
INTEGRATION OF HARD AND SOFT REAL-TIME
TASKS IN CYBER-PHYSICAL SYSTEMS

A. (Arnold) Hofstede

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink

prof. dr. ir. G.J. Heijenk

 September, 2020

045RaM2020
Robotics and

Mechatronics EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Integration of hard and soft real-time tasks in Cyber-Physical Systems

Arnold Hofstede University of Twente

iii

Summary

Cyber-Physical Systems have become more and more complex, increasing the amount of re-
quired computational resources. On battery powered devices, such as drones and mobile
robots, computational resources are limited. Moving the execution of resource intensive algo-
rithms that have no strict timing requirements from a resource-constrained embedded device
to a resource-rich system is a solution for this. This method is used at RaM in the model-driven
design tool-chain TERRA by connecting ROS to LUNA.

A bridge from ROS to LUNA exists, but has limitations that causes that the bridge is not used.
In this project the usability of the ROS-LUNA bridge in distributed Cyber-Physical Systems is
improved and means to integrate soft real-time tasks in the design process of Cyber-Physical
Systems are provided.

To improve the ROS-LUNA bridge an analysis on the existing implementation is done. This
analysis showed that the implementation severely limits the throughput of the bridge, causing
a loss of data when transmitting large amounts of data. The use of TCP for communication
between the ROS side and LUNA side of the bridge causes latency spikes when packets are lost.
In addition, signals transmitted over the ROS-LUNA bridge have a latency that is a multiple of
the network delay when periodic data is transmitted due to Nagle’s algorithm.

The implementation of the bridge in ROS is refined such that it decodes all values in the in-
coming packets immediately, resulting in an increased throughput. By adding the option to
use UDP as transport protocol and to disable Nagle’s algorithm, the usability of the bridge is
improved on systems that are connected by an imperfect network. An evaluation of the bridge
using UDP as a transport protocol shows that latency spikes no longer occur due to lost pack-
ets. When using UDP or TCP with Nagle’s algorithm disabled the latency of the signal is equal
to the delay on the network link.

Several CSP patterns are presented to connect SRT and HRT tasks in applications that are devel-
oped using the TERRA/LUNA tool-chain and ROS. The patterns to decouple HRT from SRT pro-
cess execution are evaluated on a stressed real-time system that uses the Xenomai co-kernel.
The measurements on patterns used to transmit data from LUNA to ROS show that there is
no effect on the amount of jitter in the HRT process when a naive implementation to connect
outgoing ROS channel is used. The measurements on patterns used to receive data from ROS
in LUNA show that naive implementations to connect incoming ROS channels to LUNA result
in synchronization between the HRT process and the rate at which messages are received. The
insignificant difference in results between using proper coupling patterns or naive connections
can be explained by to the abundance of computational resources available on the measure-
ment setup.

Due to covid-19 restrictions, an evaluation of the patterns to connect SRT and HRT tasks could
not be performed on a resource-constrained embedded device. In addition, an implementa-
tion of embedded control software using the improved ROS-LUNA bridge for a representative
demonstration setup could not be achieved.

Robotics and Mechatronics Arnold Hofstede

iv Integration of hard and soft real-time tasks in Cyber-Physical Systems

Arnold Hofstede University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Thesis outline . 2

2 Background 3

2.1 On real time . 3

2.2 RaM ECS tool-chain . 4

2.3 ROS . 6

2.4 ROS-LUNA bridge . 6

2.5 Network . 7

3 Analysis 9

3.1 Typical system overview . 9

3.2 Bridge or native ports . 10

3.3 Impact of imperfect networks . 12

3.4 HRT-SRT connection . 14

3.5 Conclusion and project requirements . 16

4 ROS-LUNA bridge refinements 18

4.1 Design and implementation . 18

4.2 Network effects on implemented transport types 19

4.3 Effects of SRT communication loop . 21

4.4 Discussion . 21

5 Connecting SRT and HRT tasks 22

5.1 Generic methods . 22

5.2 TERRA/LUNA-specific methods . 24

5.3 Evaluation . 27

5.4 Discussion . 29

6 Conclusion and Recommendations 30

A Bridge measurements 31

B Practical notes on using ROS-LUNA bridge 35

Bibliography 37

Robotics and Mechatronics Arnold Hofstede

vi Integration of hard and soft real-time tasks in Cyber-Physical Systems

Arnold Hofstede University of Twente

1

1 Introduction

1.1 Context

A Cyber-Physical System (CPS) consist of a physical plant that is controlled by collaborating
computational algorithms. CPS are emerged from traditional embedded systems into a net-
work of interacting computational elements with physical inputs and outputs. Due to CPS be-
coming more and more complex, the amount of required computational resources increases.
On battery powered devices, such as drones and mobile robots, computational resources are
limited.

The algorithms for interaction with the physical plant, such as loop controllers and safety lay-
ers, typically have hard real-time (HRT) requirements since the system must be reliable and
safe. Higher-level controllers, such as sequence and supervisory controllers, do not have such
strict real-time requirements and are classified as soft real-time (SRT). Missing a deadline in
these algorithms only reduces the usefulness of the result.

Distribution of software over multiple computational devices is a solution to reduce the need
for computational resources on the embedded system when system costs must be reduced
or the energy budget is limited. Resource intensive tasks without HRT requirements can be
offloaded to a remote resource-rich platform. For communication with these tasks it is possible
to use conventional (wireless) networks.

At the Robotics and Mechatronics (RaM) group at the University of Twente, a model-driven
tool-chain TERRA (Twente Embedded Real-time Robot Application) is developed to aid in the
design of HRT embedded control software that uses LUNA (Luna Universal Network Architec-
ture) as a middleware (Bezemer, 2013). An extension to connect LUNA to ROS (Robotic Oper-
ating System) is made by Werff (2016) to offload SRT tasks to a remote platform.

A CPS considered in the context of this thesis consists of a resource-rich platform that is con-
nected to an embedded system by an imperfect network. On the embedded system an HRT
LUNA control application is executed that interacts with the physical system and with algo-
rithms on a resource-rich platform over the network. In addition, other devices such as a cam-
era can capture the physical system and provide data to the SRT algorithms over the network.
A diagram of such a system is given in Figure 1.1.

LUNA

Electrical

Plant

Mechanical

ROS

Software

Network

Electrical Software

Resource-rich platform Embedded system Physical system

HRTSRT SRT

Other

IO

Figure 1.1: Typical Cyber-Physical System considered in this thesis.

Robotics and Mechatronics Arnold Hofstede

2 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Even though a connection from LUNA to ROS exists since 2015 (Vos, 2015), it is not often used.
An platform analysis done on projects within the RaM group by Kempenaar (2014) concludes
that loop control is typically not part of the research, resulting in the use of ready-to-use off-
the-shelf controller components. In some of the control setups, the control algorithms were not
limited to dynamic equations. Image processing and path planning provided by a third party
were also part of the control software, adding additional requirements on the development
tool.

An early version of the ROS-LUNA bridge is used by Vos (2015) to add a vision-based sorter
module to a production cell setup. Ridder (2018) used the same setup for a use-case driven
analysis of the TERRA tool-chain, but used native ROS-channels since the limitations of the
ROS-LUNA bridge made it an unsuitable option. The existence of these limitations are in con-
flict with the design philosophy of the bridge that is to be used without modifications in all
situations.

1.2 Project goals

The goals of this project concern the usability of the ROS-LUNA bridge and integration of soft
and hard real-time software in a broader context. These goals are formulated as follows:

1. Improve usability of the ROS-LUNA bridge in distributed Cyber-Physical Systems.

2. Provide means to integrate soft real-time and hard real-time software in the design process
of Cyber-Physical Systems.

1.3 Thesis outline

In Chapter 2, background material on real-time, the RaM ECS tool-chain, ROS and the ROS-
LUNA bridge is given. In Chapter 3, an analysis on a typical system, the ROS-LUNA bridge and
connections between SRT and HRT software is presented, resulting in a list of project require-
ments. In Chapter 4, the refinements to the ROS-LUNA bridge are given and discussed. In
Chapter 5, a generic and TERRA-specific approach to coupling SRT and HRT tasks is given and
discussed. Chapter 6 ends with conclusions and recommendations.

Arnold Hofstede University of Twente

3

2 Background

In this chapter, background information relevant to this thesis is given. In section 2.1, infor-
mation on real time and the used real-time operating system are presented. Next, in section
2.2, the RaM ECS tool-chain consisting of TERRA and LUNA is discussed. In section 2.3, in-
formation on ROS is given. In section 2.4, the existing ROS-LUNA bridge implementation is
discussed. Lastly, in section 2.5, relevant transport types and Nagle’s algorithm are presented.

2.1 On real time

The different notions of real time considered during this thesis are soft, firm and hard real-time.
Below properties and examples of the types of real-time are given.

• Hard real-time (HRT): No deadlines can be missed without breaking the system. An
example of such a system is an airbag control system that needs to respond within a mi-
crosecond range. HRT systems such as a missile defense system also needs to responds
before a deadline, but response times are not as fast.

• Firm real-time (FRT): Some deadlines can be missed without breaking the system, but
results are not longer useful. A loop controller is an example of such a system. Missing
a single deadline does not have catastrophic consequences. However, it is hard to define
the number of accepted missed deadlines and to design a system that does not violate
those requirements.

