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ABSTRACT 

This research aimed to map textures of carlin-type gold deposits using hyperspectral shortwave infra-red 

images and RGB photo images which may be indicative of gold mineralization with the study area. The 

samples used in this study were acquired by Barrick Gold Corporation. The drill cores were accompanied 

by auxiliary data – fire assay – showing the concentration of gold and arsenic; X-ray diffraction Data (XRD), 

showing the minerals in some samples from the study area and Red Green Blue band (RGB) photos of the 

samples. 

The samples were inspected, and their textures were identified. Then images of the samples were acquired 

using a hyperspectral sensor. The hyperspectral shortwave infrared images were pre-processed and 

processed to create wavelength maps and band ratios. Wavelength maps are image products whose bands 

contain images representing the wavelength positions and depth of the first, second absorption feature and 

third absorption feature contained in the SWIR images. The SWIR and RGB images were classified using a 

decision tree which relies on given threshold values and Boolean operators to subset the image data until 

certain criterions were achieved. The image products were used in the decision tree classification to map the 

hyperspectral images based on the position and depth of its mineralogical constituent which had been 

highlighted by the wavelength maps. While the RGB images were classified based on the colour ratio of the 

RGB bands. Then, a portable X-ray fluorescence device was used to measure the concentration of the 

constituent elements, particularly gold, present in drill core samples. The two minerals of interest were gold 

and arsenic. Measurement was carried out on identified textures such as the different matrix of the drill 

cores as well as veins and clast. 

The mineral maps from the two images performed well in highlighting textures from the samples. Textures 

such as veins, clasts and breccias, homogenous and layered matrixes were identified. It was observed from 

the SWIR image products that the Porphyry samples had been altered. They contained white micas at 

shallow depths and were gradually altered with increasing depth into kaolinite. The calcerous silttone 

samples had also been altered. The minerals had either been completely replaced by whit micas or the 

carbonate had been mixed with white micas. The fire assay, as well as the XRF measurements, show that 

that white mica and montmorillonite veins in dark grey silty non- carbonate matrix contained high gold 

concentrations above 11ppm, phengite vein also contained high gold concentration while calcite veins in 

the same type of matrix contained little to no gold. Also, silty grey matrix with carbonates show indication 

of Gold but had values that were below the reliable detection limit of the XRF. The RGB images could 

identify these veins but could not differentiate between calcite veins, which were mostly indicative of the 

absence of gold; from white micas and clay veins which contained gold, sometimes in high proportions. 

Also fined grained carbonate matrixes show indication of gold but their measurements were below the 

detection limit of the XRF and require further investigations because they may or may not actually contain 

gold.  
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1. INTRODUCTION 

1.1. Background 

Mineral prospecting of gold traditionally dealt with gold deposits that were contained in quartz veins of 

crystalline rocks, whether of igneous or metamorphic origin, until the later part of the 1900’s when 

sedimentary hosted deposits became of economic importance. The first Carlin-type gold deposit was 

discovered in 1960 near the town of Carlin, Nevada and subsequently, similar deposits were found along 

the NW and NE trending shear zones called the carlin trend (Li & Peters, 1998). While epithermal gold 

deposits are formed from gold saturated hydrothermal fluids, carlin type gold are formed for fluids that are 

undersaturated with Au. The key to the formation of large scale carlin type deposits is the ability for Arsenic 

pyrite to absorb the solid state gold form these undersaturated fluids. (Zhu, An, & Tan, 2011). 

Ore texture plays a role in the identification of nature and the forming process of an ore. It can be defined 

as the spatial relationship between mineral grain and reveals information about the mineralogy, the origin 

and the geologic setting of their mineralization. Therefore, a proper understanding of these textures helps 

to understand the history of an ore (Barton, 1991; Craig & Vaughan, 2005). Some textures are associated 

with metamorphism, while others are indicative of hydrothermal alteration processes.  

The deposition of ore minerals during the formation of hydrothermal ore deposits is often related to specific 

hydrothermal alteration zones. Identification of mineralogy and textures related to alteration offer the 

possibility of characterising an ore and is particularly important because they are associated with deposits 

rich in metallic ores of high economic grade (Dalm, 2018; Govil, 2015). 

The study of patterns and textures of rocks have been observed and recorded since before the 19th century. 

Historically, ore textures are investigated using petrography and ore microscopy. Samples were primarily 

analysed under reflected and transmitted light. Interpretation involved applying geologic principles on the 

microscopic scale (Barton, 1991) to analysis grain-size, relationship, grain boundary shape and orientation 

fabric (Higgins, 2006).  

Laboratory-based investigation of earth materials using hyperspectral images has been successfully carried 

out (Homayouni & Roux, 2014). Advances in hyperspectral sensors have provided researchers with the 

opportunity to study rocks at a higher spatial dimension. The higher resolution hyperspectral images have 

allowed discrimination of mineral spectra in finely grained lithologies like carbonate rocks (Bevan, 2018). 

These images incorporate both high spectral and spatial information of the imaged rock samples and can 

now reveal information that could only be previously assessed using thin section petrography and 

microscopy (Turner et al., 2017).  This allows the spectroscopic analysis of rocks carried out in the laboratory 

to provide high levels of textural and mineralogical information (Turner et al., 2017). The result of the 

analysis of a hyperspectral image is the proper classification every pixel in the image of the observed material 

based on each pixel’s unique spectral curve (Kamruzzaman & Sun, 2016). 
 

Earth materials like rocks are investigated and identified based on their spectra absorption features at 

specific wavelengths of the electromagnetic spectrum. This is possible because of the high spectral 

resolution of a hyperspectral sensor that acquires images where every pixel of the image contains a 

spectrum that is made up of data points representing a large number of consecutive wavelengths the 

sensor images a given material (Kamruzzaman & Sun, 2016; Turner et al., 2017). The spectral absorption 
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features of materials are influenced by different electronic or vibrational processes of their molecules and 

are diagnostic for a given material (Scott & Yang, 1997; Swayze et al., 2014; van der Meer, 2018). And in 

geology, they allow for the proper identification of the mineralogy of rocks and earth materials. 

Knowledge of the mineralogy of rock can aid in understanding the geological processes of their formation, 

deformation and or alteration. (Asadzadeh & de Souza Filho, 2016). For mineral exploration, mapping the 

spatial distribution of spectrally active minerals in the 0.4 to a 2.5µm range of the electromagnetic 

spectrum has proven effective in evaluating patterns formed during the hydrothermal alteration process 

(Swayze et al., 2014). The aluminium hydroxyl ion (Al-OH) of phyllosilicates minerals like clays and white 

micas exhibits as an absorption feature between 2100nm and 2250nm wavelength while the carbonate ion 

CO3
2- present in carbonate minerals exhibits absorption features at 2300nm to 2400nm wavelength range 

(Swayze et al., 2014; van der Meer, 2004).  

Two useful methods used in mineral identification and mapping include band ratios and mapping the 

wavelength position of the deepest absorption features of images. Van Ruitenbeek et al., 2014 developed 

the method of mapping the wavelength position of the deepest absorption feature between 2.1-2.4µm to 

create surface mineralogical maps. The method helps to highlight spectral differences of minerals that 

have different absorption features at different wavelength within a hyperspectral image. Band ratios are 

also useful in differentiating between minerals with absorption feature near the same wavelength position. 

The ratios can highlight subtle shifts in spectral features (Van Ruitenbeek et al., 2006). This is applicable to 

delineating between clays and white micas groups which share similar absorption feature in the 2.1-2.4µm 

range.   

Several types of research have been done on investigating rock textures, characterising ore deposits based 

on their mineralogy and textures, developing models to sort ores from gangue and improving the parameters 

of these models (Gay, 2004; Hilden & Powell, 2017; Iyakwari et al., 2017; Pérez-barnuevo et al., 2018).   

Goetz et al. (2009) researched on copper ores to measure gangue concentrations employed near-infrared 

spectroscopy supplemented by XRD analysis to develop a model used to predict the concentrations of 

quantifying swelling clays.  Research analysis of porphyry Copper ore carried out by  Dalm et al., (2014) 

mapped minerals spectrally active in the near infrared range. It established an indirect relationship between 

copper ore grade and near-infrared active minerals. While the test-work did not directly identify spectral 

features that related to the Copper ore grade, it was able to correlate minerals such as high crystalline white 

mica with high copper ore grade identified from geochemical analysis.  

Bevan (2018) employed high-resolution short-wave infrared (SWIR) images to characterise the alteration of 

the Cortez hill deposit. Part of his research involved mapping the spatial distribution of hydrothermal 

alteration minerals and a qualitative investigation of textures associated with gold mineralisation.  Hilden & 

Powell (2017) developed a model for simulating multi-mineral rock textures to predict liberation 

characteristics using parameters describing grain and grain size distribution. They fitted the parameters of 

their model by measuring corresponding mineral liberation data. Guiral-Vega (2018) carried out research to 

characterise the textures and mineralogy of two spodumene pegmatite deposits within the Kaustinen Li 

province, Finland. Drill cores from the deposits were logged and classified into twelve textural classes 

representing the ore and host rock. The mineral phases within each textural class were determined using 

representable image patches for each mineral phase, image segmentation analysis and machine learning 

random forest model was used to estimate the spodumene yield. Pérez-barnuevo et al. (2018) assessed the 

potential of drill core textures as geo-metallurgical indicators of iron ore in Quebec. The methodology 

involved investigating the liberation process of the ore and characterising the mineralogy and grain size 

distribution of identified textural patterns. 
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1.2. Previous Work 

 

Some researchers have already been carried out analyses on the Cortez hill deposit using hyperspectral 

imagery.  Two researchers who have some samples used in this research include Bevan (2018) and Dalm 

(2018). Bevan (2018) researched the usability of high-resolution shortwave infrared hyperspectral images 

to characterize the hydrothermal alteration at Cortez hill. He mapped the hydrothermal alteration minerals 

of 19 drill cores to highlight variations in mineral type and their composition variations. His maps also 

highlighted porphyritic-porphyroblastic mineral textures in gold hosting rocks of Cortez hill. The minerals 

he identified included carbonate minerals, white micas, clay minerals, tremolite and talc, chlorite and 

mixed mineral classes and these were validated using optical petrography. This allowed the identification 

of the alteration type that had taken place in the study area, expressed by the replacement of chlorite talc 

and tremolite by white mica minerals.  

Dalm (2018) researched to explore the benefits of using sensors for real-time raw material characterization 

in mining and sorting of the hydrothermal ore deposit. He proposed that with increasing demand for 

mineral resources, sensor-based sorting machines could be incorporated into mineral processing to 

improve sorting. He noted that because most ores are polymineralic rocks with the important economic 

minerals occur in small proportions grain sizes, there are no known sensors that can be used to detect the 

grade of ore particles. 

For his work; he used samples from three different types of ore deposits, the Los Bronces porphyry 

copper deposits, the Lagunas Norte epithermal gold-silver deposit and the Cortez hill Carlin-type gold 

deposits. From visible near-infrared (VNIR) and shortwave infrared (SWIR) images of his samples, he 

extracted spectral features such as absorption location and depth of the most dominant mineral, mica 

crystallinity which is the ratio of the depth of Al-OH absorption at 2200nm and depth water (H2O) 

absorption at 1900nm and ferrous ion absorption between 1450 and 1850nm. These were used together 

with XRF measurements/and or fire assay data in multivariate regression, partial least square regression 

(PLSR) and discriminant analysis (PLS-DA) to identify variables that contain information useful to create 

a model for the classification of spectral data.  

For Cortez hill, he used 629 drill core samples in the PLS-DA model to identified minerals characteristics 

of samples with a gold grade less than 0.15ppm which was classified as waste and greater than 5.14ppm, 

carbon content and sulphur content was used to predicts a response for each measured spectrum. He 

observed that calcite was an indicator of waste while dolomite was associated with ore samples. He also 

observed that white mica samples with absorption feature lower than 2205nm were ore samples (> 

0.15ppm) with 17% having an average of 21.3ppm while those occurring between 2205 and 2210nm were 

waste ( <0.15ppm). 

1.3. Problem Statement  

The exploration of mineral deposits by mapping the distribution of associated minerals has its limitations. 

It is essential to incorporate textural information during the investigation because they provide the 

opportunity to better understand the mineralisation processes of an ore body further. Ore deposits have 

been investigated  by using short wave infrared to mapping alteration minerals common to the deposit. 

