preferred direction.

The macroscopic manifestation of Brownian motion is called diffusion, and describes the
movement of particles as a result of Brownian motion. When no obstructions are present, the
diffusion type is called free diffusion, or isotropic diffusion, the particles can move in each direc-
tion with only other water molecules obstructing them. At free diffusion, the distribution of
molecules has a Gaussian shape with an average of zero. This means that water molecules are
less likely to travel great distances than small, and the largest chance is to have a net displace-
ment of zero.

Restricted and hindered diffusion

When obstacles are present in a medium with impermeable boundaries, such as inside a cell
membrane, the diffusion is restricted. When these water molecules are trapped inside a cell
membrane for example, the motion of water is determined by the geometry of the cell mem-
brane.

Another type of restriction is called the hindered diffusion. This occurs when the diffusion
is hindered by objects, but not completely confined. For instance, this occurs in the extracellular
space, or the interstitium. In this case, water molecules can diffuse in all directions, but are im-
peded. That means that eventually the water molecules can reach any distance, but the progress
can be slowed down in certain directions. This impeded form of diffusion depends on the shape
of the boundaries.

From the first law of Fick, the diffusion flux J in kg/(cm2s) is given by:

J = −D
∆C
∆x

, (2.6)

where C is the concentration and x is the position. Thus, the diffusion flux describes the net rate
of particles in kg moving through a certain area, and the gradient describes the particles in kg
per volume per distance x. This means:

[
kg

cm2s
] = [−D][

kg
cm4 ] , (2.7)

and implicates that:

[
1
s
] = [−D][

1
cm2 ] , (2.8)

and the units of the diffusion coefficient are:

[D] = [cm2/s] . (2.9)

Diffusion forms the basis of diffusion weighted imaging (DWI), and bears often important clin-
ical information [143].

2.2.2 MR-imaging of diffusion

With MRI, imaging relies on interaction with hydrogen nuclei inside a volume. (Sub)atomic
particles contain a quantum mechanical property that is called ’spin’. Spin results in a mag-
netic moment for atoms with an odd mass number (including hydrogen H1) a nuclear moment.
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When placed inside a magnetic field, these spin properties result in a precessing motion with a
frequency proportional to the magnetic field strength. This is called the Larmor precession, and
forms the basis of the magnetic resonance imaging, including DWI:

f = γB , (2.10)

where f is the frequency in Hertz, γ is the gyromagnetic ratio in Hertz/Tesla and B is the field
strength in Tesla. When precessing particles are inside a (strong) magnetic field, they together
result in a net magnetization. When a gradient is applied across a sample inside this magnetic
field, the net magnetization changes in recession frequency, as can be easily seen from equa-
tion 2.10. This principle is used for DWI.

Pulsed Gradient Spin Echo Sequence

The Pulsed Gradient Spin Echo (PGSE) is often used for applying a diffusion weighing to an MRI
signal. With PGSE, a pulsatile magnetic gradient is added before and after the refocusing pulse
of a spin echo, as visible in figure 2.3

Pulsed gradientPulsed gradient

TE/2 TE/2

δ

Δ

δ

Excitation Refocusing
Acquisition

FIGURE 2.3: Schematic illustration of the Pulsed Gradient Spin Echo, often used
for DWI imaging. A gradient is added before and after the refocusing pulse,
adding a phase difference within the sample. When no diffusion is present, both
the gradient pulses should cancel each other out, resulting in no signal attenua-
tion due to diffusion. If diffusion effects are present, MRI signal is attenuated at
the moment of acquisition, since the dephasing is not completely canceled out as

particles have changed location between the first and second gradient pulse.

After the excitation pulse, the net magnetization is rotated onto the transverse plane. There-
after, the first pulsed gradient is added that dephases the spin magnetization, due to the different
field strengths along the gradient. After the pulsed diffusion-encoding gradient, the refocusing
pulse is applied, in order to recover the transverse magnetization. Then, the second pulsed
diffusion-encoding gradient is applied and lastly the echoed signal is read out.

When no diffusion is present, magnetization is completely rephased by the two pulsed gra-
dients, since the molecules have not changed location and did experience the same gradient
field. However, when diffusion is present in the sample, the molecules will move between the
first and second gradient pulse. Hence, the experienced gradient field has changed and the fre-
quency of precession will be adapted (equation 2.10), resulting in a phase difference before the
first and after the second gradient pulse. This causes an attenuated transversal magnetization



Chapter 2. MR-HIFU and DWI 18

during readout. Differences in net magnetization attenuation are correlated to differences in
diffusion of the measured sample. [144]

b-value

To quantify the influence of diffusion in a MRI sequence, the b-value forms the standard single
measure. The b-value describes the weighing of diffusion inside the MRI-signal, or the sensitiv-
ity to diffusion. Low b-values have low signal attenuation due to diffusion compared to high
b-values. This means that the amount of signal attenuation is increased with an increased b-
value, when diffusion is present in the sample. A b-value of 0 s/mm2 will have no attenuation
caused by diffusion in the MR signal. On the opposite, a b-value of 1000 s/mm2 are usually re-
quired to measure slowly moving water molecules [145]. Appropriately, low b-values contain a
large portion of the signal in relation to the signal when no gradient pulse is applied, in opposite
to high b-values. This entails a relatively low SNR for low b-values.

The signal equation of PGSE was derived by Stejskal and Tanner (1965) [146], for liquids with
unrestricted diffusion:

I = I0e−bD , (2.11)

where I is the signal intensity, S0 the initial signal intensity, b the b-value and D the diffusion
constant. The b-value is defined as:

b = γ2G2δ2(∆− δ

3
) , (2.12)

where δ is the gradient duration, G the gradient strength, δ the gradient duration and ∆ the time
between the start of the first and second pulsed gradient, as depicted in figure 2.3. Thus, in the
b-value, the three parameters G, δ and ∆ are incorporated. With these parameters, the amount of
diffusion weighted can be controlled of the PGSE sequence. The contrast of the DWI-scans can
be changed with these parameters, and can be optimized for specific applications. [144]

2.2.3 Apparent diffusion coefficient (ADC)

When diffusion is not freely, the diffusion coefficient D deviates from the standard value (around
3.0 ∗ 10−3cm2/s) at 37 ◦C [147]. In biological tissue, the water molecules can not move freely due
to obstacles, and the actual diffusion distance is limited and slowed down. As explained in the
above paragraphs, the diffusion can be measured with MRI via signal attenuation. The signal
attenuates highly if fast diffusion is present, and conversely attenuation is small when slow or
no diffusion is present.

Accordingly, with the signal attenuation acquired with a diffusion weighted MR-sequence
(e.g. PGSE) the apparent diffusion coefficient (ADC) can be derived. When a DWI-scan is per-
formed for at least two b-values, the ADC can be calculated with the equation 2.11, by fitting the
found intensities and applied b-values to this to this equation. The acquired value for D is low
when diffusion is slower, and vice versa.

2.2.4 Intravoxel incoherent motion analysis (IVIM)

The model on equation 2.11 is called mono-exponential, since it only contains a single compo-
nent, describing the signal attenuation based on the diffusivity of tissue. However, it is now of-
ten suggested that the signal attenuation of DWI (and derived ADC) is also sensitive to capillary
perfusion [148]. This capillary perfusion, also called the blood microcirculation, is also present
in the signal, and is caused by blood flowing in a volumetric unit (voxel) [149]. This motion is
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often referred to as incoherent motion, and opposes the true molecular diffusion. Since the bulk
motion (flow) in capillaries is much faster than motion caused by diffusion, this microcirculation
will be appearing in sufficiently low b-values, i.e. typically < 200s/mm2 [150]. Still, the signal
mimics a random walk (pseudodiffusion), as the network of capillaries are randomly oriented,
and causes signal attenuation in diffusion-encoding gradient pulses (e.g. PGSE sequence).

To describe both the diffusion and perfusion components, Le Bihan et al. (1986) [151] pro-
posed a bi-exponential model:

I = I0( f e−bD∗ ∗ (1− f )e−bD) , (2.13)

that describes both compartments, with D∗ being the perfusion coefficient, or pseudodiffusion
coefficient and f the signal fraction between diffusion and pseudodiffusion. In the equation 2.13,
information regarding perfusion can be extracted from two parameters: f and D∗. The param-
eter f describes the volume fraction of capillary blood flowing in a voxel. This means that f
is the ratio of the volume of MR-visible water that flows in the capillary compartment, com-
pared to the total volume of MR-visible water within the voxel. The other parameter, D∗ can
be viewed as a descriptor of the mimic of random walk at the scale of microcirculation. This
means that D∗ describes the characteristics of random motion (diffusivity) of water molecules
on the macroscopic level, i.e. caused by the microcapillary flow. Therefore, when the velocity
of blood flow increases, D∗ increases accordingly. [149] These two parameters bear important
information regarding the physiology of microcirculation of tissue.
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Chapter 3

Deep learning

Deep learning (DL) is a subdomain of machine learning (ML) and ML itself is part of the broad
concept of artificial intelligence (see figure 3.1). ML is the scientific study of algorithms that
could solve tasks without specific instructions, but rather via pattern recognition. DL systems
solve tasks after retrieving higher abstractions of data. To achieve this, DL models are created
with functional units, or neurons, that form together artificial neural nets. This concept of DL is
loosely modeled after the human brain.

Artifical intelligence

Machine learning

Deep 
learning

FIGURE 3.1: Schematic illustration of relations between artificial intelligence, ma-
chine learning and deep learning.

The human brain is represented as a hierarchical network of neurons. Each neuron receives
an input, processes this input and pass the output to other neurons in higher layers. For the vi-
sual system, there are five basic layers of neurons: the primary visual cortex (V1), the secondary
visual cortex (V2), V4 and the inferotemporal cortex (IT)-posterior and IT-anterior, as visualized
in figure 3.2. The lower level neurons in V1 detect the basic features of the seen object, such as
lines or edges. In the next depth level, i.e. V2, these found features are encoded into junctions
of lines, hence patterns are detected. The V4 layer connects even more complex combinations of
the features constructed in V2. In the IT-posterior, complete objects are detected, e.g. a face or
a car. Finally, in the IT-anterior, more abstract or semantic meanings are connected to the found
object. These principles are illustrated are summarized and exemplified in figure 3.2. [152]

In the beginning of DL and ML, neural nets were constructed of a single layer of neuron(s),
e.g. perceptrons or support vector machines. Later on, more layers of neurons were added to the
neural nets, and these intermediate layers were names hidden layers. During the past decades,
facilitated by enhanced computational power, increasingly deeper networks were proposed. In
the deep layers of those networks, the neurons react to abstract relations between the features
found in more superficial layers. In this manner, considerably complex relations can be derived
from large amounts of data.

Thus, with DL, more insights can be acquired into large amounts of data containing complex
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FIGURE 3.2: Schematic representation of visual system of the human brain. In
basic, there exists five layers of neurons, that process a visual stimulus (V1, V2,
V4, IT-posterior and IT-anterior. In analogy with DL, these layers process the in-
put by subtracting increasingly complex features. In the last layer, more semantic

meanings are connected with the found features. Figure adopted from [153].

relations. Due to the (recent) enhancement of computational power together with the availabil-
ity of large amount of labeled data, DL has undergone a stunning revolution. This revolution has
especially been ignited since a DL-based method won an ImageNet Large Scale Visual Recogni-
tion Competition in 2012 [154]. DL has got an important role in solving problems in a variety of
terrains, including medicine, with Radiology in particular [155].

