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Abstract 

 

 

Disease susceptibility mapping can produce risk maps showing predictive 

distribution of disease incidences. Hence, it is a useful tool for disease prevention. 

Data-driven approaches for disease susceptibility mapping model relationships and 

patterns from experience data. Therefore, using data-driven methods can facilitate a 

simple and direct approach towards disease susceptibility mapping.  

In this study, four data-driven models: logistic regression (LR), backpropagation 

neural network (BPNN), radical basis functional link nets (RBFLN) and general 

regression neural network (GRNN) for disease susceptibility mapping were 

implemented using Python. The performances of those four models were tested by a 

case study of visceral leishmaniosis (VL). Seven VL occurrence related factors, 

which are temperature, proximity to river, precipitation, proximity to nomadic 

villages, land cover, altitude, proximity to health-centers, were fed into the models 

as the input data. 

In the results, the area under the receive operating characteristic curve (AUC) was 

used to test the discrimination ability of the models, and the BPNN generated the 

best AUC of 0.942. The GRNN classified 70% of the validation data into the right 

class. The AUC generated by RBFLN, LR and GRNN are 0.938, 0.899 and 0.88 

respectively. Meanwhile, BPNN, RBFLN and LR correctly classified 80% of the 

validation data. All of them they predict that the northern and south-eastern part of 

the study area have high susceptibility in VL incidence. 
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1. Introduction 

1.1. Background 

Disease prevention is an effective method to dramatically minimize fatalities from 

diseases. According to WHO (WHO 2016a), vector-borne diseases account for more 

than 17% of all infectious diseases and cause more than a million deaths annually, 

even if many of these diseases are preventable through informed protective measures. 

Disease susceptibility mapping using GIS (geographical information science) can be 

a useful tool for disease prevention. Risk maps from disease susceptibility mapping 

can show prevalence distribution and can highlight areas prone to suffer certain 

endemic hazards due to their prevailing social and environmental conditions 

(Leonardo et al. 2007). Disease susceptibility mapping can produce risk maps 

showing predictive distribution of disease incidences. It can help disease managers 

make better planning of control activities and facilitate the establishment of disease 

early warning systems that can contribute to reducing the negative socioeconomic 

effect of the disease.  

Studies have shown that susceptibility maps can be produced by modeling 

association between incidences of diseases and environmental/demography factors 

(Salahi-Moghaddam et al. 2010;  Tsegaw et al. 2013;  Seid et al. 2014). 

Knowledge-driven and data-driven are two possible techniques for disease mapping. 

Knowledge-driven models rely on the expertise of analysts to assign weights to a 

series of factors, which can be difficult without relevant expert knowledge. Data-

driven approach model relationships and patterns from the experience data. Data-

driven methods despite of knowledge-driven methods provide a simpler and more 

direct approach for disease susceptibility mapping.  

There are a variety of data-driven methods conducted (Yesilnacar and Topal 2005;  

Lee and Sambath 2006;  Rajabi et al. 2014). Among the current methods logistic 

regression (LR) and artificial neural networks (ANNs) are two popular ones. LR is a 

multivariate statistical method which can be used to predict the probability of 

occurrence or absence of a certain situation. It is a widely used statistical method 
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which has a simple structure but can generate good result in making risk maps (Lee 

and Sambath 2006;  Yilmaz 2009). ANNs are extensively used to handle multi-

dimensional non-linear characteristics of many real-life problems (Fung et al. 2005). 

However, few studies have implemented such methods in generating disease 

susceptibility maps. 

1.2. Problem statement 

There are many methods that can be used for disease susceptibility mapping. 

However, the performance of these methods for disease susceptibility mapping are 

rarely investigated. 

1.3. Aim 

The main objective of this thesis is to develop and compare four methods for disease 

susceptibility mapping, namely: logistic regression (LR), backpropagation neural 

network (BPNN), radical basis functional link nets (RBFLN) and general regression 

neural network (GRNN). To achieve this, the following objectives should be met:  

 Implement four models (logistic regression, BPNN, RBFNN and GRNN) 

of making disease susceptibility map in Python.  

 Compare and test those four methods on visceral leishmaniosis (VL) as 

a case study disease. 

 

1.4. Methodology 

The methodology followed is focused on 2 main outputs: The first one is to 

implement the four approaches in disease susceptibility mapping, and then do a 

comparative analysis on results.  
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Figure 1.1 shows the process describing the activities conducted. An intensive review 

of past studies and literature about using LR and ANNS on susceptibility mapping 

was undertaken. Then, four methods were chosen for further analysis. Theoretical 

and implementation knowledge about the four selected methods were also analyzed. 

After that, the models of susceptibility mapping were implemented using Python and 

tested by one case study of VL. The results generated from the VL case study were 

then analyzed based on the aspects of discrimination and calibration from each of 

these models. Finally, generalizations and conclusions regarding the advantages and 

drawbacks of each model were made. 