However, it is important to combine textural information with this mineralogical information to better 

characterize a deposit. By evaluating the relationship between identified textures, their mineralogy and the 

concentration of gold within samples, a better understanding of the ore deposit will be obtained. At the end, 

textures that are indicative of the ore mineralization will be determined and the impact of possible variations 

to these textures across the drill hole may be understood.   
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1.4. Objectives and Research Question 

1.4.1. Aim  

This project aims to evaluate the relationship between indicator textures and gold ore grades; by analysing 

and measuring texture parameters and their variation with depth using high-resolution RGB and short wave 

infrared hyperspectral images and comparing with XRF data of drill core samples from Cortez Hills. 

 

1.4.2. Objectives  

The specific objectives include: 

• visual inspection and qualitative interpretation of drill cores to create texture inventory,  

• mineral mapping using decision tree classification of SWIR hyperspectral images and 

supervised classification of RGB images to highlight textures,  

• determination of the distribution of gold and arsenic in the drill cores,  

• evaluating the relationship between minerals, textures and gold concentration.  

 

1.4.3. Research questions 

• What type of lithologies is present? 

• Are there variations in textures within the same lithologies? 

• What minerals and textures are identified in the short-wave infrared range hyperspectral 

images?  

• What comparisons can be made between texture measured in the two RGB and SWIR images? 

• Are there textures better observed in the RGB or in SWIR? What sort of textures are they? 

• Do textures change with depths? What are the causes of these changes? 

• What are the effects of weathering on these textures?  

• What sort of relationship, exists between the different textures and the gold concentrations of 

the ore? 

 
 
 

1.5. Hypothesis 

Specific textures like veins and breccias can be indicative of gold mineralization.  
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1.6. Study Area 

The study area is in Cortez Hills, located at the geographic coordinates 40°10'11"N, 116°36'31"W, in 

Eureka County, north-central Nevada, USA. The study area is located within the Carlin-trend (see Figure 1) 

and is a part of the Battle Mountain-Eureka trend. It is one of the three most prolific gold belts in the 

world (Garwin, 2005). The belt is approximately 60 km by 7 km and is trending north-west. 

1.6.1. Geological Setting  

The gold deposits are hosted in carbonate and siliciclastic rocks of lower Paleozoic in the lower plate of the 

Robert Mountain thrust (Colgan et al., 2008; Garwin, 2005; Gilluly & Masursky, 1965). Lithologies in the 

lower plate include the Cambrian Harmburg Dolomite; Ordovician Eureka Quartzite and the Hanson Creek 

Formation (Gilluly & Masursky, 1965). This sequence is overlain by Ordovician through Devonian 

siliciclastic sequence of the upper plate of Roberts Mountain allochthon that was emplaced by a Thrust fault 

in Mississippian time (Hofstra & Cline, 2000). The lithologies in Upper late contains lower and middle 

Ordovician Vinni and Valmy Formations, Elder sandstone and Slaven. They are made up of argillites, cherts, 

quartzite, sandstones (Gilluly & Masursky, 1965).  

Three episodes of intrusions occur along with the Car0 lin trend; the Mill Canyon Stock, a Jurassic intrusion 

of Biotite Quartz Monzonite, common in the Carlin trend. Eocene calc-alkaline porphyritic Dacite and 

Rhyolite dykes are trending north-northwest to the north-northeast and Miocene rhyolitic events. 

Crosscutting field relationship and Argon radiometric dating indicate the emplacement of these Eocene 

dykes occur at the same time as the gold mineralisation in the carlin trend (Garwin, 2005). 

The hydrothermal alteration also occurred within the trend. It is characterized by decarbonatization and 

dolomitization of the carbonate host rocks; sulfidation of iron and the silicification of limestone, and argillic 

alteration of silicates (Garwin, 2005; Hofstra & Cline, 2000). Structures in the rock sequence include a 

regional anticlinorium and is exposed as anticlinal hinge zones trending northwest that approximately 

coincides with the central axis of the Carlin Trend and faults and fractures trending north-east and north 

north-west (Garwin, 2005).  

1.6.2. Ore Deposit 

The Carlin-type gold deposit is a sedimentary hosted disseminated gold deposit. The composition, 

permeability and porosity of its host rocks play a significant role in the mineralisation of gold in the trend 

(Garwin, 2005). The gold occurs as sub-micron particles in arsenic-pyrite bearing ores.  The main ore stage 

formed during the cooling and neutralisation of ore fluids by the host rocks at temperature conditions of 

250-150oC (Hofstra & Cline, 2000). The presence of hydrogen sulfide in the ore fluids suppressed the 

solubility of iron, causing sulfidation and the precipitation of gold and pyrite from the fluids. The fluids 

were probably controlled by the less permeable upper plate of the Roberts thrust mountain into the 

underlying carbonates along with major structures (Hofstra & Cline, 2000). 

The Carlin deposits can be highly profitable to exploit, having grades as high as 8 to 52 g/t Au (Garwin, 

2005; Hofstra & Cline, 2000). The Gold bearing mineral is Arsenic-pyrite, other ore minerals include 

cinnabar, copper oxide, iron oxide, pyrite, nickel-arsenic sulfide, while gangue minerals are calcite and quartz 

(USGS, n.d.). 
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Figure 1: Geological map of Cortez Hills. Source: Clark (2012). 
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2. DATA  

2.1. Dataset 

The primary datasets used for this research were drill core samples; they came accompanied with auxiliary 

data containing location, geological information and results of fire assay test. 

2.1.1. Drill cores 

The total number of 71 samples obtained from the three boreholes were analysed in this research. These 

samples were obtained by Barrick Gold Corporation and have Hole ID; CHUE-264, CHUE-279 and 

CHUE-352. The depth in metres where the samples were obtained from also doubled as their sample. They 

were approximately 10cm to 20cm in length and 4 to 6cm wide. Some samples were fragmented and smaller 

than this size.  The number off samples and lithologies the samples were obtained from are listed in the 

table below: 

 

Table 1: Summary of samples used in this research 

 

CHUE 264 No. CHUE 297 No. CHUE352 No. 

Silty Limestone  14  Silty Micrite  5 Micrite 5 

Calcareous Siltstones 

Marble  

5 

2 

Calcareous Siltstone  

Micrite    

2 

4 

Silty Micrite  

Calcareous Siltstone 

2 

8 

Dolomite  1  Dolomite  1 Dolomite 2 

Quartz porphyry 3 Quartz Porphyry 12 Quartz Porphyry 4 

Feldspar Porphyry   2     

Total  26  24  21 

 

2.1.2. Auxiliary Borehole Data 

The drill cores (see Figure 2 for example) were accompanied by auxiliary data which were; High-resolution 

RGB colour photos, geochemical and X-ray powder diffraction (XRD) data. The geochemical analysis data 

on the drill cores carried out by Barrick Corporation was provided in an excel document with geological and 

chemical information of the samples at 5 to 10 metres intervals of measurement. The information included 

the depth the samples were collected (in meters), the formation the samples were obtained from, the type 

of lithology they were, and their gold concentration obtained through fire assay analysis.  

High-resolution RGB photos were also available for this research. These photos were obtained by digital 

cameras that imaged the samples using 3 bands located at 450nm 550nm and 850nm representing the 

blue, green and red wavelength range the visible part of the electromagnetic spectrum. The images were 

acquired in 19-09-2015 by Marinus Dalm and have a spatial resolution of 0.2mm 

Dalm (2017) also carried out a XRD analysis to identify the mineralogy of samples obtained from the study 

area. The XRD analysis is a method used to identify the crystalline structure, physical and chemical 

properties of a material (Misture & Snyder, 2001). He identified calcite, augite, aluminian, orthoclase, 

dolomite, tremolite, phlogopite, clinochlore and quartz from samples in the study area. And specifically 

identified calcite, dolomite, tremolite and quartz from sample E352-1145. 
 

The data was provided in Pdf format and contained information about minerals that have been identified 

from some of the samples using this method. The identified include 
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The details of the dataset are summarized in Table 2 below. 

 
Table 2: showing available dataset used in this research. 

Available dataset Description Acquired by Spatial/Spectral 
Resolution 

Drill core samples 74 drill cores with hole ID CHUE-
264, CHUE-279 and CHUE-352 

Barrick Corporation  

High resolution 
RGB images 

3 band Color photos of samples. 
Band 1 = 450nm 
Band 2 =550nm 
Band 3 = 650nm 

 
 

0.2mm/ 
440, 550, 630nm 

XRD Peak position and intensity of 
mineral phases. 

 
Marinus Dalm at the 
Department of Materials 
Science and Engineering 
of the Delft University of 
Technology.  

 
Minerals 

Geochemical data 
(fire assay test) 
 

Excel sheets with: 

• 3-dimension location 

information, 

• Lithological Formation and 

Units, 

• Fire assay test result showing Au, 

As, Ag, Cu, Hg, Sb, in ppm while 

Ca, Mg, S, in percent.  

Barrick Corporation. 
Bureau Veritas 
Commodities Canada 
Ltd.  

Location: meters,  
Concentration: parts 
per million (PPM), 
and in percents 

2.2. Tools and Softwares 

The tools and software used in carrying out this research are detailed below. 

2.2.1. SisuCHEMA shortwave infrared scanner 

The hyperspectral short-wave infrared camera used for this study was the SisuCHEMA Scanner located in 

the ITC Geoscience laboratory at 0.2mm spatial resolution. This hyperspectral camera has a spectral 

resolution of 5.6nm and acquires a contiguous spectrum per pixel in the short-wave infrared between 1000 

to 2500nm. It employs push-broom imaging technology to scan samples on a moving sample tray and 

provides high resolution spatial and spectral image (SPECIM, 2015). Its specifications are listed in Table 3.  

 
Table 3: Specifications of the hyperspectral camera. 

Characteristics Specifications 

Spectral range 1000-2500nm 

Spectral sampling/pixel 5.6nm 

Spectral resolution FWHM 12nm 

Spatial pixels/line 384 

Spectral bands 288 

Pixel size  0.2- 0.5µm 

Illumination SPECIM’s diffuse line illumination unit 

Data format ENVI, MATLAB and R compatible formats 
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2.2.2. Thermo Scientific Niton XL3t Portable X-Ray Fluorescence sensor 

X-ray Fluorescence sensor is a piece of scientific equipment that measures the constituent of a given sample 

by bombarding the material with X-Rays. This causes the atoms within its molecules to become excited and 

their electrons to escape to a higher orbit, the electron will eventually lose energy and go back to its original 

position but during this process, energy is released. This released energy is specific for each mineral. The 

XRF tool measures this energy and provides an estimate of the minerals within a material. However, for 

light metals, it provides only an indication unless the material is flushed with Helium. 

The device has a limit of detection for each element it investigates. The limit of detection is defined as the 

“minimum concentration of a substance measured that can be reported with 99% confidence that the analyte 

concentration is greater than zero and is determined from analysis of a sample in a given matrix containing 

the analyte” (Environmental Protection Agency, 2016).   

According to the documentation of the device, the detection limit of the sensor for gold after 60 

seconds/filter of measurement gold is 16ppm while that for Arsenic is 3ppm (Thermo Scientific, 2010). 

However, increasing the analysis time to 90seconds/filter will reduce the limit by the square root of the 

addition time (30seconds) while reducing to 15seconds will double this detection limit (Thermo Scientific, 

2010). 

 

2.2.3. HypPy3  

Hyppy3 is an image classification software developed by (Bakker, 2012). It was used for the conversion of 

the raw hyperspectral SWIR infrared images into reflectance; for pre-processing the images and for creating 

wavelength maps and band ratios from them.  

 

2.2.4. ENVI version 5.5 

ENVI is a software package developed by Harris Geospatial Solutions, Incorporated for image processing. 

This software was used to carry out visualization, pixel spectrum inspection and mineral identification, image 

classification and finally for image masking. Both Decision tree classification and the maximum likelihood 

classification processes were carried out using this software package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Displaying samples of drill hole E264 from 51m to 271m. 
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3. METHODOLOGY 

The methods used in carrying out this research are discussed in this section. 

3.1.1. Sample inspection 

This step involved inspecting the samples to identify and understand the physical characteristics of each 

sample, identify textures contained within the samples and observe the differences between samples from 

the same lithologies. The first drill hole with Identification number CHUE-264 has 28 samples 

The second one, with ID. No. CHUE - 297 has 24 samples while the third drill hole with ID no. CHUE- 

352 has 21 samples. 