Main advantages of DL are the possibility to gain insights in complex patterns within large
amounts of data, that are typically to complex to retrieve with human cognition. In medicine,
this may lead to an increased efficiency, accuracy and precision, a decreased workload, increased
patient face time, increased time on critical cases, costs reduction and improved monitoring
[156].

3.0.1 Deep learning in Radiology

Radiology is a specialty in medicine that is upfront in adopting DL in clinical practice. It is preg-
nant that recently the RSNA Radiology released a journal named Radiology: Artificial Intelligence.
It has been estimated that over 400 publications in major medical image related journals and
conference venues were issued [157, 158]. Literature on DL in medical image analysis covers
all parts of the field of medical image analysis, and beyond in medicine in general. DL shows
excellent capabilities in classification tasks in all modalities assessing a wide range of patholo-
gies, sometimes outperforming Radiology experts [159]. A noteworthy limitation is that these
algorithms often excel in a single tasks or diagnosis, while human radiologists will diagnose
way more on a medical image.

Another interesting topic of DL, also studied in the medical specialty of Radiotherapy, is the
synthetic image generation. With DL-based synthetic CT, MRI-images are typically translated
into CT images based on large quantities of paired real MR-CT data. Applications of these tech-
niques are MR-only radiotherapy, but also diagnostic imaging could gain from these synthetic
reconstructions. [160] Although research has been extensively conducted around the topic of
DL in Radiology, a comprehensive review covering all applications is beyond the scope of this
thesis.
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3.0.2 Neural net’s fundamentals

As stated earlier, the functional unit of a neural net is commonly called a neuron, and the equa-
tion that gives the activation a, or output, of a neuron can be defined as:

a = σ(
n

∑
i=1

xi · wi + b) , (3.1)

where x ∈ IRn is the input vector, w ∈ IRn the weight vector, b the bias and σ the activation func-
tion that introduces non-linearity to the functional unit. In DL, neurons are aligned in layers to
form a neural net as is shown as example in figure 3.3.

a1
		[1]

a2
		[1]

a2
		[2]

a1
		[2]

a1
		[3] ŷ

x1

x2

(j)

(j)

(j)

FIGURE 3.3: Schematic overview of an example network with an input layer con-
sisting of inputs x[j] from training data D where j ∈ D, two hidden layers and
one output layer providing the predicted class label y[j]. The activations aL from

neurons in layer L provide the input for neurons in layer L + 1.

Suppose labeled training data D = (x1, y1), (x2, y2), ...(xn, yn) is available. The DL network
f , composed of internal network parameters w, attempts mapping of x → y by computing
f (x, w) = ŷ. The prediction error between true labels y ∈ D and predicted labels ŷ can be
calculated consequently with L( f (x, w), y). During training of f with train data D, internal
network parameters w are optimized iteratively by solving:

argmin
w

L( f (x, w), y) . (3.2)

This is achieved by minimizing the gradient of the loss function ∇L→ 0.
The gradient of L can be found by a method called backpropagation. Partial derivatives

combined with the chain rule make it possible to find the gradient for all individual weights
wi ∈ w. The chain rule is applied to find the derivative of L with respect to all individual weights,
i.e. internal network parameters. Subsequently, with the found gradient for each individual
internal parameter, the gradients are multiplied by the learning rate and the DL-network is
updated. A single forward and backward propagation of a batch of training data is called a
step, and these steps are repeated for the entire training set. A training epoch is finished when
the full training set has been passed trough the network. Neural nets are typically trained with
multiple epochs.

3.0.3 Convolutional neural network (CNN)

For (medical) imaging, the convolutional neural network (CNN) is the most popular type. A CNN
is a subclass of DL, and does typically exist of convolutional kernels instead of neurons. A con-
volution is a mathematical operation between two functions ( f and g), creating a third function
(h = f ∗ g) that describes one function modified by the other. In the context of DL, convolutions
are powerful in subtracting visual features from imaging data.
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A discrete convolution filter is a matrix (kernel) that filter features from an input image, by a
point-wise multiplication across the input image, creating an output feature map. So, suppose f
is a 2D medical image and g is a convolution kernel with dimensions, the feature map h becomes
at row m and column n:

h[m, n] = f [m, n] ∗ g[m, n] =
∞

∑
j=−∞

∞

∑
i=−∞

f [i, j] · g[m− i, n− j] . (3.3)

With these convolutions, increasingly complex features can be derived from an image. Of-
ten, an activation layer is applied, and with pooling functions the dimensions are reduces and
features are extracted from the convolution outputs. Optionally, conventional artificial neurons
are applied after the convolutions layers, to connect features in a spatial independent manner
and return the final output of the network, e.g. a classification. Besides classifications, image
segmentation and synthesis are tasks often solved with CNNs [157].

Generative adverserial network (GAN)

A specific subtype of DL and CNNs are the generative adverserial networks (GANs). GANs have
gained a considerable amount of attention, mainly due to their capabilities in generation of data.
With GANs, two neural networks are trained simultaneously. One of the two networks focuses
on generation of data, while the other network has the task to discriminate the generated data
from the real data in the training set. GANs have achieved high performance in several tasks in
data generation, including text-to-image synthesis, super-resolution and image-to-image trans-
lation [158]. A more detailed description and fundamentals on the network architecture of a
GAN is given in section 6.1.3.



24

Chapter 4

Problem statement

4.1 Problem statement

MR-HIFU is an attractive treatment option for symptomatic UF, due to its safety, non-invasive
character and effectiveness. Together with uterine fibroid embolization, it offers a non-surgical
treatment option for UF that is uterus-sparing.

Postprocedurally, the treatment effect of MR-HIFU is standardly assessed with a CE-T1w
MR-scan, where a high NPV ratio indicates a successful treatment. However, a drawback of the
MR-HIFU procedure is the inability to visualize the treatment effect intraprocedurally. Risks
of Gd entrapment and distorted thermometry inhibit the use of contrast-agents between MR-
HIFU sonications, making further ablation after administration of a contrast agent unsafe. This
pitfall commonly entails long procedure times and limited NPVs, caused by either delayed or
premature ending of sonications, as established on a post-procedural CE-T1w scan when ad-
ministration of a Gd-based contrast agent is safe.

To undo dependency on Gd-based contrast agents and thereby enable intraprocedural NPV
assessment, efforts have been made to evaluate the MR-HIFU treatment effect based on multi-
parametric MRI. It has been suggested that extraction of parameters from DWI scans could be
helpful in discriminating the NPV from the perfused volume. Low b-values particularly relate
to perfusion characteristics of UF tissue, and could therefore play a pivotal role in in Gd-free
visualization of the MR-HIFU treatment effect. Until now, previous work about DWI has only
been analyzed with a mono-exponential ADC model in the context of periprocedural NPV vi-
sualization.

4.2 Thesis

The non-perfused volume of uterine fibroids after MR-HIFU treatment can be assessed ade-
quately without a gadolinium-based contrast agent by analysis of diffusion weighted imaging
with intravoxel incoherent motion modeling or deep learning.

4.3 Approach outline

The aim of this work was to further explore DWI-based methods to visualize the progression
of MR-HIFU ablations peri- or intraprocedurally, thus avoiding the need for a contrast agent to
assess the NPV. The first three introductory chapters of this work described the general back-
ground of the topic, by summarizing the existing literature. In this thesis, two approaches are
investigated to visualize the NPV by using DWI: IVIM and a DL-based method. At first, with the
IVIM strategy it was attempted to describe the underlying physiological principles of UF perfu-
sion with a comprehensible model. Thereafter, the DL-based method was applied to potentially
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achieve better results for the stated problem, but at the cost of understanding the relation of the
DWI data with the applied model. The methods and results of both techniques are described
sequentially in chapter 5 and chapter 6. Finally, a general discussion is presented reviewing on
both methods.
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Chapter 5

Approach 1: IVIM

This chapter covers the first approach for using DWI to avoid the need for a gadolinium-enhanced
contrast agent to visualize the NPV during or after a MR-HIFU treatment of UF. This first ap-
proach will be intravoxel incoherent motion analysis (IVIM) , and in the first first section an outline
of the method is given, followed by the obtained results in the second part.

5.1 Methods

5.1.1 Patients

This study made retrospectively use of the single-center dataset described in the prospective
multi-parametric MR-study MaSSII-study from Verpalen et al. (2020) [161]. These patients were
included from January 2018 to January 2019 at the Isala Hospital in Zwolle, The Netherlands. At
first, the patients were screened for eligibility by a gynaecologist. The in- and exclusioncriteria
are listed in table 5.1.

Inclusion criteria • Age of 18 years
• US-confirmed diagnosis of UF
• pre- or peri-menopausal state

Exclusion criteria • Current pregnancy
• MRI contra-indications
• Calcified UF
• Fat layer > 4 cm
• Concomitant adenomyosis
• Supsicion of malignancy
• No contrast-enhancement of the dominant UF on the T1w image
• Maximum diameter of the dominant UF < 1cm
• > 10 UFs
• Fibroid signal intensity on the T2w image and contrast-enhanced T1w
image higher compared to the signal intensity of the myometrium
• Inaccessible dominant UF

TABLE 5.1: Eligibility criteria for the MaSSII-patients with UF for MR-HIFU treat-
ment.

The study from Verpalen et al. (2020) described a total of 56 included women with a DWI
sequence. All these patients received a screening MR-scan, and patients eligible for MR-HIFU
underwent MR-HIFU treatment of UF(s) and a six months follow-up MR-scan. In this work,
patients that did not receive an MR-HIFU treatment were excluded. The characteristics of the
remaining patients with suitable MR-datasets are listed in table 5.2.
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Characteristic Mean or count
Patients included 56
Age (years) 42.8 (± 7.0)
BMI (kg/m2) 24.8 (± 3.6)
Abdominal fat layer (cm) 2.1 (± 1.2)
Uterine position AVF 45 (80.4)

RVF 6 (10.7)
Upwards 5 (8.9)

Number of fibroids treated 1 26 (46.4)
2 11 (19.6)
3 7 (12.5)
4 2 (3.6)
5 4 (7.1)

>5 6 (10.7)
Fibroids’ location Submucosal 22 (26.8)

Intramural 23 (28.0)
Subserosal 22 (26.8)

Hybrid 15 (18.3)
Scaled Signal Intensity 12.0 (± 14.5)
Funaki class 1 8 (9.8)

2 64 (78)
3 10 (12.2)

Maximum diameter (cm) 5.53 (± 3.4)
Fibroid volume pre-HIFU (cm) 132.9 (± 220.6)
Non-Perfused Volume (%) 64.8 (± 34.3)

TABLE 5.2: Characteristics of the retrospective dataset from the included MaSSII-
study (adopted from Verpalen et al. (2020) [161]) The quantities are expressed in

mean or counts (% or ± SD).

5.1.2 Scan protocol

As stated above, the data was collected in a single-center at the Isala Hospital in Zwolle. The
MR-HIFU treatments were carried out on a clinical HIFU system (Sonalleve, V1, Profound Med-
ical Inc, Mississauga, Canada). This HIFU system contains a tabletop transducers, that can be
integrated with the 1.5-T MR scanner (Achieva, Philips Healthcare, Best, The Netherlands). MR-
scans were acquired during screening, treatment and follow-up. For all these moment, the same
DWI-protocol was used and included a scan with TE=65ms and 7 b-values (i.e. DWI weightings),
with 0, 50, 100, 200, 400, 600 and 800 s/mm2, with an example visualized in figure 5.1. The DWI-
scans were acquired prior to contrast injection. At these moments in time, a T2w scan was also
acquired for identification of anatomical structures, and the protocol was ended after acquisition
of a CE-T1w scan. This CE-T1w was a 3D spoiled gradient echo scan, and used for viability as-
sessment during screening, and NPV visualization post-HIFU. The administered contrast agent
was gadolinium-based (DOTAREM, 0.2 mL/kg, Gadoterate Meglumine, 0.1 mmol/kg, Guerbet;
Aulnay-sous-Bois, France). An example 3D axial DWI-slice (x,y,b) is depicted in figure 5.1

5.1.3 Preprocessing

Let ~D be a 4D DWI volume with m rows, n columns, p layers and q DWI-weightings (b-values):

~D = (aijkb) ∈ Rm×n×p×q , (5.1)
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FIGURE 5.1: Example slice of an axial DWI-scan of a female pelvic region with
the uterus bearing an UF that received MR-HIFU treatment. The DWI datasets

processed in this work included the b-values depicted here.

where i,j,k denote the entry a (i.e. voxel) at the i-th row, j-th column and k-th layer respectively
in ~D, and b the complementary b-value of the volume (b ∈ B).

