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ABSTRACT 

Aerosol Optical Depth (AOD) is a measure of extinction of light by particles in the atmosphere. It is the 

integral of the atmospheric extinction by aerosol in the vertical column from surface to the top of the 

atmosphere. AOD is extracted using weighted average temporal interpolation method during resampling 

that are made time commensurate with PM2.5, measured at the surface air quality monitoring station. MODIS 

collection 5 aerosol and atmospheric profile product is used to retrieve AOD and other predictor variables 

from satellite retrieved atmospheric observations respectively. The surface weather observations such as 

wind speed, wind direction, temperature, relative humidity and upper-air observations (boundary layer 

height) are considered as a predictor variable to estimate PM2.5. The overall goal of the study is to develop 

a semi-empirical model to explain the variability in surface air quality (PM2.5) using time commensurate 

predictor variables. The closest AOD values observed, when satellite overpasses the station is extracted 

during resampling that are not made temporally commensurate, when PM2.5 is observed at the surface air 

quality monitoring station. The data pairs of AOD, upper-air observation, surface weather observation and 

satellite retrieved atmospheric observations are created for with time commensurate and without time 

commensurate AOD. The first objective is to assess whether a semi-empirical model improves if the 

predictor variables are made temporally commensurate with the surface air quality (PM2.5) observations that 

it tries to explain. The final selected variable for regression analysis are AOD, temperature and boundary 

layer height. The result shows that temporally commensurate predictor variables explain 29.6% variability 

in estimated PM2.5. The PM2.5 concentrations is a measurement of dry aerosol mass. The instantaneous 

AOD is measured in an ambient environment, thus it is affected by relative humidity. The AOD is corrected 

for relative humidity using hygroscopic growth factor, 𝑓(𝑅𝐻) and is normalized by boundary layer height 

which are “meteo-scaled” AOD. The second objective of the study is to assess whether a semi-empirical 

model improves explained variability in PM2.5 with meteo-scaled AOD that it tries to explain. The AOD is 

corrected using simple method when relative humidity is available. The AOD is corrected using advanced 

method (4.3.2) when experimental fitting curves of 𝑓(𝑅𝐻) for different air mass type are available. The 

result shows that variability in PM2.5 is improved by 4%, when AOD is corrected for time discrepancies 

(with the other predictor variables).  
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1. INTRODUCTION 

1.1. Background and Motivation  

Particulate matter (PM) is a group of major pollutants that affect the rural and urban environment. It is a 

complex mixture of solid and liquid particles that vary in size, composition and remains suspended in air. 

The sources of emission of particulate matters are due to anthropogenic activities and natural sources, which 

is directly emitted or reacted with other pollutants in the atmosphere to form particulate matter (United 

States Environmental Protection Agency, 2015). Anthropogenic sources includes aerosol from biomass 

burning, combustion from automobiles and emission from power plants and natural sources includes wind-

blown dust, sea salt from oceans and volcanic eruptions (Kaufman, Tanré, & Boucher, 2002). The particulate 

matter which has aerodynamic diameter of 2.5 µm or smaller is called fine particulate matter (PM2.5). PM2.5 

are approximately 1/30th the diameter of the human hair (Figure 1-1). The toxicity of fine particles (particle 

size less than 2.5 µm in the aerodynamic diameter) is considered to be stronger as they can penetrate into 

the gas-exchange region of the lung than the coarse particles (particle size between 2.5 µm and 10 µm in the 

aerodynamic diameter) that can penetrate into the lower respiratory system.  

 

 

 

The smaller the size of pollutant, the longer it remains suspended in the atmosphere. The short term 

exposure to particulate matter could reduce life expectancy at 1-2 years (Brunekreef & Holgate, 2002) while 

the long-term exposure to PM2.5 are more uncertain but are believed to have adverse effect on human health, 

mainly related to the respiratory and cardiovascular systems (Pope & Dockery, 2006). For example, in 2012, 

it was estimated that 3.7 million premature deaths was due to outdoor air pollution in both cities and rural 

areas worldwide, where 88% of occurred in low and middle income countries (WHO, 2014). Thus, to 

understand the effect of particulate matters on human health, it is necessary to monitor particulate matters 

on regular basis. The World Health Organization (WHO) has set a standard for ambient annual averaged, 

daily averaged PM2.5 concentrations, which is 10 µg/m3 and 25  µg/m3 respectively (WHO, 2006) whereas 

the annual average concentration and daily average concentrations according to US EPA is 12 µg/m3 and 

35 µg/m3. Likewise, the European Commission has set the annual average target concentration of 25 µg/m3 

for PM2.5 exposure, which must be achieved by January 2015 (European Parliament & Council of the 

European Union, 2008). In addition, an interim reduction of 20 % has been proposed for annual average 

background PM2.5 concentrations, which should be realized up to January 1, 2020.  

Figure 1-1 Size comparison of PM2.5 (US EPA, 2015) 
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Air pollution, in some of the Asian countries like China, India and Nepal, it was reported that the annual 

average concentration of PM2.5 over Beijing from 2000 to 2010 were more than seven folds compared to 

WHO standards which could have significant impacts on atmospheric visibility and human health during 

those periods (Lang et al., 2013). Public concerns on air quality grown largely after severe haze event in 

December 2011 in Beijing. According to Zhang et al. (2013) after haze event, Beijing Environmental 

Protection Bureau started releasing for the first time, the set of real-time monitoring PM2.5 data of 31 

stations, which aided to carry out research on population exposure to PM2.5 in the urban area of Beijing. 

Likewise, due to growing concern in air pollution in India, the Central Pollution Control Board (CPCB) 

initiated air quality monitoring of PM2.5, forecasting during Commonwealth Games 2010 in six major cities 

including New Delhi (Sahu, Beig, & Parkhi, 2011). 
 

In Nepal, recent studies (Giri, 2006; Panday, Prinn, & Schar, 2009; Aryal et al., 2009; Putero et al., 2015) 

suggests that the poor air pollution in Kathmandu has harmful effects on human health. However, none of 

them presented observations of PM2.5 across valley. Review by Gurung & Bell (2013) on the state of 

scientific evidence on air pollution and human health in Nepal shows that very less assessment has been 

carried out on air quality and population exposure to PM2.5. Thus, people are unaware of possible health 

consequences resulting from poor air quality. Chow et al. (2002) has mentioned that the health exposure 

assessment needs of monitoring aerosol by air quality agencies should focus on spatial scales ranging from 

1 to 100 m and time scales of minutes to months. Kathmandu valley initially had six air quality monitoring 

stations at some urban and rural areas since 2000 operated by Ministry of Population and Environment back 

that time but it became dysfunctional in 2007 due to poor management. The recent five year plan has 

documented government plan to install 11 stations for data collection and monitoring of air quality of valley 

only to start with fiscal year 2015/2016 (Shrestha, 2015).  

 

The in situ air quality monitoring stations at any urban and rural location can only estimate concentration of 

particulate matters (PM2.5, PM10) at particular location and time only. They are recorded at sparsely 

distributed locations on the ground at different time intervals (example, every hour, 8 h or 24 h). The satellite 

observation, which has large spatial coverage and reliable repeated measurements, could provide 

information on aerosol loading over an area. Thus, aerosol remote sensing could serve as a proxy for 

monitoring fine particulate matter air quality (Gupta et al., 2006) at particular area of interest. Aerosol 

optical depth (AOD), which measures the extinction of light and is the integral of the atmospheric 

extinction by aerosol in the vertical column from surface to the top of atmosphere (Equation 2-1) could be 

retrieved from satellite data (Holben et al., 1998). Several studies (Engel-Cox, Holloman, Coutant, & Hoff, 

2004; van Donkelaar, Martin, & Park, 2006; Schaap et al., 2009) has established the empirical relationship 

between PM2.5 and AOD to estimate the surface level concentration, which requires some in situ 

measurements to train empirical models. 

 

The review of data in literature review (Table 2-1) shows that MODIS retrieved AOD can be used to study 

linear relationship between satellite retrieved AOD and PM2.5. MODIS is an instrument which operate on 

the Tera and Aqua satellite, which observes the entire earth on every other day. The Terra and Aqua satellite 

overpass any place on earth at approximately 10:30 and 13:30 local time. MODIS provides AOD data in 

collections, which new and improved science algorithms are developed. Till now, MODIS has Collection 

001, 003, 004, 005, 051 and 006. AOD is available in level 2 MODIS “aerosol product data” as hierarchical 

data format, whereas level 1B MODIS data consist of calibrated and geo-located radiances for its 36 bands. 

MODIS also has “atmospheric profile product” which monitors profiles of atmospheric temperature, 

moisture and atmospheric stability.  
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For Netherlands, Schaap et al. (2009) found a relationship of Aerosol Robotic Network (AERONET) 

retrieved AOD with ground measurement of PM2.5 concentration at Cabauw station. AERONET is a 

globally distributed observations of aerosol optical depth (Holben et al.,1998). The validation of AERONET 

AOD and MODIS AOD with PM2.5 explained 52% of the variability in PM2.5. Estimating surface PM in 

particular space and time through the relationship of PM2.5-AOD is not straight forward because AOD is a 

columnar, optical measurement while PM2.5 measurement at ground is a surface and point based, dry mass 

measurement of PM2.5 and it is assumed for quantitative analysis, when most particles are concentrated and 

well mixed in the boundary layer, satellite AOD contains a strong signal of ground level particle 

concentration (Gupta, 2008). The global validation study ( Levy et al., 2010) shows the retrieval accuracy of 

AOD from MODIS Collection 005 is 0.05 ± 0.15% for spatiotemporally matched AOD at 550 and the 

prediction of PM2.5 from AOD is ±30% in the most careful studies (Hoff & Christopher, 2009).The nature 

and sources of aerosols and meteorological and climatic conditions vary regionally and could play important 

role in AOD retrieval and its association with PM. So, examining meteorological factors could improve 

empirical relationship of AOD-PM (Kumar, Chu, Foster, Peters, & Willis, 2011). 

1.2. Research Problem  

The global validation study of AOD for MODIS collection 005 shows that accuracy of MODIS is of 0.05 

± 15%×AOD over land (Levy et al., 2010). Other validation study (Koelemeijer, Homan, & Matthijsen, 

2006) for time-series of MODIS and AERONET AOD show a correlation of 0.72, averaged over 36 

AERONET stations of Europe for 2003. It is found that the retrieved AOD has minimum value of -0.049 

and maximum of 0.68 with weighted average temporal interpolation method and minimum value of -0.05 

and maximum of 0.72 with nearest neighbourhood method, which is well within the typical valid range of 

AOD retrieval of -0.05 to 5 for MODIS aerosol product (MOD04, MYD04) in current study. However, it 

is generally classified as heavy haze if AOD values are over unity (Engel-Cox et al., 2004;.Engel-Cox et al., 

2006). Thus, it is assumed (research assumption 1 of 1.3.5) that the MODIS AOD retrieved for the study 

period of 2013-2014 for the Cabauw air quality monitoring station is valid for further study.  
 

Veefkind, Hage, & Brink (1996) measured AOD of the atmospheric boundary layer using Nephelometer 

for a clear sky day, when there was a single aerosol layer as found in Light Detection and Ranging (LiDAR) 

probing thus, assuming that BLH from LiDAR is representative for the aerosol height within the first layer. 

Liu, Sarnat, Kilaru, Jacob, & Koutrakis (2005) assumed that the aerosol particles are correlated to surface 

particulate concentrations at different altitudes and the aerosol particles vertical profile is smooth to establish 

the relationship between AOD and PM2.5. Similarly, Koelemeijer et al. (2006) found that the correction of 

AOD and PM2.5 improved when the AOD is divided by BLH assuming that there is a single homogenous 

layer and no overlapping of aerosols in the atmosphere. Wang & Christopher (2003) also assumed that the 

vertical mixing produces well mixed BLH in cloud-free conditions thus resulting in favourable positive 

correlations between MODIS AOD and PM2.5 mass. Thus, in our research, first significant height of 

atmospheric boundary layer which is called Boundary layer height (BLH) retrieved from backscattering 

profile of Vaisala LD-40 Ceilometer is used. Atmospheric boundary layer is the lowest layer of the 

atmosphere that is in direct contact with Earth’s surface. LD-40 Ceilometer is a commercial LiDAR system 

operated by Royal Netherlands Meteorological Institute (KNMI) in The Netherlands. It is used to establish 

relationship between AOD and PM2.5, assuming (research assumption 2 of 1.3.5) that the aerosol particles 

are correlated within the first significant height of boundary layer detected by LiDAR with surface level 

PM2.5 concentrations. 
 

AOD is measured under ambient condition which is influenced by relative humidity (RH) whereas PM2.5 is 

measured in dry condition, which represents the dry mass concentration measured at RH below 40-50 % 

(Gupta et al., 2006; Liu et al., 2005). Veefkind et al. (1996) stated that ammonium sulfate and ammonium 
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nitrate are major aerosol which are dominated by Continental and maritime air masses in The Netherlands. 

When RH is high (RH>70%), which is frequently found in the current study period (2013-2014), the 

hygroscopic particles such as ammonium sulfate and ammonium nitrate can grow 2-10 times in size, 

increasing particle light scattering (Malm, Day, & Kreidenweis, 2000).  

 

Review of literature (Table 2-1) and specifically Koelemeijer et al.( 2006) shows that the correlation between 

AOD and PM2.5 would improve if AOD is corrected for BLH and hygroscopic growth of aerosol particles 

represented as 𝑓(𝑅𝐻) (Wang & Christopher, 2003) for surface RH (Hutchison et al., 2008; Tian & Chen, 

2010). Thus, in current study the satellite retrieved AOD is corrected for BLH and hygroscopic growth of 

aerosol particles. The method when only RH is available for correcting AOD is referred as “Simple 

correction method/reference method” hereafter (Equation 4-4). It is referred as “Advanced Method”, 

when there is availability of experimental fitting curve of 𝑓(𝑅𝐻) for different air mass type for correction 

of AOD with 𝑓(𝑅𝐻). Koelemeijer et al. (2006) has defined the term “meteo-scaled” for AOD normalized 

by BLH and corrected with 𝑓(𝑅𝐻) as AOD* (Equation 4-3):  

 

Studies (Engel-Cox et al., 2006; Koelemeijer et al., 2006; Gupta & Christopher, 2009) used PM2.5 

measurment closest in time to instantaneous MODIS Terra and Aqua AOD measured value during the 

satellite overpass time to create data pairs to established relationship between AOD and PM2.5. Each 

MODIS level 2 product file covers a five-minute time granule. The same location can have more than one 

AOD observation in a day. Thus, estimated AOD that is closer to the time when PM2.5 is measured at the 

station is temporally matched during resampling, when satellite overpass the air quality monitoring station. 

Hence, the data pair of PM2.5 and AOD is obtained for 10:30 and 13:30. But, PM2.5 is an hourly 

measurement at air quality monitoring station and AOD is an integral of instantaneous observation from 

surface to the top of atmosphere in a vertical column during the satellite overpass time. To elaborate further, 

if the satellite overpasses the station at supposedly 10:15 and 13:00 in a day, the measurement at air quality 

monitoring station at 10:30 is paired with AOD observed at 10:15 during temporal matching. Similarly, the 

measurement at air quality monitoring station at 13:30 is paired with AOD observed at 13:00. And, 

supposedly if there is only one observation in a day at 10:15, each PM2.5 measurements at air quality 

monitoring station at 10:30 and 13:30 are paired with that one AOD observation providing two data pairs 

during temporal matching. This process of pairing which has “without time commensurate” AOD, which 

may ignore the change in atmosphere (e.g. wind speed, wind direction, relative humidity, temperature, 

boundary layer height) within air quality measurement durations between 10:30 and 13:30.  

 

The novelty of this research is to extract and prepare a matched data pairs of satellite retrieved AOD from 

Terra and Aqua satellites level 2 MODIS aerosol product (MOD04 and MYD04 respectively) that are made 

“time commensurate” during resampling with ground level measured PM2.5 concentrations at air quality 

monitoring station. The satellite retrieved AOD is temporally matched with the ground level PM2.5 

measurement time exactly at 10:30 and 13:30 (Terra and Aqua overpass time respectively), when the satellite 

overpasses the air quality monitoring station. As NASA, (2016) highlights that the observation area closer 

to the poles will have increased number of overpasses, thus, daily MODIS observations increases due to 

overlapping orbits. Hence, the same location can have more than one observation in a day. To elaborate 

further, if the satellite overpasses the station at supposedly 09:45 and 10:15 in a day, the AOD value at air 

quality monitoring station at 10:30 is obtained with weighted average temporal interpolation during 

resampling of estimated AOD values observed at 09:45 and 10:15 by the satellite. And supposedly, if there 

is only one satellite observation in a day at 10:15, only PM2.5 measured at air quality monitoring station at 

10:30 is paired with AOD estimated at 10:15 without interpolation. Thus, there is only one data pair in a 

day. This process of pairing has “with time commensurate” AOD, which may consider the change in 



SEMI-EMPIRICAL MODELLING OF PM2.5 USING SURFACE WEATHER, UPPER AIR AND SATELLITE RETRIEVED ATMOSPHERIC OBSERVATIONS 

5 

atmosphere (e.g. wind speed, wind direction, relative humidity, temperature, boundary layer height) within 

air quality measurements between 10:30 and 13:30. 

AOD is a measure of the integral of the amount of light attenuated in a vertical column from surface to the 

top of atmosphere, when it overpasses the station. It is assumed (research assumption 3 of 1.3.5) that the 

surface level PM2.5 concentration measured at 10:30, 11:30, 12:30 and 13:30 hours are representative of the 

ambient concentration of particulate matters at the station at that hour. McIDAS-V (Space Science and 

Engineering Center, 2000), is used for resampling, which has an option to interpolate AOD values using 

weighted average method. McIDAS-V is a free, open source, visualization and data analysis software package 

(McIDAS-V User ’ s Guide, 2015).  

 
With the available data pairs, multiple linear regression modelling (Equation 4-2) is carried out with AOD 

and surface level PM2.5 (dependent variable). AOD is considered as a predictor variable in this thesis. When 

the satellite overpasses the air quality monitoring station, the potential “predictor variables” (Table 3-5) is 

extracted from Terra/Aqua level 2 MODIS atmospheric profile product (MOD07 and MYD07 respectively) 

that are made commensurate with the time AOD was observed (referred hereafter as “satellite retrieved 

atmospheric observations”). The surface weather variables such as relative humidity, wind speed, wind 

direction and temperature (hereafter referred as “surface weather observations”) and boundary layer 

height referred as “upper-air observations” are used as additional predictor variable that could improve 

variability in estimated PM2.5 concentrations at surface. It is however assumed (research assumption 4 of 

1.3.5) that the surface weather observations at 10:30 and 13:30 are representative of the surface air weather 

condition when the instantaneous AOD was observed at the station.  

Thereafter it is assessed whether these predictor variables such as upper air observations, satellite retrieved 

atmospheric observations and surface weather observations that are made temporally commensurate could 

improve the variability in PM2.5 that it tries to explain. The semi-empirical modelling approach is applied 

as the modelling is carried out on the basis of the knowledge of processes involved to estimate PM2.5 with 

all predictor variables. Thus, a semi-empirical model is assessed with time commensurate AOD and without 

time commensurate AOD. The semi-empirical model obtained with both time commensurate and without 

time commensurate AOD with PM2.5 is assessed with meto-scaled AOD separately if it could improve the 

variability in PM2.5 

1.3. Research Objectives 

1.3.1. Overall Research Objective 

The overall objective of the study is to assess how much the predictor variables which are extracted as point 

based time series data pairs of satellite retrieved atmospheric observations that are made temporally 

commensurate, upper air and surface weather conditions explains the variability in surface level PM2.5. 

1.3.2. Specific Research Objectives 

The overall goal of this study is to develop a semi-empirical model to explain variability in surface air quality 

(PM2.5) using time commensurate AOD, upper air, surface weather, and satellite-retrieved atmospheric 

observations: 

1. To assess whether a semi-empirical model improves if the predictor variables are made temporally 

commensurate with the surface air quality (PM2.5) observations it tries to explain. 

2. To assess whether a semi-empirical model improves with meteo-scaled AOD it tries to explain.  
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1.3.3. Research Questions 

1. Does the explained variability in PM2.5 increase (assessed from the model’s coefficient of 

determination,  𝑅𝑎𝑑𝑗.
2 ) if all the predictor variables retrieved from the MODIS aerosol and 

atmospheric products are temporally commensurate?  

2. Does the explained variability in PM2.5 increase (assessed from the model’s coefficient of 

determination, 𝑅𝑎𝑑𝑗.
2 ) in a semi-empirical model with meteo-scaled AOD?  