 

 

3.1.2. Image acquisition. 

The samples were imaged using the SISUCHEMA sensor (see Table 2 for specification).  The setup of the 

sensor used for acquisition is displayed in figure 2a below.  The samples were set in a tray filled with beach 

sand to ensure they were flat and on the same elevation as the sides of the tray (see figure 2b). The tray was 

set on the sample stage, and before the SWIR images were acquired, the room was darkened to ensure that 

the only source of light reflecting on the surface of the samples was from the lamps attached to the sensor. 

All these were done to reduce noise that may be introduced by differences in illumination of the surrounding 

background. 

The acquisition software of the device was set to acquire the images using the following settings of 38.9 

frames/sec with a speed of 10mm/s and exposure time of 2.1ms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a)Showing device setup used for image acquisition. (b)Showing samples E264_318m and 322m placed in 
the sand tray about to be captured using the sisuChema. 

 

 

(a) (b) 



 

13 

3.1.3. Image pre-processing 

The hyperspectral images were pre-processed to ensure they were suitable for analysis. These pre-processing 

steps included conversion to reflection, removal of stripping error during the image acquisition. 

The following pre-processing steps were carried out on the images: 

• Conversion to reflectance using the dark and white calibration reference of the spectrometer.   

• De-striping to remove bad pixels, 

• Spectral subset 

• Calculation of albedo 

 

The raw hyperspectral acquired was calibrated and converted to reflectance using information obtained 

from dark and white references. The white reference is obtained from the sensor’s white reference surface, 

which has a near 100% reflectance, and the dark reference was obtained when an image was obtained while 

the sensor’s shutter was closed. This helps correct the instrument noise. The Hyppy software was used to 

carry out this correction. The next step was to remove bad column strips occurring on every 8th line of the 

image from the newly calibrated images. This error was corrected by nearest neighbour interpolation using 

the ‘fix 8th SWIR’’ tool in Hyppy.  

The spectral subset was performed in ENVI to remove the first 16 bands from 894nm to 980nm which are 

noisy and could negatively influence the image processing steps. 

The last step carried out in Hyppy was the albedo calculation using Hyppy’s log residual tool, which is a tool 

for normalizing data and removing albedo and atmospheric effects (Bakker, 2012). To achieve this, it 

calculates the albedo of the image. This albedo image is useful for the classification of dark samples 

 

3.1.4. Image processing 

The next step was the image processing steps that were carried out towards creating mineral maps and 

highlighting textures in the dataset. These steps are further discussed below 

3.1.4.1. Wavelength mapping and band ratio 

Wavelength mapping was carried out on the hyperspectral images to highlight the wavelength position of 

the first, second and third deepest absorption for each pixel in the images. The wavelength range of interest 

in creating the final mineral maps; was range 2100-2400nm because this range contains  spectral patterns 

that are related to OH bonds which are part of the crystalline structure of a mineral and absorption is a sum 

of the stretching and bending effect of specific bonds in a crystal structure, such as the Al-Oh bonding 

(Roger N. Clark, 1999). The location of the spectral patterns varies as cation (Aluminium (Al), Silica (Si), 

Iron (Fe) and Magnesium (Mg)) substitution in the crystal lattice of the mineral changes. This range covers 

the region where the main diagnostic feature used to delineate between minerals like phyllosilicates, 

hydroxides, sulphates and carbonates can be found (Clark, 1999; Swayze et al., 2014; van der Meer, 2004).  

In this research, the two mineral groups of interest were of interest in this research: Minerals with Al-OH 

bonds (clays) and minerals with CO3
2- (carbonates) because they are useful in identifying hydrothermal 

alteration minerals (Swayze et al., 2014) 

Illite crystallinity band ratio was also created by calculating the ratio of the depth of Al-OH feature at 

2200nm and the depth of water absorption feature at 1900nm because of its usefulness in delineating the 

degree of crystalline and less crystalline clays and white mica. (Dalm, 2018) 

3.1.4.2. Mineral identification 

The minerals present in some of the samples within the dataset were identified by XRD analysis carried out 

by  Marinus Dalm (2017). He identified Calcite, Augite, Alumina, Orthoclase, Calcite Dolomite, Tremolite, 

Phlogopite, Clinochlore and Quartz these samples. Bevan (2018) in his research which he carried out on a 
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subset of the samples used in the study also identified calcite, dolomite, kaolinite, montmorillonite, white 

micas, tremolite and talc, chlorite and mixtures of carbonates and clays by analysing the spectral features 

from shortwave-infrared images he acquired analysis and by thin section.  

This, together with spectral inspection of pixels highlighted by the wavelength maps and band rations and 

using the G-Mex Mex (Pontual, S., Merrry, N.,& Gamson, 1997)as a reference, several mineral classes were 

identified and selected and subsequently used creating and optimizing the decision tree classifier. 

 

 

3.1.5. Decision tree classifier 

The method chosen for creating mineral maps in this research was the Decision tree classification using the 

ENVI decision tree module. The Decision Tree classifier is a tree-like algorithm that repetitively divides a 

dataset into sub-classes (in this case image data) using threshold values and boolean operators until pure 

data classes are obtained or the classification criteria the user has specified is met (Savan Patel, 2017). This 

method of classification was used because of the ease of interpretation and the efficiency of its algorithm 

despite the large data needed to be analysed (Viktor Gavrilov, 2016). 

3.1.5.1. SWIR image classification using decision tree c 

The mineral classes identified were used in creating and optimizing the DT classifier for classification of the 

SWIR image-derived wavelength maps.  

The wavelength maps of 2100-2400nm range, the albedo images and the Illite crystallinity band ratios were 

used as input bands for this DT Classifier.  The classifier was optimized iteratively by observing the 

wavelength maps, the depth maps, spectral of the original pixel after classification until 3 representable DT 

classifiers capable of classifying all samples were created. 
Two DTC were used because while one was capable of the general classification, the other was optimized 

for dark samples. This was able to discriminate low reflectance grey veins from their surrounding darker 

pixel using albedo (for example, see sample 264_502m) and the last for delineating between White micas in 

the weathered Porphyries (see sample e264_271m). The input bands for used for the DT classifier were; b1 

=the band of the wavelength position of the first deepest absorption feature, b2 = the depth of the first 

absorption feature, b3 = the wavelength position of the second absorption features b4 = depth of the 

second absorption feature, b7 = illite crystallinity band ratio and b8= albedo band (see Appendix 1 for DT 

classifiers used for SWIR images).  

This step occurred concurrently with the mineral identification step. 

 

3.1.5.2. RGB image classification using decision tree 

The high-resolution RGB images were classified using the decision tree algorithms. The input band for the 

DT was b1= blue band, b2 = green band and b3 = red band. The RGB images were classified based on the 

colour of the minerals using 5 classes (see appendix 4 for DT classifier of RGB). 

• White/bright minerals, 

• Light grey minerals, 

• Orange minerals, 

• Red minerals, 

• Dark grey minerals. 
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Figure 4: Decision tree classifier for general classification of SWIR images. b1 = wavelength position of deepest 
absorption feature in 2200-2400nm, b2 = depth of deepest absorption feature, b3 = wavelength position of 2nd 
deepest absorption feature in 2100-2400nm, b4= depth of 2nd deepest absorption feature; b7= Illite crystallinity 
index, and b8 = Albedo. 

3.1.6. Masking 

Masking is a tool used to eliminate unwanted values form a given dataset. In this case, the unwanted values 

include; slopping edges of the samples, non-flat surfaces/weathered surfaces and the background pixels 

representing the sand used to prop of the samples to be flat and at the required elevation during image 

acquisition. After the classification process, these where masked and eliminated. This process was required 

because the images were then to be further processed using Shaper IDL to extract the textural parameters. 

Non-flat surfaces and the sand placed in the tray to keep the samples at the required elevation were masked 

out using the region of interest tool of ENVI. 

 

 

3.1.7. The acid test for carbonate minerals: 

The acid test is a test carried out to determine if a rock contains carbonates or not. Carbonate minerals react 

to acid and give off carbon dioxide gas (CO2). This test was carried out on the samples to delineated between 

mineralized and unmineralized samples of the same lithology. 

 
CaCO3 + 2HNO3 = H2O + CO2 + Ca(NO3)2       Equation 1 

 

3.1.8. Portable XRF Measurement: 

The portable XRF sensor was used to measure the concentration of the elements in the samples. 

Measurement was carried out on the matrix of the samples and on other structures like veins breccias and 

clasts present in the samples. For most samples, a minimum of 2 repeat measurement was carried out per 
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location. The device provides a concentration of elements in ppm together with the error margin for each 

measurement. It should be noted though that according to the documentation of the device, the detection 

limit for gold after 60 seconds/filter of measurement gold is 16ppm while that for Arsenic is 3ppm (Thermo 

Scientific, 2010). However, reducing the analysis time to 15seconds will double this detection limit while 

increasing it to 90seconds/filter will reduce the limit by the square root of the additional time (Thermo 

Scientific, 2010). 

In instances where the explored gold occurs in low concentration or in a concentration below the 

detection limit of the portable XRF pathfinder elements which can be enriched together with the explored 

metal are used to locate potential zones of enrichment (Thermo Scientific, 2012). In this research because 

of the geochemistry of the deposit, as stated by Wilson et al. (1994) “ Carlin type deposits are 

characterized by high concentrations of Au, Ag, As, Sb, Ba, Ti, and Hg Arsenic was selected as the 

pathfinder mineral. Arsenic (As). Other pathfinder minerals for  Carlin type gold include Thallium (Tl),  

Mercury (Hg), antimony (Sb) and Silver (Ag) because they show high correlation with gold mineralization 

(Wilson et al., 1994). For this research, measurements below 11ppm, but give actual values instead of 

returning  ‘LOD’ and having a low error with moderate to high arsenic was considered to be indicative of 

the presence of gold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5: A flowchart showing a summary of the methodology of this research 
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4. RESULTS 

The results of the methods carried out in this research are shown in this chapter. This includes the inventory 

of textures and lithologies, minerals identified from images of the samples, the mineral maps created using 

decision tree classifier and the result of the pXRF analysis. 

4.1. Texture inventory 

4.1.1. Matrix 

Matrix or groundmass of a rock body is the smallest or finer grained minerals in which coarser or larger 

grain materials are embedded or surrounded (Britannica.com, 2011).  Figure 3 below shows the type of 

matrix observed in the samples; 

I. A fine-grained matrix occurring as either;  

✓ Grey to dark grey layered matrix as seen in silty limestone and silty micrite samples (see Figure 6 

(a)) 

✓ Homogenous dark grey matrix also in Silty limestone and Silty micrite (see Figure 6 (b)) , 

✓ Altered reddish matrix as seen in the Calcareous siltstones (see Figure 6 (c)), 

✓ Weathered texture of micrite (see Figure 6 (g)). 

 

II. Microcrystalline carbonate matrix as seen in the Dolomite and marble samples (see Figure 6 (d)) 

III. Porphyritic textures with large crystals in a fined grain matrix: The matrix of the intrusive igneous 

rocks have observed in the samples were of three types;  

✓ orange-pinkish matrix with colourless, white and black phenocryst (see Figure 6 (e)),  

✓ white-grey matrix with colourless, white and black phenocryst (see Figure 6 (f), 

✓ weathered porphyritic texture, the variation in the degree of weathering caused a layering pattern 

to develop in the sample as seen in sample E264_271m (see Figure 6 (h)). 