Registration of b-values

Registration of the b-values is performed to minimize the differences in the spatial domain of all
volumes along the axis of the DWI-weightings in ~D. This registration involves the problem of
finding an displacement vector uijkg that spatially aligns aijkg to aijkb0 , with g being a b-value in
B, excluding b = 0s/mm2, and a an entry in ~D:

aijkg + uijkg −−−→
aligns

aijkb0 . (5.2)

For registration the Elastix-toolbox [162] is used for registration of the non-zero b-values to
the b0 DWI volume.

Masking and normalization

After registration and before performing the IVIM fit, all volumes were masked by the 99-
percentile of ~D based on the b0 volume:

~Dmasked =

{
0, if aijkb0 < T
aijkb, otherwise .

(5.3)
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where T the 1-th percentile of ~Di,j,k,b0 . Secondly, the masked volumes are normalized to an
average pixel intensity of 100 at the b0 slice:

µ =
m

∑
i=1

n

∑
j=1

p

∑
k=1

aijkb0

m + n + p
, (5.4)

~Dnormalized =
~Dmasked

µ
∗ 100 , (5.5)

With ~Dnormalized, the final form of the preprocessed matrix ~D is achieved, that is used for IVIM
analysis.

5.1.4 IVIM fit

With the IVIM model, the relation between b-values and signal intensity I is described with the
following bi-exponential equation (same as 2.13:

I(b) = I0( f e−bD∗ + (1− f )e−bD) , (5.6)

with the parameters:

• I0: initial signal intensity (at b0, without diffusion weighing)

• f : signal fraction of pseudodiffusion

• D∗: pseudodiffusion coefficient

• D: diffusion coefficient

As explained in the introduction of this work: equation 5.6 describes two compartments,
with two hypothesized underlying physiological principles: pseudodiffusion, or perfusion, and
diffusion. The parameter f reflects the volume fraction of both compartments present in the
signal intensity I.

5.1.5 Fit method

The parameters from equation 5.6 are retrieved from the individual voxels by performing a
voxel-wise fit to the 4D DWI volumes. The voxel-wise fits are executed with a least-squares op-
timization algorithm. A least-squares method is often used in regression problems, and aims at
minimizing the sum of the squared residuals, i.e. the difference between the observed values
and values provided by the model used for fitting.

Applied to the equation 5.6, if β is a vector containing the IVIM parameters, a residual at
b-value b of a given voxel a ∈ ~D is defined as:

r(b, β) = ab − I(b, β) , (5.7)

where b is an element of B (see section 5.1.2). The optimal parameters β for a voxel are found by
minimizing the sum of the squared residuals S, for b ∈ B:

S(β) =
800

∑
b=0

r(b, β)2 . (5.8)

A minimum of S is achieved by setting the gradient to 0. Here, the Trust-region-reflective (TRF)
algorithm is used to achieve minimalization of S, and is explained the appendix, section A.1.
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5.1.6 Initialization fit

For each preprocessed volume ~D, a voxel-wise fit with equation 5.6 as objective function and
TRF as fit algorithm is performed. To perform voxel-wise fitting by using the TRF algorithm,
defining values for β0 that approaches the minimizer is important. Therefore, a initialization fit
is performed based on b-values of the average of all voxels amean,h to find values for the β0 vector
as initialization of the voxel-wise fit. Also for this initialization fit, choosing a adequate starting
point is important. The following values are chosen as β0 for the initialization fit and based on
existing literature [147, 149, 151, 163]:

β0init =


I0init

Finit
Dinit
D∗init

 =


100
0.2

1.0 ∗ 10−3

1.0 ∗ 10−2

 . (5.9)

Please note the difference between 4D DWI volume ~D, and the parameter describing diffusivity
D (without vector symbol). The TRF algorithm takes the mean values of all voxels in ~D for each
b-value, the IVIM equation (equation 5.6) and β0 as input, and delivers the final β f as output,
when a certain threshold is reached:

TRF(amean,b, I(b), β0init)
f it−→ β0 =


I00

F0
D0
D∗0

 . (5.10)

After the algorithm is finished, the β0 are defined and used for the voxelwise fit. During the
fitting, the search space is constrained by the following bounds:

0 < I0 < ∞
0 < F < 1.0

0 < D < 3.5 ∗ 10−3

0 < D∗ < 5.0 ∗ 10−1 .

(5.11)

The TRF fits are performed using the least squares implementation of SciPy [164].

5.1.7 Voxel-wise fit

At each index i, j, k in 4D DWI volume ~D the parameters β are approached by using the TRF
algorithm, starting at β0 found in the initialization fit. In order to decrease the influence of noise
on the parameter estimation, the number of parameters is reduced by fixing the D∗ parameter:

I2(b) = I0( f e−bD∗0 + (1− f )e−bD) , (5.12)

This means that the degrees of freedom during the search is limited, and the fitting process for
voxels at indices i, j, k becomes:

TRF(aijkb, I2(b), β0)
f it−→ βijk =


I0ijk

Fijk
Dijk
D∗0

 . (5.13)

When for each voxel at entry i, j, k is the fitting parameters are estimated, the values of the
parameters at each entry constitute a map, e.g. an F-map, D-map or I0-map. For the voxel-wise
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fits, the same constraints are used from equation 5.11 and implementation of SciPy [164]. For
both fits (initialization and voxel-wise), the search was terminated after a change of the cost, fit
parameters, or gradient smaller than threshold value 1.0 ∗ 10−8; or when the number of function
evaluations exceeded 100 times the number of fit parameters.

5.1.8 Evaluation

The ability of this method to distinguish the perfused from the non-perfused volume is assessed
quantitatively based on the resulting parameter-maps (F,D,I0) from the entire dataset. This is
investigated by quantitative examination of contrast differences between the anatomical areas of
interest. The quantitative method to detect whether statistically significant contrast differences
between pixel intensities in the different areas of interest, is elaboarted in sections 5.1.8 and
5.1.8. To define which voxels are in the specific areas of interest, ROIs are drawn as listed in
table 5.3 and illustrated in figure 5.2. All ROIs were created by a radiology resident and a medical
student trained in MRI reading. Since the FV and NPV regions are drawn, the PV is defined
mathematically as:

PVROI = FVROI − NPVROI = {x|x ∈ FVROI ∧ x 6∈ NPVROI} , (5.14)

where x is a element inside an ROI. Thus, the PV is the difference between the FV and NPV ROIs.
In this chapter, the contrast for the parameters D and f are evaluated based on these ROIs.

moment in time Region ROI based on
screening uterine fibroid screening T2w

post-HIFU uterine fibroid pre-HIFU T2w
post-HIFU NPV post-HIFU CE-T1w
post-HIFU PV post-HIFU uterine fibroid and NPV ROI

TABLE 5.3: ROIs used for evaluation in this chapter, and chapter 6.

NPV contrast

An important aspect of the parameter maps is the contrast between PV and NPV. This contrast
determines the ability to separate the NPV from the PV, and is therefore of great clinical impor-
tance to visualize the NPV. Contrast is defined here as the difference in average parameter value
between the NPV, the PVpre and the FVscreening. Therefore, the average pixel intensities per pa-
rameter map are calculated and reported. In addition, the intensities between the different ROIs
are tested for statistical significance for each parameter map, as explained below, in section 5.1.8.

In addition, the intensities of the f− and D-maps will be analyzed on contrast differences
between the PV and NPV on individual patient level. The fraction of patients where significantly
different contrast is present will be reported in percentage. This analysis on individual patient
level is only performed for NPV and PV ROIs, since those are deterministic for the ability to
separate the ablated volume from viable tissue.

Statistical analysis

The parameters were expressed as mean ± standard deviations. The means were tested for nor-
mal distribution using the D’Agostino’s K-squared test with 5%: α = 0.05 [165, 166]. To detect
whether mean values of the NPV and the PVs from the post-HIFU and screening reconstruc-
tions differ significantly, the Friedman test was applied between the means of D and f of the
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FIGURE 5.2: Example of drawn ROI. T2w MR-scans were used for delineating the
FV, while the ROIs for the NPV were drawn on the CE-T1w MR-scans. It should
be noted that for both the screening and direct pre-HIFU T2w MR-scans ROIs of
the FV were composed. The PV can be derived from the difference in ROI between
the pre-HIFU FV and the NPV. The UF visible here has Funaki score 2, FIGO class

4 and an NPV-ratio of 59.6% after MR-HIFU treatment.

three groups with a significance level of 5%: α = 0.05. For post-hoc analysis when the Fried-
man test returned a p-value < 0.05, the Nemenyi test was executed to determine the underlying
differences in distribution of the regions [167].

For testing contrast differences on patient level from the f - and D-map within the PV and
NPV ratios, a Mann-Whitney U-test was used with α = 5%.

5.2 Results

First, some graphical examples are shown from individual patients, in second, overall results
are presented.

5.2.1 Individual examples

In figure 5.3 the results of the IVIM fit are plotted from the patient visible in figure 5.2, with the
depicted ROIs. The mean measured DWI datapoints are graphed, with the lines constructed
with the parameters acquired after the fitting with the IVIM equation (5.6). The same data is
illustrated on a linear scale and a logarithmic scale, in figure 5.3 (a) and (b) respectively.

Next, visual parameter maps are shown in figure 5.4. In this illustration, complementary
T2w and CE-T1w slices are given, together with the parameters derived from IVIM fitting, i.e.
the I0-, D- and f -maps.

5.2.2 Overall results

The mean values of D and f for the combined groups were 1.08 ∗ 10−3(±2.22 ∗ 10−4) mm2/s
and 2.12 ∗ 10−1(±7.57 ∗ 10−2) (no unit) respectively. The average D-parameter values were 1.25 ∗



Chapter 5. Approach 1: IVIM 33

0 100 200 300 400 500 600 700 800

b [s/mm2]

30

40

50

60

70

80

90

100

I

0 100 200 300 400 500 600 700 800

b [s/mm2]

1.2

1.0

0.8

0.6

0.4

0.2

0.0

ln
(I/

I 0
)

(a) (b)

0 200 400 600 800

b [s/mm2]

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ln
(I
/I

0
)

Mean DWI in fibroid volume (screening)
IVIM fit on mean DWI in fibroid volume (screening)
Mean DWI in perfused volume on (post-HIFU)
IVIM fit on mean DWI in perfused volume (post-HIFU)
Mean DWI in non-perfused volume (post-HIFU)
IVIM fit on mean DWI in non-perfused volume (post-HIFU)

ROI D[mm2/s] D∗[mm2/s] f

FV (screening) 1.20 ∗ 10−3 4.19 ∗ 10−2 2.26 ∗ 10−1

PV (post-HIFU) 1.16 ∗ 10−3 4.02 ∗ 10−2 2.63 ∗ 10−1

NPV (post-HIFU) 1.14 ∗ 10−3 2.41 ∗ 10−2 1.16 ∗ 10−1

(c) (d)

FIGURE 5.3: Example IVIM plots from patient visualized in figure 5.2, with DWI
data inside the ROIs as illustrated after a successful MR-HIFU treatment. (a) IVIM
plots on linear intensity (I) scale. (b) IVIM plots on logarithmic scale (ln(I/I0)). (c)
Legend for the graphed data in both scales. (d) Parameters retrieved from IVIM

fitting, and used for calculation of the IVIM curves in this image.