1.3.4. Hypotheses 

 

Hypothesis 1 

H0: There is no significant difference between semi-empirical model with time commensurate 

predictor variables and without time commensurate predictor variables at 90% confidence interval 

(i.e. all regression coefficients are zero, i.e., none of the regressors contribute significantly to the 

prediction of PM2.5). 

 

H1: There is significant difference between semi-empirical model with time commensurate 

predictor at 90% confidence interval (at least one regression coefficient is significantly different 

from zero i.e., at least one regressor contributes significantly to the prediction of PM2.5). 

 
Hypothesis 2 

H0: There is no significant difference between semi-empirical model with time commensurate 

meteo-scaled AOD and without time commensurate meteo-scaled AOD at 90% confidence 

interval (i.e. all regression coefficients are zero, i.e., none of the regressors contribute significantly 

to the prediction of PM2.5). 

 

H1: There is significant difference between semi-empirical model with time commensurate meteo-

scaled AOD at 90% confidence interval (at least one regression coefficient is significantly different 

from zero i.e., at least one regressor contributes significantly to the prediction of PM2.5). 

 

1.3.5. Research assumptions 

1. It is assumed that the Terra, Aqua MODIS AOD retrieved for the study period of 2013-2014 at 

Cabauw air quality monitoring station is within the accuracy of the global validation studies of 

MODIS collection 051 product compared to AERONET AOD.  

 

2. It is assumed that when only first significant height of boundary layer was detected in LiDAR, it is 

representative of the aerosol height within the boundary layer assuming there is a single well-mixed 

layer during satellite overpass time and the vertical distribution of particles above the boundary 

layer is relatively smooth. 

 

3. Since, AOD is an instantaneous measure of the integral of the amount of light attenuated in a 

vertical column from surface to the top of atmosphere, when it overpasses the station, it is assumed 

that the surface level PM2.5 concentration measured at 10:30 and 13:30 hours are representative of 

the ambient concentration of particulate matters at the station. 
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4. It is assumed that the surface weather measured at nearest weather station and upper air 

observations at 10:30 and 13:30 hours measured at air quality monitoring station are representative 

of the surface weather and upper air observations at Cabauw, when the instantaneous AOD is 

observed at the air quality monitoring station, when the Terra, Aqua MODIS overpass the station 

at 10:30 and 13:30 hours respectively. 

 
5. It is assumed that the experimental 𝑓(𝑅𝐻 = 72%, 𝜆 = 474 nm) found in Petten in the Netherlands for 

November 17, 1993 by Veefkind et al., (1996) could be adapted in Cabauw with modification on 

offset values based on experimental study of 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm)  values during June to 

October 2009 for different air mass types found at Cabauw in Zieger et al., (2013).  

 

6. It is assumed that the 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) found in experimental study at Cabauw by Zieger et 

al., (2011) for different air mass types such as maritime, continental south, maritime heavily polluted, 

maritime slightly polluted, continental east and all air mass together could be grouped into two types 

of air mass as “maritime” by grouping maritime and maritime, slightly polluted and “others” by 

grouping continental south, continental east and maritime, heavily polluted. It is also assumed that 

the coefficient of fitting curve can be averaged to find the curve fitting for grouped air mass types. 

7. It is assumed that having wind direction at surface weather observation station at Cabauw is enough 

representative of where the air mass is coming from.  

1.3.6. Thesis structure 

The thesis is divided into six chapters. Chapter 1 consist of Background, Research Motivation with research 

problem, objectives, questions, assumptions and hypotheses. Chapter 2 provides literature review on 

previous studies related to estimating PM2.5 using satellite retrieved AOD. Chapter 3 provides description 

of study area, data's used for study, pre-processing and processing of all available data. Methods parts is 

provided in Chapter 4. Chapter 5 consists of result and discussion. And finally, Chapter 6 provides the 

Conclusion, Limitations and Recommendation for future research. 
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2. LITERATURE REVIEW 

2.1. Aerosol Optical Depth 

The AOD is an integral measure of aerosol extinction coefficient in a vertical column due to scattering and 

absorption by aerosol properties from the surface to the top of the atmosphere as presented in Equation 

2-1 (Levy, 2009). 

 𝜏(𝜆) =  ∫ 𝛽𝑒𝑥𝑡,𝑝(𝜆, 𝑧)

𝑇𝑂𝐴

0

𝑑𝑧 
Equation 2-1 

where 𝜏(𝜆) represents AOD at a wavelength (𝜆), subscript 𝑝 represents the contribution from the particles 

(to be separated from molecular or Rayleigh optical depth), 𝛽 𝑒𝑥𝑡(𝜆, 𝑧) is the aerosol extinction coefficient 

at height 𝑧 above the ground, for wavelength 𝜆. Aerosol extinction coefficient represents the area extinction 

for a unit mass of the aerosol (units: m2/g) and depends on extinction efficiencies (𝑄𝑒𝑥𝑡) and the average 

particle density (gm-3), 𝜌. The extinction efficiencies, 𝑄𝑒𝑥𝑡  for aerosol is obtained from Mie code.  

 

The satellite AOD is related to PM with the relationship derived for a single homogeneous atmospheric 

layer in cloud-free skies and with no overlapping of aerosols through Equation 2-2 (Koelemeijer et al., 2006). 

 𝐴𝑂𝐷 = (𝑃𝑀) × (𝐵𝐿𝐻) ×  𝑓(𝑅𝐻) ×
3𝑄𝑒𝑥𝑡,𝑑𝑟𝑦

4𝜌𝑟𝑒𝑓𝑓
 

 

Equation 2-2 

where, 𝐵𝐿𝐻 is the planetary boundary layer height; 𝑓(𝑅𝐻) is aerosol hygroscopic growth factor; 𝜌 is the 

aerosol mass density (gm-3); 𝑄𝑒𝑥𝑡,𝑑𝑟𝑦  is the extinction efficiency under dry conditions; and 𝑟𝑒𝑓𝑓  is the 

particle effective radius.  

 

However, using Equation 2-2 for converting AOD data to surface level PM2.5 is not straight forward as it 

requires knowledge of factors that influences AOD-PM2.5 relationship (more details in Chapter 2.4.1) such 

as relative humidity, altitude of aerosol layer and aerosol composition  (Wang & Christopher, 2003; Engel-

Cox et al., 2004). However, the study found other approaches to relate satellite retrieve AOD with surface 

level PM2.5. The first study on relating AOD with surface level PM2.5 is found by Chu et al., (2003), where 

the correlation between satellite AEROENT AOD and surface level PM2.5 is studied. The details about the 

similar studies and previous related work is presented in Chapter 2.5. 

NASA Level 1 and Atmosphere Archive and Distribution System ((NASA, 2016b), provides level 2 aerosol 

product files that are stored in Hierarchical Data Format (HDF), which contains AOD as a scientific data 

set. The level 2 aerosol product was derived using level 1 spectral radiance data. However, it is not discussed 

in this thesis how the spectral radiance is converted into AOD. The details about AOD retrieval algorithm 

over land to obtain AOD from level 1 radiances data can be found in Levy et al., (2009).  
 

The AOD is commonly retrieved at 550 nm from MODIS aerosol product.  It is also termed as Aerosol 

Optical Thickness (AOT). The AOD at land (mainly vegetated surfaces) is retrieved using dark target 
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algorithm. The algorithms are only applied over daytime, cloud free and snow/ice-free pixels to retrieve 

AOD at 550 nm. The details of the AOD retrieval over Land and Ocean is provided in MODIS algorithm 

version 5.2. (Levy et al., 2007; Levy et al., 2007). Dark target algorithm employs three spectral reflectance at 

0.47 µm, 0.66 µm and 2.1 µm to retrieve AOD at 550 nm. As the vegetated surface in not "dark" at 550 in 

the "green" wavelength channel of MODIS, AOD cannot be retrieved at 550 nm directly. It is derived at 

0.47 µm and 0.66 µm and is interpolated to 550 nm (Levy et al., 2010).  

2.2. AERONET and Available Sun Photometer Networks 

The aerosol optical depth is routinely monitored using the CIMEL sun photometer, which is a solar-

powered weather hardy robotically pointed sun and sky spectral radiometer. The radiometer makes aerosol 

optical depth measurements in eight spectral bands between 340 nm and 1020 nm but basically, aerosol 

optical depth measured at four wavelengths 440 nm, 670 nm, 870 nm and 1020 nm are the standard 

measurements. These data are used in the AERONET standard procedures to retrieve information on 

columnar aerosol characteristics such as the aerosol optical depth, size distribution and phase function 

(Holben et al., 1998). AEROENT AOD is provided in different levels such as Level 1.0 (unscreened), Level 

1.5 (cloud-screened) and Level 2.0. (quality-assured). 

 

There are many large networks available globally that use sun photometry to measure Aerosol optical depth 

namely AERONET (Aerosol Robotic Network), PHOTONS (Photometrie pour le Traitement Operationel 

de Normalization Satellitaire), SKYNET, MSRFR (Multifilter Rotating Shadowband and Radiometer), 

AEROCAN, Polar AOD, German AOD Network, SibRad and world meteorological organization global 

atmosphere watch (WMO/GAW). These instruments are stable, well-calibrated, well-characterized which 

serves as a ground truth for satellite remote sensing (Hoff & Christopher, 2009). 

2.3. Uncertainties on AOD Retrieval 

In order to use the aerosol optical depth (AOD at 550 nm) for the further study, the literature review on 

uncertainties in the retrieval of AOD from MODIS is carried out. The global validation study shows that 

the accuracy of MODIS collection 005 retrieved AOD values is 0.05 ±0.15% compared to AERONET 

AOD (Levy et al., 2010). 

The study found possible factors such as radiometric calibration (Levy et al., 2007), Atmospheric Correction 

for Surface Reflectance ( Levy et al., 2007; Levy et al., 2010), Selection of aerosol model ( Levy et al., 2007),  

Cloud Screening ( Remer et al., 2005), Systematic Error such as Angstrom Exponent (Levy et al., 2010), 

Surface effect  (Luo et al., 2005; Lyapustin, 2001), Observation Geometry (Gatebe et al., 2001; Remer et al., 

2001) and Cloud Fraction  (Levy et al., 2010) that could add uncertainties in the retrieval of AOD from 

MODIS.  

2.4. Empirical relationship of AOD and PM2.5 

Irrespective of availability of data, the understanding of PM concentration and monitoring would greatly 

benefit from consistent and accurate representation in the form of PM maps over a region or air quality 

index would be simpler for public to visualize the quality of air we breathe. Although, the ground based 

measurement may be precise but they are only point measurement and doesn’t necessarily represent large 

area because aerosol sources vary over small spatial scales and their lifetime in atmosphere varies depending 

on particle size, chemical composition, atmospheric humidity and precipitation (Gupta et al., 2006). Thus, 

in case of particulate matter, in situ observations approach is hampered by the difficulties in the sampling 

techniques and variation of particulate matter concentration in space and time. Therefore, cost effective 
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satellite remote sensing techniques is utilise to monitor highly variable aerosol fields on regional scales, 

where ground based observations are scarce or lacking altogether and it also has benefit of large spatial 

coverage. Recent satellite data from Moderate-resolution Imaging Spectroradiometer (Chu et al., 2003) or 

Multiangle Imaging Spectro-Radiometer (Hu et al., 2014; Liu et. al., 2007) can be used to derive indirect 

estimates of surface PM2.5 using statistical method.  

Lee et al., (2011) has proposed a statistical model for daily calibration of MODIS AOD to investigate the 

spatial patterns of ground PM2.5. Kloog et al., (2012) extended temporal aspect by incorporating fine scale 

land use regression to better predict PM2.5 concentrations for days with or without satellite AOD measures. 

The satellite retrieved AOD is dependent on aerosol mass concentration, mass extinction efficiency, 

hygroscopic growth factor, and effective aerosol scale height (Gupta et al., 2006). Satellite retrieved AOD is 

processed for cloud contamination before feeding into statistical model to better increase the accuracy of 

prediction and considering several factors affecting AOD such as relative humidity (Justice et al., 2009), 

temperature, height of planetary boundary layer in PM-AOD association could explained the variability in 

atmosphere in a well-mixed condition (Gupta & Christopher, 2009). 

van Donkelaar et al., (2010) presented methods to estimate PM2.5 globally by establishing a relationship 

between AOD retrieved from satellite, which requires modelled value for η (depends upon aerosol size, 

aerosol type, diurnal variation, relative humidity, and the vertical structure of aerosol extinction) for a grid, 

which is computed from GEOS-CHEM, a global chemical transport model, which is data driven 

methodology and the robustness of such output depends input emission and meteorological data (Kumar, 

2010). There is another approach to predict surface PM2.5 using statistical method to established an empirical 

relationship between AOD retrieved from satellite and ground measurement PM2.5 and predicting PM2.5 to 

identify time and space resolve estimate is by using space time Kriging (Kumar et al., 2011) which provides 

the way to predict PM2.5 in different time and space at a spatial location. However, Space time geo-statistical 

Kriging model is potentially accurate than the remote sensing (RS) for deriving estimates over shorter time 

scales (e.g., yearly or monthly) and is more accurate for locations that are about 100 km from a ground based 

monitoring station (Lee et al., 2012). Moreover, RS data provides a useful estimate of pollution levels in the 

absence of extensive local ground based monitor networks, particularly when the nearest monitor is located 

more than 100 kilometres away using an integrated remote sensing-chemical transport model approach (van 

Donkelaar et al., 2010). 

2.4.1. Surface Weather Observations Factors Affecting AOD and PM2.5 Relationship 

Study (Seinfeld & Pandis, 2006) shows that the surface weather conditions that strongly influence the 

concentration of fine particles in the atmosphere consist of temperature, relative humidity and height of 

planetary boundary layer. The increase in temperature at the surface accelerates the generation of secondary 

particles by enhancing the photochemical reactions during day time and thus, increases the amount of 

concentration of fine particles within the mixing height. Secondary particles are those that are not directly 

emitted and are form in the atmosphere from other gaseous pollutants, particularly sulphur dioxide, nitrogen 

oxides, ammonia and volatile organic compounds. By nature, the temperature decreases with increase in 

height (adiabatic lapse rate) but during strong temperature inversion, it could reduce the vertical mixing, 

when the boundary layer height is lower as shown in lower part of Figure 2-1, and thus increases chemical 

concentration of precursors. The higher the concentration of precursors, the faster will be the chemical 

process to convert the gaseous into fine particles. Thus, the concentration will increase during temperature 

inversion as well (Wang & Martin, 2007). The sulphate particles tend to have larger extinction coefficients 

in the atmosphere (Chin et al., 2002). Thus, AOD would correspond to less PM2.5 concentration, when 

there is more sulfate particles in the air.  
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Study (Koelemeijer et al., 2006; Liu et al., 2005) have suggested that relative humidity accounts for optical 

extinction of aerosol in the atmosphere. In case of hygroscopic particles such as ammonium sulphate and 

ammonium nitrate, the increase in relative humidity can increases the growth up to 2-10 times in particle 

size, resulting in the significant scattering efficiencies (Malm et al., 2000) and overestimation of aerosol mass. 

PM2.5 measurements at the surface are the measurement of dry mass, where the filter storage and weighing 

are conducted under controlled RH conditions (at 40-50% RH). Thus, the same AOD values at higher RH 

would give rise to small particles of dry mass as compared to those at low RH conditions (Liu et al., 2005). 

The increase in wind speed causes the greater turbulence in the atmosphere, which enhances the vertical 

mixing. Thus, the concentration of fine particles decrease with increase in wind speed and vice versa ( Liu 

et al., 2007).  

 

The change in height of planetary boundary layer (BLH) has significant impact on the association of AOD 

and PM2.5 concentrations. The same particle concentration trapped within a boundary layer with a low 

mixing height will have less dilution as shown in lower part of Figure 2-1 so the concentration will be higher 

at the surface measured at a station. In contrast, with increase in height of boundary layer, the dilution of 

particles increases in the mixing layer so, the concentration measured at a station will be decreasing which 

is shown in Figure 2-1 top part (Gupta & Christopher, 2009). However, AOD is a columnar measurement 

and so, it should remain constant within the boundary layer in both strong temperature inversion and weak 

inversion. Also, a thicker BLH usually corresponds to a lower aerosol density for a given AOD values. Thus, 

accounting boundary layer height is important in estimating PM2.5 using satellite retrieved AOD. Therefore, 

BLH is regarded as a denominator of AOD in relationship to AOD-PM2.5 association. 

2.5. Previous Works 

The relationships of satellite retrieved AOD and surface level PM2.5 concentrations has been first 

investigated in 2003 by Chu et al., (2003) to estimate particulate matters on regional and urban scale. The 

study areas were chosen as eastern China and India as most populated region, eastern United States/Canada 

and western Europe as industrialized regions. The 24-hour PM10 concentration was temporally matched 

with daily averaged AEROENT 1.5 data from August to October 2000 and the linear correlation coefficient 

of 0.82 was found in northern Italy Thus, the result showed the potential use of MODIS aerosol retrieved 

AOD for air quality assessment.  

Figure 2-1 Schematic representation of boundary layer height and concentration of 
PM2.5 at a monitoring station (Gupta & Christopher, 2009)  
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Wang & Christopher, (2003) study in Jefferson county, Alabama compared MODIS collection 4 Terra and 

Aqua for daily average of PM2.5 in 7 stations. For temporal matching, the hourly PM2.5 observations was 

averaged centred around the satellite overpass time of Terra and Aqua (±60 min) to compare MODIS AOD 

with PM2.5. The linear correlation coefficient for both MODIS Terra and Aqua was found to be 0.7, 

suggesting that surface level PM2.5 mass is reflected in MODIS column AOD data. The study shows the 

diurnal changes of PM2.5 mass under cloud free conditions is due to the diurnal changes of the height of the 

planetary boundary layer, which was found to be maximum in the afternoon around 1:00~2:00. The study 

infers that the positive correlation of AOD and PM2.5 is favoured during the satellite overpass time due to 

well-mixed boundary layer. However, the study also underlines that the relationship between AOD and 

PM2.5 are affected by hygroscopic growth of particles and extinction efficiency of particles (𝑄𝑒𝑥𝑡).  

 

Engel-Cox et al., (2004) examined the correlation between satellite retrieved AOD and surface level PM2.5 

over 1138 stations across United States across EPA air quality monitoring sites for April to September 2002. 

The spatial and temporal collocation of satellite measurements and ground measurements was carried out 

to pair satellite measurements with ground measurements. For spatial collection, the distance between 

MODIS pixel and PM2.5 stations using latitude and longitude information is calculated and the pixel within 

0.5o (40-50 km) were averaged over PM2.5 stations. For temporal matching of hourly ground-based 

measurements, only the measurements that are close to hour (±60 min) corresponding to satellite overpass 

time was considered. However, the average daily PM2.5 measurements was paired with satellite retrieved 

AOD measured on the same day. The study found that the overall linear correlation coefficient for daily 

average and hourly average to be 0.43 and 0.4 respectively across all sites. However, the correlations are 

stronger in the Eastern half of United States and weaker in the Western part of United States. Engel-Cox et 

al., (2004) provides one reason as the differences in the datasets may explain some variation as PM2.5 is a 

surface measurement while AOD is a measure of aerosol scattering in a vertical column from ground to top 

of the atmosphere. The study highlights that necessity of aerosol vertical distribution data such as from 

LiDAR systems to determine the effects aerosol height in the variation of correlation of AOD and PM2.5 

from east to west or city to city.  

 

With reference to Engel-Cox et al., (2004) study, Engel-Cox et al., (2006) examined the impact of elevated 

aerosols above the boundary layer on 4 stations at Old town Baltimore. The study found slight improvement 

in correlation of LiDAR retrieved AOD and PM2.5 from 0.56 to 0.65, when AOD is corrected for height 

of planetary boundary layer eliminating elevated aerosols in comparison to correlation of LiDAR retrieved 

total optical depth and PM2.5.  

 

Later, Gupta et al., (2006) has applied the direct correlative model established using Terra and Aqua MODIS 

satellite retrieved AOD and surface level PM2.5 to estimate PM2.5 concentrations over global cities (Hong 

Kong, Bern, Sydney, Delhi, New York). For temporal matching, all the 24-hr observations of PM2.5 is 

averaged within one hour (±60 min) of satellite overpass time. For spatial collection, the distance between 

MODIS pixel and PM2.5 stations using latitude and longitude information is calculated and the pixel within 

0.2o (20-25 km) were averaged over PM2.5 stations. The correlation coefficient averaged over all the global 

cities stations was reported to be 0.96 which concluded that the satellite retrieved AOD can be used for air 

quality studies over large spatial area. However, the linear correlation coefficient of hourly PM2.5 and 

satellite retrieved AOD for individual region is 0.14 (Switzerland), 0.35 (Sydney), 0.40 (Hong Kong), 

0.41(Delhi) and 0.6 (New York). In the same study, the sensitivity study of height of planetary boundary 

layer effect on linear correlation is assessed over 5 stations in Texas. The study found that the linear 

correlation coefficient value of 0.94 for only those measurements which were between 100-200 m boundary 

layer height and where, RH less than 50 % were observed but the value of linear correlation coefficient 



SEMI-EMPIRICAL MODELLING OF PM2.5 USING SURFACE WEATHER, UPPER AIR AND SATELLITE RETRIEVED ATMOSPHERIC OBSERVATIONS 

 

14 

decreases to 0.36 when boundary layer height were close to 1 km (800-1300 m), which showed that the 

AOD-PM2.5 relationship strongly depends upon the height of boundary layer in the atmosphere as such the 

concentration of PM2.5 decreases with increasing boundary layer height. However, study also highlighted the 

necessity of aerosol vertical distribution profile and other factors such as hygroscopic growth of aerosol 

particles, as pointed out by  Wang & Christopher, (2003) to further refine the analysis.   