 

(a)                                       (b)        (c)          (d)                               

 

 

 

 

 

 

     

            

 (e)        (f)        (g)                          (h) 

           

 

 

 

 

 

 

 
Figure 6: showing textures identified in the samples. (a) layered grey matrix; (b) homogenous dark grey matrix; (c) 
altered reddish matrix; (d) microcrystalline carbonate matrix, (e) orange-pinkish porphyritic matrix, (f) white-light 
grey porphyritic matrix (g) weathered micrite texture(sedimentary)) (h). weathered porphyritic texture (igneous) 
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4.1.2. Veins, layering 

Other structures such as veins and layering were found. Veins are geological textures formed when a 

fracture within a rock body is filled with new rock material either during intrusion of igneous bodies, 

during metamorphic processes that cause zonation and recrystallization of minerals  in metamorphic rocks 

or by deposition from migrating hot hydrothermal fluids rich in the minerals that are later precipitated and 

deposited in fractures in the host rock. Layering was also observed in the samples. Layering is 

characteristic of sedimentary rocks formed by the sequential deposition of sedimentary beds on top of one 

another and can denote bedding plans or unconformities. It is a useful characteristic in determining the 

age and depositional environment of sedimentary rock.  Displayed in figure 5 below are the types of veins 

and layering identified in the samples. They include planar veins, deformed/irregular shaped veins, 

crosscutting veins, as well as layering vein but in a crystalline carbonate matrix  

                (a)                          (b)            (c)           (d) 

 

 

 

 

 

 

 

 

  (e)             (f)      (g)          (h) 

 

 

 

 

 

 

 

 
Figure 7:  Showing the types of veins and layering and identified from the samples (a) planar vein crosscutting layered  
matrix; (b) deformed vein in grey matrix; (c) crosscutting veins (d) white mica veins in microcrystalline carbonate 
matrix, (e) white mica vein in crystalline carbonate matrix (f) layered vein in grey matrix (g)oxidized layering in grey 
matrix (h) white mica veins in red matrix of calcareous siltstone 

4.1.3. Breccias and Clast 

These are larger grain clasts from pre-existing rocks hosted within finer grain particles that act as cement  

The types of breccias and clast observed in the samples include; dark grey breccia in light grey matrix/or 

powdery white matrix (Figure 8a), Pink clast in dark grey mineral matrix (Figure 8b),  Dark grey matrix with 

white lens-clasts since in silty limestone at contact with the porphyries (Figure 8c). 
(a)           (b)       (c) 

 

 

 

 

 

 

 

 

Figure 8: showing identified clastic textures. (i) brecciated texture (ii) round-clasts (ii) lens-clast; 
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4.2. Sample inventory 

The various rock units found in these 3 drill holes include silty limestone, micrite, silty micrite, calcareous 

siltstone, marble, dolomite, quartz and feldspathic porphyry. In this section, the typical samples of each 

lithology are described (see Table 4 for summary of general lithologies and Tables 5,6  and 7  for  the description of samples 

for each drill hole).   

4.2.1. Silty limestone:  

Silty limestone is a classification giving to limestone made up of calcite CaCO3 and a high percentage of silt-

sized particles. Silt-size particles are between 0.002mm and 0.0063mm; they are usually comprised of quartz, 

feldspars and micas (mindat.org, 2019). The samples with this classified as silty limestone in the auxiliary 

data are of three types:  

• Silty Limestone with grey minerals that contain carbonates because it reacted to HNO3 acid, 

layering and + or - vein)(see Figure 6a). 

• Silty limestone with dark grey contains no carbonates because it didn’t react to the acid with no 

observable layering pattern. For example, E264_500m and sample E264_507m (see Figure 6b). 

• Silty limestone with len-clast. An example of this is sample E264_264m (see Figure 6c). 

4.2.2. Calcareous siltstone:  

These samples are light grey in colour and fine grained or reddish brown with medium to fine grained 

minerals. They grey coloured samples appear to have microcrystalline carbonate minerals matrix (see 

figure 6d). Most samples from E264 have reddish colouration indicating iron oxidation. It is medium to 

fine-grained with a shaly texture and slightly weathered (see Figure 7h). These altered samples possess white 

layering within their reddish matrix. Examples of this lithology are samples E264_714m and E352_992m.  

4.2.3. Micrite and Silty Micrite 

Micrite is a mud grade limestone. They are fine to very fine-grained. Samples are grey to dark grey, layered 

or unlayered while others were reddish brown and highly weathered. The weathered samples did not react 

to acid when tested. Examples of this lithology are E352_650m for weathered and E352_252m for dark 

grey.  

4.2.4. Dolostone 

This is a dolomite rock. It is a sedimentary carbonate rock with dolomite; a magnesium-rich calcium 

carbonate mineral (CaMg(CO3)2) as its dominant carbonate mineral rocks. It can be colourless, white, grey 

or reddish/pinkish white colour. Two types of dolostone were observed in the dataset; light grey to the 

light red coloured matrix, for example, sample e352_708m and grey coloured matrix, for example, sample, 

e297_1198m. 

4.2.5. Marble: 

An example of this lithology is sample E264_652m and 809m This is a metamorphic carbonate rock formed 

when sedimentary carbonate rock is subjected to heat and pressure that causes carbonate minerals (usually 

calcite or dolomite) to recrystallize. A metamorphic rock is classified as Marble when 50% of its constituent 

volume is made up of carbonate minerals. 

 

4.2.6. Quartz and Feldspathic Porphyry: 

Feldspathic porphyries had pink coloured groundmass colour while Quartz porphyries had white coloured 

groundmass. Weathered samples showed layering due to differences in the degree of weathering. The 
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feldspar was more weathered because of the lower concentration of quartz, which is more resistant to 

weathering than feldspar.  

4.3. The acid test for carbonate minerals: 

The samples were also tested using nitric acid. The result of the test on samples is displayed in tables 3-6 

below. It shows that most of the samples contained carbonate minerals. However, the quartz and feldspar 

porphyry and the unlayered silty limestone samples also do not react with the acid. 

 

 

 

Table 4: Summary of lithologies 
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Table 5: Showing description of samples from drill hole CHUE-264 including the result of fire assay test in ppm and 
acid test for carbonates. 

 

 

E-264 Lith Description Texture Weathered
/oxidized 

Au 
(ppm) 

As 
(ppm) 

Reacts 
with acid 

51m SL grey matrix; layered white vein No/no 0.0001 -0 Yes 

102m SL grey matrix; layered,  thin veins No/no 0.0001 -0 Yes 

153m SL grey matrix; layered, fractured, vein No/no 
0.0001 

-0 
Yes 

191m SL dark grey, no layering sigmoidal vein, 
fractured 

no/yes 
0.0322 

-0 
Yes 

256m FP light grey, porphyritic - Yes/no 0.0016 -0 No 
264m SL white-pink, clast  

(appears porphyritic) 
- No/no 

0.0321 23.9 No 

271m FP red, orange, highly 
weathered 

- Yes/Yes 
0.0005 -0 No 

303m SL dark grey matrix white veins, 
fractured 

 
0.0303 101 Yes 

318m SL dark grey matrix crosscutting white 
vein,  

No/no 
0.116 101 Yes 

322m SL dark grey matrix, 
conglomerate 

white vein, pink 
clast 

No/no 
0.116 101 Yes 

352m QP orange, pinkish-grey; 
porphyritic 

- No/no 
0.0007 

-0 
Yes 

380m QP orange, pinkish-grey; 
porphyritic 

red oxidized layer No/yes 
0.0003 

-0 
No 

396m QP orange, pinkish-grey; 
porphyritic 

- No/no 
0.0006 

-0 
No 

467m SL dark grey with white lens 
like clast 

- - 
0.052 57.6 No 

492m SL dark grey with white lens 
like clast 

fractured - 
0.162 56.2 No 

500m SL dark grey fractured No/no 1.175 80.5 No 

502m SL dark grey, reddish stain red vein Yes/yes 1.175 80.5 No 

506m SL dark grey, reddish stain, 
layering 

 No/yes 
0.379 80.5 No 

507m SL dark grey White vein and 
banding 

No/no 
0.379 80.5 No 

528m CS reddish brown  Yes/yes 1.045 93.6 No 

578m CS reddish White banding Yes/yes 
0.0127 114 

Yes 
(Mild) 

581m CS reddish and pink; white 
layering 

White banding No/yes 
0.0127 114 No 

606m CS reddish and pink; white 
layering 

- Yes/yes 
0.0106 292   

652m MB grey rock,  fractured no/yes 0.0764 27.8 No 

714m DO reddish, orange pink and 
white layered 

- - 

0.0143 1100 
Yes 
(Mild) 

760m CS reddish, orange  - yes/yes 

0.0009 126.5 No 

809m MB white and grey - No/no 0.0003 219 No 
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Table 6 Showing description of samples from drill hole CHUE-297 including the result of fire assay test in ppm and 
the acid test for carbonates. 

 

E-297 Lith Description Structure Weathered

/oxidized 

Au 
(ppm) 

As 

(ppm) 

Reacts 

with 

acid 

51m SM grey matrix, layered - no/no 0.0001 -0 Yes 

103m CS White to pink matrix - no/no 0.0002 -0 Yes 

153m SM grey matrix, layered white vein no/no 0.0001 -0 Yes 

203m SM grey matrix, layered - no/no 0.0573 -0 Yes 

248m SM grey matrix, layered fractured no/no 0.0001 -0 Yes 

307m 

SM 

grey matrix, layered white vein, 

fractured no/no 0.0001 

-0 Yes 

357m 

QP 

white matrix; porphyritic: white 

phenocryst 

- 

no/no 0.0001 

-0 No 

404m 

QP 

light grey matrix, porphyritic: white 

and black phenocryst 

- 

no/no 0.0042 

-0 No 

458m 

QP 

light grey, porphyritic: white and 

black phenocryst 

- 

no/no 0.109 

-0 No 

503m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

- 

no/no 0.327 

-0 No 

551m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

fractured 

no/no 0.0007 

-0 No 

601m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

- 

- 0.0018 

-0 No 

658m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

fractured 

- 0.0001 

-0 No 

702m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

- 

- 0.0001 

-0 No 

752m MI Dark grey with white veins Fractured - 0.058 -0 Yes 

796m MI Dark grey - - 0.722 -0 No 

858m 

QP 

white rock; porphyritic: colourless, 

white and black phenocryst 

fractured 

no/no 0.0017 

137.5 No 

902m MI dark grey - no/no 0.0455 104 Yes 

949m 

QP 

dark grey, not porphyritic, contact 

between porphyry and micrite 

fractured, pink 

veinlet no/no 0.0008 

68.5 No 

1007m 

QP 

pink, porphyritic: red white and 

black phenocryst 

 

 0.0007 

23.2 No 

1052m 

MI dark grey 

white stockwork 

veins, fractured no/no 0.0001 

-0 Yes 

1104m 

QP 

light grey, colourless and black 

phenocryst 

 

no/no 0.0001 

-0 No 

1152m CS white and black white veins no/no 0.0001 -0 Yes 

1198m 

DO Grey matrix 

fractured 

 0.0002 

-0 Yes 

(Mild) 
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Table 7 Showing description of samples from drill hole CHUE-352 including result of fire assay test in ppm  

 

E-352 Lith 

Description Structure Weathered/o

xidation 

Au 

(ppm) 

As 

(ppm) 

Reacts 

with acid 

51m 

MI 

light grey matrix, large dark grey breccia brecciated, 

white veins 

No/no 0.0001  nm Yes 

97m 

CS 

white matrix, reddish stains Small grey 

breccias 

Yes/yes 0.0001 -0 Yes 

152m 

CS 

light grey to pink matrix; reddish stain; 

evenly distributed clast throughout matrix 

small black 

clast  

No/yes 0.0004 -0 - 

203m 

MI 

dark grey; layered; with reddish stain on 

vein 

White vein, 

fractures 

no/yes 0.0002 -0 Yes 

252m 

MI 

grey matrix White 

stockwork 

veins 

No/no 0.0002 -0 Yes 

305m 

QP 

white rock; porphyritic: colourless, white 

and black phenocryst 

- 

no/no 

0.0001 -0 No 

350m 

QP 

white rock; porphyritic: colourless, white 

and black phenocryst 

- 

no/no 

0.0001 -0 No 

405m 

SM 

grey matrix, layered, reddish stain White vein, 

fractures 

Yes/yes 0.0143 -0 Yes 

448m 

QP 

pink matrix; porphyritic: colourless, white 

and black phenocryst 

- - 0.0001 -0 No 

500m 

CS 

dark brown matrix, small white clast evenly 

distributed throughout matrix 

fractures  0.0894 -0 No 

554m SM grey matrix, layered - - 0.233 72.6 Yes 

600m MI reddish brown Fractures Yes/yes 0.421 106 No 

650m MI Reddish brown fractures Yes/yes 0.365 154.5 No 

708m 

DO 

light grey to light red Fractures - 0.0048 -0 Yes 

(Mild) 

798m 

DO 

light grey to light red Veins, 

Fractures 

No/no 0.0052 -0 Yes 

(Mild) 

851m 

CS 

grey to light orange Vein, Fractures  No/no 0.0028 -0 Yes 

(Mild) 

901m 

CS 

light grey to orange,  Vein, fractures No/no 0.0004 -0 Yes 

(Mild) 

946m CS light grey to orange, vein with reddish stain  No/yes 0.0002 -0 Yes 

992m CS light grey to light pink Veins No/no 0.0015 -0 Yes 

1050

m CS 

light grey to light pink Veins No/no 0.0001 -0 Yes 

1205

m CS 

light grey - - 0.0001 -0 Yes 
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4.4. Mineral identification  

This section shows the minerals that were identified using spectral inspection, wavelength maps and band 

ratios of the images, and comparison with G-Mex documentation and United State Geological Survey 

spectral library of minerals. This process was also informed by the minerals already identified in previous 

works was carried out by  Dalm (2017) and Bevan (2018). The mineral classes identified to coincide with 

the minerals already identified from the available XRD data and Bevan (2018)’s research on a subset of the 

drill cores. The mineral classes, as well as mineral mixtures identified, are listed below: 

 

4.4.1. Spectral mineral classes: 

 

The mineral classes identified from the samples and used for the classification of SWIR images into mineral 

maps are listed below. Their image spectrum compared with the USGS reference spectrum for each of the 

images is displayed in Figure 9: 

 

a) Calcite & Dolomite (CaCO3 & CaMg(CO3)2):  

Calcite is a calcium carbonate mineral (CaCO3) while dolomite is a carbonate mineral like calcite 

but with magnesium in its molecules (CaMg(CO3)2). Calcite its CO3
2- absorption feature at 2320 - 

2360nm while dolomite has its absorption feature at shorter wavelengths of 2300-2320nm with a 

second feature at 2100 to 2160nm. Calcite spectrum is displayed in Figure9a while Dolomite’s is 

displayed in Figure 9c.  