10−3(±4.30∗ 10−4 mm2/s), 1.01∗ 10−3(±4.47∗ 10−4 mm2/s), and 1.13∗ 10−3(±4.46∗ 10−4 mm2/s)
for the FV, PV and NPV respectively. For the f -parameter, the mean values of the FV, PV and
NPV were 0.26(±0.19), 0.29(±0.21), and 0.12(±0.13) respectively.
In figure 5.5 the distribution of the D and f parameter is graphed in a boxplot for all the three
separate regions (i.e. screening FV, post-HIFU PV and post-HIFU NPV) in all patients. The dis-
tribution of the mean parameters in the aforementioned regions is plotted in figure A.4. This
graph contains a scatterplot of the D versus the f parameter. In table 5.4 are the results listed
from the D’Agostino’s K-squared test. Except for the parameters in the post-HIFU PV region
and the D in screening FV, the parameters did not match a normal distribution (p > 0.05).

The outcome of the Friedman test statistic for the D parameter is 1.03 ∗ 101 with a p-value
of 5.81 ∗ 10−3. For the f -parameter, the test results in a statistic of 3.23 ∗ 101 and a p-value of
9.7 ∗ 10−8. As the null-hypothesis is rejected for both the D and f parameter, Nemenyi post-hoc
analysis is conducted. The p-values of the post-hoc test is tabled in table 5.5, and shows that for
the D parameter, a statistically significant difference exists between the region of the FV during
screening, and the PV after MR-HIFU treatment. No other null-hypotheses can be rejected for
the D coefficient. For the f parameter, the difference between the mean values of the NPV and
the PV post-HIFU is statistically significant, together with the difference between the NPV and
the FV during screening.

For contrast differences between the NPV and PV of the individual patients, statistically
significant difference in pixel intensities was found for both the f - and D-parameter maps in
89% of patients. For f , in all 89% of cases, mean intensity in the NPV region was lower than
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FIGURE 5.4: An example of an IVIM reconstruction before and after MR-HIFU
treatment where near-complete ablation was achieved for two UFs (263 and 14
mm3), with NPV-ratios of 84% and 40% respectively. For both moments in time,
a T2w and CE-T1w scan are depicted, together with maps derived from the IVIM
analysis (i.e. I0−, D− and f -map). Also, the residual map is shown, where re-
construction errors are visualized after recalculation of DWI intensities with the

extracted IVIM parameters, via equation 5.6 and b-value 50 s/mm2.

within the PV. In case of D, from the 89% of patients with statistical differences in intensity
between NPV and PV, 65% was on average higher, and 35% lower. This indicates that contrast
differences between the NPV and PV are more consistent for the f -parameter.

Region
D f

k p-value k p-value

FV (screening) 0.699 0.705 8.65 0.0132
PV (post-HIFU) 2.27 0.321 0.707 0.702

NPV (post-HIFU) 7.68 0.0215 14.8 6.10 ∗ 10−4

TABLE 5.4: D’Agostino’s K-squared test for the distribution of the f - and D-
parameter extracted with the IVIM analysis in the different ROIs. The goal of this
analysis was to test the following null-hypothesis: parameter x is sampled from a

normal distribution, where x is either f or D.
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FIGURE 5.5: Overall results of all the cases from the retrospective DWI datasets.
The parameters were extracted with the IVIM equation (5.6), and the mean values
are visualized in these boxplots. The voxels are separated for the different three
ROIs, in order to investigate whether differences in distributions exists between
these regions. (a) Distribution of D visualized in a boxplot of all voxels in the DWI
datasets in the three different regions before and after MR-HIFU treatment of UF.
(b) Boxplot visualization of the distribution of the f parameter of all voxels in the
three regions. Note that the large number of datapoints, i.e. voxels, result in a large

number of outliers in these boxplot, caused by noise within the DWI data.

FV (screening) PV (post-HIFU) NPV (post-HIFU)

FV (screening)
D -1.00 0.011 0.18
f -1.00 0.57 < 0.001

PV (post-HIFU)
D 0.011 -1.00 0.50
f 0.57 -1.00 < 0.001

NPV (post-HIFU)
D 0.18 0.50 -1.00
f < 0.001 < 0.001 -1.00

TABLE 5.5: p-values for the Nemenyi post-hoc analysis after rejection of the null
hypothesis with the Friedman test (α = 0.05). These outcomes are visualized in

figure 5.6.
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FIGURE 5.6: Visual presentation of the post-hoc analysis after the Friedman test,
with the critical difference (CD) calculated with the Nemenyi test. Distances be-
tween ranks greater than CD are considered statistically significant different. The
horizontal axis represents the mean rank of the intensities within the different re-
gions. Mean ranks that are not significantly different are connected with the black
bar. (a) The diagram for D coefficient. It can be seen that for this parameter, the
PV (post-HIFU) and FV (screening) are not connected, thus, statistically significant
different. (b) the diagram for f coefficient. Since the NPV (post-HIFU) is not con-
nected with FV (screening) and PV (post-HIFU); the pixel intensities within the
NPV (post-HIFU) ROI differ significantly from the intensities in the FV (screening)

and PV (post-HIFU) ROI, based on the f -map.
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Chapter 6

Approach 2: DL-based

The result that certain parameters extracted from the DWI-data bear a relationship with the
size and location of the NPV. Since the relationship between the DWI-data and the NPV could
be more complex than is described with the IVIM equation (equation 5.6) and might be spa-
tially dependent. Hence, a DL-based approach could potentially be fruitful. This means that
the regression is not performed with a set equation, but with a much larger amount of fitting
parameters by composing a neural net. This approach is explored in this chapter by using a
cGAN.

6.1 Methods

6.1.1 Data and subsets

Also this approach is based on DWI-data, and used the same dataset as described in section 5.1.1
and 5.1.2. For DL, division of the dataset in unique subsets is important for developing, vali-
dating and testing of the performance of the algorithm. Here, the total dataset Dtot containing
all patients was divided on patient level in a training (Dtrain) validation (Dval) and testing (Dtest)
subset on a 0.4-0.2-0.4 ratio respectively. There was no overlap between the sets, mathematically
this means: 

Dtrain ∩ Dval

Dtrain ∩ Dtest

Dval ∩ Dtest

= ∅ , (6.1)

where ∅ is an empty set. After division, the following DWI-volumes were excluded:

• DWI volumes with a non-standard field-of-view (i.e. field-of-view only covering UF, in-
stead of whole axial body,

• DWI volumes with a low spatial resolution.

6.1.2 Preprocessing

At first, the 3D ground-truth CE-T1w scans were spatially aligned to the DWI-datasets, based
on the b0 volume:

eijk + uijk −−−→
aligns

aijkb0 , (6.2)

where e is an entry from a CE-T1w-scan, u is the resulting transformation vector, and a an entry
from the matching DWI-scan. Registration was performed using the Elastix-toolbox [162], with
a intensity-based B-spline registration algorithm with an adaptive stochastic gradient descent
optimizer. Secondly, both the DWI and CE-T1w were normalized to the 99-th percentile, as de-
scribed in equations 5.4 and 5.5. No clipping was applied, contrary to the method described at
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FIGURE 6.1: A DWI and CE-T1w slice with an original Field-of-view (FOV) of
the female pelvic anatomy with an UF, for the DWI and true CE-T1w scan (upper
row). The lower row depicts the subsequently cropped FOV, as fed to the neural

network.

the IVIM chapter (5.3).

Thereafter, due to the UF being the region of interest in this problem, surrounding tissues
were excluded during training. This was realized by cutting out the outer parts by drawing
a cube around the uterine area, while preserving the uterus including the UF. An example of
cropping is illustrated in figure 6.1.

Lastly, the 3D CE-T1w and 4D DWI volumes were reduced to 2D and 3D respectively by
axial slicing:

~Dk = (aijkb) ∈ Rm×n×1×q (6.3)

~Ck = (eijk) ∈ Rm×n×1 (6.4)

where ~D is a DWI-scan and ~C a CE-T1w-scan and k denotes the index of the axial slice. An ex-
ample DWI-slice is visualized in figure 5.1. The cropped slices were made a square by applying
zero padding to the smallest dimension, and afterwards rescaled to a resolution of 128× 128 pix-
els. The DL-network is trained on these patches, and the volumes are recreated with a patchwise
reconstruction with a stride of 4 pixels.

6.1.3 Network architecture

The main network architecture is based on an image-to-image translator with a conditional-
GAN. Here, the implementation of pix2pix [168] forms the basis of the networks deployed in
this project, and an overview is illustrated in figure 6.2.

Generator

The generator is composed with an encoder-decoder shape with skip connections, often referred
to as U-Net [169]. The feature maps of the filters during the encoding are propagated via the skip
connections to the decoding part, with concatenation. This makes it possible that during the ex-
pansion of the features from the latent space (the features in the bottleneck), the high resolution
features retrieved during contraction can be utilized as well. The encoder of this architecture
consists of the following number of filters for each layer: 64− 128− 256− 512− 512− 512− 512.
The decoder contains 512− 512− 512− 256− 128− 64 filters. Note that these numbers represent
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L1 loss
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or

FIGURE 6.2: Schematic overview of the used cGAN during this project. With a
DWI dataset and the generator a synthetic CE-T1w image is created. The discrim-
inator’s goal is to distinguish the synthetic from the true CE-T1w scan. During
training, the generator and discriminator try to outperform each other. In this
process, the generator’s internal parameters are updated with an L2 loss from the
inverted discriminator, and an L1 loss from the true CE-T1w. The generator and

discriminator components are explained in detail in figure 6.4 and 6.5.

the amount of output feature maps per layer, instead of input feature maps.

The output of the convolutional layers in the generator are followed by a LeakyReLu delin-
earization function with a slope of 0.2 (see figure 6.3).
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FIGURE 6.3: Activation functions used for delinearization of the output of the gen-
erator layers. (a) LeakyReLu with a slope of 0.02 is used here as activation function
of the convolutional layers. (b) Sigmoid delinearization as activation function for

the output of the last convolutional layer.

The activation of the layers are completed with a BatchNormalization (BN) function, that nor-
malizes the activation at each batch. This means that with BN the activation of each batch is
maintained at a mean of 0 and a standard deviation of 1, by scaling with a learnable parameters
ζ and shifting factor γ:

yi ←− ζxi + γ ≡ BNγ,ζ(xi) (6.5)

at the i-th layer, where x is the intermediate activation before BN, and y the activation after BN
is applied. This means that each layer has two extra learnable parameters that help converging
the network. With BN, the moving average during training is taken into account when updating
the BN parameters, and is called momentum (weighing factor). Here, momentum is set to 0.8.
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FIGURE 6.4: Schematic overview of the generator compartment of the used cGAN-
network.
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FIGURE 6.5: Schematic overview of the discriminator compartment of the used
cGAN-network.