Thus, Koelemeijer et al., (2006) study in Europe, introduced the height of planetary boundary layer and 

relative humidity extracted from European Centre for Medium-Range Weather Forecasts (ECMWF) archive 

into the correlative model of AOD-PM2.5 association to improve the correlation of AOD and PM2.5. For 

temporal matching of hourly ground-based measurements, only the measurements that are close to hour 

(±60 min) corresponding to satellite overpass time was considered. The average daily PM2.5 measurements 

was compared to AOD (instantaneous) measured on the same day. The average correlation coefficient of 

daily averaged PM2.5 and hourly averaged PM2.5 increased from 0.27 to 0.48 and 0.38 to 0.59 respectively, 

when AOD is divided by PBL and 𝑓(𝑅𝐻), which is the aerosol hygroscopic growth factor, which describes 

the increase of the aerosol extinction cross-section or scattering coefficient with RH for both daily and 

hourly averaged PM2.5 for air quality monitoring station with dominant rural background concentration. 

However, the correlation of PM2.5 with 1/BLH didn't improve significantly for both hourly and daily average 

PM2.5 concentrations and there was no correlation found between PM2.5 with 1/𝑓(𝑅𝐻).  

  

Gupta & Christopher, (2008) study in North Birmingham, Alabama for MODIS collection 5 Terra product 

for a single site. The study assessed different criteria such as box sizes (5 × 5 pixels, 4 × 4 pixels and 3 × 3 

pixels) and quality flags to obtain coincident MODIS Terra retrieved AOD over PM2.5 location to verify 

the assumption of  using 5 × 5 pixels of Ichoku et al., (2002). The results showed that changing box size 

from 5 × 5 pixels to 3 × 3 pixels do not significantly affect AOD-PM2.5 relationship for daily averages. 

However, the box available data points were reduced by 8 % in 3 × 3 pixels. In case of quality flags, it is 

found critical for daily averages. The study shows that the correlation of PM2.5 and AOD is higher when 

hourly averaged PM2.5 is considered in the correlative model than daily averaged PM2.5 as the instantaneous 

MODIS AOD correlate better with hourly averaged PM2.5 compared to 24 hr averaged PM2.5 due to 

diurnal variations in PM2.5 mass measurements. The correlation was increased from 0.52 to 0.62 for the 

correlation between hourly averaged PM2.5 and satellite retrieved AOD compared to daily average PM2.5 

data. However, the study shows that the relationship between AOD and PM2.5 varies with location and 

time (Engel-Cox et al., 2004; Gupta et al., 2006; Koelemeijer et al., 2006). The study found that there was 

only 2 µg/m3 of difference in monthly, seasonal and annual means estimated using relationship of Terra 

MODIS (with 50 % of time sampled over the location) and surface PM2.5 observations, when compared 

to 100 % data availability of monitoring station. Thus, the study concluded that the satellite data can be used 

for evaluating air quality of a region in absence of ground measurements data. 

 

Schaap et al., (2009) collocated PM2.5 data to established relationship with AERONET AOD at Cabauw, 

The Netherlands. The established AERONET AOD and PM2.5 relationship was investigated for the 

different time window for which the MODIS overpasses the station. The correlation was increasing when 

using PM2.5 measurements of mid-day thus, the relationship for central time window (11:00-15:00) was 

used for further analysis. The study found that the inclusion of mixing height doesn't improve the correlation 

between satellite retrieved AOD from MODIS collection 5 and PM2.5 measured from a Tapered Element 

Oscillating Microbalance (TEOM) with Filter Dynamics Measurement System (TEOM-FDMS). The 

boundary layer height for study was considered from National Institute for Public Health and the 

Environment (RIVM) backscatter LIDAR station of de Bilt and meteorological variables such wind speed 

and wind direction were considered from Cabauw Experimental Site for Atmospheric Research (CESAR) 

data portal were used to assess if the air mass origin would effect on AEROENT AOD-PM2.5 relationship. 

It is mentioned that a relationship of AOD and PM2.5 for the continental air mass originating from south, 
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south east and east were identical. However, the air mass originating from west do not show positive relation 

with AOD and PM2.5, where the results was not shown. Also, it is mentioned that the longer time series is 

necessary for statistical analysis of effect of air mass origin on AOD-PM2.5 relationship. So, it was not 

further considered in the study. The study compared PM2.5 with AERONET and MODIS retrieved AOD. 

The slope was found to be 120 µg/m3 and bias of 5.1 µg/m3. The TEOM with FDMS accounts for loss of 

volatile components (e.g. Ammonium nitrate) from the TEOM at standard temperature of 40 degrees 

Celsius. It should be noted that the PM2.5 concentration measured from TEOM-FDMS instrument at 

Cabauw and other studies with PM2.5 measured with instruments like TEOM, Beta attenuation monitoring 

(BAM) method results cannot be compared until correction factors were used (Hoff & Christopher, 2009).  

 

 Recent study (Guo et al., 2014) in Beijing area by showed the correlation analysis of MODIS AOD with 

ground based PM2.5 for different seasons (spring, summer and autumn), where the correlation was higher 

for autumn (0.731) compared to summer (0.597). The study showed that the correlation coefficients 

between MODIS AOD and ground PM2.5 is improved by about 11 % and 4 % in summer, when AOD is 

corrected for BLH only and with both BLH and f (RH) respectively, while the correlations in spring and 

autumn was barely changed with. However, the prediction error of the model was higher for summer with 

RMSE of 55.09±32.86. The BLH data for the study area was obtained from vertical sounding profiles and 

RH was obtained from Global Surface Hourly database, which is a part of Integrated Surface Database 

(ISD) provided by National Oceanic and Atmospheric Administration (NOAA's) National Climatic Data 

Centre (NCDC). The hourly PM2.5 observations was averaged centred around the satellite overpass time 

of Terra and Aqua to compare MODIS AOD with PM2.5, to minimize the temporal noises in the PM2.5 

data. For temporal collocation, the time window of ±150 min was taken to include more data points of 

PM2.5 and AOD compared to averaging PM2.5 in ±60 min reported in other studies (Wang & Christopher, 

2003). For validation of MODIS AOD with AERONET AOD, spatial collocation, 5 × 5-pixel box (50 km 

× 50 km) was chosen over the surface measurement location to average AOD550 pixels and to match with 

±30 min average AOD550 from AERONET centred around the MODIS overpass time. The 50 km × 50 

km window of MODIS AOD was taken assuming that it would take 50 kmhr-1 for aerosol mass (air mass) 

to transport in mid-troposphere based on analysis of Total Ozone Mapping Spectrometer (TOMS) aerosol 

index images over the Atlantic Ocean, which would match a 15-min observations over one-hour time period 

of ground measurement at AERONET station to represent a similar air mass as observed by MODIS, which 

is the standard strategy to obtain coincident PM2.5 and MODIS AOD at a location (Ichoku et al., 2002).  

 

Liu et al., (2005) study in eastern United States has used MISR retrieved AOD with 346 EPA sites and 

ground level PM2.5 measurements using a generalized linear regression (GLM) model. GEOS-3 

(Geostationary Operational Environmental Satellite) meteorological data such as planetary boundary layer 

and RH was included in the model to account for the variation in particle vertical profiles, composition and 

optical properties. The mean and standard deviation of the AOD measurements for each 3 × 3 pixels (17.6 

× 17.6 km2) centred at a given EPA site was matched with the daily average PM2.5 measurement of the 

same day. The BLH and RH interpolated at 10:00-11:00 were also matched to EPA MISR (Multi-angle 

Imaging SpectroRadiometer) measurements. Since, the repetition of MISR AOD measurement varies 2-9 

days and ground level PM2.5 was measured in various schedules in monitoring stations (daily, every third 

day, every sixth day), the matching process was considered as a random sampling of ground observations 

of PM2.5 over a given area. The overall empirical model explained 48 % of the variability in the PM2.5 

concentrations where, MISR AOD and BLH were able to explain 18 % and 15 % of the variation in PM2.5 

concentrations respectively. In regression model, AOD, BLH and RH were fit using power-law whereas the 

RH was expressed in an exponential form which is a simplified representation of the particle growth effect 

based on the regression statistics but in reality, the particle growth does not grow strictly exponentially and 

depends on the particle composition (Malm et al., 2000). The regression analysis of model estimated the 
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regression coefficients of power dependence of AOD, BLH and RH as 0.447±0.022, -0.361± 0.023 and 

exp. (-0.634±0.115) respectively. The estimated power of AOD was positive meaning the surface 

concentration of PM2.5 varies directly with increase in MISR AOD measurements. The negative sign of BLH 

denotes that the BLH is indirectly proportional to the surface concentration of PM2.5 and the negative 

parameter estimate of exponential of RH indicated that the same AOD values would correspond to lower 

PM2.5 concentrations with increase in RH. The study concluded the inclusion of information on vertical 

distribution of particle mass would improve the model predictability. 

Liu et al. (2007) study at St Louis, Missouri has compared both MISR and MODIS to predict ground-level 

PM2.5 concentration using daily average PM2.5 concentration of 22 EPA FRM (Federal Reference Method) 

monitoring stations. The meteorological data such as height of planetary boundary layer (PBL), surface wind 

speed, wind direction, relative humidity, and air temperature at surface were extracted from National 

Oceanic and Atmospheric Administration (NOAA)'s Rapid Update Cycle (RUC) model at the spatial 

resolution of 20 km. The RUC model is a high-frequency operational weather forecast and data assimilation 

system developed at NOAA. The predictor variables such as surface air temperature, surface wind speed, 

PBL, MODIS/MISR AOD and two categorical variables wind direction, and seasonal indicators are used 

to develop generalized linear regression model. The hourly values of RUC extracted meteorological 

parameters were averaged between 10:00-12:00 corresponding to MODIS overpass time and then, PM2.5 

concentrations is matched with the averaged RUC meteorological parameters from the RUC grid cell, where 

EPA site falls. To match regional measurement of RUC data with point measurement of PM2.5, 30 km 

search radius around each EPA monitoring site was used for averaging MODIS AOD pixels. Finally, 

MODIS AOD is matched with PM2.5 concentrations and the time-averaged RUC20 meteorological 

parameters by date. The average temporal spacing was three days for consecutive temporally matched daily 

measured PM2.5 concentration and MODIS AOD.  

MODIS AOD, BLH and wind were assumed to have power law functional forms to account for non-linear 

relationship with PM2.5 concentration and temperature were assumed to have an exponential form to 

account temperature fluctuations with PM2.5 concentrations. RH didn't improve model performance so, was 

not included in final model. The regression analysis of model estimated the regression coefficients of power 

dependence of AOD for Spring and non-spring, PBL, Wind, Temperature as 0.20, 0.45, -0.14, -0.17 and 

exp (-0.005) respectively. The negative sign of regression coefficient of wind speed shows that MODIS 

AOD predicts lower PM2.5 concentrations at higher wind speed. The greater turbulence caused by wind 

speed enhances vertical mixing so, predicted PM2.5 would be lower. In case of temperature, the increase in 

air temperature accelerates the generation of secondary particles near the surface, causing a higher 

proportion of particle mass in the mixed layer, thus increase in temperature would increase the PM2.5 

concentrations, whereas the PBL is not significant in MISR. The meteorological variables have accounted 

for 23 % of variability in PM2.5 concentrations. 

 

Pelletier, Santer, & Vidot (2007) study in Lille, France first used the linear approach with only AERONET 

AOD as a predictor variable to established relationship with PM10 and found that the linear model could 

only explain 27% of variability and the average uncertainty of model was 35% in estimating the PM10 

concentration. Thus, the model failed to accurately explain the data. The study then used auxiliary 

meteorological variables such as wind vector, pressure, relative humidity, perceptible water and Julian date 

as a function that are added to form an additive varying coefficient model. The performance of the model 

is improved with an average uncertainty of less than 20% and found linear correlation of 0.87 between fitted 

and expected PM10, when such linear relationship of AOD and PM2.5 is conditioned on auxiliary 

parameters. The meteorological variables were used in the study were collected from National Centre for 

Environmental Prediction (NCEP) through the Distributed Active Archive Centre (DAAC). Penalized 

smoothing splines were used to avoid over-fitting of the coefficient of free parameters of model, which are 
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to be estimated from the data, which determines the shape of the functions. It is found that the PM10 

concentration has negative relationship with RH and positive relationship with pressure and perceptible 

water. 

 

In (Gupta & Christopher, 2009) study, first satellite retrieved AOD were spatially and temporally matched 

with ground level PM2.5 observations over station. Secondly, hourly RUC parameters averaged during the 

satellite over time of MODIS over PM2.5 station using similar data integration method as in Gupta & 

Christopher, (2008), which were later paired with satellite AOD and PM2.5 match-up. The two-variate 

regression method and multivariate regression method is applied in South eastern US to estimate PM2.5 in 

the data pair of spatially and temporally matched RUC20 parameters, AOD and PM2.5 observations.  The 

study showed that the correlation increased from mean value of 0.60 over 22 stations with only MODIS 

satellite retrieved AOD (collection 5) to 0.71, when meteorological variables such as air temperature, surface 

relative humidity, wind speed and height of planetary boundary layer and cloud fraction was introduced into 

the multivariate regression model. The hourly analysis data of temperature, surface RH, wind speed and 

height of planetary boundary layer at 20 × 20 spatial resolution obtained from RUC20 model was used in 

the study. The correlation coefficient over each station varies and considering all stations together, about 

13.1 % increase in correlation coefficient of hourly average surface level PM2.5 concentrations is estimated. 

Stepwise multiple regression analysis showed the first order influence of temperature on PM2.5-AOD 

relationship and second order impact is due to BLH. 

Liu et al., (2009) study at Massachusetts (except for Cape Cod) and part of surrounding states has used AOD 

retrieved from Geostationary Operational Environmental (GOES) Satellite aerosol/smoke product and 

meteorological parameters such as mixing height, RH, air temperature and wind speed from RUC model. 

Land use information such as population information, road type to estimate regional spatial and temporal 

variability of PM2.5 are also used as a covariate in a model. The GOES satellite allows AOD retrieval in 30-

min frequencies between sunrise and sunset, which is reported at roughly 6.5 km * 2.4 km rectangular GOES 

pixels. However, GOES retrieved AOD is averaged between 10:00 to 15:00 hours local time to generate 

daily averaged AOD estimates to better match with daily averaged PM2.5 concentration. The AOD is 

interpolated using weighted average using Thiessen polygons intersecting with a 4 km grid which were 

matched with the U.S. EPA site, that falls in the same grid cell. The RUC parameters which centroid were 

also matched with the EPA site with the nearest neighbourhood method for developing a spatial model. 

The study provides the comparison on capability of prediction of PM2.5 using non-AOD model, which was 

developed only using meteorological and land use information as predictor of PM2.5 concentrations with 

AOD model developed using GOES retrieved AOD and metrological information's. The comparison is 

carried out in areas, where AOD is missing during the study period by using two-stage generalized additive 

models (GAM). A linear regression between fitted and observed PM2.5 concentrations produced adjusted 

R-squared of 0.79 for AOD model (Correlation coefficient, R=0.89) and 0.48 for non-AOD model 

(Correlation coefficient, R=0.70), which showed that PM2.5 concentrations is predicted well when AOD 

values are present. 

Hu et al., (2013) study at Atlanta metro area for year 2003 has developed a geographically weighted 

regression (GWR) model to examine the relationship among PM2.5, aerosol optical depth, meteorological 

parameters such as wind speed, temperature, relative humidity, height of planetary boundary layer and land 

use information to examine the spatial variability and spatial non-stationarity of the PM2.5 and AOD by 

producing local regression results. The meteorological data were collected from National American Land 

Data Assimilation System (NLDAS) and the Land use information such as forest cover were used. The 

study used Community Multiscale Air Quality (CMAQ) grid with spatial resolution of 12 km × 12 km as a 

based grid for prediction. MODIS AOD data is resampled using a nearest neighbourhood approach to the 

based grid of CMAQ. The hourly NLDAS meteorological measurements for 10:00 to 4:00 were averaged 
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to generate daily averaged meteorological value. The data pair of AOD and meteorological data sampled 

from CMAQ and NLDAS grid which are closest to the PM2.5 measurement site are paired to carry out 

geographically weighted regression. The overall mean local variance explained by the geographically 

weighted regression model was 0.61 with prediction accuracy of 83% compared to a GWR model developed 

with AOD as only predictor where overall mean R-squared obtained was only 0.38. Thus, the study found 

showed that the incorporation of NLDAS meteorological variables can significantly improve the model 

performance. The study also compared the mean adjusted R-squared with Ordinary Least Squares (OLS) 

model developed for the same study and found that it only explains 47 % of variability. Thus, the study 

suggests that the GWR (Geographically Weighted Regression) model has better performance than the OLS 

model.  

The AOD and PMx relationship found in literature review is presented as an overview in Table 2-1
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Table 2-1  Overview of previous works on AOD-PM association  
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Aug-Oct, 
2000 

Italy 
AERONE
T Level 1.5 

1 
PM10 

(24-hr) 
8 54.7 0.82 NA NC NC NC NC NC NA 

Chu et al., 
(2003) 

2002 Alabama 

MODIS 
(Terra) 4 

7 
PM2.5 

(24-hr) 

-
0.23 

77 0.67 NA 

NC NC NC NC NC NA 
Wang & 
Christoph
er, (2003) 

MODIS 
(Aqua) 4 

1.93 
66.6
7 

0.76 NA 

MODIS 
(both 
Terra and 
Aqua) 

0.85 
71.4
3 

0.7 NA 

April to 
Septemb
er, 2002 

United 
States 

MODIS 
(Terra) 4 

133
8 

PM2.5 

(24-hr) 
7.54 

18.6
6 

0.43 NA 

 NC NC NC NC NA 
Engel-Cox 
et al., 
(2004) 

PM2.5 

(hourly) 
6.35 

22.5
5 

0.4 NA 

July 1 to 
August 
30, 2004 

Old Town 
Baltimore 

MODIS 4 
(both 
Terra and 
Aqua) 

4 

PM2.5 

(24-hr) 
11.1 25.3 0.57 NA 

Correlation of 
LiDAR AOD 
and hourly 
PM2.5 below 
boundary layer 
increases from 
0.56 to 0.65 
compared to 
when LiDAR 
total optical 
depth. 

NC NC NC NC NA 
Engel-Cox 
et al., 
(2006) PM2.5 

(hourly) 
5.22 

31.0
5 

0.65 NA 

July 2002 
to 
Novemb
er 2003 

Global cities 

MODIS 
(both 
Terra and 
Aqua) 

26 
PM2.5 

(24-hr) 

-
24.8
3 

166.
7 

0.96 NA 

Sensitivity study showed that R 
value increased to 0.94 for 100-200 
m mixing height, but R value 
decreases to 0.36 when mixing 
height of 800-1300 m.  

NC NC 

Surface 
WS were 
used to 
calculate 
BLH. 

NA 
Gupta et 
al., (2006) 

2003 Europe 

MODIS 
(both 
Terra and 
Aqua) 4 

53  
PM2.5 

(24-hr) 
NA NA 0.27 NA 

BLH and RH was extracted from 
ECMWF archive. R value 
increased to 0.48 for 
AOD/(BLH*f(RH)) 

NC NC NC NA 
Koelemeij
er et al., 
(2006) 
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9 
PM2.5 

(hourly) 
NA NA 0.38 NA 

R value increased to 0.59 for 
AOD/(BLH*f(RH)) 

NC NC NC NA 

1999 to 
2002 

Lille 
AERONE
T Level 1.5 

5 
PM10 
(24-hr) 

    0.87  NC 

Data collected 
from NCEP 
through DAAC. 
Negative 
relationship with 
PM10 
concentration 

NC 

Data 
collected 
from 
NCEP 
through 
DAAC. 
Less 
effect on 
correlatio
n 

NC 

Standard 
deviation 
of residuals 
to about 
0.20 

Pelletier et 
al., (2007) 

February 
200 to 30 
June 
2006 

North 
Birmingha
m, Alabama 

MODIS 
(Terra) 5 

1 

PM2.5 

(24-hr) 
15.8 27.5 0.52 NA 

NC NC NC NC NC NA 
Gupta & 
Christoph
er, (2008) PM2.5 

(hourly) 
8.8 29.4 0.62 NA 

August 2, 
2006 to 6 
May 2007 

Cabauw 

AERONE
T, MODIS 
(both 
Terra and 
Aqua) 5 

1 
PM2.5 

(24-hr) 
5 120 NA 

0.5
1 

Lidar data 
from de Bilt 
was 
considered. 
 No 
improvement 
in correlation 
between 
PM2.5 and 
AOD/BLH, 
AOD/Maxim
um BLH 
(Results not 
shown)  

NC NC 

Linked with Air mass 
origin. Not 
considered for further 
analysis as longer time 
series data is needed 
for statistical analysis 
(Results not shown).  