 

b) Magnesium Chlorite: This is the magnesium rich variant of Chlorite. Chlorite is a common 

alteration product of mafic minerals and an indicator of low-grade metamorphism. Magnesium 

chlorite has its deepest absorption feature at 2300 to 2320nm and the second deepest at 2240 to 

2260nm and a third at 2380nm. This mineral was found in un-oxidized calcareous siltstone samples. 

 

c) Tremolite & Talc: Tremolite is a mineral within the amphibolite-actinolite series formed from the 

contact metamorphism of calcium carbonate rocks. It is commonly associated with Calcite 

Dolomite, Talc , Diopside and  has a chemical formula Ca2(Mg;Fe2+)5Si8O22(OH)2 (Anthony, 

Bideaux, Bladh, & Nichols, 2010; Webmineral.com, 2012).  Talc and Tremolite have overlapping 

diagnostic features at 2300-2320nm and at 2340-2400nm. These two minerals can be separated 

based on a third absorption feature Talc has in 1850-1910nm. However, for this research separating 

these two classes didn’t improve the classification.  
 

d) Epidote: This is a sorosilicate mineral with calcium and iron cations in its crystal structure. It is a 

metamorphic mineral indicative of low to moderate grade metamorphism. It has a chemical formula 

{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH). This mineral was found in marble sample E264_809m. 

 

e) White Micas & Clays: These are phyllosilicate minerals with aluminium hydroxyl (Al-OH) bonds in 

their molecules. They have a chemical formula KAl2(AlSi3O10)(OH)2. This class includes muscovite 

illite and clays minerals like montmorillonite. The vibrational bond that exhibits itself as a distinctive 

feature around the 2208nm range with another shallow feature at 2340nm for micas (Scott & Yang, 

1997; Swayze et al., 2014). The minerals identified in this range included (i) white micas; which were 

delineated into classes based on the position of 2208nm and the second absorption feature into 3 
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subclasses; 2200-2205nm. 2205-2210nm and 2210-2220nm, (ii) Montmorillonite which doesn’t 

have a distinct 2340nm absorption feature and (iii) a mixed class of clays and carbonates.  

 

f) Phengite: Phengite is a phyllosilicate mineral, a variety of muscovite with its deepest absorption 

feature at longer wavelengths of 2220-2240nm. The shift of the feature into longer wavelengths is 

caused by lower concentrations of Aluminium ion in the lattice of the mineral as Al is substituted 

for by Silica and Mg, Fe cations (Clark, 1999; Swayze et al., 2014). 

 

g) Kaolinite: Kaolinite is also a phyllosilicate mineral with a chemical formula Al2(Si2O5)(OH)4 . It has 

a similar aluminium hydroxyl bonds absorption feature at the same wavelength range with other 

clay minerals like montmorillonite and with white mica minerals like illite and muscovite. However, 

for kaolinite, the deepest absorption feature appears as a distinctive doublet feature in the 2208nm 

and 2160nm (not as deep as the 2208nm feature). 

 

 

h) Mixed classes: 

✓ Kaolinite (+white mica) mixture: The spectral of this class has a double feature in the same range 

as kaolinite but the second feature of the doublet is shallow and, in some case, almost non-existent, 

indicating it is either kaolinite with low crystallinity or it is not a pure sample of kaolinite. 

   

✓ Mixed class 1 (Grey mineral mixture): This is an unclassified mineral with very low reflectance. It is 

typically grey to dark grey colour with noisy spectra and reflectance value less than 0.1. However, it 

has a shallow feature at 2290nm, which may be due to the presence of minerals with carbonate or 

Magnesium hydroxyl ions in the mixture. Otherwise, this mineral lack any diagnostic feature in the 

SWIR range. They react with acid signifying the presence of carbonates. 

 

✓ Mixed class 2 (carbonate mixed with clay and white mica): 

This mineral class has a mixture of carbonate and white mica mineral mixture. It has its deepest 

absorption feature between 2309nm, and 2320nm, sometimes this feature may occur as a doublet 

at these two ranges, with a second shoulder feature at 2208- 2214nm. 

  

✓ Mixed class 3 (clay mixed with carbonate): 

This mineral class is a mixture of carbonate and Al-OH minerals. It has its deepest absorption 

feature between 2309nm, and 2320nm, sometimes this feature may occur as a doublet at these two 

ranges it has a second shoulder feature at 2208- 2214nm and in some samples, this occurs as the 

kaolinite doublet feature. 

  

✓ The optional ‘Low reflectance light grey mineral’ class:   

This class was defined using an albedo image to highlight white pixels representing thins veins 

within dark grey samples. These pixels appear light grey and exhibit higher reflectance but have the  

same spectral characteristics as mixed class1. 
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Figure 9: Spectral plot of calcite, dolomite, tremolite, epidote  Mg-chlorite and mixed class 2 identified from image 
spectral (shown in blue) and USGS spectral. 
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Figure 10: Spectral plot of white micas (g), kaolinite and kaolinite mixed with white mica (h); mixed class 1(j) and 
mixed class 2 (i) identified from image spectral (shown in blue) and USGS spectral. 

(g) 
(h) 

(i) 

(j) 
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4.5. Hyperspectral SWIR mineral maps 

The minerals maps from the three drill holes are displayed in this section, At the end of this section, a 

table showing the samples in relations to their depth can be seen (see Table 18) 

4.5.1. CHUE-264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Mineral maps from Decision Tree Classification of SWIR images for samples E264_51m to 271m. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Mineral maps from e264m-303m to 507m created using decision tree classification of SWIR images.   
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Figure 13: Mineral maps from decision tree classification of SWIR images for sample E264_538m to 760m. 
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4.5.2. CHUE- 297 

The minerals map created from the samples from drill hole CHUE-297 is displayed in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Showing colour photo and mineral maps from Hole ID CHUE297  
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4.5.3. CHUE-352 

The minerals created from drill hole CHUE_352 are displayed in Figure 15: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15: Mineral maps from of CHUE- 352 for samples 51m to 405m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: Mineral maps from of CHUE- 352 for samples 448m to 1205m  
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4.6. RGB classified maps using decision tree 

The high-resolution RGB images of the samples were classified using the decision tree classifier. The bands 

used for classification include blue band, green band and the red band as band 1, 2 and 3 respectively. The 

maps highlighted the textures in the samples adequately. They classified RGB images of the three drill holes 

are displayed in Figures 17, 18. The images where classified into 5 classes which were delineated in the 

decision three based on the values of the classes in the three bands. 

CHUE-264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHUE-297 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Showing classified RGB photos of CHUE-264 and CHUE-297 
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CHUE-352 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
  

 

Figure 18: Showing classified RGB photos of CHUE-352 
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Table 8: Showing mineral maps in relation to depth for the 3 drill holes. The table also shows mineralised samples 
with depth. Green colour is for samples with high concentration of gold and cyan colour is for samples suspected to 
contain gold (see section 5.4.2.2). Yellow colour is for samples identified by FA to be mineralized.  

 

E-264 Sample Lith XRF FA E-297 Sample Lith XRF FA E-352 Sample Lith XRF FA

51m SL 51m SM 51m MI

102m SL 103m CS 97m CS

153m SL 153m SM 152m CS

191m SL 203m SM 203m MI

256m FP 248m SM 252m MI

264m SL 307m SM 305m QP

271m FP 357m QP 350m QP

303m SL 404m QP 405m SM

318m SL 458m QP 448m QP

322m SL 503m QP 500m CS

352m QP 551m QP 554m SM

380m QP 601m QP 600m MI

396m QP 658m QP 650m MI

467m SL 702m QP 708m DO

492m SL 752m MI 798m DO

500m SL 796m MI 851m CS

502m SL 858m QP 901m CS

506m SL 902m MI 946m CS

507m SL 949m QP 992m CS

528m CS
1007

m
QP

1050

m
CS

578m CS
1052

m
MI

1205

m
CS

581m CS
1104

m
QP

606m CS
1152

m
CS

652m MB
1198

m
DO

714m DO

760m CS

809m MB
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4.6.1. XRF measurement 

The results of pXRF measurements can be seen in Appendix 2,3 and 4. However, Tables 9, 10 and 11 

displayed below show a pre-processed result of the XRF measurements to remove erroneous measurements. 

The measurements displayed were the result of averaging of spot measurements carried out on the flat 

surfaces of the samples, which were also the surfaces imaged. It shows the concentration of gold and arsenic 

in ppm as well as the error in measurement.  

High concentrations of Au are highlighted in green. Au measurements typically had error values of + 4ppm 

to +6ppm while As typically had error values of + 3ppm to +4ppm Au. Measurement results with values 

of the mineral below the measurement error were replaced with LTε meaning ‘’less than error”. For the 

purpose of this research with the limitation of the measuring device, this value was considered to represent 

the absent of gold. More detailed results showing the actual values of measurement less than the measured 

error can be seen in Appendix 

The XRF result shows a general trend of higher concentration of gold in the samples compared to those of 

the fire assay test, though with high error values in some case higher than the measured concentration  

The result for the XRF measurements is listed in Tables 7, 8 and 9 below shows Au and As concentrations 

in parts per million, while Fe Ca and Si are shown in weight percent.  