• Soft real-time (SRT): Deadlines can be missed without breaking the system, but results
are less useful. Examples of these systems are path planning and image processing algo-
rithms. These algorithms are typically resource intensive and only degrade the quality of
service of the system when missing a deadline.

Utility functions that represent the effect of missing a deadline in a computation for different
types of real-time systems are given in Figure 2.1.

missed	deadline missed	deadline
missed	deadlines

non-catastrophic
missed	deadline

catastrophic	
for	k=4

missed	deadlines

u(τ) u(τ) u(τ)

0 0 0τ→∞ τ→∞ τ→∞

-∞ -∞
hard	real-time	system firm	real-time	system soft	real-time	system

Figure 2.1: Utility functions u(τ) for different notions of real-time when missing a deadline as given by
Boode (2018).

The layered approach for software architecture for embedded systems in Figure 2.2 allows for
the different levels of real time. In this approach, the loop controllers are classified as HRT. This
classification is also used in this thesis. In the layered software architecture, the ROS-LUNA
bridge is located on the Sequence control layer in the SRT domain.

Robotics and Mechatronics Arnold Hofstede

4 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Figure 2.2: Layered software architecture for embedded systems (Broenink et al., 2010).

Normal operating systems such as Linux are not capable to guarantee meeting deadlines when
executing real-time software. The Xenomai 3.1 co-kernel1 is used in this thesis to meet real-
time requirements. This target OS is supported for applications that are developed using the
RaM ECS tool-chain on multiple hardware architectures.

There are two options to let Xenomai deliver real-time. One is by supplementing Linux with a
real-time co-kernel, named Cobalt, running side by side it. The other option is by relying on
the real-time capabilities of the native Linux kernel, forming the Mercury core. In Figure 2.3,
a diagram representing the Xenomai dual kernel configuration is given. During this thesis the
dual kernel option is used.

The POSIX API provided by Xenomai is used in LUNA as a interface with the Cobalt core. Since
this API is only a subset of the complete POSIX API some functions are only provided by the
Linux API. An Xenomai application can run in two modes: primary mode, where it is sched-
uled by the Xenomai kernel, and benefits from hard real-time scheduling latency, or in sec-
ondary mode, where it is an ordinary Linux thread and may call any Linux services. A real-time
application can make a call to a function that is only provided by the Linux API, but in that
case it switches to secondary domain. This results in the task being scheduled by the Linux
scheduler and HRT guarantees are lost.

RT non RT

POSIX API
(libcobalt)

Linux API
(libc)

Cobalt Core Linux kernel

RT RT

User space

Kernel space

Device drivers

Applications

Figure 2.3: Xenomai dual kernel configuration (Xenomai, 2020).

2.2 RaM ECS tool-chain

The ECS tool-chain (Bezemer, 2013) consists of TERRA and LUNA, and allows developers of
CPS to create control software using model-driving engineering. Control algorithms can be

1https://gitlab.denx.de/Xenomai/xenomai/-/wikis/home

Arnold Hofstede University of Twente

https://gitlab.denx.de/Xenomai/xenomai/-/wikis/home

CHAPTER 2. BACKGROUND 5

imported from 20sim and using FMU’s it is possible to simulate the developed software with
models from tools that support this standard. In the tool-chain, Communicating Sequential
Processes (CSP) (Hoare, 1978) is used to formally describe software architectures.

2.2.1 LUNA

LUNA is a C++ library that is hard real-time, multi platform, scalable, component based and
features a CSP execution engine. The code generated in TERRA depends on this library. Since
the library is multi platform, it is possible to develop applications from the same model for
Linux or Linux with the Xenomai co-kernel on either x86/x64 or armv7 depending on configu-
ration.

Communication between CSP processes is done using rendezvous channels. Rendezvous com-
munication requires both reader and writer to be ready before transferring data. Non-blocking
buffered channels are available for processes that do not run on the same frequency. When
using these channel deadlock does never occur.

The hard real-time properties of LUNA applications are only guaranteed when executed on a
properly configured system. The execution component in LUNA determines the application
flow in accordance with the CSP model made in TERRA. LUNA provides Run-to-Completion
scheduling for CSP processes by the CSP execution engine as is prescribed by CSP.

2.2.2 TERRA

TERRA is a model-driven design tool that supports both architecture and CSP modeling. On
the architecture level the physical system can be modeled, existing of hardware and software
interfaces, software (CSP) models and models of the plant when simulation is desired. On the
CSP level a model of the embedded software can be made.

Figure 2.4: CSP constructs in TERRA used in this thesis.

CSP models are modeled using gCSP by Bezemer (2013). 20-sim and FMU interface models can
be converted by TERRA into CSP models such that they can be used in LUNA applications. In
Figure 2.4, the constructs in TERRA relevant to this thesis are given. Additional information on
these constructs is given below:

• Sequential: Executes processes sequentially.

• Parallel: Executes processes in parallel and gives each process a fair chance of being
executed first.

• Pri-parallel: Executes processes in parallel and gives each process a fair chance of being
executed first. Different OS scheduler priorities are assigned to the individual processes.
The priorities only effect execution when both parallel processes are recursive.

Robotics and Mechatronics Arnold Hofstede

6 Integration of hard and soft real-time tasks in Cyber-Physical Systems

• Group: Groups processes by their compositional relation to others. In TERRA groups are
modeled by green squares.

• Recursion: Starts execution of processes inside a group when all processes in the group
are finished. Recursion is indicated by a encircled asterix in the top-left corner of a pro-
cess or group.

In CSP, processes communicate by using channels. In TERRA these channels are represented
by an arrow that is either filled in or empty depending on whether a buffer is used or not. In
TERRA there is no way to indicate visually if the channel is blocking or non-blocking. The arrow
used for a buffered channel is given in Figure 2.5a and the arrow used for a unbuffered channel
is given in Figure 2.5b.

(a) Buffered (b) Unbuffered

Figure 2.5: CSP channels in TERRA.

Ports on the architecture level represent links to either hardware or other software. These are
connected to Writers or Readers inside a CSP model and have the same functions as CSP chan-
nels. The code of a hardware channel interacts with real hardware and is executed within the
same thread as the Writer or Reader. This is also the case for software channels. Timer ports
are available on the architecture level. A writer in a CSP model that writes to this port blocks
execution of the model until the timer ticks.

In the code that is generated by TERRA all CSP processes are mapped to threads, without differ-
entiation between real-time and non real-time threads. With the use of Xenomai’s POSIX skin,
all threads are default scheduled as real-time when compiling the application for Xenomai. As-
signing priority to differentiate between the critical and less critical threads in TERRA is also
not possible.

2.3 ROS

Robotic Operating System (ROS) is robotic middleware consisting of libraries and tools to help
create robot applications. ROS has become the defacto standard robotics middleware for hob-
byists and academics. In addition to the benefit of only having to focus on the algorithm that is
part of the research, ROS also enables users to share their work.

ROS and LUNA are both middleware that provide composition, coordination and communica-
tion in software. ROS is not designed with real-time as a goal, but it is possible implement a
hard real-time controller within a ROS node by decoupling HRT code from ROS code and run-
ning a real-time OS on the target system. Communication between ROS nodes is done using
publish-subscribe mechanisms.

2.4 ROS-LUNA bridge

The ROS-LUNA bridge by Werff (2016) consists of three parts: the ROS side of the bridge, the
LUNA side of the bridge and a network in between. Communication between the ROS and
LUNA side is done over TCP/IP. A native ROS port is added to LUNA by Ridder (2018), but re-
quires ROS to be installed on the target platform. In addition, only single value messages are
supported by this native implementation.

The ROS side of the bridge is designed such that multiple LUNA clients can connect. After con-
nection, topic connect packages are sent to ROS and the topic listeners and run-time binding
publishers are configured. When a topic listener receives a message, a single TCP/IP packet is

Arnold Hofstede University of Twente

CHAPTER 2. BACKGROUND 7

send to the LUNA side of the bridge. When the ROS side of the bridge receives a TCP/IP packet
it is decoded and published to a topic using the corresponding run-time binding publisher(s).

Interaction of the CSP model with the ROS-LUNA bridge depends on the configuration of the
bridge ports on the architectural level. Readers can read from the ROS channel similarly as
from a blocking or non-blocking buffered CSP channel. Writers can either write to the channel
and directly send the value in a TCP/IP packet to the ROS side of the bridge or store the value
in a buffer. When the value is stored in a buffer, the call required for sending the TCP/IP must
be done somewhere in code.

Runtime Bind-
ing Publisher

R
O

S
ne

tw
or

k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

R
O

SC
ha

nn
el

M
an

ag
er

L
U

N
A

ap
pl

ic
at

io
n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

R
O

SC
ha

nn
el

s
(C

SP
)

(W
ir

el
es

s)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 2.6: Block diagram of ROS-LUNA bridge (Werff, 2016).

2.5 Network

In the existing ROS-LUNA bridge, TCP is used as transport protocol. TCP provides reliable,
ordered and error-checked delivery of a stream of bytes between applications running on hosts
communicating via an IP network. Another transport protocol is UDP, which is connection-less
and has a minimum of protocol mechanisms. Due to the lack of protocol mechanisms such as
retransmission of lost packets, UDP is preferred in time-sensitive applications. In Table 2.1
properties of TCP and UDP are given.

Table 2.1: Properties of TCP and UDP.

TCP UDP
Connection oriented Transaction oriented
Retransmission of lost packets No retransmission of lost packets
Ordered data transfer
Flow control
Congestion control

In the TCP protocol, Nagle’s algorithm is enabled by default. This algorithm is defined by the
RFC2 as follows: "Inhibit the sending of new TCP segments when new outgoing data arrives from
the user if any previously transmitted data on the connection remains unacknowledged.".