 

Figure 1-1.Workflow of comparing four models of disease susceptibility mapping. 
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1.5. Outline of the thesis 

This thesis is structured in five main chapters. Chapter 1, Introduction, describes the 

background information as well as the general outline of the thesis. Chapter 2, 

Literature review, describes the algorithms compared in the thesis and the using of 

those algorithms in GIS. Chapter 3, Case study of VL, describes the implementation 

of those algorithms in a case study of VL. Chapter 4, Result, presents the results 

generated by the case study. The analysis of the comparisons of the results is 

discussed in Chapter 5, Discussion. Chapter 6, Conclusion, describes all the work 

done and the summary of the results and discussion. 
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2. Literature review 

This study is a comparison of four methods in making disease susceptibility mapping. 

It is constituted into two main parts: the technique and the application of those 

methods in susceptibility mapping. To cover both, a review of important related 

literature and previous works are discussed in this chapter. 

This chapter is structured into four main parts: section 2.1 focuses on the review of 

the logistic regression; section 2.2 discusses three selected types of ANNs; section 

2.3 introduces the visceral leishmaniosis, which was used in the case study to test the 

performance of the techniques; and, section 2.4 is the review of the application of 

those methods in GIS, especially in susceptibility mapping. 

 

2.1. Logistic regression 

Regression can be considered as a process to find a series of coefficients which can 

best describe the relation between the observation values and the dependent values. 

LR is a commonly used regression approach. It is a statistical method, which is 

usually used to find the relationship between several independent variables and the 

probability of a binary or categorical response (Lee and Sambath 2006). The 

advantage of logistic regression is that, by adding a proper link function to the normal 

linear regression model, the variables can be any combination of continuous and 

discrete, and they do not have to be normal distribution (Lee and Sambath 2006). As 

the response value is the probability of absence or presence of an event, it can be 

used to predict the probability of the disease incidence via a series of social and 

environmental factors. The relation between the occurrence and the independent 

variables can be expressed as: 

P = 1 / (1 + e-z)       Equation 1 

Z = b0 + b1x1 + b2x2 +…+ bnxn          Equation 2 
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Where P is the probability of the occurrence of an event, and Z is a linear combination 

of the independent variables, for example an n-dimensional social-environmental 

factors. The b0 is the intercept of the model and b1, b2…bn are the weights of the 

factors. 

2.2. Artificial neural networks 

In machine learning and cognitive science, artificial neural networks are a family of 

models inspired by the sophisticated functionality of human brain where hundreds of 

billions of interconnected neurons process information in parallel. They are widely 

used to estimate or approximate functions that can predict the response value based 

on predictor variables. Commonly, the structure of ANNs consist of three layers, 

input layer, hidden layer with several neurons and output layer, with each layer fully 

connected to the next one through series of weights. The neurons containing transfer 

functions can receive signals coming from the previous layer and generate outputs 

which form the input signals for the next layer. The weights can be adjusted based 

on the empirical data, which make the neural nets having the ability of learning. In 

the following subsections, three selected types of ANNs namely, BPNN, RBFLN and 

GRNN, are introduced.  

2.2.1. Backpropagation neural network  

Multilayer perceptron is the most popular neural networks. As the network is trained 

using the back propagation method, it is also called BPNN. It is based on searching 

an optimal set of weights which can generate the minimum error between its outputs 

and the desired target value. The structure of BPNN consists of 3 types of layers: 

input layer, hidden layer and output layer. Each layer is fully connected to the next 

layer. It can be trained by the training data. Each iteration of the training includes 

two sweeps: feed-forward can generate outputs; backward propagation which 

calculates the error between the desired target value and the output value to adjust 

the weights. Moreover it can have more than one hidden layers. But, according to 

Yesilnacar and Topal (2005), the BPNN with one hidden layer containing enough 

nodes is capable for most function approximation problem under an acceptable 
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degree of accuracy. 

 

In an initialized neural network, one training example is involved to run the network 

in the feed-forward sweep. Firstly, each input node in the input layer transmits the 

value received forward to each hidden node in the hidden layer. The dot product of 

all the input nodes and their corresponding interconnection weights performs the 

input of the corresponding hidden node. Each node in the hidden layer can receive 

an input from the input layer. Once one hidden node receives the input coming from 

the input layer, the transfer function in it can yield an output between 0 and +1. The 

amount of output produced constitutes the new signal that is to be transmitted 

forward to the output layer. The signals received by the output layer are summarized 

to generate the neural network solution of fed example, which may have deviation 

from the target solution caused by the arbitrary selected interconnected weights.  

In the backward sweep, the error between the desired target value and the output 

value can be used to adjust the weights. The feed-forward back propagation process 

is applied repeatedly till reach the minimum error that the algorithm can produce. 

But, in some cases, the minimum error is just a local minimum value instead of the 

global minimum one, which is the drawback of the BPNN. Moreover, as stated by 

Dreiseitl and Ohno-Machado (2002) the BPNN also has the problem of overfitting, 

which means that the algorithm memorize the data set instead of finding the 

underlying distribution. However, it can be solved by using a method called weight 

decay, which shrink the regression coefficients by adding a penalty to the error 

function (Dreiseitl and Ohno-Machado 2002;  Hastie et al. 2005).  