For CHUE-264; samples e264_271m, 303m, 318m, 502m, 507m, and 652m all had Au values higher than 

11ppm in their veins. Values measured below this threshold with low error together with the presence of 

arsenic were taken as in indication of the presence of gold.  For CHUE-297, only sample E297_796 was 

above the 11ppm threshold, with an Au value of 22.40ppm.  For CHUE-352, samples E352_ 554m, 600m 

had values above 11ppm. Most samples of CHUE-297 had values lower than the detection limit and their 

measurement error. These included all quartz porphyries in drill hole CHUE-297. So, they were considered 

as unmineralized. 
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E264 

 

Table 9: Result of XRF measurement of samples from CHUE 264. High values of gold shown in green. LTƐ = values below the device measured error. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix Vein breccia/clasts

CHUE-264 Lithology Au Au error As As error Acid Au Au err As As err Acid Au Au error As As error Acid

51 SL 6.33 5.42 3.18 3.16 Yes LTƐ 4.94 2.91 3.27 Yes - - - - -

102 SL 5.19 5.09 2.03 3.21 Yes - - - - Yes - - - - -

153 SL 6.77 5.29 5.98 3.13 Yes 7.83 5.46 10.22 3.43 Yes - - - - -

191 SL LTƐ 4.97 14.87 3.62 Yes 6.12 5.69 24.90 4.30 Yes - - - -

256 FP LTƐ 4.19 3.35 3.51 No - - - - - - - - - -

264 SL LTƐ 4.29 16.98 4.42 No - - - - - - - - - -

271 FP LTƐ 4.67 217.70 8.58 No 14.93 5.84 352.98 11.31 - - - - - -

303 SL 13.24 5.62 109.11 6.77 Yes 12.63 5.81 64.19 5.47 Yes - - - -

318 SL 6.38 5.23 66.89 5.76 Yes 11.30 5.52 20.20 3.90 Yes - - - - -

318b 5.01 4.45 75.61 5.41 Yes 6.99 4.86 51.57 4.84 Yes - - - - -

322 SL 8.37 5.28 127.51 7.24 Yes 6.14 5.11 29.95 4.32 Yes LTƐ 4.89 83.62 6.53 Yes

352 QP LTƐ 4.14 7.96 3.62 No - - - - - - - - - -

380 QP LTƐ 4.07 13.78 3.83 No - - - - - - - - - -

396 QP LTƐ 4.17 19.78 3.91 No - - - - - - - - - -

467 SL LTƐ 4.61 142.31 7.42 No - - - - - - - - - -

492 SL LTƐ 3.89 21.51 3.69 No - - - - - - - - -

500 SL 4.46 4.18 33.06 4.12 No - - - - - - - - - -

502 SL 4.43 4.17 39.18 4.26 No 137.55 10.80 124.87 7.03 No - - - - -

506 SL 5.51 4.58 101.54 6.11 No - - - - - - - - -

507 SL LTƐ 4.07 44.53 4.13 No 37.35 5.79 30.23 3.69 No - - - - -

528 CS 9.92 6.09 186.47 9.30 Yes (Mild) - - - - - - - - - -

578 CS LTƐ 4.87 300.26 10.58 No - - - - - - - - -

581 CS 5.51 4.78 95.62 6.29 8.87 5.67 105.84 7.32 No - - - - -

606 CS 9.59 6.08 346.99 11.97 No 9.57 6.08 346.99 11.97 No - - - - -

652 MB LTƐ 4.28 11.22 3.07 Yes (Mild) 21.70 5.27 75.15 5.73 No - - - - -

714 DO LTƐ 10.19 1853.86 29.39 No 7.49 6.47 817.54 16.19 No - - - - -

760 CS LTƐ 4.85 174.98 7.25 No - - - - - LTƐ 4.98 168.24 7.81 Yes

809 MB 7.08 5.16 34.53 4.46 Yes - - - - - 6.94 4.92 27.38 4.69 Yes
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E297 

 
Table 10: Result of XRF measurement of samples from CHUE 297. High values of gold in green. LTƐ = values below the device measured error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix Vein 

CHUE-297 Lithology Au Au error As As error Acid Au Au error As As error Acid

57 SM 5.21 5.06 5.24 3.01 Yes 5.71 5.03 6.10 3.04 Yes

103 CS LTƐ 5.01 58.28 5.08 Yes 5.56 5.14 114.99 6.88 Yes

153 SM LTƐ 4.92 2.63 2.92 Yes 6.23 5.08 19.73 3.85 Yes

203 SM 6.11 5.18 2.59 3.04 Yes - - - - -

248 SM 5.38 5.14 92.52 6.44 Yes LTƐ 4.96 70.01 5.78 Yes

307 SM LTƐ 5.09 4.21 3.14 Yes 5.87 5.30 1.35 2.88 Yes

357 QP LTƐ 4.14 3.47 3.28 No - - - - -

404 QP LTƐ 4.26 29.21 4.55 No - - - - -

458 QP LTƐ 4.08 1.44 3.38 No - - - - -

503 QP LTƐ 3.98 3.98 3.51 No - - - - -

551 QP LTƐ 4.05 19.62 4.04 No - - - - -

601 QP LTƐ 4.08 43.13 5.16 No - - - - -

658 QP LTƐ 4.15 6.81 3.85 No - - - - -

702 QP LTƐ 4.06 12.65 3.68 No - - - - -

752 MI 6.87 5.20 113.90 6.74 Yes 5.20 4.66 35.91 4.41 Yes

796 MI 22.40 5.92 111.31 6.48 No - - - - -

858 QP LTƐ 4.25 50.54 5.60 No - - - - -

902 MI LTƐ 4.08 31.32 3.90 Yes - - - - -

949 QP LTƐ 37.65 29.80 62.50 No - - - - -

1007 QP LTƐ 4.00 17.49 3.51 No - - - - -

1052 MI 5.62 4.99 8.43 3.24 Yes LTƐ 4.74 4.08 2.87 Yes

1104 QP LTƐ 4.13 12.69 3.58 No - - - - -

1152 CS 5.20 5.01 23.48 4.04 Yes 6.81 5.07 15.19 3.69 Yes

1198 DO LTƐ 4.26 4.92 2.59 Yes (Mild) - - - - -



 

38 

 

 

 

E352 
Table 11: Result of XRF measurement of samples from CHUE 352. High values of gold in green. LTƐ = values below the device measured error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Matrix Vein breccia/clasts

CHUE-352 LithologyAu Au err As As err Acid Au Au err As As err Acid Au Au errorAs As errorAcid

51 MI 5.97 5.03 6.53 3.27 Yes 7.06 5.17 3.01 2.97 Yes 6.68 5.00 4.21 3.02 Yes

97 CS LTƐ 14.06 8.68 13.30 Yes - - - - - LTƐ 4.95 307.29 10.46 Yes

152 QP LTƐ 5.20 42.65 5.16 - - - - - - - - - - -

203 MB 5.94 5.35 28.90 4.50 Yes 6.10 5.35 28.12 4.52 Yes - - - - -

252 MI 6.62 5.33 8.55 3.37 Yes 5.64 5.14 52.70 4.72 Yes - - - - -

305 QP LTƐ 4.07 1.93 3.10 No - - - - - - - - - -

350 QP LTƐ 4.02 2.91 3.03 No - - - - - - - - - -

405 SM 5.46 5.14 88.67 6.32 Yes 5.54 5.09 74.67 5.85 Yes 7.80 5.33 156.44 7.63 -

448 QP LTƐ 4.06 53.21 5.17 No - - - - - - - - - -

500 CS LTƐ 4.85 274.73 10.00 No - - - - - - - - - -

554 SM 11.60 6.12 61.44 5.44 Yes - - - - - - - - - -

600 MI 19.11 5.27 64.35 5.21 No 13.27 6.45 487.61 13.85 No - - - - -

650 MI LTƐ 4.41 99.53 6.13 No - - - - - - - - - -

708 DO 5.25 4.87 68.80 5.41 Yes(Mild) - - - - - - - - - -

798 DO LTƐ 4.66 49.98 4.78 Yes(Mild) LTƐ 4.82 168.50 7.80 Yes(Mild) - - - - -

851 CS LTƐ 4.42 62.21 5.05 Yes(Mild) 5.24 4.84 56.50 5.09 No - - - - -

901 CS 6.68 4.99 91.13 6.03 Yes(Mild) 7.29 5.15 145.20 7.22 Yes(Mild) - - - - -

946 CS LTƐ 4.63 22.77 3.75 Yes LTƐ 4.72 81.32 5.95 Yes - - - - -

992 CS LTƐ 4.52 43.38 4.35 Yes LTƐ 4.34 8.63 3.08 Yes - - - - -

1050 CS LTƐ 4.66 28.65 4.12 Yes LTƐ 4.98 152.23 6.88 Yes(Mild) - - - -

1205 CS LTƐ 5.02 4.47 3.04 Yes 5.72 5.22 2.24 2.97 Yes - - - -
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5. DISCUSSION 

In this chapter, the results of the sample investigation, mineral identification and mapping as well as the 

results of the XRF analyses and their implication are discussed. Sections covered include the differences in 

the mineralogy and lithology of the sample, the differences between the RGB and SWIR images used for 

mineral mapping; highlighting their strength and weaknesses.  And finally, the collaboration of the XRF 

results with the mineral maps to determine the textures that may indicate the occurrence of gold within 

the dataset. 

5.1. Lithological and mineralogical differences 

 

The drill core samples can be broadly classified into siliclastic carbonates and porphyrytic igneous rock . 

The mineral maps created show silty limestone and micrite having matrixes which were mostly featureless 

in the SWIR except for a shallow absorption at 2290nm. This carbonate feature was indicated the presence 

of carbonates in the matrix and was confirmed using an acid.  These samples also contained white veins 

which were identified to be calcite.  Some silty limestone samples containing calcite veins were surrounded 

by a layer of low reflectance grey mineral. These veins could be indicators of the mid to late stage 

carbonization that occurs during the silicification process common to the study area. 

Silty limestone and micrite samples near contact with the porphyries had porhyroblastic textures. They 

contained grey lens-like rectangular clasts of white micas and montmorillonite.  

 

Mineral maps of calcareous siltstone samples in CHUE-264, show that the samples did not possess any pure 

carbonate mineral, having been mixed with or replaced prior by white mica minerals and kaolinite. This 

same type of replacement of carbonates by clays can also be observed in dolostone samples. In dolostone 

sample “E264_714m’’, the carbonate minerals in the sample have been completely replaced by kaolinite and 

illite. These are indicative of decarbonization, and silicification saw in the dissolution of the origin carbonate 

mineral and replacement by the phyllosilicate minerals. Sample e352_1050m has the mixed class 2, has the 

same feature as tremolite and Mg-chlorite, and al-oh feature near 2210nm. And a deeper feature at 2380nm. 

Sample E264_652 contains of the vein of mixed class 3 is which a mixture of clay and carbonate mineral 

with spectral features in 2202nm and 2292nm features. 

 

Porphyry was mostly classified as white micas or kaolinite. This is also indicative of argillic alteration 

common to the study area (Li & Peters, 1998).  Samples of feldspar porphyries had been altered into white 

micas. There were variations in the wavelength position of the deepest absorption features of the white 

micas. Shorter wavelength white micas are richer in aluminium while longer wavelengths are richer in silica 

(Si) and or magnesium (Mg) and iron cations (Fe) ((Swayze et al., 2014)s). The longer wavelength phengitic 

muscovite vein in the porphyry has a high Au grade of 14.93ppm. Felsic plutons and dikes have been noted 

to be mineralized in some deposits (Bergen et al., 2012) Porphyry sample e297_357m and_1104m contained 

small lenses of calcite.  

 

Some samples of the Porphyry contained striping and can be observed in the distribution of the white mica 

classes. This is most likely influenced by the initial stripping error in the SWIR images. Though this was 

corrected, the correction did not totally eliminate the influence of this striping on the position of the 

absorption minimal of the deepest features around the 2208nm feature common to white micas. 
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Mixed mineral classes 2 and 3 were different mostly because of the variation of in the depth of absorption 

between carbonate and Al-OH absorption features in the mix. The more prominent absorption determined 

the class the mixture was classified as. Sample E352_901m was predominantly a mixture with higher 

concentrations of carbonates containing veins with higher concentrations of clays. 

 

5.2. Comparison of the two types of images 

The two types of images perform well when highlighting mineral clusters of contrasting colours with the 

surrounding matrix, for example, white veins in dark matrix. The SWIR images performed best in 

differentiating between mineral classes because identification was based on the variation in their absorption 

features of these minerals. Even similar mineral groups with slight variations white micas or the various 

carbonate mineral were highlighted.  This also allowed the identification of longer wavelength phengitic 

micas bearing higher gold concentration which couldn’t be mapped in the RGB images. 

The RGB photos perform better when there are differences in brightness of the minerals, for example, dark 

grey minerals and light grey minerals and layering in the matrix of silty limestone and micrite samples. 

Whereas, the SWIR images couldn’t delineate between them because of the similarity in their spectra See 

Sample E264_322. They also performed well in highlighting reddish oxidization stains, for example, the 

reddish weathering and layering in sample E264_271 altered veins seen in mineralized Silty Limestone 

samples were highlighted by the classified RGB images. The classification obtained from the SWIR images 

didn’t highlight this while the RGB’s did. Also, thin white veins of calcite and white micas that were 

surrounded by a dark grey matrix with low reflectance were not classified properly in the SWIR images. The 

porphyritic textures weren’t properly mapped in the DT classification of the RGB images. While the 

porphyry texture was visible in RGB, their mineralogy was like the surrounding ground mass and therefore 

not properly delineated. Porphyry samples of E297 contain colourless crystals which were classified as clays 

& micas and weren’t different from the surrounding matrix. The RGB also couldn’t differentiate between 

these minerals. 