Discriminator

The second part of the cGAN is called the discriminator, and only has a function during training.
Here, it’s goal is to distinguish the synthetic CE-T1w scans from the real paired scans. The
discriminator consists of four hidden layers with a configuration of 32-64-128-256 filters, with
patches as output layer. All layers are composed of 3x3 convolutional kernes, and contain a
LeakyRelu with a slope of 0.2 as activation layer (6.3 a). All activations were followed by batch
normalization, except the first layer. A schematic overview is presented in figure 6.5.

Loss functions

The objective of this conditional GAN is given by equation 6.6:

LcGAN(Gen, Dis) = Ex,y[log(Dis(x, y))] + Ex[log(1− Dis(x, Gen(x))] , (6.6)

where Gen and Dis are the generator and discriminator respectively, x is the input image to be
synthesized (DWI), y the reference image (CE-T1w). In equation 6.6, the goal of the generator
is to minimize this function, and the discriminator to maximize it. To commit the generator
to create synthetic images with high fidelity to the paired reference images, a L1 loss is added
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between the synthetic and the true images:

LL1(Gen) = Ex,y[||y− Gen(x)||1] , (6.7)

and is added to create the final objective (∗) for the generator part:

Gen∗ = arg min
Gen

max
Dis
LcGAN(Gen, Dis) + λLL1(Gen) , (6.8)

where λ is a balancing parameter, and set to 100 in this work, similar to proposed in the original
study displaying the conditional GAN pix2pix [168]. The single goal (∗) of the discriminator is to
minimize the errors in separating true from synthetic images, given the condition (DWI slice):

Dis∗ = arg min
Dis
LcGAN(Gen, Dis) . (6.9)

Due to this LcGAN(Gen, Dis) objective, in addition to the regular LL1(Gen), the generator is
driven to synthesize real looking reconstructions.

6.1.4 Training

During training of the network, a batchsize of 8 slices was chosen. The input slices had a reso-
lution of 128x128 pixels. The DWI slices were put in the layer channel of the batches. Shuffling
was applied during on training data to present the data in random order each epoch. An Adam
optimizer was used [170], a learning rate of 2.0 ∗ 10−5 with parameters β1, β2 and ε̂ of 5.0 ∗ 10−1,
9.99 ∗ 10−1 and 1.0 ∗ 10−7 respectively.

6.1.5 Model selection

During development of the model, various configurations of the cGAN were investigated. These
experiments include multiple levels of depth for the U-Net, variations in batch normalization,
dropout and data augmentation. It’s effect on the performance was assessed quantitatively
based on the validation set, but the final model for test experiments is decided on visual fidelity
of the UF with paired CE-T1w scans. The influence of number of encoding generator layers is
visualized in the Appendix, in section B.1.

6.1.6 Evaluation

The first part of the evaluation exists of visual examples of typical patients. Secondly, the data
from the validation and test set is investigated. The reconstructions generated with the approach
described in this chapter were assessed both quantitatively and qualitatively based on the data
in the test set.

Quantitative evaluation

First, the distribution of pixel intensities in the synthetic reconstructions will be visualized in
a boxplot for each ROI, together with the distributions of the pixel intensities in the true CE-
T1w scans. Also, a normalized kernel density estimation will be graphed for pixel intensities
in the synthetic CE-T1w scans, and a separate graph for the synthetic and true CE-T1w NPV
and PV pixel intensities (Appendix). Also, the intensities of the synthetic and true CE-T1w
scans will be analyzed on contrast differences between the PV and NPV on individual patient
level. The fraction of patients where significantly different contrast is present will be reported in
percentage. This analysis on individual patient level is only performed for NPV and PV ROIs,
since those are deterministic for the ability to separate the ablated volume from viable tissue. In
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addition for the quantitative evaluation, multiple objective measures are described, including
the mean absolute error (MAE, equation 6.10), mean squared error (MSE, equation 6.11) and the
structural similarity index (SSIM). The MAE is given by the following equation:

MAE =
1
n

n

∑
i=1
|yi − ŷi| , (6.10)

where n is the sample size, y and ŷ are the individual voxels of the true and synthetic CE-
T1w scan respectively. The MAE measures the average magnitude of the differences between
the predicted (synthetic) and true voxels, by weighing all individual errors equally. Thus, larger
errors are not additionally penalized with MAE, opposite to other quadratic measures, such as
the MSE:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 . (6.11)

Since the errors are squared before being averaged, the MSE results in high outcomes by
relatively large errors compared to the MAE for example. A more recent approach to measure
image fidelity is the structural similarity (SSIM) index [171]. The SSIM index takes local pixel
aspects into account when assessing image fidelity. When postulating that images are highly
structured and the pixels contain strong neighbor dependencies, the SSIM gives a more rep-
resenting quantification of perceptual equality of the volumes than accustomed indices as the
MAE for example. The basic idea of SSIM is comparing local patches a and b of two volumes
at three similarity aspects: luminance (l), contrast (c) and structures (s). These similarities are
combined to form a local SSIM:

SSIM = l(a, b) · c(a, b) · s(a, b) , (6.12)

where l(a, b), c(a, b) and s(a, b) are respectively:

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1
, (6.13)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
, (6.14)

s(a, b) =
σab + C3

σaσb + C3
, (6.15)

with µa and µb the local sample means of both the synthetic and true CE-T1w, σa and σb the
local sample standard deviations, σab the covariance of synthetic and true CE-T1w. C1, C2 and
C3 are small positive constants that stabilize each term, calculated by respectively C1 = (K1, L)2,
C2 = (K2, L)2 and C3 = C2/2. L is the dynamic range of the pixel values, and K1 and K2 are two
scalar constants, proposed respectively as 0.01 and 0.03 by the developers of SSIM [172].

The MAE and MSE two metrics are evaluated over the whole volume, and within the masks
described in the ROI part from section 5.1.8. The SSIM is only measure for the whole volume.
Before evaluating the volumes with the measures, both the true and synthesized volumes were
rescaled to [0, 1] intensity. This is done by rescaling the 1st and 99th percentile of all intensities
to an intensity of 0 and 1 respectively. Secondly, a graph of probability density is presented for
pixel-value within the separate NPV and PV regions post-HIFU. Clear separation between these
distributions would represent high contrast between NPV and PV.
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Qualitative evaluation (conducted by A. Zijlstra (2020), medicine student)

Qualitative analysis was conducted by means of questionnaires. Four radiologists with expe-
rience in MR-HIFU treatments from the Isala Hospital in Zwolle evaluated the synthetic and
true CE-T1w scans unpaired in random order. The questionnaire included a section assessing
the treatment progression of the MR-HIFU procedure. Whether the treatment was technically
successful and finished based on the imaging data was asked in the first dichotomous question.
In a following question, the observers were asked to estimate the NPV fraction, in percentages
from 0-100%. In a separate section, the general aspects of the scan were assessed on a discrete
0-10 scale. This section included contrast quality, spatial resolution, SNR and overall quality of
the scan. Zero indicated very poor quality, and 10 indicated perfect quality.

The two postprocedural MR-HIFU scans, i.e. synthetic and true CE-T1w, were shown in
random order, and the observers assessed these scans with the questions above. The question-
naire also included more questions regarding specifics of the scans, those can be found in the
internship report of A. Zijlstra (2020), the main findings are also listed here. When available,
the observers had access to the screening synthetic and true CE-T1w scans for comparison to
the postprocedural true or synthetic CE-T1w scan, during scoring. Also other scans from the
screening or periprocedural MR-protocol where shown. The rationale of these questions was
to evaluate whether the observers would assess the treatment progression differently on the
synthetic CE-T1w scan compared to the true CE-T1w scan. If not, this indicates the synthetic
CE-T1w scan could be safe and feasible to assess the MR-HIFU treatment progression.

6.1.7 Statistical analysis

In the quantitative analysis, D’Agostino’s K-squared test [165, 166] with a significance level of
5% (α = 0.05) is used to test if the measurements are taken from a normal distribution. Paired
normal distributed samples are tested with a student T-test, while not normally distributed
paired samples are tested with the Wilcoxon signed rank test. The mean contrast is tested on
significant difference between the NPVs and PVs for the true and synthetic CE-T1w scans. On
individual patient level, the contrast differences between intensities on true and synthetic CE-
T1w scans within the PV and NPV ROI will be tested with a Mann-Whitney U-test. Also, the
NPVs and PVs are tested between the scans, to detect whether they are sampled from the same
distribution. An significance level of 5% is chosen for all tests.

For the qualitative evaluation, the dichotomous question regarding the technical success
were analyzed with intra-observer agreement based on the responses of the true and synthetic
CE-T1w scans. These results were reported by absolute agreement and 95% CIs. The estimations
of NPV-ratio were tested on the significant differences between the true and synthetic CE-T1w
scans, and the true ratios as measured on 3D on the true CE-T1w scans by a radiology resident.
In case of normally distributed data a linear regression analysis was performed, and a Fried-
man’s test for not-normally distributed data. The responses on a 0-10 scale assessing the general
quality of the scans were analyzed with a paired T-test or a Wilcoxon’s signed rank test after
a normality test. On the general quality section, the tested aspects were considered sufficient
when reached a score of ≥ 6 in more than 80% of cases.

6.2 Results

This section is set out with an overview of the patients from table 5.2 divided in three sets, and is
provided in table 6.2. From the MaSS-II study population existing of 75 women, a DWI-scan was
made from the 55 last treated patients. After exclusion of unusable sets, the following amount



Chapter 6. Approach 2: DL-based 44

of usable DWI datasets remained for testing and evaluation of the algorithm for the screening
and post-HIFU scans:

set screening (n) post-HIFU (n)
training 19 21

validation 9 10
testing 15 19

TABLE 6.1: Total used DWI volumes in each subset for the development and test-
ing of the DL-based approach, after exclusion of the unusable scans.

Visual examples of the final selected model are shown for three patients in figure 6.6 includ-
ing DL-based reconstructions of synthetic CE-T1w scans, derived from DWI. These examples
are from patients in the test set, and show three degrees of NPV-fractions.

Characteristic
Mean or count

Dtrain Dval Dtest
Patients included 23 11 23
Age (years) 44.6 (± 6.05) 39.4 (± 8.58) 42.8 (± 5.99)
BMI (kg/m2) 25.4 (± 3.13) 24.4 (± 4.43) 24.7 (± 3.51)
Abdominal fat layer (cm) 2.67 (± 1.33) 1.57 (± 0.94) 1.95 (± 0.97)
Uterine position AVF 22 (95.7) 10 (90.1) 14 (60.9)

RVF 1 (4.3) 1 (9.1) 4 (17.4)
Upwards 5 (21.7)

Number of fibroids treated 1 19 (82.6) 7 (63.6) 15 (65.2)
2 1 (4.35) 3 (27.3) 2 (8.70)
3 2 (8.70) 1 (9.1) 4 (17.4)
4 1 (4.35) 1 (4.35)
5 1 (4.35)

Fibroids’ location Submucosal 10 (28.6) 2 (12.5) 10 (27.8)
Intramural 7 (20.0) 5 (31.25) 13 (36.1)
Subserosal 13 (37.1) 5 (31.25) 7 (19.4)

Hybrid 5 (14.3) 4 (25.0) 6 (16.7)
Funaki class 1 3 (8.8) 1 (6.3) 7 (18.9)

2 26 (76.5) 13 (81.2) 28 (75.7)
3 5 (14.7) 3 (12.5) 4 (10.8)

Maximum diameter (cm) 5.28 (± 2.71) 8.25 (± 4.21) 4.70 (± 2.88)
Fibroid volume pre-HIFU (cm) 87.7 (± 138.9) 271.4 (± 321.1) 110.3 (± 185.3)
Non-Perfused Volume (%) 67.1 (± 33.9) 59.9 (± 30.1) 64.7 (± 34.8)

TABLE 6.2: Characteristics of the dataset visible in table 5.2, after division in the
train, validation and test set.