The structure of BPNN, which has three neurons in the input layer and three neurons 

in the hidden layer, is shown in figure 2-1. The ai represents the weight that connects 

the neuron in the hidden layer and the output. Additionally, the circles with label of 

“+1”, which correspond to the intercept term, are called bias units. 
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Figure 2-1 the structure of backpropagation neural network. 

 

2.2.2. Radical basis functional link nets 

RBFLN can be used for nonlinear input-output relationships (Looney 2002). An 

RBFLN consists of three layers: (I) an input layer with n nodes, which receives 

values from observation data; (ii) a hidden layer which contains m artificial neurons; 

and (iii) an output layer (Looney 2002). The active function in the neurons in hidden 

layer is a radial basis function (RBF) (Looney 2002) and the hidden layer and the 

output layer are connected through a series of weights. The equation 3 shows a usual 

Gaussian RBF where the x presents an n-dimensional vector, v present a center, and 

σ is the spread parameter(Looney 2002). 

Y= 𝑓(x; v) =exp {- ||x- v ||^2/2*σ^2)}            Equation 3              

The structure of RBFLN, which has n neurons in the input layer and m neurons in 

the hidden layer, is shown in figure 2-2. In an initialized RBFLN, one training data 

received by the input layer is linked to all the neurons in the hidden layer. The data 

transmitted to the hidden layer is fed into the radial basis function to generate an 

output. Then the output generated by the hidden layer and the weight-A (A1, A2..., 

and Am) form a dot product, which is transmitted to the output layer. Additionally, 

the input data is also linked to the output layer through an additive linear model with 
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a set of weight-B (B1, B2..., and Bn). Finally, the output layer responses the output of 

fed data. The desired weight A and weight B of the RBFLN can be trained using 

gradient descent approach (Looney 2002). 

 

Figure 2-2 RBFLN with n neurons in the input layer and m neurons in the hidden layer. 

2.2.3. General regression neural network 

GRNN is a memory-based supervised feed-forward network, which is based on 

nonlinear regression and designed for function approximation (Fung et al. 2005). The 

algorithm has a highly parallel structure, and even with sparse data in a multiple 

dimension space, the algorithm can provide smooth transitions from one input data 

to another (Specht 1991).  

 

GRNN is a 3-layer network that has an input layer, a hidden layer consisting of 

pattern units and summation units, and an output layer. The p-dimensional input data 

consists the p input units which are fed to the pattern units in hidden layer. Then those 

inputs are calculated through the transfer function in each pattern units. Moreover, 

the Gaussian kernel can be used as the transfer function (Specht 1991). Then, the 

outputs of all the pattern units are connected to two summation unites through two 

sets of weights, Ai and Bi. Finally, the output just divides summation unit A by 

summation unit B to generate the estimate of Y. The figure 2-3 shows the structure 
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of GRNN. The input is an n-dimensional vector and the number of units in the pattern 

units is m. 

 

Figure 2-3 the structure of GRNN. 

The transfer function, which is the Gaussian kernel, in each pattern unite contains 

two parameters, one is center Ci and the other one is smooth parameter σ. The 

Gaussian kernel is shown in equation 4.   

K (||xi- Ci ||) = exp {- ||xi- Ci ||^2/2*σ^2)}               Equation 4  

 

The centers Ci and the weights Ai and Bi can be generated from the training data 

(Specht 1991). Therefore, given a training data set and an independent data set, the 

transfer function is optimized by the selection of a single σ for all pattern unites, 

which is the common spherical or radial basis function kernel band width. In most 

situations, the GRNN has a unique σ that can generate the minimum Mean Square 

Error (MSE) between the predicted output and the desired output (Specht 1991).  

2.3. Background of visceral leishmaniosis  

Visceral leishmaniosis, which is also known as kala-azar, black fever, is a zoonotic, 

vector-borne, infectious disease transmitted to humans through the bite of infected 
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sand flies (Tsegaw et al. 2013). It is a disease caused by protozoan parasites of the 

Leishmanial genus. This disease is the second-largest parasitic killer in the world 

(after malaria). It is the ninth most infectious disease which infects about 200,000 to 

400,000 people each year worldwide (WHO 2016b).  

Numerous researches have shown that environmental, demographic, and statistical 

data of the ecology of VL can be integrated to make susceptibility map for VL 

(Peterson and Shaw 2003;  Castillo-Riquelme et al. 2008;  Salahi-Moghaddam et 

al. 2010). Moreover, Rajabi et al. (2014) have proved that it is feasible to use the 7 

kinds of evidence maps which are temperature, proximity to river, precipitation, 

proximity to nomadic villages, land cover, altitude, proximity to health-centers to 

predict the probability of the presence of VL in north-western Iran. 