However, it should be noted that the hue and tone of the minerals could be influenced by illumination 

conditions during image acquisition. White minerals observed in the RGB were commonly identified to be 

calcite and white micas in the SWIR while dark grey was commonly identified to be mixed class1. In some 

cases, light grey minerals were either classified as white micas or mixed class1. Orange minerals were 

classified as kaolinite while reddish brown minerals were observed in oxidized samples.  

5.3. Textural differences with depth 

Samples within the approximate depth of 300m to 600m in all three drill hole show signs of argillic alteration. 

This alteration was mostly observed within the Porphyry samples. Porphyry samples obtained from depths 

shallower than this range were mostly classified as illite though they contained phenocrysts of kaolinite. The 

presence of illite may have been by-product of the weathering of pre-existing feldspars. However, towards 

300 to 600m deep, kaolinite concentrations increased and then began to decline beyond this depth range. 

Calcareous siltstone in this range also exhibit characteristics consist with oxidation. Oxidation can also be 

seen in silty limestone at this range. The XRF measurement on  calcite veins of samples of silty limestone 

at shallower depth  showed with little to no gold and typically having lower concentrations than in their 

matrix (see sample e264_51 in table 8) this coincides with paragenetic models that show calcite occurring 

late in the hydrothermal alteration process after gold mineralization (Arehart, Chryssoulis, & Kesler, 1993) 

5.4. Gold mineralization and textures 

The XRF measurement was done to investigate the gold concentrations within textures identified from the 

images. This method was used to collaborate the existing fire assay result, which already identified samples 
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within the stratigraphic column, which were mineralized. The comparison of these two results helps to 

identify textures that were indicative of mineralization or otherwise. 

5.4.1. Gold content from fire assay auxiliary data  

The result of the fire assay (FA) can be seen in tables 4 to 6 above. The measurement interval was 5-10m of 

cores. With this information, the cut-off grade of 0.15ppm Au for waste and 5.14ppm Au for distinguishing 

between high- and low-grade ore (Dalm, 2018) was used to identify samples with for the dataset that were 

mineralized. The mineralized samples identified include; six samples from CHUE-264 were identified to be 

mineralized samples. These samples are E264_492m (SL_c), 500m(SL_b), 502m (SL_b), 506m (SL_b), 

507m (SL_b) and 528m (CS_b).  Only two samples from CHUE-297 were identified to be mineralized, they 

were E297_503m(QP_a), and 796m(MI_a). While for CHUE352, three samples were identified to be 

mineralized. They were E-352_554m (SM), 600m (MI_b), 650m (MI_b). These samples are displayed in 

figure 19 below. 

 

The results of the FA show that silty limestone samples from CHUE 264 host the zone of Au mineralization 

(see Table 3). This lithology had samples that were both mineralized and unmineralized.  The samples 

identified as mineralized were those with Au ppm values above 0.15pp, which is the cut-off grade. The result 

also shows that the zone of highest mineralization was near the porphyry intrusions. Table 4, which shows 

the result of the fire assay for E264, shows that five of the silty limestone samples had gold above 0.15ppm.  

These samples were unlayered (SL-b) while the rest of the SL samples which were below 0.15ppm had 

matrixes showed layering pattern in their matrixes. The intrusive porphyries samples mostly were 

unmineralized with AU ppm values below 0.15ppm, except for sample E297_503m which had a value of 

0.32ppm. 

In total 11 samples from the 3 drill holes had ppm Au values above 0.05ppm. The minerals most commonly 

mapped in these samples were the mixed class1 minerals and white micas and in some cases clays.  

The textures that can be observed in these samples include veins of montmorillonite and micas hosted in 

silty carbonate matrix, two samples fine-grained micritic grey matrix and white micas in weathered porphyry 

were potential indicators of mineralization in this deposit. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Samples with Au ppm greater than 0.15ppm from fire assay  

E264 E297 E352 



 

42 

5.4.2. Gold content from XRF measurement  

Different textures were measured using the pXRF device.  Some of these textures contained gold but 

occurred within matrixes without gold or inversely had matrix with gold but contained textures like veins 

that didn’t contain gold. The results show that 8 samples from the three drill holes had Au occurring in 

concentrations higher than 11ppm. 

5.4.2.1. Samples with high concentrations of gold via XRF 

The pXRF allowed the identification of mineral clusters containing gold or otherwise. These samples 

include; E264_271m, E264_300m(SL_b). E264_318m(SL_b), E264_502m(SL_b), E264_507m(SL_b) 

E297_796m(MI) E352_554m(MI_a) and E352_600m(MI_b) (see Figure 20). However, only five of these 

samples were part of the eleven identified in from the FA. Though, three new samples that were identified 

by the XRF measurements; namely e264_271m and E264_303m and E264m_318m. Of these three samples, 

only samples e264_318m had a value of 0.116ppm from the fire assay close to but below the cut-off grade 

of 0.15ppm while in the XRF measurement it contained veins of calcite plus dolomite with an approximate 

value of 11.3ppm. The reason for this disparity is most likely the 5-10m interval of the FA. Dalm 2018 

identified dolomite to be associated with ore samples. 

A phengitic white mica vein was identified in sample E264_271m with a value of 14.93ppm Au; while veins 

of white mica mixed with carbonate (mixed class 3) in SL samples E264_507 contained  37.4ppm Au and 

red oxidized clay veins in sample E264_502 had a value of 137 ppm Au.  

The results show that white micas veins within carbonate matrix of micrite and dark grey silty limestone or 

silty micrite had high gold contents above 11ppm. Also, oxidized veins in this category have the highest 

concentrations of gold which was probably caused by supergene enrichment that occurred post 

mineralization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 : Samples with high concentrations of Au (above 11ppm) from XRF measurement. 
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5.4.2.2. Samples potentially containing low concentrations of gold 

Some other samples showed indications of mineralization and might require further investigation using a 

method with a lower detection limit. ‘Indication of mineralization’ is a term used in this study for samples 

whose pXRF measurement results have considerable concentrations of gold and arsenic which occurs 

together with Au in the study are and whose measured Au response were actual values and these values 

were higher than the measured error. Typically, when the device cannot measure a given element, the device 

returns a value of ‘LOD’.  

The samples that fall into this category are displayed in Figure 21. Consequently, it can be observed that the 

altered calcareous samples. E264_528m,581m and 606m, had values that showed indications of gold in their 

clayey and micaceous matrix or veins. Also, layered silty limestone matrixes had this indication while their 

calcite veins did not. An example is the vein in sample e264_51m though calcite veins in layered matrix 

samples like E264_303m and 318m had indications of gold. Though sample e264_51m did not contain gold 

in its vein, its matrix showed indications of mineralization. It should be noted that while the samples show 

signs indicative of the presences of gold, this doesn’t mean gold occurs in concentrations of economic 

proportions.  

Samples of dolostone and calcareous siltstone which hadn’t be replaced by clays and micas didn’t contain 

gold. Layered matrixes silty carbonates like silty limestone and silty micrite which contained carbonates had 

indications of the presence of gold within their matrixes while unlayered dark grey matrixes without 

carbonates were unmineralized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 : Samples with indications of Au from XRF. The XRF measurement response is higher that the error 

measurement.  
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5.5. XRF measurement uncertainty 

The effective range of an XRF measurement as well as its limit of detection is dependent on a tube and 

detector of the portable XRF, and the matrix of the sample investigated, for instance, the present of heavier 

major elements like iron negatively impact the detection of trace elements (Lemière, 2018).  

The mode of the measurements of the samples was by spot measurement on the different textures identified 

such as matrix, veins and breccias/clast. The values of Au typically had an error margin of + 4ppm to 

+6ppm. All these might have contributed to the anomalously high values observed in the XRF results (see 

Appendix 3 4 and 5). Though these measurements were below the reliable detection limit set by the 

manufacturer (11ppm for Au) the device still recorded responses from samples with concentrations below 

this value.  Many of the samples had abnormally high values of A, which were unexpected, considering the 

results of the Fire assay (very low to near 0 values). Therefore, should these samples contain Au, they should 

not have values as high as 5ppm and above. One possible reason for these anomalous values could be the 

influence of background. Another source of uncertainty is the true representability of the spot measurement 

used to carry out the XRF analysis. A whiskey plot of some measurements showed a high variability in the 

values of repeat measurements. From the whisker plot displayed in Figure 22, there is a high variance in the 

measurements of Au while the variance was low for the measurement error .  
 

 
 

 

 
Figure 22: Plot showing range of values of gold concentration in vein and matrix with the error of XRF measurement 
in for sample E264_51m, E264_303 AND E264_318m 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

Hyperspectral shortwave infrared images were useful in identifying both the mineralogy and highlighting 

textures from samples of ores. This is informative because mapping minerals alone without taking in textural 

information into consideration may not yield an accurate understanding of the mineralization in the study 

area. This research was able to map minerals and categorize the textures observed in samples of carlin-type 

gold deposits acquired by the Barrick Gold Corporation using hyperspectral shortwave infrared images 

(SWIR) and Red Green and Blue (RGB) photo. 

The two types of images used in the research performed well in highlighting textures from the samples. The 

RGB images were classified based on the colour ratio of the red, green and blue bands (RGB) and were able 

to highlight textures though they couldn’t clearly differentiate between minerals classes particularly when 

they were of the same colour. Meanwhile, the SWIR images were able to differentiate between even white 

micas with varying aluminium concentrations.  

X-ray fluorescence analysis using a portable XRF (pXRF) was used to carry out spot measurements on the 

drill core samples to obtain the concentration of the elements in them, particularly gold.  Two elements of 

interest were gold and arsenic. Measurement was carried out on identified textures such as the different 

matrixed, veins and clasts.  The collaboration of the mineral maps, the fire assay and XRF result show the 

zone of most mineralization was in the silty limestones of drill hole CHUE-264 which had been intruded 

by the Porphyries. It also showed that white mica veins in dark grey silty carbonate and white mica mixed 

with carbonate (mixed class 3) non- carbonate matrixes contained high gold concentrations; above 11ppm. 

Also, a phengitic mica vein was found in weathered porphyry containing high gold concentration. While 

silty carbonate matrixes of silty limestone and micrite showed indication of gold mineralization but had 

values that were below the detection limit of the pXRF. Most calcite veins were unmineralized though some 

calcite veins at depths show indication of gold mineralization. This why the inability to differentiate between 

mineral is a short coming of the RGB images because it is important to be able to discriminate between 

white micas veins and those of calcites when they occurred in dark grey silty matrixes. The former (white 

micas) contains Au, sometimes in high concentrations while the latter (calcite veins) contained little to no 

gold. Other textures with gold or indications of gold include silty carbonate matrixes like the silty limestone 

and the silty micrite and montmorillonite veins in carbonate matrix. Most porphyry samples didn’t contain 

gold, except for samples that had been weathered. Supergene enrichment of clay and mica veins show a 

high concentration of gold. This alteration occurred after mineralization in the study area. Argillic alteration 

was also observed in samples approximately between 300m to 600, which collaborates the existing study 

that shows the study area has undergone alteration.  

6.2. Recommendation 

Samples suspected to contain gold should be further investigated using a method with higher precision. 

Further work should be carried out on the textures identified in this research to extract their parameters. 

These parameters can be used to create a quantitative new model which, like Goetz et al., (2009) research’s, 

can be transferred to mining installations to enhance ore sorting. This would improve ore sorting, lead to 

better optimisation of the mineral liberation process and would reduce operation cost for industries (Goetz 

et al., 2009).  