In Figure 2.7 the effects of Nagle’s algorithm are sketched. Data value 2 is stored in a buffer until
the acknowledgment of packet 1 is received. When the acknowledgment for packet 2 is arrived,
both packet 3 and 4 are transmitted. Waiting for the acknowledgment results in an increasing
latency until multiple packets can be sent together.

2RFC 896: https://tools.ietf.org/html/rfc896

Robotics and Mechatronics Arnold Hofstede

https://tools.ietf.org/html/rfc896

8 Integration of hard and soft real-time tasks in Cyber-Physical Systems

1 3,4ack ack ack

1 2 3 4 5

ack

1 2 3	4 5

2 5

0.75	Ts

1.25	Ts

1.75	Ts

0.75	Ts

1.25	Ts

send	time

recv	time

delay	per	packet
between	send	

and	recv

send
delay

Figure 2.7: Sketched effects of network delay on latency due to Nagle’s algorithm.

Arnold Hofstede University of Twente

9

3 Analysis

In this chapter an analysis is done to determine the requirements necessary to achieve the goals
stated in section 1.2. Firstly, in section 3.1, typical systems and their challenges in connecting
tasks with various real-time requirements are discussed. Next, in section 3.2, advantages and
disadvantages of using the ROS-LUNA bridge or native ROS implementation are discussed. In
section 3.3, the effects of delay and packet loss in imperfect networks on periodic signals are
discussed. In section 3.4, differences between ROS and CSP channels, and real-time require-
ments are discussed. Finally, the requirements following from this analysis are discussed.

3.1 Typical system overview

The typical system considered in this thesis that uses the ROS-LUNA bridge is drawn in Figure
1.1 and described in the introduction as an embedded device with a LUNA application that
interfaces with a physical plant and is connected by a network to a resource-rich platform with
a ROS application that performs computation-intensive algorithms. In this section the needs
with respect to connections between subsystems are further analyzed.

The Production Cell and JIWY setup are often used in the RaM laboratory as a CSP research
setup. The Production Cell setup represents an injection molding machine and has six degrees
of freedom. The JIWY setup is smaller and consists of a camera that can tilt and pan. This setup
is used by Werff (2016) to show the correct working and functioning of the earlier version of the
ROS-LUNA bridge and will also be considered in this analysis. The goal of this setup is to track
an object by following set-points that are generated with an image processing algorithm on a
remote platform. A top-level architecture of this system is given in Figure 3.1 which describes
the distribution of ECS layers from Figure 2.2 over the devices. Since communication between
LUNA and ROS occurs in this system on the sequence layer, this layer is represented on both
devices.

PlantNetwork IO

SRT HRT
ROS

supervisory /
sequence controller

LUNA

sequence / loop
controller + safety

streamer + camera
driver

SRT

Embedded deviceResource-rich
platform

Figure 3.1: Top level architecture of the vision based JIWY setup.

In Figure 3.2 an embedded control software architecture for the JIWY setup in TERRA is given.
In addition to executing the control software, a camera stream is send from the embedded
device to the resource-rich platform. The control software receives periodic set-points at the
frequency at which the camera records frames and sends its current pan and tilt angle to ROS
for visualization purposes. A status variable is communicated to ROS when the system changes
state.

Robotics and Mechatronics Arnold Hofstede

10 Integration of hard and soft real-time tasks in Cyber-Physical Systems

safety/IOLoopCommunication

timer 30 Hz timer 1000 Hz

sp pan
sp tilt

status
angle pan

angle tilt

pwm pan
pwm tilt

enc pan
enc tilt

status loop
status IO

angle pan
angle tilt

gstreamer USB drivervideo stream camera

SRT HRT

Figure 3.2: Embedded control software architecture for the JIWY setup.

During the design of such a system, several challenges with respect to coupling SRT and HRT
processes can be observed. The main challenge is to guarantee execution of Loop and Safe-
ty/IO within a specified time frame while interacting with Communication that has SRT require-
ments. Another challenge is maximize the utility of signals send from ROS to LUNA and vice
versa.

For a HRT subsystem, all in- and outgoing channels to SRT subsystems need to be buffered and
non-blocking to guarantee meeting real-time requirements. Hardware ports for encoders and
PWM signals need to be HRT by design since they are in the HRT control loop. Network ports
within the scope of this thesis cannot guarantee to meet these requirements and must therefore
be kept outside the HRT subsystem.

The means to achieve the highest utility varies for different types of signals. For a system that
tracks set-points, the utility of a value is highest when the latency is minimal and decreases to
zero when a newer value is arrived. For these signals, loss of a value has less impact on util-
ity than the increased delay introduced by re-transmitting a value. For a system that moves
from set-point to set-point in order to follow a trajectory, the priority shifts to reliability. Spo-
radic data such as status information also prioritizes reliability since the re-transmission time
is typically less than the time a next value is send.

3.2 Bridge or native ports

Two ways of connecting LUNA to ROS exist, the ROS-LUNA bridge port by Werff (2016) and
the native ROS port by Ridder (2018). Both the ROS-LUNA bridge port and native ROS port to
connect ROS and LUNA have their advantages and disadvantages. These are further analyzed
in the subsections below.

In addition, the throughput of the original existing ROS ports is measured using the LUNA ap-
plications in Figure 3.3. In ROS, command line tools are used for publishing and subscribing to
the topic used for communication. The frequency of sending values from LUNA to ROS is de-
termined by a timer port in LUNA, whereas the frequency of sending values from ROS to LUNA
is determined by the frequency of the publisher in ROS.

Arnold Hofstede University of Twente

CHAPTER 3. ANALYSIS 11

(a) CSP model used for sending values. (b) CSP model used for receiving values.

Figure 3.3: Models used to measure throughput of ROS-LUNA connection implementations.

3.2.1 Native ROS port

The native ROS port provides access to ROS publishers and subscribers through the roscpp
library and requires a ROS installation on the target system. This implementation only supports
bool, int, float, uint8, uint16 and uint32 messages types. Reason for this is that the
implementation assumes the existence of a single field nameddata in the ROS message. Since
custom messages require the inclusion of a custom header with the message format, the choice
was made to restrict the support for messages to TERRA’s own data types. To use the native ROS
port, the roscpp library must be manually added to the application’s makefile.

To send and receive messages in a LUNA application, a send and polling loop are used. The
rates of these loops are set to 100 Hz and can be adjusted in the source code generated by
TERRA. Because of this polling rate an arbitrary delay of 0 ms to 10 ms is added to the latency
of the transmitted data. Whether this is an issue or not depends on the application.

In Table 3.1, the amount of transmitted values per second is given for various desired send
frequencies when using the native ROS port in LUNA to send or receive data. Although the
frequency of the send and receive loops are 100 Hz, it is possible to send or receive values at a
higher rate. These values are stored in a buffer and are send in groups. The rate measurements
are done using the rostopic hz tool.

Table 3.1: Amount of transmitted values per second using native ROS ports in LUNA.

Sender frequency: 100 Hz 250 Hz 500 Hz 1000 Hz
Send in LUNA 99.9 250.4 500.2 1000.3
Receive in LUNA 100.0 249.5 499.9 1000.0

3.2.2 ROS-LUNA bridge

A background on the inner workings of the ROS-LUNA bridge is given in section 2.4.

Ridder (2018) states a few limitations in his thesis that were the reason to develop a native ROS
port in LUNA. These reasons are: a fixed small buffer of 500 bytes that limits the amount of
messages that can be send in a packet resulting in loss of messages when the buffer is not send
before it overflows; the ROS node runs at a fixed polling frequency and a buffer issue on the
LUNA side causing loss of messages when LUNA sends messages faster than the ROS side of
the bridge can process.

The ROS side of the bridge suffers from issues that severely limit the throughput of the bridge.
The throughput of the ROS-LUNA bridge is measured and the results of this are given in Table
3.2. From these measurements it is observed that the rate of sending values from LUNA to ROS
is limited to 250 values per second at the default settings. With the loop rate of ROS side of the
bridge being 750 Hz it is able to decode 250 values from LUNA to ROS per second. This suggest
that only one value can be decoded per 3 iterations, which is confirmed by inspecting the code.
For a few channels from LUNA to ROS this might not be a problem, but in larger systems with
multiple channels this would require a undesirable high loop-rate. A change from decoding 1

Robotics and Mechatronics Arnold Hofstede

12 Integration of hard and soft real-time tasks in Cyber-Physical Systems

value per 3 cycles to decoding all received values per cycle vastly improve the bridges through-
put.

Table 3.2: Amount of transmitted values per second using ROS-LUNA bridge ports in LUNA.

Sender frequency: 100 Hz 250 Hz 500 Hz 1000 Hz
Send in LUNA 100.0 250.0 250.0 250.0
Receive in LUNA 100.0 250.0 499.6 998.9

Another limitation of the ROS-LUNA bridge is that only ROS 1 releases are supported. ROS
Noetic Ninjemys, the latest and last distribution of ROS 1, is supported until May 2025, making
this not an immediate issue. Due to the switch to DDS as middleware for ROS 2 and the depen-
dence of the ROS-LUNA bridge on the ShapeShifter class from ROS topic_tools that allows
for the run-time binding of topics, it is not trivial to port the bridge. For DDS these tools are not
available.