 

2.4. Using of LR and ANNs in GIS 

 

A number of studies have been carried out using LR and ANNs in GIS, while most 

of them focused on landslide study.  

Lee and Sambath (2006) used logistic regression to link factors, such as slope, 

curvature, and distance from drainage, etc., with the occurrence of landslide to make 

landslide susceptibility map;  

Ayalew and Yamagishi (2005) use logistic regression to predict the presence and 

absence of landslide occurrence. And according to the result of the regression, five 

categories of landslide susceptibility were made.  

Yilmaz (2009) linked landslide-related factors, such as geology, faults, slop and angle 

etc., to landslide using LR, BPNN and another method called frequency ratio. It 

shown that all of those methods can generate a good result, meanwhile, the BPNN 

had the best performance. 

Dai and Lee (2002) used logistic multiple regression to model the relationship 

between landslide and pertinent landslide characteristics. They stated that the logistic 

regression has advantage in predict the occurring or absent of an event, and the 
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predictive value can be interpreted as probability. 

Porwal et al. (2003) applied RBFLN to base metal deposit potential mapping in the 

Aravalli province and showed that the spatial distribution of the high favorability 

zones predicted by the RBFLN model is consistent with the conceptual models of 

base metal metallogeny in the study area. 

Kumar and Anbalagan (2015) generated landslide inventory maps in Tehri reservoir 

rim area using RNFLN. The landslide causative factors were derived from remote 

sensing and the accuracy of the prediction was found to be 86%. 

Yesilnacar and Topal (2005) applied logistic regression and back-propagation neural 

networks to produce landslide susceptibility map in a medium scale and showed that 

the susceptibility map produced by back-propagation is more realistic. Moreover, the 

logistic regression was proved to be helpful in eliminating unrelated inputs factors 

and finding out the significance of the related significant ones. 

Rajabi et al. (2014) developed an environmental modelling of VL by susceptibility-

mapping using RBFLN. The study showed that the RBFLN model can generate 

reliable susceptibility maps without any external knowledge. 

Singer and Kouda (1996) used a feedforward neural network with one hidden layer 

and five neurons to identify the distance to Kuroko mineral deposits. And, the method 

succeeded in recognize all of the known deposits which are expected to be identified. 

Brown et al. (2000) applied BPNN to estimate the favorability for gold deposits using 

a raster GIS database and showed that the BPNN has several advantages over 

conceptual fuzzy-logic method and empirical weight of evidence. 

Beucher et al. (2013) used RBFLN for soil mapping in the area of Sirppujoki River 

catchment and showed that this method has good predictive classification abilities 

regarding mapping acid sulfate. 

Fung et al. (2005) compared four types of neural networks, including GRNN, BPNN, 

PNN and Probabilistic Neural Network (PrNN) for the prediction of mineral 

prospectively and showed that the PNN, GRNN and PrNN all have a better 

performance than BPNN. 
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3. Case study of visceral leishmaniosis 

3.1. Data resource of visceral leishmaniosis 

In the case study, a GIS data set, which was generated by Rajabi et al. (2014), in the 

area of Kalaybar and Ahar, Iran, was used to obtain the social-environmental feature 

vectors associated with VL. It consists of 7 maps in raster format (Fig. 3.1). All maps, 

which already have the same scale of 1:50,000, were preprocessed using ArcGIS 

10.2 to make them covering the same area. 

 

 

 

Figure 3-1.Evidence map for VL. (a) Temperature, (b) Proximity to river, (c) precipitation, (d) 

Proximity to nomadic villages, (e) Land cover, (f) Altitude, (f) Proximity to health-centers. 
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In addition, one point data set (Fig. 3.2) containing the presence/absence of VL in 59 

villages of the study area, were used to generate the training and validation datasets. 

The dataset contains 30 endemic points that show the presence of VL, and 29 non-

endemic points exhibiting the absence of the VL. Ten out of the 59 points (5 points 

from each) were selected as validation data. Each point contains an attribute value 0 

or 1 where 0 means low susceptibility and 1 means high susceptibility.  

 

 

Figure 3-2.The training and validation points. 
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3.2. Implementing the models on visceral 

leishmaniosis 

The models were developed using Python. The figure 3.3 shows the general process 

of producing VL susceptibility map and the validation of the models. 

 

Figure 3-3.The general process of producing VL susceptibility map and the validation of the 

models. 
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The process of making disease susceptibility map using these models is described 

below. 

The raster dataset containing the social environmental information and the point 

dataset, which stores the coordinates of the training and validation points and the 

attribute (0 or 1) of each point, were connected to the model. All the raster maps were 

integrated together to form a feature vector matrix to be used as the input feature 

vector for the model. Each element in the feature vector matrix contained a 7-

dimensional vector consisting of the corresponding value derived from the seven 

evidence maps. The column and row number of the elements in the matrix could be 

used to locate its associated position in the raster maps. All the values of the raster 

maps were normalized to [0, 1] using Xn = (X - Xmin) / (Xmax – Xmin) in which Xn is 

the normalized value and Xmin and Xmax are the minimum and maximum value of the 

corresponding map respectively. In this way, the land cover, which is nominal data, 

was converted to values in the range of 0 and 1. The value presents the classification 

of the land cover. 