NA 
Schaap et 
al., (2009) 

March to 
Novemb
er 2012 

Beijing 
MODIS 
(Terra and 
Aqua) 5 

1 
PM2.5 
(spring-
MAM) 

-
24.4
5 

90.9 
0.68
5 

NA 

BLH data is collected from vertical 
sounding profile of radiosonde 
observation. RH data was collected 
from Global surface hourly 
database provided by NOAA's 
National Climatic Data Center. No 

NC NC NC 

Mean 
RMSE±σ= 
41.502± 
17.8 

(Guo et al., 
2014) 
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significant improvement in the 
correlation when corrected for 
BLH and f(RH)  

PM2.5 
(summe
r-JJA) 

-
32.5
5 

111.
1 

0.59
7 

NA 

Correlation 
increased from 
0.597 to 0.660 
when 
AOD/BLH 

Correlation 
improved from 
0.597 to 0.621 
when 
AOD/BLH*f(R
H) 

NC NC NC 

Mean 
RMSE±σ= 
55.094± 
32.856 

PM2.5 
(Autum
n-SON) 

-
43.8 

200 
0.73
1 

NA 
No significant improvement in 
correlation for AOD/BLH and 
AOD/BLH*f(RH) respectively. 

NC NC NC 

Mean 
RMSE±σ= 
53.173± 
20.186 

2001 Eastern US 
MISR 
(Level 2) 

346 
PM2.5 
(24-hr) 

NA NA NA 
0.4
8 

It was 
retrieved from 
GEOS-3 
satellite. 
Significant, 
increased 15% 
variability and 
estimated 
regression 
coefficients is -
0.361± 0.023.  

It was retrieved 
from GEOS-3 
satellite. 
Significant, 
Estimated 
regression 
coefficient is -
0.634±0.115.  

NC NC NC 

RMSE= 
6.2 µg/m3, 
Relative 
Error= 
45% 

Liu et al., 
(2005)  

2003 St. Louis 
MODIS 
(Collection 
4) 

22 
PM2.5 
(24-hr) 

NA NA 0.69 
0.5
1 

It was 
retrieved from 
NOAA's 
RUC20 model. 
Significant, 
Regression 
coefficient of -
0.14.  

It was retrieved 
from NOAA's 
RUC20 model. 
Not significant 
in the model.  

It was 
retrieved 
from 
NOAA's 
RUC20 
model. 
Regressi
on 
coefficie
nt of exp 
(0.005), 
Significa
nt 

It was 
retrieved 
from 
NOAA's 
RUC20 
model. 
Regressi
on 
coefficie
nt of -
0.17, 
Singifica
nt 

It was 
retrieved 
from 
NOAA's 
RUC20 
model. 
Regressi
on 
coefficie
nt of 1.15 
for E, 
1.12 for 
N, 1.55 

RMSE= 
5.6 µg/m3, 
Relative 
Error= 39 
% 

Liu et al., 
(2007) 
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for S, 1 
for W, 
Significa
nt 

2004-
2006 

South 
eastern US 

MODIS 
Terra 
(collection 
5) 

85 
PM2.5 
(hourly) 

NA NA 0.6 NA 

It was 
extracted from 
RUC20 model. 
1.3% 
increment in 
correlation 

It was extracted 
from RUC20 
model. 2.3% 
increment in 
correlation 

It was 
extracted 
from 
RUC20 
model. 
7.3% 
incremen
t in 
correlatio
n 

It was 
extracted 
from 
RUC20 
model. 
1.2% 
incremen
t in 
correlatio
n 

NC 

Average 
Uncertaint
y= 34 % 
(hourly) 
and 24 % 
(daily) 

(Gupta & 
Christoph
er, 2009) 

April 
2003 to 
June 
2005 

Massachuse
tts 

GOES 32 
PM2.5 
(24-hr) 

NA NA 0.89 
0.7
9 

It was extracted from RUC20 model. 

Mean 
Relative 
Error= 
30% 

Liu et al., 
(2009) 

2003 
Atlanta 
Metro Area 

MODIS 
(Terra and 
Aqua) 5 

119 
PM2.5 
(24-hr) 

NA NA 0.94 
o.6
1  

It was 
collected from 
NLDAS. 
Median value 
of regression 
coefficient of -
0.003 

It was collected 
from NLDAS. 
Median value of 
regression 
coefficient of -
0.08 

It was 
collected 
from 
NLDAS. 
Regressi
on 
coefficie
nt of 0.36 

It was 
collected 
from 
NLDAS. 
Regressi
on 
coefficie
nt of -
0.33 

NC 
83 % in 
model 
fitting  

Hu et al., 
(2013) 

 

Note:   NC: Not Considered, NA: Not Available  
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3. DATA  

3.1. Data  

The data collected for the study consist of secondary data such as satellite retrieved AOD data retrieved 

from MODIS Terra, Aqua satellite aerosol product, atmospheric profile product, surface observation of 

PM2.5 data, meteorological data such relative humidity, temperature, wind speed, wind direction and height 

of Planetary boundary layer (BLH) which are briefly presented in Table 3-1. 

 

Table 3-1 Description of data under study 
S.
N. 

Data Type Source  Data provider Description 

1 PM2.5 RIVM Drs. Valentijn Venus Hourly PM2.5 data (in µg/m3) for 2013-

01-01 to 2014-12-31 

2 Temperature Royal Netherlands 

Meteorological Institute (KNMI) 

(http://projects.knmi.nl/klimato

logie/uurgegevens/selectie.cgi) 

Downloaded from 

KNMI web for 

weather data 

Temperature (in degrees Celsius) at 1.50 m 

height during the observation 

3 Relative 

Humidity 

KNMI Downloaded from 

KNMI web for 

weather data 

Relative humidity (in percentage) at 1.50 

m height during the observation 

4 Wind Speed KNMI Downloaded from 

KNMI web for 

weather data 

Hourly average wind speed (in m/s) 

5 Wind 

Direction 

KNMI Downloaded from 

KNMI web for 

weather data 

Wind Direction (degrees) averaged over 

the last 10 minutes of the last hour (360 = 

North, 90 = East, 180 = South, 270 = 

West, 0 & 990 = variable wind 

6 Height of 

Planetary 

Boundary 

Layer 

KNMI ftp-server 

(bbc.knmi.nl) 

Henk Klein Baltink Every 10 minutes’ observation data 

collected LiDAR backscattering profile of 

Cabauw Ceilometer station  

7 Aerosol 

Products 

(MXD04) 

NASA LAADS WEB 

(https://ladsweb.nascom.nasa.g

ov/data/search.html) 

NASA LAADS WEB Aerosol Optical Depth 

(Optical_Depth_Land_And_Ocean at 

550 nm extracted from MODIS Aqua, 

Terra Collection 051 level 2  

8 Atmospheric 

Profile 

products 

(MXD07) 

NASA LAADS WEB  

(https://ladsweb.nascom.nasa.g

ov/data/search.html) 

NASA LAADS WEB Retrieved Temperature-Level 18 (920 

hPa), 19 (950 hPa), 20 (1000 hPa); 

Retrieved Moisture-Level 18 (920 hPa), 19 

(950 hPa), 20 (1000 hPa); Retrieved 

Height-Level 18 (920 hPa), 19 (950 hPa), 

20 (1000 hPa); Brightness Temperature- 

Band 10, 11, 12; Surface Skin 

Temperature, Surface Pressure, Surface 

Elevation, Tropopause Height, Lifted 

Index, K Index, Water Vapor, Water 

Vapor-Low, Water Vapor-High, Water 

Vapor-Direct extracted from MODIS 

Aqua, Terra Collection 051 level 2  

http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
https://ladsweb.nascom.nasa.gov/data/search.html
https://ladsweb.nascom.nasa.gov/data/search.html
https://ladsweb.nascom.nasa.gov/data/search.html
https://ladsweb.nascom.nasa.gov/data/search.html
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3.2. Study Area 

The study area (Figure 3-1) is Cabauw, which is located (51.974° N, 4.923° E) in western part of The 

Netherlands, 20 km southwest of the city of Utrecht and 45 km from the North Sea. The measurement site 

is classified as rural regional background concentration where, the dominant local sources of pollution at 

the site are anthropogenic and naturally occurring background concentrations.  Study by Matthijsen & ten 

Brink, (2007) reported that the dominant contribution of main chemical components to average PM2.5 

background concentration at Cabauw are secondary inorganic aerosols (combination of sulphate, nitrate 

and ammonium), carbon, sea salt and mineral dust. Cabauw air quality monitoring station is situated inside 

the Cabauw Experimental Site for Atmospheric Research (CESAR), which is the experimental atmospheric 

research centre (http://www.cesar-observatory.nl/) in The Netherlands. Royal Netherlands Meteorological 

Institute (KNMI) operated weather station and LiDAR station measuring height of planetary boundary layer 

is also located within the CESAR Observatory. The surrounding nearby areas of CESAR observatory site 

mostly consist of agricultural lands. The surface elevation differs only few meters (<20 km radius around 

Cabauw). The ground surface consists of windbreaks such as Orchard trees and low houses over distant 

East. The landscape is mostly open consisting of short mowed grass-land on the West, which is the 

dominant wind direction at Cabauw. However, the distant North and South consist of mixed landscapes, 

mostly pasture and windbreaks such as Orchard trees (Monna & Bosveld, 2013).  
 

 
Figure 3-1 Location map of air quality monitoring station at Cabauw  

3.2.1. MODIS Observations 

3.2.1.1. MODIS Aerosol Product  

MODIS is an instrument that operates on the Terra and Aqua Satellite. With a swath width of 2330 Km, 

and with two of the same sensors in orbit, MODIS observes the entire earth on every other day. The Terra 

and Aqua satellite overpass Netherlands at approximately 10:30 and 13:30 local time. It captures spectral 
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radiances in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm. The band spatial resolutions 

are grouped into 250 m (Band 1 and Band 2), 500 m (Band 3 to Band 7) and 1000 m (Band 8 to Band 36). 

The MODIS aerosol level 2 product over Netherlands were acquired from the Level 1 Atmosphere Archive 

and Distribution System (LAADS). The total size for the storage capacity of gridded swath data of MODIS 

level 2 aerosol product were about 5 gigabytes. The daily level 2 data were produced at a spatial resolution 

of 10 km × 10 km at nadir. The collection 051 Aerosol product is used to extract AOD 

Optical_Depth_Land_And_Ocean at 550 nm for both Terra (MOD04) and Aqua (MYD04) for the time 

period 2013 to 2014. MODIS data “collections” are basically a data version of MODIS. MODIS dataset 

which are reprocessed (from launch), when new and improved science algorithms are developed and then 

tagged as a new “Collection”. There is six MODIS data Collection that has been processed since the launch 

of MODIS Terra in early 2000. The Collection available so far are Collection 001, 003, 004, 005, 051 and 

006.  

3.2.1.2. MODIS Atmospheric Profile product (Satellite retrieved atmospheric observations) 

The MODIS atmospheric profile product over The Netherlands were acquired from the Level 1 

Atmosphere Archive and Distribution System (LAADS). The daily level 2 data were produced at a spatial 

resolution of 5 km × 5 km at nadir. The similar MODIS collection 051 compared to MODIS aerosol profile 

product is used to extract scientific data sets (SDS) atmospheric profile product for the time period 2013 to 

2014. The parameters related to atmospheric stability, temperature and moisture profiles and atmospheric 

water vapour is selected to retrieve from MODIS atmospheric profile product for both Terra (MOD07_L2) 

and Aqua (MYD07_L2) satellite as it would provide information on the characterization of the atmosphere 

(Seemann et al., 2006). The total size for the storage capacity of gridded swath data of MODIS Level 2 

atmospheric product were about 45 gigabytes. The MODIS temperature and moisture profiles are produced 

at 20 vertical atmospheric levels of air pressure. The air pressure level from surface to upper air are at 1000, 

950, 920, 850, 780, 700, 620, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 10 and 5 hPa. In our study, satellite 

retrieved temperature, pressure and height were extracted at lower air pressure level of 1000 (level-20), 950 

(level-19), 920 hPa (level-18) because in most situation, the height of the boundary layer lies at an elevation 

below 600 hPa (Feng et al., 2015).  

 

MODIS atmospheric profile product was used to extract potential predictor variables such as Retrieved 

Temperature profile-Level 18 (920 hPa), Retrieved Temperature profile-Level 19 (950 hPa), Retrieved 

Temperature profile-Level 20 (1000 hPa), Retrieved Moisture profile-Level 18 (920 hPa), Retrieved 

Moisture-Level (950 hPa), Retrieved Moisture profile-Level 20 (1000 hPa), Retrieved Height-Level 18 (920 

hPa), Retrieved Height-Level 19 (950 hPa), Retrieved Height-Level 20 (1000 hPa), Brightness Temperature- 

Band 10, Brightness Temperature- Band 11, Brightness Temperature- Band 12, Cloud Mask, Surface Skin 

Temperature, Surface Pressure, Surface Elevation, Processing Flag, Tropopause Height, Lifted Index, K 

Index,  Water Vapor, Water Vapor-Low, Water Vapor-High, Water Vapor-Direct. 

3.2.2. Ground Observations 

The ground observation of hourly PM2.5 concentrations is obtained from Valentijn Venus for time period 

2013-2014 for Cabauw Rural Air Quality Monitoring Network of the Netherlands operated by Netherlands 

National Institute for Public Health and the Environment (in Dutch abbreviated to RIVM). According to 

Guus Stefess (personal communication, September 1, 2015), the measured values were hourly average values 

which were obtained by automatic sampling every hour from 00:09 to 00:51 hr from January 2013 to July 

2014. The measured hourly average PM2.5 concentrations were exactly at specified minutes from August to 

December 2014. According to Guus Stefess (personal communication, May 18, 2016), reference method 

(gravimetric) was used for hourly PM2.5 measurements in 2013 and since January 2014, equivalence method 

(BAM) was used. Rural Air Quality Monitoring Network is the translated name for Landelijk Meetnet 
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Luchtkwaliteit (LML) which is the national air quality measurement network of the Netherlands. The LML 

network is maintained by Rijksinstituut voor Volksgezondheid en Milieu translated as Netherlands National 

Institute for Public Health and the Environment (RIVM, 2016), which publishes observational data at 

http://www.lml.rivm.nl/gevalideerd/index.php in Central European Time (CET).  

3.2.3. Surface Weather Observations  

The hourly data from surface weather observation for Cabauw, in the Netherlands were obtained from 

Royal Netherlands Meteorological Institute (in Dutch abbreviated to KNMI). Koninklijk Nederlands 

Meteorologisch Instituut, which collects and publishes hourly data on surface weather condition (e.g. wind 

speed, wind direction, temperature and relative humidity). For the study period, 2013-2014, these were 

obtained from the KNMI for the nearest weather station to Cabauw air quality monitoring (see Table 3-2). 

KNMI operates a LD-40 Ceilometer (LiDAR) land station at Cabauw for retrieving the height of planetary 

boundary (BLH) layer (Haij et al., 2007) which is referred as “upper-air” observations. KNMI provides 

BLH data every 10 minutes in Universal Coordinated Time (UTC). The data was collected (Henk Klein 

Baltink, personal communication, September 29, 2015) through KNMI ftp server (bbc.knmi.nl). For the 

study period 2013-2014, these were obtained from the KNMI for the nearest Ceilometer station to Cabauw 

air quality monitoring station (see Table 3-3). 

Table 3-2 Nearest weather station from rural air quality monitoring network station 

Air quality monitoring station Latitude Longitude Nearest Weather station Nearest Distance (Km) 

Cabauw-Wielsekade 51.974 4.923 Cabauw 0.4 

 
Table 3-3 Nearest Ceilometer station from rural air quality monitoring network station 

Air quality monitoring station Latitude Longitude Nearest Ceilometer station Nearest Distance (Km) 

Cabauw-Wielsekade 51.974 4.923 Cabauw 1.1 

 

3.2.4. Data pre-processing and processing 

3.2.4.1. Selection of AOD variable and MODIS collection 

For the quantitative analysis, the variable considered was aerosol optical depth (the variable 

"Optical_Depth_Land_And_Ocean", which is the optical depth of aerosol from both the land and ocean 

models at 550 nm with for the study period (2013-2014). Similar studies carried out in Engel-Cox et al., 

(2004); Engel-Cox et al., (2006) and Gupta & Christopher, (2008) has also considered aerosol optical depth 

(the variable "Optical_Depth_Land_And_Ocean") from MODIS Level 2 aerosol product (collection 5) in 

their studies. The data values were stored as integer in the gridded swath data of MODIS aerosol gridded 

satellite image. However, the scaling factor is used to convert the extracted AOD values into meaningful 

physical values using the scaling factor of 0.001 (http://modis-

atmos.gsfc.nasa.gov/_specs_c51/MOD04_L2.CDL.fs).  

The aerosol data retrieved over land and ocean are processed as collection 5 or C005 for Terra and 

Collection 51 or C051 for Aqua (Levy et al., 2010). However, gridded swath data of both MODIS Terra and 

Aqua Collection 051 were used in the current study. It is mentioned in LAAD web 

(https://ladsweb.nascom.nasa.gov/data/search.html) that collection 051 consists of full set of Aqua 

products (MYD04_L2) and Terra products (MOD04_L2), which could no longer be found in Collection 

005 resulted in choosing Collection 051. According to Lorraine Remer (personal communication, 29 March, 

http://www.lml.rivm.nl/gevalideerd/index.php
http://modis-atmos.gsfc.nasa.gov/_specs_c51/MOD04_L2.CDL.fs
http://modis-atmos.gsfc.nasa.gov/_specs_c51/MOD04_L2.CDL.fs
https://ladsweb.nascom.nasa.gov/data/search.html
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2016), there should be no difference between Optical_Depth_Land_And_Ocean (AOD) retrieved from 

Collection 051 and Collection 005 scientific data set. The summary document on Collection 005 MODIS 

aerosol product (04_L2) highlights that the original SDS for Land and Ocean product only contains land 

products with QA=3 for level 2 aerosol products (Remer et al., 2002).  

3.2.4.2. Data pre-processing 

In data pre-processing, total 45 gigabytes of data were processed to retrieve AOD and upper air observations 

(Table 3-5) at a location, where PM2.5 is measured using McIDAS-V. McIDAS-V is a free, open source, 

visualization and data analysis software package. Since, MODIS gridded swath data are only available for 

instantaneous observations and surface measured PM2.5 concentrations are available for hourly 

measurement, thus instead of having to manually select each gridded satellite data that matches the PM2.5 

observation time to extract AOD and atmospheric observations variables at air quality monitoring station, 

McIDAS-V does it automatically. It has the time matching feature to accommodate data with different 

temporal frequencies which is an added advantage over other image processing software to process MODIS 

gridded swath data (McIDAS-V User ’ s Guide, 2015). 

As the upper-air, surface weather observations such as height of planetary boundary layer (BLH), 

temperature, relative humidity, wind speed, wind direction are recorded in UTC., the hourly PM2.5 

concentrations which was recorded in CET time zone format is converted to UTC format. The missing 

values and negative hourly PM2.5 concentrations values were replaced by NA. Since, wind speed and 

temperature were provided as an integer value by KNMI, it is converted to real measured value with scaling 

factor of 0.1. In case of BLH, first of all the fill value -999.0 is replaced with NA. The data were provided 

for every ten minutes so, they were hourly averaged. Since, first significant height retrieved by LiDAR at 

Cabauw is only considered as a boundary layer height, when there was no retrieval of second significant 

height by the LiDAR. It is carried out for analysis as to assure that there was only single boundary layer 

height of the aerosol in the atmosphere which represents the well mixed condition (Research 

assumptions). The BLH in meters was converted to kilometres. And, the temperature was converted to 

kelvin from degree Celsius for uniformity as some of the variables retrieved from upper air observations 

were in kelvin.  