3.2.3 Conclusion

The ROS-LUNA bridge is used during this thesis because it supports more complex message
types and is usable on system that do not support ROS. The performance limitations men-
tioned in section 3.2.2 can and need to be solved.

3.3 Impact of imperfect networks

Wireless networks between multiple systems suffer from delay and packet loss. In this section
the impact of these imperfections on latency of data transmitted between ROS and LUNA while
using the ROS-LUNA bridge is analyzed.

To analyze the effects of network delay and packet loss on packets transmitted from ROS to
LUNA, the latency between A and D in Figure 3.4 is measured. The setup to measure the latency
is executed on a single system. Emulated delay and packet loss are added on the network be-
tween the ROS-side and the LUNA-side of the ROS-LUNA bridge by usingtraffic control
in Linux. Detailed settings are given in Listing A.1 and A.2. The average latency between points
A and D on the measurement setup without defining additional delay or packet loss is 0.25 ms
as indicated by Figure A.2. All values are send at a fixed frequency of 100 Hz to represent a
stream of set-points.

*
A

network
TCP

clock_gettime(REALTIME, &time_var)

ROS
luna_bridgeB C ? read

ValuegenValue

ROS node ROS network
ROS side
luna bridge

LUNA side
luna bridge

LUNA
application

LUNA
bridgeD

Figure 3.4: Diagram of the setup used for measuring latency between packets send from ROS to LUNA.

3.3.1 Packet loss

The measured latency of periodic packets between sending in ROS (A) and receiving in LUNA
(D) with an emulated packet loss of 1% is given in Figure 3.5. It is observed that the latency
spikes when a packet is lost and linearly reduces to the normal latency over a number of sam-
ples. This is due to the TCP protocol that guarantees orderly arrival of each packet. Successive

Arnold Hofstede University of Twente

CHAPTER 3. ANALYSIS 13

packets are delayed until the lost packet has arrived and as a result they arrive in a single burst
on the receiving system.

Figure 3.5: Measured effects of packet loss on latency between sending in ROS to receiving in LUNA.

The bursting due to packets that wait on arrival of previous packets is sketched in Figure 3.6.
The circles on the Send in ROS and Receive in LUNA axes represents the send or receive time of
the packets. The delay between sending and receiving packet 3 is highest, followed by 4 and 5
which each have Tsampl e less delay. Without re-transmission and by allowing the next packet
to transmit at the original time, packet 4 would arrive significantly sooner than in this case.

1

1 2 3	4	5	6

2 3 4 5 6 7 8

7 8

time	→

Send in ROS

Receive in LUNA

Figure 3.6: Sketched effects on latency from sending in ROS to receiving in LUNA when a TCP packet is
lost and re-transmitted.

3.3.2 Delay

To analyze the real-world effects of Nagle’s algorithm that is described in section 2.5 on periodic
packets transmitted via the ROS-LUNA bridge, the latency is measured between sending in
ROS (A) and receiving in LUNA (D). The latency is measured with an additional delay of 3 ms
and 7.5 ms for 1000 samples. The results are given in Figure 3.7. It can be observed that the
latency for the emulated delay of 3 ms, which is less than 1

2 Ttr ansmi t , is equal to the sum of the
reference delay and the additional emulated delay. The latency for the emulated delay of 7.5 ms
is between 12.5 ms and 27.5 ms, which is more than the sum of the reference delay and the
additional emulated delay. In addition the measured delay shows a second saw-tooth pattern,
which depends on the ratio between latency and transmission period.

Robotics and Mechatronics Arnold Hofstede

14 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Figure 3.7: Measured effects of delay on latency of packets between sending in ROS and receiving in
LUNA.

3.4 HRT-SRT connection

3.4.1 Difference between CSP and ROS channels

In LUNA, communication between processes is done using rendezvous channels. The channels
implementing this behavior are called CSP channels in TERRA. Below properties and behavior
of CSP channels depending on their configuration are given:

• Blocking un-buffered CSP channels use waiting-rendezvous communication to transfer
data from a writer in one process to a reader in another process. For the transfer of data
to occur, both writer and reader must be ready. An activity diagram for communication
over a blocking unbuffered CSP channel is given in Figure 3.8.

• Blocking buffered CSP channels always accept new data from a writer. The oldest value
in the buffer is overwritten when the buffer is full. A reader can read data from this chan-
nel as long as there is data in the buffer. When there is no data left in the buffer, the reader
is blocked until the writer writes new data to the channel.

• Non-blocking buffered CSP channels always accept new data from a writer. The oldest
value in the buffer is overwritten when the buffer is full. A reader can always read data
from this channel, also when there are no new values in the buffer. In the latter case the
most recent value written to the channel is read.

Reader Channel Writer

Ready

Wait

Ready

Transfer data

(a) Reader first.

Reader Channel Writer

Ready

Wait

Ready

Transfer data

(b) Writer first.

Figure 3.8: Activity diagram of waiting-rendezvous communication.

Arnold Hofstede University of Twente

CHAPTER 3. ANALYSIS 15

The channels implementing communication via the ROS-LUNA bridge in TERRA are called
ROS/LUNA bridge ports. Below properties and behavior of these ROS channels are given:

• Incoming ROS channels behave similar to buffered CSP channels and can be configured
to be blocking or non-blocking. A blocking ROS channel makes the reader wait on new
data when there is no data left in the buffer. A non-blocking ROS channel lets the reader
read the latest value when there is no data left in the buffer.

• Outgoing ROS channels behave somewhat similar to buffered CSP channels,
but have a shared buffer between all channels. With the channel property
send throug buffer set to false, the data is transmitted during the write ac-
tion of the writer. Otherwise, the data in the buffer must be send by explicitly calling the
send function in a C++ code block. The user must take care that the function is called
before the buffer is full.

3.4.2 Real-time requirements

When executing a LUNA application that uses the ROS-LUNA bridge on a system that uses the
Xenomai co-kernel to meet real-time requirements, sending and receiving data at the LUNA
side of the bridge causes unwanted mode switches from primary to secondary mode in real-
time threads. In addition, new memory is allocated each time a packet is encoded. Sending
data causes 2 mode switches per transmission whereas receiving data causes at least 4 mode
switches per second with an additional 2 mode switches per received packet. These mode
switches are cause by the TCP socket functions that are called for sending and receiving data.

One solution for mode switching from primary to secondary domain in a HRT process is to
execute the TCP socket functions inside a lower priority real-time thread. Wijnholt (2017) and
Ridder (2018) make use of separate threads for in- and outbound loops that are scheduled un-
der a non real-time scheduling policy. Moving the network functions to a non real-time thread
removes the mode switches, whereas moving them to a lower priority real-time thread removes
the mode switches from within the HRT process.

To utilize the model-driven approach in TERRA, a separate lower priority process with sec-
ondary domain ROS-LUNA bridge code can be created for network functions. A general im-
plementation of this idea is shown in Figure 3.9. This removes process where the send func-
tion with its mode switches to secondary domain is executed from the list of high priority
threads. With this solution the mode switches to secondary domain caused by the socket lis-
tener remain. To prevent the execution of these switches in high priority threads, the socket
listener must be executed in a lower priority thread. This solution must be implemented in the
ros-channels component in LUNA.

Currently, it is possible to draw the pri-parallel construct in a TERRA model, but it is imple-
mented in LUNA as a regular parallel construct. The code to assign priorities to CSP constructs
is deactivated in LUNA during the port to Xenomai 3. To create and correctly execute the model
in Figure 3.9 the assignment of priorities must be fixed.

Robotics and Mechatronics Arnold Hofstede

16 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Figure 3.9: Model to execute network send functions in a lower priority thread.

Another option to incorporate a network connection that does not break the real-time require-
ments of the application is using RTnet. However, this only works with a limited set of Ethernet
cards, which are not compatible with both the RaMstix and the used development machine. In
addition, the focus of RTnet is on real-time networking whereas the network connection in this
thesis does not have these requirements.

3.5 Conclusion and project requirements

The focus in this project is on further developing the ROS-LUNA bridge. The limited through-
put from LUNA to ROS can be increased by decoding a complete packet upon arrival. The use
of TCP as network protocol in the ROS-LUNA bridge reduces the utility of transmitted periodic
packets over an unreliable network. Adding the option to use UDP as network protocol can be
a solution for this.

Connecting the LUNA application to the bridge without considering the connection between
SRT and HRT sub-systems can result in the HRT sub-system not meeting real-time require-
ments. The same goes for making Linux system calls from HRT code. SRT parts must be given a
lower priority and connections between SRT and HRT components must be buffered and non-
blocking. The selection of the network protocol must be done such that maximum utility is
achieved for the signals.

3.5.1 Requirements

A set of requirements prioritized according to the MoSCoW method is given to achieve the goals
stated in the introduction.

ROS-LUNA bridge

1. The bridge must support UDP.
Delays and packet loss occur in a distributed CPS that uses a wireless network for com-
munication. In some situations, receiving the newest data has priority over receiving all
data. Using UDP as a transport protocol provides this feature since it does not check for
arrival of the data.

2. The bridge must provide an option to disable Nagle’s algorithm.
Disabling Nagles algorithm when using TCP as transport protocol reduces bursting of

Arnold Hofstede University of Twente

CHAPTER 3. ANALYSIS 17

small packets. In periodic transmission of data, i.e. set points, simultaneous arriving of
packets in a burst is undesired.