6.2.1 Quantitative evaluation

The distributions of the pixel intensities in the post-HIFU synthetic CE-T1w reconstructions are
summarized in a boxplot, visible in figure 6.7. In this plot, the means are compared within the
different regions between the true and synthetic CE-T1w scans. The mean pixel intensities of
the synthetic and true CE-T1w scans are for the Full volume 0.39(±0.25) and 0.38(±0.24) respec-
tively. For the post-HIFU FV, the mean intensities for the synthetic and CE-T1w are 0.74(±0.21)
and 0.67(±0.24) respectively. The PV had mean intensities 0.83(±0.18) and 0.85(±0.13) for the
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FIGURE 6.6: Overview of three UF reconstructions with the proposed DL-based
approach. In this figure, patients with three levels of completeness of MR-HIFU
ablation are shown, with the synthetic CE-T1w reconstructions in the last column,
retrieved from the DWI scans in the second column. The reference true CE-T1w
scans are depicted in the third column, and an anatomical T2w image is presented

in the first column.

synthetic and true CE-T1w scans respectively. For the NPV, the synthetic and true pixel intensi-
ties were on average 0.64(±0.20) and 0.47(±0.14) respectively. In section B.2 the kernel density
estimations are given (Appendix). On the level of individual patients, a statistically significant
difference in pixel intensity between the NPV and PV ROI was found in 95% of patients for the
synthetic CE-T1w scan, versus 100% for the true CE-T1w scans. In table 6.3 the data gathered
with the metrics are listed, representing the mean outcome of the metric for all patients in the
mentioned dataset.

validation test
MAE MSE SSIM MAE MSE SSIM

Fibroid volume (FV) 0.189 0.175 0.227 0.218
Non-perfused volume (NPV) 0.237 0.218 0.301 0.292
Perfused volume (PV) 0.155 0.144 0.173 0.166
Total volume 0.155 0.143 0.423 0.153 0.154 0.427

TABLE 6.3: Outcomes of metrics at the post-HIFU scans (true and synthetic vol-
umes were normalized to [0, 1] intensity in different anatomical regions). These
outcomes describe the similarities in pixel intensities between the true and syn-
thetic CE-T1w scans. For the MAE and MSE metrics, an outcome close to zero
denote good resemblance of both scans, while an SSIM of 1 resembles equal scans.

Statistical analysis

The average of the mean intensities for all test patients in the NPV and PV regions for the
true CE-T1w scans are 0.48(±0.088) and 0.82(±0.10) respectively. For the synthetic scans, the
averages for NPV and PV intensities are 0.75(±0.15) and 0.81(±0.14) respectively. From the
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FIGURE 6.7: Distributions of voxel intensities of the true (dark) and synthetic
(light) CE-T1w scans within different anatomical regions. The goal of the DL-
training was to match the distributions of the true and synthetic CE-T1w scans
properly. The clinically relevant contrast is mainly resembled by the difference in
intensity of the perfused volume (PV) and the non-perfused volume (NPV). As can be
seen, the contrast between those regions is larger at the true CE-T1w scans, but the
intensities at the synthetic CE-T1w scans also differ significantly between these
regions (as shown in this work). Another appearing phenomenon is the larger
spread in the NPV intensities for the synthetic CE-T1w scans. This indicates that
the pixel intensities of non-perfused voxels are more often high for the synthetic

CE-T1w scans in relation to the true CE-T1w scans.

D’Agostino and Pearson’s normaltest, the means in both true and synthetic NPV were normally
distributed (p = 0.25 and p = 0.74 respectively). The PVs from the true and synthetic CE-T1w
scans were both not normally distributed with a p-value of 7.43 ∗ 10−4 and 5.18 ∗ 10−3 respec-
tively. Therefore, the Wilcoxon signed-rank test was used to investigate the eventual difference
between the distributions when not normally distributed, and the paired t-test was used other-
wise.

The distributions of the mean PV and NPV intensities were significantly different in the test
set for both the true and synthetic CE-T1w scans: p = 8.86 ∗ 10−5 (true) and p = 8.97 ∗ 10−3

(synthetic). The PVs for both true and synthetic scans did not differ significantly with a p-value
of 0.85, while the distributions of the NPVs were statistically different (p = 2.31 ∗ 10−7).

6.2.2 Qualitative evaluation

The results of the section of the qualitative evaluation that asked whether treatments were tech-
nically successful based on the true and synthetic CE-T1w scans are listed in table 6.4. The
responses on the cases with a complete scan protocol have been separately reported. For the
cases from the full protocol, absolute agreement between assessment based on the true and syn-
thetic CE-T1w scans was achieved in 50/60 cases (83%). The majority of the disagreement of the
cases were caused by false-negatives on the synthetic CE-T1w scans with a false-negative rate
of 18%, while the false-positive rate was 9%. True-positive and true negative rates were respec-
tively 82% and 91%. The absolute, positive and negative agreement of cases with the total scan
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post-procedural assessment of technical success
on synthetic CE-T1w on true CE-T1w

All patients Full protocol
Yes No Yes No

Observer 1
Yes 9 1 8 0
No 4 5 3 4

Observer 2
Yes 12 2 11 0
No 4 1 3 1

Observer 3
Yes 11 3 10 1
No 3 2 2 2

Observer 4
Yes 13 1 11 0
No 1 4 1 3

All observers
Yes 45 7 40 1
No 12 12 9 10

TABLE 6.4: Agreement between the answers of the observers when asked when
the treatment was technically successful based on the synthetic or true CE-T1w
scans. During the test, the observers assessed the technical outcome of the MR-
HIFU procedure based on the synthetic and true CE-T1w scans in random order.
The cases with an incomplete scan protocol have been separated, and are listed in

the column ’Full protocol’.

n(%) subjective assessments ≥ 6
True CE-T1w Synthetic CE-T1w

Contrast 76/76 (100) 70/76 (92.1)
Spatial resolution 75/76 (98.7) 70/76 (92.1)
SNR 74/76 (97.4) 71/76 (93.4)
Total quality 76/76 (100) 70/76 (97.4)

TABLE 6.5: General aspects of the true and synthetic CE-T1w scans, with combined
responses of the four observers, denoting the fraction that scored sufficiently (≥
6). More than 80% was considered sufficient here, and both scans reached that

percentage on all aspects.

protocol are listed in Appendix section B.3, including the 95%-CIs.

For the NPV fraction estimation, no statistical differences were found in the estimations
based on the synthetic and true CE-T1w scans (α = 5%). Also, no statistical difference when
comparing the estimations of both scans with the true NPV-ratios, as measured on the true CE-
T1w scan in 3D. The p-values of this multi-group analysis for the first, second, third and fourth
observer were 0.052, 0.437, 0.115 and 0.951 respectively, implicating no difference between the
three distributions (i.e. NPV ratio estimated on synthetic and true CE-T1w scans, and ground-
truth ratios measured on true CE-T1w scan in 3D). For the exact Friedman outcomes, including
percentile descriptives and ranks, see Appendix section B.4.

In the qualitative analysis section assessing the general quality of the scan, all aspects (con-
trast, spatial resolution, SNR, and total quality) were significantly lower on the synthetic CE-T1w
scan than the true CE-T1w scan (p<0.0005). Both scans achieved sufficient scores (≥ 6 on more
than 80%) on all measured aspects, as listed in table 6.5. This implicates despite the synthetic CE-
T1w scans having inferior image quality relative to the true CE-T1w scans, their image quality
can be considered sufficient.
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Chapter 7

Discussion

7.1 General discussion

In this work, two methods were revealed for contrast agent-free visualization of the NPV after
or during MR-HIFU treatment of UF. With the DWI IVIM approach described in chapter 5, the f -
parameter showed statistically significant contrast differences between the NPV and surround-
ing perfused tissue, on a post-procedural DWI scan. Also with the second approach, based on
DL, statistically significant contrast differences were found quantitatively between the PV and
NPV. Subjective analysis with radiologists established the image fidelity of the synthetic CE-
T1w scans relative to paired true CE-T1w scans. NPV ratio estimations on the true and synthetic
CE-T1w scans were not statistically significant different.

Based on these findings, the shown methods in this work are a viable Gd-free alternative to
CE-T1w, in order to assess the NPV after MR-HIFU treatment of UF. An implication of this is
the possibility that procedure times and NPV-rates can be improved for MR-HIFU treatments,
when contrast agents are no longer a necessity to evaluate technical treatment effects. Peripro-
cedural DWI-scans can be translated to f -maps or synthetic CE-T1w scans to aid the operator
in visualization of treatment effect, and determining the progress of ablation. Hence, procedure
times can be shortened by avoiding unnecessary prolongation of ablations, and NPV-rates can
be improved by circumventing premature stopping of ablations.

7.2 IVIM approach

It was shown here quantitatively that the NPV can be distinguished from the post-HIFU PV and
the FV by using DWI IVIM. Parameter maps were acquired by fitting the IVIM equation (equa-
tion 5.6) to the DWI datasets with a least-squares method. A significant difference was found
in f between the NPV and the post-HIFU PV and FV during screening. Also, the D parameter
deviated significantly within the post-HIFU PV and the FV during screening. These findings
suggest that the f -maps could be used to evaluate the treatment progress without using Gd-
based contrast agents.

The f -parameter decreases significantly during ablation of tissue with MR-HIFU, as can be
seen in the boxplot in figure 5.5 (b). It was shown that in 89% of patients the average intensity of
the NPV and PV on the f -maps differed significantly. Since in all these 89% patients a decrease
in f -value was found, the f -maps show an consistent local decline in intensity after MR-HIFU
ablation, and are therefore an interesting solution for Gd-free visualization of the MR-HIFU
treatment effect. The location, size and geometry of the NPV and unablated PV were defined
on the paired CE-T1w scan, by drawing ROIs. The decrease of f reflects the reduction of the
fast attenuation component in the DWI signal relative to the slow, i.e. diffusion component of
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the signal. This component describes the incoherent motion of water molecules in the capillary
network [149], and is hypothetically related to the degree of microcirculation, or perfusion of
tissue. This means when f is reduced, the volume fraction of microcirculation is attenuated in
relation to the diffusion component.

A possible explanation of the decrease in f after MR-HIFU treatment might be that after suc-
cessful ablation necrosis occurs, entailing decrease in activity of capillaries and a reduction in
flowing blood volume. This hypothesis is consistent with previous research, reporting coagula-
tion necrosis and devascularization after HIFU ablation [173, 174].

Also, the mean D-parameter showed a significant decline from the total FV during screen-
ing, and the unablated PV after MR-HIFU treatment, as visible in the boxplot in figure 5.5 (a).
This means that the diffusion was more restricted in the PV and diffusion rate had lower veloc-
ity. This phenomenon may be due to the intracellular uptake of fluid, increasing the volume of
intracellular water. Fluid in the intracellular compartment is more restricted than in the extracel-
lular interstitium [175]. It can therefore be assumed that at the boundaries of NPV, diffusion gets
more restricted, and intercellular fluid increases. This might caused by partially ablated cells,
that are not completely necrotized. An intriguing follow-up question would be to ask whether
longterm outcomes are related to the described effects visible on the D-map. It can be hypoth-
esized that in particular the locations with decreased diffusivity after MR-HIFU ablations will
recover and remain viable in a relatively short period of time.