The limitation of the XRF measurement can also be improved by using a Laboratory XRF analyser like the 

WDXRF. The mapping mode of this device can be used to measure element concentrations across the 

surface of entire samples instead of relying on spot measurements which may not be representative of the 

entire surface of the sample. 
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APPENDIX 

 

 

 

 

Appendix 1: Decision tree classifier of RGB images. b1 = blue, b2 = green, b3 = red 
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Appendix 2: Result of XRF measurement of samples from CHUE 264 

 

 

 

 

 

 

 

Matrix Vein breccia/clasts

CHUE-264 Lithology Au Au error As As error Fe Ca Si Acid Au Au err As As err Fe Ca Si Acid Au Au error As As error Fe Ca Si Acid

51 SL 6.33 5.42 3.18 3.16 0.23% 39.45% 5.87% Yes 4.25 4.94 2.91 3.27 0.22% 33.44% 10.93% Yes - - - - - - - -

102 SL 5.19 5.09 2.03 3.21 0.19% 38.65% 5.71% Yes - - - - - - - Yes - - - - - - - -

153 SL 6.77 5.29 5.98 3.13 0.13% 43.59% 3.01% Yes 7.83 5.46 10.22 3.43 0.12% 44.98% 2.05% Yes - - - - - - - -

191 SL 4.22 4.97 14.87 3.62 0.29% 31.34% 11.41% Yes 6.12 5.69 24.90 4.30 0.15% 42.99% 2.90% Yes - - - - -

256 FP 0.83 4.19 3.35 3.51 0.85% 0.59% 30.00% No - - - - - - - - - - - - - - - -

264 SL 2.10 4.29 16.98 4.42 0.66% 0.44% 27.48% No - - - - - - - - - - - - - - - -

271 FP 2.88 4.67 217.70 8.58 1.54% 0.29% 39.63% No 14.93 5.84 352.98 11.31 1.52% 0.42% 34.49% - - - - - - - - -

303 SL 13.24 5.62 109.11 6.77 0.57% 26.19% 14.03% Yes 12.63 5.81 64.19 5.47 0.26% 36.14% 7.42% Yes - - - - -

318 SL 6.38 5.23 66.89 5.76 0.39% 37.50% 4.67% Yes 11.30 5.52 20.20 3.90 0.13% 44.01% 1.25% Yes - - - - - - - -

318b 5.01 4.45 75.61 5.41 0.45% 11.39% 26.24% Yes 6.99 4.86 51.57 4.84 0.35% 17.44% 20.69% Yes - - - - - - - -

322 SL 8.37 5.28 127.51 7.24 0.39% 28.68% 16.17% Yes 6.14 5.11 29.95 4.32 0.26% 44.64% 3.03% Yes 4.38 4.89 83.62 6.53 0.42% 16.60% 21.66% Yes

352 QP 2.33 4.14 7.96 3.62 0.60% 0.36% 30.58% No - - - - - - - - - - - - - - - -

380 QP 0.87 4.07 13.78 3.83 0.56% 0.26% 32.53% No - - - - - - - - - - - - - - - -

396 QP 2.92 4.17 19.78 3.91 0.53% 0.22% 33.97% No - - - - - - - - - - - - - - - -

467 SL 4.75 4.61 142.31 7.42 1.76% 0.22% 36.83% No - - - - - - - - - - - - - - - -

492 SL 0.64 3.89 21.51 3.69 0.24% 0.17% 40.02% No - - - - - - - - - - - - -

500 SL 4.46 4.18 33.06 4.12 0.20% 0.13% 42.44% No - - - - - - - - - - - - - - - -

502 SL 4.43 4.17 39.18 4.26 0.13% 0.10% 41.47% No 137.55 10.80 124.87 7.03 2.49% 0.12% 40.09% No - - - - - - - -

506 SL 5.51 4.58 101.54 6.11 1.03% 0.23% 34.78% No - - - - - - - - - - - - - - -

507 SL 3.36 4.07 44.53 4.13 0.11% 0.20% 41.00% No 37.35 5.79 30.23 3.69 0.07% 0.20% 41.99% No - - - - - - - -

528 CS 9.92 6.09 186.47 9.30 4.08% 0.28% 29.89% Yes (Mild) - - - - - - - - - - - - - - - -

578 CS 2.65 4.87 300.26 10.58 1.55% 0.54% 35.51% No - - - - - - - - - - - - -

581 CS 5.51 4.78 95.62 6.29 0.85% 5.07% 25.83% 8.87 5.67 105.84 7.32 1.09% 16.41% 16.31% No - - - - - - - -

606 CS 9.59 6.08 346.99 11.97 2.87% 6.27% 25.87% No 9.57 6.08 346.99 11.97 2.07% 11.99% 23.04% No - - - - - - - -

652 MB 3.83 4.28 11.22 3.07 0.07% 23.85% 4.42% Yes (Mild)21.70 5.27 75.15 5.73 0.40% 1.22% 44.51% No - - - - - - - -

714 DO 1.83 10.19 1853.86 29.39 7.79% 0.73% 24.47% No 7.49 6.47 817.54 16.19 4.36% 0.61% 25.70% No - - - - - - - -

760 CS 4.17 4.85 174.98 7.25 1.47% 18.01% 9.71% No - - - - - - - - 4.55 4.98 168.24 7.81 1.13% 16.61% 10.36% Yes

809 MB 7.08 5.16 34.53 4.46 0.32% 37.30% 4.50% Yes - - - - - - - - 6.94 4.92 27.38 4.69 0.34% 35.16% 5.40% Yes
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Appendix 3: Result of XRF measurement of samples from CHUE 297 

 

 

 

 

 

 

Matrix Vein breccia

CHUE-297 Lithology Au Au err As As err Fe Ca Si Acid Au Au err As As err Fe Ca Si Acid -

57 SM 5.21 5.06 5.24 3.01 0.41% 33.76% 6.25% Yes 5.71 5.03 6.10 3.04 0.30% 37.60% 4.29% Yes -

103 CS 4.91 5.01 58.28 5.08 7.44% 34.42% 7.12% Yes 5.56 5.14 114.99 6.88 1.93% 29.35% 8.75% Yes -

153 SM 3.57 4.92 2.63 2.92 0.51% 35.46% 7.01% Yes 6.23 5.08 19.73 3.85 0.96% 35.64% 4.06% Yes -

203 SM 6.11 5.18 2.59 3.04 0.31% 37.10% 6.07% Yes - - - - - - - - -

248 SM 5.38 5.14 92.52 6.44 0.26% 31.12% 11.79% Yes 4.54 4.96 70.01 5.78 0.46% 34.26% 7.74% Yes -

307 SM 4.66 5.09 4.21 3.14 0.16% 39.90% 3.33% Yes 5.87 5.30 1.35 2.88 0.08% 41.17% 1.19% Yes -

357 QP 1.64 4.14 3.47 3.28 0.51% 2.38% 32.75% No - - - - - - - - -

404 QP 2.91 4.26 29.21 4.55 0.65% 0.75% 33.08% No - - - - - - - - -

458 QP 0.13 4.08 1.44 3.38 0.80% 0.72% 32.24% No - - - - - - - - -

503 QP 0.15 3.98 3.98 3.51 0.47% 0.86% 32.46% No - - - - - - - - -

551 QP 1.32 4.05 19.62 4.04 0.56% 0.35% 35.03% No - - - - - - - - -

601 QP 0.62 4.08 43.13 5.16 0.62% 2.06% 32.73% No - - - - - - - - -

658 QP 1.53 4.15 6.81 3.85 0.61% 1.63% 32.42% No - - - - - - - - -

702 QP 1.24 4.06 12.65 3.68 0.13% 2.06% 32.74% No - - - - - - - - -

752 MI 6.87 5.20 113.90 6.74 0.26% 28.73% 14.26% Yes 5.20 4.66 35.91 4.41 0.16% 23.72% 15.73% Yes -

796 MI 22.40 5.92 111.31 6.48 0.23% 0.31% 34.41% No - - - - - - - - -

858 QP 1.51 4.25 50.54 5.60 0.53% 0.76% 32.15% No - - - - - - - - -

902 MI 2.78 4.08 31.32 3.90 0.20% 6.88% 28.58% Yes - - - - - - - - -

949 QP 0.00 37.65 29.80 62.50 76.81% 0.02% 0.10% No - - - - - - - - -

1007 QP 1.30 4.00 17.49 3.51 0.20% 0.95% 30.82% No - - - - - - - - -

1052 MI 5.62 4.99 8.43 3.24 0.29% 34.93% 3.92% Yes 4.85 4.74 4.08 2.87 0.12% 36.04% 3.11% Yes -

1104 QP 3.35 4.13 12.69 3.58 0.16% 1.39% 31.38% No - - - - - - - - -

1152 CS 5.20 5.01 23.48 4.04 0.24% 34.93% 6.97% Yes 6.81 5.07 15.19 3.69 0.23% 35.26% 7.12% Yes -

1198 DO 2.93 4.26 4.92 2.59 0.04% 25.00% 1.61% Yes (Mild) - - - - - - - - -



 

52 

Appendix 4: Result of XRF measurement of samples from CHUE 352 

 

 

 

 

 

 

 

 

 

 

 

Matrix Vein breccia/clasts

CHUE-352 LithologyAu Au err As As err Fe Ca Si Acid Au Au err As As err Fe Ca Si Acid Au Au error As As error Fe Ca Si Acid

51 MI 5.97 5.03 6.53 3.27 0.50% 37.53% 4.39% Yes 7.06 5.17 3.01 2.97 0.36% 42.37% 2.66% Yes 6.68 5.00 4.21 3.02 0.60% 34.32% 6.10% Yes

97 CS 3.08 14.06 8.68 13.30 26.75% 16.94% 6.33% Yes - - - - - - - - 2.83 4.95 307.29 10.46 1.98% 10.72% 19.08% Yes

152 QP 3.26 5.20 42.65 5.16 1.89% 29.00% 10.49% - - - - - - - - - - - - - - - - -

203 MB 5.94 5.35 28.90 4.50 0.41% 41.60% 4.76% Yes 6.10 5.35 28.12 4.52 0.26% 42.40% 3.39% Yes - - - - - - - -

252 MI 6.62 5.33 8.55 3.37 0.12% 42.09% 6.03% Yes 5.64 5.14 52.70 4.72 1.18% 29.32% 13.44% Yes - - - - - - - -

305 QP 1.44 4.07 1.93 3.10 0.64% 0.42% 31.16% No - - - - - - - - - - - - - - - -

350 QP 2.11 4.02 2.91 3.03 0.17% 1.11% 30.19% No - - - - - - - - - - - - - - - -

405 SM 5.46 5.14 88.67 6.32 0.37% 39.18% 6.61% Yes 5.54 5.09 74.67 5.85 0.21% 40.93% 5.43% Yes 7.80 5.33 156.44 7.63 1.26% 25.22% 17.56% -

448 QP 1.55 4.06 53.21 5.17 0.39% 0.11% 33.65% No - - - - - - - - - - - - - - - -

500 CS 2.50 4.85 274.73 10.00 1.93% 0.54% 32.59% No - - - - - - - - - - - - - -  -  -

554 SM 11.60 6.12 61.44 5.44 0.31% 32.62% 11.32% Yes - - - - - - - - - - - - - -  -  -

600 MI 19.11 5.27 64.35 5.21 0.85% 0.41% 35.79% No 13.27 6.45 487.61 13.85 3.02% 2.59% 28.56% No - - - - - -  -  -

650 MI 4.22 4.41 99.53 6.13 0.71% 0.39% 37.65% No - - - - - - - - - - - - - -  -  -

708 DO 5.25 4.87 68.80 5.41 0.65% 20.93% 7.12% Yes(Mild) - - - - - - - - - - - - - -  -  -

798 DO 4.65 4.66 49.98 4.78 0.34% 20.50% 7.50% Yes(Mild) 4.55 4.82 168.50 7.80 0.72% 12.79% 18.03% Yes(Mild) - - - - - -  -  -

851 CS 2.58 4.42 62.21 5.05 0.28% 24.08% 1.74% Yes(Mild) 5.24 4.84 56.50 5.09 0.40% 24.17% 1.88% No - - - - - -  -  -

901 CS 6.68 4.99 91.13 6.03 0.71% 23.89% 2.66% Yes(Mild) 7.29 5.15 145.20 7.22 1.00% 21.51% 4.90% Yes(Mild) - - - - - -  -  -

946 CS 4.30 4.63 22.77 3.75 0.37% 25.98% 3.28% Yes 2.75 4.72 81.32 5.95 0.82% 22.58% 6.35% Yes - - - - - -  -  -

992 CS 3.33 4.52 43.38 4.35 0.37% 25.56% 2.62% Yes 2.78 4.34 8.63 3.08 0.33% 21.59% 7.56% Yes - - - - - -  -  -

1050 CS 3.91 4.66 28.65 4.12 0.44% 23.67% 12.38% Yes 4.89 4.98 152.23 6.88 1.05% 27.66% 6.72% Yes(Mild) - - - - -  -  -

1205 CS 5.23 5.02 4.47 3.04 0.45% 35.10% 6.38% Yes 5.72 5.22 2.24 2.97 0.22% 43.02% 2.07% Yes - - - - -  -  -



 

53 

 