The social-environmental feature vector of each training and validation point was 

then derived from the feature matrix according to corresponding coordinates stored 

in the point shapefile. The derived feature vector and the corresponding attribute 

value of one point formed a pair of input and desired output. All pairs formed the 

training and validation dataset. The model needed to be trained under different 

parameters which influenced the model’s performance. The parameters that produced 

the lowest training sum of squared error (TSSE) were to be chosen in generating the 

predictive susceptibility value of all the cells in the study area. Four algorithms (LR, 

BPNN, RBFLNN and GRNN) were implemented for predicting the susceptibility 

value. 

A set of thresholds were selected to classify the cells into 5 categories, which are 

very low susceptibility area, the low susceptibility area, the moderate susceptibility 

area, the high susceptibility area and the very high susceptibility area. The thresholds 

were selected by using reclassify function in ArcGIS 10.3. The reclassify method 

selected was natural break.  
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3.3. Validation of the models 

After the susceptibility maps were produced, two aspects of model performance were 

tested. The first was discrimination, which tested how good the endemic and non-

endemic area can be divided; the second was calibration, which tested how accurate 

the validation points are classified.  

The receive operating characteristic (ROC) curve was used to measure the 

discrimination ability of these models (Dreiseitl and Ohno-Machado 2002). It is a 

plot of true positive rate on the y-axis versus false positive rate on the x-axis. The 

false positive rate is defined by FP / (FP + TN) and the true positive rate is calculated 

by TP/ (TP + FN) where FP = false positive, FN = false negative, TP = true positive 

and TN = true negative. The area under the curve (AUC) can indicate the quality of 

the model regarding the aspect of discrimination. The AUC is between 0 and 1 (1 

means that the results are all correct and 0 means the results are totally incorrect), 

and was generated by cross-validation. All the data including training and validation 

were divided into six groups. Each time, one group of data was taken out as the test 

data to get the predictive value. The process was repeated until all has been tested. 

The ROC curve of all the predictive value was then generated.  

The calibration was measured by plotting the validation points onto the curve of 

predictive value versus cumulative percentage of area. 
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4. Result 

4.1. Result of logistic regression 

Two parameters influences the performance of LR model: learning rate (η) and the 

number of iterations. Thus, LR models with different learning rate and iteration were 

explored. The model with the learning rate of 0.05 and 2000 iterations got the lowest 

TSSE. The TSSEs generated by the models with different learning rates and 

iterations are shown in Fig. 4.1.  

 

 

Figure 4-1.The training sum of squared error (TSSE) versus number of iterations for different 

learning rates 

As shown in Fig. 4.2, the study area was divided into 5 zones: very low susceptibility 

area, the low susceptibility area, the moderate susceptibility area, the high 

susceptibility area and the very high susceptibility area. This was conducted by 

selecting a series of thresholds which were 0.12, 0.27, 0.47 and 0.71. The very low 

and low susceptibility area, which covered 50.5% of the study area, contained 91.6% 

of the non-endemic training points and 8% of endemic training points. 84% of the 

endemic and 0% of the non-endemic training points were categorized into the high 

and very high susceptibility area respectively, which comprised 34.25% of the study 
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area. The moderate susceptibility class contained 8% of the endemic training points 

and 8.4% of the non-endemic training points. The Fig. 4.4 and 4.3 show the 

calibration and discrimination abilities of this model. 

As shown in Fig. 4.3, 80% of the non-endemic validation points were classed into 

very low susceptibility area. The rest was in the low susceptibility area. Twenty 

percent of endemic validation points were located in the low susceptibility area. Also, 

60% of the endemic validation points were categorized into high and very high 

susceptibility area, and 20% of the endemic susceptibility points were in the 

moderate susceptibility area. The same information is also shown in Fig. 4.5. The 

ROC curve for this model, which produced the AUC of 0.899, is shown in Fig. 4.4.   

 

Figure 4-2.Predictive susceptibility of training data versus cumulative percent of the study area 

for LR. The blue arrows mean the locations of the thresholds. 
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Figure 4-3.Predictive susceptibility of validation points versus cumulative percent of the study 

area for LR. 
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Figure 4-4. ROC for validation of LR model.  

 

Figure 4-5.VL susceptibility map produce by LR. 
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4.2. Result of backpropagation neural network 

The performance of BPNN is affected by the number of nodes in the hidden layer, 

the learning rate, and the weight decay. The TSSEs of the BPNN models with 

different parameters are shown below. All the training had the maximum training 

iteration of 10,000, and were processed five times to get the minimum TSSE. The 

model with 20 neurons, the learning rate (η) of 0.5 and the weight decay of 0.0 was 

selected. While considering the overfitting problem of BPNN, another model with 

30 neurons in the hidden layer, the learning rate of 0.05 and the weight decay of 0.05, 

was chosen to test if the model with a weight decay element can have a better 

performance. The TSSEs generated by the BPNN models with different structures 

are shown in Fig. 4.6. 