According to Henk Klein Baltink (personal communication, September 29, 2015), the LiDAR didn't 

perform well within the study period and a usual false hits were reported below 130 m above ground level 

and above 1300 m, so, the underestimation of BLH may occur between 130-1200 m above ground level so, 

it was not advised to use BLH data outside the range. The maximum and minimum retrieved boundary layer 

height were 140 m and 1300 m respectively, when the BLH of only first significant height was considered 

which agrees Henk’s recommendations.  

The surface weather observations that needs scaling as presented in Table 3-4 is converted to the real 

measured values. The upper-air and satellite retrieved atmospheric observations that needs scaling as 

presented in Table 3-5 is converted to the physical meaningful values using Equation 3-1 (http://modis-

atmos.gsfc.nasa.gov/MOD07_L2/format.html). 

 𝑅𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 = 𝑆𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 × (𝑆𝑡𝑜𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑑𝑑 𝑜𝑓𝑓𝑠𝑒𝑡) 
Equation 3-1 

The matched values of hourly PM2.5, AOD, upper air observations variables and surface weather 

observations are prepared to form a dataset for data pairing as shown in Figure 3-2. The details on matching 

and data pairing is explained in Methods. 

 

http://modis-atmos.gsfc.nasa.gov/MOD07_L2/format.html
http://modis-atmos.gsfc.nasa.gov/MOD07_L2/format.html
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Figure 3-2 Processing flowchart of hourly PM2.5 concentrations, surface weather, upper-air (AOD), satellite retrieved atmospheric observations dataset for pairing 
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Table 3-4 List of Predictor variables  

Predictor Variable Unit Scaling factor 

Wind Speed m/s 0.1 

Wind Direction Degrees  

Temperature kelvin 0.1 

Relative Humidity % - 

Height of Planetary boundary layer Km - 

 

Table 3-5 List of Predictor variable extracted from MODIS (Aqua, Terra) collection 051 level 2 products 
(MXD04, MXD07) 

Predictor Variable Unit Scaling factor Offset Physical range  

0.55 μm Corrected Optical Depth Land - 0.001 0 -0.05 5 

Retrieved Temperature-Level 18 K 0.01 -15000 150 350 

Retrieved Temperature-Level 19 K 0.01 -15000 150 350 

Retrieved Temperature-Level 20 K 0.01 -15000 150 350 

Retrieved Moisture-Level 18 K 0.01 -15000 150 350 

Retrieved Moisture-Level 19 K 0.01 -15000 150 350 

Retrieved Moisture-Level 20 K 0.01 -15000 150 350 

Retrieved Height-Level 18 m 1 -32500 0 65000 

Retrieved Height-Level 19 m 1 -32500 0 65000 

Retrieved Height-Level 20 m 1 -32500 0 65000 

Brightness Temperature- Band 10 K 0.01 -15000 150 350 

Brightness Temperature- Band 11 K 0.01 -15000 150 350 

Brightness Temperature- Band 12 K 0.01 -15000 150 350 

Surface Skin Temperature K 0.01 -15000 0 20000 

Surface Elevation m 1 0 -400 8840 

Lifted Index K 0.01 0 -20 40 

Water Vapor cm 0.001 0 0 20 

Water Vapor-Low cm 0.001 0 0 20 

Water Vapor-High cm 0.001 0 0 20 

Water Vapor-Direct cm 0.001 0 0 20 

 

3.2.4.3. Data processing  

The data availability for ground measurement data and satellite retrieved data after the processing is presented in Table 
3-6 and Table 3-7 respectively. 
Table 3-6 List of ground Measurement data available after processing for the study period 

Variables 
Data 

Available 
(N=2920) 

Data 
Available 

(%) 
Remarks 

PM2.5 concentrations 2658 91.03 

Hourly data of 10;30- 13;30 from January 
2013 to December 2014 

Wind Direction 2878 98.56 

Wind Speed 2920 100.00 

Temperature 2920 100.00 

Relative Humidity 2739 93.80 

Boundary Layer Height 1940 66.44 
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Table 3-7 List of satellite-retrieved data available after processing for the study period 

Predictor Variables 
Data 

Available 
(N=2920) 

Data 
Available 

(%) 
Remarks 

Data 
Available 
(N=2920) 

Data 
Available 

(%) 
Remarks 

Optical Depth Land and Ocean 240 8.22 
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Brightness Temperature- Band 10 975 33.39 2046 70.07 

Brightness Temperature- Band 11 975 33.39 2046 70.07 

Brightness Temperature- Band 12 975 33.39 2046 70.07 

Surface Skin Temperature 975 33.39 2046 70.07 

Lifted Index 975 33.39 2046 70.07 

Water Vapor 975 33.39 2046 70.07 

Water Vapor-Low 863 29.55 2046 70.07 

Water Vapor-High 430 14.73 2046 70.07 

Water Vapor-Direct 975 33.39 1970 67.47 

Retrieved Temperature-Level 18 975 33.39 2046 70.07 

Retrieved Temperature-Level 19 975 33.39 2046 70.07 

Retrieved Temperature-Level 20 975 33.39 2046 70.07 

Retrieved Moisture-Level 18 975 33.39 2357 80.72 

Retrieved Moisture-Level 19 975 33.39 2557 87.57 

Retrieved Moisture-Level 20 975 33.39 976 33.42 

Retrieved Height-Level 18 975 33.39 2046 70.07 

Retrieved Height-Level 19 975 33.39 2046 70.07 

Retrieved Height-Level 20 975 33.39 2046 70.07 
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4. METHODS 

Data integration process is carried out to prepare data pairs (Figure 4-2). The predictor variables (Table 3-6 

and Table 3-7) is assessed for their correlation, bivariate regression, multicollinearity, stepwise regression to 

select variables for multiple linear regression modelling. AOD is corrected for hygroscopic growth of 

particles, 𝑓(𝑅𝐻) and is normalized by boundary layer height. The simple method of correction is used when 

only relative humidity is available. The advanced method of correction is used when there is availability of 

experimental value of 𝑓(𝑅𝐻) and fitting curves for air mass types. The AOD corrected for relative humidity 

and is normalized by boundary layer height is termed as “meteo-scaled” AOD (Equation 4-3). The multiple 

linear regression modelling is carried out using meteo-scaled AOD obtained from simple method and 

advanced method together with final selected variables. However, correlation assessment, bivariate 

regression analysis, multicollinearity and stepwise regression is carried out again for the selected predictor 

variable including meteo-scaled AOD. The accuracy of the model is performed using cross-validation 

method. The output of the regression models is assessed using models coefficient of determination. The 

overview of the method is shown in Figure 4-1. 

 

 

 

 
Figure 4-1 Overview of methods used in the current study 
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4.1. Data Integration  

Ichoku et al., (2002) highlights that PM2.5 measurements is a point based measurement and usually it 

represents PM2.5 measured for an hour or averaged over daily time scales, whereas satellite measures 

instantaneous AOD at the station depending upon revisit time of satellite (for MODIS Terra, 10:30 and 

MODIS Aqua, 13:30).The first step in data integration is to temporally match satellite retrieved AOD, 

satellite retrieved atmospheric observations, upper-air and surface level PM2.5 concentration with the 

MODIS overpass time at the air quality monitoring station (Wang & Christopher, 2003).  
 

MODIS is an instrument that operates on the Terra and Aqua Satellite. With a swath width of 2330 Km, 

and with two of the same sensors in orbit, MODIS observes the entire Earth every other day. MODIS 

instrument, with its Terra and Aqua satellite overpass Netherlands at approximately 10:30 and 13:30 p.m. 

local time. The MODIS satellites have a ± 55-degree scanning pattern and orbit at 705 km.  

During resampling, weighted average interpolation method is available as an option to interpolate in 

McIDAS-V (Space Science and Engineering Center, 2000), the software used for temporal interpolation of 

instantaneous observations of AOD retrieved by MODIS Terra and Aqua Satellite.  

 

 

Figure 4-2 Process of Extracting Data Pairs: Point-based Time-series extracting from satellite-retrieved AOD (from 

TERRA/AQUA MODIS, MOD04 and MYD04 respectively) corresponding to hourly PM2.5-observations from 

surface air-quality monitoring stations 

The point-based time-series (from TERRA/AQUA MODIS, MOD04 and MYD04 respectively) 

corresponding to hourly PM2.5-observations from surface air-quality monitoring stations (Figure 4-2) is 

extracted. Each MODIS level 2 product file covers a five-minute time granule. Thus, the same location can 

have more than one observation in a day. As NASA, (2016) highlights that the observation area closer to 

the poles will have increased number of overpasses thus, daily MODIS observations increases due to 

overlapping orbits.  

 

Studies (Engel-Cox et al., 2006; Koelemeijer et al., 2006; Gupta & Christopher, 2009) used PM2.5 

measurment closest in time to instantaneous MODIS Terra and Aqua AOD measured value during the 

satellite overpass time to create data pairs to established relationship between AOD and PM2.5. In the 

current study, the estimated AOD that is closer to the time when PM2.5 is measured at the station is 

temporally matched during resampling, when satellite overpass the air quality monitoring station. Hence, 

the data pair of PM2.5 and AOD is obtained for 10:30, 11:30, 12:30 and 13:30. But, PM2.5 is an hourly 

measurement at air quality monitoring station and AOD is an integral of instantaneous observation from 

surface to the top of atmosphere in a vertical column during the satellite overpass time. Thus, these data 

pairs that are created when estimated AOD that is closer to the time when PM2.5 is measured at the station 

is temporally matched, are referred as “without time commensurate” in the current study.  

The satellite retrieved AOD values is temporally matched and extracted after resampling with the ground 

level PM2.5 measurement time at 10:30, 11:30, 12:30 and 13:30 using “weighted average temporal 
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interpolation”, when the satellite overpasses the air quality monitoring station. The data pairs are prepared 

with a matched satellite retrieved AOD from Terra and Aqua satellites level 2 MODIS aerosol product 

(MOD04 and MYD04 respectively) that are made “time commensurate” with ground level measured 

PM2.5 concentrations at air quality monitoring station.  

Similarly, the process is repeated to obtain point-based time series data pairs of satellite retrieved 

atmospheric observations and PM2.5 concentrations. Then, upper-air, surface weather observations that is 

measured at 10:30, 11:30, 12:30 and 13:30 are used to create data pairs with PM2.5 observations, AOD and 

satellite retrieved atmospheric observations at 10:30, 11:30, 12:30 and 13:30. 

 

Thus, it is assessed how the variability in estimated PM2.5 differs from data pairs “with time commensurate” 

and “without time commensurate” AOD.  

4.2. Assessment of predictors variables for Multiple Linear Regression Modelling 

A review of the literature (Chu et al., 2003; Gupta et al., 2006; Wang & Christopher, 2003) on related work 

on data and method suggests that MODIS column AOD data is indicative of surface level PM2.5 

concentrations. Studies (Gupta et al., 2006; Schaap et al., 2009) shows that the surface level PM2.5 can be 

estimated using satellite retrieved AOD using simple regression modelling approach. However, the review 

on previous studies (Gupta et al., 2006; Pelletier et al., 2007) shows that the performance of the simple 

regression model would improve if the surface weather predictor variables are incorporated using multiple 

linear regression modelling approach.  

The linear relationship between surface measured PM2.5 and satellite retrieved AOD is assessed to estimate 

PM2.5. The surface weather (Table 3-4), upper air and satellite retrieved atmospheric observations (Table 

3-5) are also assessed as potential predictor variables. The surface observations consist of PM2.5 

measurements at the surface air quality monitoring stations. The surface weather observations consist of 

wind speed, wind direction, temperature, relative humidity measured at the surface weather meteorological 

station. The height of boundary layer measured at Ceilometer station is also considered as a upper-air 

observation. All upper air and satellite retrieved atmospheric observations, surface weather observations are 

considered as predictor variables. All predictor variables were temporally matched with the PM2.5 

(dependent variable) observation time. It was assessed to find the selected the candidate predictor variable 

to carry out multiple linear regression modelling. So, the assessment allows to identify if the AOD, surface 

weather, upper air and atmospheric observations would improve the explained variability in PM2.5.  

 
The following analysis were carried out to select final candidate predictor variables:  

4.2.1. Correlation assessment 

Pearson correlation of PM2.5 and all predictors variables is first assessed. It is carried out to understand the 

strength of linear relationship and direction of effect of PM2.5 and each predictor variables. It is mainly 

assessed if there is a statistically significant relationship (p-value <0.1) between PM2.5 and each predictor 

variables. If there was no statistically significant relationship between PM2.5 and predictor variables, they 

were not chosen.  

4.2.2. Bivariate Regression Analysis 

Also, each variable was regressed against the PM2.5 concentration using bivariate regression. The variables 

which were statistically significant (p-value<0.1) were only chosen and their corresponding adjusted R-

squared is recorded. The predictor variable which gave highest adjusted R-squared was selected as a first 

variable to start a modelling with. 
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4.2.3. Multicollinearity Check 

The collinearity between the variables can increases the estimates of the parameters variance (O’Brien, 2007). 

The presence of severity of multicollinearity between the candidate predictor variables can be quantified 

using the variance inflation factor (VIF) (Quinn & Keough, 2002).  

 

VIF is a measure of strength of relationship between each predictor variable and all others predictor 

variables. VIF performs separate regression analysis for each independent variable on the remaining 

independent variables. The adjusted R-squared yields of regression analysis which is used to calculate VIF 

(Equation 4-1). As adjusted R-squared increases, VIF increases. Thus, large values of VIF suggests that one 

predictor variable is highly correlated to other predictor variables. Hence, multicollinearity might be a 

problem. 

 𝑉𝐼𝐹 =  
1

1 − 𝑅𝑎𝑑𝑗.
2  Equation 4-1 

Where, 𝑅𝑎𝑑𝑗.
2  is the adjusted R-squared.  

As a rule of thumb, VIF greater than 10 indicates that moderate collinearity might be a problem whereas 

values greater than 30 are indicative of severe multicollinearity (Dormann et al., 2013). Thus, only candidate 

variables with VIF<10 were included in the final model.  

4.2.4. Stepwise Regression 

The supervised forward selection stepwise regression procedure of Vienneau et al., (2010) was followed 

after correlation assessment, bivariate regression analysis and multicollinearity checking of predictor 

variables on the remaining predictor variables.  

 

Stepwise forward regression starts with only dependent variable in the model. The predictor variable with 

highest adjust R-squared in bivariate regression is used as a first variable. The predictor variables were added 

individually in the model with first variable and the resulting adjusted R-squared is recorded. The selection 

of the candidate predictor variables added individually in turn was retain in the model on the basis of 

following criteria’s:  

1. The additional contribution to the adjusted R-squared together with first variable was at least 
increased by 1 %.  

2.  The p-value for all variables already in the model remained below 0.1. 
 

The process of addition of predictor variables continued until there was no increase in total adjusted R-

squared in a forward stepwise regression analysis. Hence, the followed procedure allowed logical selection 

of predictors variables that maximizes model explained variance. 

4.2.5. Multiple Linear Regression Modelling 

Prior to multiple linear regression modelling, the final selected candidate variables nature of the data is 

explored by using scatterplot. The 90 % confidence interval (CI) lines is drawn across the slope of linear 

regression line. It is carried out to understand linear relationship between PM2.5 and predictor variables.  

 
Then after, the selected candidate predictor variables with dependent variable, PM2.5 is used to carry out 

multiple linear regression modelling.  

 

The general form of multiple linear regression model is shown in Equation 4-2, 
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 𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ +  𝛽𝑝−1𝑋𝑝−1 + 𝜖  

 

Equation 4-2 

Where, p represents the total number of variables in the model, Y represents the dependent variables and 

𝑋1 to 𝑋𝑝−1 represents the predictor variables,  𝛽0 to  𝛽𝑝−1 represents the regression coefficient of predictor 

variables and 𝜖 is the residuals.  

4.2.6. Relative Importance of the variable 

As the predictor variables are correlated with each other, the proportionate contribution of each predictor 

variable is calculated using R package “Relaimpo” (Grömping, 2010). It decomposes R-squared 

considering both direct effect and its effect when combined with others predictor variables in the regression 

equation (Grömping, 2006), which produces similar result compared to R package “hier.part” for 

“hierarchical partitioning” of R-squared, which has advantage over computation time. Grömping, (2007) 

considered some criteria as follows for decomposition of R-squared; 

 The sum of the all shares of predictor variables decomposed variance is the model variance.  

 The variance shared should be non-negative. 

 Predictor with non-zero regression coefficient should receive a non-zero value. 

 Predictor with zero regression coefficient should receive a zero share.  

4.3. Correction of AOD for Relative Humidity using 𝒇(𝑹𝑯) 

4.3.1.  Simple correction method/reference method   

Koelemeijer et al., (2006) has defined the corrected AOD for 𝑓(𝑅𝐻) and 𝐵𝐿𝐻 as “meteo-scaled” AOD 

(Equation 4-3). Meteo-scaled AOD value is replaced with AOD in regression model obtain in a form of 

Equation 4-2 to estimate PM2.5 concentrations in at the surface.  

 

 𝐴𝑂𝐷∗ =
𝐴𝑂𝐷

𝐵𝐿𝐻 × 𝑓(𝑅𝐻)
 Equation 4-3 

Where, AOD is aerosol optical depth, BLH is the boundary layer height, 𝑓(𝑅𝐻) is hygroscopic growth 

factor and 𝐴𝑂𝐷∗ is the meteo-scaled AOD.  

 

Koelemeijer et al. (2006) followed the method of Veefkind et al. (1996) to find a fitting curve of 𝑓(𝑅𝐻). 

However, some studies (Li et al., 2005; Tsai et al., 2011) used simple method (Equation 4-4) as in to account 

for the effect of RH for hygroscopic growth of aerosol in correlating PM (PM10 and PM2.5) with AOD 

respectively. This method is carried out when only RH was available and without consideration of air mass 

types. Thus, it is followed as a “simple method” in current study.  

 
𝑓(𝑅𝐻) =

1

(1 −
𝑅𝐻
100)

 Equation 4-4 

where, 𝑅𝐻 is relative humidity and 𝑓(𝑅𝐻) is the hygroscopic growth factor.  

4.3.2. Advanced Method 

The advanced method of correction of AOD for 𝑓(𝑅𝐻) is carried out when there was availability of 𝑓(𝑅𝐻) 

and different air mass type for which 𝑓(𝑅𝐻) was measured. During study, two sources of information is 

used to find 𝑓(𝑅𝐻) fitting curve at Cabauw. The “first” is from Veefkind et al., (1996), which provided the 

experimental measurement value using Equation 4-5 for Petten, the north west of The Netherlands.. The 
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diurnal time series plot of hygroscopic growth factor curve, 𝑓(𝑅𝐻) and relative humidity (𝑅𝐻) (which is 

called “humidogram”) was found for Petten, which Koelemeijer et al. (2006) followed in his study.  

 

 𝑓(𝑅𝐻) =
𝐵𝑠𝑝(𝑅𝐻)

𝐵𝑠𝑝,𝑑𝑟𝑦
 Equation 4-5 

where, 𝐵𝑠𝑝 is the light scattering per unit aerosol mass (m-1) and 𝐵𝑠𝑝,𝑑𝑟𝑦 is the particle scattering coefficient 

(m-1) at a low relative humidity (𝑅𝐻<40%). 

The “other one” iss from Zieger et al. (2013), which provided (Table 4-1) median, 25th percentile and 75th 

percentile value of 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) for different air mass type such as maritime; maritime, slightly 

polluted; maritime, slightly polluted, continental south; and continental east at Cabauw. Both available 

information was assessed to obtain the fitting curve of 𝑓(𝑅𝐻) that can represent the dominant air mass 

type found in study area to correct AOD accordingly.  

 

The detailed method for assessment on obtaining fitting curve with available information on 𝑓(𝑅𝐻) and air 

mass type at Petten and Cabauw are described below;  

4.3.2.1. Method to obtain Fitting curve using Petten data 

At first, the fitting curve was obtained (Equation 4-6) from re-plotting of the data (relative humidity and 

corresponding 𝑓(𝑅𝐻) extracted from humidogram for November 17, 1993 found at Veefkind et al. (1996). 

The fitting curve obtained after re-plotting of extracted Petten data is considered as a “reference”, which is 

shown in Figure 4-3. The study was carried out when there were clear skies, strong inversions and persistent 

easterly winds associated with continental air masses in November 17, 1993. 