3. An evaluation of the transport types must be done.
The effects of choosing different transport protocols in the ROS-LUNA bridge must be
evaluated to validate the implementation and provide information for coupling between
SRT tasks in ROS and HRT tasks in LUNA.

4. The performance limitations must be solved.
The limitations found in section 3.2 must be overcome for the ROS-LUNA bridge to be-
come usable.

5. UDP and TCP should be usable in parallel.
In distributed CPS, communication channels between devices can have different re-
quirements with respect to reliability and latency. This implies to provide using both
UDP and TCP channels in a single application.

6. A watchdog to detect network failure could be implemented.
When using UDP, both the ROS and LUNA side of the bridge have no information on
whether the other side is still active or not. A watchdog in the bridge can be implemented
to make the bridge aware of disconnection. An application-specific watchdog can also
be implemented by users of TERRA.

7. The bridge won’t support ROS2.
Runtime binding of LUNA channels to ROS topics is done using the shape_shifter pack-
age that is available for ROS1. Since ROS2 uses DDS implementations from multiple ven-
dors for communication between nodes such a package is not available.

8. The ROS side of the bridge won’t be code generated.
Code generation of the ROS side of the ROS-LUNA bridge as is done on the LUNA side
of the bridge would reduce the dependence on ROS1. Also this would reduce the code
complexity of the ROS side of the bridge and increase maintainability.

Connecting SRT and HRT tasks

1. Generic SRT-HRT coupling method must be available.
A method for connecting SRT and HRT applications on multiple devices outside of CSP
models in TERRA to achieve maximal utility is required for designing a complete appli-
cation that uses the ROS-LUNA bridge.

2. TERRA SRT-HRT coupling method must be available.
The ROS-LUNA bridge is intended to be used with HRT LUNA applications. For proper
decoupling of the HRT processes from SRT processes, CSP models in TERRA can be con-
structed.

3. The integration approaches must be verified.
To show that the real-time requirements of the HRT process are met when using the ROS
bridge an evaluation must be done.

4. HRT requirements of a model with SRT ports in TERRA should be verifiable.
Verification of a model with respect to real-time requirements is desired. Verification of
CSP models with FDR only concludes that the model does not deadlock, but does not
provide information on meeting timing requirements.

5. A simulation approach that includes SRT components won’t be done.
Simulation, either model/software/hardware-in-the-Loop, will not be done since the fo-
cus of this thesis is on the communication channel.

Robotics and Mechatronics Arnold Hofstede

18 Integration of hard and soft real-time tasks in Cyber-Physical Systems

4 ROS-LUNA bridge refinements

In this chapter the improvements made to the ROS-LUNA bridge in the ROS node, LUNA library
and TERRA tool to achieve the first project goal, "Improve usability of the ROS-LUNA bridge in
distributed Cyber-Physical Systems" are discussed. Design and implementation is described
first, followed by an evaluation of the new features.

4.1 Design and implementation

4.1.1 ROS side

The throughput of the ROS-LUNA bridge is increased by modifying the ROS side of the bridge.
This is achieved by decoding a complete packet at the moment it arrives. This modification
has increased the throughput of the bridge with a factor 3 when a single message is sent per
packet. The throughput increases even further when multiple messages are combined in a sin-
gle packet. Another modification that has been made is replacing the ROS spinOnce() function
in the loop by a ROS asynchronous spinner in a separate thread.

An option to use UDP as transport protocol is added. In Figure 4.1 an UML diagrams repre-
senting the hierarchy of the TCP and UDP implementations are given.

When using TCP as transport layer, a single LUNACommunicationTCP object is instantiated
when a connection request is received by the communication server. Upon connection a new
TCP socket is created that is used by the LUNACommunicationTCP instance. Requests to
connect ROS-channels in the LUNA application to a ROS topic are handled by this object and
a new TopicListener or RTBPublisher object is created depending on the direction of
the channel.

When using UDP as transport layer, there is no connection between the server and the client.
The communication server for UDP in the ROS side of the bridge does not create a new socket
for each LUNA application that tries to communicate with it. The client sends a connection
packet to the server that instantiates a LUNACommunicationUDP object with the socket ad-
dress and port of the client. When the request to connect a subscribing LUNA port to a topic is
received by the server it calls the function of the LUNACommunicationUDP object that cre-
ates a new TopicListener object. When the request to connect a publishing LUNA port to
a topic is received by the server it creates a new RTBPublisher.

1

0..*

0..*

0..* 1

1

1

0..*
0..*

0..*

1

1

LUNACommunication
ServerUDP

LUNACommunication
UDPRTBPublisher

TopicListener LUNACommunication
ServerTCP

LUNACommunication
TCP

TopicListener

RTBPublisher

Figure 4.1: Differences in inner working of the bridge for TCP and UDP.

In ROS, a node can read parameters from a central parameter server that is accessible at run-
time. Parameters can be configured in the command line when using rosrun or in the cor-
responding .launch file. The parameters that can be configured are: use_tcp[bool],

Arnold Hofstede University of Twente

CHAPTER 4. ROS-LUNA BRIDGE REFINEMENTS 19

use_udp[bool], disable_nagle[bool] and frequency[int]. These parameters
must be configured before launching the luna_bridge.

4.1.2 LUNA side

In LUNA, modifications are made to the ros-channels and socket components. The UDP
receive function is updated such that it can be used non-blocking, similar to the TCP receive
function in LUNA. In addition a function to send UDP packets to a specific address and a func-
tion to detect the address from which a message is received are added. A function to disable
Nagle’s algorithm has been added to the TCP class.

A ROSChannelManagerUDP class is added to the ros-channels component. Except
for connection and closing the connection there are no differences in implementation be-
tween the TCP and UDP channel manager. The implementation of ROSChannel class is
changed by replacing the hard coded TCP channel manager by a templated version. In the
connectToROS() function an optional argument for disabling Nagles algorithm is added.
This option affects all channels from LUNA to ROS that use TCP.

4.1.3 TERRA side

In TERRA, a transport type option for using UDP or TCP is added to the properties of a ROS-
LUNA bridge port. This allows developers to select a transport type per port depending on
which characteristics they require for each channel. TCP without Nagle’s algorithm is not added
as an option in TERRA and can only be added in code. This option would affect al TCP ports
in the application and there currently is no option in TERRA to configure application-wide
parameters.

4.2 Network effects on implemented transport types

The effect of network imperfections on communication via the ROS channels is different for the
transport types. In this section the effects of delay and packet loss on channels with different
transport types are evaluated. In the measurements, delay and packet loss are emulated with
the use of traffic control in Linux. All these measurements are done using periodic packets
with Tsample = 10 ms, representing a stream of set-points. More detailed measurements and
documentation of the experiments are given in Appendix A.

4.2.1 Delay

In Figure 4.2, the measured latency between sending a message in ROS and receiving a message
in LUNA is given for additional delays of 3 ms, 7.5 ms and 15 ms. For an additional delay of
3 ms, the measured latency for both TCP and UDP is equal to the sum of the reference and
added delay. For an additional delay of 7.5 ms and 15 ms, the measured latency for UDP is also
equal to the sum of the reference and added delay. When TCP is used, the measured latency
is between 12.5 ms and 27.5 ms for an added delay of 7.5 ms, and between 35 ms and 65 ms for
an added delay of 15 ms. The higher measured latency for TCP can be accounted to Nagle’s
algorithm that is discussed in section 2.5. Based on these measurements, the use of UDP or
TCP with Nagle’s algorithm disabled is the best option to be used in a distributed CPS that
communicates periodic set-point data.

Robotics and Mechatronics Arnold Hofstede

20 Integration of hard and soft real-time tasks in Cyber-Physical Systems

(a) Emulated delay of 3 ms between
ROS and LUNA

(b) Emulated delay of 7.5 ms between
ROS and LUNA

(c) Emulated delay of 15 ms between
ROS and LUNAy

Figure 4.2: Measured latency between sending in ROS and receiving in LUNA via networks with differ-
ent amount of delay. TCP represents the measurements that use TCP with Nagle’s algorithm enabled
whereas TCPn represents the measurements that use TCP with Nagle’s algorithm disabled.

4.2.2 Packet loss

In Figure 4.3 the measured latency between sending a message in ROS and receiving a message
in LUNA and the number of lost packets are given for an emulated packet loss of 1%. For UDP
the latency and number of lost packets is as expected with a loss of 10 out of 1000 packets.

When TCP is used as the transport protocol, no packets are lost. However, around 25% of
the packets is delayed. The reason for this is the ordered-arrival property of TCP packets.
When a TCP packet does not arrive, a re-transmission is done after some timeout. After re-
transmission, the set-points that are generated during this time are send to the receiver, which
results in a burst of received packets. This behavior makes TCP unsuited for transmission of
set-points over an imperfect network.

For TCP with Nagle’s algorithm disabled 1% of the messages is lost. It is observed that the
messages before the messages that did not arrive have a larger latency between 1 and 2 times
the sample frequency. Sending set-points at lower frequencies confirmed this. When the time
between samples is larger than the time between re-transmission no packets are lost.

Figure 4.3: Measured latency between sending in ROS and receiving in LUNA via a network that has 1 %
packet loss. TCP represents the measurements with Nagle’s algorithm enabled whereas TCPn represents
the measurements with Nagle’s algorithm disabled.