 

 

 

 

Figure 4-6.TSSE generated by BPNN model with different parameters. 
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Table 4.2 and 4.3 show the predictive values of the validation points and the test sum 

of squared errors generated by the two BPNNs respectively. The network with the 

weight decay of 0.05 generated a lower test sum of squared error. Moreover, the 

network without the weight decay could not totally separate the validation points, 

while the network with the weight decay could. The same information is also shown 

in Fig. 4.7 and Fig. 4.9. Therefore, the model with 30 neurons in the hidden layer, 

learning rate of 0.05, and weight decay of 0.05, was selected for further analysis. 

Table 4.1.Predictive values of the validation points generated by the two BPNNs (predictive 

value 1 means the BPNN model with weight decay and the predictive value 2 represents the one 

without weight decay) 

N. State Class Predictive value 1 Predictive value 2 

1 Endemic 1 0.3249 0.7165 

2 Endemic 1 0.4993 1.0146*10-3 

3 Endemic 1 0.5947 9.9999 

4 Endemic 1 0.9239 9.9999 

5 Endemic 1 0.9752 1 

6 Non-Endemic 0 0.095 1.0146*10-6 

7 Non-Endemic 0 0.2879 5.9996*10-3 

8 Non-Endemic 0 0.1612 1.2014*10-5 

9 Non-Endemic 0 0.1333 2.223*10-6 

10 Non-Endemic 0 0.1734 1.1043*10-5 
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Table 4.2.Test sum of squared errors generated by the two selected BPNN models 

BPNN test sum of squared error 

Weight Decay=0.05 1.04 

No Weight Decay 1.07 

 

Figure 4-7.Predictive susceptibility of validation points versus cumulative percent of the study 

area for BPNN model with 20 neurons, the η of 0.5 and the weight decay of 0.0. 

As is shown in Fig. 4.8, the study area was divided into 5 zones by selecting a series 

of threshold namely 0.21, 0.38, 0.57 and 0.76. The five categories included very low 

susceptibility area; low susceptibility area; moderate susceptibility area; high 

susceptibility area; very high susceptibility area. The very low and low susceptibility 

area, which covered 52.5% of the study area, contained 91.7% non-endemic training 

points and 8% endemic training points. 72% and 0% endemic and non-endemic 

training points were categorized in high and very high susceptibility area respectively, 
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which comprised 28.2% of the study area. The moderate susceptibility class 

contained 20% endemic training points and 8.3% non-endemic training points.  

 

Eighty percent of the non-endemic validation points were classed into the very low 

susceptibility area, and the rest were in the low susceptibility area (Fig. 4.9). There 

were 20% endemic validation points located in the low susceptibility area. Also, 60% 

of the endemic validation points were categorized into high and very high 

susceptibility area and 20% of the endemic susceptibility points were in the moderate 

susceptibility area. The same information is also shown in Fig. 4.11. The ROC curve 

for this model, which produced the AUC of 0.942, is shown in Fig. 4.10.   

 

Figure 4-8.Predictive susceptibility of training points versus cumulative percent of the study 

area for BPNN model with 30 neurons, learning rate of 0.05, and weight decay of 0.05. 
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Figure 4-9.Predictive susceptibility of validation points versus cumulative percent of the study 

area for BPNN model with 30 neurons, learning rate of 0.05, and weight decay of 0.05.. 

 

Figure 4-10. ROC for validation of BPNN model. 
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Figure 4-11.VL susceptibility map produce by BPNN. 

4.3. Result of radical basis functional link nets 

The structure of RBFLN is only determined by the number of neurons in the hidden 
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layer as enough iterations were reached. The TSSEs produced by the RBFLN models 

with different structures are shown in Fig. 4.12. The RBFLN model with 30 neurons 

generated the lowest TSSE of 2.96 at the training iteration of 2000. 

 

 

Figure 4-12.TSSEs produced by the RBFLN models with different structures. 

As shown in Fig. 4.13, the study area was divided into five zones by selecting 

threshold values of 0.29, 0.402, 0.552 and 0.719, generating five categories (very 

low susceptibility area, low susceptibility area, moderate susceptibility area, high 

susceptibility area and very high susceptibility area). The very low and low 

susceptibility area contained 91.7% of the non-endemic training points and none of 

the endemic training points. Eighty-eight percent of endemic training points were in 

the high and very high susceptibility area. The moderate susceptibility class 

comprised 12% endemic training points and 8.3% non-endemic training points.  