 𝑓(𝑅𝐻) =  0.0004 × 𝑅𝐻2 − 0.0309 × 𝑅𝐻 + 1.93 Equation 4-6 

Zieger et al., (2011) showed the characteristics of fine and coarse (sea salt) aerosol mass for 𝑓(𝑅𝐻) at 

Cabauw during the experimental study from June to October 2009 at RH=85 %. In the continuation study 

of Zieger et al. (2011), Zieger et al. (2013)  presented 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) instantaneous values for 

different air mass type (Table 4-1). It is also mentioned in the same study that there was no clear wavelength 

dependency found in the measurement period between the range of 450-700 nm. Thus, the assumptions are 

made to modify 𝑓(𝑅𝐻) for Cabauw (see Research assumptions). The offset values for different air mass 

type is obtained by changing the offset of Equation 4-6. The offset is found out when Equation 4-6 offset 

value is changed in such a way that it would yield the exact reported value (Table 4-1) of median at 𝑓(𝑅𝐻 =

85%, 𝜆 = 550 nm). The process is repeated to find the offset for 25th percentile and 75th percentile respectively 

and it is reported in Table 4-2. 

As per the assumption (see Research assumptions) maritime and maritime slightly polluted air mass type is 

grouped into “Maritime” as shown in Figure 4-3. Similarly, continental south, continental east and 

maritime, heavily polluted air mass type is grouped as “Others” (Table 4-1) which is also shown in Figure 

4-3. The corresponding 𝑓(𝑅𝐻) values of the different air mass type were averaged to obtained 𝑓(𝑅𝐻) value 

for grouped maritime and others air mass type respectively. Similarly, the offset value for different air mass 

type were averaged to obtained offset value for the grouped air mass type (Table 4-2). 

 

Table 4-1 Percentile value of 𝑓(𝑅𝐻 = 85%, 𝜆 =  550 nm) for air mass types found at Cabauw 

Air mass type Median 25th percentile 75th percentile 

Maritime 3.38 3.16 3.6 
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Air mass type Median 25th percentile 75th percentile 

Continental South 1.86 1.76 2.02 

Maritime, heavy polluted 2 1.82 2.04 

Maritime, slightly polluted 2.96 2.81 3.11 

Continental East 2.26 2.13 2.37 

Maritime, Grouped 3.17 2.99 3.36 

Others, Grouped 2.04 1.90 2.14 

 

Table 4-2 Offset values for air mass typed found in Cabauw for 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) to modify 𝑓(𝑅𝐻 =
72%, 𝜆 = 475 nm) found in Petten 

Air mass type Median 25th Percentile 75th Percentile 

Maritime 3.12 2.90 3.34 

Continental South 1.60 1.50 1.76 

Maritime, heavy polluted 1.74 1.56 1.78 

Maritime, slightly polluted 2.70 2.55 2.85 

Continental East 2.00 1.87 2.11 

Maritime (grouped) 2.91 2.72 3.09 

Others (grouped air mass type 2, 3 
& 5) 

1.78 1.64 1.88 

The fitting curve equations of median values of 𝑓(𝑅𝐻) for grouped maritime and others air mass is shown 

in Equation 4-7 and Equation 4-8 respectively. The polynomial curve for grouped maritime and other air 

mass type together with all other air mass type is shown in Figure 4-4. 

Maritime (grouped) air mass, 

 𝑓(𝑅𝐻) =  0.0004 × 𝑅𝐻2 − 0.0309 × 𝑅𝐻 + 2.91 Equation 4-7 

Others (grouped) air mass,  

 𝑓(𝑅𝐻) =  0.0004 × 𝑅𝐻2 − 0.0309 × 𝑅𝐻 + 1.78 Equation 4-8 

4.3.2.2. Method to obtain Fitting curve using Cabauw data 

The average humidograms was found for different air mass type in Zieger et al. (2013) as “Figure 8” for 

maritime (Equation 4-9), continental south (Equation 4-10), continental east (Equation 4-11), maritime 

heavily polluted (Equation 4-12) and maritime slightly polluted (Equation 4-13). First, the average fitting 

curve was obtained from re-plotting of the extracted data (relative humidity and 𝑓(𝑅𝐻)) for average 

humidograms (Figure 4-5) at Cabauw. 
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The polynomial curve of average humidogram plotted for all air mass type found at Cabauw is shown in 

Figure 4-6. 

 

 𝑓(𝑅𝐻) =  0.0012 × 𝑅𝐻2 − 0.0983 × 𝑅𝐻 + 2.9303 Equation 4-9 

 𝑓(𝑅𝐻) =  0.0005 × 𝑅𝐻2 − 0.046 × 𝑅𝐻 + 2.0088 Equation 4-10 

 𝑓(𝑅𝐻) =  0.0007 × 𝑅𝐻2 − 0.0671 × 𝑅𝐻 + 2.5013 Equation 4-11 

 𝑓(𝑅𝐻) =  0.0005 × 𝑅𝐻2 − 0.044 × 𝑅𝐻 + 1.8951 Equation 4-12 

 𝑓(𝑅𝐻) =  0.001 × 𝑅𝐻2 − 0.0874 × 𝑅𝐻 + 2.8537 Equation 4-13 

Thus, as per the assumption (see Research assumptions) maritime and maritime slightly polluted air mass 

type is grouped into “Maritime”. Similarly, continental south, continental east and maritime, heavily 

Figure 4-3 Fitting curve of humidogram for 𝑓(𝑅𝐻 = 72%, 𝜆 =

475 nm) found at Petten (Veefkind et al., (1996), referred as 
reference) with modified fitting curve of humidograms for  
different air mass type found at Cabauw after the reference. 

For Petten, diurnal time series of 𝑓(𝑅𝐻)  was available. 
However, at Cabauw only the instantaneous 𝑓(𝑅𝐻 = 85%, 𝜆 =

550 nm) was available. 

Figure 4-4 Polynomial curve of humidogram for 𝑓(𝑅𝐻 =

72%, 𝜆 = 475 nm)  found for modified fitting curve for 
different air mass type found at Cabauw after the reference. 

Figure 4-5 Average fitting curve of humidogram for 𝑓(𝑅𝐻 =

85%, 𝜆 = 550 nm)  for different air mass type found at 
Cabauw ( (Zieger et al., 2013) 

Figure 4-6 Polynomial curve of average humidogram for 
𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) for different air mass type found at 
Cabauw 
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polluted air mass type is grouped as “Others”. The fitting curve for grouped air mass “Maritime” and 

“Other” were obtained by averaging the coefficient of polynomial for corresponding air mass type in 

grouping as Equation 4-14 and Equation 4-15 respectively.  

 

 𝑓(𝑅𝐻) =  0.0011 × 𝑅𝐻2 − 0.09265 × 𝑅𝐻 + 2.892 Equation 4-14 

 𝑓(𝑅𝐻) =  0.0006 × 𝑅𝐻2 − 0.0524 × 𝑅𝐻 + 2.1351 Equation 4-15 

4.4. Selection of fitting curve of f(RH) between “Maritime” and “Others” air mass type 

4.4.1. Conditional statements 

To select the fitting curve of 𝑓(𝑅𝐻) between “Maritime” and “Others” air mass type at Cabauw, some 

conditional statements were used. The conditional statements were formulated based on the 72 h air mass 

back trajectories measured at Cabauw presented in “Figure 3” of Zieger et al. (2013) is used. Thus, the wind 

direction (WDD) is used to formulate a conditional statement (see Research assumptions). The wind 

direction coming from the North Atlantic Sea and the North Sea are set as criteria for wind direction. Also, 

from the same figure, it is inferred that maritime air masses have 𝑓(𝑅𝐻) greater than 2 and “others” air 

masses have 𝑓(𝑅𝐻) less than 2. The lower dotted line is used to show 𝑓(𝑅𝐻) value of 2 (see Figure 4-6). 

The maximum value of 𝑓(𝑅𝐻) for other air mass was found to be 2.57 (for continental east) from same 

study which is plotted as an upper dotted line (see Figure 4-6). Thus, values of 𝑓(𝑅𝐻) is also used as a 

conditional statement.  

 

Specifically, the following conditional statements were as used; 

a) IF(AND(OR(WDD<20, WDD>225), then maritime else others 

b) IF(AND(WDD<357.5, WDD>320), then maritime else others. 

c) IF 𝑓(𝑅𝐻) >2, then maritime else others. 

d) IF 𝑓(𝑅𝐻) > 2.57, then maritime else others.  

 

These conditional statement were used in the data pairs with time commensurate AOD (Table 5-1) and 

𝑓(𝑅𝐻) obtained using simple method (Equation 4-4). The Boolean 1 is used if the condition was “TRUE” 

for maritime and Boolean 0 is used it the conditions was “FALSE”. The f(RH) which obtains higher 

percentage of conditions is chosen, on the basis of the final score obtained in four conditions to correct 

AOD. 

4.4.2. Sensitivity Analysis  

At first, sensitivity analysis is carried out to assess the sensitivity and uncertainty in estimated PM2.5 with 

change in 𝑓(𝑅𝐻) for grouped “maritime” and “others” air mass type for Petten. The modified value of 

median, 25th percentile and 75th percentile values for 𝑓(𝑅𝐻 = 72%, λ = 475 nm) at Petten after Cabauw 

(Table 4-3) is used. The values of 𝑓(𝑅𝐻) for different percentiles for grouped air mass types is considered 

keeping BLH and AOD variables same in Equation 4-17 for sensitivity and uncertainty analysis. 
 

Table 4-3 Percentile value of 𝑓(𝑅𝐻 = 72%, 𝜆 = 475  nm) for air mass types found at Petten after Cabauw 

Air mass type Median 25th percentile 75th percentile 

Maritime, Grouped 3.17 2.99 3.36 

Others, Grouped 2.04 1.9 2.14 

 

In a similar way, the sensitivity and uncertainty in estimated PM2.5 with change in 𝑓(𝑅𝐻) for grouped 

“maritime” and “others” air mass type for Cabauw is carried out. The median, 25th percentile and 75th 



SEMI-EMPIRICAL MODELLING OF PM2.5 USING SURFACE WEATHER, UPPER AIR AND SATELLITE RETRIEVED ATMOSPHERIC OBSERVATIONS 

 

40 

percentile values for 𝑓(𝑅𝐻 = 85%, λ = 550 nm) as presented in Table 4-1 is used. The values of 𝑓(𝑅𝐻) 

for different percentiles for grouped air mass types is considered keeping BLH and AOD values same in 

Equation 4-17 for sensitivity and uncertainty analysis. The procedure used for sensitivity analysis is described 

below; 

 

Schaap et al., (2009) found the relationship of MODIS AOD and PM2.5 for Cabauw, (Equation 

4-16Equation 4-16), which was used in sensitivity study to quantify the effects on estimated PM2.5 with 

correction of AOD for hygroscopic growth factor, 𝑓(𝑅𝐻) with different air mass type. 

 𝑃𝑀2.5 = 120.01 × 𝐴𝑂𝐷 + 5.1 Equation 4-16 

“Meteo-scaled” AOD value as defined by Koelemeijer et al. (2006) (Equation 4-3) is inserted into Equation 

4-16 to obtained Equation 4-17 to estimate PM2.5 concentrations at the surface. 

 𝑃𝑀2.5 = 120.01 ×
𝐴𝑂𝐷

𝐵𝐿𝐻 × 𝑓(𝑅𝐻)
+ 5.1 Equation 4-17 

The 𝑓(𝑅𝐻) of either grouped “maritime” or “others” air mass type is chosen on the basis of sensitivity of 

change in 𝑓(𝑅𝐻) values of air mass to estimated PM2.5. The air mass type showing high sensitivity to 

estimated PM2.5 with change in 𝑓(𝑅𝐻) values between 25th percentile and 75th percentile could support in 

finding dominant air mass type at Cabauw.  

4.5. Multiple Linear Regression modelling with Meteo-scaled AOD 

The AOD predictor variable is replaced with Meteo-scaled AOD obtained with simple method in Table 

5-5. The bivariate regression is carried out for meteo-scaled AOD. If the predictor variable was statistically 

significant (p-value<0.1) then, it was chosen. The multicollinearity check for meto-scaled AOD is also 

carried out. If VIF<10, meteo-scaled AOD was selected for stepwise forward regression. The similar criteria 

for selection of variables in Stepwise Regression (4.2.4) is followed. The final selected candidate variables 

were used to obtain regression models using its general form as in Equation 4-2. The process is repeated 

for Meteo-scaled AOD obtained with advanced method. The regression modelling with meteo-scaled AOD 

is carried out for data pairs of with time commensurate and with time commensurate. 

4.6. Model Performance  

Cross validation method followed by similar study (Guo et al., 2014) is adopted to test the performance of 

the derived regression models for with time commensurate and without time commensurate data pairs in 

the current study. Initially, the data pair of the selected predictor variables is randomly split into 90% as 

model training and 10% as model testing samples along with the dependent PM2.5 variable. Then, a multiple 

linear regression model is established based on the training samples, which is used to estimate PM2.5 

concentrations in the model testing samples. Thus, a linear regression equation between observed and 

estimated PM2.5 concentrations was fitted to obtain the slope and intercept values. Correlation coefficient, 

root mean square error (RMSE) of estimated and observed PM2.5 was calculated. The slope and intercept 

of the linear regression equation of estimated and observed PM2.5 is also calculated. The process is repeated 

for 1000 times with each time removing 10% of samples for model testing and fitting the model for other 

90% training samples.  
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4.7. Used Software and package 

The software and packages that are specifically used in the pre- processing, processing, analysing and 
visualization is presented in Table 4-4. 

Table 4-4 Description of used software during the study 

Software Package/Extension Description 

McIDAS McIDAS To extract AOD value at a location from gridded swath data 

of MODIS Level 2 aerosol and atmospheric product 

For time matching of instantaneous satellite measurement with 

the PM2.5 measurement time at Cabauw air quality monitoring 

station 

For temporal interpolation of AOD using weighted average 

method during resampling  

X-win 32  For parallel processing using McIDAS-V through University 

of Twente Linux server  

R ggplot2 For data visualization 

 For correlation matrix calculation, bivariate regression, 

variance inflation factor calculation, stepwise regression, cross 

validation 

Relaimpo To find the relative importance of a predictor variable in a 

multiple linear regression model 

ArcGIS 

10.2.2 

Proximity toolset To find the nearest distance from Cabauw air quality 

monitoring station to the surface weather stations and 

Ceilometer stations  

MS Excel  To handle text files 
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5. RESULT AND DISCUSSION 

5.1. Data Pairs  

With the available data set, the final matched data set includes data pairs of AOD, PM2.5, surface weather, 

upper-air (BLH) and satellite-retrieved atmospheric observations (Table 5-1) for without time 

commensurate and with time commensurate data pairs, when the observation is available for each variable.  

Table 5-1 Number of Data pairs available for dependent and predictor variables  

Data pairs type No. of data pairs 

With time commensurate  34 

Without time commensurate  86 

 

If the satellite overpasses the station at supposedly 10:15 and 13:00 in a day, the measurement at air quality 

monitoring station at 10:30 is paired with AOD observed at 10:15 during temporal matching. Similarly, the 

measurement at air quality monitoring station at 13:30 is paired with AOD observed at 13:00. And, 

supposedly if there is only one observation in a day at 10:15, each PM2.5 measurements at air quality 

monitoring station at 10:30 and 13:30 are paired with that one AOD observation providing two data pairs 

during temporal matching. This process of pairing which has “without time commensurate” AOD, which 

may ignore the change in atmosphere (e.g. wind speed, wind direction, relative humidity, temperature, 

boundary layer height) within air quality measurement durations between 10:30 and 13:30. 

 

If the satellite overpasses the station at supposedly 09:30 and 10:15 in a day, the AOD value at air quality 

monitoring station at 10:30 is obtained with weighted average temporal interpolation of estimated AOD 

values observed at 09:15 and 10:15 by the satellite. And supposedly, if there is only one satellite observation 

in a day at 10:15, only PM2.5 measured at air quality monitoring station at 10:30 is paired with AOD 

estimated at 10:15 without interpolation. Thus, there is only one data pair in a day. This process of pairing 

has “with time commensurate” AOD, which may consider the change in atmosphere (e.g. wind speed, 

wind direction, relative humidity, temperature, boundary layer height) within air quality measurements 

between 10:30 and 13:30. 

 

As per the Research assumptions, it is considered that boundary layer is representative as well mixed layer 

when single boundary layer during the satellite overpass time is detected by LiDAR. The potential 

temperature, humidity, wind speed and wind direction are nearly constant with height over the bulk of the 

mixed layer (Stull, 1988). The potential temperature is the temperature that a mass of air would have if it is 

brought adiabatically to average pressure at mean sea level (1000 hPa). However, the convective time scale 

is about 10-20 minutes for air to circulate between the surface to top of the mixed layer thus, the inversion 

might occur. In such case, the instantaneous AOD may change during measurement durations at 10:30, 

11:30, 12:30 and 12:30 within the vertical column of atmosphere. So, if AOD was not made time 

commensurate, it might not be representative. 

 

The data pairs created consists of satellite retrieved temporally interpolated AOD which is matched with 

surface level PM2.5 concentrations, surface weather, upper-air and satellite-retrieved atmospheric 

observations. PM2.5 concentrations are measured at every 0:09 to 0:51 minute at Cabauw air quality 
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monitoring station for most of the study period. So, there is already 18 minutes of discrepancy in PM2.5 

measurements in an hour. However, they were reported as hourly average values for 2013-2014. According 

to Guus Stefess (personal communication, May 18, 2016), the time discrepancies in automatic sampling 

instrument was adjusted for measurement since 2014 at Cabauw. The quick look in the final data pairs for 

both with time commensurate AOD (34) and data pairs without time commensurate AOD (86) shows that 

all the data pairs for measured PM2.5 observed consisted of measurement in 2013. As AOD is an integral 

of instantaneous measurement in a vertical column of atmosphere when MODIS Terra, Aqua overpasses 

at 10:30 and 13:30 local time respectively at any area on the surface of the earth, it is assumed (see Research 

assumptions) that PM2.5 concentrations at 10:30, 11:30, 12:30 and 13:30 is representative for 10:00, 11:00, 

12:00, 13:00 at surface respectively. And similarly it is assumed that surface weather observation at 10:30, 

11:30, 12:30 and 13:30 is representative for 10:00, 11:00, 12:00, 13:00 respectively. This is carried out as 

instantaneous AOD is observed.  

 

5.2. Assessment of predictors variables for Multiple Linear Regression Modelling 

5.2.1. Correlation Assessment 

The Pearson correlation of PM2.5 and predictor variables for without time commensurate and with time 

commensurate data pairs is summarized in Table 5-2. The selected predictor variables whose correlation is 

statistically significant (p-value<0.1) were only presented. The table also presents the direction of effect 

(positive or negative) of correlation of predictor variables and dependent variable in correlation column.  

Table 5-2 Summarized statistical characteristics of predictor variables with p-value < 0.1 for Pearson correlation 

Dependent 
Variable 

Predictor Variable 
Symbol 
used 

R* Correlation 
p-
value 

Data pairs type 

PM2.5 

Aerosol Optical Depth AOD 0.34 Positive 0.05 
With time commensurate  

Temperature TEMP -0.26 Negative 0.13 

Wind Speed WS 0.24 Positive  0.02 

Without time commensurate  

Temperature  TEMP -0.40 Negative 0.001 

Relative Humidity RH 0.33 Positive  0.00 

Boundary Layer Height BLH -0.22 Negative 0.04 

Aerosol Optical Depth AOD 0.11 Positive  0.30 

Surface Skin 
Temperature STEMP 

0.30 
Positive  0.01 

Lifted Index LI 0.27 Positive  0.01 

Water Vapor WVAP -0.23 Negative 0.03 

Water Vapor Low WVAPL -0.25 Negative 0.02 

Water Vapor Direct WVAPD -0.22 Negative 0.04 

Note: * R is the correlation coefficient between PM2.5 and corresponding predictor variable.  

The correlation (Table 5-2) of AOD without time commensurate is much lower (0.11) than that has been 

found for hourly PM2.5 (0.39) and daily PM2.5 (0.27) in similar study in Koelemeijer et al. (2006) in Europe. 

However, in Koelemeijer et al., (2006) data pairs were created only within the satellite overpass time for 

hourly data pairs. The correlation is close to the current study results for data pairs with time commensurate 

AOD (0.34). Although, there is change in AOD retrieval algorithm between MODIS collection 4 and 

collection (Levy et al., 2009), it should be also noted that, in current study, MODIS Terra and Aqua 

collection 051 is used to extract AOD at air quality monitoring location whereas in Koelemeijer et al. (2006) 
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MODIS Terra, Aqua collection 4 was used. And, in current study, the hourly data pairs were created for 

10:30, 11:30, 12:30 and 13:30 (i.e. four data pairs in between 3 hr) which is different to two data pairs for 

Terra and Aqua collection 4 in two hours in Koelemeijer et al., (2006) study. 