Arnold Hofstede University of Twente

CHAPTER 4. ROS-LUNA BRIDGE REFINEMENTS 21

4.3 Effects of SRT communication loop

As mentioned in section 3.4, one solution to prevent mode switching from primary to sec-
ondary domain caused by the ROS-LUNA bridge is to make use of separate threads for in- and
outbound loops that are scheduled under a non real-time scheduling policy. This solution re-
sults in an additional delay, which is measured in this section.

In a LUNA application running on Xenomai that communicates with ROS using separate non
real-time loops that sends and polls for messages at a fixed rate, mode switches no longer occur.
As expected, this adds an additional delay with a that is bounded by 1

fsendloop
to the regular delay

on the network channel. This can be observed in Figure 4.4, where the delay for messages sent
via a 100 Hz publisher loop is given. In this measurement the values in the HRT process are also
generated at 100 Hz. The saw-tooth that can be observed is likely caused by the use of different
clocks in the LUNA application and ROS.

(a) Delay per sample. (b) Distribution of delay over time.

Figure 4.4: Measured latency between sending in LUNA and receiving in ROS using a non real-time
periodic sending loop.

4.4 Discussion

It can be observed in Section 4.2 that the addition of UDP and the option to disable Nagle’s al-
gorithm in TCP allow for a significant decrease of latency in imperfect networks with respect to
the original TCP implementation. For applications where latency is of higher importance than
reliability this addition leads to an increase of utility. The use of a non real-time communica-
tion loop results in an acceptable delay that is bounded by the period of the loop.

Robotics and Mechatronics Arnold Hofstede

22 Integration of hard and soft real-time tasks in Cyber-Physical Systems

5 Connecting SRT and HRT tasks

In this chapter, methods to connect SRT and HRT tasks are given. The first section discusses
generic methods to achieve the maximum utility of SRT computations that are sent via a net-
work to a HRT system. This is followed by TERRA/LUNA-specific methods that connects SRT
algorithms via communication channels with HRT control software using CSP models. In the
third section these patterns are evaluated on a system with a real-time OS. In the last section
the results are discussed.

5.1 Generic methods

5.1.1 Selection of network protocol

Within the scope of connecting SRT and HRT tasks on separate systems using a network there
are two characteristics of the transmitted signals that are relevant in selecting the network pro-
tocol. These are sensitivity to latency and tolerance to packet loss. The requirements on these
characteristics depend on the (sub-) system and signals that are transmitted over the link being
classified as HRT, FRT, SRT or NRT. In Figure 5.1, the desired network protocol for different sig-
nal characteristics are given. Considerations for selecting a protocol for a given signal are given
below.

HRT

FRT /
SRT

SRT

NRT

Pa
ck

et
 lo

ss
 to

le
ra

nc
e

Latency intensity

UDP

TCP

Figure 5.1: Desired network protocol and level of real-time for communication package characteristics.

Signals that are intolerant to latency and packet loss, need a network link that provides HRT
guarantees. To achieve deterministic communication between multiple HRT systems dedi-
cated hardware is required. UDP with several modifications can be used to achieve these char-
acteristics (Kiszka et al., 2005). However, these signals are out of the scope of this thesis.

Signals that are intolerant to latency and somewhat tolerant to packet loss, need a network link
with FRT or SRT specifications depending on the amount of tolerance. In the case of a system
that publishes a series of set-points over an imperfect network with some packet loss the utility
will be higher when using UDP. The ordered arrival of packets and re-transmission delay of TCP
would decrease the utility of multiple set-points to zero and add latency spikes when packets
are lost.

Signals that are somewhat tolerant to latency and intolerant to packet loss also require a net-
work link with SRT specifications. One example of these signals is an instruction for a task sent
from ROS to LUNA. The instruction needs to arrive on the other platform, but some latency is
accepted. TCP guarantees that those packets arrive, but can add some latency when the packet
is lost.

Arnold Hofstede University of Twente

CHAPTER 5. CONNECTING SRT AND HRT TASKS 23

Signals that tolerant to latency and packet loss have no real-time requirements on the network
link. A computed value keeps it utility and usually needs to be transmitted, but is allowed to be
delayed.

5.1.2 Use of buffers

In Figure 5.2, the path of data between sending in a Producer application on one system and
receiving in a Consumer application on another system is given. On several levels buffers are
implemented. Some of these are in reach of the developer, where as others are defined in the
kernel or hardware.

In user space the developer can configure in- or output buffers in the application. These buffers
can be configured such that critical parts of real-time control applications can be executed
without the need to directly interact with Linux system functions. By grouping data and locat-
ing the buffers at the right location, network use is minimized.

On the border of user and kernel space a socket buffer is located that allows user space appli-
cations to asynchronously write through a network socket. When the send queue is not full
and data is written to the socket by the user application the system call will succeed. When
the send queue is full and data is written to the socket by the user application the system call
will block until there is space for the data. In kernel space TCP or UDP and IP information is
added to the user data and sequentially stored in a transmit queue, called a queuing discipline
or qdisc in Linux. Data from the qdisc(s) is mapped into the Tx ring buffer by the device driver
of the Network Interface Controller (NIC). In the NIC, packets are stored in an internal buffer
to match the packet rate with the physical rate of the network.

On the receiving side the packets are stored in the Rx ring buffer and read by the driver. The
received data is processed on the IP and TCP/UDP layers and stored in the socket receiver
buffer. In the user space consumer application a system call can be made to determine whether
there is data is in the socket buffer. When the receive function is executed without data in the
buffer it blocks until there is data in the socket buffer. When there is data in the socket buffer,
the receive function will immediately return with the available data.

Socket
send buffer

Tx
ring

Kernel space

User space

Hardware

Producer application Consumer application

Socket
receive buffer

TCP||UDP/IP/Ethernet

Rx
ring

TCP||UDP/IP/Ethernet

Driver Driver

NIC NIC

Transmit queue
(qdisc)

Figure 5.2: Transmission path between two application that are connected via a network.

Robotics and Mechatronics Arnold Hofstede

24 Integration of hard and soft real-time tasks in Cyber-Physical Systems

5.2 TERRA/LUNA-specific methods

The TERRA-specific methods must provide a way to prioritize and decouple HRT process ex-
ecution from SRT process execution. To achieve this there are two requirements: a reader or
writer in a HRT process may never block and the treads used by a HRT process may never switch
from primary to secondary mode in which the tread is executed by the regular Linux scheduler.

In this section, tool-specific methods are given to connect a HRT application in TERRA to a SRT
application in ROS. This is done by introducing patterns for receiving and sending values from
and to a ROS-channel. In Section 5.3 these patterns are evaluated on a real-time OS.

5.2.1 Receive patterns in TERRA

Receiving ROS channels in LUNA are either blocking or non-blocking and must always have a
buffer with a size of at least one. Polling for messages is done in a separate thread, allowing the
reader in a real-time process to read data without requiring a Linux system call. Blocking chan-
nels can be used for messages that only require processing once. For example, a sanity check
can be performed on incoming messages. Since reading from a non-blocking ROS channel
is a real-time safe operation, the benefits from performing this in a separate thread are lower
resource usage and to keep the model organized.

In Figure 5.3, a CSP model is given in which the HRT loop controller directly reads from ROS
channels. When non-blocking ROS channels are used, network calls do not interfere with exe-
cution the SEQ_LOOP HRT process. By using the default value of 1 as buffer size for both ROS
channels the latest value is read by the readers. A larger buffer can be used, but has the conse-
quence that latency between sending in ROS and receiving in the process in LUNA is increasing
when the frequency of received values is higher than the frequency of the timer in SEQ_LOOP.

Figure 5.3: Model composition to receive values from ROS channel without blocking the hard real-time
process.

Connecting a timed HRT process to a blocking (ROS) channel has the result that the HRT pro-
cess misses deadlines since execution of the process is blocked until values from ROS are re-
ceived. Using a separate lower priority process that receives and processes the received values
is an option when the received values need additional processing in for instance a sequence
controller. In Figure 5.4, a CSP model is given that implements that functionality. Timing of
SEQ_SEQEUNCE is determined by the message rate of incoming messages from ROS. Timing
of SEQ_LOOP is determined by the timer and will not be influenced by the message rate of in-
coming messages due to the use of non-blocking channels between SRT and HRT parts of the
model.

Arnold Hofstede University of Twente

CHAPTER 5. CONNECTING SRT AND HRT TASKS 25

Figure 5.4: Model composition to receive values from a blocking channel in a lower priority process.

5.2.2 Send patterns in TERRA

Sending data from LUNA to ROS must not break the real-time requirements of the application.
Therefore, the hard real-time process must be able to write values into a buffer without blocking
or switching to secondary mode. To limit stressing the network, values can be grouped and
send together or at a lower rate. CSP models for these two options are given and discussed
below.

A naive way to interact between LUNA and ROS is to directly write to the outgoing ROS channel
from a writer in a HRT process. Without using the separate non real-time send loop this would
break the real-time guarantees of the HRT process.

All values

To send all values that are computed in the HRT process from LUNA to ROS, a separate lower-
priority recursive process can be used. To ensure ordered transmission and that each value is
sent exactly once, a blocked read from a buffered channel between the processes is done. This
send pattern consists of sequential composition with n blocking readers in parallel, n writers
in parallel and a C++ code block that sends the values in the ROSChannelManager’s buffer to
ROS. A CSP model of such a composition with n = 2 is given in Figure 5.5.