The Fig. 4.14 shows that 100% of the non-endemic validation points were classed 

into very low and low susceptibility area, covering 44.2% of the study area. There 

were 20% endemic validation points located in the low susceptibility area. Also, 60% 

of the endemic validation points were categorized into high and very high 

susceptibility area, which comprised 35.8% of the study area. Forty percent of the 

endemic susceptibility points were in the moderate susceptibility area. The same 

information is also shown in Fig.4.16. The ROC curve for this model, which 

produced the AUC of 0.938, is shown in Fig. 4.15.   
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Figure 4-13.Predictive susceptibility of training points versus cumulative percent of the study 

area for RBFLN model. 

 

Figure 4-14.Predictive susceptibility of validation points versus cumulative percent of the study 

area for RBFLN model. 
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Figure 4-15.ROC for validation of RBFLN model. 
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Figure 4-16.VL susceptibility map produce by RBFLN. 
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4.4.  Result of general regression neural network 

The performance of GRNN is effected by the spread constant (σ). But, the training 

procedure for GRNN model is different from the other three algorithms. It can be 

described as follows: firstly, whole training sample was divided into two parts, the 

training sample and the test sample. GRNN was then applied on the test data based 

on the training data, and the sum of squared error (SSE) for differentσwas calculated. 

Finally, the minimum SSE and corresponding value of σwere determined. In this 

case study, the training data were divided into 5 groups and in each training iteration, 

one group of data was selected as the test data so that 5 optimalσwere found. The 

optimal σ was obtained by calculating the average of those 5 σ. 

 

Fig. 4.17 shows the SSE versusσ in the 5 iterations. The minimum SSE and 

corresponding value of σ are shown in Fig. 4.18.  

 

 

Figure 4-17.The SSE versus σ in the 5 iterations 
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Figure 4-18.The TSSE and σ in the 5 iterations. 

 

As shown in Fig. 4.19, the threshold values of 0.21, 0.35, 0.53 and 0.77, were used 

to classify the values into five categories (very low susceptibility area, low 

susceptibility area, moderate susceptibility area, high susceptibility area and very 

high susceptibility area). The very low and low susceptibility area contained 95.8% 

non-endemic training points and 8% endemic training points. Sixty-eight percent of 

the endemic training points were classified to the high and very high susceptibility 

area. The moderate susceptibility class contained 24% endemic training points and 

4.2% non-endemic training points.  

 

Fig. 4.20 shows the very low and low susceptibility area covering 61.01 % of the 

study area and containing 100% of the non-endemic validation points. There were 

20% of the endemic validation points located in the low susceptibility area. Also, 40% 

of the endemic validation points were categorized into high and very high 

susceptibility area and 40% of them were in the moderate susceptibility area. The 

same information is also shown in Fig 4.22. The ROC curve of this model, which 

produced the AUC of 0.88, is shown in Fig. 4.21.   
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Figure 4-19.Predictive susceptibility of training points versus cumulative percent of the study 

area for GRNN model. 
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Figure 4-20.Predictive susceptibility of validation points versus cumulative percent of the study 

area for GRNN model. 
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Figure 4-21.ROC for validation of GRNN model. 

 

 

Figure 4-22. VL susceptibility map produce by GRNN. 



 

37 

 

 

The table 4.3 shows the AUC and accuracy generated by the four models. The BPNN 

generate the bset score of AUC which is 0.942 while, the GRNN is the lowest in 

terms of AUC which is 0.88. The AUC for LR and RBFLN are 0.899 and 0.938 

respectively. Moreover, the LR, BPNN and RBFLN have the same classification 

accuracy of 80%. The classification accuracy of GRNN is 70%. 

Table 4.3. AUC and classification accuracy generated by the four models. 

Model LR BPNN RRBFLN GRNN 

AUC 0.899 0.942 0.938 0.88 

Accuracy 80% 80% 80% 70% 
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5. Discussion  

5.1 Discussion of the susceptibility maps of VL 

From the produced susceptibility maps of the four models, they predict that the 

northern and south-eastern part of the study area have high susceptibility in VL 

incidence. By analyzing the relationships among the evidence maps and 

susceptibility maps produced, the altitude and the proximity to health-centers are the 

two strongest factors that affect the spatial distribution of the VL. Temperature, and 

proximity to nomad villages also are vital in determining the occurrence of VL.  

The high VL susceptibility area appears more commonly at low altitude zone and 

disappears in areas located of high altitude. The nomadic lifestyle associated with 

lower socioeconomic conditions also affects the distribution of high-risk area. The 

areas having lower proximity to the nomadic villages have the higher risk of 

incidence of VL. In addition, warmer temperature was also found to be more prone 

to VL. The low altitude regions, concentrated nomadic villages with warm 

temperature conditions, is suitable for sand fly vector hence, have the high possibility 

of the outbreak of VL. 

The health-centers, which are helpful to disease prevention, have the effect of 

decreasing the risk of VL. But, it was not shown on the susceptibility maps. The 

proximity to rivers also influence the VL incidence. Because, the population should 

be concentrated in the areas closed to river and the high population density also is a 

factor that effects the VL incidence. While, the susceptibility maps did not show 

notable pattern effected by the proximity of river. 