Recent study (Guo et al., 2014) has used time window of 5 hr to include more data point of PM2.5 and 

AOD with respect to MODIS Terra and Aqua collection 5 overpass time Usually, the hourly PM2.5 

concentrations is averaged centred around the satellite overpass time of Terra and Aqua to reduce the 

temporal noise of PM2.5 to correlate AOD and PM2.5. However, in current study, the correlation is assessed 

with data pairs of instantaneous AOD that is temporally interpolated with and without time commensurate 

AOD with the corresponding PM2.5 measurement time at the surface. Gupta & Christopher, (2008) found 

in North Brimingham, Alabama that the correlation of PM2.5 and AOD retrieved from MODIS Terra 

collection 5 is increased from 0.52 to 0.62 when hourly averaged PM2.5 is considered than daily averaged 

PM2.5 centred around satellite overpass time. It may be that the instantaneous MODIS AOD correlate 

better with hourly averaged PM2.5 compared to 24 hr averaged PM2.5 due to diurnal variations in PM2.5 

mass measurements. The study shows that the relationship between AOD and PM2.5 varies with location 

and time (Engel-Cox et al., 2004; Gupta et al., 2006; Koelemeijer et al., 2006). 

5.2.2. Bivariate Regression Analysis  

The selected variables which were statistically significant (p-value<0.1) in bivariate regression analysis were 

shown in Table 5-3. The adjusted R-squared of those variables were also presented. No new predictor 

variable was added to the predictor variables (Table 5-2) which were found to be significant in correlation 

assessment.  

 

It is found that AOD is not statistically significant (p-value>0.1) in bivariate regression with PM2.5.for 

without time commensurate data pairs. However, it might be statistically significant and add some variance 

in regression equation may be due to the relationship with other predictor variables, so it is included for 

stepwise regression analysis. However, due to limited knowledge about the response of meteorological 

predictor variables to PM2.5 at the surface, the interactions has not been addressed in this thesis. Similarly, 

temperature is not statistically significant (p-value>0.1). It is still considered as a predictor variable assuming 

that there might be relationship with other predictor variables. Thus, it is assessed if it could add some 

variance together with other variables in stepwise regression analysis.  

 
Table 5-3 Summarized statistical characteristics of predictor variables with p-value < 0.1 in bivariate regression models 

Variables 
Adj R-
squared 

Intercept 
Regression 
coefficient 

p-
value 

Data pairs type 

Aerosol Optical Depth 0.09 12.48 19.76 0.05 
With time commensurate  

Temperature* 0.04 121.13 -0.36 0.13 

Wind Speed 0.05 8.54 1.17 0.02 

Without time commensurate  

Temperature 0.15 161.46 -0.50 0.001 

Relative Humidity 0.10 -1.05 0.28 0.00 

Boundary Layer Height 0.04 20.51 -8.17 0.04 

Aerosol Optical Depth* 0.001 12.98 5.83 0.30 

Surface Skin Temperature 0.08 -233.76 1.64 0.01 

Lifted Index 0.06 12.27 69.88 0.01 

Water Vapor 0.04 18.93 -2405.82 0.03 

Water Vapor-Low 0.05 19.68 -9670.85 0.02 
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Variables 
Adj R-
squared 

Intercept 
Regression 
coefficient 

p-
value 

Data pairs type 

Water Vapor-Direct 0.04 18.82 -2308.09 0.04 

     Note: * Predictor variables with either p-value>0.1 

5.2.3. Multicollinearity analysis 

Table 5-4 shows the predictors variables selected with variance inflation factor value (VIF<30) for each data 

pairs of without time commensurate and with time commensurate respectively. The predictor variable such 

as water vapor, water vapor-low, water vapor-direct which remained in bivariate regression (Table 5-3) were 

excluded due to high collinearity with other predictor variables for without time commensurate data pairs. 

 

Variance Inflation factor of 10 or 30 characterises that the predictor variable with other remaining predictor 

variables (Table 3-6 and Table 3-7) has strong relationship and can together explain 90 to 97% of variance 

(Equation 4-1) in that predictor variable. Thus, collinearity between the variables might increases the 

estimate of the variance in PM2.5.  

 
Table 5-4 Predictor variables with Variance Inflation Factor (VIF<30)  

Predictor Variables VIF Data pairs type 

Wind Direction 7.28 

With time commensurate  

Wind Speed 18.94 

Temperature 13.66 

Relative Humidity 11.22 

Boundary Layer Height 6.00 

Aerosol Optical Depth 4.40 

Wind Direction 2.13 

Without time commensurate  

Wind Speed 3.07 

Temperature 18.01 

Relative Humidity 3.19 

Boundary Layer Height 1.98 

Aerosol Optical Depth 5.64 

Surface Skin Temperature 6.16 

Retrieved Moisture-Level 18 4.77 

Retrieved Moisture-Level 19 2.02 

5.2.4. Stepwise Regression 

The selected predictor variables obtained after supervised forward selection stepwise regression procedure 

is presented in Table 5-5. These final predictor variables were used for multiple linear regression modelling 

to estimate PM2.5. AOD is selected as a first variable for data pairs that are time commensurate. 

Temperature explained highest variance (15%) in PM2.5 for data pairs without time commensurate. Thus, 

temperature is considered as a first variable. The predictor variables such as wind direction, wind speed and 

relative humidity were excluded as they were not found to be significant (p-value>0.1) for data pairs that 

are made time commensurate.  

 
Table 5-5 Selected predicted variables for multiple linear regression modelling 

Predictor Variables Data pairs type 

Aerosol Optical Depth 
With time commensurate  

Temperature 
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Predictor Variables Data pairs type 

Boundary Layer Height 

Aerosol Optical Depth 

Without time commensurate  

Temperature 

Boundary Layer Height 

Relative Humidity 

Wind Direction 

Surface Skin Temperature 

 

Table 5-5 shows that out of altogether 24 potential predictor variables (Table 3-6 and Table 3-7), mainly 

temperature, AOD and Boundary layer height tend to explain more variance in PM2.5 (data pairs with time 

commensurate). It shows that the mostly all satellite retrieved atmospheric observations from MODIS 

atmospheric profile product were not remained at the end of variables selection. It is because of severe 

multicollinearity (VIF results not shown) although they were significant at 10% significance level in bivariate 

regression. Also, there is only one variable namely surface skin temperature, which is the only satellite 

retrieved atmospheric observations from MODIS atmospheric profile product that was retained in data 

pairs without time commensurate.  

 
5.2.5. Multiple Linear Regression Models 

These exploratory plots were prepared to visualize the linear relationship between PM2.5 and predictor 

variables.  

 

 

 

Although, only temperature, aerosol optical depth and boundarly layer height were selected as a predictor 

variable for time commensurate data pairs (Table 5-5), the linear relationship of PM2.5 and relative humidity 

(Figure 5-4) is also plotted (which was not not found to be significant). In Figure 5-1 and Figure 5-4, AOD 

and relative humidity shows positive relationship with PM2.5 respectively. It shows that there are very less 

data points that falls within 90% confidence interval around the slope of the regerssion line, which shows 

that the relationship between PM2.5 and predictor variables are more complex than linear. In case of 

temperature and boundary layer height (Figure 5-2 and Figure 5-3), it shows negative relationship with 

PM2.5 respectively. It also shows that there are very less data points that falls within 90% confidence interval 

Figure 5-1 Scatterplot of AOD and PM2.5 
concentrations with 90% CI across slope of a 
Linear Regression line 

 

Figure 5-2 Scatterplot of Temperature and 
PM2.5 concentrations with 90% CI across 
slope of a Linear Regression line 
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around the slope of the regerssion line, which shows that the relatinoship between PM2.5 and predictor 

variables are more complex than linear.  

 

  

The results of a multiple linear regression analysis is presented as a summary in Table 5-6 and Table 5-7 

with their statistical significane (p-value<0.1). AOD shows strong relationship with levels of PM2.5 

(p<0.001) in regression model for AOD with time commensurate data pairs. However, estimated PM2.5 

increases, when boundary layer height decreases (negative coefficient) as the dilution of PM2.5 is less in 

lower boundary layer height so, PM2.5 is concentrated (See Figure 5-3).  

 

Temperature has negative regression coefficient in data pairs for both with time commensurate and without 

time commensurate. Generally, increase in temperature increases the PM2.5 concentration. In our study, we 

found increase in temperature decreases PM2.5 concentration. An increase in temperature accelerates the 

generation of secondary partcles near the surface. High amount of sulphate particles tend to have larger 

extinction coefficients in the atmosphere (Chin et al., 2002). Thus, if there is more sulfate particles in the 

air, the AOD would correspond to less PM2.5 concentration. It might be true that sufate particles may 

present in higher amount in Cabauw. as it is found that ammonium nitrate and sulfate particles comprise on 

average 8 µg/m3 ± 10% of the PM2.5 concentratin in the Netherlands (Matthijsen & Brink, 2007). 

 
Table 5-6 Regression model summary with time commensurate data pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-statistics p-value 
R2 

(Adjusted) 

Aerosol Optical 
Depth 

211.350 

32.960 3.520 0.001 

29.6% Boundary Layer 
Height 

-13.530 -1.887 0.069 

Temperature -0.650 -3.003 0.005 

 

Table 5-7 Regression model summary for without time commensurate data pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-
statistics 

p-value 
R2 

(Adjusted) 

Temperature 497.53 -0.81 -4.07 0.0001 29.5% 

Figure 5-3 Scatterplot of Boundary Layer Height 
and PM2.5 concentrations with 90% CI across 
slope of a Linear Regression line 

 

Figure 5-4 Scatterplot of Relative Humidity and 
PM2.5 concentrations with 90% CI across 
slope of a Linear Regression line 
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Predictor variable Intercept 
Regression 
coefficient 

T-
statistics 

p-value 
R2 

(Adjusted) 

Surface Skin 
Temperature 

-1.67 -1.84 0.070 

Relative Humidity 0.19 2.37 0.020 

Aerosol Optical 
Depth 

12.23 2.47 0.016 

Wind Direction 0.02 2.25 0.027 

Boundary Layer 
Height 

-7.51 -1.98 0.052 

 

Strikingly, it is found that the final regression model for data pairs with time commensurate (Equation 5-1) 

and data pairs without time commensurate (Equation 5-2) explained similar variability in PM2.5 as 29.6% 

and 29.52%  respectively at Cabauw. This explained variability is low compared to Schaap et al. (2009) which 

explained 52% of variability in PM2.5 at Cabauw for the study period August 2006 to May 2007. It should 

be also noted that, there were 50 data pairs that were created within the satellite overpass time of MODIS 

Terra and Aqua (collection 5) in Schaap et al., (2009). In comparison to current study, the data pair retrieval 

is low (34) with time commensurate AOD. And it is also seen that data pairs are higher without time 

commensurate AOD as in Schaap et al. (2009) for August 2006 to May 2007 compared to 86 data pairs for 

2013-2014 in current study. It shows that there might be more cloud cover during our study period.  

It is also found that the correlation of AOD and PM2.5 improved from 0.34 to 0.45 (Table 5-9) when 

accounting for boundary layer height with time commensurate AOD which is contrasting to Schaap et al. 

(2009), where accounting for BLH didn’t improve correlation between AOD and PM2.5. It shows that 

AOD is strongly correlated with PM2.5 within the boundary layer. It also shows that our assumption of 

vertical distribution of particles above the boundary layer is relatively smooth is valid. 

 

However, for data pairs without time commensurate, the correlation of AOD and PM2.5 did not improve 

well (Table 5-11) compared to data pairs with time commensurate. This shows that the AOD retrieved 

without time commensurate are less representative of the ground level PM2.5 concentrations. Also, It can 

be seen from scatterplot of PM2.5 and AOD (see Annex Figure 6-1), PM2.5 and BLH (see Annex Figure 

6-3) that there are very less data points that falls within 90% confidence interval around the slope of the 

regerssion lines, which shows that the relationship between PM2.5 and predictor variables are more complex 

than linear. 
 
With time commensurate data pairs, 

 𝑃𝑀2.5 = 32.96 × 𝐴𝑂𝐷 − 13.53 × 𝐵𝐿𝐻 − 0.65 × 𝑇𝐸𝑀𝑃 + 211.35 Equation 5-1 

 
Without time commensurate data pairs,  

 
𝑃𝑀2.5 = 12.23 × 𝐴𝑂𝐷 − 0.81 × 𝑇𝐸𝑀𝑃 − 1.67 × 𝑆𝑇𝐸𝑀𝑃 + 0.19 × 𝑅𝐻

+ 0.02 × 𝑊𝐷𝐷 − 7.51 × 𝐵𝐿𝐻 + 497.53 
Equation 5-2 

Where, AOD is aerosol optical depth; TEMP is surface weather temperature; STEMP is surface skin 

temperature over land which is characterised as a function of surface air temperature, solar zenith and 

azimuth angles; RH is relative humidity; WDD is wind direction and BLH is boundary layer height.  

 

The F-test result shows that F= 5.62 for 30 degrees of freedom for semi-empirical model with data pairs 

without time commensurate. The p-value is 0.0035 (p-value<0.1), which means that the semi-empirical 

model is statistically siginificant at 90% confidence interval. Similarly, the F-test result shows that F= 6.94 

for 79 degrees of freedom for semi-empirical model with data pairs that are time commensurate. The p-
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value is 0.0001 (p-value<0.1), which means that the semi-empirical model is statistically siginificant at 90% 

confidence interval. 

5.2.6. Relative Importance of predictor variable 

Table 5-8Table 5-8 shows that the AOD explains proportionately higher variance in regression Equation 

5-1 compared to Equation 5-2 which is 18.6%. AOD is relatively explaining less variance in data pairs that 

are made without time commensurate. The reason could be the low correlation (0.11) between AOD and 

PM2.5. The true nature of relationship between AOD and PM2.5 might not be explained by linear 

relationship (see Figure 6-1). It may hold more complex relationship in the atmosphere, which is not well 

understood due to limitation of knowledge and the processes in the atmosphere about aerosol. Multiple R-

squared is used to find the proportionate percentage of variance explained by predictor variables. The output 

of partitioning of a variance explained by a regression model is obtained with “Relaimpo” package in R.  

 
Table 5-8 Results of Percentage of response variance for predictor variable 

Predictor Variable 
% of response 

variance 
Multiple R-

squared 
Data pairs type 

Aerosol Optical Depth 18.61 

35.97 With time commensurate Temperature 12.74 

Boundary Layer Height 4.63 

Temperature 13.77 

34.50 Without time commensurate 

Relative Humidity 7.14 

Surface Skin Temperature 4.61 

Aerosol Optical Depth 3.43 

Boundary Layer Height 3.10 

Wind Direction 2.45 

5.3. Correction of AOD for Relative Humidity using 𝒇(𝑹𝑯) 

The AOD was corrected for relative humidity using simple method found in (Li et al., 2005; Tsai et al., 

2011) for both data pairs (with time commensurate and without time commensurate). This method was 

applied when there was availability of relative humidity using Equation 4-4. Furthermore, AOD was 

corrected for relative humidity using advanced method when there was availability of hygroscopic growth 

factor, 𝑓(𝑅𝐻) and different air mass type at Cabauw. This correction method was also used for both data 

pairs. During study, two sources of information to correct AOD for relative humidity using advanced 

method was available. An experimental fitting curve (humidogram) of 𝑓(𝑅𝐻 = 72%, 𝜆 = 475 nm) only 

(Veefkind et al., 1996) for Petten (Equation 4-6), percentile values of 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm), average 

humidograms for different air mass type (Table 4-1) at Cabauw was available.  

 

The offset values were obtained (Table 4-2) for Petten to modify humidogram to obtain 𝑓(𝑅𝐻 = 85%, 𝜆 =

550 nm) after Cabauw. It is assumed (see Research assumptions) that it can be adapted with modification 

of offset values for different air mass type based on Zieger et al., (2013). This was carried out because 

instantaneous AOD was observed at 550 nm. The fitting curve at Petten was measured at 475 nm and it is 

approximately 90 km north-north west of Cabauw. It was necessary to modify according to measured f(RH) 

for different air mass types at Cabauw as the characteristics of aerosol depends upon air mass type (Wang 

& Christopher, 2003). The measured 𝑓(𝑅𝐻) values were higher for air mass arriving at Cabauw from the 

Northern Sea or the Atlantic Ocean (Zieger et al., 2013) as it contained hygroscopic sea salt. The air mass 

mainly originated from industrialized area of the Ruhr area, Northern France, Southern Britain, the 

Netherlands and Belgium consisted of low 𝑓(𝑅𝐻) at Cabauw. Thus, to simplify, the grouped air mass type 
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“maritime” and “others” (see Research assumptions) is obtained for Petten data adapted after Cabauw. The 

fitting curve to obtain 𝑓(𝑅𝐻) for “maritime” and “others” is given by Equation 4-7 and Equation 4-8 

respectively for Petten. Figure 4-3 shows the humidogram for grouped air mass type and other adapted air 

mass type at Petten after Cabauw. The two measured instantaneous values of 𝑓(𝑅𝐻 = 85%, 𝜆 = 550 nm) 

of Cabauw is also plotted (see Figure 4-3). 

 

The average humidogram obtained from re-plotting of extracted data (relative humidity and 𝑓(𝑅𝐻)) is 

shown in Figure 4-5. Again, to simplify, the grouped air mass type “maritime” and “others” (see Research 

assumptions) is obtained for Cabauw. The fitting curve to obtain f(RH) for “maritime” and “others” is given 

by Equation 4-14 and Equation 4-15 respectively. The correction of AOD for relative humidity using 

𝑓(𝑅𝐻) required selection of fitting curve of 𝑓(𝑅𝐻) between “maritime” and “others” of either Petten or 

Cabauw.  

5.4. Selection of fitting curve of f(RH) between “Maritime” and “Others” air mass type 

5.4.1. With Conditional Statement  

The 72 hr air mass back trajectories measured at Cabauw (Zieger et al., 2013) showed that for maritime air 

mass 𝑓(𝑅𝐻) was higher than 2 and for others, it was less than 2. Thus, in the polynomial curve (Figure 4-6), 

the lower dotted line distinguishes 𝑓(𝑅𝐻) above or below 2 as maritime and others respectively. But, there 

are still “other” air mass which lies above lower dotted line which can be both maritime and others 

respectively. Thus, upper dotted line is drawn to separate maximum value available for “others” air mass 

(2.57) with maritime.  

 

It is found that 63.24% data pairs with “other” airmass 𝑓(𝑅𝐻) values obtained with simple correction 

method for time commensurate data pairs, satisfies the conditional statements (4.4.1). And as per Research 

assumptions, wind direction at surface weather observation station at Cabauw is used as criteria to choose 

the air mass type for f(RH) in the current study. It would have been more certain if most of conditions were 

fulfilled by either of the air mass. The 𝑓(𝑅𝐻) of “Others” grouped air mass type is chosen which is found 

similar to Schaap et al. (2009) study, where polluted continental conditions were chosen. In support, 

sensitivity analysis further provides information on variability of 𝑓(𝑅𝐻) within the percentiles (25th, median, 

75th) of grouped “maritime” and “others” air mass type in estimated PM2.5. The sensitivity analysis of 

𝑓(𝑅𝐻) for different air mass type at Cabauw and similarly, at Petten might also give more characteristics 

on effect of variability of 𝑓(𝑅𝐻) on different air mass type in estimating PM2.5. However, as assumed (see 

Research assumptions), the air mass type were grouped to simplify the reality.  
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5.4.2. Sensitivity analysis of grouped “maritime” and “others” air mass type in estimated PM2.5 

  

Figure 5-5 and Figure 5-6, shows the characteristics of the effect of grouped “maritime” and “others” air 

mass type in estimated PM2.5 at Petten after Cabauw and at Cabauw respectively. The lower the value of 

𝑓(𝑅𝐻) for 25th percentile others air mass type (1.49), the uncertainty in the estimated PM2.5 is propagated 

(75 µg/m3) as shown in Figure 5-5, when AOD is high (0.69). Conversely, there is less uncertainty in 

estimated PM2.5 (40 µg/m3) for 75th percentile value of 𝑓(𝑅𝐻) value (2.94) for maritime air mass type, 

when AOD is high as well. In Figure 5-5 at Petten after Cabauw, the variability of 𝑓(𝑅𝐻) values between 

25th and 75th percentile for maritime leads to a relatively small amount of variability in the estimated PM2.5 

with respect to characteristics shown by others air mass. The estimated PM2.5 is comparatively more 

sensitive to variability of 𝑓(𝑅𝐻) values between 25th and 75th percentile of other air mass type than maritime. 

Thus, more uncertainty in the 𝑓(𝑅𝐻) values propagates to the estimated PM2.5, the greater the sensitivity 

of an estimated PM2.5 to 𝑓(𝑅𝐻) values of others.  

 

The 𝑓(𝑅𝐻) values of grouped air mass types are less sensitive for lower values of AOD (<0.05) as the 

estimated PM2.5 is almost similar for both air mass type at Petten (Figure 5-5) and Cabauw (Figure 5-6). 