In terms of diffusion values inside the NPV compared to the unablated PV, it can be seen in
figure 5.5 that there is a slight increase in diffusion value. Although this effect is not statistically
significant for the total dataset (p < 0.05), this rise might reflect the increased extracellular fluid
due to necrosis of cells, releasing the intracellular fluid in the surrounding interstitium. It should
be noted however, that the accordance between the CE-T1w and the DWI sequences is not per-
fect. This can partly be explained by the contrast solution diffusing in the NPV, entailing an
underestimation of the true NPV. If focusing on the individual patient level, it was established
that the average D-value within the NPV was significantly higher in 58% of cases compared
to the PV, and lower in 31% of patients. This suggests that the diffusivity in tissue changes
relatively common after MR-HIFU ablation (in 89% of total patients), but can either increase or
decrease compared to the viable surrounding UF tissue. It is likely that this phenomenon largely
depends on UF characteristics, and further research is needed to elaborate on this finding to ex-
plain the cause.

These effects of D and f were also visualized for a single patient with near-complete ablation
if figure 5.4. It can be seen that despite the noise, a clear low-intensity ring is visible in the D-
map, on and around the borders of the NPV. For the f -map, the hypo-intense region is easily
distinguishable in comparison to the screening f -map, and correlates to the NPV showed on the
CE-T1w scan.

Comparison to literature

In 2005, the first DWI paper regarding assessment of MR-HIFU treatment effects in UFs was pub-
lished by Jacobs et al. (2005) [176]. The authors used a mono-exponential model (equation 2.11)
to describe DWI data with three b-values (0, 500 and 1000 s/mm2), and demonstrated feasibility
of DWI and ADC mapping for identification and monitoring of the NPV after MR-HIFU.

Bi-exponential models (equation 2.13) as proposed in this work are not known in assessment
of treatment effects after MR-HIFU ablation of UFs. However, it has already been suggested
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by Ikink et al. (2014) [177] that low b-values are useful in emphasizing perfusion effects after
MR-HIFU. This encourages the hypothesis that the perfusion effects influences the DWI values
in the low b-values, and could be extracted by a bi-exponential model as proposed here.

Although IVIM has not yet been performed as strategy to assess MR-HIFU treatment effects,
it has been used in evaluation of UAE in the study from Cao et al. (2017) [178]. The authors
described twelve patients with a DWI sequence with b-values 0, 50, 100, 200, 500, 800, 1000, 1200
s/mm2 at baseline and six months follow-up, and found also a significant decrease in f and an
increased ADC value. The increase in D-value and decrease in f -value found here, as previ-
ously stated, confirms findings in previous research commenting on a high-signal ring on DWI,
collocating the NPV on CE-T1w [179].

Another study from Guo et al. (2015) [180] used 16 b-values between 0 and 800 s/mm2 to per-
form IVIM analysis after radiofrequency ablation of tumors in 10 rabbits. They demonstrated
that IVIM that changes in D, D∗ and f can be utilized to predict tumor response after radiofre-
quency ablation, but they found no evident link between the parameters and dynamic CE-MRI.
These findings might raise intriguing questions regarding the nature and extent of IVIM analysis
to describe the perfusion of tissue. However, it should be noted that the perfusion characteristics
and blood flow dynamics in a tumor are likely to differ by large amount from UFs.

The relationship between IVIM parameters and CE-MRI has been studied extensively pre-
viously, and resemblance between IVIM and (dynamic) CE-MRI seems to be highly application
dependent since it still remains a much debated question [180–184]. Therefore, the possible link
between CE-MRI and IVIM may be limited by the specifics of the application it is investigated
in.

7.3 Deep learning-based approach

The strategy described in chapter 6 was designed to determine the effectiveness of a DL-based
method in translation of DWI to CE-T1w. The results of this chapter show that the proposed
DL-based network (cGAN) was feasible as method for synthetic CE-T1w generation. This was
supported by both the quantitative and the qualitative evaluation performed in this work.

With the quantitative evaluation is was established that significant differences in intensity
was achieved within patients in the NPV relative to the unablated PV, similar to the f -parameter
from the IVIM analysis (see boxplot for intensity differences 6.7). The intensities of the PVs on
the true and synthetic CE-T1ws were not statistically different, while the NPVs were. The mean
NPV intensities on the synthetic CE-T1w were higher than on the true CE-T1w scans. An im-
plication of this might be that parts of non-perfused areas could resemble viable perfused tissue
on synthetic CE-T1w scans. This inconsistency could be attributed to the choice of network, that
was partly based on the least ratio of false NPV appearance on the synthetic CE-T1w on scans
from the validation set, see e.g. section B.1. It is possible, therefore, that another model pro-
ducing synthetic CE-T1ws with more contrast between NPV and PV do not result in statistical
differences between synthetic and true NPVs.

It can be seen from the graph in figure 6.7 that the distribution of pixel intensities after an
MR-HIFU treatment is steeper for true CE-T1w scans than synthetic CE-T1w scans. One of the
factors explaining this increased spread at the synthetic scans are the imperfect registration be-
tween the DWI and CE-T1w scans. This leads to geometrical differences of the synthetic and
true CE-T1ws, leading to interference of different tissue types within in the drawn ROIs, based
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on the true CE-T1w scans.

Important findings from the qualitative evaluation include the result that radiologists de-
cided equally on the synthetic and true CE-T1w scan whether the treatment was technically
successful in 83% of the cases. It was also found that both the NPV ratio estimations on the
synthetic and true CE-T1w scans did not differ significantly from the true measured NPV ratios.
This means that on both scans, the ratio between the NPV and the FV can be adequately esti-
mated by the radiologists. The last main qualitative finding was the difference in general quality
between the synthetic and true CE-T1w scan. Although the quality on the measured aspects of
the synthetic CE-T1w was significantly lower compared to the true CE-T1w scan, the quality
was still sufficient.

An noteworthy finding was the difference in qualitative performance of the radiologists on
the reconstructed synthetic scans when the full scan protocol was available, compared to pro-
tocols with missing data (mostly screening scans). We found that assessment based on the syn-
thetic CE-T1w scans of the technical success increased in agreement with true CE-T1w scans
when the full protocol was available (75% improved to 83%). This emphasizes the importance
of a (synthetic) scan acquired during screening for comparison, when assessing a post-HIFU
scan.

7.3.1 Comparison to literature

Up to now, very little attention have been paid to DL-based methods for replicating gadolinium-
based contrast on MRI. Moreover, no previous study has investigated synthetic CE-MRI as tool
for periprocedural MR-HIFU treatment evaluation. What has been investigated to a broader ex-
tent is the DL-based dose reduction for Gd-based contrast agents [185].

DL-based production of Gd-contrast was recently proposed by Sun et al. (2020) [186] in
brains of 49 mice, based on noncontrast T2w scans. Another study that approaches the efforts
from this work in synthetic Gd contrast generation the closest was conducted by Kleesiek et
al. (2019) [187] They proposed a method for predicting contrast enhancement from noncontrast
enhanced multiparametric brain MRI including a DWI sequence, also using a DL-approach.
However, they only used two different b-values, i.e. 0 and 1200 mm2/s. However, it has been
established that information regarding perfusion of tissue is present in low b-values [177]. For
quantitative evaluation, the authors reported PSNR values ranging between 30 and 20, and an
SSIM between 0.74 and 0.88.

7.4 Limitations

Since the nature of this study was retrospective, collection of data have not been conducted with
IVIM and DL-based methods in mind. In hindsight, consistency of scanned anatomical regions
and unvaried acquisition of screening scans would have likely increased training of the DL-
network and statistical power of the analysis conducted here. Nevertheless, the acquisition of
multi-parametric data have been performed aiming at a comparable goal as stated in this thesis
(section 4).

Also, the generalisability of these results are subject to limitations. The results shown in this
work are based on MR-data collected from a single center. It has been established that acquisi-
tion of MR-scans are widely vendor and scanner specific [188–190] and, therefore, generalisabil-
ity of results presented here is likely impeded by this factor. Moreover, the spread in MR-HIFU
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treatment results is not homogeneous, as during the inclusion of patients a learning curve was
present, resulting in on average higher NPV ratios in the later included patients.

Regarding the analysis in chapter 6, an issue that was not addressed in this study was the in-
traobserver consistency within the true CE-T1w scans. An implication of this is that the inherent
intraobserver consistency remains concealed, while interfering with the consistency measure-
ments between true and synthetic CE-T1w. Besides, a higher number of experts could lead to
better insights in the true perceived similarity between true and synthetic CE-T1w. Also, the
observers that participated in this study were from the a single center, where the data was also
collected. General performance of the synthetic CE-T1w scan, relative to assessment by a radi-
ologists, would be better evaluated if the background of the observers had more variety.

For the development and training of the DL-network, optimal hyperparameters have not
been searched with a systematic grid-search, but had been based on literature and prior experi-
ence. For this specific application, it is plausible that a optimum in hyperparameters differs from
the hyperparameters described in this work. Taking into consideration that the search space of
the optimal combination of hyperparameters is large, ensuring the best set of parameters is a
difficult task.

7.5 Future recommendations

A natural progression of this work is to analyze the effectiveness of both IVIM and the DL-based
method in a prospective manner. Further work needs to be done whether these methods have
a significant added value in clinical practice, and indeed lead to improved treatment outcomes
and shorter treatment times.

An interesting suggestion for future efforts is DL-based IVIM fitting, replacing the conven-
tional least squares fit. With a successful implementation, as shown feasible by Barbieri et al.
(2020) [191], could lead to precise, accurate and in particular fast IVIM model fitting to DWI
data. This technique has been exploratory investigated by the author of this work. The prelim-
inary results look promising, however following systematic investigations are required before
publication.

Besides treatment evaluation, the extraction of IVIM parameters from the DWI data could
also have potential to deliver insights in prediction during screening and follow-up of MR-
HIFU. For screening, IVIM parameters might aid the process of predicting treatment outcomes,
and help in patient selection for the MR-HIFU treatment. For follow-up, IVIM parameters could
hypothetically serve as predictor for long term outcomes, as discussed earlier. Future work
should further elaborate the relation between the IVIM parameters and these topics.

With the availability of a tool to assess treatment outcomes periprocedurally, continued ef-
forts could eventually lead to efficient application of targeted vessel occlusion, potentially en-
tailing short treatment times [177]. With such a tool, these hypothesized effects can be further
investigated and eventually utilized to create an improved non-invasive treatment option for
patients suffering from UFs.

To further investigate and exploit the phenomenon of finding a larger periprocedural NPV
than expected based on the placement of the transducers focal point, an improved screening
MR-protocol would be helpful. At this moment, the enlarged NPV occurs sporadically and is
hard to anticipate. The main reason for this is the usual ignorance regarding the exact location
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of the nourishing vessel(s) of the UFs. To be able to exploit the enlarged occurrence of NPV, hy-
pothetically caused by vessel occlusion, the location of the incoming vessels of the UF should be
localized during screening. This requires improved visualization of the UFs vasculature during
screening, or directly preprocedurally. To achieve more insights in the circulation of an UF, MR
angiography or US-based power doppler could be embedded in the screening protocol.

In addition, to gain progress in the discussion around the exact mechanism behind MR-HIFU
induced vessel occlusion or ablation, a pilot study investigating the histopathology of MR-HIFU
sonications on vessels could be helpful. A proposal of a study design covering this topic would
be to include women with UFs undergoing hysterectomy in the near future. Before surgery,
these patients will receive MR-HIFU treatment with the targeted vessel occlusion strategy. Af-
ter subsequent hysterectomy, histopathology could examine the resected UF from surgery and
describe the effects of the MR-HIFU ablation.