In the ROSChannelManager there is a single buffer in which the values written to a ROS
channel are stored until a call to the send function is made. In a large application there could
be multiple processes from which data is written to this buffer. A call to send the data in the
buffer to the ROS-side of the bridge must be made before the buffer is full. The call to send
data from the buffer causes a switch from primary to secondary domain of the thread in which
the operation is executed. Therefore, it is not possible to send the data in the buffer when-
ever a value is written to a full buffer, because this would cause the thread in which the writer
that is writing to the channel to switch to secondary domain. This requires the developer to
incorporate a codeblock that empties the buffer in the model.

Robotics and Mechatronics Arnold Hofstede

26 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Figure 5.5: Model composition to send all values without affecting the hard real-time loops execution.

Sub-sampling

To send a fraction of all values that are computed in the hard real-time process from LUNA to
ROS, a separate lower-priority timed recursive process can be used. Using a lower frequency
timer, the latest value is read from a non-blocking buffered channel with a buffer size of 1 and
sent to ROS. This send pattern consists of sequential composition with a writer connected to a
timer port, n non-blocking readers in parallel, n writers in parallel and a C++ code block that
sends the values in the ROSChannelManager’s buffer to ROS. A CSP model of such a composi-
tion with n = 2 is given in Figure 5.6.

The pattern to sub-sample values from the HRT process that sends the buffer of the ROSChan-
nelManager in a separate timed process behaves similar to the experimental NRT communi-
cation loop discussed in section 4.1.2. The benefits of using a model-based approach are more
control over which messages are combined and being able to control the send frequency.

Figure 5.6: Model composition to send a fraction values without affecting the hard real-time loops exe-
cution.

Arnold Hofstede University of Twente

CHAPTER 5. CONNECTING SRT AND HRT TASKS 27

5.3 Evaluation

The patterns to decouple the HRT process execution from SRT process execution are evaluated
in this section. The measurements are done on a resource-rich platform with Ubuntu 18.04 and
Xenomai 3.05 since the RaMstix embedded platform was not available during the evaluation of
these patterns. The measurements are performed on a stressed system to achieve consistent
results usingstresswith 8 workers spinning sqrt() (--cpu 8), 8 workes on sync() (--io 8),
and 8 workers spinning on write()/unlink() (--hdd 8). This is executed using the following
command:

stress -v --cpu 8 --io 8 --hdd 8

In Figure 5.7, the CSP model of the application that is used for reference measurements is given.

Figure 5.7: CSP model used for reference tests.

5.3.1 Receive patterns

In Figure 5.8 the jitter in the HRT process is given for several receiving patterns during 5000
cycles. In this figure, ’Reference’ represents the measurements for the CSP model in Figure 5.7,
’Receive non-blocking’ represents the measurements for the CSP model in Figure 5.3, ’Receive
blocking’ represents the measurements for the CSP model in Figure 5.4 and ’Receive naive’
represents the measurements for a CSP model that does not implement any decoupling and
reads directly from a blocking channel.

These results show that the jitter in the HRT process in naive implementation is significantly
higher than the jitter in properly coupled implementations. This is expected because the HRT
process is synchronized with the times that messages arrive from ROS. The maximum values
are for Reference: 38.757µs, for Receive non-blocking 39.841µs, for Receive blocking: 45.480µs
and for Receive naive: up to one interval.

Figure 5.8: Absolute jitter for a HRT process with a cycle time of 1000µs for several IO patterns used to
receive data in LUNA to ROS.

5.3.2 Sending patterns

In this section, the sending patterns from section 5.2.2 are evaluated. In Figure 5.9 the jitter
in HRT process is given for several sending patterns during 5000 cycles. In this figure, ’Refer-

Robotics and Mechatronics Arnold Hofstede

28 Integration of hard and soft real-time tasks in Cyber-Physical Systems

ence’ represents the measurements for the CSP model in Figure 5.7, ’Send naive’ represents the
measurements for the CSP model without any decoupling, ’Send buffered’ represent the mea-
surements for the CSP model in Figure 5.5 and ’Send sampled’ represents the measurements
for the CSP model in Figure 5.6.

These results do not show that the naive implementation has a significant effect on the jitter of
the HRT process. The maximum values are for Reference: 38.757µs, Send naive: 32.009µs, Send
buffered: 34.913µs and Send sampled: 40.482µs. With the Writer being last in the sequential
SEC_HRT process and the execution of this process only taking a fraction of the interval be-
tween iterations these results can be expected.

Figure 5.9: Absolute jitter for a HRT process with a cycle time of 1000µs for several IO patterns used to
send data from LUNA to ROS.

In Figure 5.10, the jitter in the HRT process is given for an application that uses a SRT
send loop inside the ROSChannelManager. This send loop calls the send function of the
ROSChannelManager at a predetermined rate. ’Reference’ represents the measurements for
the CSP model in Figure 5.7, ’Send 100 Hz’ represents the measurements with a SRT send loop
at 100 Hz and ’Send 1000 Hz’ represents the measurements with a SRT send loop at 1000 Hz.
The maximum measured values are for Reference: 38.757µs, for Send 100 Hz: 26.9870µs and
for Send 1000 Hz: 31.899µs.

The observed jitter for using a SRT send loop in ROSChannelManager is lower than the jitter
observed in the applications that use the send patterns given in section 5.2.2 and similar to the
jitter of the reference HRT process. It is expected that the model-based approach has a lower
code efficiency that causes a higher jitter for the HRT process when using send patterns.

Figure 5.10: Absolute jitter for a HRT process with a cycle time of 1000µs that sends data from LUNA to
ROS by using for code based decoupling in LUNA.

Arnold Hofstede University of Twente

CHAPTER 5. CONNECTING SRT AND HRT TASKS 29

5.4 Discussion

As expected, receiving from ROS in a naive way causes significant jitter to the HRT process
due to the synchronization between the execution of the HRT process and the time of arriving
messages. When using the blocking or non-blocking receive pattern, timing of the HRT process
is not disrupted.

Sending messages to ROS from a HRT loop in a naive does not cause significant jitter, which
can be attributed to the abundance of resources available on the resource-rich platform. When
using the buffered or sample send pattern, the timing of the HRT process is not disrupted.
The use of a SRT send loop in code results in less jitter than when a model-based SRT send
loop is used. A cause for this can be the overhead that is introduced by using the model-based
approach.

The difference in results when using proper coupling patterns or naive connections is insignif-
icant, which can be explained by the abundance of computing resources on the device used
for measurements. Similar experiments should be done on a RaMstix embedded platform to
evaluate the impact of properly or naively coupling SRT and HRT processes on a device with
limited resources.

Robotics and Mechatronics Arnold Hofstede

30 Integration of hard and soft real-time tasks in Cyber-Physical Systems

6 Conclusion and Recommendations

Conclusion

The goal of this project was to increase the usability of the ROS-LUNA bridge and provide
means to integrate soft real-time and hard real-time software in the design process of Cyber-
Physical Systems.

Usability of the brigde is improved by adding support for UDP and an option to disable Nagle’s
algorithm in TCP. The added value of the UDP option in the ROS-LUNA bridge is shown in a
comparative evaluation of both transport types. In addition, severe performance limitations
of the bridge are overcome by decreasing the number of cycles needed to decode a network
packet in the ROS side of the bridge.

IO patterns to communicate via communication channels with soft real-time software are de-
veloped to aid in integration of hard and soft real-time tasks in Cyber-Physical Systems. It is
shown that by using these IO patterns, real-time requirements of critical tasks are met. By using
a model-driven approach in connecting the communication channels the developer remains
in control over the way the HRT processes interact with the SRT processes.

Recommendations

Due to the covid-19 restrictions, an implementation of embedded control software using the
improved ROS-LUNA bridge for a representative demonstration setup could not be achieved.
The use of this work in such an use case is expected to produce valuable feedback that can be
used in maturing the bridge.

The thread implementation in LUNA could be revisited to provide full support for non real-
time and real-time threads in Xenomai 3. Currently, threads are created using POSIX functions,
but thread priorities of Xenomai are not correctly implemented. Also, considering to limit the
support of LUNA for only Xenomai 3 as a real-time OS and deprecating code for other OS’s that
are no longer used at RaM is expected to significantly increase maintainability of the LUNA
library.

Within TERRA there is no visual difference between blocking and non-blocking channels. This
critical property of channels is also not shared between multiple sub-models. Also, blocking
and buffer properties on in- and outgoing channels cannot be configured from within sub-
models, creating room for errors.

On the road to a tool coverage for all layers of embedded control software the switch to a code
generated interface on both ROS and LUNA side is recommended. Recently, Eclipse plugins for
model-driven design with ROS 2 have emerged. This would mean that only a network interface
in LUNA is required that could be connected to a network interface in other tools.

Arnold Hofstede University of Twente

31

A Bridge measurements

In this appendix, detailed information on the latency measurements that are performed on the
bridge with various emulated delays and loss on the network is given. First, the measurement
setup is given. This is followed by the raw measurements for the graphs in Chapter 5.

The used measurement setup is given in Figure A.1. In here eight points, A to H, are indicated
to specify the locations where timestamps for each sample are taken. This setup allows for
measuring the round trip time (RTT) and the one way delay (OWD) in both directions. For RTT,
the time between A and H is meant and for OWD the time between A and D or E and H, called
OW D AD or OW DE H from now on.

The measurements in this appendix are all done on a periodic stream of values with a frequency
of 100 Hz.

*

*
LUNA
bridge

ROS
node

A D

EH

network
UDP or TCP

clock_gettime(REALTIME &time_var)

ROS
luna_bridge

B

F

C

G

?