When AOD is higher, the variability in 𝑓(𝑅𝐻) leads to a relatively large variability (about 10 µg/m3) in 

estimated PM2.5 for others air mass type at Petten compared to about 5 µg/m3 for maritime air mass type 

at Petten and Cabauw. 

 

From Figure 5-5 and Figure 5-6, it can be seen that 𝑓(𝑅𝐻) others air mass type of Cabauw is less sensitive 

than 𝑓(𝑅𝐻) others air mass type at Petten in estimating PM2.5 under high observed instantaneous AOD. 

Thus, the increased uncertainty in 𝑓(𝑅𝐻) for others air mass type at Cabauw leads to less uncertainty in 

estimated PM2.5. 

 

The 𝑓(𝑅𝐻) of Others air mass type found at Cabauw is chosen for correcting AOD. The result shows that 

the explained variability in PM2.5 is improved, when others air mass type is chosen for data pairs that are 

time commensurate (see Table 5-12). The consequence of the choice of air mass type is also tested by using 

𝑓(𝑅𝐻) of maritime air mass type as well found to correct AOD for relative humidity and boundary layer 

height. The result showed that the explained variability in PM2.5 decreased (result not shown). However, 

the choice of the air mass type did not improve (result not shown) the explained variability in PM2.5 for 

data pairs that are not time commensurate (Table 5-14). Thus, it is certain that the choice of “other” air 

mass should be considered for correcting AOD for relative humidity and boundary layer height.  

Figure 5-5 Sensitivity analysis of grouped “maritime” and 
“others” air mass type at Cabauw after Petten 

Figure 5-6 Sensitivity analysis of grouped “maritime” 
and “others” air mass type at Cabauw 
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5.5. Multiple Linear Regression Modelling Result with meteo scaled AOD 

5.5.1. Correlation and Bivariate regression assessment 

The correlation of the PM2.5 and meteo-scaled AOD improved from 0.34 to 0.39 using simple correction 

method for data pairs with time commensurate (see Table 5-9) The result is contrasting to Tsai et al., (2011) 

study at Taiwan which followed the method of Li et al., 2005. However, it should be noted that RH values 

were matched within the MODIS Terra (N=77) and Aqua (N=80) overpass time with RH only in the range 

between 50-65% in Tsai et al., (2011). In current study, in data pairs (N=34) consists of RH<94%. The 

correlation of AOD and PM2.5 did not improve for data pairs (N=86) without time commensurate AOD 

(Table 5-10) using simple method. 

 

The correlation of the PM2.5 and meteo-scaled AOD improved from 0.34 to 0.41 using advanced correction 

method. The result is similar to Koelemeijer et al., (2006) study for Europe, where the correlation of meteo-

scaled AOD and PM2.5 was improved from 0.38 to 0.59. The correlation of meteo-scaled AOD and PM2.5 

did not improve for data pairs without time commensurate AOD (Table 5-10) using advanced method. The 

correlation between AOD and AOD normalized for BLH is improved from 0.34 to 0.45 (Table 5-9) for 

data pairs that are time commensurate, which is similar to Tsai et al., (2011) study in Taiwan, where AOD 

it  was improved from 0.44 to 0.53 for MODIS Aqua.Similarly, the correlation between AOD and AOD 

normalized for BLH also improved from 0.11 to 0.17 (Table 5-10) for data pairs that are not time 

commensurate. 

The meteo-scaled AOD is regressed with PM2.5 to assesess the linear relationship between meteo-scaled 

AOD and PM2.5. The explained variability in PM2.5 increased by 5% with meteo-scaled AOD for data 

pairs that are time commensurate. However, the meteo-scaled AOD did not improve explained variability 

in PM2.5 (result not shown) for data pairs that are not time commensurate.  

 
Table 5-9 Result of correlation of AOD and PM2.5 for time commensurate data pairs  

Dependent 
Variable 

Predictor Variable Correlation 
Adj. R-
squared 

Remarks 

PM2.5 

𝐴𝑂𝐷 0.34 9% No correction for BLH and RH 

𝐴𝑂𝐷/𝐵𝐿𝐻 0.45 - Correction for BLH only 

Meteo-scaled AOD 0.39 12.65 
 𝑓(𝑅𝐻) used in meteo-scaled AOD is 
obtained from Simple Method 

Meteo-scaled AOD 0.41 14.07 
 𝑓(𝑅𝐻) used is meteo-scaled AOD is 
obtained from advanced method 

 
Table 5-10 Result of correlation of AOD and PM2.5 for without time commensurate data pairs 

Dependent 
Variable 

Predictor Variable Correlation Remarks 

PM2.5 

𝐴𝑂𝐷 0.11 No correction for BLH and RH 

𝐴𝑂𝐷/𝐵𝐿𝐻 0.17 Correction for BLH only 

Meteo-scaled AOD 0.06 
 𝑓(𝑅𝐻) used in meteo-scaled AOD is 
obtained from Simple Method 

Meteo- scaled AOD 0.1 
 𝑓(𝑅𝐻) used is meteo-scaled AOD is 
obtained from advanced method 
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5.5.2. Using simple and advanced method for time commensurate data pairs 

The summary of final multiple linear regression model for estimating PM2.5 for data pairs with time 

commensurate is shown in Table 5-11 (simple method) and Table 5-12 (advanced method) respectively. 

Boundary layer height was not found to be significant (p-value>0.1) for simple and advanced method. It 

could be because the AOD was already normalized for boundary layer height along with relative humidity 

(Equation 4-3). Thus, it was excluded as a candidate predictor variable in regression modelling with meteo-

scaled AOD (Table 5-12) for advanced method. The meteo-scaled AOD shows strong relationship (positive 

coefficient) with estimated PM2.5 with p-value (0.001), which indicates the increase in AOD with correction 

for RH and BLH accounts for increase in estimated PM2.5. 

 

The regression model (Equation 5-3) with meteo-scaled AOD and temperature using simple method 

explains at least 1.5 % more variability compared to 29.6 % (Equation 5-1) without correction of AOD for 

relative humidity and boundary layer height. This shows that the correction of AOD for relative humidity 

and BLH improves the variability in PM2.5. Altogether, the semi-empirical model (Equation 5-4) with 

meteo-scaled AOD and other predictor variables explains 4% more of variability in PM2.5 compared to 

AOD without correction for RH and BLH. However, the explained variability in PM2.5 is increased by 5% 

(Table 5-9) with only meteo-scaled AOD in bivariate regression analysis for data pairs that are time 

commensurate which is less than Koelemeijer et al., (2006) study for Europe, where there was 20% 

improvement in explained variability in bivariate regression of meteo-scaled AOD and PM2.5. 

 
AOD is an instantaneous measurement measured in 1.2 sec with the orbital velocity of MODIS observation 

at 7.1 km/sec in a 10 × 10- km pixel. Since, an instantaneous AOD is matched with PM2.5 measured for 

42 minutes at Cabauw air quality monitoring station during data pairing, it could be the reason that there is 

only 4 % increase in variability in PM2.5. Literature shows that in similar studies, area aggregated spatial 

matching of 5 × 5 pixels AOD is matched with hourly PM2.5 measurement time, assuming that air mass 

travels at 50 km/hr in troposphere before temporal matching to create data pairs of AOD and PM2.5. It 

should be further investigated in future that considering spatial matching and temporal matching with time 

commensurate AOD might improve more of the variability in PM2.5. 

 

The total explained variability of a semi-empirical model is increased to 33.6%, 34.8% when both meteo-

scaled AOD and temperature is considered, which is close 34.8% variability explained by meteo-scaled AOD 

alone in Koelemeijer et al., (2006). It should be noted however that the PM2.5 closer to overpass time of 

MODIS Terra and Aqua collection 04 was used in Koelemeijer et al., (2006). It should be also noted that 

the PM2.5 measurement techniques used also differs the correlation of PM2.5 and satellite retrieved AOD. 

So, the results may not be comparable to other studies which used different measurement techniques for 

PM2.5 measurements as the uncertainties in the measurement techniques may differ.  

 
Table 5-11 Regression model summary using meteo-sclaed AOD in simple method for time commensurate data pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-statistics p-value R2 (Adjusted) 

 Meteo scaled AOD 
206.06 

56.42 3.69 0.001 
31.1% 

Temperature -0.67 -3.1 0.004 

 

Regression model for Meteo-scaled AOD with simple method, 

 𝑃𝑀2.5 = 56.42 × 𝐴𝑂𝐷∗ − 0.67 × 𝑇𝐸𝑀𝑃 + 206.06 Equation 5-3 

Where, 𝐴𝑂𝐷∗ is the meteo scaled AOD (corrected AOD for 𝑓(𝑅𝐻) and BLH) and TEMP is surface 

weather temperature. 
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Table 5-12 Regression model summary using meteo-scaled AOD in advanced method for time commensurate data 
pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-statistics p-value R2 (Adjusted) 

Meteo scaled AOD 
210.78 

28.65 3.90 0.0001 
33.6% 

Temperature -0.68 -3.22 0.003 

 

Regression Model for meteo-scaled AOD with advance method (𝑓(𝑅𝐻)), 

 

 𝑃𝑀2.5 = 28.65 × 𝐴𝑂𝐷∗ − 0.68 × 𝑇𝐸𝑀𝑃 + 210.78 Equation 5-4 

Where, 𝐴𝑂𝐷∗ is the meteo scaled AOD (corrected AOD for 𝑓(𝑅𝐻) and 𝐵𝐿𝐻 ) and 𝑇𝐸𝑀𝑃  is surface 

weather temperature. 

 

The F-test result shows that F= 9.34 for 31 degrees of freedom for semi-empirical model with data pairs 

without time commensurate. The p-value is 0.0006 (p-value<0.1), which means that the semi-empirical 

model is statistically siginificant at 90% confidence interval. Similarly, the F-test result shows that F= 7.79 

for 80 degrees of freedom for semi-empirical model with data pairs that are time commensurate. The p-

value is 0.0001 (p-value<0.1), which means that the semi-empirical model is statistically siginificant at 90% 

confidence interval. 

5.5.3. Using simple and advanced method for without time commensurate data pairs 

On the other hand, the summary of multiple linear regression model for estimating PM2.5 using data pairs 

without time commensurate is shown in Table 5-13 and Table 5-14 respectively. The final regression model 

with meteo-scaled AOD with simple (Equation 5-5) and advanced method (Equation 5-6) did not improve 

the initial explained variability (29.5%) in PM2.5 (Table 5-7) for without time commensurate data pairs 

which is contrasting to the current study results for with time commensurate data pairs. This could be that 

the AOD suffered from hygroscopic growth of particles. Due to hygroscopic growth of particles, the size 

of the aerosol may increase from 2-10 times (Malm et al., 2000) and accounts for increase in extinction 

efficiencies of particles. Thus, PM2.5 observed would be lower with the same amount of AOD in the 

atmosphere (Liu et al., 2005). However, the correction of AOD for RH also didn’t improve the explained 

variability in PM2.5. It may be also that the relationship of PM2.5 with selected predictor variables couldn’t 

be explained by linear relationship and may hold complex relationship.  

Table 5-13 Regression model summary using meteo-sclaed AOD in simple method for without time commensurate 
data pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-
statistics 

p-
value 

R2 
(Adjusted) 

Temperature 

476.91 

-0.81 -3.99 0.001 

28% 

 Surface Skin 
Temperature 

-1.61 -1.81 0.07 

Relative Humidity 0.28 3.46 0.001 

 Meteo scaled 
AOD 

18.69 2.47 0.02 

Wind Direction 0.02 2.19 0.03 

 

Without time commensurate data pairs, for meteo scaled AOD with simple method, 
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 𝑃𝑀2.5 = 18.69 × 𝐴𝑂𝐷∗ − 0.81 × 𝑇𝐸𝑀𝑃 + 0.28 × 𝑅𝐻 + 0.02 × 𝑊𝐷𝐷

− 1.61 × 𝑆𝑇𝐸𝑀𝑃 + 476.91 

Equation 5-5 

Where, 𝐴𝑂𝐷∗ is the meteo scaled AOD (corrected AOD for 𝑓(𝑅𝐻) and BLH), TEMP is surface weather 

temperature, RH is relative humidity, WDD is wind direction, and STEMP is surface skin temperature over 

land which is characterised as a function of surface air temperature, solar zenith and azimuth angles. 

 
Table 5-14 Regression model summary using meteo-scaled AOD in advanced method for without time commensurate 
data pairs 

Predictor variable Intercept 
Regression 
coefficient 

T-
statistics 

p-
value 

R2 
(Adjusted) 

Temperature 

465.28 

-0.80 -3.99 0.00 

29% 

 Surface Skin 
Temperature 

-1.54 

-1.74 0.09 

Relative Humidity 0.26 3.22 0.00 

Meteo scaled 
AOD 9.91 

2.55 0.01 

Wind Direction 0.02 2.21 0.03 

 

Without time commensurate data pairs, for meteo scaled AOD with advanced method, 

 𝑃𝑀2.5 = 9.91 × 𝐴𝑂𝐷∗ − 0.80 × 𝑇𝐸𝑀𝑃 + 0.26 × 𝑅𝐻 + 0.02 × 𝑊𝐷𝐷 − 1.54

× 𝑆𝑇𝐸𝑀𝑃 + 465.28 

Equation 5-6 

Where, 𝐴𝑂𝐷∗is the meteo scaled AOD (corrected AOD for 𝑓(𝑅𝐻) and BLH), TEMP is surface weather 

temperature, RH is relative humidity, WDD is wind direction, and STEMP is surface skin temperature over 

land which is characterised as a function of surface air temperature, solar zenith and azimuth angles. 

5.6. Performance result of regression models for PM2.5 estimation 

Table 5-15 shows the summary of the statistics of PM2.5 estimation performance of regression models 

(Equation 5-1 to Equation 5-6) for estimating PM2.5. The slope and correlation is higher for data pairs that 

are time commensurate and corrected with advanced method among all data pairs as presented below. Thus, 

it shows that the regression model for predictor variables meteo-scaled AOD and temperature with time 

commensurate data pairs performs better compared to data pairs without time commensurate in estimating 

PM2.5. However, the accuracy of the satellite estimate of PM2.5 at a location depends upon robustness of 

regression relationship between AOD and PM2.5, which depends upon retrieval accuracy of AOD, PM2.5 

measurement and surface weather observations. Since, the retrieval accuracy is about ±20% of AERONET 

AOD, which need to be validated for current studies, which depends upon factors such as density, aerosol 

composition, hygroscopicity etc. at a location. The uncertainty of PM2.5 measurements at Cabauw air quality 

monitoring station is about 11% for daily averages for TEOM (reference) method. However, in current 

study, hourly average PM2.5 is used, thus the uncertainty increases for hourly measurement, which could be 

the reason for RMSE of about 7 µg/m3.  

 

Slope is less than 1, which means that AOD and temperature is not a perfect predictor. The reason could 

be that since the interaction between predictor variable is not considered, which could influence the 

variability of PM2.5 at a location. Also, the accounting of time discrepancies does not show significant 

improvement in variability in PM2.5, which shows that a lot more improvement is required in the current 

method. There could be presence of multiple aerosol layer in the atmosphere in a vertical column of 
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atmosphere at Cabauw, which could be the reason for correlation to be about 0.61, as total AOD would 

remain same in the vertical column but PM2.5 and AOD might correlate less at the surface. 

 

Table 5-15 Statistics of PM2.5 estimation performance of regression models 

Data pair type Equation Mean a Mean b 
Pearson’s 

r±𝜎 

Mean 

RMSE±𝜎 

 Without AOD correction for 

𝑓(𝑅𝐻) 

Equation 
5-1 

10.03 0.38 0.53±0.43 7.94±3.46 

AOD corrected using 𝑓(𝑅𝐻) 
(simple method) 

Equation 
5-3 

9.56 0.44 0.60±0.40 7.82±4.01 

AOD corrected using 𝑓(𝑅𝐻) 
(advance method) 

Equation 
5-4 

9.18 0.46 0.61±0.40 7.6±3.85 

Without AOD correction for 𝑓(𝑅𝐻) 
Equation 

5-2 
9.85 0.29 0.48±0.31 6.76±1.8 

AOD corrected using 

𝑓(𝑅𝐻) (simple method) 

Equation 
5-5 

10.03 0.28 0.48±0.31 6.79±1.8 

AOD corrected using 

𝑓(𝑅𝐻) (advance method) 

Equation 
5-6 

10.00 0.28 0.48±0.31 6.78±1.81 

Note: Mean a and b are the intercept and slope from the linear regression equation 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑀2.5 = 𝑎 + 𝑏 × 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑀2.5, 

where estimated PM2.5 is obtained from the corresponding linear models respectively in each different data pairs cases. Mean r and 𝜎 is the average 

values of all the correlation coefficients and their standard deviation. Mean RMSE is the mean of the root mean square error of the estimated and 

observed PM2.5 where 𝜎 denotes the standard deviations of all the RMSE values.  
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6. CONCLUSION AND RECOMMENDATION 

Hypothesis 1 conclusion: 

1. The present study created data pairs that are time commensurate when the satellite overpasses the 

air quality monitoring station at Cabauw. It is found that there is significant difference between 

semi-empirical model with time commensurate data pairs and without time commensurate data 

pairs at 90% confidence interval. Thus, the null hypothesis is rejected.  

 

2. However, the correlation between AOD and PM2.5 is increased, when data pairs are time 

commensurate whereas there is weak correlation in data pairs that are not time commensurate. 

Thus, the study concludes that the variability in PM2.5 is improved, when AOD is corrected for 

time discrepancies with other predictor variables. 

 

However, the true nature of relationship between AOD and PM2.5 couldn’t be well understood in depth. 

Thus with current limitations, the following recommendation can be made: 

1. The validation study of AOD with AERONET need to be carried out to assure about retrieval 

accuracy of AOD at a location. The global validation study of AOD for MODIS collection 005 

shows the retrieval accuracy of 0.05 ± 15%×AOD over land (Levy et al., 2007) compared to 

AERONET AOD. However, this might not be the case for the study period which need to be 

validated (see Research assumptions). 

2. It is necessary to have more in depth understanding of the relationship between PM2.5 and 

AOD, which should be studied to enhance the modeling, which could improve the explain 

variability in PM2.5. 

3. More in depth understanding of relationship between PM2.5 and other predictors variable 

should be studies which would improve the modeling effort to improve the explain variability 

in PM2.5. 

4. The interactions between predictors variables need to be understood and considered in 

modelling, which is unclear in this research due to lack of background knowledge on the air 

quality system dynamics and processes of the atmosphere. Thus, the understanding of those 

interactions and consideration into modeling might improve the explained variability in PM2.5. 

5. The change in atmosphere may change AOD values within satellite overpass time. Thus, more 

advanced interpolation techniques may assist to more accurately interpolate to consider the true 

nature of relationship between satellite retrieved instantaneous AOD and PM2.5.  

6. As found in similar studies (Liu et al., 2005; Guo et al., 2014) AOD varies with seasons. So, the 

seasonal variability of AOD could explain more variability in some seasons in PM2.5 better 

than the other. Thus, the longer study period may be considered. 

 

Hypothesis 2 conclusion: 

1. The present study found that, there is significant difference between the semi-empirical model with 

data pairs that are time commensurate with meteo-scaled AOD and data pairs without time 

commensurate meteo-scaled AOD at 90% confidence interval. Thus, the null hypothesis is rejected.  

 

Thus, for future work following recommendation can be made: 

1. It is assumed that boundary layer is a well-mixed layer (see Research assumptions) and AOD values 

are normalized using boundary layer height. There could be conditions when there might be the 
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residual layer in the atmosphere during satellite overpass time, which reduces the correlation of 

boundary layer AOD with PM2.5. Thus, consideration of the vertical distribution of particles above 

the boundary layer may account for residual layer as found in study (Tsai et al., 2011) which might 

improve the correlation between AOD and PM2.5. 
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APPENDIX 

A. MODIS products used, their scientific data set and description 
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B. Scatterplot of PM2.5 with predictor variables  
  

  

  

 

Figure 6-1 Scatterplot of AOD and PM2.5 

concentrations with 90% CI across slope of a 
Linear Regression line 

 

Figure 6-2 Scatterplot of RH and PM2.5 

concentrations with 90% CI across slope of a 
Linear Regression line 

 

Figure 6-3 Scatterplot of BLH and PM2.5 

concentrations with 90% CI across slope of a 
Linear Regression line 

 

Figure 6-4 Scatterplot of Temperature and 

PM2.5 concentrations with 90% CI across 
slope of a Linear Regression line 

 

Figure 6-5 Scatterplot of wind direction and 

PM2.5 concentrations with 90% CI across slope of 
a Linear Regression line 

 

Figure 6-6 Scatterplot of Surface skin 

temperature and PM2.5 concentrations with 90% 
CI across slope of a Linear Regression line 

 