Lastly, future research should be undertaken to not only improve modeling, but also acqui-
sition of improved DWI-data. This work made use of a range of b-values between 0 and 800
mm2/s, but a larger number of, in special, low b-values are likely to reduce noise, and improve
model outcomes. Implications of this could be a higher spatial resolution and lower uncertain-
ties with predictions. Moreover, the clinical practice could benefit when faster acquisition leads
to shorter treatment times. In addition, the used DWI-data was single-center and single-vendor,
and should ideally be multi-center and multi-vendor, in particular for DL applications [192].
Future work around this topic should therefore aim at wider data acquisition.

7.6 Conclusion

7.6.1 General conclusion

Many women suffer from uterine fibroids at some moment in their life. These benign tumors can
lead to complaints that require treatment to achieve symptom relieve. Although a non-invasive
uterus-sparing treatment option is available, called MR-HIFU, the invalidating surgical options
are more commonly opted for. One of the reasons for this is the limited availability of MR-HIFU.
This is due to long procedure times, as MR-HIFU treatments of uterine fibroids generally take a
long time. This is partly caused by the inability of the operating radiologists to view the treat-
ment progression during the MR-HIFU procedure. Currently, the treatment progress can only be
assessed after injection of a contrast-agent. A contrast-agent can unfortunately only be injected
once, when the treatment has already been finished.

Thus, procedure times can possibly be shortened when no contrast-agent is needed for visu-
alization of the treatment progression. This thesis attempted to offer a solution for this problem.
Two methods are proposed in this work to achieve this goal of visualization of the treatment
effect without needing a contrast-agent. By analyzing a specific MRI-scan with a mathematical
equation and an artificial intelligence model, it has been shown that these proposals are adequate
for visualization of the MR-HIFU treatment progression. The efforts in this work contribute to
the goal of making MR-HIFU more reliable and available as treatment option for symptomatic
uterine fibroids. With the accomplishments from this work, more women will eventually be able
to benefit from the non-invasive attractiveness of MR-HIFU as treatment option for symptomatic
uterine fibroids.
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7.6.2 Detailed conclusion

This work has revealed two effective methods for Gd-free visualization of the NPV after MR-
HIFU treatment of UF by using DWI, enabling peri- and intraprocedural treatment evaluation. It
has been shown quantitatively that both the IVIM and DL-based strategies result in significantly
different pixel intensities between the unablated PV and the ablated NPV, suggesting sufficient
contrast for discrimination between them. Qualitative evaluation of the DL-based approach dis-
closed an agreement of 83% between clinical decisions on the reference and generated CE-T1w
scans. NPV ratio estimations could be adequately performed on the synthetic and true CE-T1w
scans, with no significant variation from the ground-truth NPV ratios. The findings and pro-
posed methods in this work can lead to improved outcomes of MR-HIFU treatments. Moreover,
with feasible and safe Gd-free intraprocedural visualization of the MR-HIFU treatment progres-
sion, new avenues are opened for testing treatment techniques that possibly shorten procedure
times. These implications benefit the patient suffering from UF, by making a non-invasive treat-
ment option more reliable and available, leading to more efficient healthcare.
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Appendix A

Appendix IVIM

A.1 Trust-region optimization

The TRF method is used to find the minimum of an objective function (in this case equation 5.8).
Therefore, the sum of the squared residuals S(β) is minimized by finding the optimal minimizer
β containing the model parameters. S(β) is also called the objective function, and the general
goal of TRF is to find a local solution for minimization of S(β).

In order to illustrate the basic concepts of TRF, suppose an example where the objective func-
tion S(β) has only two parameters β1 and β2. The objective function relative to these parameters
may look like the contour map in figure A.1.
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FIGURE A.1: Contour map of objective function S(β) relative to β1 and β2. A local
minimum is located at the star-symbol.

With the TRF algorithm, the goal is to find the (preferably global) minimum at the star-
symbol in figure A.1, i.e. finding the β parameters that minimize the sum of the squared residu-
als. The TRF method is an iterative algorithm, that starts at t = 0 by defining an initial estimate
of the parameters: β0. At each next iteration, new values for β are searched that are closer to the
local minimum. To achieve this, a model S̃t of the objective function S is calculated:

S̃t(βt + s) = S(βt) + gT
t s +

1
2

sTBks , (A.1)
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where S̃t(βt + s) is the quadratic approximation of S based on the second degree Taylor expan-
sion around βt. The gradient of S(β) at βt is defined by gt and Bk is an approximation of the
second order derivative of S(β) at βt. With S̃t(βt) the function of S(β) is estimated around βt. In
general the relation between the objective function and the Taylor expansion loosens at a greater
distance to the expansion point (βt). During the TRF iterations this model S̃t(βt) is trusted in an
area with radius λt to the current point of βt.

Specifically, at the start of the iterations β0 is defined, for example at {0.1, 0} in the graph of
figure A.1, with a trusted-region with radius 0.05, as depicted in figure A.2.
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FIGURE A.2: (a) Contour map of S(β) with β0 (red dot) and the trusted-region λ0
(red circle). (b) Contour map of S̃0(β0) inside the trusted-region λ0 at t = 0.

After defining β0, a step ct with a ’sufficient’ negative gradient is searched within the trusted-
region of S̃t. This is done by finding the generalized Cauchy point of the model, that is the first local
minimizer of equation A.1 [193]. When a trial step is found, the ratio of the objective function
and model at this trial point is calculated with the following equation:

ρt =
S(βt)− S(βt + ct)

S̃t(βt)− S̃t(βt + ct)
, (A.2)

and then 1 of three steps is performed based on the outcome of ρt:

1. ρt is larger or equal than a given threshold: the new trial point is accepted and βt+1 =
βt + ct,

2. ρt is smaller than the threshold: the new trial point is declined and βt+1 = βt.

Following the above situations: the trusted-region’s radius λt+1 is increased in case 1, when ρt
exceeds the preset threshold. Accordingly, in the second case the trusted-region is decreased by
a preset amount when S̃t(βt + c) did not bear enough relationship to S(βt + c).

Suppose in the example in figure A.2, new trial point at the triangle symbol results in a large
enough ρ0, the point is accepted and the β1 = β0 + c0, and the trusted-region λ1 is increased
relative to λ0. The result of these steps is visualized in figure A.3 (a). The process of finding a
new trial point, acceptance, moving to the next iteration t = 2 and subsequent enlargement of
the trusted-region radius to ρ2 results in figure A.3 (b).

Now, the trusted-region covers a large part of the search space of β, but this map of S̃2(β2)
does not bear sufficient relation to the true map of S(β), as can be seen when comparing A.3 (b)
with A.1. This time, the new found trial point at the triangle symbol is rejected as ρ2 does not
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FIGURE A.3: Contour maps of S̃t(βt) with the red dot denoting β, the red circle
the trusted region with radius λt and the red triangle symbol representing the trial
point βt + ct, for t ∈ {1, 2, 3, 4}. (a) Contour map of S̃1(β1) inside the trusted-
region λ1 at t = 1 after acceptance of c0. (b) Contour map S̃2(β2) after acceptance
of c1, with the red triangle symbol at trial point β2 + c2 with low relation to S(β2 +

c2). (c) Contour map of S̃3(β3) after declining c2, at this iteration with a smaller
trusted-region, c3 does bear sufficient relationship to S(β3 + c3). (d) Contour map
of S̃4(β4) after accepting c3, the trusted-region is enlarged again and the minimum

(star symbol) is closely approached by the next step c4.

pass the preset threshold. Therefore case 2 is initiated: β3 = β2 and λ3 < λ2, resulting in
figure A.3 (c). At this iteration, a trial point is searched in a smaller trusted-region, and ρ3 is
large enough. The trial point is accepted at the trusted-region enlarged again, according case 1,
illustrated in figure A.3 (d). At this moment, the new trial point is in the vicinity of the true local
minimum at S(β), and once the distances between subsequent updated trial points are small
enough, the algorithm can be stopped and the local minimum can be estimated.

A.2 Scatter plot IVIM for relation D with f
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FIGURE A.4: Scatter plot of the mean D versus the mean f parameters found with
the IVIM-fit in the three different regions (i.e. screening FV, post-HIFU PV and
post-HIFU NPV). Each marker represents the mean value in a patient. With this

graph, the relation between D and f in these patients is visualized.
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Appendix DL-based

B.1 Generator depth

Figure B.1.

FIGURE B.1: Influence on DL generator depth on predicted volume, see also fig-
ure 6.4 for the generator architecture. The model investigated in this work con-
sisted of seven encoding layers. The encoding generator layers have been varied
between two and seven layers, and are visualized in this figure for axial recon-
structions of the female pelvic region including an UF. Although no clear trend
can be extracted, it can be derived that the clarity of the NPV delineation is not
depending on the depth of the generator alone, as shallow (two and three layers)
and deep (seven layers) networks seem to delineate the NPV relatively clear com-
pared to the network with five encoding layers. In the shallow networks, with two
and three three encoding layers, the NPV seems more heterogeneous compared
to deeper networks. This could possibly explained by the less extended receptive
field of the DL network, not covering the entire UF in this case. Therefore, the
DL algorithm will not process the entire UF during the prediction, entailing more

variation in intensities within smaller areas.

B.2 Kernel density estimation of pixel intensities CE-T1w scans

Figure B.2.

B.3 Agreement in qualitative evaluation of technical success

Table B.1 for absolute agreement, table B.2 for positive agreement, and table B.3 for negative
agreement.
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FIGURE B.2: (a) Normalized kernel density estimation of the pixel intensities of
the synthetic CE-T1w scans retrieved from all the DWI datasets the test set, for the
three different anatomical regions (NPV, PV and FV). In this graph, the relation is
visualized between the pixel within a region (NPV, PV or FV), and the probability
of that pixel to have a certain intensity (x-axis). (b) Normalized kernel density
estimation of the PV and NPV for both synthetic (colored) and true CE-T1w scans

(black).

B.4 More details on Friedman test statistics

Table B.4.
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Fraction % 95% CI of %
Observer 1 14/19 73.7% [51.9;95.5]
Observer 2 13/19 68.4% [45.4;91.4]
Observer 3 13/19 68.4% [45.4;91.4]
Observer 4 17/19 89.5% [68.6;97.1]
All observers 57/76 75.0% [64.2;83.4]

TABLE B.1: Absolute agreement between the true and synthetic CE-T1w scans,
including 95%-CIs for all the observers, on all cases in the test set. These results
include also the scans where no complete protocol was available, e.g. without
screening scans. Please note that absolute agreement in the cases with a complete

scan protocol was 83%.

Fraction % 95% CI of %
Observer 1 9-14 64.3% [35.6;93.0]
Observer 2 12-18 66.7% [42.5;90.8]
Observer 3 11-17 64.7% [39.4;90.0]
Observer 4 13/15 86.7% [62.1;96.3]
All observers 45/64 70.3% [58.2;80.1]

TABLE B.2: Positive agreement between the true and synthetic CE-T1w scans, in-
cluding 95%-CIs for all the observers, on all cases in the test set.

Fraction % 95% CI of %
Observer 1 5/10 50.0% [12.3;87.7]
Observer 2 1/7 14.3% [-20.7;49.2]
Observer 3 2/8 25.0% [-13.7;63.7]
Observer 4 4/6 66.7% [0.3;90.3]
All observers 12/31 38.7% [23.7;56.2]

TABLE B.3: Negative agreement between the true and synthetic CE-T1w scans,
including 95%-CIs for all the observers, on all cases in the test set.
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TABLE B.4: More details on Friedman test including descriptive statistics, mean
ranks and Friedman test outcomes. No statistical differences have been found
between the estimated NPV rations based on the true and synthetic CE-T1w scans,

and the ground-truth NPV ratios, as measured in 3D on the true CE-T1w scan.
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