!

read
Value

generate
Value

||

genValue

callBack

ROS node ROS network
ROS side
luna bridge

LUNA side
luna bridge

LUNA
application

!

timer port

Figure A.1: Measurement points inside the ROS-LUNA bridge.

To represent a real-life scenario where the LUNA application is executed on the embedded
device and the ROS application and ROS-LUNA bridge on the resource rich device, network
emulation must only be done on the link between C and D, and E and F. For emulation of delay
and packet loss on only a specific port number, traffic control is used with the settings
given in Listing A.1 and A.2.

tc qdisc add dev lo root handle 1: prio priomap 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

tc qdisc add dev lo parent 1:2 handle 20: netem delay $DELAY ms
tc filter add dev lo parent 1:0 protocol ip u32 match ip sport

$PT_NUMBER 0xffff flowid 1:2

Listing A.1: Commands used to emulate delay on network port

tc qdisc add dev lo root handle 1: prio priomap 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

tc qdisc add dev lo parent 1:2 handle 20: netem loss $LOSS %
tc filter add dev lo parent 1:0 protocol ip u32 match ip sport

$PT_NUMBER 0xffff flowid 1:2

Listing A.2: Commands used to emulate packet loss on network port

Robotics and Mechatronics Arnold Hofstede

32 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Reference measurements

In Figures A.2 and A.3, the latency for all points the system is given with respect to measurement
point A. In this figure can be seen that the time it takes to send a value from ROS to the LUNA
application and back takes less than 1 ms under ideal circumstances.

Figure A.2: Reference measurement for TCP.

Figure A.3: Reference measurement for UDP.

Measurements with emulated delay

In Figure A.4, the measured OW D AD with an additional emulated delay of 3 ms is given for
1000 samples. With UDP as transport type, the latency is between 3 ms and 4 ms. With TCP as
transport type and Nagle’s algorithm disabled, the latency is between 3 ms and 4 ms. With TCP
as transport type and Nagle’s algorithm enabled, the latency is between 3 ms and 4 ms.

Arnold Hofstede University of Twente

APPENDIX A. BRIDGE MEASUREMENTS 33

Figure A.4: Latency for an emulated delay of 3 ms. TCP represents the measurements with Nagle’s algo-
rithm enabled whereas TCPn represents the measurements with Nagle’s algorithm disabled.

In Figure A.5, the measured OW D AD with an additional emulated delay of 7.5 ms is given for
1000 samples. With UDP as transport type, the latency is between 7.5 ms and 8.5 ms. With
TCP as transport type and Nagle’s algorithm disabled, the latency is between 7.5 ms and 8.5 ms.
With TCP as transport type and Nagle’s algorithm enabled, the latency is between 12.5 ms and
27.5 ms.

Figure A.5: Latency for an emulated delay of 7.5 ms. TCP represents the measurements with Nagle’s
algorithm enabled whereas TCPn represents the measurements with Nagle’s algorithm disabled.

In Figure A.4, the measured OW D AD with an additional emulated delay of 15 ms is given for
1000 samples. With UDP as transport type, the latency is between 15 ms and 16 ms. With TCP
as transport type and Nagle’s algorithm disabled, the latency is also between 15 ms and 16 ms.
With TCP as transport type and Nagle’s algorithm enable, the latency is between 35 ms and
65 ms.

Robotics and Mechatronics Arnold Hofstede

34 Integration of hard and soft real-time tasks in Cyber-Physical Systems

Figure A.6: Latency for an emulated delay of 15 ms. TCP represents the measurements with Nagle’s
algorithm enabled whereas TCPn represents the measurements with Nagle’s algorithm disabled.

Measurements with emulated packet loss

In Figure A.4, the measured OW D AD with an additional emulated loss of 1% is given for 1000
samples. With UDP as transport type, the loss of a packet only means the loss of a sample.
With TCP as transport type and Nagle’s algorithm disabled, the loss of a packet only means the
loss of a sample. With TCP as transport type and Nagle’s algorithm enabled, the loss of a packet
results in a re-transmission after some timeout. This timeout and the ordered delivery property
of TCP cause that the sample in the lost packet and all samples between the moment that the
lost sample is sent and resend are delayed. In the measurements this can be observed by the
delay peaks with a width of around 20 samples.

Figure A.7: Latency for an emulated packet loss of 1%. TCP represents the measurements with Nagle’s
algorithm enabled whereas TCPn represents the measurements with Nagle’s algorithm disabled.

Arnold Hofstede University of Twente

35

B Practical notes on using ROS-LUNA bridge

B.1 ROS

The bridge can be used with most of the recent ROS (1) distributions, but during this thesis ROS
Melodic Morenia is used on Ubuntu 18.04.

B.1.1 Installation

1. Download and copy the luna_bridge and ros-raw_message packets to the src
folder of a catkin workspace.

2. Define the location of the LUNA executable and header folder before compiling the
catkin workspace by using the following commands:

export LUNA_LIBRARY_DIR = /< folder with libLUNA . a>
export LUNA_HEADERS_DIR = /< folder with luna−config . h>

3. Source the ROS environment:

source /< catkin workspace folder >

4. Compile the catkin workspace using:

catkin_make

B.1.2 First start

1. Run the following command in a sourced terminal:

ros_launch luna_bridge luna_bridge . launch

B.1.3 Known issues

• When the ROS source of the ROS-LUNA bridge is not directly downloaded from git into
the catkin workspace it can occur that some files have incorrect permissions.

– This can be solve by executing the following command in the catkin_ws/src folder:

sudo chmod −R 751 ros−luna−bridge

B.2 TERRA

In Figure B.1 the properties of a ROS-LUNA bridge channel in TERRA are given.

• Buffer size: Modifying this property only affects receiving channels in TERRA. The buffer
size must be at least 1.

• Field name: The name of the field of a message in which data is stored.

• Is blocking: Modifying this property only affects receiving channels in TERRA. Deter-
mines whether a channel blocks until a value is received or can be read from at all times.

• Msg type: The type of the message in which data is stored.

Robotics and Mechatronics Arnold Hofstede

36 Integration of hard and soft real-time tasks in Cyber-Physical Systems

• Send through buffer: Modifying this property only affects sending channels in TERRA. If
this property is set to true, a explicit call to send the data must be made in a C++ code
block.

• Topic name: Name of the topic to which the channel publishes or subscribes.

• Transport type: Transport type that is used to transmit data over the channel. Must be
TCP or UDP.

Figure B.1: Properties of the ROS-LUNA bridge channels in TERRA.

To use the ROS channels with TCP and Nagle’s algorithm disabled, the field no_delay in the
function below must be set to true. This function can be found in the file: MainModel.cpp.
By default, the value for no_delay is false.

int ROSChannelManagerTCP::connectToROS(const char *hostname,
const int port,
const bool nodelay)

B.2.1 Adding priorities

Priorities can be added to the CSP construct by adding the following lines of code in the pro-
tected region for manual tree modification of main.cpp:

term->setPriority(<desired priority>);
model->setPriority(<desired priority>);

All CSP constructs in the tree will now get a their priority assigned.

Arnold Hofstede University of Twente

37

Bibliography
Bezemer, M. (2013), Cyber-physical systems software development: way of working and tool

suite, Ph.D. thesis, University of Twente, Netherlands, doi:10.3990/1.9789036518796.

Boode, A. (2018), On the automation of periodic hard real-time processes: a graph-theoretical
approach, University of Twente, Netherlands, number 18-466 in IDS Ph.D-Thesis Series,
ISBN 978-90-365-4551-8, doi:10.3990/1.9789036545518.

Broenink, J. F., M. A. Groothuis, P. M. Visser and M. M. Bezemer (2010), Model-Driven Robot-
Software Design Using Template-Based Target Descriptions, in ICRA 2010 Workshop on In-
novative Robot Control Architectures for Demanding (Research) Applications, IEEE, pp. 73–77.

Hoare, C. A. R. (1978), Communicating sequential processes, vol. 21, no.8, pp. 666–677.

Kempenaar, J. (2014), Communication Component for Multiplatform Distribution of Control
Algorithms, Master’s thesis, University of Twente.

Kiszka, J., B. Wagner, Y. Zhang and J. Broenink (2005), RTnet – A Flexible Hard Real-Time Net-
working Framework, doi:10.1109/ETFA.2005.1612559.

Ridder, L. (2018), Improvements to a tool-chain for model-driven design of Embedded Control
Software, Master’s thesis, University of Twente.

Vos, P. (2015), Demonstrator combining ROS/TERRA-LUNA, Master’s thesis, University of
Twente.

Werff, W. (2016), Connecting ROS to the LUNA embedded real-time framework, Master’s thesis,
University of Twente.

Wijnholt, R. (2017), Design of a real-time network channel in LUNA, Master’s thesis, University
of Twente.

Xenomai (2020), Introduction Start_Here, https://gitlab.denx.de/Xenomai/
xenomai/-/wikis/Start_Here, accessed: 2020-08-28.

Robotics and Mechatronics Arnold Hofstede

https://gitlab.denx.de/Xenomai/xenomai/-/wikis/Start_Here
https://gitlab.denx.de/Xenomai/xenomai/-/wikis/Start_Here

	Summary
	Contents
	1 Introduction
	2 Background
	3 Analysis
	4 ROS-LUNA bridge refinements
	5 Connecting SRT and HRT tasks
	6 Conclusion and Recommendations
	A Bridge measurements
	B Practical notes on using ROS-LUNA bridge
	Bibliography