5.2 The overfitting of BPNN 

As shown in 4.2, the susceptibility map generated from an overfitting BPNN model 

was greatly influenced by altitude and proximity to health-centers. This generated 

results with decreased discrimination and calibration performance presented in the 
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last chapter. It also influenced how the map is interpreted, since the weight of other 

factors are much smaller compared to the main factors. 

 

Figure 5-1.Susceptibility map produce by an overfitting BPNN model. 

5.3 The setting of learning rate 

As the weights of LR, BPNN and RBFLN were optimized by the algorithm of 

gradient decent methods. Consequently, the learning rate affects the quality of the 

optimal weights found. Very small learning rates result in a slow decent, leading to a 

longer training time than a proper learning rate. But a large learning rate may cause 
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an oscillation of the training SSE. It affects the quality of the optimal weights, thereby 

influencing the performance of the model in disease susceptibility mapping. For 

example, Fig. 4.3 shows the training SSE of the selected BPNN versus number of 

iterations under a proper learning rate. Fig. 4.4 shows training SSE of the same 

BPNN versus number of iterations but under a large learning rate.  

 

Figure 5-2. Training SSE of a proper learning rate. 

 

Figure 5-3. Training SSE of a large learning rate. 

5.4 The performance of the four models 

The LR model generated the AUC of 0.899 and classified 80% of the validation 

points into their proper classes. The advantages of LR are that: the structure is simple 

to implement but also can get a good result; and, the optimal weights obtained are 

interpretable, which is helpful in eliminating unrelated inputs factors and finding out 

the significance of the related significant ones (Yesilnacar and Topal 2005). 
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The BPNN generated the highest AUC of 0.942 and classified 80% of the validation 

points into the right class. But, BPNN has several drawbacks. Firstly, it has multiple 

minima, which means that the final optimal weights obtained may result from a local 

minimum instead of the global one. In the case study, the BPNN needed to be run 

several times to get the optimal weights. Secondly, the training iteration is much 

longer than RBFLN and GRNN. Thirdly, the selection of learning rate is based on 

experience, and there is no guideline for choosing the learning rate. Fourthly, the 

BPNN needs enough training data to estimate these parameters. But for disease 

susceptibility mapping, insufficiency of data commonly persists. Moreover, the 

optimal weights obtained cannot be interpreted (Looney 2002). Lastly, the BPNN 

may cram too much detail from the training data that may cause overfitting problems. 

Additional knowledge is needed to tackle the problem of overfitting. 

The RBFLN generated the AUC of 0.938 and classified 80% of the validation points 

into the right class. According to (Looney 2002), the RBFLN has a unique minimum 

with quick training, which facilitate the process of finding the optimal weights. The 

only parameter to be changed is the number of nodes in the hidden layer. Moreover, 

the algorithm can generate reliable from small data set. But the results generated are 

not bounded by the minimum and maximum of the observations, which means that 

the final predictive score need to be normalized. 

The GRNN generated the AUC of 0.88 and classified 70% of the validation points 

into the right class. Both of the AUC and the accuracy of GRNN is the lowest. It is 

because that the network is ‘learn’ in one pass through the data instead of the training 

process used in the other three methods which adjust the weights according to the 

training error each iteration. But, this characteristic make it generalizes from training 

data as soon as they are stored. It also has serval other advantages: (1) it can generate 

a reasonable regression surfaces based on few training data; (2) the prediction value 

is between the maximum and the minimum of the observations; (3) the prediction 

cannot converge to local minima (shown in Fig.3.20); (4) clustering methods can be 

used to decrease the number of nodes which can accelerate the training processes 

well as calculating the predictive value for each cell in the study area (Specht 1991). 
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6. Conclusions 

Four data-driven models-LR, BPNN, RBFLN and GRNN for disease susceptibility 

mapping were implemented in Python. The performances of those four models were 

tested by a case study of VL. 

In the results, the BPNN generated the best AUC which is 0.942. Meanwhile, BPNN 

together with RBFLN and LR correctly classified 80% of the validation data. The 

GRNN classified 70% of the validation data into the right class. The AUC generated 

by RBFLN, LR and GRNN are 0.886, 0.899 and 0.88 respectively. In the case study, 

all of them had the ability to highlight the main spatial distribution of the risk of VL. 

Some recommendations can be made using these methods for disease susceptibility 

mapping. The optimal weights generated by LR are interpretable; hence, it can be 

used to eliminate unrelated factors and to evaluate the significance of related ones. 

BPNN can generate good results. But considering the long training time, the unstable 

results and the overfitting problems, it is recommended to use BPNN as the 

benchmark with which to evaluate the other results. The RBFLN can generate good 

result, and the training is also efficient since there is a unique minimum. Additionally, 

it can work well with small data sets. The RBFLN is a good artificial neural network 

for disease susceptibility mapping. The GRNN has a one-pass structure, which 

provides quick training. The clustering techniques of GRNN which decrease the 

number of functions in the hidden layer also make it faster to make disease maps. It 

is therefore suitable for quickly producing the general distribution of diseases. 
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